Towards an Architecture Maintainability Maturity Model (AM?)

Christoph Rathfelder, Henning Groenda

FZI Forschungszentrum Informatik,
Software Engineering,
Haid-und-Neu-Strafe 10-14, 76131 Karlsruhe
{rathfelder, groenda} @fzi.de

Abstract

The maintainability of software systems is a crucial point
in the software lifecycle. However, assessing the quality
of the software’s architecture with respect to evolution is
a challenging task. The evaluation of the maintainability of
a system’s architecture is often made using scenario-based
techniques. These techniques require a comprehensive an-
ticipation of future adaptations of the systems. To circum-
vent this problem, a scenario-independent method is desir-
able to assess maintainability. Additionally, the comprehen-
sibility of the architecture for third persons which were not
involved in the initial design is an important aspect in the
long-term. We therefore developed the Architecture Docu-
mentation Maturity Model (AM?) to assess the quality of the
architecture’s documentation as this first of all influences
comprehensibility. This model is a first step towards a more
general approach to assess the maintainability of architec-
tures, called Architecture Maintainability Maturity Model.

1 Introduction

Maintainability is one of the most important quality at-
tributes of a software system in the long term. Evolution
becomes necessary, for example if enterprises want to adapt
their software systems to changed business needs or inte-
grate systems after a merger. Although evolution of soft-
ware systems is quite common, it is hardly possible to make
general quantifiable statements about the maintainability of
a system. The effort to maintain a system on a large scale
is affected by its architecture, especially if a restructuring
of the system is required (e.g, additional functionality is re-
quired). On a small scale, the implementation itself influ-
ences the maintainability of the system, for example if bugs
have to be detected and fixed or the performance of critical
parts is optimized.

Nowadays, scenario-based approaches like the
Architecture-Level Modifiability Analysis (ALMA) [4] or
the Architecture Trade-Off Analysis Method (ATAM) [13]
are the most widely used techniques to evaluate the
maintainability of a system. These approaches require the
definition of scenarios that represent the envisioned evolu-
tion of the system. Especially if the system has a planned
lifetime of several years, the uncertainty is quite high and
it is hardly possible to anticipate all needed adaptations of
the system. A scenario independent technique is therefore
desirable.

Another common method to assess the quality of soft-
ware is the application of maturity models. Maturity models
consist of different levels expressing the rating of the system
under scrutiny regarding a certain evaluation aspect. The
classification according to the different levels of a model is
based on the assessment of indicators, which are defined for
each level. The most popular maturity model for software
is the Capability Maturity Model Integration (CMMI) [14].
It focuses on the quality of software development processes
in whole enterprises.

A large part of the maintenance effort is induced for un-
derstanding the basic structure of a system and compre-
hend the underlying design decisions. The effort to com-
prehend a system’s architecture thereby heavily depends on
the knowledge of employees about the architectural deci-
sions. Employees who should change a system but were
not involved in its design and implementation need to fa-
miliarize themselves with the system and thereby have to
rely on the quality of the documentation of design decision
to make the right decision for themselves [17]. Hence, the
documentation of the architecture has a large impact on its
maintainability.

This paper presents the first step towards an Architec-
ture Maintainability Maturity Model (AM?). The aim of
the AM? is the definition of indicators and maturity levels
to allow reasoning about the maintainability of a system’s
architecture. Its maturity levels should be shaped accord-



ing to an ascending maintainability, meaning that a higher
maturity level correlates with a better maintainability of the
system’s architecture.

The contribution of this paper is the definition of the
Architecture Documentation Maturity Model (ADMM), as
first part of the planned AM>. The ADMM defines five ma-
turity levels. Each maturity level represents an extension
of the previous level in terms of the documentation quality.
The accessory requirements on the architecture’s documen-
tation induce higher comprehensibility of the architecture
which should lead to lower maintenance effort in the long-
term.

This paper is structured as follows: Section 2 gives an
overview of related work. Section 3 presents a defini-
tion of architecture maintainability. Section 4 describes the
ADMM and its five maturity levels. Section 5 concludes the
paper and provides an outlook to future work.

2 Related Work

Regarding the maintainability of software there are sev-
eral definitions available. The IEEE standard glossary of
software engineering terminology [10] defines maintain-
ability as:

The ease with which a software system or com-
ponent can be modified to correct faults, improve
performance or other attributes, or adapt to a
changed environment.

The ISO/IEC 9126 standard [11] provides a complete
quality model that breaks the quality of software systems
down into the sub-characteristics functionality, reliability,
usability, efficiency, maintainability, and portability. The
ISO/TEC 9126 quality model defines maintainability as:

The capability of the software to be modified.

The quality model emphasizes the following attributes
that make up the maintainability of a system:

o Stability:
The capability to avoid that modifications cause unex-
pected effects on other parts of the software system.

e Analyzability:
The capability needed to search out deficiencies and
causes of failures within the system.

e Changeability:
The capability to extend, enhance, and customize a
software system.

o Testability:
The property of the software system to be tested effec-
tively in order to observe and check the behavior of the
system.

Both definitions of maintainability presented above are ap-
plicable for software systems in general and not specialized
to a certain type of software system (e.g. component-based
software systems (CBSS)). However, this generality also
has its drawbacks as properties of certain system types are
not exploited. For example, Grover et al. [7] emphasize that
CBSS needs a refined definition of maintainability to reflect
that maintenance of a CBSS more often requires a recon-
figuration than a recoding of the system. This means that
components are rather rearranged or substituted by other
components than their implementation changed.

The Software Maintenance Maturity Model (SMMM) [1]
developed by April et al allows the evaluation of the main-
tenance activities and the determination of their maturity.
Comparable to the CMMI, they assess the process with
the aim to draw conclusions about attributes of the prod-
uct from the process maturity. For this reason, the SMMM
does not consider the product itself and its documentation.
It thereby gives no assistance in increasing the maintainabil-
ity of a system or even its architecture. An additional matu-
rity model with relation to maintainability is the Corrective
Maintenance Maturity Model (CM?) [12]. In contrast to the
SMMM it evaluates the capability of an enterprise to per-
form maintenance activities and not the executed activities
itself. It is focused on the knowledge and training of main-
tenance engineers and hence it does not provide indications
to evaluate the maintainability of a software system.

Huang and Tilley [9] have described their idea of an Doc-
umentation Maturity Model (DMM). The DMM bases on
the five maturity levels introduced by the CMMI. It does
not distinguish between documentation of code and the de-
scription of the architecture. In contrast to ADMM, the
DMM does not enjoin the information that has to be in-
cluded within the documentation. It rather describes the
techniques that have to be used within the documentation.
Level 3 for example requires animated graphics and hyper-
links. Furthermore, a documentation of the system’s archi-
tecture is not required until level 3.

3 Architecture Maintainability

Regarding CBSS, it has to be differentiated between
maintainability on the architecture level and the component
level [15]. The general definitions of a software system’s
maintainability do not consider this differentiation. For this
reason, this section presents our definition and refinement
of architectural maintainability. We use the definition of
software architecture provided by Bass et al:

“The software architecture of a program or com-
puting system is the structure or structures of the
system, which comprise software elements, the
externally visible properties of those elements,
and the relationships among them.” [2]



Figure 1 provides an overview about the attributes of an
architecture which affect its maintainability. This refine-
ment of architecture maintainability is described in the fol-
lowing.

Structure
Stability * Sectioning
Complexity

* Understandability

Analyzabllity * Traceability

* Modifiability
* Extensability

Maintainabili

Changebility

Testability * Predictability

Figure 1. Architecture Maintainability

Following Szyperski’s definition of a component [19],
components are independently deployable and should not
have any unexpected effects on other components. Hence,
modifications of the architecture, in particularly the substi-
tution of components, should not affect the functionality
of other components. Nevertheless, extra-functional qual-
ity attributes (e.g., performance or availability) of the sys-
tem and other components can be affected by such changes.
The stability of an architecture is mainly formed by the ease
to detect or even prevent such unwanted side-effects. This
detection can be simplified by the structuring and section-
ing of the architecture. Furthermore, the complexity of an
architecture, which is also affected by the structuring and
sectioning, impacts the ease to identify side-effects without
testing the system.

Detecting and analyzing problems caused on the archi-
tectural level is a quite complex activity. Therefore, the an-
alyzability of an architecture stands for the capability that
design decisions made and the resulting architecture itself
can be easily understood by experts which were not neces-
sarily involved in the design process. The understandability
of the architecture can for example be increased by a rea-
sonable documentation or the usage of well-known design
patterns. The second important aspect of analyzability is
traceability. This means that architectural design decisions
made with respect to stipulated requirements should be as-
sociated with these requirements in order to make decisions
comprehensible for third persons.

Changeability is the most important attribute of main-
tainability on the architectural level. It has to be differ-
entiated between modifiability, extensibility, and portabil-
ity [15]. Modifiability stands for the capability of the archi-
tecture to be restructured in order to meet new or changed

requirements (e.g. a shorter response time) of the system.
Thereby, a modification of the architecture does not mean
that new functionality is added to the system. It is rather
a restructuring of the architecture. The main difference be-
tween modifiability and extensibility is that the later one
targets the capability of the architecture to be extended with
new components to realize additional functionality. In con-
trast to the aforementioned attributes modifiability and ex-
tensibility, portability means the capability of the later sys-
tem to be adapted to other environment (e.g. another oper-
ating system or framework).

Testability of an architecture refers to the possibility to
examine the behavior of the system. For this reason, testa-
bility of the architecture is not restricted to integration and
system-level testing but also includes extra-functional rea-
soning techniques. Existing approaches that support the
second kind of testability are for example SOFA [8] and
Palladio [3].

4 Architecture
Model

Documentation Maturity

This section describes the developed ADMM and its ma-
turity levels. The ADMM can be used to assess the quality
of the description and documentation of a software system’s
architecture. There are 5 different maturity levels which are
associated in an ascending order with an increasing num-
ber of requirements on the architecture’s description and
documentation. Growing maturity of the documentation
thereby comes along with an increasing maintainability. A
higher maturity of the documentation is in general accom-
panied by the use of more formal models as these provide
a fixed semantic meaning of the modeled architectural arti-
facts. Furthermore, the use of formal models eases (semi-
)automated analyses which can for example be used to es-
timate the impacts caused by modifications within the ar-
chitecture. There is also the possibility to use model-driven
techniques to provide a consistent documentation by auto-
matically propagating changes in the architecture to the im-
plementation and vice versa.

A precondition of the ADMM is that some kind of archi-
tectural description is already available. Systems without
any architectural documentation therefore cannot be ranked
in the ADMM. However, they can be subsumed as a virtual
level O to point out their immaturity. The five maturity lev-
els of ADMM are sketched in figure 2 and described in the
following in more detail.

4.1 Level 1: Drawn

On this maturity level, simple graphics are used to de-
scribe the architecture. For example tools like Microsoft
PowerPoint provide these drawing capabilities. The use



A\

5
Reasoned

4
Traceable

3 \
Documenteq

2 =\

Modelleq
1

Drawn

Figure 2. Maintainability Maturity Levels

of graphics for architectural descriptions eases the under-
standing of the architecture and can be used to provide an
abstract overview of the architecture. The main disadvan-
tage of these graphics is the fact that the used symbols have
no specified semantic. Due to this lack of semantics, the
graphics are often misinterpreted, which may in the worst
case lead to inconsistent or wrong modifications of the ar-
chitecture. Another common problem is to keep the docu-
mentation and implementation consistent. As there are no
constraint checks on the graphics, the probability to produce
inconsistent views within the documentation or between the
documentation and implementation is quite high.

Nevertheless, the use of graphics to describe the archi-
tecture instead of having no description of the architecture
at all is an advancement regarding the maintainability of the
system.

4.2 Level 2: Modelled

In order to reduce the risk of misinterpretation, this ma-
turity level requires a formal description of the architecture.
Architecture Description Languages (ADL) [5] are a possi-
bility to describe an architecture formally, as the semantic is
provided by the used ADL. Another kind of formal descrip-
tion is the use of meta-modelling. The semantic is thereby
defined within a meta-model which expresses how valid
model instances are structured. The probably most popu-
lar meta-model to describe software systems is the Unified
Modelling Language (UML) [16]. Regarding CBSS, there
are further specialized meta-models available which pro-
vide aligned modelling capabilities for CBSS. One example
of such a component meta-model is the Palladio Component
Model (PCM) [18]. In addition to the specified semantics,
architecture models also provide the possibility to apply au-
tomated analyses (e.g., impact analyzes or performance pre-
dictions) or (semi-)automated code generation. However,

these are not part of the models but reasoning techniques
working upon the models.

The reduction of misinterpretations and the possibility to
use automated analyses or code generation techniques are
the improvements that are made possible by architectural
descriptions of maturity level 2.

4.3 Level 3: Documented

In addition to a level 2 documentation, which focuses on
the description of the architecture respectively the structure
of the system, this maturity level enjoins to mark design de-
cisions. This means that the use of design patterns (e.g. [6])
and their association to the elements of the architecture have
to be indicated. This maturity level demands stating the use
of design patterns but does not required to give reasons for
the use of the respective design pattern.

Vokéc et al. [20] have conducted an controlled experi-
ment in order to identify the influence of documenting the
use of architectural design patterns on the maintainability
of a software system. They have shown that this leads to a
reduction of the maintenance effort.

4.4 Level 4: Traceable

The results of Vokéc et al.’s [20] experiment also demon-
strated that the use of inappropriate design patterns nega-
tively influence the maintainability. In order to reduce this
risk, level 4 stipulates that the already marked design de-
cisions have to be associated with the requirements on the
software system, which are the cause for the respective de-
sign decision. Software architects are thereby forced to con-
sider the appropriateness of the design patterns and deci-
sions can be more easily traced and checked by others. Fur-
thermore, if the requirements are changed the dependent de-
sign decisions can de identified more easily and noted down
for reconsideration.

The main benefit of level 4 is the reduction of using inap-
propriate design patterns and making inappropriate design
decisions.

4.5 Level 5: Reasoned

Based on the traceability introduced with level 4, a level
5 architectural documentation additionally requires reason-
ing of the design decisions. In addition to the association
with the causing requirements the architect has to describe
the reasons for making the design decision. It is also neces-
sary to mention considered design alternatives and to argue
why they are chosen or not. This reasoning of the design de-
cisions increases the comprehensibility for people that are
not involved in the design of the system but have to main-
tain it. Furthermore, dependencies between design deci-
sions (e.g., some decisions make only sense in combination



with other decisions) are emphasized and their connections
is directly visible.

The benefit promised by level 5 is to clarify the reasons
that led to the architecture and extend the understandability
of the architecture to the inherent design decisions. Thus,
software architects responsible for the maintenance of a sys-
tem not only know the architecture itself but also the reasons
why it is like that.

5 Conclusion and Outlook

At the beginning, we introduced a refined definition of
maintainability focused on the architecture of a software
system. The lack of a common meaning of maintainability
on the architectural layer was pointed out. We provided def-
initions to clarify and consolidate the meaning of maintain-
ability on the architectural level in the software engineering
community.

Afterwards, the ADMM and each of its five maturity lev-
els were explained in detail. This included the presentation
of the method to evaluate the maturity of a system’s archi-
tecture documentation and description. The ADMM is built
in a way that a growing maturity of the documentation is ac-
companied by a better maintainability of the system’s archi-
tecture. The ADMM furthermore supports to target the im-
provement of the documentation as the maturity levels can
also be used to identify rewarding aspects of the architec-
tural documentation. In doing so, the ADMM advances the
assessment methods for software architectures and thereby
eases the assessment for software architects.

The ADMM is the first step towards the AM?>, which
will provide an comprehensive evaluation method of an ar-
chitecture’s maintainability. As a next step, we plan to use
the ADMM within several industrial projects. The experi-
ences gained within these projects should then be used to
validate the ADMM and refine the different maturity levels.
We additionally plan to analyze other aspects of a system’s
architecture which influence the maintainability. Based on
these results, we will develop further assessment methods
that cover these aspects with the aim to realize the compre-
hensive AM?.

References

[1] A. April, J. H. Hayes, A. Abran, and R. Dumke. Software
Maintenance Maturity Model (SMmm): the software main-
tenance process model: Research Articles. Journal on Soft-
ware Maintenance and Evolution, 17(3):197-223, 2005.

[2] L. Bass, P. Clements, and R. Kazman. Software architecture
in practice. Addison-Wesley ; Bonn, 1999.

[3] S. Becker, H. Koziolek, and R. Reussner. The Palladio
Component Model for Model-Driven Performance Predic-
tion. Journal of Systems and Software, To appear, 2008.

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

(14]
(15]

(16]

(17]

(18]

(19]

(20]

P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet.
Architecture-level modifiability analysis (ALMA). Journal
of Systems and Software, 69(1-2):129-147, 2004.

P. C. Clements. A Survey of Architecture Description Lan-
guages. In IWSSD ’96: Proceedings of the Sth International
Workshop on Software Specification and Design, page 16,
Washington, DC, USA, 1996. IEEE Computer Society.

M. Fowler. Patterns of enterprise application architecture.
Addison-Wesley, 2003.

P. S. Grover, R. Kumar, and A. Sharma. Few useful
considerations for maintaining software components and
component-based systems. SIGSOFT Softw. Eng. Notes,
32(5):1-5, 2007.

P. Hnetynka, F. Plasil, T. Bures, V. Mencl, and L. Kapova.
SOFA 2.0 metamodel. Technical report, Dep. of SW Engi-
neering, Charles University, December 2005.

S. Huang and S. Tilley. Towards a documentation maturity
model. In SIGDOC ’03: Proceedings of the 21st annual
international conference on Documentation, pages 93-99,
New York, NY, USA, 2003. ACM.

IEEE. IEEE standard glossary of software engineering ter-
minology. IEEE Std 610.12-1990, pages —, 1990.

ISO. International Standard - ISO/IEC 9126 - 1 (2001). In-
ternational Organization for Standardization, 2001.

M. Kajko-Mattsson, S. Forssander, and U. Olsson. Correc-
tive maintenance maturity model (CM3): maintainer’s edu-
cation and training. In ICSE ’01: Proceedings of the 23rd
International Conference on Software Engineering, pages
610-619, Washington, DC, USA, 2001. IEEE Computer So-
ciety.

R. Kazman, M. Klein, and P. Clements. ATAM: Method for
Architecture Evaluation. Technical Report CMU/SEI-2000-
TR-004, Software Engineering Institute, 2000.

R. Kneuper. CMMI. dpunkt.verlag, 3. edition, 2007.

N. Mari, M.; Eila. The impact of maintainability on
component-based software systems. Euromicro Conference,
2003. Proceedings. 29th, pages 25-32, 2003.
OMG. Unified Modeling Language
http://www.uml.org/.

L. Pareto and U. Boquist. A quality model for design
documentation in model-centric projects. In SOQUA '06:
Proceedings of the 3rd international workshop on Software
quality assurance, pages 30-37, New York, NY, USA, 2006.
ACM.

R. Reussner, S. Becker, J. Happe, H. Koziolek, K. Krog-
mann, and M. Kuperberg. The Palladio Component Model.
Technical report, Chair for Software Design & Quality
(SDQ), University of Karlsruhe (TH), Germany, May 2007.
C. Szyperski, D. Gruntz, and S. Murer. Component Soft-
ware: Beyond Object-Oriented Programming. ACM Press
and Addison-Wesley, New York, NY, 2 edition, 2002.

M. Vokic, W. Tichy, D. Sjoberg, E. Arisholm, and
M. Aldrin. A Controlled Experiment Comparing the Main-
tainability of Programs with and without Design Patterns - A
Replication in a Real Programming Environment. Empirical
Software Engineering, 9(3):149-195, 2004.

(UML).



