Design of a Shared Parking System
with special attention to security aspects

Simon Englert
Supervisor: Prof. Dr. Dmitrienko

http://se.informatik.uni-wuerzburg.de/
Structure

- Introduction (PIBA)
- Related work and background
- System Model and Requirements
- Design
- Security Analysis
- Implementation
- Future Work and Conclusion
Introduction

- Problem:
 - Amount of parking spaces limited, amount of cars steadily increasing
 - Creation of new parking spaces difficult and expensive

- Idea:
 - More efficient use of existing parking spots

- Benefit:
 - Less frustration when searching for parking sport, fewer traffic jams
 - Less air pollution, less petrol use

- Action:
 - Shared Parking
 - Different people are able to use the same parking spot at different times
Related work and background

- Great amount of scientific work about ‘intelligent parking systems’
- Nearly no scientific work about ‘Shared Parking’
- Few amount of applications that implement Shared Parking
 - Not really successful (success is city based)
 - No information on security aspects
System Model and Requirements – High-level Overview

- Offers an online marketplace where both private and business users can rent and lease parking spaces
- End user participation through smartphone
- Particular importance is given to handling fraud
- SPS does not aim at preventing unauthorized access to parking spaces, but instead incorporates mechanisms to punish misbehaving users
System Model and Requirements – System Model

Design of a Shared Parking System

Simon Englert
System Model and Requirements – Functional Requirements

- Basic rental functions (+ search function via a map)
- Low deployment costs and of the shelf hardware
- Automatic Processing
System Model and Requirements – Adversary Model

- Adversary Model and Classes of Fraud
 - Class 1: stem from the general nature of a shared parking system
 - Class 2: stem from introduction of reputation system, e.g.
 - Corruption attack
 - On-Off attack
 - Re-entry attack
 - ...
 - Class 3: exceptional cases that cant be solved without manual intervention
System Model and Requirements – Security Requirements

- Fraud Prevention
- Fraud Detection
- Fraud Punishment
- Fraud Compensation
Design – Features

- Functional Features
- Security Features
 - Rating Module
 - Reporting Module
 - Verification Module
 - Reputation Module
 - Based on Dynamic Trusted Set Based Reputation System for use in Mobile Participatory Sensing Applications
 - Sanctioning and Compensation
Design of a Shared Parking System

Simon Englert
Security Analysis

- Fraud Detection
 - Fraud recognition
 - Adversary identification based on reputation system
- Fraud Punishment
 - Based on the ability of adversary identification
- Fraud Compensation
 - Based on the ability of adversary identification
- Fraud Prevention
 - Through Deterration
 - Through Elimination
Implementation

- Database
- Java Web Service
- Java Android Prototype

Design of a Shared Parking System

Simon Englert
Implementation

Design of a Shared Parking System

Simon Englert
Future Work and Conclusion

- Elaboration of the reputations system
- Extenting the functionality of the prototype
- Testing usability and performance of the app