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ABSTRACT
As a key part of the serverless computing paradigm, Function-as-
a-Service (FaaS) platforms enable users to run arbitrary functions
without being concerned about operational issues. However, there
are several performance-related issues surrounding the state-of-
the-art FaaS platforms that can deter widespread adoption of FaaS,
including sizeable overheads, unreliable performance, and new
forms of the cost-performance trade-off. In this work we, the SPEC
RG Cloud Group, identify six performance-related challenges that
arise specifically in this FaaS model, and present our roadmap
to tackle these problems in the near future. This paper aims at
motivating the community to solve these challenges together.
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1 INTRODUCTION
Software-development paradigms are increasingly transitioning
from monolithic applications to compositions of smaller services
that are more granular and distributed (e.g., through Software Ori-
ented Architectures and, recently, microservice architectures). Cor-
respondingly, cloud vendors have started offering serverless comput-
ing services, hosting on granularly billed resources the emerging
application services. The notion of Function-as-a-Service (FaaS)
can be seen as a combination of both developments, which offers
new benefits but also raises new performance challenges. In this
vision paper we focus on the latter.

The context of serverless computing, including FaaS and cloud(-
native) functions, does not yet have a community-wide terminol-
ogy; we use in this work the following terms as defined in [22].
First, serverless computing is a form of cloud computing which al-
lows users to run event-driven and granularly billed applications
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without having to manage the operational logic. Second, a cloud
function is as a small, stateless, on-demand service with a single
functional responsibility. Thus, conceptually a cloud function is a
type of microservice with a single endpoint or responsibility. Lastly,
Function-as-a-Service (FaaS) is a form of serverless computing that
manages the resources, lifecycle, and event-driven execution of user-
provided cloud functions. The FaaS model lets developers compose
applications using cloud functions, and as a result, enabling easy
and effective operational cloud control for the provider.

A common motivating example for serverless computing is the
data- and/or compute-intensive process of resizing images, possibly
arriving as a (video) stream. Common scenarios using this process
include hosting visually rich websites, video surveillance and traffic
shaping, identification of objects in warehousing and manufactur-
ing, and matching image sizes to the needs of users (desktop vs.
mobile presentation). The process in which a resizing function is
invoked can be: an image source (e.g. user) uploads an image, trig-
gering an event; this triggers the execution of the resizing cloud
function; the function runs and stores the resulting image in the
cloud. The serverless paradigm is a good fit for this use case for sev-
eral reasons. First, the cloud function is stateless and well-scoped.
Second, it runs on-demand, creating a bursty workload, which can
make optimal use of the inherent elasticity of the FaaS platform.
Finally, there are often no strict latency requirements, which makes
the performance overhead (see Section 2.1) of FaaS acceptable.

Although the FaaS model opens new opportunities, it also intro-
duces additional challenges. From the perspective of performance
engineering, the increasingly granular and modular structures en-
able specifically tailored and fine-grained solutions. However, as
we emphasize in this vision paper, any design in this domain must
leverage a thorough understanding of the complexities of the FaaS
architectures. Toward this end, our contribution is two-fold:

(1) We identify and examine six performance-related challenges
(Section 2). For each challenge, we describe the underlying
problem, examine why the challenge is relevant, and present
related work and possible approaches towards resolving it.

(2) We define a roadmap for addressing these challenges in
the SPEC RG Cloud Group (Section 3). Our roadmap has
two main milestones for 2018: a (validated) FaaS reference
architecture and a benchmark for FaaS platforms.

2 PERFORMANCE CHALLENGES
We identify six performance challenges for the serverless domain.
2.1 Reducing FaaS Overhead
Especially for performance-critical use cases, such as web and IoT
applications, FaaS adoption depends in part on proving that the
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loss of performance that could be incurred by splitting applications
into fine-grained functions is negligible. For resource-intensive,
coarse-grained functions, it is possible to reduce the overhead to
useful levels [10], but the general case remains an open challenge.

We identify three main categories of performance overhead for
FaaS platforms. The provisioning overhead is caused by deploying
the cloud function on-demand, and is likely the dominant overhead.
The FaaS platform needs to deploy the cloud function prior to
its (first) use, and possibly to provision the underlying resources
(e.g., a container or VM) prior to deployment. In an unoptimized
context, provisioning can take seconds (containers) to minutes
(VMs), and additional time to deploy the function (e.g., startup
and network setup). The request overhead appears while handling
requests: routing the request to a matching function, executing
the function possibly without warm-up (e.g., cold JIT-compiled
code), transferring data to and from the requester, and handling
additional metadata such as logging and telemetry. The function
lifecycle management and scheduling overhead is due tomanagement
and scheduling processes in the FaaS platform (see also Section 2.3).

Several FaaS projects aim to reduce the performance overhead
through basic mechanisms. Fission1 and OpenWhisk2 attempt to
avoid full (cold) function-deployments for each request by reusing
deployed functions for subsequent requests (hot starts). Additionally,
Fission has a pool of ‘generic’, always-running containers, into
which it injects the function during provisioning. Another approach
creates new resource abstractions for serverless functions, to avoid
the OS overheads of VMs and containers [11].

Image-resizing example: The platform deploys a pool of image-
resizing functions, to process the camera-feed at 30Hz. This leads
to large overheads only when first executing the function.
2.2 Performance Isolation
Ensuring performance guarantees while fully utilizing the physical
machines is important for FaaS operators. FaaS platforms com-
monly deploy (consolidate) multiple functions on the same physical
machine, which improves resource utilization, and possibly reduces
the provisioning and lifecycle overheads (see Section 2.1). As a
trade-off, consolidation can make the performance of a function
be influenced by other functions running on the same machine.
This raises the challenge of achieving performance isolation [12],
which is a key step in ensuring performance guarantees under high
utilization.

Achieving performance isolation is an ongoing research topic.
Even for state-of-the-art platforms using Linux containers, the load-
profile of the application, be it CPU-, memory-, or IO-intensive, leads
to different levels of performance isolation across containers [23].
Unfortunately, traditional and especially data-intensive applications
can exhibit widely varying load-profiles.

With FaaS, the application is disaggregated into simple, single-
task functions, each of which likely exhibiting a dominant load-
profile. This gives new opportunities to schedule (see Section 2.3),
but also requires additional research to understand the performance
isolation of FaaS functions, for example, starting from the metrics
proposed by Krebs et al. [12] for cloud environments. Once the
influencing factors for performance isolation of FaaS functions are
1https://github.com/fission/fission
2https://openwhisk.apache.org/

known, novel approaches, for example using machine learning, can
be used to predict the performance isolation of different placements.

Image-resizing example: The image-resizing function keeps the
image in memory during processing, which is memory-intensive
unless the resizing logic is complex. A scheduling algorithm aware
of performance isolation would avoid deploying the function on
the same machine as other memory-intensive functions.

2.3 Scheduling Policies
On a FaaS platform, function executions are triggered in response
to events. A scheduling policy determines where a specific function
(task) should run. The resource (e.g., a container or VM) to which the
function is mapped can have a significant impact on performance,
depending on available resources, workflow deadlines, location of
input data and code, load balancing or QoS requirements, co-located
functions (see Section 2.2), etc. In general, function scheduling is a
hard problem with multiple constraints, and possibly conflicting
goals. Additionally, it needs to be solved online and thus avoid
scheduling overheads (see Section 2.1).

Beyondmeeting basic task requirements (e.g., ensuring the needed
amount of memory), a smart scheduler can: (i) reduce the opera-
tional costs without compromising performance (see Section 2.5);
(ii) reduce the provisioning overhead and in particular cold-starts
(see Section 2.1); (iii) improve data locality in the multi-function
workflow corresponding to a complex application; (iv) decide which
resources to use, for example, between running a function in a cloud
datacenter or at the edge [20]; (v) make near-optimal decisions de-
spite using only partial information.

Smart scheduling, primarily operator-level and automating user-
level decisions, is a largely unexplored area for FaaS. Beyond simple
load-balancing by FaaS schedulers, existing approaches include lim-
ited production-ready capabilities, e.g., container-reuse in Fission,
orchestration of complex workflows in Fission. Although some
recent work provides useful new capabilities, such as caching of
Python packages to reduce lifecycle overhead [17], and identifying
the sources of performance-variability [13], FaaS schedulers cannot
yet leverage these capabilities and their inter-play needs further
study. The area of scheduling across datacenter and edge resources
is also understudied [16]. We envision the community can lever-
age the large body of work of scheduling for Web services and for
net-/work-flows, and elastic scheduling in Big Data frameworks
(e.g., [5, 14, 18, 24]).

Image-resizing example: Depending on the use case, for example
for video surveillance, a delay of up to a second can be tolerated. A
technique like “delay scheduling” [25] could improve data or code
locality, and reduce network pressure, at the cost of a small delay.

2.4 Performance Prediction
Predicting the performance of individual cloud functions is another
important building block in the management processes of both
users and providers of FaaS platforms. Platform providers could
use predictions to preemptively adjust the allocated resources to
the incoming load. Users could use predictions to re-flow their
applications, without potentially time- and cost-intensive testing
of each configuration.

For traditional software systems, performance models enable
accurate performance predictions [19]. Applying these approaches
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to FaaS comes with new challenges, including the information
gap and the function-specific performance. The information gap
means the FaaS user is unaware of the hardware resources the func-
tions are executed on, while the FaaS provider has no information
about the implementation details of the (black-box) function. The
performance modeling needs of FaaS are function-specific. As for
traditional applications, the input (size, structure, and content) of
a function influences its performance, but for FaaS there are sig-
nificantly more functions to model and predict. This raises new
challenges of finding relevant models at the scale and with the
input-dependency required by FaaS applications, and of propagat-
ing the calibration data of these models throughout a complex
application-level performance model, to achieve accurate perfor-
mance predictions.

The information gap is an active research topic in cloud com-
puting, and IaaS approaches could be adapted for FaaS platforms;
for example, soft reservations incentivize users to share perfor-
mance predictions with the providers [15]. Similarly, techniques
developed for general software systems could be leveraged by FaaS,
after careful research; for example, classic and modern performance
modeling in software systems [19]. It is unclear how techniques
developed for white-box components or for automated dependency
detection (e.g., as proposed in [3]) could be used in the FaaS context.

Image-resizing example: The resource demand of the function is
correlated with the size of the input image. Modeling this correla-
tion would allow predicting the performance of the image-resizing
function for different image sizes.

2.5 Engineering for Cost-Performance
FaaS customers have a strong incentive to optimize simultaneously
performance and operational expenditure (OPEX costs) [4]. The
granular billing characteristic of serverless deployments, where
costs are directly related to business-critical functionality, leads
to fine-grained decisions. The pricing model for functions seems
currently calibrated for a moderate number of requests per second.
As soon as this metric exceeds the moderate threshold, on-demand
VMs or containers become more cost-effective than FaaS and the
customer should stop FaaS deployment. With more complex pricing
models, the most cost-effective alternative may vary during peak
and low usage hours, and the decision becomes complex.

Other than educating users about the how the differences in
pricing schemes may affect their total operational costs [4], we are
not aware of any research on how these decisions can be facilitated
or even automated for the user. Similarly to section 2.4, we envision
that the first steps could leverage techniques proposed for other
types of cloud settings. These include combining on-demand, and
spot or reserved VMs, to minimize costs while providing certain
guarantees, like always-on [6] or highly available [21] services, and
meeting job deadlines [8].

Image-resizing example: A hybrid cloud platform or broker could
(dynamically) switch between different cloud providers to schedule
the cloud function on the cloud with the best cost-performance
balance at that moment in time.

2.6 Evaluating and Comparing FaaS Platforms
The field of serverless computing currently lacks a systematic, ob-
jective benchmark of FaaS platforms. A comprehensive benchmark,

such as the recently published SPEC Cloud IaaS benchmark [1],
would help users compare the various cloud providers in terms
of performance, costs, reliability and other aspects. This lack of
a systematic benchmark is most pressing, already holding back
the adoption of the serverless paradigm for production and for
performance-critical use cases [2]. Although several industry at-
tempts to benchmark FaaS providers exist [2], they lack systematic
approaches and academic rigor.

We identify three main causes for the lack of an adequate server-
less benchmark. First, FaaS platforms are inherently complex sys-
tems. Compared to the IaaS and PaaS cloud models, FaaS includes
more operational logic, such as autoscaling mechanisms, resource
management, and function lifecycle management. Additionally,
there are difficult to quantify aspects, such as differences in ‘devel-
opment speed’ of applications on the different FaaS platforms. Even
more components have to collaborate to execute a complex work-
flow. These layers and dependencies introduce interfering variables
to the benchmark. Toward a systematic benchmark, we need to
identify the common components, and the potentially interfering
factors that influence the performance of a FaaS platform [9]. A
reference architecture would help with these aspects, and is a work-
in-progress described in our proposed Roadmap (see Section 3).

Second, due to the immaturity of the paradigm, there is a lack of
representative workloads traces. The authors of OpenLambda [7]
used the calls made to the web server of the Gmail web application,
but this remains far from a representative workload for evaluating
FaaS platforms; in contrast, the image-resizing example is much
more data- and compute-intensive.

Last, many of the prevailing FaaS platforms are proprietary,
closed-source implementations. The lack of introspection into these
implementations makes it challenging to identify both the relevant
and interfering factors. Additionally, the only way of evaluating
these FaaS platforms is online, in a public cloud environment, which
adds the complexity of getting consistent results from these volatile
environments and an element of cost. How to reliably evaluate
components in a closed-source, online cloud environment is an
active field of research, whose emerging best-practices could be
used in future serverless benchmarks.

3 ROADMAP
The SPEC RG Cloud Group focuses on a broad understanding of
performance in cloud settings. For FaaS platforms, our roadmap
focuses primarily on the challenge of evaluating FaaS platforms (see
Section 2.6). The two main milestones towards this goal for 2018
are a validated reference architecture for FaaS platforms, followed
by a systematic benchmark for FaaS platforms.

3.1 Reference Architecture
Establishing a comprehensive reference architecture for FaaS plat-
forms will provide the community with a valuable tool: consistent
terminology, a set of typical components, low-level details. This
facilitates approaching the challenges identified in Section 2.

Based on the analysis of the major open-source and of a handful
of closed-source FaaS platforms so far, we have created the pre-
liminary reference architecture depicted in Figure 1. As suggested
by [22], this reference architecture is based on the notions of busi-
ness logic derived from the use-case of the cloud user, instead of
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Figure 1: FaaS Reference Architecture (Work-in-Progress)
ordered from business logic (BL) to operational logic (OL).

operational logic that focuses on the QoS of the application (e.g., au-
toscaling and resource management). The Resource Layer represents
the available resources within a cloud, possibly virtualized as VMs
or containers. These resources are managed by the Resource Orches-
tration Layer, which is often implemented by IaaS orchestration
services (i.e., Kubernetes). On top of these orchestrated resources,
the cloud function abstraction is managed by the Function Man-
agement Layer. It includes components to fetch the needed cloud
functions from repositories (function registry), to ensure cloud func-
tions are deployed on selected resources (function scheduler), to
map incoming requests to deployed functions (function router), and
to ensure that functions are elastically scaled and cleaned up when
needed (function lifecycle manager). Similar to how the resources
at the resource layer are orchestrated by a higher-level layer, cloud
functions are treated as lower-level service-resources by the func-
tion composition layer, and composed into more complex workflows.
Akin to traditional architectures of workflow management systems,
this layer consists of a store of workflows (workflow registry), a
component to track and manage active workflow invocations (work-
flow engine), and a scheduler to decide on the execution order of
the workflow invocation (workflow scheduler). Finally, there are
cross-cutting (DevOps) concerns at each layer, e.g., monitoring.

To validate this reference architecture, we have already matched
its components with real-world FaaS platforms such as OpenWhisk
and Fission, and envision similar results for other FaaS platforms.
3.2 Systematic Benchmark
Using the reference architecture as a stepping stone, we aim to de-
velop a systematic, industry-wide benchmark of both closed-source
vendor-based and open-source FaaS platforms. This benchmark al-
lows users, especially those with large business-critical, production
workloads, to understand the impact of workload characteristics,
and the strengths and weaknesses of the different FaaS offerings.
Benchmarking open-source FaaS platforms would also allow re-
searchers to investigate what approaches in implementations per-
form well, opening new design and tuning opportunities.

As a next step, we envision expanding the set of test-workloads
used in the benchmark, beyond the canonical image-resizing ex-
ample. Here, we specifically envision a collection of at least five
use cases, each representing the differing workload characteristics
of relevant domains, such as IoT, stream/data processing, latency-
critical applications, and scientific computing. This collection of use
cases, combined with the collection of real-world workload traces,
will provide the basis for developing a systematic benchmark.

4 CONCLUSION
The emerging FaaS model holds good promise for future cloud
applications, but raises new performance-related challenges that
can hamper its adoption. In this work, we identify six performance-
related challenges for the serverless domain and plot a roadmap
for alleviating these challenges. Our roadmap is two-pronged: a
reference architecture to stimulate common understanding, and to
develop a serverless benchmark guided by FaaS use-cases.

Last3, through this vision paper we launch a call to action: join
an expanded SPEC RG Cloud Group in tackling these challenges.
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