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Abstract

With the recent spike of Internet of Things (IoT) and “smart” devices, there has also been
an increase in the amount of attacks on IoT networks. Wide-reaching attacks such as the
one from the Mirai botnet in 2016 [1] show how crucial it is to know that a device can be
trusted before initiating communication.

Remote Attestation (RA) is a proven method for asserting that a device is in a benign
state. It is a challenge-response process between two parties, where the first checks the
trustworthiness of the second. However, it is characterisable with low scalability – a criti-
cal issue in the IoT sector. In our work, we model a new RA protocoll, called Aggregatable
Remote Attestation, which would allow a device to process multiple RA challenges simul-
taneously. We base it on the already existing SIMPLE architecture [2] and implement it
as a Proof-of-Concept (PoC) by modifying the code of the Security MicroVisor (SµV) –
the core component of SIMPLE.

We evaluate our work in terms of security and performance and show that it greatly
outperforms the underlying SIMPLE. We discuss the relevance of our design in relation to
the IoT sphere and denote a small set of potential topics for future work and research.
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Zusammenfassung

In den vergangenen Jahren wurde ein rapider Anstieg der Anzahl der Internet of Things
(IoT)-Geräte beobachtet, welcher sich auf die rasante Digitalisierung zurückführen lässt.
Allerdings hat dies ein unerwünschtes Seiteneffekt mit sich gebracht: die Frequenz der
Angriffe auf IoT-Netzwerke ist ebenso gestiegen und diese werden immer umfangreicher.
Es ist damit klar ersichtlich, wie wichtig es ist, die Sicherheit und den vertrauenswürdigen
Zustand einer IoT-Entität überprüfen beziehungsweise nachweisen zu können.

Unter den berühmtesten Mitteln zur Feststellung der Vertrauenswürdigkeit eines Geräts ist
die sogenannte Remote Attestation (RA) [3] – ein Challenge-Response-Verfahren zwischen
zwei Perteien, Verifier (VRF) und Prover (PRV) genannt, und den gutartigen Zustand
des Letzteren zu überprüfen. Dies ist insbesondere bei kleinen IoT-Geräten relevant, die
oft keine sonstigen Sicherheitsmechanismen besitzen [4]. Unglücklicherweise lässt sich die
RA, als ein eins-zu-eins-Prozess, relativ schlecht skalieren, was ein enormer Nachteil im
IoT-Sektor darstellt. In unserer Arbeit konzipieren wir eine sogenannte Aggregatable Re-
mote Attestation, die es einer PRV-Entität ermöglicht, mehreren RA-Herausforderungen
gleichzeitig zu verarbeiten.

Diese Aggregatable RA bauen wir auf SIMPLE [2], einem bereits existierenden RA-Protokoll,
auf. Wir modifizieren dieses und implementieren unser Konzept als Proof-of-Concept (PoC)
mithilfe des Quellcodes vom Security MicroVisor (SµV), dem Kernelement von SIMPLE.
Anschließend evaluieren wir unser Design bezüglich Performanz sowie Sicherheit und zei-
gen, dass diesen keine weiteren schwerwiegenden Sicherheitslücken im RA-Prozess schafft.
Wir diskutieren über die Relevanz unseres Designs in Relation zur IoT und erörtern dazu
auch einige eventuelle Themen für zukünftige Forschung.
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1. Introduction

In the past years, a drastic increase of the amount of Internet of Things (IoT) devices has
been observed. Not only has there been a spike in the total number of “smart” devices
used and produced, but also many formerly analogue systems have been updated and
digitalised, making them part of the IoT world. Now, its elements can be found in all
spheres of our lives, reaching from the homes to as far as the medicine and the industry
[5].

However, this also entices numerous malicious adversaries willing to infiltrate IoT networks,
by widening their attack possibilities. Indeed, with the expansion of the IoT sector, there
has also been an upsurge of attacks that have occasionally proven to be remarkably costly
or to affect devices on a huge scale [1, 6, 7]. Hence, one must always strive to assert
the security and benignness of any entities they communicate or interact with. This is a
critical issue especially in the area of resource-constrained IoT devices, as those often do not
come with any built-in security mechanisms [4]. Furthermore, classical applications and
approaches are unsuitable there due to the limitations in terms of memory or computational
power.

Among the best-known techniques for a (small) “smart” device to show its trustworthiness
is the Remote Attestation (RA) [3]. It is an one-to-one process between a trusted and
an untrusted entity, called Verifier (VRF) and Prover (PRV), respectively. RA follows a
challenge-response model, with VRF sending a challenge with specific parameters, called
Attestation Request (AR), such that PRV can only answer correctly if and only if it is
currently in a benign state (i.e., not infected by malware) [3]. Research has already been
conducted in the sphere of RA; indeed, multiple architectures have already been created,
and there is vigorous ongoing research in that sphere.

Still, RA in its classical form does exhibit remarkably low scalability. That is a crucial issue
in the IoT sphere, where there may be hundreds or thousands of devices communicating. A
device may, for instance, need to store a large amount of symmetric keys for the attestation
to work safely, or be faced with numerous ARs at once after being inactive for some period
of time. To the best of our knowledge, no RA architecture exists such that it solves these
issues.

Goals and Contribuions.

This gap is also what inspires our work. Here, we will attempt to construct a RA protocol
targeting low-end devices which, unlike the classical RA, can function on an one-to-many
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2 1. Introduction

basis and is hence significantly more efficient. In particular, we hope to enable the PRV
party to process multiple ARs at the same time, while also producing a report that is
verifiable to all VRF parties. An architecture with this property will go a long way
towards improving the efficiency of RA in the IoT sector, and will therefore be a crucial
addition to the vast spectrum of currently existing RA techniques.

Our work will take the format of a Bachelor’s thesis, thus concluding our studies of Com-
puter Science towards the degree of Bachelor of Science (BSc.) at the Julius-Maximilians-
University of Würzburg. Moreover, our work is also motivated by the Secure Internet of
Things Management PLatform (SIMPL) project [8], at which the JMU is involved, among
other parties. In SIMPL, trust assessment of devices can be achieved with the assistance
of RA. Notably, the participating entities have access to a Blockchain (BC), for example,
for logging or storing sensitive data. This allows a VRF to, e.g., query the BC in order to
fetch the states of a PRV that are considered valid, and match them against the one PRV
sent as a response to the attestation challenge. We aim to show that the trust management
framework of SIMPL provides the flexibility to offer secure and functional one-to-many
RA as a novel solution.

Outline.

The rest of our work is organised as follows. The next Chapter 2 concerns itself with
the general security and trustworthiness in the IoT sphere; furthermore, it provides an
introduction to the concept of RA, giving us a base to build upon. Chapter 3 presents an
overview of a set of existing RA architectures, grouping them by types. The subsequent
Chapter 4 forms the main part of our work. There, we discuss the RA process in an one-to-
many scenario and show its inefficiency. We afterwards design the so-called Aggregatable
Remote Attestation which builds on a selected one of the techniques presented in the
previous Chapter 3. Thereupon, in Chapter 5, we present in detail our implementation
of the Aggregatable RA as a Proof-of-Concept (PoC). In the following Chapter 6, we
evaluate our design in terms of both security and performance, showing its efficiency even
in the case of a large amount of RA challenges. Finally, Chapter 7 concludes our work by
summarising it and also suggesting some points for future research.
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2. Background

Ever since a modified vending machine at the Carnegie Mellon University became the first
(non-computer) device to be connected to the Internet [9], the number of such appliances
has been constantly on the rise. Some 17 years later, in 1999, the term IoT was proposed by
the British technology pioneer Kevin Ashton as a description for a system of interconnected
devices [10]. The devices-per-capita ratio would then go on to increase from 0.08 in 2003
to 1.84 in 2010 [11].

Nowadays, IoT refers to the concept of having intelligent physical objects, dubbed“Things”,
that autonomously share data and communicate with each other over the Internet, as well
as integrating them to the global Internet infrastructure [9]. Thus, a vast information
system is created. Every year, new “smart” gadgets emerge, and digital, computerised
components are being added to previously analogue systems, integrating them into the
IoT world. Its elements can be currently found almost everywhere, starting from our
homes (heat and light sensors, printers, smart TVs) and reaching up to the medicine and
the military (robotic assistants, drones) [5]. For this reason, it is no wonder that IoT has
a stable and very relevant position in the business and economics of today. The online
statistics portal Statista has estimated that, as of 2030, there will be over 50 billion IoT
devices worldwide [12]. For the purpose of comparison, that number denotes an amount
over twice as large than the one approximated for 2018.

While the very nature of IoT encourages user-defined applications, it does also mean that
(in some fields more than in others) the applied security measures may be rather generic.
This is supported further by the above mentioned exponential growth of IoT over such a
short period of time: just a couple of years ago, probably few would have expected that a
scenario of billions of interconnected devices worldwide is plausible; therefore, the security
aspect might not have been considered of great relevance during design phase.

Alas, the rising amount of embedded and IoT devices, as well as their applications, also
turns them to rather attractive targets and thus widens the attack possibilities of adver-
saries willing to infiltrate IoT networks. This is splendidly exemplified by well-known cases
such as the Stuxnet worm [6] from 2010 and the Mirai botnet [1] from 2016, where the
infection of critical devices has significantly endangered various systems, sometimes even
on a global level. More recently, in 2018, the developer platform GitHub1 suffered the
largest Distributed Denial of Service (DDoS) attack in history, peaking in 1.35 Tbps [7] –
way over the previous record, which was held by Mirai. One can therefore easily see how

1https://github.com/
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4 2. Background

crucial it is to have reliable, proven means to establish the trustworthiness of an IoT entity
before initiating any sort of communication or cooperation whatsoever.

2.1. Establishing Trust

Breaches in security can often be traced back to flaws of the applications or the Operational
System (OS) run by the compromised device [3]. The most straightforward solution would
be, without doubt, to design and write applications and OSes in such a way that they are
bug-free and exploit-proof. Alas, this is barely possible in theory, let alone in practice.
Modern OSes have an extremely high complexity degree even without considering the
myriad of drivers and applications that exist and introduce new possible attack vectors.
Consequently, any rigorous testing methods that can be found are also suboptimal in terms
of complexity, but also affordability. On the other hand, cheaper and simpler solutions
would probably not suffice as an assertion of a system’s security. Even if the opposite were
the case, yet another challenge then emerges by the users as unpredictable actors who may,
through their actions, introduce security holes into a system themselves.

Therefore, it is clearly visible that no absolutely secure OS or application can exist, such
that it simultaneously conforms to the modern standards regarding performance and func-
tionalities [3]. This has forced developers and researchers aiming to create trustworthy
platforms to opt for (or come up with) alternatives with wide applicability which are also
plausible to implement in practice.

Among the most wide-spread methods working towards that goal in current days is the
usage of Trusted Computing. That concept gained popularity with its introduction to the
general public in 2005 by the Trusted Computing Group (TCG), successor of the Trusted
Computing Platform Alliance, which informally defines a “trusted system” as one that
“behaves in the expected manner for a particular purpose” [3]. Still, descriptions of what
is called a Trusted Platform Module (TPM) can be found in works dating as far as 2001, as
discussed by S. Pearson [13], and architectures like AEGIS [14] were created even earlier.

The TCG sets three major requirements to any Trusted Platform [3]:

• shielded locations and protection capabilities onto the platform that are safeguarded
by means of hardware or software,

• the ability to measure (and store measurements of) the own integrity and state (that
is, before all, the content of the memory), and

• mechanisms for attestation, i.e., asserting the benign state of the device.

Those categories, whilst listed separately, often make use of each other to fulfill their goals.
Secure storage is more often than not provided onto the platform by the manufacturer,
for example, in the form of (Programmable) Read-Only Memory (ROM), or PROM. Self-
measurement is not difficult to achieve by simply deploying code with that functionality.
In this work, we are however especially interested in the 3rd category – the attestation. In
particular, we will be looking into what is known as RA. Other attestation types include
attestation by the TPM, platform authentication, etc.

As for the TPMs themselves, their main tasks include (pseudo-)random number generation
(such as nonces, or derived keys), data sealing (by using the protected storage), and hashing
of given information (such as the contents of the device’s memory) [15]. TPMs are often
regarded as roots of trust, that is, the first piece in a device’s chain of trust.
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2.2. (Remote) Attestation 5

2.2. (Remote) Attestation

One of many definitions of RA, as given in [16], is “the activity of making a claim to a 3rd
party about the properties of an entity by supplying evidence which supports that claim”
– or, in other words, proving that an entity is not behaving in an unexpected, malicious
way. RA inside a given network demands the existence of at least one device in a benign
state, i.e., a device that is sure not to be infected by malware; such device is called a VRF.
VRF attests an untrusted entity, called PRV, using a challenge-response principle. The
challenge is modelled in such a way that PRV can generate a valid response to it if and
only if it is currently not infected by malware [3]. RA is not limited to the IoT world only
– while there it can be applied to assert that a device is safe and behaving as expected, one
can also use it in different contexts. For instance, software developing institutions can use
it to check for unauthorised changes of their product, or whether the copy of the product
is genuine.

At this point we consider it important to give a more detailed overview of a standard RA
process, for better understanding. For visualisation, the reader should refer to Figure 2.1.
There, an example of RA depicting a use in the IoT sphere is given, where a new device
may, e.g., wish to join an IoT network and needs to be attested beforehand. As mentioned
earlier, that process includes two parties – VRF and PRV. Understandably, the exact
implementation will vary between the different architectures; yet, the base principle will
remain the same.

IoT network

VRF

PRV

Generate

challenge

params

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 𝑅𝑒𝑝𝑜𝑟𝑡

Verify

report

Compute

report

…
ℎ𝑎𝑠ℎ 𝑛𝑜𝑛𝑐𝑒,𝑀𝐸𝑀
…

1

2 3

4

5

Figure 2.1.: Classical Remote Attestation process with a Verifier and a Prover. An example
from the IoT sphere.

Often, VRF and PRV are expected to share a secret symmetric key Katt. In both parties,
this key must be protected from unauthorised access, for example, in a memory region
safeguarded by means of hardware. At some point, VRF will initiate the RA process. It
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6 2. Background

begins by generating the challenge parameters specific for that cycle (1), such as the nonce
or the boundaries of the exact memory region which is to be attested. It will then send
an attestation request to PRV containing those parameters (2). The parameters may be
also encrypted with Katt. Once PRV receives them, it performs a call to the instance of
the RA architecture deployed onto it (3). That architecture should, for example, compute
a cryptographic hash of the memory region defined by the received boundaries using the
secret key and the nonce2. Any other data required by VRF is also hashed. The resulting
report is then sent back to VRF (4), who verifies its validity (5) also with the help of
the key. This can be done by VRF either by computing the expected values itself, or by
comparing the received report with a list of valid values3. Should the result be evaluated
as valid, PRV is declared to be in a benign state and therefore trustworthy. Note once
again that some architectures might have slight deviations from this description. A crucial
consideration is that without the shared secret which is Katt, an attacker could impersonate
PRV. This is possible by listening to the network, thus getting the challenge parameters,
and then, e.g., computing the (now keyless) hash of the memory region and the other
parameters (as an adversary is supposed to have access to all non-protected memory).

The classical RA is hence an one-to-one process as it includes only two actors. In particular,
the necessity to use shared symmetrical keys between the two parties is also a significant
issue, since for a single entity, the number of keys it needs to store exhibits linear growth
in relation to the total number of entities in the IoT network. This also points to the low
scalability of the classical RA as nowadays networks can easily contain thousands or even
millions of devices.

IoT networks often include various low-end devices, such as sensors, with very limited
computational and memory resources on their disposal. As an example, consider a simple
light sensor in a Smart Home environment. Moreover, for such platforms, security may be
an aspect that has not been given high priority by the manufacturers either, for instance,
due to economic incentives [4]. These limitations are critical to consider when choosing an
appropriate RA scheme.

RA can be performed through techniques that can be separated in four distinct groups –
hardware-based, software-based and hybrid4 – as described in [18]. The first type includes
RA performed in terms of ROM, secure co-processors and additional secure hardware
attached to the platform. The deployment of such hardware elements over a large network
of devices, while possible, could eventually prove rather costly.

Thus, hardware-based solutions of this sort are at times rather unwell suited for utilisation
in the IoT context. On the other hand, software-based RA architectures often rely on
very restrictive assumptions [19], and various attacks against these have already been
demonstrated [20]. An alluring alternative is created by opting to also include elements
such as ROM and a Memory Management Unit (MMU) to assert the correct workflow of
the attestation process, resulting in a hybrid solution. This basic idea can also be applied
to lower-end devices – a property likewise valid for some hybrid architectures, i.e., ones
that rely on hardware with some assistance by software. That flexibility is what motivates
many other researchers as well. Indeed, research and both theoretical and practical work
has already been done on the topic of designing such manageable techniques that are able
to operate with minimal requirements – as presented in Chapter 3.

Finally, worth mentioning for the sake of inclusion are some RA subtypes with various
properties. Note however that we do not consider them well suited for our use cases, and

2Recall that hashing, along with secure storage, is one of the requirements for TPMs by the TCG.
3These could be, e.g., directly stored inside VRF, or fetched from a database.
4An alternative grouping of RA techniques, based on their exact approach, as well as an analysis of those

groups’ properties, is presented in [17]. Note that this grouping is out of scope for this work.
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2.2. (Remote) Attestation 7

will therefore leave them, for the most part, out of the scope of this work.

• runtime attestation concerns itself with generating attestation evidence during run-
time. Examples include the work in [21] and ATRIUM [22].

• control flow attestation can be considered a type of runtime attestation and works
by asserting that an application’s control flow path is correct – possibly without
requiring the source code. Notable mentions are C-FLAT [23] and LO-FAT [24].

• RA with resilience to physical attacks also exists, although most RA architectures
exclude this scenario. Notable examples include DARPA [25], EAPA [26] and SCAPI
[27].

7





3. Related Work

RA is a sphere of growing relevance in the IoT sector, as was previously discussed. It is,
therefore, no wonder that there has been vigorous ongoing research focused on perfection-
ating the existing RA architectures and developing new, even more robust ones. In this
section, a non-exhaustive overview of selected RA schemes for low-end IoT devices is pre-
sented, together with their requirements, main benefits and disadvantages. It is important
to note that, unless mentioned otherwise, most of those techniques have been designed
with the same – or very similar – adversarial model in mind, namely an adversary that has
control over both the platform of PRV and the communication channels. In other words,
it can freely load and unload malicious code, read unprotected memory, eavesdrop, inject
packages, etc. However, it is assumed that the adversary does not (or cannot) tamper with
the hardware itself, so as to, e.g., physically extract stored secrets.

3.1. Hardware-based RA

Hardware-based schemes are ones that modify the platform’s hardware (or introduce ad-
ditional pieces of hardware) to provide dynamic attestation. They utilise modules like
secure co-processors, memory management units and ROM. Additional CPU instructions
can optionally be introduced as well. A vast number of devices, such as laptops and even
smartphones, already employ similar procedures.

TrustLite

One of the two architectures that build up a “base” for RA schemes on small devices is
TrustLite [4]. It relies on a programmable ROM (PROM) and a Memory Protection Unit
(MPU) – a lightweight version of a standard MMU. TrustLite provides its functionalities
based on four main components: an execution-aware MPU (EA-MPU) that controls access
based on both queried and calling code addresses, a Secure Loader setting the appropriate
rights in the EA-MPU during boot, a custom Interrupt Service Routine (ISR) protecting
against data leakages during interrupts, and a “trustlet” table with information about
every trusted application. The authors point to the architecture’s flexibility as its main
benefit. They state that it can easily be modified to perform different tasks, depending on
what is needed. Moreover, they mention that modifying a device engine to run TrustLite
has, in their experience, proved rather easy. The main disadvantage of TrustLite remains
its static initialisation: no guarantees on security can be made in case an application is
deleted or a new one is added during runtime.

9



10 3. Related Work

TyTAN

The above-mentioned problem is exactly what TyTAN [28] aims to solve. The TyTAN
architecture, which is similar to TrustLite, allows for tasks to be loaded and unloaded
during runtime while still maintaining functioning RA capabilities. Like TrustLite, it
assumes that the device has an MPU and a ROM unit at its disposal. However, a real-
time operational system (RTOS) is also needed to meet the real-time guarantees that the
authors aim to provide. Similarly to TrustLite, TyTAN makes use of an EA-MPU and a
secure boot component. A set of keys is available as well, so as to enable secure Inter-
Process Communication (IPC). Another crucial element is its EA-MPU driver, which
modifies the EA-MPU dynamically when a task is loaded or unloaded. Finally, instead
of a custom ISR, a trusted Interrupt Multiplexer (Int Mux) is applied before calling the
interrupt handler. The tasks are separated in secure and normal tasks. Even the OS has
no access to the latter. The TyTAN architecture has been implemented as a PoC. While
little data has been provided regarding the overall performance of TyTAN, the general
understanding that the memory overhead is significant.

Sancus 2.0

A well-known architecture, Sancus [29], has been redesigned and improved to form San-
cus 2.0 [30]. Targeted devices are resource-constrained ones similar to a MSP430. Sancus
2.0 can be used for module isolation, RA, as well as secure communication. A set of cryp-
tographic functions and safely stored keys is used, as well as a custom Memory Access
Logic circuit for program counter-based memory protection. The authors also extend the
core with additional instructions, e.g., for encryption and decryption used in RA. There,
the contents of the device are encrypted and sent to VRF. A nonce and various keys
guarantee freshness and authenticity. The authors also provide a PoC and argue about
the security of Sancus 2.0’s functionalities. They show that the overhead of using Sancus
2.0 is acceptable.

3.2. Software-based RA

Architectures implemented entirely in code also exist. While this can be considered an
advantage, they often rely on assumptions regarding, e.g., the adversary model which are
rather unrealistic. Among the most common ones are “adversarial silence” during the RA
process [31], as well as tight time or storage space constraints [2].

SWATT

This scheme [32] relies roughly on the same ideas as Pioneer [33], the first software-based
RA architecture. It is designed for small devices, with the authors providing a PoC on
an 8-bit microcontroller. While no dedicated hardware is required, VRF is assumed to
have exact knowledge of PRV’s hardware specifications. SWATT uses (pseudo-)random
traversal of PRV’s memory to calculate its checksum. The crucial element is that the
calculation is made in such a way that even a single additional if-command injected by
malware would add a noticeable time overhead. The authors point that SWATT can
also be used for virus checking; however, the assumptions they set are not realistic (VRF
needing to know exact hardware specifications of PRV, etc.).

SIMPLE

The authors of SIMPLE [2] aim to provide formally verified RA. This work forms a bridge
between software-based and hybrid RA as it requires no additional hardware modules
(except for, e.g., Flash memory which is considered standard. Hence our decision to place
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it in this Section), but makes use of a Security MicroVisor (SµV)[34] (software-based). It
is its duty to load applications, verifying them beforehand. Unsafe applications trying to
compromise the memory are denied access; unsafe, but necessary operations are replaced
by virtualised safe ones stored in SµV’s memory. RA is achieved by hashing the memory
and makes use of an authentication and an attestation key shared between VRF and PRV.
The authors argue formally that SIMPLE is secure if SµV is the first application to be
loaded.

3.3. Hybrid RA

Those RA schemes that rely on a combination of software and hardware security features
are also known as hybrid ones. In particular, they relax the unrealistic assumptions associ-
ated with software-based approaches by also allowing hardware modifications or additional
hardware elements. Hybrid schemes are proven to be applicable on low-end devices as well,
making them attractive for this work.

SMART

Together with TrustLite, SMART [31] builds up the base of many hardware-based and
hybrid RA schemes. The prerequisites for SMART most notably include a shared secret
key K between VRF and PRV, a so-called “Attestation ROM”, and a secure storage inside
the CPU accessible only from SMART code. Two compiler enhancement tools, Deputy
and CQUAL, are applied in the SMART procedure to tackle possible memory leakages.
The authors argue that, based on their PoC, the only possibly relevant overhead is the
calculation of the checksum. The main benefit of SMART is that it is not only easily
implemented, but also multi-functional due to the optionally executed code. This allows
it to be used for, e.g., attested measurement reading. Dynamic application (un-)loading
is not considered.

SMARM

The authors of SMARM [35] aim to solve the problem represented by roving malware,
that is, malware that can relocate itself. Their work is heavily based on SMART and has
the same requirements, with the addition of a reliable read-only clock. SMARM works
by attesting PRV’s memory segment-wise using SMART, with events such as adversary
allocation and device functionalities being allowed to occur only in between two block
attestations. The measurement order is a random permutation defined at the beginning
and kept inside a protected storage. Since SMARM is non-deterministic, its malware
detection rate is not 100% as shown by the authors. It is however possible, by repeating
the process multiple times, to reduce the failure probability. SMARM’s biggest strength is
allowing the device to function during RA time. However, this also represents a weakness
as it allows the adversary to avoid detection by roaming through the memory during the
RA process.

HYDRA

This is a relatively new hybrid RA technique [18] that does not explicitly require any
MPU or ROM; however, it makes use of the separate microkernel seL4 [36] as its only
prerequisite. Note that seL4 itself does require some minor hardware modifications of
the microcontroller it is deployed on. HYDRA borrows some key elements from SMART
such as attesting the content inside some boundaries given by VRF. It does not, however,
offer code execution at a given address, or secure inter-process-communication. Thus, its
general functionality consists of verifying the validity of the RA request to avoid possible
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Denial of Service (DoS) attacks, and then computing a cryptographic checksum of the code
segment in the given boundaries. For access control, ROM and secure storage, HYDRA
relies on seL4. The seL4 microkernel is also the main drawback of HYDRA: while it does
remove the need for ROM and MPU, these are very often available in embedded devices
by default. Thus, seL4 represents an additional piece of software which is not needed for
other purposes. Moreover, the authors of HYDRA explicitly state that their architecture
does not aim at really small devices, but at rather more sophisticated ones. The main
benefit is that only little modifications are required on the original device platform.

HEALED

HEALED [37] is novel in that it provides not only attestation but also recovery of infected
devices to benign state. Required are only a ROM and a MPU. HEALED functions by
making a random device try to attest another one at a random interval. PRV’s memory
is divided into ordered segments and attested by hashing in a tree-like manner, creating
a Merkle Hash Tree. If PRV turns out to be infected, VRF seeks a third device H from
the same type as PRV. After successful attestation by PRV, H finds the corrupted code
inside VRF by using the Merkle Tree and tries to patch it. HEALED suffers from major
drawbacks in the sphere of scalability, as an exponentially rising number of devices need
to share symmetric keys. On the other hand, healing is a crucial benefit that is currently
rarely considered in RA schemes and thus should not be ignored. The authors provide PoC
implementations over SMART, TrustLite and a drone testbench, and show that HEALED
weakens the performance in a negligible range.

VRASED

The next hybrid RA scheme discussed here is VRASED [38], an architecture with security
“verifiable-by-design”. Hardware requirements are minimal: VRASED focuses on low-end
IoT devices with ROM, SRAM, a Flash, and an additional small hardware module. In
VRASED, the platform is divided into smaller components. They are then represented as
Finite State Machines in (i) Verilog HDL, and (ii) the model-checking language SMV. The
functionalities and the properties themselves are then formulated as Linear Temporal Logic
formulae, and each sub-module is checked against the formulae subset it is supposed to
cover. Once the sub-modules are verified, the same is done for the whole platform. While
the formal verifiability is an obvious benefit, it also significantly increases the process’
complexity. The authors provide an implementation on a Basys3 Artix-7FPGA board and
suggest that it is portable to other platforms with minimal modifications.

APEX and PURE

To conclude the hybrid schemes, we mention APEX [39] and PURE [40], two architectures
relying heavily on VRASED. Aside from RA, APEX is capable of generating formally
provable evidence that specific code has been executed, as well as a proof that the produced
result is as intended. The authors also provide an implementation on an OpenMSP430.
While the memory overhead is negligible in comparison with VRASED, the additional
computation time is considerable. PURE on the other hand allows for (also formally
provable) system-wide reset, software update and memory erasure. Its overhead in both
computation and memory is insignificant, as asserted by the authors. An implementation
is also available.

3.4. Application of Attestation

Here, we present approaches which are still relevant to the RA topic, but cannot be
categorised as completely new or different RA primitives. They are rather novel ways to
utilise already existing RA protocols.

12



3.5. Summary 13

ERASMUS

The ERASMUS architecture [41] belongs in a separate category since its authors do not
present a completely new attestation scheme. Instead, what they contribute with is the use
case. In particular, they review the case where malware can infect and leave the device be-
tween the attestation requests. This scenario is addressed by making the device self-attest
at regular intervals, and save all measurements until a request from VRF arrives. Then, all
saved measured states are sent and removed from the memory. While this scheme has no
particular hardware requirements by itself, it demands that another attestation technique
is deployed over the device (and thus inherits that technique’s own requirements). The
authors suggest implementations over a SMART+ and a HYDRA instance. The logs need
not be stored in secure memory, as any changes inflicted by malware can be detected by
VRF upon log collection. One benefit of ERASMUS, other than having a self-measurement
log, is the fact that attestation requests by VRF cause no further drains of computational
power than those needed to simply send all saved measurements. Furthermore, ERASMUS
can be extended to provide on-demand attestation or self-attestation at irregular intervals.

SARA

We consider the SARA protocol [42] to be worthy of a mention, even though it is not an
actual RA architecture. This work concerns itself with asynchronous RA. VRF and PRV
use a synchronised vector clock which is updated after each event. SARA operates based
on a publish-subscribe approach. VRF sends RA challenges to the Publisher, and the
Subscriber (PRV) eventually uses them to attest itself. Once VRF sends a RA request to
PRV, the Subscriber service will send the RA result. It is also possible for VRF to subscribe
to the Publisher to directly receive updates about PRV. The authors demonstrate the
efficiency of SARA through a PoC. They also note that the main benefits are asynchrony,
selective attestation and historical evidence.

3.5. Summary

A large array of RA architectures and approaches tailored for resource-constrained devices
already exists, and more will eventually be developed and presented in the near future.
Here, we discussed a selected subset of those architectures. Some of them also offer addi-
tional features aside from RA, as we will elaborate in more details in Section 4.3. However,
those are all in their essence variants of the classical RA presented in Section 2.2. Hence
they inherit most of the properties typical for RA.

An exemplary issue which is not addressed is the one-to-one property observable in RA.
All architectures we considered, regardless whether hardware-based, software-based, or
hybrid, work with it as a base and do not attempt to improve it; however, as we will
discuss in the next Chapter 4, this leads to performance issues when a PRV entity is faced
with many ARs and also paves the way for some attack vectors.

Important to note here is that the SARA protocol does make progress in a similar, albeit
not the same direction, by introducing the Publish-Subscribe approach. In particular,
SARA does not consider the use case where there are multiple ARs coming from different
VRF entities. Moreover, it still intends for PRV to process those ARs sequentially, thus not
solving the performance issue. This problem will also be what our work revolves around.
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4. Aggregatable Remote Attestation

One of the most crucial details about the classical RA is the observation of it being an
one-to-one process between a Verifier VRF and a Prover PRV entity. Namely, VRF would
send a challenge, also known as AR, that contains specific parameters to PRV. PRV
would then be able to calculate an answer to this challenge if and only if it is not infected
by malware. As a consequence of its one-to-one property, this process was shown to be
characterisable as one with very low scalability – a crucial detail in the IoT sphere, where
a single network can easily consist of well over a million smart devices. In this Chapter,
we will inspect the scalability issue a bit more closely, and attempt to craft a solution by
creating the so-called Aggregatable Remote Attestation.

4.1. Problem Statement

One could argue that the one-to-one property is not a real issue. After all, PRV just
accepts the challenge parameters, executes the attestation process, and returns the report.
However, in reality this is not that simple. The one-to-one approach can, for instance,
easily be misused by adversaries to create a DoS scenario by bombarding PRV with ARs
since PRV will be doing nothing but computing attestations. Moreover, the number of
symmetric keys that need to be stored grows with the size of the network and can thus
easily cause memory issues.

The whole problem starts to get clearer once one considers the circumstances and events
surrounding the attestation. The first crucial point is that a lower-class device is often
not reachable directly. An (IoT) network can be visualised as a complex graph, with the
nodes representing the separate devices and the edges being the simple (i.e., with hop
count = 1) connections between them. Depending on the exact architecture, a set of
nodes could, for example, need to pass their whole communication with the outside world
through some higher-class mediator device – a hub, a switch, or some kind of broker. A
broker in this case is essentially a server that accepts messages from the above mentioned
set of nodes and forwards them to their destinations, or alternatively forwards messages
to the set of nodes. The underlying reason for this network design choice may vary:
different possibilities include reduced coupling within the sub-network, communication
control, protection against diverse attacks, etc. Regardless of the case, especially lower-
end entities (the ones we are interested in) such as sensors are often “hidden” behind such
a broker (cf. Figure 4.1). This implies that any ARs sent to them are first accumulated
at the broker before being passed to the device.
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Verifier #3Verifier #1

Prover

Verifier #2

Broker

Figure 4.1.: An IoT network including multiple devices, a broker, as well as a distinguished
Prover.

Second, it is important to note that devices, regardless of their type, are not constantly
available. There are (not necessarily on a regular, foreseeable base) events like mainte-
nance, software/hardware updates, but also, for example, spontaneous downtimes during
which the entity is not reachable by external traffic. Ultimately, the device might be merely
“sleeping” or executing its standard tasks and due to this reason not be available for any
other purposes. It is hence not completely unlikely that an incoming AR (or some other
request, in that context) is not processed immediately. To tackle the issue represented by
this, such messages are often accumulated at the previously mentioned broker entity. It
would then wait for the device to “wake up” (or become available again) in order to send
the whole list of pending messages and requests.

It can thus be clearly seen that the scenario of a device receiving multiple AR at once is
not only possible, but also plausible. Naturally, more reasons exist for this aside from the
broker simply collecting a set of requests. Even if we were to remove the broker entirely, it
is not unfeasible that multiple entities, each acting separately as a VRF, decide to perform
a RA onto the target device – maybe even simultaneously. Furthermore, a single VRF
entity may due to various reasons send a second AR to the same PRV before the first has
been processed. To exemplify why this can happen, examine the case where that very VRF
is acting as a gateway for a larger subsystem1. With different entities from the subsystem
needing to verify the trustworthiness of PRV, the gateway entity may send separate ARs.
Alternatively, a subsequent AR might be triggered by some unexpected event, while the
first one is part of a routine. Whatever the case, it is safe to assume that the different
ARs carry different challenge parameters, and therefore need to be processed separately.

What exactly does happen inside PRV when multiple different challenges arrive? To
the best of our knowledge, the currently existing RA architectures simply proceed to
process those challenges sequentially. The separate ARs may also be checked for validity
beforehand, but that is irrelevant for our considerations. In summary, the process goes as
follows:

1. PRV wakes up/becomes reachable.

1See the Facade Structural Design Pattern described by the Gang of Four [43].
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2. The broker entity sends all ARs to PRV.

3. While there is an AR in the queue:

3.a) PRV attests itself with this AR

3.b) PRV sends report to VRF through Broker

3.c) Return to 3.

4. The results are sent back to the broker, who forwards them to the VRFs.

For visualisation, one can also refer to the sequence diagram on Figure 4.2.

An important element to note would be the repetition of the hashing of the own memory
during 3.a) (as a remark, we have opted for this description since many RA architectures,
as seen in Chapter 3, do indeed revolve around memory hashing). This is also the most
problematic point: however small the memory size inside a low-end device might be,
computing a hash over the whole memory still does take a significant amount of time
and computational resources (at least in comparison to the other tasks). The addition of
the nonce to the hash can be ignored in the efficiency considerations as all nonces share
the same constant size and are significantly smaller than the memory. Regardless, the
computation-intensive chaining of hashes could eventually result in longer periods of time
where the device is bound to the attestation process and cannot proceed with its default
tasks. Hence arises the opening for the DoS attack mentioned above.

𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟1 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟2 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟𝑛 𝐵𝑟𝑜𝑘𝑒𝑟 𝑃𝑟𝑜𝑣𝑒𝑟

𝑝𝑎𝑟𝑎𝑚𝑠1

Verify  𝑟𝑒𝑠1

𝑟𝑒𝑠1 = 𝑎𝑡𝑡𝑒𝑠𝑡(𝑝𝑎𝑟𝑎𝑚𝑠1)

𝑟𝑒𝑠1

𝑤𝑎𝑘𝑒_𝑢𝑝()

𝑟𝑒𝑠2 = 𝑎𝑡𝑡𝑒𝑠𝑡(𝑝𝑎𝑟𝑎𝑚𝑠2)

𝑟𝑒𝑠𝑛 = 𝑎𝑡𝑡𝑒𝑠𝑡(𝑝𝑎𝑟𝑎𝑚𝑠𝑛)
Verify  𝑟𝑒𝑠2

Verify  𝑟𝑒𝑠𝑛

𝑝𝑎𝑟𝑎𝑚𝑠2

𝑝𝑎𝑟𝑎𝑚𝑠𝑛

𝑟𝑒𝑠2

𝑟𝑒𝑠𝑛

𝑝𝑎𝑟𝑎𝑚𝑠1
𝑝𝑎𝑟𝑎𝑚𝑠2
𝑝𝑎𝑟𝑎𝑚𝑠𝑛

Figure 4.2.: Remote Attestation process with multiple Verifiers, a Broker and a Prover.

4.2. Approach

We do believe that this process can indeed be optimised.

For the optimisation, it is only logical to target the underlying reason of the problem,
namely the one-to-one property. An upgrade to an one-to-many attestation process would
be most advantageous and go a long way towards making RA far better suited for the IoT
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sphere. For instance, if PRV was able to somehow aggregate all of the pending ARs, it
would then merely need to calculate a solution to the challenge aggregate and send it back
to the Verifiers.

This is also the goal we aim for: A RA protocol with the capabilities to (i) aggregate
challenge parameters to a single one, and (ii) produce a publicly verifiable report. In other
words, the mere contents of the report should suffice as an assertion of PRV’s benign
state, particularly without needing any shared secrets or other non-public elements of that
manner.

With meticulous considerations, a modified version of the standard RA process, as de-
scribed in Chapter 2, has to be crafted. This new technique, called Aggregatable Remote
Attestation, should allow a PRV to collect a set of ARs, iterate over them and create a
single challenge, whose parameters are derived from the ones of the individual requests.
PRV will then be able to compute a sole response to the challenge aggregate and return
that report to the broker entities (or the Verifiers, depending on the case). Great care is
to be exercised though, as that construct needs to have the property of being verifiable
especially by each and every single one of the Verifiers which sent the initial ARs. This in
turn entails high probability that not only the self-measurement of the PRV will need to
be modified, but the verification process done by the VRF as well.

In the previous Chapter 3, we offered an overview of a selected set of RA architectures,
grouped by their type: hardware-based, software-based, and hybrid. Each scheme was
briefly analysed in terms of prerequisites, main benefits and disadvantages, as well as
functionality. We saw that many of those schemes do indeed also offer other features aside
from RA – healing of infected devices, protection against roving malware, etc.

The first part of our contribution will thus consist of the post-processing of this overview.
We are to evaluate the properties of the presented schemes in accordance with our use case
and present an aggregated list. Thenceforth we shall select a single architecture which we
deem to be best suited as a base for the Aggregatable RA. That is, in the main part
of our work we will modify the VRF and PRV algorithm of the architecture in order to
convert it to an one-to-many process. In this sense, our approach bears some similarities
to ERASMUS and SARA that were discussed earlier in Section 3.4, as they too employ
another RA protocol at their core.

Afterwards, having picked a basis scheme, we will describe the exact modifications and
how they help us achieve our goal. We argue that those changes do not introduce almost
any additional security holes and attack vectors that were not present before. The only
exception is that we discard the symmetric key and hence the authentication of VRF.
Finally, we will discuss eventual topics for future work which, if implemented, would make
the whole construct more robust.

4.3. Architecture Evaluation and Selection

Providing RA capabilities is what unites all techniques discussed in Chapter 3. Many of
them do, however, also go beyond that and offer additional functionalities and benefits.
As a first step, we are going to present those (at least as far as they are mentioned by the
authors of the corresponding works):

Dynamic applications:

This denotes the capability of an architecture being able to guarantee functioning RA
even if applications are loaded or unloaded during run-time. TyTAN [28] is a primary
example, and SIMPLE [2] allows additionally for verification of the application safety
prior to loading.

18



4.3. Architecture Evaluation and Selection 19

Asynchronous RA:

This means that the attestation is allowed to happen not immediately after the device
receives the AR, but also afterwards when it is available. Notable implementor is SARA
[42] which utilises a publish-subscribe approach.

Code execution:

After the self-measurement of the memory is complete, the device executes the code stored
at an address passed with the challenge parameters and hashes the result. This is one of
the most valuable properties of SMART [31], but is also available in APEX [39].

Protection against roving malware:

Roving malware is one that can re-allocate itself to another memory location and thus
eventually avoid standard RA approaches. Pseudo-randomness-based protection is offered
by SMARM [35].

Recovery:

If a device is found to be infected, performing a clean-up procedure is recommended.
The only architecture offering this out-of-the-box is HEALED [37]. A relaxed property –
applying memory erasure and system-wide reset – is also available in PURE [40].

Formal verifiability:

Many authors argue about the security of their architectures. Few do however prove it
formally. The most notable schemes with this property are SIMPLE [2], VRASED [38]
and PURE [40].

Our scheme of choice, after some considerations, is ultimately SIMPLE. While it is a really
novel technique, it does indeed already appear very promising. We will now present briefly
our line of thought that led to this decision.

As already noted, SIMPLE, in the form in which it was presented, can be verified formally
by various means described by the authors. This provides a stable basis for extensions such
as the ones we wish to apply. It does also not require any additional hardware to deploy –
as the authors show, SIMPLE takes a very specific spot bridging the software-based and
the hybrid architectures (cf. Figure 4.3).

Figure 4.3.: Position of SIMPLE on the spectrum of RA architectures [2].

Another positive aspect is that SIMPLE targets resource-restricted devices, exactly as
the ones we are considering. Moreover, as remarked above, it operates correctly even in
the case of applications being removed or new ones being loaded during run-time. As
a concluding point, the authors have implemented it as a PoC to show its real-world
applicability. Its main component, SµV, is open-source on GitHub2 and can therefore be
downloaded and extended freely.

2An implementation in C can be found on GitHub under https://github.com/m3mmar/verified SuV/.
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4.4. Functionality of SIMPLE

We will adapt SIMPLE to our use case and make the necessary modifications to convert
it to an one-to-many architecture. However, first we will go into more details regard-
ing SIMPLE to provide better insights about its functionalities, as we consider having
understanding of its internals important for the rest of this work.

As discussed, SIMPLE falls under the software-based category as it completely relies on
the Security MicroVisor SµV. It provides the same security guarantees as hybrid-based ap-
proaches, without requiring neither hardware support in the form of a ROM or a MPU, nor
hardware modifications. Moreover, SIMPLE implicitly guarantees Control Flow Integrity,
as asserted by the authors.

The MicroVisor SµV is an open-source software-based hypervisor. It provides trusted
MPU-like memory protection and isolation. SµV uses selective software virtualisation as
well as code verification on assembly level to isolate a software-based Trusted Computing
Module, or TCM (similar to a TPM). A necessary and sufficient prerequisite for SµV
is having a simple, single-threaded microcontroller that lacks an MPU, supports global
interrupt disabling, and has sufficient non-volatile memory (e.g., Flash or ROM). This is
standard even in small IoT devices [44] and is thus not considered an explicit hardware
requirement.

SµV needs to be installed on the device before any other application. It reserves a part
of the memory for the TCM, which is immutable and has non-restricted access. The
rest is split to Data Memory and Instruction Memory (cf. Figure 4.4). In particular,
Data Memory is not allowed to read, write, or execute any instructions; it merely holds
application data. Contrary to that, Instruction Memory can read and write data, jump
freely within itself and call specific entry points of TCM memory.

Figure 4.4.: Memory mapping without and with the Security MicroVisor [2].

Figure 4.5 illustrates the memory access rules described above. Most notably, SµV has
unrestricted capabilities within the whole program memory. On the other hand, any
untrusted applications are allowed to use specific access points in the secure memory, and
freely execute instructions in the non-secure program memory.

Application deployment may only occur through SµV, which verifies incoming applications
at load time. A crucial element is that unsafe instructions, which are still essential for
normal operation, are replaced by safe virtualised instructions stored in the TCM memory.
Applications attempting to compromise the memory are rejected by SµV at boot time.
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Figure 4.5.: Memory access rules set by the Security MicroVisor [2].

RA with SIMPLE functions as follows. At the beginning, PRV and VRF need to share
two keys, Kauth and Kattest. Moreover, they have monotonically updateable counters Cv

and Cp. The counters and the keys are safely stored inside the TCM memory. First, VRF
increments its clock and uses Kattest to calculate the expected state V C of PRV. That
state is sent to PRV along with the clock and a nonce, as well as an HMAC digest with
Kauth of those elements for authentication. PRV uses the digest to verify the message and
updates its own clock accordingly. Afterwards, PRV computes the digest of its current
state and compares it with the expected one received from VRF to a 1/0 result. Then,
for authentication, it generates the HMAC digest of that result along with the own clock
Cp and the nonce, and sends the digest together with the 1/0 result back to VRF. VRF
checks the authenticity of the result by using the digest, and makes a conclusion regarding
PRV’s benignness from that result.

The nonce and the counter are needed as a protection against replay attacks. For visuali-
sation the reader may also refer to the scheme on Figure 4.6.

Figure 4.6.: Remote Attestation with SIMPLE [2].

For the hash function, a keyed HMAC-SHA1 is used. Security of the architecture and the
algorithm is asserted as follows:

• SµV erases all data that was temporarily stored during RA .

• At the very beginning of the algorithm, all interrupts are disabled.

• Thus, the algorithm is executed atomically. This is a protection against leakages,
return-oriented programming and roving malware.
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• The algorithm always finishes in finite time, as verified through model checking.

• SµV code is immutable, therefore the results are always reliable.

That proves that if the IoT device is initialised with the installation of SµV, then SIMPLE
is secure and guaranteed to provide secure and correct RA.

4.5. Modifications

As elaborated in Section 4.2, we conduct a set of adjustments to the original SIMPLE
architecture. In particular, we carefully analyse the individual issues that emerge from the
way it was designed initially, and take action to adjust each of them while also attempting
not to deviate from the archetype more than is necessary.

For our model, we will be assuming the same adversary characteristics as the authors of
SIMPLE – an attacker able to eavesdrop, inject packages, and modify unprotected areas of
PRV’s memory, but not to physically tamper with the device so as to, e.g., gain access to
protected memory. Moreover, the adversary has enough computational power to attempt,
for example, collision attacks. As mentioned in Chapter 3, this model is typical in the
RA sphere; hence, using it sets our approach on the same level as the majority of other
schemes.

The first problem, which was in fact already briefly addressed, is related to performance: if
the whole attestation is executed once for every VRF and with every nonce, this would take
significant time and also creates an opening for a potential DoS attack. Therefore, once
the RA process begins, we collect the important data – the nonces ni – from all pending
ARs and construct a single one by combining them, e.g., to a hash chain. Afterwards,
the device proceeds to perform the rest of the RA with the new, aggregated nonce n′. In
particular, n′ is also hashed together with the current state (memory) to a digest we denote
as res. When sending the result back to every VRF (or simply to the broker entity), we
also append the whole list of nonces N collected from the individual ARs. This way, VRF
can

1. check that its own nonce (or all of them, if VRF has sent multiple ARs) is included
in the list, and

2. compute the hash chain himself.

VRF will then use the self-computed chain to verify the received result. It can, for instance,
compare it with a list of valid states stored in a database or, in the case of SIMPL, a
BC. One could try to argue that sending this additional data over the communication
channel represents a new security threat. However, this is indeed not a vulnerability since
an eavesdropping adversary could have learned the single nonces by the time they were
received by PRV.

Secondly, we wish to break away from the one-to-one property of standard RA whilst still
making the result verifiable for all VRF entities. An important issue here is the number
of symmetric keys that PRV, a resource-constrained IoT device, has to hold in a large
network. In order not to require secure key exchange beforehand (or storing symmetric
keys), we replace the keyed HMAC function, currently used to hash the memory, with
a keyless hashing function, such as a simple SHA-1. We argue in Section 6.2 that this
does not create a new attack vector. Additionally, we opt for asymmetric cryptography
and applying a digital signature on the result after computing it. For this, PRV will use
a single private key Kpriv stored in protected memory. Once the current state state is
collected, PRV signs it with Ksign to a result Sign. It then sends {Sign||res||N}. Any
entities having access to PRV’s public key and a list of valid states for the device can verify
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that the result is correct. Any VRF who has sent a RA request can thus also verify the
validity of the result and the new nonce as described above.

Finally, VRF sending a valid software state V S (even encrypted) to PRV is unnecessary.
Instead of PRV, VRF will be the one checking whether PRV’s state is benign or not.
While it is still possible for PRV to compare its own to the expected state and return a
signature of a 1/0 result together with the nonce, this is rather impractical. The rationale
behind this is that eventually there can be a vast amount of benign states, and saving and
comparing them inside PRV would be rather unfeasible.

For a visualisation of the modifications, we point to the sequence diagram on Figure 4.7.

𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟𝑖 𝐵𝑟𝑜𝑘𝑒𝑟 𝑃𝑟𝑜𝑣𝑒𝑟

𝑁 = 𝑛𝑜𝑛𝑐𝑒𝑠1,2,…,𝑛

𝑟𝑒𝑠 = ℎ𝑎𝑠ℎ(𝑠𝑡𝑎𝑡𝑒, 𝑛′)

{𝑆𝑖𝑔𝑛, 𝑟𝑒𝑠, 𝑁}

𝑤𝑎𝑘𝑒_𝑢𝑝()

𝑛′ = ℎ𝑎𝑠ℎ𝐶ℎ𝑎𝑖𝑛(𝑛𝑜𝑛𝑐𝑒𝑠)

𝑆𝑖𝑔𝑛 = 𝑠𝑖𝑔𝑛𝐾𝑝𝑟𝑖𝑣
(𝑟𝑒𝑠)

{𝑆𝑖𝑔𝑛, 𝑟𝑒𝑠, 𝑁}

𝑛𝑜𝑛𝑐𝑒𝑖

𝑛𝑜𝑛𝑐𝑒𝑖 ∈ 𝑁 ?

𝑛′ = ℎ𝑎𝑠ℎ𝐶ℎ𝑎𝑖𝑛(𝑁)

𝑐ℎ𝑒𝑐𝑘𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦(𝑟𝑒𝑠, 𝑛′)

𝑐ℎ𝑒𝑐𝑘𝑆𝑖𝑔𝑛𝐾𝑝𝑢𝑏

(𝑆𝑖𝑔𝑛, 𝑟𝑒𝑠)

𝑛𝑜𝑛𝑐𝑒𝑖
= 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑜𝑛𝑐𝑒()

𝐾𝑝𝑟𝑖𝑣𝐾𝑝𝑢𝑏

Figure 4.7.: Modified version of SIMPLE.

4.6. Further Considerations

We conclude this chapter by briefly presenting some additional points regarding the mod-
ified RA architecture. Note that considerations regarding the security and the eventual
attack vectors can be found in Section 6.2.

4.6.1. Retention of Dynamic Functionality

A point which was not examined thoroughly was the property of SIMPLE allowing for valid
RA in a dynamic environment, i.e., when applications are loaded and/or unloaded during
run-time. The authors of SIMPLE argue that their implementation allows this [2]. Albeit
our modifications do not concern themselves with the processing of the memory (or, more
accurately: the exact memory locations which are processed), this use case has still not
been tested appropriately. Hence, no guarantees are provided for the proper functionality
of the modified RA, should applications be (un-) loaded after boot. This remains a subject
of potential works in the future.
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24 4. Aggregatable Remote Attestation

4.6.2. Formal Verifiability

The final sphere of discussion remains the capability of SIMPLE’s RA to be verified for-
mally in terms of functionality and security. This is a similar aspect to the one exhibited
by VRASED [38], APEX [39] and PURE [40]. It is also one of the main focal points of the
original SIMPLE architecture. Not unlike the dynamic environment, it is not impossible
that our changes to the archetype SIMPLE have rendered the means of formal verifiability
no longer usable. Again, this is a case that has not been inspected as part of our work. We
estimate this aspect to be one of high complexity and far above the reach of a Bachelor’s
Thesis. Consequently, it can also be considered a niche for future work and research.
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5. Implementation

To demonstrate the applicability of our design given in the previous Chapter 4, we also
write an implementation as a PoC. The implementation is based on SIMPLE’s core com-
ponent, the Security MicroVisor SµV, as we derived our model of the so-called Aggregatable
RA from SIMPLE. Previously, we discussed the various benefits of different architectures
aside from RA, and declared SIMPLE [2] as one most suited for modifications.

5.1. Microcontroller Testbench

Since our work is concentrated on small devices, an appropriate one needs to be selected for
the implementation. Our choice lies ultimately with the Atmel MEGA-1284P Xplained1

(ATmega1284P-XPLD). The underlying ATmega1284P is a low-power 8-bit microcon-
troller based on the AVR enhanced RISC architecture [45]. It features 128K bytes of pro-
grammable flash memory allowing for concurrent read- and write-operations. Moreover,
at its disposal are 32 general-purpose working registers, 4K bytes EEPROM, 16K bytes
SRAM, as well as I/O capabilities through a SPI serial port and a JTAG test interface. A
close-up view of the board is shown on Figure 5.1.

Those properties allow the ATmega1284P-XPLD to be classified as a low-end device. More
accurately, it belongs to the Class 1 devices, following the definitions given by Bormann et
al. [44]. This is particularly convenient for our use case as the Class 1 devices do not offer
any security mechanisms out-of-the-box. Hence, showing that our Aggregatable RA can
be deployed on such a device will be an important statement in regard to its applicability
and usefulness.

5.2. Security MicroVisor

Recall that one of our arguments behind the choice of SIMPLE as the scheme to be ex-
tended did consist of SIMPLE’s main underlying component, the Security MicroVisor
SµV, being available open-source on GitHub as mentioned in Section 4.3. The MicroVisor
code is written in the C programming language and targets AVR architectures specifi-
cally, as described on the GitHub page2 – another reason supporting our choice of the
ATmega1284P-XPLD microcontroller.

1https://www.microchip.com/DevelopmentTools/ProductDetails/ATMEGA1284P-XPLD
2Once again, the repository is available at https://github.com/m3mmar/verified SuV/.
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26 5. Implementation

Figure 5.1.: The ATmega1284P-XPLD.

The code of the MicroVisor already includes RA capabilities for PRV as well as a simple
VRF entity written in Python. VRF creates and sends a single nonce. Afterwards, PRV
computes the already discussed hash of the memory and the nonce, implemented through a
HMAC-SHA1. The exact HMAC implementation, after some research, appears to originate
from the AVR-Crypto-Lib3. Finally, the result is sent back to VRF. VRF has computed
a digest itself, and compares it with the one received from PRV. The communication is
conducted through a serial port. The VRF code, runnable on any device that supports
Python, accesses the serial port by using the pySerial library4.

5.3. Modifying the Prover

The first element we need to change is the nonce reading. Since we are collecting an
unknown number of nonces instead of a single one, we need a flexible way to store them.
Currently, the single nonce is written to a uint8_t array of length 20. Instead, we model
a double-linked list, defined as given on Listing 5.15. Each element of the list contains
pointers to the previous and the next element of the list (or NULL if no such exists) as well
as a pointer to the actual nonce (again, stored as a uint8_t array). The full header of
the list can be found in Appendix B. In the RA code of SµV, we create a list instance and
append an element for each nonce received over the serial port.

1 typedef s t r u c t node {
2 u i n t 8 t ∗ va l ;
3 s t r u c t node ∗ next ;
4 s t r u c t node ∗ prev ;
5 } node t ;

Listing 5.1: Definition of the custom list data structure.

Having saved all nonces, the next step would be to aggregate them. For this, as mentioned
in Section 4.5, we can, for example, compute a hash chain (or use any other compression

3Can be found at https://wiki.das-labor.org/. Link to a repository with the functions is also included.
4See documentation at https://pyserial.readthedocs.io/.
5For the list, inspiration was taken from https://www.learn-c.org/.
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5.4. Modifying the Verifier 27

function). A simple solution is offered by the AVR-SHA1 library6, whose code we put in
the core/crypto directory in the place of SµV’s HMAC-SHA1. So we define a function

1 void aggregate nonces ( sha1 c tx t ∗ ctx , void ∗ src , void ∗ dest )

that accepts pointers to a SHA-1 context (ctx), the list with nonces (src), as well as a
destination (dest). The function iterates through the list, feeding the single nonces to the
context in a chain-like manner, and subsequently writes the digest in the dest parameter.
At the end, dest contains a single 20 bytes long nonce aggregate, or n′ as per Section
4.5 notation. Afterwards, the (already exiting) procedure remote_attestation(buf) is
called with the aggregate.

Next, we move on to the main MicroVisor code, stored in core/microvisor.c, and more
precisely to the remote_attestation(uint8_t *n) function. There, a HMAC-SHA1 con-
text is created and initialised with Kattest. Afterwards, the device memory, block by block,
is fed to the context, effectively computing the HMAC. Once again, we replace the HMAC-
SHA1 context with a simple SHA-1 one. Note that utilising a collision-safe one-way cryp-
tographic hash function is not entirely necessary, as we will show in Section 6.2 and the
referenced Appendix A. The SHA-1 digest is placed in the buffer previously containing the
nonce aggregate, in order to return it to main.c. With these changes, we have effectively
implemented 2

3 of our modifications. The only remaining element (on the PRV part) is
the digital signature.

Due to the relation of our work to the SIMPL project [8], as mentioned in Section 1,
the signature process we opt for needs to be compatible with the one on SIMPL’s BC.
There, this operation is performed by using an Elliptic Curve Digital Signature Algorithm
(ECDSA). The curve of choice for the algorithm is the same one as on the Bitcoin network,
namely secp256k1 [46]. Hence, in order to reach compatibility, we must apply signature
with the same curve.

A C library with the required capabilities is, for instance, micro-ecc7. The authors assert
that it is deliberately designed to be small and fast, and so as to be applicable for 8-
bit processors. We thus include the library’s functional files in core/crypto. Since the
ECDSA algorithm needs a source of randomness, we also add a lightweight Pseudo-Random
Number Generator (PRNG)8. We use the micro-ecc library to generate a key pair. The
private key is placed in secure memory, namely in the same field which used to store the
key for the HMAC function. We also save the public key inside VRF. In the body of PRV’s
remote_attestation(uint8_t *n) function, we create a signature context and sign the
hash of the memory and the nonce. To return the signature digest to the main function,
we add a second uint8_t *sign parameter and pass a uint8_t sign[64] to it.

From there, we simply send the list of nonces, as well as the digest and then the signature,
over the serial port. We utilise special characters for separating the three elements and
also for denoting the end of the message. For exact description of the data format, the
reader may refer to Appendix C.

5.4. Modifying the Verifier

In the previous section, we described our changes to the SµV code. However, recall that
changes to the VRF side also need to be made for it to properly process the new RA
results.
6Available at https://github.com/.
7Available at https://libraries.io/. GitHub repository is linked.
8As presented in https://blog.podkalicki.com/.
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28 5. Implementation

In the initial phase, we need to generate the nonce(s). For testing purposes, we configure
the process to accept an additional numeric parameter k so as to emulate multiple different
ARs. The original code creates a single one with os.urandom(20); we call that function
multiple times and store the four nonces in a list. Once the generation phase is complete,
we log the nonces on the console and also send them to PRV over the serial port9. We
utilise some special characters as delimiters to make it simpler for PRV to process the
input. The reader may refer to Appendix C for a description of the data format.

A similar procedure is applied to the received report. Recall that as per design, report =
{Sign, res,N} (see Appendix A). Hence, once the report arrives, we first check whether
our k nonces are included in N and then build the nonce aggregate n′. The Python script
already employs the hashlib library10 to compute the original HMAC-SHA1. Instead, we
will utilise the simple SHA-1 function. Namely, we define a method

1 def hash chain ( l i s t )

accepting a list and returning the SHA-1 digest yielded by hashing the elements of the
list sequentially. We will use this method not only for the nonces, but for the memory
compression as well.

For the next phase, we want to check the validity of the received res, that is, the com-
pression of n′ and the memory. In a real scenario, such as the SIMPL project, the valid
memory state would be fetched from a database or some other type of storage. Since our
testbench does not have such an entity at its disposal, we instead compute the expected
memory state of PRV by utilising the flashed .hex file and the intelhex library11. We
then use this variable together with the computed n′ to calculate their SHA-1 compression
(hash_chain([intelhex, n’])) and compare it with res.

Subsequently, we need to check the digital signature. For this, we need a library providing
ECDSA with the secp256k1 curve, exactly like in the case of PRV. Our library of choice is
ultimately python-ecdsa12. Once again, in a real-world scenario, PRV will have distributed
its ECDSA public key before the initiation of the RA process; however, here we have it
statically stored in a variable public_key. This allows us to check the received Sign
against the received res (which we validated in the last step), and ultimately log the result
on the console.

If any of the described checks fails, we log an error on the console and stop the RA process.
Otherwise, should all of them succeed, we log that the attestation was successful.

5.5. Running the Project

The entire code is included on the disc provided with this work. In order to run it, the
following is needed:

• An ATmega1284P-XPLD microcontroller. We provide no guarantees for other mi-
crocontrollers due to eventual pin differences that may raise the need for code mod-
ifications.

• A programmer in order to load the code. Our programmer of choice is the Atmel
ICE (cf. Figure 5.2).

9For the communication, VRF utilises the pySerial library. Documentation at
https://pyserial.readthedocs.io/.

10Documentation at https://docs.python.org/.
11Documentation at https://pypi.org/.
12GutHub repository at https://github.com/tlsfuzzer/python-ecdsa.
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• A device offering a serial port and capable of executing Python code.

• A cable with USB and USB-mini connectors to power the board.

We conducted our implementation and testing on a computer with the Linux operational
system. For the performance evaluation later, it is crucial to note that the machine was
equipped with an Intel® Core™ i5-4570 processor with 4 CPUs, as well as 8 GB of RAM.

Figure 5.2.: The Atmel ICE.

Both the Atmel ICE and the board are connected to the computer. In addition, the board
is connected to the AVR port of the programmer. Note that the computer needs to provide
sufficient power for the board (1.8V).

On the computer, the code needs to be compiled by avr-gcc and flashed to the board.
It is hence necessary that an avr-gcc toolchain is available and functioning. Moreover,
avrdude needs to be installed and callable as well.

For the compilation, a Makefile with all the necessary commands is already available. Open
a console in apps/remote_attest and execute make all. This will use the toolchain to
build the project, and then use avrdude to flash it onto the board. Once this process
completes, the Python VRF can be started by executing sudo python3 verifier.py

microvisor.hex <PORT> <k>. Here, <PORT> refers to the serial port the microcontroller
is connected to, e.g., /dev/ttyS0 or /dev/ttyACM0, and <k> is the number of nonces to
generate (for k ARs). This will start the RA process. Note that the superuser permission
is needed for the Python script to access the serial port. The generated nonces are logged
on the console; then, VRF also logs any eventual errors as well as a status notice in the
case of success or failure.

Finally, to clean up the testbench, make clean can be executed.
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6. Evaluation

We successfully designed and implemented the Aggregatable RA, a novel technique based
on SIMPLE that aims to provide one-to-many RA capabilities to resource-constrained
devices. Our implementation in the C programming language, as described in Chapter
5, was deployed on an ATmega1284P-XPLD microcontroller as a testbench. Now we will
evaluate our work in the two most crucial terms – performance and security.

6.1. Performance Evaluation

Achieving better performance than classical RA architectures especially in an one-to-many
scenario is one of the main goals of our work. In theory, we achieved this by increasing
the overhead (by aggregating the nonces) but reducing the amount of memory digests
for multiple challenges to one. In order to evaluate the performance of our approach in
practice, we performed a series of tests on our implementation. In this Section, we present
the results of our testing. As a base for comparison, we took the original implementation
of SµV. Both the VRF and PRV performance were tested.

6.1.1. Prover Performance

In the first test, we compared the performance of our PRV with the one of SµV. In
particular, we compared the time needed to process up to 10 challenges (= nonces). Since
SµV is not capable of processing more than one nonce per execution, we conducted multiple
runs and summed up the separate times. The time was measured as the time span between
the sending of the last nonce from VRF and receiving the last part of the report. Figure
6.1 shows a chart with the resulting data.

The test shows that while our implementation is inferior when dealing with up to two
challenges, it exceeds the performance of SµV in any subsequent scenarios. Namely, the
run-time of our architecture remains (almost1) constant at 17s. SµV on the other hand
exhibits linear growth with the number of nonces it needs to process, with roughly 6s being
added for each further nonce. The lesser performance of our architecture in the one or
two nonces scenario can be attributed to the nonce aggregation and especially the digital
signature, since the latter is known to need a non-trivial amount of computational power.
Later on, however, the multiple repetitions of SµV prove to be too costly in respect of

1Not absolutely constant. See Appendix D.
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Figure 6.1.: Performance comparison of the Provers of SµV and our implementation. Mea-
surements in seconds.

time. As this shows the general superiority regarding run-time of our implementation in
comparison to SµV, in the further PRV tests we concentrated on our code.

Next, in order to get a better visualisation of the efficiency and the exact run-time of the
Aggregatable RA, we continued incrementally increasing the number of nonces that were
sent. For better scaling, after 20 nonces we began incrementing the input size by 10, and
after reaching 250 nonces, we started incrementing by 25. The results are presented on
Figure 6.2.
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6.1. Performance Evaluation 33

Figure 6.2.: Performance of our implementation with different amounts of nonces. Mea-
surements in seconds.

The 18s threshold was reached with 190 nonces. While it is rather questionably realistic
that any IoT device, regardless of its type and resources, needs to process a larger amount
at the same time, we continued increasing the input size for the sake of completeness. The
ATmega1284P-XPLD stopped responding after around 475 challenges. We assume this to
be due to memory limitations since, as per design, all nonces need to be stored so that they
are sent back. Even with that number of challenges, the 20s threshold was not reached.
The raw data from all tests can be viewed as a table in Appendix D.

6.1.2. Verifier Performance

While our work aims to improve the efficiency of PRV, it is also important to know how
our modifications interact with VRF. Many may deem the trade-off suboptimal if our
approach increases the burden of VRF by a too significant amount. For this, we also
conducted a set of tests on VRF, similar to the ones done on VRF. In particular, we
measured the time span starting with receiving the last part of the report from PRV and
ending with the check of the signature. As discussed in Chapter 4, the scenario where a
single VRF needs to verify multiple reports is improbable, yet possible. Figure 6.3 shows
the test results in seconds.

Similarly to what was observed with PRV, the performance of our implementation is
inferior to SµV in the single challenge scenario, albeit with an insignificant amount. After
that, as the SµV VRF processes the results sequentially, it gets outperformed by our
implementation. However, unlike PRV, there is almost no observable difference (0.01s)
when comparing the time to verify one and a couple of hundred of responses, as seen on
Figure 6.4. Here, we emphasise again that the VRF performance is strongly dependent on
the specifications of the machine running the Python script.
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Figure 6.3.: Performance comparison of the Verifiers of SµV and our implementation. Mea-
surements in seconds.

6.1.3. Size Comparison

Our concept is intended to apply to resource-constrained devices. Hence, besides the
performance, it is crucial to also observe the size of our implementation. The most optimal
way to measure it is by checking the size of the .hex file produced by the avr-gcc compiler.
The .hex file of the original SµV has a size of 9644 bytes. However, our implementation
presents an almost sevenfold increase, with 67068 bytes for the .hex file. It is possible
that this metric can eventually be optimised. The increased size is with high probability
due to the various libraries for randomness, signature and hashing which we had to add.

6.2. Security Evaluation

To the original algorithm of SIMPLE, multiple changes were made surrounding the used
functions and parameters. We will now argue that our algorithm remains secure, that
is, it does not allow an adversary to act as PRV. The attacker model, as described in
Section 4.5, allows the adversary to eavesdrop, manipulate the network, and read/modify
the contents of unprotected memory. Still, the modifications that we made are only in
the RA procedure of SIMPLE. Any other functionalities and capabilities, such as memory
division, etc., remain untouched.

6.2.1. Comparison to SIMPLE

We note initially that the challenge parameter(s) passed by VRF are not encrypted and
thus easily available to an eavesdropping adversary. With our modifications, this equals to
the list of nonces sent by the different VRFs. Hence, the nonce aggregation function needs
not have the one-way property available in hashing functions to obscure the nonces. Any
aggregation function from the space Nk → N (where k is the nonce length) will suffice.
Still, to reduce implementation difficulty, we opt for a hashing function (see Chapter 5).

The second major change was utilising a keyless hashing function for the memory compres-
sion. The original SIMPLE uses a keyed HMAC-SHA1. Instead, we opt for the underlying
SHA-1. We are indeed aware of the low security and preimage resistance of the SHA-1
function. Public attacks were documented in 2005 by Wang et al. [47], 2009 by Aoki et
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Figure 6.4.: Performance of our Prover implementation with different amounts of nonces.
Measurements in seconds.

al. [48] and 2017 by Stevens et al. [49]. However, to compensate for that, we introduce a
new element: the digital signature. Recall that a signature utilises a pair of asymmetric
keys. This allows one to write the private key in PRV’s secure memory (which is also read-
protected by SµV) and send the public key (even over insecure channels) to any external
entities.

An adversary cannot act as PRV. To achieve this, they would need a signature of the hash
of the current nonce aggregate together with a valid state. However, the nonces differ in
each AR (due to their nature as nonces) and the private key Kpriv used for signature is
safely stored. Therefore, forging such a signature is not possible. At most, the adversary
can have access to a list of hashes of valid states together with a used nonce (or a nonce
aggregate), as well as the signatures of those hashes2. This is, ultimately, not helpful.

6.2.2. Other Attack Vectors

As per our analysis, our changes to SIMPLE do not introduce any new opportunities for
malicious entities or adversaries to act as PRV. However, we do remark that by removing
parameters such as the synchronised clocks and the symmetric key, PRV is no longer able
to authenticate VRF. This leads to no issue on PRV’s side as PRV can now process a
significant amount of challenges efficiently.

It is a fact that the underlying design of SIMPLE is not perfectly protected against every
sort of attack. That is exemplified by a Spoofing/DDoS attack: while PRV can now
process multiple ARs in parallel, this is not true for VRF. This allows an attacker to
send a multitude of ARs to the same or different devices (or the corresponding brokers),
impersonating the victim. They will all be processed, and the victim will be flooded with
attestation results.

The reason for this is the simplistic nature of the challenge parameters in our case (a
simple nonce), meaning that the sender of an AR is in fact not verified to PRV. PRV
will handle all ARs it receives. We do however deem the construction of a protection
mechanism against this sort of attacks rather non-trivial, and therefore also not suited for

2Refer to Appendix A for a more detailed overview.
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a Bachelor’s Thesis. Hence, we leave it out of the scope of our work, and denote it as a
possible point for future research.
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7. Conclusion

Being able to prove oneself’s trustworthiness is crucial nowadays in the IoT sector due to
the rising amount of high-impact attacks from adversaries. RA is well-known as a proven,
established mechanism for achieving this goal. Unfortunately, the RA approach also has
one major drawback in the sense of its scalability, as its classical version is an one-to-one
process between VRF and PRV. This reduces its fitness for all scenarios where a PRV
entity may need to process multiple ARs at once, and thus for the IoT sphere in particular.
Notably affected by this limitation are low-end entities that otherwise do not offer security
mechanisms out-of-the-box.

In our work, we designed the so-called Aggregatable RA, novel in that it converts the RA
process from one-to-one to one-to-many. There, PRV will not process every single AR
sequentially, but rather construct a challenge aggregate and work with it instead. The
produced result will then be verifiable to all VRF entities. With this, we aim to improve
the efficiency of RA while still maintaining its security and full functionalities. To the best
of our knowledge, that is the first architecture with this crucial property, such that it is
also applicable to resource-constrained IoT devices.

For the design, we chose to extend a currently existing RA architecture to make it provide
the aforementioned properties. In order to achieve this, we first had to analyse the state
of the art in this area. After presenting an overview of a sample of such techniques, we
found that many of them also provide additional unique properties such as healing, formal
verifiability, etc. We evaluated those in order to select an optimal one to build upon. Our
final choice would ultimately lie with SIMPLE, a relatively new hybrid RA technique that
allows for dynamic application loading and unloading and can also be verified formally.

We afterwards described an one-to-many RA protocol based on SIMPLE that introduced
three major changes. The first one was the nonce aggregation: after receiving a set of
challenge parameters (nonces), we constructed an aggregate from them as discussed above.
Then, we observed that SIMPLE uses a keyed HMAC-SHA1 function for compressing
the memory. To eliminate the need for symmetric keys, we replaced it with a simple
keyless compression function. The final step was to introduce digital signature of the
result computed in step 2. At the same time, we also adjusted the VRF process to make it
accept the new report. VRF would assert that its own nonce is contained in the aggregate,
and then check the validity of the state by consulting a remote database (or, in the case of
SIMPL, a BC). Finally, VRF will use PRV’s public key to confirm the digital signature’s
validity and authenticity. The whole process is, once again, visualised as a sequence
diagram on Figure 4.7.
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In the next phase, we proceeded to implement our approach as a PoC. In particular, we
opted for an ATmega1284P-XPLD board as our testbench. This is an 8-bit microcontroller
with very limited memory, so it falls in the device category we target. The SIMPLE ar-
chitecture provides the code of its core component, the Security MicroVisor SµV, freely
on GitHub, allowing us to extend or adapt it at will. From the modifications described
above, we opted for SHA-1 as both the nonce aggregation and the memory compression
function. We defend this decision and base it primarily on the SHA-1 code being already
available with the SµV code, due to the original usage of HMAC-SHA1. Moreover, to pro-
vide compatibility with the BC of SIMPL, we selected a library with ECDSA capabilities
such that it utilises the secp256k1 curve. The VRF code was also changed to reflect the
process we discussed in the previous paragraph.

Finally, we presented an evaluation of the Aggregatable RA. After extensive testing, it
was shown that it exceeds the performance of the original SµV in all but a negligible
amount of cases. This holds for both VRF and PRV. In particular, we conducted testing
with up to 475 nonces and observed a slowdown of only around 10% in comparison to a
single nonce. The processing times of PRV thus ranged from 17 to 19.57s. In contrast to
that, the original SµV code exhibits a linear growth in relation to the number of nonces.
In terms of security, we argued that the probability of an adversary being able to act as
PRV is very limited as it relies on them finding a collision with very specific properties.
Since the only potentially unsafe choice is the SHA-1, one could simply opt for another
keyless compression function, such as the SHA-256 or SHA-512. Regardless of the choice,
it holds that conducting a successful attack would have a negligible probability as long as
the utilised compression function is known to be collision resistant.

Still, there exist some use cases which have not been explicitly taken care of in this thesis
as they are only indirectly connected to the Aggregatable RA. For instance, the original
SIMPLE architecture could be formally verified and proven as secure. We deem the proof
process, however, to be non-trivial and hence better suited as a separate topic of future
research. Similarly, it is possible to conduct correct and secure RA with SIMPLE even
after (un-)loading applications during run-time. We see no reason why this should not
be the case with our RA protocol anymore, but it has also not been inspected closely.
Therefore we provide no guarantee for the correct functionality in this scenario, and leave
the inspection for other works. Finally, eventual research can be made in the future to try
and remove some currently persisting attack vectors, such as the danger of a spoofing or
a DDoS attack.

Overall, our work shows that constructing a RA architecture for resource-constrained
IoT devices that allows them to process multiple ARs simultaneously is by no means
impossible. Quite the contrary, it can be easily designed in theory and implemented in
practice by simply modifying an already existing RA technique (in our case, SIMPLE).
We consider this to be a result of high importance in the IoT sector. We do believe that
the insights gained from our work, but also the provided implementation which proves the
applicability of our idea, open the door for potential researchers in the future, paving the
way for them to perfectionate the described concept even further.
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Appendix

A. Adversary Knowledge after SIMPLE Modifications

Let

• l =def the length of a single nonce in bytes

• state =def PRV’s current memory

• N =def {n1, ..., nk} for nonces ni where i ∈ {1...k}

• n′ =def aggregate(N) where aggregate is from the space Nk×l → Nl

• res =def compress(state, n
′)

• Sign =def signKpriv(res)

• report =def {Sign, res,N}

From eavesdropping, an adversary A can learn the following:

• N

• a compression res of a valid state with the current N

• the Sign corresponding to this res

By recording multiple RA sessions, A creates a list of each of those elements. In order
to impersonate PRV, A needs to forge a valid report, i.e., a valid state compressed with
the current nonce (aggregate), as well as the signature of that compression. We assume
that aggregate and compress may not have the one-way property, or collision attacks may
have been shown.

Let the current list of nonces be Nnew. Can A can compute the following:

• Nnew: yes, it is available directly.

• n′new: yes, by applying aggregate to Nnew.

• a valid Signnew: only if resnew = resx for some resx from the list mentioned above.
Signatures cannot be created without Kpriv.

• a valid resnew = compress(some state, n′new): ?

51



52 7. Appendix

Analysis: compress is not necessarily an one-way function, so we assume A can find some
random statex and n′x such that compress(statex, n

′
x) = resx. However, in our case,

n′x = n′new is fixed. Depending on the exact compress, the probability of finding such a
specific state may be negligible. Recall that A also does not know any valid, uncompressed
state-s. As a conclusion, it cannot forge a valid resnew including n′new that is also equal
to some old resx in order to use the corresponding Signx. Thus, A cannot act as PRV.

B. Custom List Implementation in C

1 #inc lude <s t d i n t . h>
2
3 #d e f i n e NONCELEN s i z e o f ( u i n t 8 t ) ∗20
4
5 #i f n d e f LIST H
6 #d e f i n e LIST H
7
8 typedef s t r u c t node {
9 u i n t 8 t ∗ va l ;

10 s t r u c t node ∗ next ;
11 s t r u c t node ∗ prev ;
12 } node t ;
13
14 node t ∗ l c r e a t e ( const u i n t 8 t ∗ va l ) ;
15
16 void l append ( node t ∗ head , const u i n t 8 t ∗ va l ) ;
17
18 void l p repend ( node t ∗∗ head , const u i n t 8 t ∗ va l ) ;
19
20 u i n t 8 t ∗ l pop ( node t ∗∗ head ) ;
21
22 u i n t 8 t ∗ l t r u n c a t e ( node t ∗ head ) ;
23
24 i n t l l e n ( node t ∗ head ) ;
25
26 u i n t 8 t ∗ l e x t r a c t ( node t ∗∗ head , i n t n) ;
27
28 void l d e l e t e ( node t ∗ head ) ;
29
30 #e n d i f

Listing 7.1: Full header of the custom list data structure.

C. Data Format in the Aggregatable RA

The data is transferred byte-wise over a serial port. Since both the challenge and the
response consist of multiple parts, special delimiters are utilised to differentiate between
them, as well as to denote the end of the transmission.

Challenge delimiters:

• ’,’ (or 0x2c) between each pair of nonces.

• ’.’ (or 0x2e) at the end of the nonce list.
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Response delimiters:

• ’;;’ (or 0x3b, 0x3b) between each part of the response (signature/hash/nonce list).

• ’,’ between each pair of nonces from the nonce list.

• ’..’ at the end of the nonce list.

The nonces are deliberately generated in such a way that they do not contain any of those
characters, as well as some ASCII control characters (0x0a, 0x0d) that may interfere with
data parsing. Namely, we simply keep generating a new nonce with os.urandom(20) until
it no longer contains any of them.

This results in the following data formats:

• For the challenge:

n(1 1)n(1 2 ) . . . n (1 20) , . . . , n ( k 1)n( k 2 ) . . . n ( k 20) .

• For the response:

Sign ( 1 ) . . . Sign (64) ; ; r e s ( 1 ) . . . r e s (20) ; ;
n (1 1 ) . . . n (1 20) , . . . , n ( k 1 ) . . . n ( k 20) . .

Since the bytes/characters produced by the hash function and the signature algorithm are
impossible to control, some of the delimiter or control characters we had forbidden in the
nonces may occur in Sign or res. This may eventually lead to an unparseable response.
However, in our tesing experience, this happens relatively seldom.

D. Raw Testing Data

Here, we present the raw data produced by our testing of the VRF and PRV code of
our implementation and of SµV. For the VRF entities, we considered the time from the
receiving of the last part of the report to the end of the attestation. For the PRV entities,
we measured the time inside VRF between sending the last nonce and receiving the first
part of the report. For the SµV implementation, we summed up the corresponding times for
i executions, and for our code, we simply sent i nonces to be processed. All measurements
are in seconds. A “-” indicates that the measurement was not made.

53



54 7. Appendix

Nonces Our PRV SµV PRV

1 17.00004482269287 6.999865770339966
2 16.99561834335327 13.967623233795166
3 17.092677354812622 20.89748740196228
4 17.03445029258728 27.866657495498657
5 17.047333002090454 34.841463804244995
6 17.08233141899109 34.842437744140625
7 17.02419090270996 41.802367210388184
8 17.03079390525818 41.80990028381348
9 17.027580976486206 62.71474742889404
10 17.067793369293213 69.67570805549622
11 17.035887002944946 76.65568685531616
12 17.13425850868225 83.60884690284729
13 17.114075660705566 83.61706876754761
14 17.11038851737976 97.53844952583313
15 17.106674194335938 97.5536961555481
20 17.13041591644287 -
30 17.144960165023804 -
40 17.202955961227417 -
50 17.278524160385132 -
60 17.335693359375 -
70 17.394194841384888 -
80 17.46912956237793 -
90 17.52569055557251 -
100 17.584004640579224 -
110 17.65950608253479 -
120 17.666281700134277 -
130 17.680712461471558 -
140 17.738770961761475 -
150 17.81421732902527 -
160 17.838453769683838 -
170 17.961848258972168 -
180 17.948129415512085 -
190 18.055432081222534 -
200 18.07551884651184 -
210 18.183959245681763 -
220 18.20200538635254 -
230 18.30968403816223 -
240 18.268444061279297 -
250 18.39233946800232 -
275 18.501898527145386 -
300 18.611114978790283 -
325 18.819324016571045 -
350 18.92877697944641 -
375 19.037516355514526 -
400 19.145596504211426 -
425 19.354893922805786 -
450 19.464022636413574 -
475 19.572144746780396 -

Table D.1.: Performance comparison of both Provers in seconds.
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Nonces Our VRF SµV VRF

1 0.0341792106628418 0.03239941596984863
2 0.034575462341308594 0.03215432167053223
3 0.03473520278930664 0.0930938720703125
4 0.034523725509643555 0.12431907653808594
5 0.03477191925048828 0.13636088371276855
6 0.03487992286682129 0.1513535976409912
7 0.03565573692321777 0.16269826889038086
8 0.03451204299926758 0.17711472511291504
9 0.03266406059265137 0.2767360210418701
10 0.035470008850097656 0.25733399391174316
50 0.033478736877441406 -
100 0.032219886779785156 -
150 0.04277539253234863 -
200 0.044252634048461914 -
250 0.047249555587768555 -
300 0.046036720275878906 -
350 0.0446171760559082 -
400 0.04313254356384277 -
450 0.04423999786376953 -
475 0.04521036148071289 -

Table D.2.: Performance comparison of both Verifiers in seconds.
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