
Triggering Performance Counters 
for Energy Efficiency 
Measurements
Norbert Schmitt
Jóakim v. Kistowski
Samuel Kounev

Chair of Software Engineering
University of Würzburg
http://se.informatik.uni-wuerzburg.de/

Kiel, 08/11/2016



Motivation

2 N. Schmitt

0

20

40

60

80

100

120

140

2006 2013 2020

Total power consumption in billion kWh annually [6,7]

61

91

140

Event Triggers ApproximationApproachMotivation Conclusion

 Increasing server
energy consumption

 61 billion kWh in 2006

 An estimated 140 
billion kWh in 2020 
[6,7]



Motivation

3 N. Schmitt

 Simulation of large networks and / or high data 
traffic to put externally driven workloads under load 
Example: Load Balancer

 Which is the most efficient
machine for the workload?

 Huppler [8] defines criteria
for a good benchmark:
 Repeatable
 Economical
 …

SUT: Load Balancer

Measurement Controller

Measurement Control Traffic
Data Traffic

?

Load Generator

Event Triggers ApproximationApproachMotivation Conclusion



Motivation

4 N. Schmitt

 Efficiency is measured under 
different load levels

 Complicated to calibrate and 
maintain load levels with external 
load generators due to latency

Load Generator Receiver

SUT

Controller

Event Triggers ApproximationApproachMotivation Conclusion



Motivation

5 N. Schmitt

 Approximate externally driven workloads on the SUT 
without the need for extra hardware

 Use Performance Counters for approximation

 Develop a modularized Performance Event Trigger 
Framework (PET) to approximate workloads

Load Generator Receiver

SUT

Controller Module 1 Module 2 Module n

JNI Adapter Framework

Module Interface

Native Interface

C++Java

Event Triggers ApproximationApproachMotivation Conclusion



Approach – Event Trigger

6 N. Schmitt

 Performance Counter [1,2]
 Occurrence Events

How often has an event been observed
 Duration Events

Accumulated clock cycles for which an event has been observed

 Event Trigger
 Stand-Alone implementation to cause i counted events

Event Trigger

[i iterations not executed] 

[i iterations executed] 

Counter State: n Counter State: n+i

Event Triggers ApproximationApproachMotivation Conclusion



Approach – Side Effects

7 N. Schmitt

 Some Performance Counters cannot be modified 
without affecting other Counter Values

 They can be imposed either by hardware constraints or 
the implementation of an event trigger

L1d L1i

L2

L3

Main Memory

Example: Trigger event „Read byte from memory controller“ (Accessing main memory)

Events counted:

L1d miss event

L2 miss event

L3 miss event

Read byte event

Event Triggers ApproximationApproachMotivation Conclusion



 Different implementations to incorporate side effects
1. Naive: Neglect side effects
2. Accumulation: Sum over all side effects 𝒔𝒔𝑖𝑖 caused by 

triggering a number of events 𝑣𝑣𝑖𝑖

3. Simulated Annealing: A numerical solution between the 
imposed side effects and event triggers

Approach - Composition

8 N. Schmitt

𝒔𝒔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �
𝑖𝑖=1

𝑛𝑛

𝒔𝒔𝑖𝑖 ∗ 𝑣𝑣𝑖𝑖

Event Triggers ApproximationApproachMotivation Conclusion



Approach – Evaluate Event Triggers

9 N. Schmitt

 Run the event trigger as a single process and in parallel 
as workloads can and do use multithreading
 Single process

→ If it does not work in single process, the implementation might 
be erroneous

 4/8 processes
→ Number of physical/logical CPUs to determine if the 

implementation does scale in a multithreaded environment

 Each event trigger is set a reference value, a target, it 
has to reach
 The lower the deviation from the target value the better is the 

implementation of the event trigger

Event Triggers ApproximationApproachMotivation Conclusion



 Use the different caching modes 
supported by the CPU to prohibit 
caching → Automatically miss L3

 Strong Uncachable (UC)
 Set by Memory Type Range Register 

(MTRR)
 Linux Kernel documentation 

discourages the use of MTRR [4]

 Uncachable Minus (UC-)
 Set by Page Attribute Table (PAT)
 Function in Linux Kernel available

Event Triggers – L3 miss

10 N. Schmitt

L1d L1i

L2

L3

Main Memory

Event Triggers ApproximationApproachMotivation Conclusion



 Uncachable memory can be mmap-ed to user space

 Target value of 8 ∗ 106
L3 misses for 8 processes
not reached

 Even worse for 1 and
4 processes

 No L3 misses are actually
triggered

Event Triggers – L3 miss

11 N. Schmitt

L3 cache misses for 8 processes
on uncachable memory

Event Triggers ApproximationApproachMotivation Conclusion



 Traverse a large array of at least twice the cache size

 Problem: Hardware prefetching loading data we do not 
want in cache [3]

 Solution: Increase stride to 6 times the cache line size 
with a deviation of −2.4% when 8 processes are running

Event Triggers – L3 miss

12 N. Schmitt
L3 misses with stride 2 L3 misses with stride 6

Event Triggers ApproximationApproachMotivation Conclusion



 Constraints for triggering L2 misses hitting L3:
 Instead of traversing a large array, it must be small enough to fit 

inside L3 not to produce L3 misses on accident
 The array must also be large enough for long strides to not 

access data already prefetched and generating a L2 hit

 Try to “confuse” the prefetcher by adding a random 
factor 𝑟𝑟 after a stride 𝑠𝑠

𝑝𝑝𝑛𝑛 = 𝑝𝑝𝑛𝑛−1 + 𝑠𝑠 + 𝑟𝑟

Event Triggers – L2 miss / L3 hit

13 N. Schmitt Event Triggers ApproximationApproachMotivation Conclusion



 L2 miss / L3 hits scale well to four processes

 Generating L2 misses with virtual CPUs provides no 
benefits. Triggering L2 misses only scales to the 
number of physical CPUs 

Event Triggers – L2 miss / L3 hit

14 N. Schmitt

Processes Instruction Set Result (w/o random) Result (w/ random) Deviation

1 SIMD 165,031 923,975 −7.60%

Assembler 204,282 966,181 −3.38%

C 213,862 971,336 −2.87%

4 SIMD 443,037 3,391,786 −15.21%

Assembler 1,225,584 3,408,932 −14.78%

C 743,568 3,537,446 −11.56%

8 SIMD 2,284,193 5,253,885 −34.33%

Assembler 1,747,484 4,047,238 −50.59%

C 1,516,549 4,199,528 −47.51%

L2 misses / L3 hits generated; Targets: 1 ∗ 106, 4 ∗ 106 and 8 ∗ 106

Event Triggers ApproximationApproachMotivation Conclusion



 Read bytes implemented in the same way as L3 misses

 Overcounting by a large margin
Target for 1 process: 0.64 ∗ 108
Target for 8 processes: 0.512 ∗ 109

Event Triggers – Read byte from MC

15 N. Schmitt

Bytes read using 1 process and stride 6 Bytes read using 8 processes and stride 6

Event Triggers ApproximationApproachMotivation Conclusion



 Use the kernel module to circumvent the caches

 Read bytes from memory controller scales well to the 
number of physical CPUs for the SIMD and Assembler 
instruction sets 

Event Triggers – Read byte from MC

16 N. Schmitt

Processes Instruction Set Result Deviation

1 SIMD 64.003 ∗ 106 0,004%

Assembler 64.038 ∗ 106 0,060%

C 64.025 ∗ 106 0,039%

4 SIMD 242.41 ∗ 106 −5.31%

Assembler 255.98 ∗ 106 −0.01%

C 191.16 ∗ 106 −25.33%

8 SIMD 326.43 ∗ 106 −36.24%

Assembler 343.67 ∗ 106 −32.88%

C 347.82 ∗ 106 −32.07%
Bytes read with uncachable memory

Targets: 64 ∗ 106, 256 ∗ 106 and 512 ∗ 106

Event Triggers ApproximationApproachMotivation Conclusion



 Uncachable memory worked well for bytes read so 
intuitively it should work when writing bytes

 Underestimating bytes written for all instruction sets 
ranging from −47.58% to −73.51%

 Do not use uncachable
memory when 
triggering bytes written

 SIMD and ASM reach 
deviations of−0.03%
and −0.01%

Event Triggers – Write byte to MC

17 N. Schmitt

Bytes written for a single process and a stride of 6
Target: 6.4 ∗ 107

Event Triggers ApproximationApproachMotivation Conclusion



Event Triggers – Write byte to MC

18 N. Schmitt

 The event trigger is struggling to reach its target value
if multiple processes are used

Bytes written using 4 processes and stride 6
Target: 2.56 ∗ 108

Bytes written using 8 processes and stride 6
Target: 5.12 ∗ 108

Event Triggers ApproximationApproachMotivation Conclusion



 Create C++11 threads that can be joined instantly
 Intuitively, each thread should cause two switches

→ Half the amount of event triggers

 Introducing a linear factor of 0.5
 Unexpected major deviations
 Removing the factor results in large overcounting

 But a linear factor can still improve the accuracy 

Event Triggers – Context switch

19 N. Schmitt

Factor 0.5 Factor 0.8 Factor 1.0

Processes Result Deviation Result Deviation Result Deviation

1 70,350 −29.7% 100,588 0.6% 120,641 20.6%

4 271,683 −32.1% 400,689 0.2% 481,324 20.3%

8 470,265 −41.2% 757,056 −5.4% 940,653 17.6%

Context switches triggered
Targets: 1 ∗ 105, 4 ∗ 105 and 8 ∗ 105

Event Triggers ApproximationApproachMotivation Conclusion



 Naive measurement 
with side effects has a 
low throughput due to 
long runtimes 

 Accumulation still 
overestimates power 
consumption despite 
removing side effects

Approximating Workloads

20 N. Schmitt

Workload Measurement Mean Max CV

SSJ Naive 12.35% 26.44% 19.37%

Accumulation 13.28% 27.61% 7.03%

Simulated Annealing −𝟓𝟓.𝟐𝟐𝟓𝟓𝟐 −𝟗𝟗.𝟑𝟑𝟓𝟓𝟐 𝟑𝟑.𝟔𝟔𝟔𝟔𝟐

Load Level [%]

Po
w

er
 [W

at
t]

ApproximationApproachMotivation ConclusionEvent Triggers



 Externally driven 
workloads can be 
approximated 

 Underestimation 
expected due to the 
NIC not stressed in 
the approximation

Approximating Workloads

21 N. Schmitt

Workload Measurement Mean Max CV

DPI Firewall Naive −𝟖𝟖.𝟖𝟖𝟖𝟖𝟐 −𝟏𝟏𝟔𝟔.𝟖𝟖𝟒𝟒𝟐 𝟓𝟓.𝟖𝟖𝟔𝟔𝟐

Accumulation −23.68% −40.23% 14.33%

Simulated Annealing −21.00% −36.19% 12.32%

Load Level [%]

Po
w

er
 [W

at
t]

ApproximationApproachMotivation ConclusionEvent Triggers



 Know your hardware to avoid unwanted effects on the 
events to trigger

 Simultaneous Multithreading (SMT) is in most cases 
not beneficial when triggering performance events on 
purpose

 Intuition can be misleading and counterproductive

 Externally driven workloads can be approximated with 
reasonable accuracy

 Complex testbed setups can be simplified for faster 
and easier deployment → The PET framework reaches 
an average accuracy from below 10% down to 1%

Conclusion

22 N. Schmitt ApproachMotivation ConclusionEvent Triggers Approximation



Thank You!

norbert.schmitt@uni-wuerzburg.de



1. AMD, AMD64 Architecture Programmer‘s Manual Volumen 2: System Programming, Advanced Micro 
Devices Inc., April 2016. http://support.amd.com/TechDocs/24593.pdf

2. Intel, Intel® 64 and IA-32 Architectures Software Developer‘s Manual, Intel Corporation, June 2016. 
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

3. Intel, Intel® 64 and IA-32 Architectures Optimization Reference Manual, Intel Corporation, June 2016.
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-
optimization-manual.pdf 

4. R. Gooch and L. R. Rodriguez, „MTRR (memory type range register) control“, accessed: 2016-08-15.
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/x86/mtrr.txt

5. GNU, „GCC Common Function Attributes“, accessed: 2016-11-04 
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes

6. R. Brown et. al., „Report to congress on server and data center energy efficiency: Public law 109-431“, 
Lawrence Berkeley National Laboratory, Jun. 2008. http://eetd.lbl.gov/sites/all/les/pdf 4.pdf

7. J. Whitney and P. Delforge, “Data center efficiency assessment“, http://www.nrdc.org/energy/les/data-
center-eciency-assessment-IP.pdf, Aug. 2014.

8. K. Huppler, „The Art of Building a Good Benchmark“, IBM Corporation, 3605 Highway 52 North, 
Rochester, MN 55901, USA 2009.

References

24 N. Schmitt

http://support.amd.com/TechDocs/24593.pdf
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/x86/mtrr.txt
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes
http://eetd.lbl.gov/sites/all/les/pdf%204.pdf
http://www.nrdc.org/energy/les/data-center-eciency-assessment-IP.pdf

	Triggering Performance Counters for Energy Efficiency Measurements
	Motivation
	Motivation
	Motivation
	Motivation
	Approach – Event Trigger
	Approach – Side Effects
	Approach - Composition
	Approach – Evaluate Event Triggers
	Event Triggers – L3 miss
	Event Triggers – L3 miss
	Event Triggers – L3 miss
	Event Triggers – L2 miss / L3 hit
	Event Triggers – L2 miss / L3 hit
	Event Triggers – Read byte from MC
	Event Triggers – Read byte from MC
	Event Triggers – Write byte to MC
	Event Triggers – Write byte to MC
	Event Triggers – Context switch
	Approximating Workloads
	Approximating Workloads
	Conclusion
	Thank You!
	References

