
Bachelor Thesis

Security analysis of UniNow app

Keven Zimmermann
Department of Computer Science
Chair of Computer Science II (Secure Software Systems)

Prof. Dr.-Ing. Alexandra Dmitrienko
Reviewer

B.Sc. Filipp Roos
Advisor

Submission
29. June 2021 www.uni-wuerzburg.de

Abstract

We performed a security analysis of the UniNow application, focusing on private user data.
The application was chosen for its high popularity and amount of sensitive information
handled through its new contact tracing functionality. This functionality is used by many
universities for mandatory contact tracing against COVID-19. Our analysis concerned the
Android mobile application and all web services. After mapping the attack surface using
many tools to automate the process, we tested the potential issues in order of impact.

We reveal multiple security issues with low to critical severity. Most of these vulnera-
bilities threatened private user data directly. In particular, we found multiple disclosed
secret keys that were used to encrypt user data on the client side, among others. Fur-
thermore, we show how an in-app browser as well as an open redirect vulnerability were
easing phishing attacks, and how university access tokens were shared with UniNow. Our
more severe findings include how sensitive data was sent automatically to Google servers
through backup files, how strict SSL certificate checking was disabled deliberately for many
university endpoints, how JavaScript could be injected into the email viewer, and how ap-
pointment invitations could be brute forced to get sensitive information about past and
future appointments. The two critical security issues concern how user accounts could
be taken over by using an account identifier, and how an internal service was accessible
by anyone, allowing to change university configurations and potentially make user devices
sent their user’s university credentials to the attacker.

We performed a responsible disclosure, which serves as a reference to UniNow, enabling
them to fix the discovered issues. Our work tangibly improves the security of student data
handled by the company.

iii

Zusammenfassung

Wir haben eine Sicherheitsanalyse der UniNow app durchgeführt, wobei wir uns auf pri-
vate Nutzerdaten fokussierten. Wir haben diese Applikation aufgrund ihrer hohen Po-
pularität und verarbeiteten Datenmenge, die durch die neue Kontaktverfolgungsfunktion
erhoben wird, gewählt. Diese Funktion wird von vielen Universitäten für eine verpflichten-
de Kontaktverfolgung gegen eine Ausbreitung von COVID-19 eingesetzt. Unsere Analyse
hat sich mit der mobilen Android Applikation und allen Internetdiensten auseinanderge-
setzt. Nachdem wir die Angriffsfläche mit Hilfe vieler automatischer Programme erkundet
haben, haben wir die möglichen Sicherheitsprobleme der Reihe nach ihrem potenziellen
Schaden getestet.

Wir enthüllen mehrere Sicherheitsprobleme mit einer niedrigen bis kritischen Auswirkung.
Die meisten dieser Schwachstellen bedrohten private Nutzerdaten direkt. Genauer gesagt,
haben wir mehrere veröffentlichte geheime Schlüssel gefunden, welche unter Anderem für
die Verschlüsselung von Nutzerdaten auf der Clientseite genutzt wurden. Außerdem zeigen
wir wie ein app-interner Webbrowser und eine Open-Redirect Schwachstelle jeweils Phis-
hingattacken erleichtert haben, und wie Zugangsdaten für Universitätskonten an UniNow
gesendet werden. Unsere ernsteren Befunde beinhalten wie sensitive Daten automatisch
an Google Server gesendet wurden, wie die strikte Prüfung von SSL Zertifikaten für viele
Universitätsdienste absichtlich ausgeschaltet wurde, wie JavaScript in die Email-Ansicht
injiziert werden konnte, und wie Termineinladungen erraten werden konnten, um sensitive
Information über vergangene und zukünftige Termine zu erlangen. Die zwei kritischen Si-
cherheitsprobleme sind der Fakt, dass man fremde Nutzerkonten mit einer Kontokennung
übernehmen konnte, und das jeder Zugang zu einem internen Dienst hatte, was einem
Angreifer theoretisch erlaubt hat Universitätskonfigurationen zu verändern und potenziell
die Zugangsdaten für Universitätsdienste von anderen Nutzern zu stehlen.

Wir haben eine Responsible Disclosure durchgeführt, welche von UniNow genutzt werden
kann, um die gefundenen Probleme zu beheben. Unsere Arbeit verbessert wahrnehmbar
die Sicherheit der, vom Unternehmen verarbeiteten, Studentendaten.

v

Contents

1. Introduction 1

2. Background 3
2.1. UniNow Mobile Application . 3
2.2. Open Web Application Security Project (OWASP) 4
2.3. JSON Web Token (JWT) . 4
2.4. GraphQL . 5
2.5. WebSocket Protocol . 5

3. Related Work 7
3.1. Mobile Applications . 7
3.2. Contact Tracing . 8

4. Approach 9
4.1. Scope . 9
4.2. Reconnaissance . 9
4.3. Testing Order . 10
4.4. Testing . 10

5. Reconnaissance 13
5.1. Mobile Application . 13

5.1.1. Privileges . 14
5.1.2. Functionalities and their Interfaces 14

5.2. Network Services . 16
5.2.1. Subdomain Enumeration . 16
5.2.2. Port Scanning . 17
5.2.3. Content Discovery . 17

6. Security and Privacy Issues 21
6.1. Disclosure of Multiple Secret Keys . 21

6.1.1. Impact . 22
6.1.2. Recommendations . 22

6.2. No Address Bar or Location Restrictions in In-App Browser 22
6.2.1. Impact . 23
6.2.2. Recommendations . 23

6.3. Open Redirect in Email Verification URL 24
6.3.1. Impact . 24
6.3.2. Recommendations . 25

6.4. Access Tokens are Shared With UniNow . 25
6.4.1. Impact . 28
6.4.2. Recommendations . 28

6.5. Sensitive Data in Application Backups . 29
6.5.1. Impact . 29

vii

viii Contents

6.5.2. Recommendations . 29

6.6. Disabled Strict SSL on University Endpoints 29

6.6.1. Impact . 32

6.6.2. Recommendations . 32

6.7. JavaScript Injection in Mail Module . 32

6.7.1. Impact . 34

6.7.2. Recommendations . 34

6.8. Brute-Forceable Appointment Invitations 35

6.8.1. Impact . 35

6.8.2. Recommendations . 35

6.9. Account Takeover Using Device IDs . 37

6.9.1. Impact . 39

6.9.2. Recommendations . 39

6.10. Unauthorized Access to https://npe.uninow.io 39

6.10.1. Impact . 40

6.10.2. Recommendations . 41

7. Other Tested Attack Vectors 43
7.1. Privilege Escalations . 43

7.2. GraphQL Application Programming Interface (API)s 43

7.3. SQL Injections . 44

7.4. Cross-Site Scripting (XSS) . 44

7.5. Cloud Storage . 44

8. Disclosure 47
8.1. Disclosure of Multiple Secret Keys . 47

8.2. No Address Bar or Location Restrictions in In-App Browser 47

8.3. Open Redirect in Email Verification URL 48

8.4. Access Tokens are Shared With UniNow . 48

8.5. Sensitive Data in Application Backups . 48

8.6. Disabled Strict SSL on University Endpoints 48

8.7. JavaScript Injection in Mail Module . 48

8.8. Brute-Forceable Appointment Invitations 48

8.9. Account Takeover Using Device IDs . 48

8.10. Unauthorized Access to https://npe.uninow.io 49

9. Conclusion 51
9.1. Results . 51

9.2. Future Work . 52

List of Figures 55

List of Listings 57

Acronyms 59

Bibliography 61

Appendix 67
A. Subdomain Enumeration Results . 67

A.1. Subdomains of uninow.com . 67

A.2. Subdomains of uninow.de . 68

A.3. Subdomains of uninow.io . 68

viii

Contents ix

B. Port Scanning Results . 70
B.1. IP 45.129.181.34 (Ports: 80, 443) . 70
B.2. IP 45.129.180.174 (Ports: 80, 443) 71
B.3. IP 193.31.27.35 (Ports: 80, 443) . 73
B.4. IP 195.128.101.234 (Ports: 80, 443) 73
B.5. IP 45.129.180.83 (Ports: 80, 443) . 73
B.6. IP 104.21.44.46 (Ports: 80, 443, 2052, 2053, 2082, 2083, 2086, 2087,

2095, 2096, 8080, 8443, 8880) . 73
B.7. IP 172.67.194.211 (Ports: 80, 443, 2052, 2053, 2082, 2083, 2086,

2087, 2095, 2096, 8080, 8443, 8880) 73
B.8. IP 142.250.185.211 (Ports: 80, 443) 73

C. Found Web Applications . 74
D. Appointment Invitation GraphQL Query . 82
E. Email Server Configurations with checkCertificate not null 84

ix

1. Introduction

The COVID-19 pandemic sparked a lot of development on innovative countermeasures.
An important way to slow down the spread of an infectious disease is contact tracing [1].
It is used to reconstruct chains of infection, allowing the quarantining of people who have
a high chance of being infected before they can infect others. This process is currently part
of people’s everyday life. Whether going to a restaurant or a class in university, people
are often required to fill out a form with their contact information or register themselves
in an attendance list.

Contact tracing had to be digitalized, in order to deal with the high amount of infections
during the pandemic. Therefore, different kinds of applications emerged. There are mobile
applications, like the German Corona-Warn-App [2], which use Bluetooth technology to
communicate with nearby smartphones to calculate the distance between them and the
time of exposure. Most of these applications notify users if they had contact with somebody
who was later diagnosed with COVID-19. Other applications are online attendance lists,
used by businesses like restaurants or swimming pools to trace their customers. These
attendance lists save contact information on a time and date basis, allowing government
agencies to make conclusions on potential contacts and to inform the participants.

The pressure for solutions came with an increased development speed, which often reduced
security and, combined with private data handling, jeopardized the privacy of users. This
risk of exposing private data can be reduced by security audits. Multiple security audits
of contact tracing applications have revealed unknown vulnerabilities [3, 4, 5, 6, 7, 8].

One application that added a contact tracing feature is UniNow. The app provides many
features to manage university related tasks. For example, users can send and receive
their university emails or access their grades. UniNow enjoys widespread use and allows
universities to manage online attendance lists to trace their students. To make sure that
the mandatory usage of the application is secure and to contribute to the effort of securing
private data, we performed a security analysis of the UniNow mobile application with a
focus on the protection of user data.

The security analysis was divided into three parts. First, we tried to find as much attack
surface as possible, while the scope of the attack surface was already defined beforehand
in our planned approach. Then a vulnerability testing order was determined. Lastly, the
vulnerabilities were tested for, documenting the results. This process ensured that as many
vulnerabilities as possible were tested for, starting with the high priority vulnerabilities.
The analysis was guided by multiple OWASP resources, like the OWASP Mobile Security

1

2 1. Introduction

Testing Guide (OWASP MSTG) [9] and the OWASP Web Security Testing Guide (OWASP
WSTG) [10].

Our work checks the security claims made by UniNow and points out any security issues
that we found. In other words, we try to improve the security of the user data handled by
the application.

Subsequent to this introduction, the thesis continues with Chapter 2, containing needed
background information. In particular, information about the target of the security anal-
ysis, the used resources, and other concepts. Afterwards, we explain how the thesis fits
into the existing work done on related topics in Chapter 3.

After the first chapters have talked about work by others, we start with our own work
in Chapter 4, explaining how the security analysis was approached. Specifically, how the
scope of the security analysis was defined, how we mapped out the attack surface, how we
approached the construction of the testing order, and how the testing was performed.

In Chapter 5, we explain how and what attack surface was found, separating the attack
surface into the assets found through functionalities in the mobile application and web
services. Continuing in Chapter 6, we list and explain the found security and privacy
issues. Other tested attack vectors, which were tested and found to not exist, are listed in
Chapter 7.

Following the explanation of the results of the security analysis, Chapter 8 is about how
we disclosed the found issues to UniNow and what their point of view on these issues
was. Lastly, Chapter 9 concludes our work, giving suggestions on future work on the same
application and on others.

2

2. Background

In this chapter, we are going to provide some background information needed for the thesis.

2.1. UniNow Mobile Application

UniNow is a mobile application available on Android and iOS smartphones. It is being
developed by the UniNow GmbH residing in Magdeburg, Germany. With a download
count of more than 100,000 on the Google Play Store [11] and the top position in the
“Apps for University” category of the iOS App Store [12], UniNow is mainly used by
university students. Also, more than 810 universities use it, generating over 3.5 million
screen views per month [13]. The application advertises features for students, student
councils, universities and companies [13]. We are going to describe these features in the
following few paragraphs.

Students can join their university, if it has signed up for UniNow, to be able to import
their university calendar, check their grades, retrieve and send university emails, get the
schedule of their university cafeteria, renew borrowed books from the university library,
discover companies and jobs, and get access to the news feed of their university.

Universities, on the other hand, have to sign up for UniNow before they can manage and
use electronic ID cards, provide e-learning resources for their students, provide access to
their radio station, manage user roles and privileges, provide information about campus
facilities to users, use the news feed as a communication channel, and provide a list of
important website URLs. Furthermore, they can use the attendance list feature. Univer-
sities can create QR codes and put them in front of lecture halls or other rooms and areas.
Students should then scan the QR code using the UniNow mobile application before phys-
ically entering the corresponding area. After scanning a QR code, the university may also
ask the student to fill out an additional form in the application. The collected data is then
encrypted and stored on a remote server in Germany. Only the corresponding university
has a key to decrypt the data. The stored data gets deleted after four weeks.

Universities can create profiles for student councils. Students can then follow these profiles
to get notified about posts made by them.

Companies can create profiles on UniNow, which work like the student council profiles.
Additionally, they can publish open job positions with individual descriptions. They can
also run advertisements for themselves and their job positions. Lastly, companies and their
published positions can be filtered and searched for by the students.

3

4 2. Background

2.2. Open Web Application Security Project (OWASP)

The Open Web Application Security Project is a nonprofit organization, which publicizes
different resources on software security [14]. Relevant to our work are the resources it
keeps up to date on web application security and mobile application security. These were
used heavily to guide the security analysis.

The OWASP Mobile Top Ten [15] and the OWASP Top Ten [16] rank the most critical
security risks to mobile applications and web applications, respectively. The ranking is
based on a broad consensus that is determined by collecting data from a variety of sources.
These include global surveys, security vendors, consultancies, bug bounties, and company
contributions. Both lists are updated every few years. At the time of writing, the latest
version of the OWASP Mobile Top Ten is from 2016, while the latest version of the OWASP
Top Ten is from 2017. We used both rankings to determine the testing order of the potential
vulnerabilities.

The OWASP Mobile Security Testing Guide (OWASP MSTG) [9] and the OWASP Web
Security Testing Guide (OWASP WSTG) [10] are comprehensive testing guides for mobile
applications and web applications respectively. They contain mostly descriptions of various
vulnerabilities and security requirements, as well as step-by-step guides on how to test for
them. As we started with little knowledge about the technical aspects of UniNow, the
testing guides helped us by saving us time on many occasions. For example, the OWASP
MSTG has many techniques on how to bypass certificate pinning for native, Java and
hybrid applications, which saved us a lot of time spent researching. The same applies for
testing vulnerabilities. Not knowing the technical aspects of the application also meant
that we did not know what potential vulnerabilities there might exist. If we would have
found that cryptography libraries are used, for example, then the chapters on cryptography
would have been very helpful in checking if they are used correctly. So, in summary, having
one source for all of our initial questions saved us a lot of time.

The OWASP MSTG is accompanied by a project called OWASP Mobile App Security
Requirements and Verification Standard (OWASP MASVS) [9], which is a standard for
mobile application security. It lists the security requirements of various mobile appli-
cation categories and references parts of the OWASP MSTG, that show how to verify
the requirements, as well as Common Weakness Enumeration (CWE) IDs, elaborating on
weaknesses, that may exist. The OWASP WSTG, on the other hand, is supported by
the OWASP Application Security Verification Standard (OWASP ASVS) [17], which is a
standard for web application security. It is structured similarly to the OWASP MASVS.
These standards also helped us in constructing the testing order. Furthermore, they im-
proved our understanding of what security level we could and should have expected from
the application.

2.3. JSON Web Token (JWT)

A JSON Web Token [18] is a standard for securely sharing claims between two parties.
JWTs are made up of three parts: A header containing the algorithm used to generate
the signature, a payload containing a set of claims, and a signature of the header and
the payload. The header and payload are in JavaScript Object Notation (JSON) format.
Every part is first Base64 [19] encoded and then joined with a “.” in the order from before.
The tokens can be verified with the private or public key of the signature, depending on
the used algorithm.

JWTs can be used for Single Sign-On (SSO) purposes, where a single authority is respon-
sible for handling the login process, allowing the user account to be used across multiple
independent systems. The stored claims usually reference a user account, such that a client
can prove that it is logged in with this account.

4

2.4. GraphQL 5

query {

student {

firstName

lastName

}

}

Listing 2.1.: Example GraphQL query.

2.4. GraphQL

GraphQL [20] is a query language for Application Programming Interfaces (APIs) and a
runtime for fulfilling those queries with existing data. There are multiple ways for a client
to send the queries to the server. Usually, HTTP POST requests are used containing the
query and any additional parameters. Listing 2.1 shows an example query to get the first
and last name of all students in the database.

2.5. WebSocket Protocol

The WebSocket protocol [21] provides a communication channel over a TCP connection,
allowing two parties to exchange data while keeping the connection alive. It is compatible
with HTTP, making it possible for WebSockets to be initialized through HTTP requests.
After a connection is established, WebSockets enable servers to send data to a client
without it having to request the data first. This permits communication with less overhead
than with alternatives like HTTP polling, where the client has to periodically request data
from the server in order to receive it shortly after it becomes available.

5

3. Related Work

Android is developed in an open source environment and is the most used operating system
on smartphones. Therefore, most of the work in mobile security is concentrated on Google’s
Android operating system. The following sections are going to examine what work related
to ours already exists and how it relates exactly.

3.1. Mobile Applications

We want to start with work that revealed vulnerabilities in mobile applications without
contact tracing functionalities.

There is a lot of work on security issues in mobile banking applications. Haupert et al. [22],
for example, pointed out multiple security issues in the N26 banking application. Vulner-
abilities in the mobile application allowed them to manipulate monetary transactions, and
inject HTML as well as JavaScript into a WebView. The backend also contained some
vulnerabilities, like a sensitive information leak. Haupert et al. show how a combination
of the found vulnerabilities could be used to take over user accounts.

Haupert and Müller [23] found ways to manipulate bank transactions in the mobile ap-
plications of Deutsche Bank, Commerzbank, and Norisbank by abusing their photoTAN
implementation. For this they built on earlier work [24], where they performed a security
analysis of the Sparkasse and S-pushTAN-App and found a way to freely manipulate mon-
etary transactions initiated through a smartphone that is also set up to use the app based
TAN procedure.

Furthermore, Dmitrienko et al. [25] investigated multiple CrontoSign/photoTAN two-
factor authentication implementations, finding various weaknesses that allow bypassing
them with cross-platform attacks. The vulnerable applications include numerous banking
applications and other well-known applications. Moreover, they analyze many malicious
Android applications targeting two-factor authentication schemes.

Other types of applications can also have severe vulnerabilities. The very popular mobile
Android application SHAREit, for example, was found to contain multiple vulnerabilities
[26]. A malicious application could be used to leak sensitive user data and execute arbitrary
code by making the application install an arbitrary application.

Lastly, a Google employee found a vulnerability in another popular application called Fort-
nite [27]. This security issue allowed any app to substitute the actual Fortnite installation

7

8 3. Related Work

image after it was downloaded and before the installation process. Therefore, causing any
application to be installed instead.

The goal of this group is to report vulnerabilities to the developers of the corresponding
applications, who in turn can fix these issues. This goal equals ours and improves the secu-
rity of user data. We also believe that the process of finding the mentioned vulnerabilities
was similar to our approach, making this group very similar to our work.

3.2. Contact Tracing

There also already exists much work on applications with contact tracing features. Some
of this work is going to be listed below.

Muñoz [4] found and reported a vulnerability in the German Corona-Warn-App, which
allowed anyone to compromise the server. It could be exploited by performing an unau-
thenticated HTTP request. This allowed an attacker to steal database credentials, for
example. Fortunately, the data is stored in a completely anonymous manner.

Amnesty International [5] reported a critical security issue in the configuration of Qatar’s
EHTERAZ contact tracing application. This vulnerability, on the other hand, gave access
to highly sensitive personal information of over a million users. The problem was an
unauthenticated API endpoint that could be used to retrieve the name of any user, the
location of confinement, if in confinement, and the name of medical facilities in which the
user is being treated, if they are treated at the moment. Amnesty International [28] also
analyzed other applications on their user privacy and pointed out any concerns.

There is also some work on the security of online attendance lists starting with Faßbender
et al. [6], who found a vulnerability that exposed private data on the web application
forAtable. Anyone could exploit this security issue by changing a parameter in the URL
of the confirmation web page, giving them access to the sensitive data of others. One gets
redirected to this page after being successfully registered in the attendance list.

Neumann reported two similar problems [7, 8] on different attendance lists which where
found by the Chaos Computer Club. In the first report [7] they talk about many vul-
nerabilities in a cloud service by gastronovi. A combination of these issues allowed them
to access millions of datasets going back up to one decade. Most of the datasets were
reservations for restaurants.

The second report [8] is about another multitude of vulnerabilities found in the darfichrein.de
application. Similar to the previous report, one could access hundreds of thousands of
datasets using a combination of issues in their application. Fortunately, all the data was
encrypted and therefore unusable.

Lastly, Stadler et al. [29] analyzed the potential harms of a large-scale deployment of the
Luca contact tracing system. Among others, they found that sensitive information was
leaked to the backend server which can be problematic if such a server is compromised or
malicious in the first place.

The goals of security analyses of applications with contact tracing features align with our
goals. The difference between this kind of work and security analyses of other applications
is a slight discrepancy in the motivation. Such work is most often motivated by the
COVID-19 pandemic and the resulting contact tracing applications, making them more
similar to our work than the work on other applications.

8

4. Approach

After comparing our work to existing work, the approach to the security analysis is going
to be explained in the following sections. An approach is like a plan. By clearly defining
each step and the results of the step, time-consuming and less important actions can be
avoided, increasing the amount of time available for the important work.

Our approach is divided into four parts: define the scope, find as much attack surface as
possible, define a testing order, and test for the vulnerabilities.

4.1. Scope

Before doing any practical work, we defined the scope of our security analysis. A scope
is a broad definition of the attack surface space of the target. Without it there are no
boundaries to the analysis, making it possible to analyze third party services in order
to find a vulnerability in the actual target. This, however, can be very time-consuming,
complex, and inefficient. Therefore, we only focused on assets which were in control of
UniNow.

a) UniNow Android Application and Interfaces Subject of the security analysis was the
UniNow mobile Android application [11] and all interfaces it uses to fetch data,
handle data and provide data. The analysis was limited to the Android application,
as iOS applications require additional hardware and can not be emulated on any
device.

b) Services of *.uninow.de Additionally, all services of all subdomains of uninow.de were
in scope, because these had a high chance of handling important data. The main web
application contained login pages for universities and student councils, for example.

4.2. Reconnaissance

After defining the scope, we created a map of the items in the attack surface of the target.
We tried to find as many actual assets in the scope as possible. This step is important, as
the more assets we know about, the better we understand how the application functions,
and the more places we can analyze for potential vulnerabilities.

a) UniNow Android Application and Interfaces The first step of analyzing an applica-
tion is installing it. This can be done using an Android smartphone or an emulator,

9

10 4. Approach

like the AVD Manager included in the Android SDK [30]. Emulators have some
advantages over physical devices, as the environment of the application can be ma-
nipulated and monitored easier when using an emulator. Furthermore, multiple em-
ulators can be used easily to simulate multiple devices, while using physical devices
can be more costly.

Next, we wanted to identify all the available privilege levels. We used the privilege
levels to divide the functionalities into groups. Therefore, a map of the functionalities
of every privilege level was created by using the app manually or by decompiling the
installation image and searching the source code. The second approach can yield
functionalities which are implemented but unused, like API endpoints.

Going through every found functionality, tools were used to identify what interfaces
are used by the application to fetch the data needed, what data it provides to do
so and how it handles the data. The interfaces of particular importance were Inter-
Process Communication (IPC) interfaces, network services, persistent storage, and
the Android API.

b) Services of *.uninow.de First, we wanted to try to find subdomains of uninow.de by
doing research online and by using brute force tools such as OWASP’s amass [31].
Next, we used tools, e.g. nmap [32], to probe the ports of the found domains, to
find what ports are open, and what services are running on these ports. The found
services were then searched for their functionalities.

The result of the reconnaissance was a map of the attack surface, which also contained
some relations between its assets. However, as we did not have an inside perspective of
the systems involved, the relations were mostly based on assumptions.

4.3. Testing Order

Testing of the entire attack surface was most likely going to be too time-consuming. There-
fore, we planned to limit the attack surface and the vulnerabilities we wanted to test for.
A testing order allowed us to prioritize vulnerabilities, enabling us to test as many of the
more important vulnerabilities as possible. The approach in devising the order was the
following.

First, every vulnerability which might disclose private data and that is part of the OWASP
MSTG or the OWASP WSTG, was assigned to the targets which might have it. After-
wards, the target-vulnerability pairs were ordered in descending order by (1) the security
importance of the private data, which the target provides, handles or consumes, and by
(2) the impact of the vulnerability and the ease of abusing the vulnerability. The OWASP
resources mentioned in Chapter 2.2 helped us in dealing with the latter aspect.

This order allowed us to test for the most critical vulnerabilities first, while also getting
into high to medium criticality depending on how much time we had left.

4.4. Testing

The testing was going to start with the first item in the vulnerability list. It was guided by
different OWASP resources among others. Furthermore, as the analysis was done under a
time constraint, we stopped testing when the time planned for testing was over.

Based on the vulnerability and target at hand, testing can require different approaches.
One way to test a vulnerability is by reading the source code of the application and then
testing the vulnerability depending on the acquired information. This is the most reliable

10

4.4. Testing 11

way, as the complete application logic is available and no assumptions need to be made.
If the source code is not available, on the other hand, then many tests might be necessary
to get a good understanding of the used logic and to ensure the correctness of the tests.

Not only the approach to testing, but also the actual testing can vary in many cases. This
can be seen in our analysis. There are often tools available that can either just support
the testing or even perform whole tests on their own. However, this is not always the case,
forcing the creation of tailored tools or manual testing if the complexity of the tests is low
enough.

11

5. Reconnaissance

This chapter explains how the reconnaissance step was performed on the mobile application
and the network services of UniNow.

5.1. Mobile Application

The Android mobile application in scope has the ID de.mocama.uninow [11]. In particular
the version 3.86.0 was used. We used the PlaystoreDownloader [33] to download the
installation image from the Google Play Store.

To analyze the application dynamically, we used the AVD Manager from the Android
SDK [30] to download and install an emulator. Furthermore, we used the Frida toolkit [34]
to bypass the SSL certificate pinning, and Zaproxy [35] to analyze the network traffic from
the application.

For the static analysis on the other hand, we used UnZip [36] to extract the data from
the Android Package (APK) [37] installation image and get access to the byte code in the
DEX format [38]. We also used the Apktool [39] to get access to the decrypted Android
manifest file and to disassemble the DEX byte code further into Smali assembly [40].
enjarify [41] was used to convert the DEX files into jar files, which were than used with
the cfr decompiler [42] to generate Java source files. Later on, the jadx [43] decompiler
was used on the APK to get a second version of the Java source code. This version was
easier to analyze in some cases.

While analyzing these files, we figured out that the application is a JavaScript hybrid and
is using the React Native framework [44]. Although the JavaScript source code is being
shipped with the installation image, it was compiled to a byte code that is interpreted
by Facebook’s Hermes JavaScript engine [45] during runtime. Since this made it quite
difficult to analyze the source code, we used the hbctool [46] to disassemble the Hermes
byte code to an assembler like code. The resulting code was still hard to analyze, but
there was no other way to improve its readability.

However, many important functionalities were found to be implemented in Java, easing
our analysis as the decompiled source code was hardly obfuscated. Nonetheless, we also
found many other functionalities to be implemented on the JavaScript side, increasing the
difficulty of analyzing them drastically, as we only had access to the Hermes byte code,
which is still very new compared to Java and, therefore, lacks mature static analysis tools.

13

14 5. Reconnaissance

5.1.1. Privileges

When opening the application for the first time, users are registered automatically once
the Terms of Use are accepted. Before being able to do anything, users have to choose
a university. Afterwards, users have to choose a role. These roles seem to be configured
by the universities, with common roles being Student, Employee, or Guest. The roles
mandate what functionalities should be exposed to users and which university interfaces
the application should use to interact with university accounts.

Users can freely change the university and the role without providing any authentication.
Authentication is needed to access functionalities which need data provided by the uni-
versity. One such example would be the calendar. It can import the schedule of one’s
university account, if the university has enabled it.

Further authentication is only needed to access functionalities of student councils or com-
panies.

5.1.2. Functionalities and their Interfaces

The difficulty of analyzing the application statically as well as the fact that we only have
one university student account to test with, made it in turn difficult to find and test
all possible functionalities. We certainly missed functionalities, just because we can not
test any functionality accessible to student councils or companies, as well as features that
need authentication, but are disabled for our university. What follows is a list of the
functionalities discovered and examined by us.

Cafeteria: Users can get the menus of the selected university’s cafeterias without authen-
ticating with their university account. This works by requesting the menu from
https://scraping.uninow.com/socket.io using a WebSocket connection. This
service is subsequently also called “scraping service”.

Grades: The grades of a university account can be retrieved after logging in to the account
once. The application uses a WebSocket connection to notify the scraping service
about the authentication attempt. The scraping service then instructs the client on
what HTTP request to perform with which headers and body. The client performs
the request, replacing username and password placeholders if needed. The client then
encodes the body of the HTTP response and sends it, including its headers, back
to the UniNow server. The scraping service seems to scrape the needed information
from the received response, formatting it if necessary, and responding to the client.
In the case of authentication, this process is repeated multiple times until all needed
information is collected. Finally, the credentials are stored locally on each user’s
phone. This seems to be the general procedure to keep the scraping process on the
server side and to save the credentials on the client side only.

After authenticating successfully once, users can request their grades. Similarly
to above, the client is again receiving instructions from the scraping service and
performing the requests that need authentication. At last, the client receives the
grades from the scraping service.

Users can also create custom grades which are stored locally on each user’s device.

Calendar: The calendar service is mainly provided by UniNow. All data is stored on the
server side and all information is exchanged with an API at https://scraping.

uninow.com. This time through standard HTTP requests. Every request has to in-
clude an authentication token specifically for the calendar functionalities. Users can
create, edit or cancel events, and backup, restore or reset their calendar. Moreover,

14

https://scraping.uninow.com/socket.io
https://scraping.uninow.com
https://scraping.uninow.com

5.1. Mobile Application 15

users can create appointments with multiple people by inviting them through a gen-
erated invitation link. Lastly, users can import all calendar items from the schedule
of their university account. This process is done through WebSocket communication
with the scraping service and is similar to the process of retrieving the grades.

After backing up the calendar, users are given a backup code. This code needs to be
entered to restore the calendar. Specifically, the client sends the calendar authen-
tication token and the backup code to https://scraping.uninow.com/schedule/

restore. If the code is valid, the response is going to contain a new calendar au-
thentication token that is used by the client in the future to access the old calendar.
Therefore, the backups are stored on the UniNow servers.

The invitation links are shortened URLs to https://meeting.uninow.com with the
appointment ID being sent over the id query parameter. After a user opens the
URL on their mobile device, the UniNow application is opened, and the appointment
information is retrieved using the GraphQL API at https://graphql.uninow.com.
If the ID is correct, users can join the appointment and it is copied to their own
schedule.

To-Dos: The data of the to-do list feature is saved on the server side by communicating
with the GraphQL API at https://graphql.uninow.com. However, any settings
are saved client side.

Library: Users can login to their university library account to see what books they have
borrowed. Borrowed books can also be renewed, such that the users can keep them
longer. All communication for this happens over a WebSocket connection with the
scraping service.

Mail: The application can be linked to a university email account to send and receive
emails. The authentication and all data transfer is done directly with the university
mail server.

Campus Check-In: Users can register their attendance by scanning a QR code or by
entering a check-in code. The code is then used to get the corresponding public
PGP key to encrypt the data and a form is shown that requests the user to enter
additional information. After filling out the form, all information is encrypted with
the PGP key and sent to UniNow servers. Specifically, the GraphQL endpoint at
https://api.checkin.uninow.com/v1/graphql is used for all of these purposes.

Radio: Universities can configure a radio station which can be listened to by users.

Sports: This module is not enabled for the University of Würzburg. Therefore, we have
little information about it. It seems like users can log in to their university account
to get access to their identity card. There also exists a schedule presumably for sport
meetings. This schedule seems to be stored on UniNow servers.

Freshman: Student councils seem to be able to create so-called freshman areas. These
areas contain a specific feed for freshmen, and additional information like tailored
maps or links. Furthermore, student councils can choose that users require an access
key to enter their area. The access tokens are checked by sending them to the
GraphQL API at https://graphql.uninow.com.

Links: This is just a collection of links that is most likely configured by the university.
The links are opened in the default web browser of the device.

Places: Universities seem also be able to configure a list of locations for the places module.
Users can then use this module to get information about these locations.

15

https://scraping.uninow.com/schedule/restore
https://scraping.uninow.com/schedule/restore
https://meeting.uninow.com
https://graphql.uninow.com
https://graphql.uninow.com
https://api.checkin.uninow.com/v1/graphql
https://graphql.uninow.com

16 5. Reconnaissance

In-App Browser: Instead of using the links module to provide a list of useful URLs to the
user, a different type of module can be used. This module opens the configured link,
unlike the links module, in a browser activity in the app itself. This module is often
used by universities to give faster access to their e-learning platform. The University
of Würzburg uses it for their Moodle [47] e-learning platform, for example.

Mini Games: Users can unlock this module by being active at least once in 5 of the last
7 days, allowing them to choose between a small amount of mini games to play.

Feeds: Feeds are made up of posts. Users can share, like or hide posts, follow and view
feeds by companies or student councils, and report posts or feeds. All of these
functionalities work through requests to the GraphQL API at https://graphql.

uninow.com. The feeds also include job offers and other ads.

Support Chat: Almost every activity includes a button in the top right corner to open
a support chat. These support chats are identified by an ID. Messages are sent by
sending them with HTTP requests to an endpoint at https://scraping.uninow.

com. Furthermore, the client gets messages by continually performing requests to
the same endpoint as before.

App Locks: Users can choose to lock the UniNow application with their fingerprint or
with a PIN. Afterwards, users are forced to enter the PIN or scan the fingerprint
before being able to use the application. These checks are performed completely on
the client side.

5.2. Network Services

While analyzing the mobile application we found that there are three domains of interest:
uninow.de, uninow.com, and uninow.io. As these domains contain critical infrastructure,
we assume that they are in control of the UniNow GmbH. Therefore, we added uninow.com,
uninow.io, and their respective subdomains to the scope of the analysis.

5.2.1. Subdomain Enumeration

In the first step we created a list of valid resolvers by running the DNS server validation
tool dnsvalidator [48] on a list of public DNS servers [49]. This resulting list increases the
speed of DNS lookups for many applications, because it allows the applications to spread
their lookups out among the name servers, decreasing delays from rate limits implemented
by individual DNS resolvers.

We started off with brute forcing subdomains by using gobuster [50] with a popular word
list [51] from the SecLists project. We continued running gobuster throughout this enumer-
ation process after finding new subdomains, to check their existence on the other domains
in scope.

We also used OWASP’s amass [31], assetfinder [52], findomain [53], and subfinder [54]
on every domain to find exposed subdomains on the internet. All of these tools were
configured to use all freely-available sources, and to use our DNS resolvers list if possible.
The found subdomains were checked using the massdns [55] DNS resolver.

Finally, using altdns [56] and dnsgen [57] allowed us to create permutations, alterations
and mutations of the found domains. We checked these candidates with massdns.

This process yielded a combined 191 domains, of which 40 domains were subdomains of
uninow.de, 85 were subdomains of uninow.com, and 65 were subdomains of uninow.io.
A list of all found domains is located in Appendix A.

16

https://graphql.uninow.com
https://graphql.uninow.com
https://scraping.uninow.com
https://scraping.uninow.com

5.2. Network Services 17

5.2.2. Port Scanning

We found that a lot of the domains where referencing the same IP addresses. Therefore,
we could save time by only scanning these addresses. A script was created to group the
domains by IP address, run nmap [32] on every IP address, and output the results. We
only scanned all ports of the TCP side.

In this case the output showed that the ports 80 and 443 were open on the majority of
the IP addresses. These were used for HTTP and HTTPS respectively. The only outlier
was the domain images.uninow.com which had 13 open ports. A detailed summary of
the results can be found in Appendix B.

5.2.3. Content Discovery

As most of the domains seemed to be running HTTP/HTTPS servers, we started of with
visiting their websites to figure out what they are used for. We used aquatone [58] to get
a fast overview of the home pages, ffuf [59] to brute force URL paths with a word list
from Assetnote [60], and waybackurls [61] as well as commoncrawl [62] to get the URLs
indexed by the Wayback Machine [63] and Common Crawl [64] respectively.

For the non-HTTP ports of images.uninow.com we used nmap to figure out what pro-
tocols they were using. Afterwards, we tried to find and use corresponding programs to
talk to the services behind the open ports. None of the services answered our requests
successfully.

We are going to list the noteworthy functionalities and the interfaces that we were able to
identify in the following. There are a lot more web applications with no known purpose
or only a partially known one. A list of all found web applications can be found in
Appendix C.

https://uninow.com is the homepage of UniNow.

https://feed.uninow.com is a login page for student councils. The JavaScript source code
suggests, that this website is used by student councils to create posts among others.

https://recruiting.uninow.com is a login page for companies. Since JavaScript sources
can again give us a clue about the functionalities of this website, we know that
companies seem to be able to edit, create, and archive ads and job offers using this
web application.

https://schedule.uninow.com is a way to access the calendar from a browser. The website
sends an ID to the scraping service through a WebSocket connection and displays the
same ID in a QR code, which users are supposed to scan with the QR code scanner
in the calendar module of the mobile application. After scanning the QR code, the
mobile application sends a JWT that is scoped to the schedule functionalities to the
scraping service with the scanned ID. Lastly, the latter sends the same token to the
browser through the existing WebSocket connection. The browser can now use the
token to make authenticated requests like the mobile application.

https://checkin.uninow.com hosts a web version of the Campus Check-In. https://

checkin.uninow.com/scan offers a QR code scanner, https://checkin.uninow.
com/input can be used to enter the check-in code manually, and https://checkin.

uninow.com/enter-data can be used to enter data after the fact. The data is
encoded with the public PGP key of the corresponding university like in the Campus
Check-In module of the mobile application.

https://admin.checkin.uninow.com contains a login page and is probably used for ad-
ministrating the Campus Check-In feature.

17

https://checkin.uninow.com/scan
https://checkin.uninow.com/scan
https://checkin.uninow.com/input
https://checkin.uninow.com/input
https://checkin.uninow.com/enter-data
https://checkin.uninow.com/enter-data

18 5. Reconnaissance

https://api.checkin.uninow.com is a GraphQL API for the Campus Check-In feature.

https://sport.uninow.com is again protected by a login page, but the source code tells
us that the website allows universities to configure the sports module of the mobile
application. Furthermore, it tells us that users can manage courses with the ability
to change the location and the lecturer, or schedule and cancel appointments.

https://hasura-sport.uninow.io is a Hasura GraphQL Server [65] used for the sports mod-
ule.

https://accounts.uninow.com contains a login page, requiring an email address and pass-
word to log in. An OAuth API at https://accounts.uninow.com/api/v1/oauth

is used to authenticate. The same API is used to authenticate from a mobile device.
In the latter case a deviceId and a nativeId are mainly used to do so. This service
also contains other functionalities for managing account information.

https://support.uninow.io contains a login page presumably for customer support pur-
poses.

https://support.uninow.com offers the ability to send account credentials (username and
password) to UniNow through https://support.uninow.com/accountfreigabe.
Users just need to append a valid chat ID through the chat query parameter. The
chat IDs from the in-app support chat work too. This functionality probably exists
so UniNow can use the user’s account to resolve any complicated issues.

https://cooperation.uninow.com contains a login page for employees. This webpage
seems to provide functionalities to change university banners, view contracts, and
other functionalities to edit university settings or view statistics.

https://statistics.cooperation.uninow.com contains a login page to some internal com-
pany service.

https://statistics.uninow.com is used to collect usage data for the mobile application.
Almost every user action is sent there together with the user’s authentication token.

https://npe.uninow.io has a login page. Unfortunately, the JavaScript source code did
not give us a lot of insight into what exactly the purpose of this web app is. How-
ever, we were able to trick the frontend into thinking we were authenticated, giving
us information about the visible functionalities. This webpage is used by UniNow
employees to change university configurations, view university status, and view user
errors.

https://npe-backend.uninow.com is the API used by https://npe.uninow.io.

https://admin.open.uninow.com hosts an administration page for an instance of the
Shlink [66] link shortener. An API key is needed to access any information or sensi-
tive functionality.

https://open.uninow.com is probably the Shlink instance that can be configured from
https://admin.open.uninow.com.

https://qrc.uninow.com has an endpoint at https://qrc.uninow.com/template which
allows one to create a Campus Check-In information PDF by supplying a check-in
code through the code query parameter. The template query parameter can also be
used in combination with an integer value to get different templates. Furthermore,
when requesting https://qrc.uninow.com/pdf the server responds with a few bytes
that look like the beginning of a PDF file, but then drops the connection.

https://meeting.uninow.com is used to relay appointment invitations to the mobile ap-
plication or prompt the visitor to download the application.

18

https://accounts.uninow.com/api/v1/oauth
https://support.uninow.com/accountfreigabe
https://npe.uninow.io
https://admin.open.uninow.com
https://qrc.uninow.com/template
https://qrc.uninow.com/pdf

5.2. Network Services 19

https://scraping.uninow.com is a scraping service. It enables all university account re-
lated functionalities for the mobile application and more.

https://graphql.uninow.com hosts a GraphQL API, which is used for many purposes,
like retrieving information about a meeting, or updating user data. A valid JWT is
needed to access it.

https://wapi.uninow.com seems to be the API that is used by many of the web based
functionalities, like student council and company functionalities.

https://errors.uninow.io is used for tracking application errors with Sentry [67].

https://app.search.uninow.com is used by the mobile application to search for universi-
ties, jobs, and companies.

19

6. Security and Privacy Issues

During the reconnaissance we found many clues for potential vulnerabilities. As this
decreased the time needed for testing, we started with testing them first. Afterwards, we
worked through the testing order that we created after the reconnaissance step.

The following sections contain the security problems found during our analysis, the impact
of the problems, and our recommendations for fixing them. The problems are sorted by
their criticality in ascending order.

6.1. Disclosure of Multiple Secret Keys

UniNow uses the Redux [68] open-source JavaScript library in multiple occasions. This
allows them to have a global state, which can be accessed from all parts of the application
at hand. Furthermore, they are often using the redux-persist [69] library to persist the
state of the Redux store across browser sessions. On top of that, they are using the redux-
persist-transform-encrypt [70] library to encrypt the values in this persisted store with a
key.

Two such keys were found to be stored in JavaScript files. The first of these keys
S1qBjwHR5ZNd209TykRndZ8hrwYm5h was found in https://feed.uninow.com/config.js,
and the second key dannys-super-duper-secret-key-of-keys was found in the main
JavaScript chunk of https://recruiting.uninow.com.

The problem with these keys is that they seem to be used for all users of the application.
The author of the library explicitly warns about this problem: “You SHOULD NOT use
a single secret key for all users of your application, as this negates any potential security
benefits of encrypting the store in the first place” [70].

In the first instance the store is persisted using the local storage of the browser. Therefore,
we were able to successfully test that this is indeed the key used to encrypt the store
by using the same JavaScript library for decryption as redux-persist-transform-encrypt,
namely crypto-js [71].

Unfortunately, we were not able to test the second key, because the store only seems to
be persisted after the user logged in. Lacking an account with the right access rights, we
had no way to test this secret key.

The JavaScript files of https://npe.uninow.io also seem to contain very sensitive infor-
mation. https://npe.uninow.io/config.js contains a JWT. This JWT expired a few

21

https://feed.uninow.com/config.js
https://recruiting.uninow.com
https://npe.uninow.io
https://npe.uninow.io/config.js

22 6. Security and Privacy Issues

days before we found it, and it was created over a year ago. It seems to give access rights
that were not seen on any other JWT accessible to us. https://graphql.uninow.com is
explicitly listed in the audience section of the payload, suggesting that it might have had
access to sensitive data of this GraphQL service.

Furthermore, the main JavaScript chunk of https://npe.uninow.io contains a public
and private key called REACT_APP_PUBLIC_KEY and REACT_APP_PRIVATE_KEY respectively.
We were not able to find what they are used for, as the JavaScript code does not seem
to use these keys for anything. Nonetheless, their names make them noteworthy, as they
suggest their usage in a cryptographic context.

6.1.1. Impact

These problems best fit into the CWE-200 “Exposure of Sensitive Information to an Unau-
thorized Actor” category.

The impact heavily depends on the secret value looked at. The first two keys are used to
encrypt sensitive user data which is most likely stored on the client side, making it hard
for an attacker to reach.

The JWT, on the other hand, might have been a critical security concern with the poten-
tial for an attacker to fetch sensitive user data without restrictions. These assumptions,
however, need to be verified.

The same can be said about the last two values. Their impact varies depending on their
current usage. They might be used for the generation of JWTs, or for a completely different
benign purpose.

6.1.2. Recommendations

We strongly recommend to never store any secret keys or administration access tokens in
a publicly accessible way.

The found keys should be verified. If they were usable after their disclosure, then an
investigation into whether they were abused or not should be conducted. Furthermore, all
sensitive keys should be removed, and the process of generating the first two keys should
be remodeled, such that they are created and stored on the server side for every user. And,
users should only receive their key to unlock their locally persisted Redux data after they
log in successfully.

6.2. No Address Bar or Location Restrictions in In-App Browser

The UniNow mobile application offers the ability for universities to add links. These
links are most often used to provide an easy access to the university’s e-learning platform.
However, they can also be used for other purposes.

Instead of opening the links in an external web browser, UniNow chose to use an in-app
solution. We found that this solution lacks important security features of most other web
browsers. In particular, there is no address bar to see the current location. Furthermore,
there is no way of knowing where a link leads to when looking at it. An example web page
opened in this browser can be seen in Figure 6.1.

The address bar of a browser is one of the only ways to see if the current website can be
trusted or not. It is paramount in identifying phishing websites, which are tricking users
into sharing sensitive information by pretending to be a trusted source.

The normal way of identifying phishing websites before visiting them in mobile browsers
is to long press on the link, such that an information panel appears containing the full
URL. This feature is also disabled for the in-app browser solution.

22

https://graphql.uninow.com
https://npe.uninow.io

6.3. Open Redirect in Email Verification URL 23

Figure 6.1.: Moodle login page of the University of Würzburg opened in the in-app browser.

6.2.1. Impact

This vulnerability fits best into the CWE-451 “User Interface (UI) Misrepresentation of
Critical Information” weakness category.

Users of the in-app browser solution can easily be tricked into visiting and sharing sensitive
information with phishing websites. This link module is often used by universities to allow
users to easily access their e-learning platforms. The platforms often contain messaging
systems, through which an attacker might be able to distribute phishing URLs.

6.2.2. Recommendations

Users have to be able to identify when they leave a secure web site. There are multiple
possible ways of achieving this.

One way would be to enable the two missing features from above, delivering a familiar
user interface. This, however, leaves little difference between the in-app browser and an
external browser. Therefore, we believe it to be easier and more secure to use the default
browser of the device instead.

Another solution would be to restrict the location of the user, and warn them when they
are trying to visit an out of scope website. These websites could then be opened in an
external browser to further separate both environments.

Our second suggestion is more complicated, as it has to be able to deal with certain edge
cases, like e-learning platforms that use multiple domains. Consequently, we believe that
the first solution should be preferred over the second one.

23

24 6. Security and Privacy Issues

https://accounts.uninow.com/api/v1/verify/email/?email=me@example.com& c

redirect_url=https://accounts.uninow.com/auth/verify-email& c

signature=<SIGNATURE>&expires=1622724020

↪→

↪→

Listing 6.1.: Example URL to verify an email address.

https://accounts.uninow.com/api/v1/verify/email/?email=support@uninow.de& c

redirect_url=https://www.uni-wuerzburg.de/startseite↪→

Listing 6.2.: Example URL to redirect to the homepage of the University of Würzburg.

6.3. Open Redirect in Email Verification URL

Open redirects are vulnerabilities, which redirect a user from a seemingly secure URL to
an insecure one after visiting it.

We found an open redirect in the email verification URL of UniNow. Listing 6.1 shows
an example of a benign URL generated by the service. One can see the redirect url query
parameter in the same listing. This parameter is used to redirect the user to a confirmation
page, after the email was verified. Unfortunately, any value is accepted for this parameter,
and other than this parameter only the email query parameter is required which also
accepts any value.

Therefore, an attacker can construct a URL like in Listing 6.2 to trick their victim into
visiting any website, this example redirects to the homepage of the University of Würzburg.

6.3.1. Impact

Open redirects are part of the CWE-601 “URL Redirection to Untrusted Site (‘Open
Redirect’)” category.

They are often used in phishing attacks, but more severe attacks are also possible. For
example, they can be used to steal OAuth 2.0 [72, 73] access tokens [74].

OAuth is an authorization framework used by web applications to request access to an
account on another application. The application at https://feed.uninow.com seems to
use OAuth 2.0 to get access to the user’s Instagram account.

A redirect uri query parameter has to be specified as a callback for OAuth 2.0. The access
token is then sent to the requester by appending it in some way to the redirect URL
specified in this parameter. Therefore, a whitelist is often used to restrict the values for
this parameter. However, an open redirect can be used to bypass the whitelist and redirect
the access token to an attacker controlled server, giving them full access to the account.

To abuse this hypothetical vulnerability, an attacker would have to prepare a URL with
their redirect URL and trick the user into visiting this URL. The latter part can be done
by sending phishing emails to university email addresses. When the user visits the URL,
they are presented with the UniNow OAuth 2.0 application, asking for certain access rights
to their account. If the user allows UniNow to access their account, they are redirected
to the URL specified by the attacker, and the OAuth 2.0 access token is appended to the
URL, effectively sharing it with the attacker.

The OAuth 2.0 application from UniNow on Instagram does not whitelist https://

accounts.uninow.com, protecting its users from such an attack. This is the correct and

24

https://feed.uninow.com
https://accounts.uninow.com
https://accounts.uninow.com

6.4. Access Tokens are Shared With UniNow 25

secure behaviour. Only if https://accounts.uninow.com was whitelisted, then such an
attack would be possible. However, changes in the configuration of this OAuth 2.0 applica-
tion or new applications registered by UniNow might be abusable with this open redirect
in the future, if https://accounts.uninow.com is in their whitelist. Consequently, this
open redirect alone may be a low severity issue, but with a possibility of causing larger
issues later.

Open redirects can also be used to bypass other whitelists, enabling attacks through Server-
Side Request Forgery (SSRF), for example [75]. SSRFs are weaknesses through which a
server can be used to perform requests on behalf of the attacker. Fortunately, we were not
able to find any such vulnerability on any UniNow service. But again, new functionalities
in the future might enable this open redirect to be a severe issue, because it can be used
to bypass whitelists.

6.3.2. Recommendations

We recommend to implement a whitelist for the redirect url parameter, which only includes
the used redirect URLs. This whitelist should be made up of explicit URLs, which should
only be accepted if they match completely. Dynamic definitions using prefixes or regular
expressions are often a source of errors, allowing an attacker to bypass the whitelist.

6.4. Access Tokens are Shared With UniNow

UniNow advertises the way university credentials are handled. They are supposedly never
shared with them and are only stored locally on the user’s device [76]. This is true for
username and password pairs, for example, but not always true for access tokens.

Request instructions from https://scraping.uninow.com/socket.io over WebSockets
are replied to with the results of the last performed request in a redirect chain. Therefore, if
the first HTTP response is not a redirect, or if the followRedirect and the followAllRedirects
instruction options are set to false, then the first response is returned to the scraping
service. Otherwise, only the last response in the redirect chain is returned.

The reply is made up of a JSON array, where the only element is a stringified JSON
object. As can be seen in Listing 6.3, the replies can carry important information forcing
the mobile application to at least strip out any user credentials before sending the reply to
UniNow. In particular, the headers, the URL, and the Base64 encoded body of the HTTP
response should be searched for credentials.

Cookies are the most common way of handling authentication tokens, which is why we
started looking for a leak in the Set-Cookie response header. We found the disassembled
Java source code presumably responsible for creating the reply JSON object. It shows
that only the last occurrence of a header stays in the reply. Consequently, a Set-Cookie
header can only exist in the final reply if its HTTP response is the last in the redirect
chain, and if it is the last Set-Cookie header in the HTTP response.

We were not able to find such an endpoint because of the small amount of university
accounts we have access to. The login endpoint of the University of Würzburg, used to
fetch student grades, sets another cookie after the one carrying the access token. But, if
we use Zaproxy to remove the second Set-Cookie header before the response reaches the
mobile application, then the authentication cookie is included in the reply to the scraping
service. This only suggests that the client does not remove access tokens from the reply
headers, but we can not be sure, because we had to tamper with the HTTP response to
get this result.

25

https://accounts.uninow.com
https://accounts.uninow.com
https://scraping.uninow.com/socket.io

26 6. Security and Privacy Issues

{

"headers": {

"": "HTTP/1.1 200 200",

"accept-ranges": "bytes",

"age": "0",

"cache-control": "no-store, must-revalidate, max-age=120",

"content-type": "text/html;charset=UTF-8",

"date": "Wed, 26 May 2021 18:46:31 GMT",

"set-cookie": "JSESSIONID=X; Path=/qisserver/; Expires=Wed, 20 Sep

2017 22:23:01 GMT; HttpOnly",↪→

"strict-transport-security": "max-age=15768000; includeSubDomains",

"vary": "Accept-Encoding",

"X-Android-Received-Millis": "1622054790014",

"X-Android-Response-Source": "NETWORK 200",

"X-Android-Selected-Protocol": "http/1.1",

"X-Android-Sent-Millis": "1622054789807",

"x-cache-hits": "0",

"x-cache": "MISS",

"x-content-type-options": "nosniff",

"x-frame-options": "SAMEORIGIN",

"x-ua-compatible": "IE=Edge",

"x-varnish": "27258714"

},

"method": "GET",

"statusCode": "200",

"responseUrl": "https://wuestudy.zv.uni-wuerzburg.de/qisserver/pages/ c

cs/sys/portal/hisinoneStartPage.faces?chco=y",↪→

"body": "dGhpcyBpcyBhbiBleGFtcGxlIHJlc3BvbnNlIGJvZHkgYXdvZnl1dG5hd2Yg c

YXd5ZnRvIG5hd2Zv\\ndHUgbmF3Zm90eXUgbmF3b2Z1dAo="↪→

}

Listing 6.3.: Example reply to a request instruction from the scraping service.

26

6.4. Access Tokens are Shared With UniNow 27

User Scraping Service University Library Service

GetMyRentedBooks()

PerformRequest(GET, /session)

GET /session

Set-Cookie: <session>

Response of GET /session

PerformRequest(GET, /is_logged_in?<session>)

GET /is_logged_in?<session>

false

Response of GET /is_logged_in?<session>

PerformRequest(POST, /login)

POST /login {username: me, password: p4ssword}

204 No Content

Response of POST /login

PerformRequest(GET, /books)

GET /books

200 OK

Response for GET /books

{ books: [...] }

Figure 6.2.: Simplified sequence diagram of how the application fetches the user’s borrowed
books for the library of the University of Würzburg. <session> is the value
of a session cookie.

27

28 6. Security and Privacy Issues

Next, we checked whether access tokens are removed from the response body and noticed
how the library module, again, for the University of Würzburg exposes the access token of
the library account to the scraping service. The library service uses a session cookie which
is set when visiting any of its web sites for the first time. When logging in, the session
cookie is not replaced with a new one, but is linked internally to the logged in user.

This particular login process is made up of four request instructions. A sequence diagram
of the communication between the client, the scraping service, and the library server can
be seen in Figure 6.2. The first request is made to a seemingly arbitrary library web site.
The HTTP response sets the session cookie if it was not set before, and a harmless cookie
is returned through the headers JSON object to the scraping service. However, the session
cookie is sent to the scraping service through the Base64 encoded response body.

Next, the scraping service instructs the client to perform another request to a URL which
contains the session token from the first response. Hence, the server had to scrape its
body, find the session cookie value, and construct the new URL. This request looks like it
is checking whether the session token is linked to a user.

If the session token is not linked to a user, then the scraping service asks the mobile device
to perform a login request with the user’s username and password. The library server links
the logged in user to the given session cookie, if the credentials were correct. Furthermore,
this request, like the second one, does not return any sensitive data to the scraping service.

Finally, the client is instructed to request a page containing the borrowed books of the user
from the university server. The response of the server is returned to the scraping service
with no sensitive information in it. The borrowed books are scraped from the HTML body
by the server and returned in a standardized format to the application.

This chain of request instructions shows how a valid access token can be shared with
UniNow through a returned request body, when the university endpoint meets the right
requirements. Our testing also suggests that access tokens can be shared through the re-
turned HTTP headers. We were not able to find any university endpoint accessible to us,
that returns sensitive data through the responseUrl. However, there are university end-
points which include session cookies in the URL they redirect to, indicating the possibility
of such a leak.

6.4.1. Impact

We believe the impact to be rather low, as only UniNow has access to these access tokens
and they are most likely not going to exploit any of them deliberately. However, these
access tokens might be stored or handled in an insecure fashion.

The front end files of npe.uninow.io suggest that failed requests are stored in some kind
of log system. These log files seem to be searchable by UniNow employees, so they can
detect errors in the scraping system. Therefore, they might contain further context for
each error, like the whole request chain. If this is the case, then the access tokens would
be logged, if an unrelated error in the scraping system occurs.

As UniNow might be unaware of the sensitivity of the data in these logs, they might
handle this data in a less secure manner. Not deleting this data periodically, or sharing it
through insecure channels could jeopardize its security and, therefore, the security of the
access tokens.

6.4.2. Recommendations

The scraping system is closed source and operated on the server side, leaving us with little
information about how it works and what data it relies on. Nonetheless, if UniNow wants

28

6.5. Sensitive Data in Application Backups 29

to stick to its claim about how university credentials are handled, then the client has to
remove all access data from its replies to the scraping service.

We recommend to remove every potential access token, as an individual configuration for
every endpoint, that only removes the access token of this endpoint, can introduce many
errors. In contrast, removing all potential access tokens can be done easier by stripping
all cookie values, authentication header values, and responseUrl values from the reply.

Such a solution is going to break all functionalities of the scraping service that rely on this
kind of data. Therefore, workarounds and other approaches should be devised to enable
these functionalities again.

6.5. Sensitive Data in Application Backups

Data used in Android applications can be backed up. There are multiple methods of
creating such a backup. Google added an automatic backup feature for applications which
automatically syncs at most 25MB of application data with the user’s Google Drive account
[9]. This feature is automatically enabled for applications that target Android 6.0 (API
level 23) and above.

The UniNow mobile Android application has the android:allowBackup flag set to true and
targets an API level of 29, allowing such backups to be performed. Any data present in
the backup files is transferred to Google servers without informing the user. Hence, there
should not be any sensitive data in these backup files.

After using the adb shell bmgr command to set a local transport, backing up the appli-
cation data, finding the backup file, and extracting the data using the tar [77] command,
we found multiple sensitive chunks of data. The deviceId used in the account takeover of
Section 6.9, session data and cookies from the in-app browser module, the SQLite database
used for email storage, and more were present in an unencrypted state.

6.5.1. Impact

Anybody who has access to the backup files of the UniNow mobile application has access
to sensitive information about the user, like the data named above. Google also warns
about this problem, emphasizing that Android cannot guarantee the security of the backed
up data, because the backup transport may differ from device to device. Therefore, they
suggest to be careful about storing sensitive data in backup files [78].

6.5.2. Recommendations

The sensitive data should either be encrypted or removed from the backup file. Whole
SQLite databases can be encrypted with a password through the SQLCipher [79] library,
among others. To exclude files from backups, the android:fullBackupContent flag can be
used to specify which files to include or exclude in the backups [80].

6.6. Disabled Strict SSL on University Endpoints

The scraping service seems to only instruct the mobile application to perform requests that
need to be authenticated. Hence, when fetching public information like cafeteria menus,
there is no need for a university account to do so and the scraping service fetches the data
on its own.

The request instruction message is a JSON array of length 2. The message is identified as
a request instruction, if the first element of the array is the string "request". Listing 6.4

29

30 6. Security and Privacy Issues

{

"url": "https://wuestudy.zv.uni-wuerzburg.de:443/qisserver/ c

rds?state=user&type=1&category=auth.login",↪→

"method": "POST",

"strictSSL": false,

"dontUpgrade": true,

"omitRequestBody": false,

"timeout": 30000,

"headers": {

"User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/54.0.2840.71 Safari/537.36"↪→

},

"form": {

"javaScriptSupported": "false",

"userInfo": "",

"ajax-token": "c239fe80-b71c-11eb-9cf4-b0dc47b4dec6",

"submit": "",

"asdf": "[[USER:da41f894216695aff8380ab452ed3061]]",

"fdsa": "[[PASSWORD:da41f894216695aff8380ab452ed3061]]"

},

"jar": "ByBs9Axltu"

}

Listing 6.4.: Example request instruction from the scraping service.

only contains the details of the request instructions which are found in the second element
of the JSON array as a stringified JSON object. The HTTP request instructions from
the scraping service contain many details on how the mobile application should perform a
request.

The option strictSSL seemed to be of particular importance, as a value of false would
indicate that the application should not impose strict SSL rules for the given request.
We found the functions handling the request instructions in the disassembled Java source
code. They showed that any certificate from any issuer is accepted when the dontUpgrade
and the strictSSL options are set to false and an HTTPS URL is targeted.

While searching manually for universities with other properties, we stumbled upon some
endpoints which meet these requirements and are used to transfer sensitive data. We chose
the library login request of the Mainz University of Applied Sciences to test our theory. As
the WebSocket connection to the scraping service uses TLS and its certificate is checked
correctly, we had to use a DNS server to serve the IP address of our proxy instead of the
IP address of the login server of the university library. This way all other TLS connections
were untouched, and the request instructions were able to be delivered.

We used the Dnsmasq [81] DNS server and a Zaproxy instance. Furthermore, we made
sure to disable any installed CA certificates on the mobile device and regenerate the CA
certificate used by Zaproxy. And as expected, the application accepted the certificate from
our proxy and sent the request, including the tried username and password, to our Zaproxy
instance.

It is also noteworthy, that the disassembled Java source code indicated that the application
only allows connections using the protocols TLSv1, TLSv1.1, and TLSv1.2, when HTTPS
is used and dontUpgrade is set to false which is the default value. However, TLSv1

30

6.6. Disabled Strict SSL on University Endpoints 31

{

"port": 143,

"protocol": "IMAP",

"baseURL": null,

"hostname": "mail.hs-rm.de",

"connectionType": "STARTTLS",

"authType": null,

"checkCertificate": false,

"__typename": "MailConfig",

"ingoing": true,

"useEmail": false

}

{

"port": 587,

"protocol": "SMTP",

"baseURL": null,

"hostname": "mail.hs-rm.de",

"connectionType": "STARTTLS",

"authType": null,

"checkCertificate": false,

"__typename": "MailConfig",

"ingoing": false,

"useEmail": false

}

Listing 6.5.: Example email configurations for incoming and outgoing emails.

as well as TLSv1.1 are both deprecated since March 2021 [82]. We also tested this by
using Dnsmasq and Zaproxy. Dnsmasq was needed because only the requests from request
instructions allow these two protocols and the request instructions can not be transfered
using them. Zaproxy allows the user to configure the allowed protocols for the proxy
connections. The tests showed the correctness of our hypothesis.

While looking at the configuration files of the mobile application, we noticed an option
called checkCertificate in the email server configurations. The name of this option and
what we believe to be the responsible source code indicate that a value of false instructs
the application to trust all given SSL certificates.

The application fetches the corresponding email configurations, after the user switches to
another university. Multiple configurations for outgoing and incoming emails are possi-
ble, such that the user can choose between the different options. Listing 6.5 shows such
configurations of the RheinMain University of Applied Sciences.

As the checkCertificate option in all configurations of the University of Würzburg were
set to null, a script was used to iterate through a list of all universities to fetch the
corresponding configurations, and output all configurations that have this option set to an
actual boolean value.

The used list contained 800 universities and was found in a JavaScript file on an UniNow
website. 145 configurations had the checkCertificate option set to a boolean value. 143 of
them had it set to false, affecting 38 universities. A full list of these configurations can
be found in Appendix E.

31

32 6. Security and Privacy Issues

A student of the RheinMain University of Applied Sciences let us use her university
email account to test our hypothesis. We used the striptls [83] auditing proxy with the
GENERIC.Intercept test, and Dnsmasq to only redirect communication to the configured
mail server through the proxy.

This resulted in us being able to eavesdrop on the communication between the mobile
application and the email servers. This only works when the checkCertificate option is set
to false. null values are interpreted as true.

6.6.1. Impact

The first two issues belong into the CWE-295 “Improper Certificate Validation” category.

An attacker could set up a malicious hotspot in a university with a vulnerable endpoint
or mail server configuration. Anyone, who uses this hotspot and triggers the UniNow
mobile application to exchange data using a bad configuration, would enable the attacker
to eavesdrop on the exchange. Many university endpoints could have strictSSL set to
false, as we stumbled upon a few by looking at a small number of universities manually.

But, even if strictSSL is set to true, which is the default value, then a dontUpgrade value
of false, also the default value, can enable the class of TLS downgrade attacks. These can
be used to trick the client and server into using one of the deprecated protocols instead
of the most secure one, making it potentially possible to abuse vulnerabilities in these
protocols [84].

6.6.2. Recommendations

Our research on the JavaScript files of https://npe.uninow.io suggests that UniNow
employees set strictSSL to false when error messages indicate a certificate error. If this
is true, it would create the need for a system which checks the certificate of each endpoint
periodically and resets strictSSL when the certificate works again. So, either this system
does not exist, is broken, or does not check the certificates often enough.

However, there should not exist a switch to turn off strict SSL checking in the first place.
UniNow sacrifices the security of their users’ data for an improved user experience in
rare situations. So they use insecure connections, when secure connections do not work.
Instead, there should be no connections, when secure connections do not work.

Therefore, we recommend to keep strictSSL as well as checkCertificate always enabled, and
implement an error message which is displayed when the creation of a secure connection
to a university server failed.

The usage of deprecated TLS protocols can be fixed easily by removing the deprecated
protocols from the list of allowed ones.

6.7. JavaScript Injection in Mail Module

The mail module is used to send and receive emails from a university email account. These
emails can contain HTML in their body, which is rendered by the application. We found
that script tags are also taken into account. The JavaScript source code inside them is
interpreted and executed after opening the email.

Hence, opening an email with a body like <script>alert(1)</script> is rendering a
blank email, whereupon an alert box containing the text 1 is opened immediately. Figure
6.3a shows the resulting view.

32

https://npe.uninow.io

6.7. JavaScript Injection in Mail Module 33

(a) Alert call of a JavaScript injection using the
script tag.

(b) HTML form and an iFrame of a Wikipedia
website.

Figure 6.3.: Result of opening an email containing insecure HTML tags.

33

34 6. Security and Privacy Issues

var request = new XMLHttpRequest();

request.open("GET","https://requestbin.io/10c1zv11");

request.send();

Listing 6.6.: Example JavaScript payload for making a request to https://requestbin.

io/10c1zv11.

Sending another email with the body <script>alert(Object.keys(window))</script>

lists the keys of the window object. The window object is often globally available in many
browser contexts. The resulting list contained a key called ReactNativeWebView. This
suggests the use of the React Native WebView [85] for rendering emails.

Furthermore, we tested if outbound connections are possible from the JavaScript context
by sending ourselves an email with the JavaScript source code from Listing 6.6. After
opening the email, an HTTP GET request was successfully sent to our RequestBin [86]
HTTP request recorder, proving that outbound connections are not restricted.

Lastly, some tests for other HTML tags were performed. These showed the usability of
the iframe tag, as well as the form tag combined with the input and button tags. As can
be seen in Figure 6.3b, the iframe tag allowed us to embed a web site in the email, and
the form tag allowed us to create a HTML form which upon submitting opened the target
web site in an external browser.

6.7.1. Impact

An attacker can execute arbitrary JavaScript code in a WebView environment by sending
their victim an email. This allows the attacker to perform requests that are only restricted
by the same-origin policy [87].

Furthermore, the attacker could use the working iframe tag, as well as the form tag to
trick the victim into sharing sensitive information, by letting them fill in forms. Other
mail clients filter out these, and other, tags to prevent such an attack.

Lastly, there are multiple ways of performing requests to external servers, allowing users
to be tracked. HTML mail clients often disable any requests to external servers, until the
user allows it, to counteract this privacy issue.

6.7.2. Recommendations

Secure HTML email views are hard to create, because of the wide variety of abusable
HTML tags. Therefore, we recommend the use of an existing solution, as building a new
one is most certainly going to result in unforeseen errors.

If nonetheless a custom solution is still preferred, we recommend to make sure that every
possibility of executing JavaScript is disabled, and that all abusable HTML tags are also
disabled. A whitelist of secure tags can also be created. Again, a similar project or guide
should be used as a reference to avoid any errors.

We believe that this vulnerability belongs into the CWE-74 “Improper Neutralization of
Special Elements in Output Used by a Downstream Component (‘Injection’)” category,
because if a WebView is used, then abusable tags of HTML mails should be removed
before rendering.

34

https://requestbin.io/10c1zv11
https://requestbin.io/10c1zv11

6.8. Brute-Forceable Appointment Invitations 35

6.8. Brute-Forceable Appointment Invitations

As mentioned above, users are able to create appointments in the calendar module of the
mobile application. This also automatically creates an invitation URL that can be used
to invite others to the appointment. Unfortunately, we found a way to enumerate these
links and extract sensitive user information using them.

The invitation links look like this: https://uninow.page.link/<SHORT_LINK_ID>. The
<SHORT_LINK_ID> placeholder is replaced by a string of four or more upper or lower case
letters, and digits. https://uninow.page.link/4tU3, for example, might be a valid in-
vitation link. The domain uninow.page.link tells us that the application uses Firebase
Dynamic Links [88] to create them. In particular, the developers seem to have set the suf-
fix option to SHORT, which makes the links a minimum of 4 characters long. Note that
the Firebase documentation warns about this attack vector: “Use this method if sensitive
information would not be exposed if a short Dynamic Link URL were guessed” [89].

We used a small script to create a list of all possible invitation links with an ID of length
4 and used ffuf with 40 threads and without a delay between the requests to find the valid
ones. The link shortener does not seem to have a rate limit. This allowed us to test about
1.5 million of 14.7 million 4-character combinations in 40 minutes, averaging 625 requests
per second. Furthermore, we managed to find about 2850 valid link IDs. To categorize
these IDs, we had to look at their redirect location. For this we simply used ffuf ’s verbose
flag, which outputs them.

320 of the IDs were for appointment invitations. The other valid combinations redirected
to post shares, company shares, job shares, cafeteria links, book links, or others that did
not expose any user data. The invitation short links on the other hand redirect to URLs
looking like this: https://uninow.de/ScheduleLinkDetail?id=<APPOINTMENT_ID> with
<APPOINTMENT_ID> being the ID of the appointment.

These IDs can be used with the GraphQL endpoint at https://graphql.uninow.com

to get more details about the appointment. Specifically, the mobile application is using
the GraphQL query seen in Appendix D. No special authentication is needed to perform
this query. Therefore, anybody can enumerate these appointment invitations and get
potentially sensitive information. Listing 6.7 shows a real example of the information an
attacker can get.

6.8.1. Impact

While sampling appointments, we found some that range back to April of 2019, raising the
question whether the appointments or their short links ever get deleted. This would allow
anyone to enumerate all appointments that ever existed. Fortunately, the sensitive fields
are not all mandatory to fill out when creating an appointment, causing the names of the
members, the name of the host, the title of the appointment, and its notes to often be
arbitrary. This makes it more difficult to track users across appointments. Nonetheless, an
attacker can use the memberIDs, or other recurring data between appointments to do that.
In particular, the name of the host and the members is often the same, as the application
recommends the last used name for the next appointment too.

By manually sampling a few of the found appointments, we came up with an appointment
at the headquarters of UniNow.

6.8.2. Recommendations

This problem is made up of the following two parts: (1) Unnecessarily broad access rights
after the appointment is over, and (2) missing cryptographic security or a rate limit to
prevent brute force attacks.

35

https://uninow.page.link/4tU3
https://uninow.de/ScheduleLinkDetail?id=<APPOINTMENT_ID>
https://graphql.uninow.com

36 6. Security and Privacy Issues

{

"data": {

"meeting": {

"id": "<REDACTED>",

"title": "Erdbeer pflücken und Triathlon",

"type": "Treffen",

"color": "#78DBDC",

"blocks": [{

"location": null,

"allDay": false,

"duration": "6:00",

"notes": "Hallo MH, Lust vor dem Triathlon mit mir Erdbeeren zu

pflücken und danach an den See zu fahren? Ich hoffe, 15 Uhr

Feierabend zu machen :) ",

↪→

↪→

"repeat": 4,

"__typename": "Block"

}],

"slots": [{

"_id": "<REDACTED>",

"startTime": 15,

"date": "Wed Jun 05 2019 00:00:00 GMT+0000 (Coordinated Universal

Time)",↪→

"__typename": "Slot"

}],

"members": [{

"memberID": "<REDACTED>",

"name": "",

"status": "pending",

"slots": [],

"__typename": "Member"

}],

"host": {

"name": "MH",

"__typename": "Host"

},

"chosenSlot": null,

"status": "pending",

"ownStatus": "pending",

"hasTime": false,

"links": {

"forSend": "https://uninow.page.link/<REDACTED>",

"__typename": "Links"

},

"__typename": "Meeting"

}

}

}

Listing 6.7.: Example of an appointment found by brute-forcing.

36

6.9. Account Takeover Using Device IDs 37

{

"userAgent": {

"system": "ANDROID",

"version": "3.86.0",

"systemVersion": "11"

},

"device": {

"deviceId": "8109371f-f60b-44e1-be77-66c34b78fcc5",

"legacyId": null,

"nativeId": "Z74BzTLplDQ8FdVBNTJfR4HjrXgNa2YNUV8fyqno3m4=\n"

},

"applicationId": "de.mocama.UniNow",

"grantType": "hmac"

}

Listing 6.8.: An example request body of a login request performed by the mobile appli-
cation.

The first problem can be addressed, e.g., by only allowing users who have voted for an
appointment and the host to access its information after the appointment took place. This
would preserve the information for the participants only.

We believe that the second problem can be solved by setting the suffix option of the
Firebase links to UNGUESSABLE, which would make the path component of each link
17 characters long. The existing links should be invalidated and regenerated.

This weakness seems to fit best into the CWE-334 “Small Space of Random Values” cate-
gory.

6.9. Account Takeover Using Device IDs

The mobile application does not provide a user account in the traditional sense, as users do
not need to register manually and provide a username and password, for example, to log in.
Instead, UniNow is creating and assigning a user account automatically to every mobile
phone. Therefore, sharing user data between phones is not possible without tampering
with the application or its configuration.

We found a way to take over these user accounts. To understand this process, we first
need to explain how the application is authenticating its users. All the services, that we
found, use a JWT to authenticate incoming HTTP requests. The mobile application, in
particular, gets its JWT by performing a POST request to https://accounts.uninow.

com/api/v1/oauth/token. An example JSON body of such a request can be found in
Listing 6.8.

When looking at the decoded payload of the JWTs, like in Listing 6.9, one can see that the
JWTs only store the given deviceId. Therefore, the deviceId has to be used by the servers
to uniquely identify the referenced account. It is also worth mentioning, that the deviceId
in the login request is optional. When providing null as its value, the JWT is going to
contain a newly generated deviceId, and is therefore presumably referencing a new user.

To make this authentication system work, the server would need to interpret each login
request in the following way. The deviceId should be treated like the username in a
traditional authentication system, and the nativeId as the password. This way the deviceId

37

https://accounts.uninow.com/api/v1/oauth/token
https://accounts.uninow.com/api/v1/oauth/token

38 6. Security and Privacy Issues

{

"sub": "8109371f-f60b-44e1-be77-66c34b78fcc5",

"acr": "device",

"jti": "04b29914-43dd-4531-a6b4-33222b84fe16",

"https://uninow.com/jwt/claims": {

"x-uninow-allowed-profiles": [],

"x-uninow-default-profile": "",

"x-uninow-device-id": "8109371f-f60b-44e1-be77-66c34b78fcc5"

},

"aud": [

"*.uninow.com"

],

"iss": "accounts.uninow.com",

"iat": 1620914316,

"exp": 1621000716

}

Listing 6.9.: An example of a JWT used by the mobile application for authentication.

would reference the user’s account, and the nativeId would serve as the key which can only
be provided by the user’s device. Unfortunately, we can only assume that it was supposed
to work this way, because we do not know much about the nativeId due to the difficulties
of analyzing the application statically. We only know that the nativeId seems to stay the
same across multiple installations on the same device.

Nonetheless, the fact is that the login endpoint is not checking the nativeId before creating
a valid JWT with the provided deviceId. Thus, anyone can create a valid authentication
JWT, if they know the deviceId of the user. We found a few ways on how an attacker
could get this identifier of their victim’s account.

The first way is pretty simple and does not need a lot of explanation, as it was already
explained above. The memberIDs which represent the users that responded to an appoint-
ment invitation are the deviceIds of the user accounts. This means that a victim just has
to accept an appointment invitation, of which the attacker knows the unique invitation
ID, to take over their account without them being able to notice.

Furthermore, we found that the calendar web application at https://schedule.uninow.
com can be mimicked to trick somebody into leaking it. After scanning the QR code
with the QR code scanner in the schedule activity of the mobile application, the web
application receives a JWT that can only be used for the schedule functionalities. This
JWT also contains the deviceId of the referenced user, allowing somebody who knows this
JWT to escalate their privileges by acquiring a JWT with all privileges.

An attacker can therefore replicate this process to trick victims by doing the following.
First, they create a WebSocket connection to https://scraping.uninow.com/socket.io.
When creating such a WebSocket the server sends the ID of the socket connection to
the client. The attacker now inserts their socket ID into the URL uninow://schedule/

qrCodeID<SOCKET_ID> by replacing the placeholder <SOCKET_ID> with their actual socket
ID. Lastly, the attacker has to create a QR code of the resulting URL and trick the victim
into scanning it with the QR code scanner of their calendar. As long as the WebSocket
connection is alive, the attacker is going to receive the JWTs of their victims from the
server.

38

https://schedule.uninow.com
https://schedule.uninow.com
https://scraping.uninow.com/socket.io
uninow://schedule/qrCodeID<SOCKET_ID>
uninow://schedule/qrCodeID<SOCKET_ID>

6.10. Unauthorized Access to https://npe.uninow.io 39

Tricking somebody into scanning their QR code should also not be very hard, as the
application is often used to scan QR codes for other purposes. The trap is therefore
already building on the user’s habits. An attacker could, for example, hang up a poster
next to a Campus Check-in QR code which advertises that by scanning the provided QR
code, with the QR code scanner of the calendar, students can add important dates to their
calendar.

6.9.1. Impact

The OWASP MSTG suggests the CWE-287 “Improper Authentication” category for this
vulnerability.

We consider the impact to be critical, as taking over somebodies account gives the attacker
access to a lot of personal data. This data includes, all calendar entries, all to-do list entries,
all liked jobs and companies, as well as all feeds the user follows. There might of course
be more information which we do not know about, because we did not have access to all
modules. Furthermore, an attacker can completely impersonate their victim and perform
all actions on their behalf.

Additionally, getting the deviceId requires minimal user interaction, as an attacker can
enumerate appointment invitations at a reasonable speed. Targeted attacks need more
interaction from the victim, because the victim has to accept an appointment which the
attacker knows the ID of, or scan the attackers QR code.

6.9.2. Recommendations

We assume that the nativeId is unique per app installation. We believe that this takeover
exists, because the endpoint does not check whether the given deviceId was first created
with the given nativeId. Implementing this check on the server side and never sharing the
nativeId is enough to fix this problem.

Furthermore, the developers should make sure that both IDs are generated in a crypto-
graphically secure manner. Their length would then make them hard to brute force. We
also recommend the implementation of an IP based rate limit to secure them even better.

6.10. Unauthorized Access to https://npe.uninow.io

Judging from the JavaScript files, https://npe.uninow.io seemed to have important
functionalities for managing the UniNow university configurations. Therefore, it is secured
with a login webpage, which does require a specific account unaccessible with the known
registration options.

However, we noticed that it uses the redux-persist JavaScript library to persist the used
Redux store across sessions by saving it to the web browsers local storage. The local
storage can be accessed and edited using the DevTools in Chromium [90] based browsers.

There we found a single stored key/value-pair. The value of this pair is the current
configuration. The default configuration can be observed in Listing 6.10. There one can
also see a parameter called token in the auth property. Inserting a JWT generated by
UniNow for the mobile application, for example, allowed us to access the user interface
behind the login page. However, no functionalities worked, as the backend server always
returned a status 401 Unauthorized on every request.

Towards the end of our analysis we came back to this problem. After, playing around
with the user settings, like the username or avatar image URL, we were able to access
multiple internal functionalities. Retesting it with a different JWT that had nothing in

39

https://npe.uninow.io

40 6. Security and Privacy Issues

{

"filter": "{\"university\":{\"search\":\"\",\"editor\": c

null,\"status\":null,\"fileStatus\":null},\"plugins\":{\"search\": c

\"\",\"editor\":null,\"group\":null,\"fileStatus\":null}}",

↪→

↪→

"universities":

"[{\"id\":\"de_ovgu\",\"name\":\"Otto-von-Guericke-Universität

Magdeburg\",\"status\":\"LIVE\",\"modules\":{}},{\"id\": c

\"de_tud\",\"name\":\"Technische Universität

Dresden\",\"status\":\"LIVE\",\"modules\":{}}]",

↪→

↪→

↪→

↪→

"auth":

"{\"role\":\"guest\",\"token\":null,\"name\":null,\"id\":null}",↪→

"checklist": "{\"checked\":[]}",

"account": "{\"avatar\":null}",

"_persist": "{\"version\":-1,\"rehydrated\":true}"

}

Listing 6.10.: The default configuration of https://npe.uninow.com

common with the first one, showed that we did not have to change any settings to gain
the same result. Consequently, either our first try somehow changed the configuration of
the backend server, or UniNow made a change which allowed anyone with a valid UniNow
JWT to access this internal service.

We confirmed access to the following functionalities: Reading university configurations,
searching university configurations for static strings, viewing plugin configurations, and
finding user errors by device ID. The last functionality was not tested completely, because
we were not able to find a device ID which had produced an error before, and were also not
able to find any error produced by us after provoking one by tampering with the scraping
request instructions.

University configurations are made up of university information, as well as account con-
figurations and module configurations for the scraping service. Plugin configurations seem
to be used as a base for the module configurations, enabling similar parts of the module
configurations to be reused.

As we did not want to cause any denial of service, we did not edit any university config-
urations. However, we did go to an edit view which provides in-browser editors to edit
the selected configuration. After doing that, the configuration switched from the status
OPEN to LOCKED. Furthermore, not only was our selected username displayed with the
date of last edit, but the configuration was the only one with the LOCKED status that
we were able to edit again. All other configuration with the same status had a disabled
edit button.

All of this suggests, that we were indeed able to edit the university and plugin configura-
tions.

Lastly, we found that the secrets for the schedule JWTs are located in the corresponding
schedule configurations. They can also be searched for using the university configuration
search tool.

6.10.1. Impact

We believe this to be the most severe of all the found vulnerabilities, as there is a host of
attack possibilities available to an attacker.

40

https://npe.uninow.com

6.10. Unauthorized Access to https://npe.uninow.io 41

An attacker would have control over the mail configurations of every university, allowing
them to redirect the email to a server controlled by them or abuse the checkCertificate flag
to make man-in-the-middle attacks possible for email exchanges. Furthermore, the leaked
JWT secrets could be used to access a user’s schedule data by using their device ID.

The most severe attack, however, can be conducted by changing the login URLs of the
universities to a attacker controlled URL. The attacker could set up their server to proxy
the incoming requests to the actual university server, allowing them to steal all the login
credentials without their victims being able to notice. Similar attacks are possible by
changing the URLs of other configurations to steal incoming cookies, for example.

Lastly, having access to these configurations would allow an attacker to change them
arbitrarily causing a denial of service.

6.10.2. Recommendations

We believe that any internal servers should only be accessible through a Virtual Pri-
vate Network (VPN). This would add a second authentication layer for all endpoints by
only allowing certain IP addresses to communicate with the servers. This is a widely
used approach and is used by the University of Würzburg, for example, on https://www.

uni-wuerzburg.de/typo3/ among others.

41

https://www.uni-wuerzburg.de/typo3/
https://www.uni-wuerzburg.de/typo3/

7. Other Tested Attack Vectors

While the last chapter concerned itself with the found security problems, this chapter is
going to contain a list of the attack vectors which we tested for and found to not exist.
The following sections are either on a tested type of attack or on a tested part of the attack
surface.

7.1. Privilege Escalations

The OWASP Top Ten contains an item for the Broken Access Control vulnerability cate-
gory, suggesting that access controls are often enforced poorly. Therefore, we tried many
different API endpoints in an effort to escalate the privileges of a user account. Our goal
was to access restricted API endpoints which had a high chance of being able to provide
sensitive information of other users.

Our main testing target was https://accounts.uninow.com which was responsible for
registering new users, as well as providing new JWTs for existing users. We also targeted
other APIs like the GraphQL API at https://hasura-sport.uninow.io/v1/graphql,
as it seemed to also provide a way to register new accounts.

We tried fuzzing hidden request parameters and API endpoints using the ffuf fuzzing
tool. Although we were able to find new attack surface, we were not able to escalate the
privileges of any of our test accounts in any meaningful way.

7.2. GraphQL APIs

The Sensitive Data Exposure vulnerability category, ranked 3rd place in the 2017 OWASP
Top Ten, encouraged us to test ways of accessing sensitive data using the GraphQL APIs
at https://api.checkin.uninow.com/v1/graphql, https://graphql.uninow.com, and
https://hasura-sport.uninow.io/v1/graphql. In particular by using email/password
accounts created through requests to https://accounts.uninow.com/api/v1/register,
as well as device ID accounts.

We did not find any way to access https://hasura-sport.uninow.io/v1/graphql, as it
required unaccessible privileges for every functionality. https://api.checkin.uninow.

com/v1/graphql and https://graphql.uninow.com, on the other hand, were mostly ac-
cessible with only a few restricted functionalities.

43

https://accounts.uninow.com
https://hasura-sport.uninow.io/v1/graphql
https://api.checkin.uninow.com/v1/graphql
https://graphql.uninow.com
https://hasura-sport.uninow.io/v1/graphql
https://accounts.uninow.com/api/v1/register
https://hasura-sport.uninow.io/v1/graphql
https://api.checkin.uninow.com/v1/graphql
https://api.checkin.uninow.com/v1/graphql
https://graphql.uninow.com

44 7. Other Tested Attack Vectors

https://api.checkin.uninow.com/v1/graphql was of particular interest to us, as it is
used to enable the contact tracing functionalities of UniNow, which were the motivation
for this work.

A regular expression was used to find all GraphQL queries and mutations in all found
JavaScript files, as well as the disassembled mobile application. This data was used to
get a better grasp of the available functionalities. We also used clairvoyance [91] and
GraphQLmap [92] to find more accessible functionalities. The gathered data was especially
useful for the API at https://graphql.uninow.com, as it did not allow introspection.

We tested every found query and mutation, as well as most of the fields and schemas. But
despite these efforts, we were not able to find anything abusable in any of the mentioned
APIs. We also tried mutations to add new public keys for contact tracing using its API.

7.3. SQL Injections

SQL injections are possible when user provided data is not sanitized before the data is
inserted into a SQL query. This allows an attacker to manipulate the performed SQL
query and extract sensitive data from the used database or perform dangerous actions
[10]. They belong to the first ranked category Injection of the 2017 OWASP Top Ten, and
are one of the most critical security risks [16].

We used the sqlmap [93] automatic SQL injection tool to test various endpoints, which
seemed to be vulnerable because of error messages or other clues. Fortunately, none of the
tested endpoints and parameters was vulnerable to this kind of attack.

7.4. Cross-Site Scripting (XSS)

Cross-Site Scripting can be abused by an attacker to make their victims browser execute
arbitrary JavaScript code [10]. This type of vulnerability is contained in the Cross-Site
Scripting XSS category, which is ranked 7th on the 2017 OWASP Top Ten.

We were particularly interested in finding a XSS vulnerability in one of the web applica-
tions, because most of them store sensitive data, including the JWT of the user, in the
browser’s local storage, which can be accessed using JavaScript [94]. This would not be
possible, if the data was stored using cookies with the HttpOnly flag [95].

There were multiple web applications handling sensitive user data. And, whenever we had
the option of providing data, we took a closer look on how this data is sanitized by testing
various symbols.

We did not find a single instance where user data is not sanitized properly before being
inserted into JavaScript source code or HTML.

7.5. Cloud Storage

UniNow uses multiple cloud storage solutions to provide content to their users. We
have identified the following three systems: the Amazon AWS S3 buckets [96] at https:

//image.uninow.com and https://uninow-advertising.s3.amazonaws.com, as well as
the Contentful space [97] at https://cdn.contentful.com/spaces/9t2pd5q435yg using
an access token found in a JavaScript file at https://admin.checkin.uninow.com.

The access rights to all three systems were checked by using the s3scanner and the Con-
tentful JavaScript SDK contentful.js. Both buckets were only readable, allowing one to
get the content of an item only by knowing the exact URL. This is the most secure con-
figuration.

44

https://api.checkin.uninow.com/v1/graphql
https://graphql.uninow.com
https://image.uninow.com
https://image.uninow.com
https://uninow-advertising.s3.amazonaws.com
https://cdn.contentful.com/spaces/9t2pd5q435yg
https://admin.checkin.uninow.com

7.5. Cloud Storage 45

The Contentful space, on the other hand, allowed us to list all contents of the space,
and read the contents of every item. However, no sensitive information was found while
searching it.

45

8. Disclosure

As we found some security problems with a high to critical severity, we chose to do a
responsible disclosure by giving the developers at least 30 days to fix the most severe
issues before publishing our work.

We prepared a disclosure document containing an unfinished version of Chapter 6, and first
contacted the support of UniNow by email on the 9th of June in the late afternoon. We
explained the context of our analysis and asked where to send our results to. An answer
from Stefan Wegener, one of the CEOs and a founders, was received in the late evening
of the same day, asking for the details of the found security issues. These were sent to
them in the morning of the next day. We received an almost immediate reply from Mr.
Wegener, where they explained that they are going to work through the vulnerabilities
and take actions accordingly. Finally, we received another response in the late afternoon
of the same day, explaining their point of view on our findings.

The disclosure proceeded with further communication through emails and video conver-
sations. UniNow appreciated our efforts and communicated their points in a highly pro-
fessional manner, focusing on solutions to our findings. We are going to explain further
details of the found vulnerabilities, UniNow ’s point of view, and their proposed solutions
in the following sections.

8.1. Disclosure of Multiple Secret Keys

UniNow verified that they are using redux-persist in multiple applications to store the
application state. As sensitive data is only stored after the user has logged in, UniNow
chose to stop encrypting the locally saved Redux store. Furthermore, they are going to
remove all other keys and secrets found by us. Some of them were only used in earlier
versions of the corresponding application.

8.2. No Address Bar or Location Restrictions in In-App Browser

This problem was acknowledge and is going to be addressed by showing a notification
when the user is using a link to visit a URL which is out of the secure scope. They are
also going to check the feasibility of an address bar.

47

48 8. Disclosure

8.3. Open Redirect in Email Verification URL

UniNow was not sure about the open redirect vulnerability. We understand that this type
of vulnerability is a point of debate on whether or not it is an actual vulnerability on its
own. For example, Google does not reward a found open redirect vulnerability in their bug
bounty program, if it can not be used as leverage for more severe vulnerabilities [98]. We
explained our concerns about the potential future impact of this vulnerability. However,
it is UniNow ’s choice on whether they want to fix this problem or not.

8.4. Access Tokens are Shared With UniNow

UniNow explained that some functionalities are not possible without sharing the access
tokens with their scraping service. Furthermore, they pointed out how their Terms of Use
implicitly allow this. Nonetheless, we suggested to clarify their statements regarding the
sharing of access data in places other than their Terms of Use, and suggested ways of
using a key-value store on the client side to store and reference these access tokens. They
already use key-value stores in a similar fashion for university credentials.

They also explained that access tokens are replaced in error logs with random characters,
making them unusable.

8.5. Sensitive Data in Application Backups

This flaw was acknowledged. They are going to check the feasibility of deactivating the
backup functionality completely, as they do not see any advantages in it.

8.6. Disabled Strict SSL on University Endpoints

We assumed that certificate checking for a university endpoint gets disabled, when errors
indicate a fault in the used certificate. UniNow verified this assumption and admitted
that a system for checking and re-enabling the certificates does not exist. Therefore, they
are going to develop such a system. We agree with this solution. However, we also pointed
out how the user should know about whether or not their connections are secure. We
suggested to implement a warning, similar to how browsers warn their users about bad
HTTPS connections.

8.7. JavaScript Injection in Mail Module

UniNow was able to reproduce our findings. They are checking the feasibility of a settings
option which allows users to choose to enable or disable JavaScript in emails.

8.8. Brute-Forceable Appointment Invitations

Old appointments are going to be deleted automatically in the future and the length of
the invitation links is going to be checked. UniNow are also working on a new calendar
system, which is going to replace the current one.

8.9. Account Takeover Using Device IDs

UniNow acknowledges this problem. Currently, they are working on a traditional email
and password account system to substitute their current system. Users are going to have
to create an account before using functionalities, for which data is stored on their servers.
Consequently, account takeovers using device IDs are not going to be possible, as they are
not going to be needed for to log in to an account.

48

8.10. Unauthorized Access to https://npe.uninow.io 49

8.10. Unauthorized Access to https://npe.uninow.io

UniNow already uses a VPN for their internal services, as recommended by us. However,
a change in a regular expression allowed anyone to bypass it. This verifies that anyone
was able to get full access to https://npe.uninow.io. The bug was fixed immediately
and an investigation into how similar problems can be prevented in the future is going to
be conducted.

49

https://npe.uninow.io

9. Conclusion

We performed a security analysis of the UniNow application in a four step process: Defini-
tion of the scope, reconnaissance, construction of the testing order, and the testing itself.
We were particularly focused on the security of sensitive user data and their new COVID-
19 contact tracing feature. The following sections are about the results of our work and
what similar future work might look like.

9.1. Results

Our analysis revealed multiple security problems concerning user data, ranging from low
to critical severity. We were able to show, how sensitive user data was threatened by
phishing attacks through a lack of location information in the in-app browser, and discov-
ered an open redirect, which could lead to exploitable vulnerabilities later. Furthermore,
we explained how, contrary to what the company claims, access tokens are shared with
UniNow, sensitive user data was backed up automatically to Google servers, SSL certifi-
cate checking was disabled deliberately for many university endpoints, and how JavaScript
injections were possible in the mail module.

One of the more severe problems was that appointment invitations were brute-forceable,
enabling an attacker to access data about the time and date, the location, as well as the
participants of the appointment. There was appointment data ranging back as far as a few
years. We also found a way to use the participant information, among others, to take over
the participants’ user accounts, giving an attacker access to all of their calendar, to-do
list, and information about what jobs and posts they liked as well as what feeds they are
following. Finally, we discovered an accessible internal service, which allowed anyone to
edit university configurations giving them the ability to set up an attack through which
they could hijack the credentials to the university accounts of all users.

These findings prompted us to perform a responsible disclosure by communicating our
results to UniNow and working with them in choosing the right solutions. UniNow took
our concerns very seriously and appreciated our work. They responded swiftly and asked
for our point of view on potential solutions. We were able to explain our position on
the findings and suggest improvements to their proposed solutions. They accepted our
suggestions and promised to check the feasibility of implementing them. We are staying
in contact with UniNow until all problems are resolved.

Our work tangibly improved the security of user data handled by UniNow, as the developers
now know about the found security problems and are going to address them. Some of

51

52 9. Conclusion

the vulnerabilities had the potential of dealing tremendous damage to the users of the
application. Therefore, our work mostly benefited university students and employees.
Moreover, the analysis also underlined the security of the contact tracing solution, which
is used by many universities, including our own. This also encourages other universities to
start using or move to this solution. UniNow was surprised by our findings and is working
on improving their security auditing process. For example, they are considering to host
a bug bounty program, allowing third-party security researchers to test their application
in a given scope without fearing any legal action. Researches are also often rewarded by
such programs for finding vulnerabilities, encouraging further testing on the program. If
such a bug bounty program was in place before, then another researcher may have been
interested in testing the program, which could have revealed some of these vulnerabilities.
Therefore, we believe this to be a step in the right direction.

9.2. Future Work

Future work in this area of research can be of two kinds. Firstly, we want to encourage more
security analyses on popular applications that handle a lot of user data in the future. Such
analyses benefit the users of the application directly, and hold the developers accountable
for lacking security principles. The results of our work show the feasibility of security
analyses conducted in this manner. Although UniNow performs annual security audits, we
were still able to find critical vulnerabilities that threatened sensitive user data. However,
such analyses do not have to find new vulnerabilities, as the fact that no vulnerabilities
were found would underline the security promises of the audited application, serving to
reassure its users, and benefiting security focused developers.

Secondly, as there are still many vulnerabilities and attack surfaces that we were not able
to test for in the UniNow application, our work can be built upon to test the rest of the
vulnerabilities. In particular, we were not able to test any of the functionalities which were
not accessible to us. This includes the ID card functionality which seems to provide an
electronic ID card to university students, as well as the sports module which seems to be
used to schedule sports related university events. The latter is known to handle sensitive
user information like appointments, including their time and location. This module is
also accompanied by a web application, which might be vulnerable to web based attacks.
Furthermore, we also did not have access to any student council or company account, as
well as many other services. These could contain more vulnerabilities. Specifically, the
way access tokens are stored in the browser’s local storage allows XSS vulnerabilities to be
abused to steal them, making XSS vulnerabilities a high priority vulnerability to test for
in the various web applications. UniNow may be inclined to provide testing accounts for
another analysis, which would provide the needed access rights to test these applications.

Furthermore, we did not have enough time to test the scraping service. This service is
essential to all university functionalities and has the ability to instruct user devices to
perform HTTP requests. It receives a lot of different data from its users, encouraging
input based attacks. There might also exist more scraping functionalities that we are
unaware of, increasing the attack surface and possibilities of potential exploitation.

We also refrained from testing any brute force attacks on any of the login pages, as we did
not want to cause a denial of service by locking the account of an employee. We found
some promising employee email addresses. A missing rate limit combined with simple
passwords could lead to a successful brute force attack, allowing an attacker to access
important infrastructure, like the support service, and extract sensitive data.

We found many working services, but only know the purpose of some of them. These might
have APIs which can be used to access sensitive data. Old, unused APIs have an especially

52

9.2. Future Work 53

high chance of not enforcing new access rights, potentially enabling unauthorized access
to the data of other users.

Lastly, UniNow might implement the solutions to the found problems incorrectly, making
another analysis after the implementations interesting. Specifically, the new login system
as well as the new calendar system have a high complexity, increasing the chance of security
flaws in their corresponding implementations.

In conclusion, there are many places left to look for vulnerabilities in the UniNow applica-
tion and many more applications to perform security analyses on. We therefore encourage
the continuation of our work on this application and look forward to more work on appli-
cations similar to UniNow.

53

List of Figures

6.1. Moodle login page of the University of Würzburg opened in the in-app browser. 23
6.2. Simplified sequence diagram of how the application fetches the user’s bor-

rowed books for the library of the University of Würzburg. <session> is
the value of a session cookie. 27

6.3. Result of opening an email containing insecure HTML tags. 33

55

List of Listings

2.1. Example GraphQL query. 5

6.1. Example URL to verify an email address. 24
6.2. Example URL to redirect to the homepage of the University of Würzburg. . 24
6.3. Example reply to a request instruction from the scraping service. 26
6.4. Example request instruction from the scraping service. 30
6.5. Example email configurations for incoming and outgoing emails. 31
6.6. Example JavaScript payload for making a request to https://requestbin.

io/10c1zv11. 34
6.7. Example of an appointment found by brute-forcing. 36
6.8. An example request body of a login request performed by the mobile appli-

cation. 37
6.9. An example of a JWT used by the mobile application for authentication. . 38
6.10. The default configuration of https://npe.uninow.com 40

57

https://requestbin.io/10c1zv11
https://requestbin.io/10c1zv11
https://npe.uninow.com

Acronyms

APK Android Package

API Application Programming Interface

CWE Common Weakness Enumeration

IPC Inter-Process Communication

JSON JavaScript Object Notation

JWT JSON Web Token

OWASP Open Web Application Security Project

OWASP MSTG OWASP Mobile Security Testing Guide

OWASP WSTG OWASP Web Security Testing Guide

OWASP MASVS OWASP Mobile App Security Requirements and Verification Standard

OWASP ASVS OWASP Application Security Verification Standard

SSO Single Sign-On

SSRF Server-Side Request Forgery

VPN Virtual Private Network

XSS Cross-Site Scripting

59

Bibliography

[1] K. T. Eames and M. J. Keeling, “Contact tracing and disease control,” Proceedings
of the Royal Society of London. Series B: Biological Sciences, vol. 270, no. 1533, pp.
2565–2571, 2003.

[2] Robert-Koch-Institut, “Corona-Warn-App.” [Online]. Available: https://play.google.
com/store/apps/details?id=de.rki.coronawarnapp

[3] R. Sun, W. Wang, M. Xue, G. Tyson, S. Camtepe, and D. Ranasinghe, “An
Empirical Assessment of Global COVID-19 Contact Tracing Applications,” 2021.
[Online]. Available: https://europepmc.org/article/PPR/PPR272765

[4] A. Muñoz, “Securing the fight against COVID-19 through
open source.” [Online]. Available: https://securitylab.github.com/research/
securing-the-fight-against-covid19-through-oss

[5] Amnesty International, “Qatar: Contact tracing app security flaw exposed sensitive
personal details of more than one million.” [Online]. Available: https://www.amnesty.
org/en/latest/news/2020/05/qatar-covid19-contact-tracing-app-security-flaw/

[6] S. Faßbender, J. Gunzenreiner, and T. Schröder, “Mit Webapps gegen COVID-19,”
Jul 2020. [Online]. Available: https://www.modzero.com/modlog/archives/2020/07/
06/mit webapps gegen covid-19/index.html

[7] L. Neumann, “CCC hackt digitale ‘Corona-Listen’,” Aug 2020. [Online]. Available:
https://www.ccc.de/de/updates/2020/digitale-corona-listen

[8] ——, “CCC meldet Schwachstellen bei weiterer digitaler ‘Corona-
Liste’,” Sep 2020. [Online]. Available: https://www.ccc.de/en/updates/2020/
ccc-meldet-schwachstellen-bei-weiterer-digitaler-corona-liste

[9] OWASP, “OWASP Mobile Security Testing Guide.” [Online]. Available: https:
//owasp.org/www-project-mobile-security-testing-guide/

[10] ——, “OWASP Web Security Testing Guide.” [Online]. Available: https:
//owasp.org/www-project-web-security-testing-guide/

[11] UniNow GmbH, “UniNow App.” [Online]. Available: https://play.google.com/store/
apps/details?id=de.mocama.UniNow

[12] Apple Inc., “iOS App Store: UniNow - Studium & Karriere.” [Online]. Available:
https://apps.apple.com/de/app/uninow-bequem-durchs-studium/id969806189

[13] UniNow GmbH, “UniNow.” [Online]. Available: https://uninow.de

[14] OWASP, “OWASP Foundation | Open Source Foundation for Application Security.”
[Online]. Available: https://owasp.org/

61

https://play.google.com/store/apps/details?id=de.rki.coronawarnapp
https://play.google.com/store/apps/details?id=de.rki.coronawarnapp
https://europepmc.org/article/PPR/PPR272765
https://securitylab.github.com/research/securing-the-fight-against-covid19-through-oss
https://securitylab.github.com/research/securing-the-fight-against-covid19-through-oss
https://www.amnesty.org/en/latest/news/2020/05/qatar-covid19-contact-tracing-app-security-flaw/
https://www.amnesty.org/en/latest/news/2020/05/qatar-covid19-contact-tracing-app-security-flaw/
https://www.modzero.com/modlog/archives/2020/07/06/mit_webapps_gegen_covid-19/index.html
https://www.modzero.com/modlog/archives/2020/07/06/mit_webapps_gegen_covid-19/index.html
https://www.ccc.de/de/updates/2020/digitale-corona-listen
https://www.ccc.de/en/updates/2020/ccc-meldet-schwachstellen-bei-weiterer-digitaler-corona-liste
https://www.ccc.de/en/updates/2020/ccc-meldet-schwachstellen-bei-weiterer-digitaler-corona-liste
https://owasp.org/www-project-mobile-security-testing-guide/
https://owasp.org/www-project-mobile-security-testing-guide/
https://owasp.org/www-project-web-security-testing-guide/
https://owasp.org/www-project-web-security-testing-guide/
https://play.google.com/store/apps/details?id=de.mocama.UniNow
https://play.google.com/store/apps/details?id=de.mocama.UniNow
https://apps.apple.com/de/app/uninow-bequem-durchs-studium/id969806189
https://uninow.de
https://owasp.org/

62 Bibliography

[15] ——, “OWASP Mobile Top Ten.” [Online]. Available: https://owasp.org/
www-project-mobile-top-10/

[16] ——, “OWASP Top Ten Web Application Security Risks.” [Online]. Available:
https://owasp.org/www-project-top-ten/

[17] ——, “OWASP Application Security Verification Standard.” [Online]. Available:
https://owasp.org/www-project-application-security-verification-standard/

[18] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),” RFC 7519, May
2015. [Online]. Available: https://rfc-editor.org/rfc/rfc7519.txt

[19] S. Josefsson, “The Base16, Base32, and Base64 Data Encodings,” RFC 4648, Oct.
2006. [Online]. Available: https://rfc-editor.org/rfc/rfc4648.txt

[20] Facebook, “GraphQL | A query language for your API.” [Online]. Available:
https://graphql.org/

[21] A. Melnikov and I. Fette, “The WebSocket Protocol,” RFC 6455, Dec. 2011. [Online].
Available: https://rfc-editor.org/rfc/rfc6455.txt

[22] V. Haupert, D. Maier, and T. Müller, “Paying the price for disruption: How a fintech
allowed account takeover,” in Proceedings of the 1st Reversing and Offensive-oriented
Trends Symposium, 2017, pp. 1–10.

[23] V. Haupert and T. Müller, “On app-based matrix code authentication in online bank-
ing.” in ICISSP, 2018, pp. 149–160.

[24] ——, “Auf dem Weg verTAN: Über die Sicherheit App-basierter TAN-Verfahren,”
Sicherheit 2016-Sicherheit, Schutz und Zuverlässigkeit, 2016.

[25] A. Dmitrienko, C. Liebchen, C. Rossow, and A.-R. Sadeghi, “On the (in) security of
mobile two-factor authentication,” in International Conference on Financial Cryptog-
raphy and Data Security. Springer, 2014, pp. 365–383.

[26] J. Chang and E. Duan, “SHAREit Flaw Could Lead
to Remote Code Execution,” Feb 2021. [Online]. Avail-
able: https://web.archive.org/web/20210405095518/https://www.trendmicro.com/
en us/research/21/b/shareit-flaw-could-lead-to-remote-code-execution.html

[27] Google LLC., “Fortnite Installer downloads are vulnerable to hijacking,” Aug 2018.
[Online]. Available: https://issuetracker.google.com/issues/112630336

[28] Amnesty International, “Bahrain, Kuwait and Norway con-
tact tracing apps among most dangerous for privacy.”
[Online]. Available: https://www.amnesty.org/en/latest/news/2020/06/
bahrain-kuwait-norway-contact-tracing-apps-danger-for-privacy/

[29] T. Stadler, W. Lueks, K. Kohls, and C. Troncoso, “Preliminary Analysis of Potential
Harms in the Luca Tracing System,” arXiv preprint arXiv:2103.11958, 2021.

[30] Google Developers, “Android Studio.” [Online]. Available: https://developer.android.
com

[31] OWASP, “OWASP Amass.” [Online]. Available: https://owasp.org/
www-project-amass/

[32] Nmap, “Nmap: the Network Mapper - Free Security Scanner.” [Online]. Available:
https://nmap.org/

62

https://owasp.org/www-project-mobile-top-10/
https://owasp.org/www-project-mobile-top-10/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-application-security-verification-standard/
https://rfc-editor.org/rfc/rfc7519.txt
https://rfc-editor.org/rfc/rfc4648.txt
https://graphql.org/
https://rfc-editor.org/rfc/rfc6455.txt
https://web.archive.org/web/20210405095518/https://www.trendmicro.com/en_us/research/21/b/shareit-flaw-could-lead-to-remote-code-execution.html
https://web.archive.org/web/20210405095518/https://www.trendmicro.com/en_us/research/21/b/shareit-flaw-could-lead-to-remote-code-execution.html
https://issuetracker.google.com/issues/112630336
https://www.amnesty.org/en/latest/news/2020/06/bahrain-kuwait-norway-contact-tracing-apps-danger-for-privacy/
https://www.amnesty.org/en/latest/news/2020/06/bahrain-kuwait-norway-contact-tracing-apps-danger-for-privacy/
https://developer.android.com
https://developer.android.com
https://owasp.org/www-project-amass/
https://owasp.org/www-project-amass/
https://nmap.org/

Bibliography 63

[33] G. C. Georgiu, “PlaystoreDownloader.” [Online]. Available: https://github.com/
ClaudiuGeorgiu/PlaystoreDownloader

[34] “Frida - A world-class dynamic Instrumentation framework.” [Online]. Available:
https://frida.re

[35] OWASP, “OWASP Zed Attack Proxy (ZAP).” [Online]. Available: https:
//www.zaproxy.org/

[36] Info-ZIP, “UnZip.” [Online]. Available: http://infozip.sourceforge.net/UnZip.html

[37] Android Open Source Project, “Application Fundamentals.” [Online]. Available:
https://developer.android.com/guide/components/fundamentals

[38] ——, “Dalvik Executable format.” [Online]. Available: https://source.android.com/
devices/tech/dalvik/dex-format

[39] C. Tumbleson, “Apktool - A tool for reverse engineering 3rd party, closed, binary
Android apps.” [Online]. Available: https://ibotpeaches.github.io/Apktool

[40] B. Gruver, “smali/baksmali.” [Online]. Available: https://github.com/JesusFreke/
smali

[41] Google and R. Groose, “enjarify.” [Online]. Available: https://github.com/
Storyyeller/enjarify

[42] L. Benfield, “cfr.” [Online]. Available: https://github.com/leibnitz27/cfr

[43] skylot, “jadx - Dex to Java decompiler.” [Online]. Available: https://github.com/
skylot/jadx

[44] Facebook, “React Native - Learn once, write anywhere.” [Online]. Available:
https://reactnative.dev/

[45] ——, “hermes.” [Online]. Available: https://github.com/facebook/hermes

[46] P. Sommalai, “hbctool.” [Online]. Available: https://github.com/bongtrop/hbctool

[47] Moodle HQ, “Moodle - Open-source learning platform.” [Online]. Available:
https://moodle.org/

[48] vortexau, “dnsvalidator.” [Online]. Available: https://github.com/vortexau/
dnsvalidator

[49] Public DNS Server List, “nameservers.txt.” [Online]. Available: https://public-dns.
info/nameservers.txt

[50] O. Reeves, “gobuster.” [Online]. Available: https://github.com/OJ/gobuster

[51] D. Miessler, J. Haddix, and g0tmi1k, “subdomains-top1million-
110000.txt.” [Online]. Available: https://raw.githubusercontent.com/
danielmiessler/SecLists/dc04568e57db11935584f7b63ec4c50719e9af46/Discovery/
DNS/subdomains-top1million-110000.txt

[52] T. Hudson, “Find domains and subdomains related to a given domain.” [Online].
Available: https://github.com/tomnomnom/assetfinder

[53] E. Tolosa, “The complete solution for domain recognition.” [Online]. Available:
https://github.com/Findomain/Findomain

63

https://github.com/ClaudiuGeorgiu/PlaystoreDownloader
https://github.com/ClaudiuGeorgiu/PlaystoreDownloader
https://frida.re
https://www.zaproxy.org/
https://www.zaproxy.org/
http://infozip.sourceforge.net/UnZip.html
https://developer.android.com/guide/components/fundamentals
https://source.android.com/devices/tech/dalvik/dex-format
https://source.android.com/devices/tech/dalvik/dex-format
https://ibotpeaches.github.io/Apktool
https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali
https://github.com/Storyyeller/enjarify
https://github.com/Storyyeller/enjarify
https://github.com/leibnitz27/cfr
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://reactnative.dev/
https://github.com/facebook/hermes
https://github.com/bongtrop/hbctool
https://moodle.org/
https://github.com/vortexau/dnsvalidator
https://github.com/vortexau/dnsvalidator
https://public-dns.info/nameservers.txt
https://public-dns.info/nameservers.txt
https://github.com/OJ/gobuster
https://raw.githubusercontent.com/danielmiessler/SecLists/dc04568e57db11935584f7b63ec4c50719e9af46/Discovery/DNS/subdomains-top1million-110000.txt
https://raw.githubusercontent.com/danielmiessler/SecLists/dc04568e57db11935584f7b63ec4c50719e9af46/Discovery/DNS/subdomains-top1million-110000.txt
https://raw.githubusercontent.com/danielmiessler/SecLists/dc04568e57db11935584f7b63ec4c50719e9af46/Discovery/DNS/subdomains-top1million-110000.txt
https://github.com/tomnomnom/assetfinder
https://github.com/Findomain/Findomain

64 Bibliography

[54] ProjectDiscovery, Inc, “subfinder - Fast passive subdomain enumeration tool.”
[Online]. Available: https://github.com/projectdiscovery/subfinder

[55] blechschmidt, “massdns.” [Online]. Available: https://github.com/blechschmidt/
massdns

[56] S. Shah, “altdns.” [Online]. Available: https://github.com/infosec-au/altdns

[57] ProjectAnte, “dnsgen.” [Online]. Available: https://github.com/ProjectAnte/dnsgen

[58] M. Henriksen, “aquatone.” [Online]. Available: https://github.com/michenriksen/
aquatone

[59] J. Hoikkala, “ffuf.” [Online]. Available: https://github.com/ffuf/ffuf

[60] A. Pty.Ltd., “raft-large-words-lowercase.txt.” [Online]. Available: https:
//wordlists-cdn.assetnote.io/data/manual/raft-large-words-lowercase.txt

[61] T. Hudson, “waybackurls.” [Online]. Available: https://github.com/tomnomnom/
waybackurls

[62] ghostlulzhacks, “commoncrawl.” [Online]. Available: https://github.com/
ghostlulzhacks/commoncrawl

[63] Internet Archive, “Wayback Machine.” [Online]. Available: https://web.archive.org/

[64] Common Crawl, “Common Crawl.” [Online]. Available: https://commoncrawl.org/

[65] Hasura Inc., “Hasura - Instant GraphQL APIs for your data.” [Online]. Available:
https://hasura.io/

[66] A. Celaya, “Shlink - The URL shortener.” [Online]. Available: https://shlink.io/

[67] Functional Software, Inc., “Application Monitoring and Error Tracking Software.”
[Online]. Available: https://sentry.io/welcome/

[68] Dan Abramov and the Redux documentation authors, “Redux - A Predictable State
Container for JS Apps.” [Online]. Available: https://redux.js.org

[69] Z. Story, “Persist and rehydrate a redux store.” [Online]. Available: https:
//github.com/rt2zz/redux-persist

[70] M. Bowers, “Encrypt your Redux Store.” [Online]. Available: https://github.com/
maxdeviant/redux-persist-transform-encrypt

[71] E. Vosberg, “crypto-js: JavaScript library of crypto standards.” [Online]. Available:
https://github.com/brix/crypto-js

[72] D. Hardt, “The OAuth 2.0 Authorization Framework,” RFC 6749, Oct. 2012.
[Online]. Available: https://rfc-editor.org/rfc/rfc6749.txt

[73] M. Jones and D. Hardt, “The OAuth 2.0 Authorization Framework: Bearer Token
Usage,” RFC 6750, Oct. 2012. [Online]. Available: https://rfc-editor.org/rfc/rfc6750.
txt

[74] V. Li, “Stealing OAuth Tokens With Open Redirects.” [Online]. Available:
https://sec.okta.com/articles/2021/02/stealing-oauth-tokens-open-redirects

[75] detectify, “The real impact of an Open Redirect vulnerability.” [Online]. Available:
https://blog.detectify.com/2019/05/16/the-real-impact-of-an-open-redirect/

64

https://github.com/projectdiscovery/subfinder
https://github.com/blechschmidt/massdns
https://github.com/blechschmidt/massdns
https://github.com/infosec-au/altdns
https://github.com/ProjectAnte/dnsgen
https://github.com/michenriksen/aquatone
https://github.com/michenriksen/aquatone
https://github.com/ffuf/ffuf
https://wordlists-cdn.assetnote.io/data/manual/raft-large-words-lowercase.txt
https://wordlists-cdn.assetnote.io/data/manual/raft-large-words-lowercase.txt
https://github.com/tomnomnom/waybackurls
https://github.com/tomnomnom/waybackurls
https://github.com/ghostlulzhacks/commoncrawl
https://github.com/ghostlulzhacks/commoncrawl
https://web.archive.org/
https://commoncrawl.org/
https://hasura.io/
https://shlink.io/
https://sentry.io/welcome/
https://redux.js.org
https://github.com/rt2zz/redux-persist
https://github.com/rt2zz/redux-persist
https://github.com/maxdeviant/redux-persist-transform-encrypt
https://github.com/maxdeviant/redux-persist-transform-encrypt
https://github.com/brix/crypto-js
https://rfc-editor.org/rfc/rfc6749.txt
https://rfc-editor.org/rfc/rfc6750.txt
https://rfc-editor.org/rfc/rfc6750.txt
https://sec.okta.com/articles/2021/02/stealing-oauth-tokens-open-redirects
https://blog.detectify.com/2019/05/16/the-real-impact-of-an-open-redirect/

Bibliography 65

[76] UniNow GmbH, “FAQ: Wer fragt gewinnt.” [Online]. Available: https://uninow.de/
en/faq

[77] Free Software Foundation, Inc., “GNU Tar.” [Online]. Available: https:
//www.gnu.org/software/tar/

[78] Google Developers, “Encrypt your Redux Store.” [Online]. Available: https:
//github.com/maxdeviant/redux-persist-transform-encrypt

[79] Zetetic LLC, “SQLCipher.” [Online]. Available: https://www.zetetic.net/sqlcipher/

[80] Google Developers, “Back up user data with Auto Backup.” [Online]. Available:
https://developer.android.com/guide/topics/data/autobackup.html

[81] S. Kelley, “Dnsmasq - network services for small networks.” [Online]. Available:
https://thekelleys.org.uk/dnsmasq/doc.html

[82] K. Moriarty and S. Farrell, “Deprecating TLS 1.0 and TLS 1.1,” RFC 8996, Mar.
2021. [Online]. Available: https://rfc-editor.org/rfc/rfc8996.txt

[83] M. Ortner, “striptls - auditing proxy.” [Online]. Available: https://github.com/
tintinweb/striptls

[84] E. S. Alashwali and K. Rasmussen, “What’s in a Downgrade? A Taxonomy of Down-
grade Attacks in the TLS Protocol and Application Protocols Using TLS,” in Security
and Privacy in Communication Networks, R. Beyah, B. Chang, Y. Li, and S. Zhu,
Eds. Cham: Springer International Publishing, 2018, pp. 468–487.

[85] React Native Community, “React Native Cross-Plattform WebView.” [Online].
Available: https://github.com/react-native-webview/react-native-webview

[86] Runscope Inc., “React Native Cross-Plattform WebView.” [Online]. Available:
https://github.com/react-native-webview/react-native-webview

[87] Mozilla, “Same-origin policy.” [Online]. Available: https://developer.mozilla.org/
en-US/docs/Web/Security/Same-origin policy

[88] Google LLC., “Firebase Dynamic Links.” [Online]. Available: https://firebase.google.
com/docs/dynamic-links

[89] ——, “Firebase Dynamic Links.” [Online]. Available: https://firebase.google.com/
docs/dynamic-links/rest

[90] ——, “Chromium.” [Online]. Available: https://www.chromium.org/Home

[91] N. Stupin, “Clairvoyance - Obtain GraphQL API schema despite disabled
introspection.” [Online]. Available: https://github.com/nikitastupin/clairvoyance

[92] Swissky, “GraphQLmap.” [Online]. Available: https://github.com/swisskyrepo/
GraphQLmap

[93] B. D. A. Guimaraes and M. Stampar, “sqlmap: automatic SQL injection and
database takeover tool.” [Online]. Available: https://sqlmap.org/

[94] Mozilla, “Using the Web Storage API.” [Online]. Available: https://developer.
mozilla.org/en-US/docs/Web/API/Web Storage API/Using the Web Storage API

[95] ——, “Using HTTP cookies.” [Online]. Available: https://developer.mozilla.org/
en-US/docs/Web/HTTP/Cookies

65

https://uninow.de/en/faq
https://uninow.de/en/faq
https://www.gnu.org/software/tar/
https://www.gnu.org/software/tar/
https://github.com/maxdeviant/redux-persist-transform-encrypt
https://github.com/maxdeviant/redux-persist-transform-encrypt
https://www.zetetic.net/sqlcipher/
https://developer.android.com/guide/topics/data/autobackup.html
https://thekelleys.org.uk/dnsmasq/doc.html
https://rfc-editor.org/rfc/rfc8996.txt
https://github.com/tintinweb/striptls
https://github.com/tintinweb/striptls
https://github.com/react-native-webview/react-native-webview
https://github.com/react-native-webview/react-native-webview
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://firebase.google.com/docs/dynamic-links
https://firebase.google.com/docs/dynamic-links
https://firebase.google.com/docs/dynamic-links/rest
https://firebase.google.com/docs/dynamic-links/rest
https://www.chromium.org/Home
https://github.com/nikitastupin/clairvoyance
https://github.com/swisskyrepo/GraphQLmap
https://github.com/swisskyrepo/GraphQLmap
https://sqlmap.org/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API/Using_the_Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API/Using_the_Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

66 Bibliography

[96] Amazon Web Services, Inc., “What is Amazon S3?” [Online]. Available:
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html

[97] Contentful, “Spaces and organizations.” [Online]. Available: https://www.contentful.
com/help/spaces-and-organizations/

[98] Google LLC., “Open redirectors.” [Online]. Available: https://sites.google.com/site/
bughunteruniversity/nonvuln/open-redirect

[99] Metabase, “Metabase.” [Online]. Available: https://github.com/metabase/metabase

66

https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://www.contentful.com/help/spaces-and-organizations/
https://www.contentful.com/help/spaces-and-organizations/
https://sites.google.com/site/bughunteruniversity/nonvuln/open-redirect
https://sites.google.com/site/bughunteruniversity/nonvuln/open-redirect
https://github.com/metabase/metabase

Appendix

A. Subdomain Enumeration Results

A.1. Subdomains of uninow.com

accounts.uninow.com

account.uninow.com

admin.checkin.uninow.com

admin.open.uninow.com

analytics.uninow.com

answers.uninow.com

api.answers.uninow.com

api.assets.uninow.com

api.checkin.uninow.com

api.facility.uninow.com

api-legacy.uninow.com

api.uninow.com

api.user-feedback.uninow.com

app.search.uninow.com

assets.uninow.com

auth-legacy.uninow.com

auth.uninow.com

business.uninow.com

capacity.checkin.uninow.com

checkin.uninow.com

cooperation-develop.uninow.com

cooperation.uninow.com

c.uninow.com

features.uninow.com

feed.uninow.com

games.uninow.com

gql-legacy.uninow.com

gql.uninow.com

graphql.uninow.com

images.uninow.com

kooperation.uninow.com

log.uninow.com

mail.uninow.com

meeting.uninow.com

open.uninow.com

purchase.uninow.com

qrc.uninow.com

recruiting-dashboard.uninow.com

recruiting-develop.uninow.com

recruiting.uninow.com

schedule.uninow.com

scraping.uninow.com

search.answers.uninow.com

sport.uninow.com

staging.admin.checkin.uninow.com

staging.api.checkin.uninow.com

staging.api.facility.uninow.com

staging.checkin.uninow.com

staging.cooperation.uninow.com

staging.feed.uninow.com

staging-gql.uninow.com

staging-graphql.uninow.com

staging.meeting.uninow.com

staging.qrc.uninow.com

staging.recruiting.uninow.com

staging.schedule.uninow.com

staging.scraping.uninow.com

staging.sport.uninow.com

staging.support.uninow.com

staging.uninow.com

67

68 9. Appendix

staging.universities.uninow.com

staging-wapi.uninow.com

statistics.cooperation.uninow.com

statistics.uninow.com

status.uninow.com

stundenplan.uninow.com

support.uninow.com

testing-gql.uninow.com

testing.scraping.uninow.com

testing.uninow.com

wapi.uninow.com

web.api.uninow.com

www.business.uninow.com

www.checkin.uninow.com

www.cooperation-develop.uninow.com

www.cooperation.uninow.com

www.kooperation.uninow.com

www.meeting.uninow.com

www.recruiting-dashboard.uninow.com

www.recruiting-develop.uninow.com

www.recruiting.uninow.com

www.schedule.uninow.com

www.sport.uninow.com

www.stundenplan.uninow.com

www.support.uninow.com

www.uninow.com

A.2. Subdomains of uninow.de

admin.checkin.uninow.de

analytics.uninow.de

api.uninow.de

app.uninow.de

business.uninow.de

capacity.checkin.uninow.de

chat.uninow.de

checkin.uninow.de

cooperation-develop.uninow.de

cooperation.uninow.de

c.uninow.de

feed.uninow.de

game-legacy.uninow.de

game.uninow.de

kooperation.uninow.de

meeting.uninow.de

npe.uninow.de

recruiting-dashboard.uninow.de

recruiting.uninow.de

schedule-develop.uninow.de

schedule.uninow.de

sport.uninow.de

staging.feed.uninow.de

stundenplan.uninow.de

support.uninow.de

www.business.uninow.de

www.checkin.uninow.de

www.cooperation-develop.uninow.de

www.cooperation.uninow.de

www.feed.uninow.de

www.kooperation.uninow.de

www.meeting.uninow.de

www.npe.uninow.de

www.recruiting-dashboard.uninow.de

www.recruiting.uninow.de

www.schedule.uninow.de

www.stundenplan.uninow.de

www.support.uninow.de

www.uninow.de

A.3. Subdomains of uninow.io

accounts.uninow.io

alpha.uninow.io

analytics-mirror.uninow.io

analytics.uninow.io

api.sales.uninow.io

api.uninow.io

argocd.uninow.io

auth.uninow.io

charlie.uninow.io

ciam.uninow.io

docs-account-api.uninow.io

engage-api.uninow.io

errors.uninow.io

feature-flags.uninow.io

features.uninow.io

function.uninow.io

gaming.uninow.io

google-chat-webhooks.uninow.io

gql.uninow.io

hasura-sales.uninow.io

hasura-sport.uninow.io

ics.uninow.io

68

A. Subdomain Enumeration Results 69

internal.uninow.io

k8s-echo.uninow.io

k8s-recruiting-dashboard.uninow.io

k8s-recruiting.uninow.io

k8s-schedule.uninow.io

k8s.uninow.io

k8s-www.uninow.io

mcp.uninow.io

mike.uninow.io

mimir.uninow.io

m.uninow.io

november.uninow.io

npe-backend-k8s.uninow.io

npe-backend.uninow.io

npe-mongodb.uninow.io

npe.uninow.io

odin.uninow.io

poseidon.uninow.io

recruiting-dashboard.uninow.io

sales.uninow.io

staging.accounts.uninow.io

staging.answers.uninow.io

staging.api.answers.uninow.io

staging.api.sales-new.uninow.io

staging.argocd.uninow.io

staging.events.answers.uninow.io

staging.hasura-sport.uninow.io

staging.k8s-echo.uninow.io

staging.k8s.uninow.io

staging.sales-new.uninow.io

staging.sales.uninow.io

staging.support.uninow.io

status.uninow.io

support.uninow.io

test.m.uninow.io

thor.uninow.io

vpn.uninow.io

wapi.uninow.io

web-ui.storybook.uninow.io

wh.uninow.io

www.recruiting-dashboard.uninow.io

www.support.uninow.io

69

70 9. Appendix

B. Port Scanning Results

B.1. IP 45.129.181.34 (Ports: 80, 443)

accounts.uninow.com

account.uninow.com

admin.checkin.uninow.com

admin.checkin.uninow.de

admin.open.uninow.com

analytics-mirror.uninow.io

analytics.uninow.com

analytics.uninow.de

answers.uninow.com

api.answers.uninow.com

api.assets.uninow.com

api.checkin.uninow.com

api.facility.uninow.com

api-legacy.uninow.com

api.sales.uninow.io

api.uninow.com

api.uninow.de

api.user-feedback.uninow.com

app.search.uninow.com

app.uninow.de

argocd.uninow.io

assets.uninow.com

auth-legacy.uninow.com

auth.uninow.com

business.uninow.com

business.uninow.de

capacity.checkin.uninow.com

capacity.checkin.uninow.de

chat.uninow.de

checkin.uninow.com

checkin.uninow.de

ciam.uninow.io

cooperation-develop.uninow.com

cooperation-develop.uninow.de

cooperation.uninow.com

cooperation.uninow.de

c.uninow.com

c.uninow.de

docs-account-api.uninow.io

engage-api.uninow.io

feature-flags.uninow.io

feed.uninow.com

feed.uninow.de

function.uninow.io

game-legacy.uninow.de

games.uninow.com

game.uninow.de

google-chat-webhooks.uninow.io

gql-legacy.uninow.com

gql.uninow.com

graphql.uninow.com

hasura-sales.uninow.io

hasura-sport.uninow.io

ics.uninow.io

internal.uninow.io

k8s-echo.uninow.io

k8s-recruiting-dashboard.uninow.io

k8s-recruiting.uninow.io

k8s-schedule.uninow.io

k8s.uninow.io

k8s-www.uninow.io

kooperation.uninow.com

kooperation.uninow.de

log.uninow.com

mcp.uninow.io

meeting.uninow.com

meeting.uninow.de

m.uninow.io

npe-backend-k8s.uninow.io

npe-backend.uninow.io

npe-mongodb.uninow.io

npe.uninow.de

npe.uninow.io

open.uninow.com

purchase.uninow.com

qrc.uninow.com

recruiting-dashboard.uninow.com

recruiting-dashboard.uninow.de

recruiting-dashboard.uninow.io

recruiting-develop.uninow.com

recruiting.uninow.com

recruiting.uninow.de

sales.uninow.io

schedule-develop.uninow.de

schedule.uninow.com

schedule.uninow.de

scraping.uninow.com

search.answers.uninow.com

sport.uninow.com

sport.uninow.de

staging.cooperation.uninow.com

staging.feed.uninow.com

staging.feed.uninow.de

staging-graphql.uninow.com

staging.hasura-sport.uninow.io

staging.meeting.uninow.com

70

B. Port Scanning Results 71

staging.recruiting.uninow.com

staging.sales.uninow.io

staging.schedule.uninow.com

staging.scraping.uninow.com

staging.sport.uninow.com

staging.support.uninow.com

staging.support.uninow.io

statistics.cooperation.uninow.com

statistics.uninow.com

status.uninow.com

status.uninow.io

stundenplan.uninow.com

stundenplan.uninow.de

support.uninow.com

support.uninow.de

support.uninow.io

testing.scraping.uninow.com

test.m.uninow.io

uninow.de

uninow.io

wapi.uninow.com

web.api.uninow.com

web-ui.storybook.uninow.io

wh.uninow.io

www.business.uninow.com

www.business.uninow.de

www.checkin.uninow.com

www.checkin.uninow.de

www.cooperation-develop.uninow.com

www.cooperation-develop.uninow.de

www.cooperation.uninow.com

www.cooperation.uninow.de

www.feed.uninow.de

www.kooperation.uninow.com

www.kooperation.uninow.de

www.meeting.uninow.com

www.meeting.uninow.de

www.npe.uninow.de

www.recruiting-dashboard.uninow.com

www.recruiting-dashboard.uninow.de

www.recruiting-dashboard.uninow.io

www.recruiting-develop.uninow.com

www.recruiting.uninow.com

www.recruiting.uninow.de

www.schedule.uninow.com

www.schedule.uninow.de

www.sport.uninow.com

www.stundenplan.uninow.com

www.stundenplan.uninow.de

www.support.uninow.com

www.support.uninow.de

www.support.uninow.io

www.uninow.com

www.uninow.de

B.2. IP 45.129.180.174 (Ports: 80, 443)

accounts.uninow.com

account.uninow.com

admin.checkin.uninow.com

admin.checkin.uninow.de

admin.open.uninow.com

analytics-mirror.uninow.io

analytics.uninow.com

analytics.uninow.de

answers.uninow.com

api.answers.uninow.com

api.assets.uninow.com

api.checkin.uninow.com

api.facility.uninow.com

api-legacy.uninow.com

api.sales.uninow.io

api.uninow.com

api.uninow.de

api.user-feedback.uninow.com

app.search.uninow.com

app.uninow.de

argocd.uninow.io

assets.uninow.com

auth-legacy.uninow.com

auth.uninow.com

business.uninow.com

business.uninow.de

capacity.checkin.uninow.com

capacity.checkin.uninow.de

charlie.uninow.io

chat.uninow.de

checkin.uninow.com

checkin.uninow.de

ciam.uninow.io

cooperation-develop.uninow.com

cooperation-develop.uninow.de

cooperation.uninow.com

cooperation.uninow.de

c.uninow.com

c.uninow.de

docs-account-api.uninow.io

engage-api.uninow.io

feature-flags.uninow.io

71

72 9. Appendix

feed.uninow.com

feed.uninow.de

function.uninow.io

game-legacy.uninow.de

games.uninow.com

game.uninow.de

google-chat-webhooks.uninow.io

gql-legacy.uninow.com

gql.uninow.com

graphql.uninow.com

hasura-sales.uninow.io

hasura-sport.uninow.io

ics.uninow.io

internal.uninow.io

k8s-echo.uninow.io

k8s-recruiting-dashboard.uninow.io

k8s-recruiting.uninow.io

k8s-schedule.uninow.io

k8s.uninow.io

k8s-www.uninow.io

kooperation.uninow.com

kooperation.uninow.de

log.uninow.com

mcp.uninow.io

meeting.uninow.com

meeting.uninow.de

m.uninow.io

npe-backend-k8s.uninow.io

npe-backend.uninow.io

npe-mongodb.uninow.io

npe.uninow.de

npe.uninow.io

open.uninow.com

purchase.uninow.com

qrc.uninow.com

recruiting-dashboard.uninow.com

recruiting-dashboard.uninow.de

recruiting-dashboard.uninow.io

recruiting-develop.uninow.com

recruiting.uninow.com

recruiting.uninow.de

sales.uninow.io

schedule-develop.uninow.de

schedule.uninow.com

schedule.uninow.de

scraping.uninow.com

search.answers.uninow.com

sport.uninow.com

sport.uninow.de

staging.cooperation.uninow.com

staging.feed.uninow.com

staging.feed.uninow.de

staging-graphql.uninow.com

staging.hasura-sport.uninow.io

staging.meeting.uninow.com

staging.recruiting.uninow.com

staging.sales.uninow.io

staging.schedule.uninow.com

staging.scraping.uninow.com

staging.sport.uninow.com

staging.support.uninow.com

staging.support.uninow.io

statistics.cooperation.uninow.com

statistics.uninow.com

status.uninow.com

status.uninow.io

stundenplan.uninow.com

stundenplan.uninow.de

support.uninow.com

support.uninow.de

support.uninow.io

testing.scraping.uninow.com

test.m.uninow.io

uninow.de

uninow.io

wapi.uninow.com

web.api.uninow.com

web-ui.storybook.uninow.io

wh.uninow.io

www.business.uninow.com

www.business.uninow.de

www.checkin.uninow.com

www.checkin.uninow.de

www.cooperation-develop.uninow.com

www.cooperation-develop.uninow.de

www.cooperation.uninow.com

www.cooperation.uninow.de

www.feed.uninow.de

www.kooperation.uninow.com

www.kooperation.uninow.de

www.meeting.uninow.com

www.meeting.uninow.de

www.npe.uninow.de

www.recruiting-dashboard.uninow.com

www.recruiting-dashboard.uninow.de

www.recruiting-dashboard.uninow.io

www.recruiting-develop.uninow.com

www.recruiting.uninow.com

www.recruiting.uninow.de

www.schedule.uninow.com

www.schedule.uninow.de

www.sport.uninow.com

www.stundenplan.uninow.com

72

B. Port Scanning Results 73

www.stundenplan.uninow.de

www.support.uninow.com

www.support.uninow.de

www.support.uninow.io

www.uninow.com

www.uninow.de

B.3. IP 193.31.27.35 (Ports: 80, 443)

accounts.uninow.io

features.uninow.com

features.uninow.io

mimir.uninow.io

staging-gql.uninow.com

staging-wapi.uninow.com

testing-gql.uninow.com

testing.uninow.com

B.4. IP 195.128.101.234 (Ports: 80, 443)

auth.uninow.io

errors.uninow.io

gaming.uninow.io

gql.uninow.io

odin.uninow.io

wapi.uninow.io

B.5. IP 45.129.180.83 (Ports: 80, 443)

mike.uninow.io

vpn.uninow.io

B.6. IP 104.21.44.46 (Ports: 80, 443, 2052, 2053, 2082, 2083, 2086, 2087, 2095,
2096, 8080, 8443, 8880)

images.uninow.com

B.7. IP 172.67.194.211 (Ports: 80, 443, 2052, 2053, 2082, 2083, 2086, 2087, 2095,
2096, 8080, 8443, 8880)

images.uninow.com

B.8. IP 142.250.185.211 (Ports: 80, 443)

mail.uninow.com

73

74 9. Appendix

C. Found Web Applications

Services with a description of “-” have an unknown purpose.

Service Description

https://accounts.uninow.com Account management requiring an email and
password account

http://accounts.uninow.com Redirects to the HTTPS version

https://auth.uninow.io Sentry administration

http://auth.uninow.io -

https://admin.checkin.uninow.com Administration app for the Campus Check-In
feature

http://admin.checkin.uninow.com Redirects to the HTTPS version

https://admin.checkin.uninow.de Administration app for the Campus Check-In
feature

http://admin.checkin.uninow.de Redirects to the HTTPS version

https://admin.open.uninow.com Shlink administration app

http://admin.open.uninow.com Redirects to the HTTPS version

https://analytics-mirror.uninow.io Unknown purpose; accepts requests for path
/mirror

http://analytics-mirror.uninow.io Redirects to the HTTPS version

https://analytics.uninow.com -

http://analytics.uninow.com -

https://analytics.uninow.de -

http://analytics.uninow.de -

https://answers.uninow.com -

http://answers.uninow.com Redirects to the HTTPS version

https://api.answers.uninow.com -

http://api.answers.uninow.com Redirects to the HTTPS version

https://api.assets.uninow.com -

http://api.assets.uninow.com Redirects to the HTTPS version

https://api.checkin.uninow.com Hasura GraphQL API for the Campus
Check-In feature

http://api.checkin.uninow.com Redirects to the HTTPS version

https://api.facility.uninow.com -

http://api.facility.uninow.com Redirects to the HTTPS version

https://api-legacy.uninow.com -

http://api-legacy.uninow.com -

https://api.sales.uninow.io -

http://api.sales.uninow.io Redirects to the HTTPS version

https://api.uninow.com -

http://api.uninow.com -

https://api.uninow.de -

http://api.uninow.de -

https://api.user-feedback.uninow.com -

http://api.user-feedback.uninow.com Redirects to the HTTPS version

https://app.search.uninow.com API used to search universities, jobs, and
companies

http://app.search.uninow.com Redirects to the HTTPS version

https://app.uninow.de Same as https://uninow.de

http://app.uninow.de Redirects to the HTTPS version

74

https://accounts.uninow.com
http://accounts.uninow.com
https://auth.uninow.io
http://auth.uninow.io
https://admin.checkin.uninow.com
http://admin.checkin.uninow.com
https://admin.checkin.uninow.de
http://admin.checkin.uninow.de
https://admin.open.uninow.com
http://admin.open.uninow.com
https://analytics-mirror.uninow.io
http://analytics-mirror.uninow.io
https://analytics.uninow.com
http://analytics.uninow.com
https://analytics.uninow.de
http://analytics.uninow.de
https://answers.uninow.com
http://answers.uninow.com
https://api.answers.uninow.com
http://api.answers.uninow.com
https://api.assets.uninow.com
http://api.assets.uninow.com
https://api.checkin.uninow.com
http://api.checkin.uninow.com
https://api.facility.uninow.com
http://api.facility.uninow.com
https://api-legacy.uninow.com
http://api-legacy.uninow.com
https://api.sales.uninow.io
http://api.sales.uninow.io
https://api.uninow.com
http://api.uninow.com
https://api.uninow.de
http://api.uninow.de
https://api.user-feedback.uninow.com
http://api.user-feedback.uninow.com
https://app.search.uninow.com
http://app.search.uninow.com
https://app.uninow.de
https://uninow.de
http://app.uninow.de

C. Found Web Applications 75

https://argocd.uninow.io -

http://argocd.uninow.io Redirects to the HTTPS version

https://assets.uninow.com -

http://assets.uninow.com Redirects to the HTTPS version

https://auth-legacy.uninow.com -

http://auth-legacy.uninow.com -

https://auth.uninow.com -

http://auth.uninow.com -

https://business.uninow.com Management web application for companies

http://business.uninow.com Redirects to the HTTPS version

https://business.uninow.de Same as https://business.uninow.com

http://business.uninow.de Redirects to the HTTPS version

https://capacity.checkin.uninow.com -

http://capacity.checkin.uninow.com -

https://capacity.checkin.uninow.de Web version of the campus check-in feature

http://capacity.checkin.uninow.de Redirects to the HTTPS version

https://chat.uninow.de -

http://chat.uninow.de -

https://checkin.uninow.com Web version of the campus check-in feature

http://checkin.uninow.com Redirects to the HTTPS version

https://checkin.uninow.de Same as https://checkin.uninow.com

http://checkin.uninow.de Redirects to the HTTPS version

https://ciam.uninow.io -

http://ciam.uninow.io Redirects to the HTTPS version

https://cooperation-develop.uninow.

com

-

http://cooperation-develop.uninow.com -

https://cooperation-develop.uninow.de -

http://cooperation-develop.uninow.de -

https://cooperation.uninow.com Some internal service protected by a login
page

http://cooperation.uninow.com Redirects to the HTTPS version

https://cooperation.uninow.de -

http://cooperation.uninow.de -

https://c.uninow.com Web version of the campus check-in feature

http://c.uninow.com Redirects to the HTTPS version

https://c.uninow.de

http://c.uninow.de Redirects to the HTTPS version

https://docs-account-api.uninow.io -

http://docs-account-api.uninow.io -

https://engage-api.uninow.io -

http://engage-api.uninow.io -

https://errors.uninow.io Same as https://auth.uninow.io; used by
the mobile application to log errors

http://errors.uninow.io Redirects to the HTTPS version

https://feature-flags.uninow.io -

http://feature-flags.uninow.io -

https://feed.uninow.com Web application for university and student
council accounts

75

https://argocd.uninow.io
http://argocd.uninow.io
https://assets.uninow.com
http://assets.uninow.com
https://auth-legacy.uninow.com
http://auth-legacy.uninow.com
https://auth.uninow.com
http://auth.uninow.com
https://business.uninow.com
http://business.uninow.com
https://business.uninow.de
https://business.uninow.com
http://business.uninow.de
https://capacity.checkin.uninow.com
http://capacity.checkin.uninow.com
https://capacity.checkin.uninow.de
http://capacity.checkin.uninow.de
https://chat.uninow.de
http://chat.uninow.de
https://checkin.uninow.com
http://checkin.uninow.com
https://checkin.uninow.de
https://checkin.uninow.com
http://checkin.uninow.de
https://ciam.uninow.io
http://ciam.uninow.io
https://cooperation-develop.uninow.com
https://cooperation-develop.uninow.com
http://cooperation-develop.uninow.com
https://cooperation-develop.uninow.de
http://cooperation-develop.uninow.de
https://cooperation.uninow.com
http://cooperation.uninow.com
https://cooperation.uninow.de
http://cooperation.uninow.de
https://c.uninow.com
http://c.uninow.com
https://c.uninow.de
http://c.uninow.de
https://docs-account-api.uninow.io
http://docs-account-api.uninow.io
https://engage-api.uninow.io
http://engage-api.uninow.io
https://errors.uninow.io
https://auth.uninow.io
http://errors.uninow.io
https://feature-flags.uninow.io
http://feature-flags.uninow.io
https://feed.uninow.com

76 9. Appendix

http://feed.uninow.com Redirects to the HTTPS version

https://feed.uninow.de Same as https://feed.uninow.com

http://feed.uninow.de Redirects to the HTTPS version

https://function.uninow.io -

http://function.uninow.io -

https://game-legacy.uninow.de -

http://game-legacy.uninow.de -

https://gaming.uninow.io Same as https://auth.uninow.io

http://gaming.uninow.io -

https://games.uninow.com -

http://games.uninow.com Redirects to the HTTPS version

https://game.uninow.de -

http://game.uninow.de -

https://google-chat-webhooks.uninow.

io

-

http://google-chat-webhooks.uninow.io -

https://gql-legacy.uninow.com -

http://gql-legacy.uninow.com -

https://gql.uninow.com -

http://gql.uninow.com -

https://gql.uninow.io Same as https://auth.uninow.io

http://gql.uninow.io -

https://graphql.uninow.com GraphQL API with many account related
purposes

http://graphql.uninow.com Redirects to the HTTPS version

https://hasura-sales.uninow.io -

http://hasura-sales.uninow.io Redirects to the HTTPS version

https://hasura-sport.uninow.io Hasura GraphQL API for the sport module

http://hasura-sport.uninow.io Redirects to the HTTPS version

https://ics.uninow.io -

http://ics.uninow.io Redirects to the HTTPS version

https://images.uninow.de S3 bucket used to provide static content to
multiple applications

http://images.uninow.de Redirects to the HTTPS version

https://internal.uninow.io -

http://internal.uninow.io Redirects to the HTTPS version

https://k8s-echo.uninow.io -

http://k8s-echo.uninow.io Redirects to the HTTPS version

https://k8s-recruiting-dashboard.

uninow.io

-

http://k8s-recruiting-dashboard.

uninow.io

-

https://k8s-recruiting.uninow.io -

http://k8s-recruiting.uninow.io -

https://k8s-schedule.uninow.io -

http://k8s-schedule.uninow.io -

https://k8s.uninow.io -

http://k8s.uninow.io -

https://k8s-www.uninow.io -

http://k8s-www.uninow.io -

76

http://feed.uninow.com
https://feed.uninow.de
https://feed.uninow.com
http://feed.uninow.de
https://function.uninow.io
http://function.uninow.io
https://game-legacy.uninow.de
http://game-legacy.uninow.de
https://gaming.uninow.io
https://auth.uninow.io
http://gaming.uninow.io
https://games.uninow.com
http://games.uninow.com
https://game.uninow.de
http://game.uninow.de
https://google-chat-webhooks.uninow.io
https://google-chat-webhooks.uninow.io
http://google-chat-webhooks.uninow.io
https://gql-legacy.uninow.com
http://gql-legacy.uninow.com
https://gql.uninow.com
http://gql.uninow.com
https://gql.uninow.io
https://auth.uninow.io
http://gql.uninow.io
https://graphql.uninow.com
http://graphql.uninow.com
https://hasura-sales.uninow.io
http://hasura-sales.uninow.io
https://hasura-sport.uninow.io
http://hasura-sport.uninow.io
https://ics.uninow.io
http://ics.uninow.io
https://images.uninow.de
http://images.uninow.de
https://internal.uninow.io
http://internal.uninow.io
https://k8s-echo.uninow.io
http://k8s-echo.uninow.io
https://k8s-recruiting-dashboard.uninow.io
https://k8s-recruiting-dashboard.uninow.io
http://k8s-recruiting-dashboard.uninow.io
http://k8s-recruiting-dashboard.uninow.io
https://k8s-recruiting.uninow.io
http://k8s-recruiting.uninow.io
https://k8s-schedule.uninow.io
http://k8s-schedule.uninow.io
https://k8s.uninow.io
http://k8s.uninow.io
https://k8s-www.uninow.io
http://k8s-www.uninow.io

C. Found Web Applications 77

https://kooperation.uninow.com -

http://kooperation.uninow.com -

https://kooperation.uninow.de -

http://kooperation.uninow.de -

https://log.uninow.com -

http://log.uninow.com Redirects to the HTTPS version

https://mail.uninow.com Gmail login page

http://mail.uninow.com Redirects to the HTTPS version

https://mcp.uninow.io Metabase [99] instance

http://mcp.uninow.io Redirects to the HTTPS version

https://meeting.uninow.com Opened instead of the application when Uni-
Now mobile application is not installed;
shows download instructions

http://meeting.uninow.com Redirects to the HTTPS version

https://meeting.uninow.de Same as https://metting.uninow.com

http://meeting.uninow.de Redirects to the HTTPS version

https://mike.uninow.io -

http://mike.uninow.io -

https://m.uninow.io -

http://m.uninow.io -

https://npe-backend-k8s.uninow.io -

http://npe-backend-k8s.uninow.io -

https://npe-backend.uninow.io The API used by https://npe.uninow.io

http://npe-backend.uninow.io Redirects to the HTTPS version

https://npe-mongodb.uninow.io -

http://npe-mongodb.uninow.io -

https://npe.uninow.de -

http://npe.uninow.de -

https://npe.uninow.io Internal service to manage university config-
urations, view university status, and access
error messages

http://npe.uninow.io Redirects to the HTTPS version

https://odin.uninow.io Sames as https://auth.uninow.io

http://odin.uninow.io -

https://open.uninow.com Might be the Shlink instance managed by
https://admin.open.uninow.com

http://open.uninow.com Redirects to the HTTPS version

https://purchase.uninow.com -

http://purchase.uninow.com Redirects to the HTTPS version

https://qrc.uninow.com Used to create PDFs with QR codes for the
Campus Check-In feature

http://qrc.uninow.com Redirects to the HTTPS version

https://recruiting-dashboard.uninow.

com

-

http://recruiting-dashboard.uninow.

com

-

https://recruiting-dashboard.uninow.

de

-

http://recruiting-dashboard.uninow.de -

77

https://kooperation.uninow.com
http://kooperation.uninow.com
https://kooperation.uninow.de
http://kooperation.uninow.de
https://log.uninow.com
http://log.uninow.com
https://mail.uninow.com
http://mail.uninow.com
https://mcp.uninow.io
http://mcp.uninow.io
https://meeting.uninow.com
http://meeting.uninow.com
https://meeting.uninow.de
https://metting.uninow.com
http://meeting.uninow.de
https://mike.uninow.io
http://mike.uninow.io
https://m.uninow.io
http://m.uninow.io
https://npe-backend-k8s.uninow.io
http://npe-backend-k8s.uninow.io
https://npe-backend.uninow.io
https://npe.uninow.io
http://npe-backend.uninow.io
https://npe-mongodb.uninow.io
http://npe-mongodb.uninow.io
https://npe.uninow.de
http://npe.uninow.de
https://npe.uninow.io
http://npe.uninow.io
https://odin.uninow.io
https://auth.uninow.io
http://odin.uninow.io
https://open.uninow.com
https://admin.open.uninow.com
http://open.uninow.com
https://purchase.uninow.com
http://purchase.uninow.com
https://qrc.uninow.com
http://qrc.uninow.com
https://recruiting-dashboard.uninow.com
https://recruiting-dashboard.uninow.com
http://recruiting-dashboard.uninow.com
http://recruiting-dashboard.uninow.com
https://recruiting-dashboard.uninow.de
https://recruiting-dashboard.uninow.de
http://recruiting-dashboard.uninow.de

78 9. Appendix

https://recruiting-dashboard.uninow.

io

-

http://recruiting-dashboard.uninow.io Redirects to the HTTPS version

https://recruiting-develop.uninow.com -

http://recruiting-develop.uninow.com -

https://recruiting.uninow.com Same as https://business.uninow.com

http://recruiting.uninow.com Redirects to the HTTPS version

https://recruiting.uninow.de Same as https://business.uninow.com

http://recruiting.uninow.de Redirects to the HTTPS version

https://sales.uninow.io -

http://sales.uninow.io -

https://schedule-develop.uninow.de -

http://schedule-develop.uninow.de -

https://schedule.uninow.com Web version of the calendar module

http://schedule.uninow.com Redirects to the HTTPS version

https://schedule.uninow.de Same as https://schedule.uninow.com

http://schedule.uninow.de Redirects to the HTTPS version

https://scraping.uninow.com The scraping service

http://scraping.uninow.com Redirects to the HTTPS version

https://search.answers.uninow.com -

http://search.answers.uninow.com -

https://sport.uninow.com Web app presumably for administering the
sports module

http://sport.uninow.com Redirects to the HTTPS version

https://sport.uninow.de -

http://sport.uninow.de -

https://staging.cooperation.uninow.

com

-

http://staging.cooperation.uninow.com Redirects to the HTTPS version

https://staging.feed.uninow.com -

http://staging.feed.uninow.com -

https://staging.feed.uninow.de -

http://staging.feed.uninow.de -

https://staging-graphql.uninow.com -

http://staging-graphql.uninow.com -

https://staging.hasura-sport.uninow.

io

-

http://staging.hasura-sport.uninow.io -

https://staging.meeting.uninow.com -

http://staging.meeting.uninow.com -

https://staging.recruiting.uninow.com -

http://staging.recruiting.uninow.com -

https://staging.sales.uninow.io -

http://staging.sales.uninow.io -

https://staging.schedule.uninow.com -

http://staging.schedule.uninow.com -

https://staging.scraping.uninow.com -

http://staging.scraping.uninow.com Redirects to the HTTPS version

https://staging.sport.uninow.com -

78

https://recruiting-dashboard.uninow.io
https://recruiting-dashboard.uninow.io
http://recruiting-dashboard.uninow.io
https://recruiting-develop.uninow.com
http://recruiting-develop.uninow.com
https://recruiting.uninow.com
https://business.uninow.com
http://recruiting.uninow.com
https://recruiting.uninow.de
https://business.uninow.com
http://recruiting.uninow.de
https://sales.uninow.io
http://sales.uninow.io
https://schedule-develop.uninow.de
http://schedule-develop.uninow.de
https://schedule.uninow.com
http://schedule.uninow.com
https://schedule.uninow.de
https://schedule.uninow.com
http://schedule.uninow.de
https://scraping.uninow.com
http://scraping.uninow.com
https://search.answers.uninow.com
http://search.answers.uninow.com
https://sport.uninow.com
http://sport.uninow.com
https://sport.uninow.de
http://sport.uninow.de
https://staging.cooperation.uninow.com
https://staging.cooperation.uninow.com
http://staging.cooperation.uninow.com
https://staging.feed.uninow.com
http://staging.feed.uninow.com
https://staging.feed.uninow.de
http://staging.feed.uninow.de
https://staging-graphql.uninow.com
http://staging-graphql.uninow.com
https://staging.hasura-sport.uninow.io
https://staging.hasura-sport.uninow.io
http://staging.hasura-sport.uninow.io
https://staging.meeting.uninow.com
http://staging.meeting.uninow.com
https://staging.recruiting.uninow.com
http://staging.recruiting.uninow.com
https://staging.sales.uninow.io
http://staging.sales.uninow.io
https://staging.schedule.uninow.com
http://staging.schedule.uninow.com
https://staging.scraping.uninow.com
http://staging.scraping.uninow.com
https://staging.sport.uninow.com

C. Found Web Applications 79

http://staging.sport.uninow.com -

https://staging.support.uninow.com -

http://staging.support.uninow.com -

https://staging.support.uninow.io -

http://staging.support.uninow.io -

https://statistics.cooperation.

uninow.com

Login page for some internal service

http://statistics.cooperation.uninow.

com

Redirects to the HTTPS version

https://statistics.uninow.com

http://statistics.uninow.com Redirects to the HTTPS version

https://status.uninow.com -

http://status.uninow.com Redirects to the HTTPS version

https://status.uninow.io -

http://status.uninow.io -

https://stundenplan.uninow.com Redirects to https://schedule.uninow.

com

http://stundenplan.uninow.com Redirects to the HTTPS version

https://stundenplan.uninow.de Redirects to https://schedule.uninow.

com

http://stundenplan.uninow.de Redirects to the HTTPS version

https://support.uninow.com Web page to share username and password
with UniNow

http://support.uninow.com Redirects to the HTTPS version

https://support.uninow.de Same as https://support.uninow.com

http://support.uninow.de Redirects to the HTTPS version

https://support.uninow.io Login page for internal support service

http://support.uninow.io Redirects to the HTTPS version

https://testing.scraping.uninow.com -

http://testing.scraping.uninow.com Redirects to the HTTPS version

https://test.m.uninow.io -

http://test.m.uninow.io -

https://uninow.de Homepage of UniNow

http://uninow.de Redirects to the HTTPS version

https://uninow.io -

http://uninow.io -

https://vpn.uninow.io -

http://vpn.uninow.io Redirects to the HTTPS version

https://wapi.uninow.com API used by many web applications

http://wapi.uninow.com Redirects to the HTTPS version

https://wapi.uninow.io Same as https://auth.uninow.io

http://wapi.uninow.io -

https://web.api.uninow.com -

http://web.api.uninow.com -

https://web-ui.storybook.uninow.io -

http://web-ui.storybook.uninow.io Redirects to the HTTPS version

https://wh.uninow.io -

http://wh.uninow.io -

https://www.business.uninow.com Same as https://business.uninow.com

http://www.business.uninow.com Redirects to the HTTPS version

79

http://staging.sport.uninow.com
https://staging.support.uninow.com
http://staging.support.uninow.com
https://staging.support.uninow.io
http://staging.support.uninow.io
https://statistics.cooperation.uninow.com
https://statistics.cooperation.uninow.com
http://statistics.cooperation.uninow.com
http://statistics.cooperation.uninow.com
https://statistics.uninow.com
http://statistics.uninow.com
https://status.uninow.com
http://status.uninow.com
https://status.uninow.io
http://status.uninow.io
https://stundenplan.uninow.com
https://schedule.uninow.com
https://schedule.uninow.com
http://stundenplan.uninow.com
https://stundenplan.uninow.de
https://schedule.uninow.com
https://schedule.uninow.com
http://stundenplan.uninow.de
https://support.uninow.com
http://support.uninow.com
https://support.uninow.de
https://support.uninow.com
http://support.uninow.de
https://support.uninow.io
http://support.uninow.io
https://testing.scraping.uninow.com
http://testing.scraping.uninow.com
https://test.m.uninow.io
http://test.m.uninow.io
https://uninow.de
http://uninow.de
https://uninow.io
http://uninow.io
https://vpn.uninow.io
http://vpn.uninow.io
https://wapi.uninow.com
http://wapi.uninow.com
https://wapi.uninow.io
https://auth.uninow.io
http://wapi.uninow.io
https://web.api.uninow.com
http://web.api.uninow.com
https://web-ui.storybook.uninow.io
http://web-ui.storybook.uninow.io
https://wh.uninow.io
http://wh.uninow.io
https://www.business.uninow.com
https://business.uninow.com
http://www.business.uninow.com

80 9. Appendix

https://www.business.uninow.de Same as https://business.uninow.com

http://www.business.uninow.de Redirects to the HTTPS version

https://www.checkin.uninow.com Same as https://checkin.uninow.com

http://www.checkin.uninow.com Redirects to the HTTPS version

https://www.checkin.uninow.de Same as https://checkin.uninow.com

http://www.checkin.uninow.de Redirects to the HTTPS version

https://www.cooperation-develop.

uninow.com

-

http://www.cooperation-develop.

uninow.com

-

https://www.cooperation-develop.

uninow.de

-

http://www.cooperation-develop.

uninow.de

-

https://www.cooperation.uninow.com -

http://www.cooperation.uninow.com -

https://www.cooperation.uninow.de -

http://www.cooperation.uninow.de -

https://www.feed.uninow.de Same as https://feed.uninow.de

http://www.feed.uninow.de Redirects to the HTTPS version

https://www.kooperation.uninow.com -

http://www.kooperation.uninow.com -

https://www.kooperation.uninow.de -

http://www.kooperation.uninow.de -

https://www.meeting.uninow.com -

http://www.meeting.uninow.com -

https://www.meeting.uninow.de -

http://www.meeting.uninow.de -

https://www.npe.uninow.de -

http://www.npe.uninow.de -

https://www.recruiting-dashboard.

uninow.com

-

http://www.recruiting-dashboard.

uninow.com

-

https://www.recruiting-dashboard.

uninow.de

-

http://www.recruiting-dashboard.

uninow.de

-

https://www.recruiting-dashboard.

uninow.io

-

http://www.recruiting-dashboard.

uninow.io

-

https://www.recruiting-develop.

uninow.com

-

http://www.recruiting-develop.uninow.

com

-

https://www.recruiting.uninow.com Same as https://recruiting.uninow.com

http://www.recruiting.uninow.com Redirects to the HTTPS version

https://www.recruiting.uninow.de Same as https://recruiting.uninow.com

http://www.recruiting.uninow.de Redirects to the HTTPS version

80

https://www.business.uninow.de
https://business.uninow.com
http://www.business.uninow.de
https://www.checkin.uninow.com
https://checkin.uninow.com
http://www.checkin.uninow.com
https://www.checkin.uninow.de
https://checkin.uninow.com
http://www.checkin.uninow.de
https://www.cooperation-develop.uninow.com
https://www.cooperation-develop.uninow.com
http://www.cooperation-develop.uninow.com
http://www.cooperation-develop.uninow.com
https://www.cooperation-develop.uninow.de
https://www.cooperation-develop.uninow.de
http://www.cooperation-develop.uninow.de
http://www.cooperation-develop.uninow.de
https://www.cooperation.uninow.com
http://www.cooperation.uninow.com
https://www.cooperation.uninow.de
http://www.cooperation.uninow.de
https://www.feed.uninow.de
https://feed.uninow.de
http://www.feed.uninow.de
https://www.kooperation.uninow.com
http://www.kooperation.uninow.com
https://www.kooperation.uninow.de
http://www.kooperation.uninow.de
https://www.meeting.uninow.com
http://www.meeting.uninow.com
https://www.meeting.uninow.de
http://www.meeting.uninow.de
https://www.npe.uninow.de
http://www.npe.uninow.de
https://www.recruiting-dashboard.uninow.com
https://www.recruiting-dashboard.uninow.com
http://www.recruiting-dashboard.uninow.com
http://www.recruiting-dashboard.uninow.com
https://www.recruiting-dashboard.uninow.de
https://www.recruiting-dashboard.uninow.de
http://www.recruiting-dashboard.uninow.de
http://www.recruiting-dashboard.uninow.de
https://www.recruiting-dashboard.uninow.io
https://www.recruiting-dashboard.uninow.io
http://www.recruiting-dashboard.uninow.io
http://www.recruiting-dashboard.uninow.io
https://www.recruiting-develop.uninow.com
https://www.recruiting-develop.uninow.com
http://www.recruiting-develop.uninow.com
http://www.recruiting-develop.uninow.com
https://www.recruiting.uninow.com
https://recruiting.uninow.com
http://www.recruiting.uninow.com
https://www.recruiting.uninow.de
https://recruiting.uninow.com
http://www.recruiting.uninow.de

C. Found Web Applications 81

https://www.schedule.uninow.com Redirects to https://schedule.uninow.

com

http://www.schedule.uninow.com Redirects to the HTTPS version

https://www.schedule.uninow.de Redirects to https://schedule.uninow.

com

http://www.schedule.uninow.de Redirects to the HTTPS version

https://www.sport.uninow.com Same as https://sport.uninow.com

http://www.sport.uninow.com Redirects to the HTTPS version

https://www.stundenplan.uninow.com Redirects to https://schedule.uninow.

com

http://www.stundenplan.uninow.com Redirects to the HTTPS version

https://www.stundenplan.uninow.de Redirects to https://schedule.uninow.

com

http://www.stundenplan.uninow.de Redirects to the HTTPS version

https://www.support.uninow.com Same as https://www.support.uninow.com

http://www.support.uninow.com Redirects to the HTTPS version

https://www.support.uninow.de Same as https://www.support.uninow.com

http://www.support.uninow.de Redirects to the HTTPS version

https://www.support.uninow.io -

http://www.support.uninow.io Redirects to the HTTPS version

https://www.uninow.com Same as https://uninow.com

http://www.uninow.com Redirects to the HTTPS version

https://www.uninow.de Same as https://uninow.com

http://www.uninow.de Redirects to the HTTPS version

81

https://www.schedule.uninow.com
https://schedule.uninow.com
https://schedule.uninow.com
http://www.schedule.uninow.com
https://www.schedule.uninow.de
https://schedule.uninow.com
https://schedule.uninow.com
http://www.schedule.uninow.de
https://www.sport.uninow.com
https://sport.uninow.com
http://www.sport.uninow.com
https://www.stundenplan.uninow.com
https://schedule.uninow.com
https://schedule.uninow.com
http://www.stundenplan.uninow.com
https://www.stundenplan.uninow.de
https://schedule.uninow.com
https://schedule.uninow.com
http://www.stundenplan.uninow.de
https://www.support.uninow.com
https://www.support.uninow.com
http://www.support.uninow.com
https://www.support.uninow.de
https://www.support.uninow.com
http://www.support.uninow.de
https://www.support.uninow.io
http://www.support.uninow.io
https://www.uninow.com
https://uninow.com
http://www.uninow.com
https://www.uninow.de
https://uninow.com
http://www.uninow.de

82 9. Appendix

D. Appointment Invitation GraphQL Query

query ($id: String!) {

meeting(id: $id) {

id

title

type

color

blocks {

location

allDay

duration

notes

repeat

__typename

}

slots {

_id

startTime

date

__typename

}

members {

memberID

name

status

slots

__typename

}

host {

name

__typename

}

chosenSlot {

startTime

date

__typename

}

status

ownStatus

hasTime

links {

forSend

__typename

}

82

D. Appointment Invitation GraphQL Query 83

__typename

}

}

83

84 9. Appendix

E. Email Server Configurations with checkCertificate not null

University Hostname Port Type Connection Type checkCertificate

Alanus Hochschule
für Kunst und
Gesellschaft

mail2.alanus.edu 587 outgoing STARTTLS false
mail2.alanus.edu 993 ingoing TLS false

Bauhaus-
Universität Weimar

mailgate.uni-weimar.de 143 ingoing CLEAR false
mailgate.uni-weimar.de 143 ingoing SSL false
mailgate.uni-weimar.de 25 outgoing CLEAR false
mailgate.uni-weimar.de 25 outgoing TLS false
mailgate.uni-weimar.de 465 outgoing TLS false
mailgate.uni-weimar.de 587 outgoing STARTTLS false
mailgate.uni-weimar.de 993 ingoing SSL false

Europa-Universität
Viadrina Frankfurt
(Oder)

owa.europa-uni.de 25 outgoing SSL false
owa.europa-uni.de 25 outgoing TLS false
owa.europa-uni.de 465 outgoing SSL false
owa.europa-uni.de 587 outgoing STARTTLS false
owa.europa-uni.de 993 ingoing STARTTLS false
owa.europa-uni.de 993 ingoing TLS false

Evangelische
Hochschule für
Kirchenmusik Halle

mail.uni-halle.de 993 ingoing TLS false
smtpauth.uni-halle.de 587 outgoing STARTTLS false

Frankfurt
University of
Applied Sciences

mail.frankfurt-university.de 143 ingoing SSL false
mail.frankfurt-university.de 143 ingoing TLS false
mail.frankfurt-university.de 25 outgoing SSL false
mail.frankfurt-university.de 25 outgoing TLS false
mail.frankfurt-university.de 465 outgoing SSL false
mail.frankfurt-university.de 465 outgoing TLS false
mail.frankfurt-university.de 993 ingoing SSL false
mail.frankfurt-university.de 993 ingoing TLS false

Hochschule Aalen -
Technik und
Wirtschaft

studmail.htw-aalen.de 587 outgoing STARTTLS false
studmail.htw-aalen.de 993 ingoing TLS false

Hochschule
Bonn-Rhein-Sieg

imap.inf.h-brs.de 993 ingoing TLS false
owa.stud.h-brs.de 587 outgoing STARTTLS false
owa.stud.h-brs.de 993 ingoing TLS false
smtp.inf.h-brs.de 465 outgoing TLS false

Hochschule Fulda

mail.hs-fulda.de 143 ingoing STARTTLS false
mail.hs-fulda.de 993 ingoing SSL false
mail.hs-fulda.de 993 ingoing TLS false
smtp.hs-fulda.de 587 outgoing STARTTLS false
smtp.hs-fulda.de 587 outgoing TLS false

Hochschule für
Angewandte
Wissenschaften
Hamburg

haw-mailer.haw-hamburg.de 587 outgoing STARTTLS false
haw-mailer.haw-hamburg.de 993 ingoing TLS false

Hochschule für
angewandte
Wissenschaften
Kempten

mail-s.hs-kempten.de 143 ingoing STARTTLS false
mail-s.hs-kempten.de 587 outgoing STARTTLS false

Hochschule
Ludwigshafen am
Rhein

imaps.hwg-lu.de 143 ingoing STARTTLS false
imaps.hwg-lu.de 143 ingoing STARTTLS true

84

E. Email Server Configurations with checkCertificate not null 85

Hochschule
Mannheim

mail.hs-mannheim.de 465 outgoing TLS false
mail.hs-mannheim.de 993 ingoing TLS false
stud.hs-mannheim.de 465 outgoing TLS false
stud.hs-mannheim.de 993 ingoing TLS false

Hochschule
Nordhausen

imap-mail.outlook.com 993 ingoing TLS false
smtp-mail.outlook.com 587 outgoing STARTTLS false
xmail.hs-nordhausen.de 25 outgoing STARTTLS false
xmail.hs-nordhausen.de 993 ingoing TLS false

Hochschule
Offenburg

imap.hs-offenburg.de 993 ingoing SSL false
imap.hs-offenburg.de 993 ingoing TLS false
smtp.hs-offenburg.de 465 outgoing TLS false
smtp.hs-offenburg.de 587 outgoing STARTTLS false

Hochschule
RheinMain

mail.hs-rm.de 143 ingoing STARTTLS false
mail.hs-rm.de 465 outgoing SSL false
mail.hs-rm.de 465 outgoing TLS false
mail.hs-rm.de 587 outgoing STARTTLS false
mail.hs-rm.de 587 outgoing STARTTLS true
mail.hs-rm.de 993 ingoing SSL false
mail.hs-rm.de 993 ingoing TLS false
mail.student.hs-rm.de 25 outgoing TLS false
mail.student.hs-rm.de 993 ingoing TLS false

Hochschule
Rhein-Waal

mail-kam.hsrw.org 587 outgoing TLS false
mail-kam.hsrw.org 993 ingoing TLS false
mail-kle.hsrw.org 587 outgoing TLS false
mail-kle.hsrw.org 993 ingoing TLS false

Hochschule
Zittau/Görlitz

mail.hszg.de 993 ingoing TLS false
smtp.hszg.de 587 outgoing STARTTLS false

Johannes
Gutenberg-
Universität Mainz

mail.uni-mainz.de 587 outgoing STARTTLS false
mail.uni-mainz.de 993 ingoing SSL false
mail.uni-mainz.de 993 ingoing TLS false

Justus-Liebig-
Universität Gießen

imap.stud.uni-giessen.de 143 ingoing STARTTLS false
imap.stud.uni-giessen.de 143 ingoing TLS false
imap.stud.uni-giessen.de 993 ingoing TLS false

Katholische
Hochschule Mainz

mail.students.kh-mz.de 465 outgoing SSL false
mail.students.kh-mz.de 465 outgoing STARTTLS false
mail.students.kh-mz.de 993 ingoing SSL false
mail.students.kh-mz.de 993 ingoing STARTTLS false
mail.students.kh-mz.de 993 ingoing TLS false

Martin-Luther-
Universität
Halle-Wittenberg

mail.uni-halle.de 143 ingoing STARTTLS false
mail.uni-halle.de 993 ingoing STARTTLS false
mail.uni-halle.de 993 ingoing TLS false
smtpauth.uni-halle.de 587 outgoing STARTTLS false
smtpauth.uni-halle.de 587 outgoing TLS false

Medizinische
Universität
Innsbruck

mail.i-med.ac.at 993 ingoing TLS false

Pädagogische
Hochschule
Karlsruhe

imap.ph-karlsruhe.de 993 ingoing TLS false

Pädagogische
Hochschule
Schwäbisch Gmünd

imap.ph-gmuend.de 993 ingoing TLS false

85

86 9. Appendix

smtp.ph-gmuend.de 465 outgoing SSL false
smtp.ph-gmuend.de 465 outgoing STARTTLS false
smtp.ph-gmuend.de 465 outgoing TLS false

Pädagogische
Hochschule
Weingarten

imap.ph-bw.de 993 ingoing TLS false
imap.ph-weingarten.de 993 ingoing TLS false
smtp.ph-weingarten.de 25 outgoing STARTTLS false
smtp.ph-weingarten.de 25 outgoing TLS false
smtp.ph-weingarten.de 465 outgoing STARTTLS false
smtp.ph-weingarten.de 465 outgoing TLS false

Technische
Hochschule Bingen

mail.zdv.net 587 outgoing STARTTLS false
mail.zdv.net 993 ingoing SSL false
mail.zdv.net 993 ingoing TLS false

Technische
Hochschule Köln

imap.intranet.fh-koeln.de 993 ingoing TLS false
smtp.intranet.fh-koeln.de 587 outgoing STARTTLS false

Technische
Hochschule
Nürnberg Georg
Simon Ohm

my.ohmportal.de 465 outgoing TLS false
my.ohmportal.de 993 ingoing TLS false

Technische
Universität
Darmstadt

imap.stud.tu-darmstadt.de 993 ingoing TLS false
smtp.tu-darmstadt.de 465 outgoing TLS false

Technische
Universität
Dresden

mail.zih.tu-dresden.de 143 ingoing CLEAR false
mail.zih.tu-dresden.de 143 ingoing STARTTLS false
mail.zih.tu-dresden.de 25 outgoing STARTTLS false
mail.zih.tu-dresden.de 465 outgoing TLS false
mail.zih.tu-dresden.de 587 outgoing TLS false
mail.zih.tu-dresden.de 993 ingoing CLEAR false
mail.zih.tu-dresden.de 993 ingoing TLS false
msx.tu-dresden.de 143 ingoing CLEAR false
msx.tu-dresden.de 143 ingoing STARTTLS false
msx.tu-dresden.de 465 outgoing TLS false
msx.tu-dresden.de 587 outgoing STARTTLS false
msx.tu-dresden.de 993 ingoing CLEAR false
msx.tu-dresden.de 993 ingoing SSL false

Theologische
Hochschule
Friedensau

mail.stud.thh-friedensau.de 465 outgoing STARTTLS false
mail.stud.thh-friedensau.de 587 outgoing STARTTLS false

Universität
Regensburg

imap.uni-regensburg.de 993 ingoing CLEAR false
imap.uni-regensburg.de 993 ingoing TLS false

Universität Siegen

mail.uni-siegen.de 143 ingoing STARTTLS false
mail.uni-siegen.de 25 outgoing STARTTLS false
mail.uni-siegen.de 587 outgoing STARTTLS false
mail.uni-siegen.de 993 ingoing TLS false

Universität
Stuttgart

imap.uni-stuttgart.de 993 ingoing TLS false
smtp.uni-stuttgart.de 587 outgoing STARTTLS false

Universität Ulm
imap.uni-ulm.de 587 outgoing STARTTLS false
imap.uni-ulm.de 993 ingoing TLS false

Universität Wien

imap.univie.ac.at 993 ingoing SSL false
imap.univie.ac.at 993 ingoing TLS false
mail.univie.ac.at 465 outgoing SSL false
mail.univie.ac.at 465 outgoing TLS false

86

E. Email Server Configurations with checkCertificate not null 87

Westfälische
Hochschule

mailx.w-hs.de 993 ingoing TLS false
smtpx.w-hs.de 587 outgoing STARTTLS false
studmail.w-hs.de 465 outgoing TLS false
studmail.w-hs.de 587 outgoing STARTTLS false
studmail.w-hs.de 993 ingoing TLS false

Westfälische
Wilhelms-
Universität
Münster

imap.uni-muenster.de 993 ingoing TLS false
secmail.uni-muenster.de 587 outgoing STARTTLS false
secmail.uni-muenster.de 587 outgoing TLS false

87

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Würzburg, 29. June 2021

. .
(Keven Zimmermann)

	Contents
	1 Introduction
	2 Background
	2.1 UniNow Mobile Application
	2.2 Open Web Application Security Project (OWASP)
	2.3 JSON Web Token (JWT)
	2.4 GraphQL
	2.5 WebSocket Protocol

	3 Related Work
	3.1 Mobile Applications
	3.2 Contact Tracing

	4 Approach
	4.1 Scope
	4.2 Reconnaissance
	4.3 Testing Order
	4.4 Testing

	5 Reconnaissance
	5.1 Mobile Application
	5.1.1 Privileges
	5.1.2 Functionalities and their Interfaces

	5.2 Network Services
	5.2.1 Subdomain Enumeration
	5.2.2 Port Scanning
	5.2.3 Content Discovery

	6 Security and Privacy Issues
	6.1 Disclosure of Multiple Secret Keys
	6.1.1 Impact
	6.1.2 Recommendations

	6.2 No Address Bar or Location Restrictions in In-App Browser
	6.2.1 Impact
	6.2.2 Recommendations

	6.3 Open Redirect in Email Verification URL
	6.3.1 Impact
	6.3.2 Recommendations

	6.4 Access Tokens are Shared With UniNow
	6.4.1 Impact
	6.4.2 Recommendations

	6.5 Sensitive Data in Application Backups
	6.5.1 Impact
	6.5.2 Recommendations

	6.6 Disabled Strict SSL on University Endpoints
	6.6.1 Impact
	6.6.2 Recommendations

	6.7 JavaScript Injection in Mail Module
	6.7.1 Impact
	6.7.2 Recommendations

	6.8 Brute-Forceable Appointment Invitations
	6.8.1 Impact
	6.8.2 Recommendations

	6.9 Account Takeover Using Device IDs
	6.9.1 Impact
	6.9.2 Recommendations

	6.10 Unauthorized Access to https://npe.uninow.io
	6.10.1 Impact
	6.10.2 Recommendations

	7 Other Tested Attack Vectors
	7.1 Privilege Escalations
	7.2 GraphQL APIs
	7.3 SQL Injections
	7.4 Cross-Site Scripting (XSS)
	7.5 Cloud Storage

	8 Disclosure
	8.1 Disclosure of Multiple Secret Keys
	8.2 No Address Bar or Location Restrictions in In-App Browser
	8.3 Open Redirect in Email Verification URL
	8.4 Access Tokens are Shared With UniNow
	8.5 Sensitive Data in Application Backups
	8.6 Disabled Strict SSL on University Endpoints
	8.7 JavaScript Injection in Mail Module
	8.8 Brute-Forceable Appointment Invitations
	8.9 Account Takeover Using Device IDs
	8.10 Unauthorized Access to https://npe.uninow.io

	9 Conclusion
	9.1 Results
	9.2 Future Work

	List of Figures
	List of Listings
	Acronyms
	Bibliography
	Appendix
	A Subdomain Enumeration Results
	A.1 Subdomains of uninow.com
	A.2 Subdomains of uninow.de
	A.3 Subdomains of uninow.io

	B Port Scanning Results
	B.1 IP 45.129.181.34 (Ports: 80, 443)
	B.2 IP 45.129.180.174 (Ports: 80, 443)
	B.3 IP 193.31.27.35 (Ports: 80, 443)
	B.4 IP 195.128.101.234 (Ports: 80, 443)
	B.5 IP 45.129.180.83 (Ports: 80, 443)
	B.6 IP 104.21.44.46 (Ports: 80, 443, 2052, 2053, 2082, 2083, 2086, 2087, 2095, 2096, 8080, 8443, 8880)
	B.7 IP 172.67.194.211 (Ports: 80, 443, 2052, 2053, 2082, 2083, 2086, 2087, 2095, 2096, 8080, 8443, 8880)
	B.8 IP 142.250.185.211 (Ports: 80, 443)

	C Found Web Applications
	D Appointment Invitation GraphQL Query
	E Email Server Configurations with checkCertificate not null

