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22 3. Related Work

both categories are going to be discussed: projects aiming to list and compare different
approaches, and projects focusing specifically on the German Corona-Warn-App and the
underlying GAEN framework, which has been the main focus of our research so far.

3.2.1. Lists, Comparisons, Surveys, and Indexes

Throughout the years, there have been several attempts at keeping up-to-date lists of
apps related to contact tracing and other topics around the COVID-19 pandemic. An
early article, giving detailed information about every app and focusing mostly on privacy
aspects, is [SBG+20]. It stopped receiving regular updates in mid-May 2020. Still ongoing
efforts are [ORJ20], which rates apps based on five criteria laid out by the American Civil
Liberties Union (ACLU) (also see Section 2.3) and the Wikipedia article [Wik20].

In addition to listing different apps, yet another category of work covers various aspects
of the protocols used in more detail. [Alb20] is an extensive survey of utilized frameworks
and requested permissions in nearly 500 COVID-related iOS apps, not only focusing on
tracing apps, but also pure informational applications. It concludes that half of all apps
contain at least one framework made by Google. [AAA+20] analyzes the permissions,
privacy policy, reviews, and whether the app is using Transport Layer Security (TLS)-
secured connections for 26 tracing apps. They conclude that several of the applications
are using unclear language in the privacy policy, require too many permissions, and/or,
in five cases, even fail to use TLS. Based on reviews, users are aware of these concerns.
Finally, [AMX+20] is a detailed survey of architectural features, attacks, protocols, and
user concerns about contact tracing.

3.2.2. GAEN and Corona-Warn-App Analysis Tools

On May 17, one month before the final release of the Corona-Warn-App, a project by
developer Huebler, was launched to create a framework for experimenting with and an-
alyzing the data format of the app [Hue20b]. This led, among others, to the discovery
of privacy issues related to key linkability (cf. Section 3.3.3). In addition, this tool was
used in multiple dashboards to visualize different parameters related to app usage, which
allows for analysis of the app’s effectiveness [Pfi20; Böh20]. Later, on October 4, 2021, the
CWA team published a “key figures dashboard” containing statistics on app downloads,
registered tests, sharing behavior (how many users actually share their diagnosis keys) and
issued warnings [Hou21].

3.3. Attacks on Contact Tracing
Apart from privacy concerns in regular usage and operation of contact tracing apps, ma-
licious actors can mount several attacks, which may lead to deanonymization and false
positives, thus decreasing privacy and effectiveness. The paper [BDF+20], co-authored
by us, presents and demonstrates two basic attacks common to most Bluetooth tracing
protocols, such as GAEN. Further research has yielded more weaknesses, allowing for
injection of fake alerts [AFV21b; IVV21b] or linking of rolling identifiers among multiple
days [Hue20a]. Google has published a FAQ document responding to several attack vectors
[Goo20e].

3.3.1. Profiling Using Bluetooth Sniffing

The basic functionality of Bluetooth LE-based tracing makes it necessary to send rotating
identifiers out. Combining received identifiers together with timestamps and locations
of reception allows for the creation of movement profiles, as long as the identifier stays
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3.3. Attacks on Contact Tracing 23

the same. This can be combined with the linking of rotating identifiers described in
Section 2.2.1 for the creation of movement profiles of infected people.

For executing an attack in practice, there are multiple options on how to obtain the
data. One can deploy a network of fixed-position Bluetooth sniffers, as demonstated in
[BDF+20]. A case study in this paper estimates the number of tracing stations needed to
collect coarse-grained information about all people working in a city of 160000 inhabitants
during their commute to work at 395 to 465. Another option is to utilize compromised
smartphones of other users by using malware or injecting code through a vulnerable or
modified framework [DR20].

The paper [ABIV21] introduces more variations on this attack to highlight design decisions
of the introduced protocol. Based on the network of Bluetooth sniffers, called Paparazzi
attack, there is the Orwell attack, where server data are also in the hands of the attacker,
as well as the Matrix attack, which allows sending of BLE data in addition to receiving.
As these attacks require more data than the original sniffing attack, they can be seen as an
extension or potential workaround against mitigations introduced for the original attack.

A different angle on Bluetooth sniffing is presented in [NAE+21]. Instead of gathering
movement profiles of users the aim of this work is to gather photographs of infected
individuals. To achieve this purpose, in practice the attacker uses a directional antenna and
receives RPIs from passers-by using GAEN-based applications. Once the signal strength is
high enough, a snapshot from an attached camera is taken and the picture saved together
with the RPI. Later, these simulated encounters are processed one-by-one by the matching
algorithm like real encounters would, which allows the device to know the infection status
of every photographed individual. The same attack, but performed more manually with a
paparazzi spying on celebrities is proposed in [Vau20].

3.3.2. Fake Alert Injection

Users receive alerts if an encounter meeting certain criteria is recorded. Normally, this
encounter is recorded directly from a phone or other token running the same protocol which
is actually in the physical vicinity. There are several ways of injecting fake encounters into
most contact tracing systems.

A wormhole attack, demonstated in [BDF+20], captures the BLE advertisements sent
out by a legitimate app, and forwards them to one or more remote attacker devices,
which re-broadcast the advertisements, acting as a beacon of their own. If an already
infected user or to-be-infected user is on the side of the wormhole where messages are
being captured, people who were not in contact with the infected user are going to register
a risky encounter. The attack was tested using both the DP-3T sample application and
CWA and works in both cases.

To receive a token belonging to an infected or soon-infected person is a challenge which
has been studied by the authors of [AFV21b]. The paper presents several approaches
on how a person with malicious intent could buy TEKs from infected app users without
trusting them: using JSON Web Tokens, or using decentralized oracles. Both attacks were
demonstrated with the Italian Immuni app and the SwissCovid app. The authors note
that a part of the attack, which allows proof of ability to upload keys, is likely also possible
on CWA due to a similarity in the protocol.

Actually injecting fake recent exposures into phones is not trivial, as the TEK of the
current day is kept inaccessible inside the GAEN framework. In order to still generate
a fake warning message, [IVV21b] proposes several methods to manipulate the victim
device’s time. Either setting the time manually, which requires physical access, or using
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24 3. Related Work

rogue NTP servers, mobile base stations, or GNSS senders. Then, replay attacks can be
carried out using the TEK which was valid on the day the phone is now set to.

In [ABIV21], an additional attack resulting in fake alerts is theorized (Matteotti attack).
Here, the attacker colludes with the server and health authority and is able to place
BLE receivers. The hypothetical motivation and outcome is a government trying to stifle
political opposition by sending members of parliament into quarantine [ABIV20].

3.3.3. Linkability of Temporary Exposure Keys

When the CWA was rolled out, the number of users as well as the infection rates were low.
This, combined with the always identical profile of TRLs, a fixed number assigned to the
key dependent on the amount of time passed since the positive test, enabled using data
analysis to link together TEKs of up to 12 days without doubt in special cases [Hue20a].

Figure 3.1 shows an example of a diagnosis key file from the time period when padding
was active and TRL values were not yet varied based on symptom indication. One can
clearly see that three users uploaded their diagnosis keys. If an attacker had recorded one
user’s movement as in [BDF+20], they would have a linkable movement profile over 11-13
days. In this case, it is extremely unlikely that they would have recorded multiple users
from this package with an anonymity set of three users distributed over Germany.

A worst case of linkable users, which could have happened in theory, was described in
[Hue20a]. With a multiplier of 10 and a minimum package size of 140, 13 keys from user
A (which was the maximum amount as the key for the current day was not uploaded) and
1 key from user B (this means the app has been used for one day before uploading keys).
This would allow to link 12 keys of user A without doubt.

However, this problem eventually solved itself as more and more infections were reporting
via the app, so today no padding is applied and shifting is only performed during times
when most recipients of warnings would be asleep anyway.

3.3.4. Server-Side Attacks and Gossip Attack

In addition to attacks which can be performed by users, the paper [ABIV21] also theorized
a class of attacks performed entirely on the server side, by a malicious operator collud-
ing with the health authorities. These include the Brutus attack, where the verification
mechanism is abused to link the rolling identifiers or pseudonyms of users to personally
identifiable information, and the Bombolo attack, where additional information such as
number of contacts and information about which people have met each other is extracted
on the server side. As stated in Section 2.3, only [Neu20] considers this class of attack in
their guidelines.

The final “attack” presented by [ABIV21] is the scenario of a user being able to gather
evidence about a contact with an infected person. First theorized in [Pie20, p. 9], con-
versely, this “weakness” of a scheme could be turned into an advantage: it would enable
an additional confirmation of encounters to third parties such as testing labs.
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Figure 3.1.: Transmission Risk Levels of CWA diagnosis keys from July 5, 2020
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4. TraceCORONA Implementation

Following the last chapters, in which the existing work has been detailed, the focus now
shifts to the TraceCORONA protocol and the prototype implementation of the TraceCO-
RONA app developed by a team of researchers at TU Darmstadt as well as the author of
this thesis. In this chapter the app is described in detail, commenting on architectural and
design decisions. After providing general information about the implementation, the chap-
ter begins with a high-level overview of the app’s architecture, after which the packages
and functional units of the app are explored in detail, one after the other.

4.1. General Information
The Android platform was chosen for our prototype implementation due to the difficulty
of running applications in the background on iOS (cf. Section 2.2.5), as well as the wider
variety of tools available for development and testing on the platform compared to iOS.
Android is also more widely used than iOS, and other mobile operating systems have too
low of a market share to make testing a prototype implementation worthwhile [Sta21].

Due to familiarity with the platform, the TraceCORONA app is written as a native An-
droid application using Kotlin as a language. It has a total of 4983 lines of Kotlin code,
along with 1832 lines of XML code used for user interface files, constant values and graph-
ics.

4.2. Architecture and Packages
Figure 4.1 shows a simplified package diagram1. The Android Application Programming
Interface (API) implements the architectural style of Model-View-ViewModel, introduced
by Microsoft in 2005 [Gos05], which is also the basis for the architecture of our app. Follow-
ing this principle, the “model” is implemented in the database package, with subpackages
for the respective data types. The user interface is implemented in the view, viewmodels
and listadapters packages, which we group in the diagram for sake of clarity. Utilizing
these central parts of the app, the core business logic and functionality is implemented in
the tracing, encounterdownload, infectionverification and encounterupload pack-
ages. Supplemental logic such as interfaces to cryptographic libraries and server connection
functionality is contained in the util package. Finally, code such as views and logging
facilities used only for debugging purposes are contained in debugging, which we omit in
the figure.

1A full package diagram for an older version can be found in Section B
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28 4. TraceCORONA Implementation

User Interface database
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Figure 4.1.: Simplified package diagram of TraceCORONA app

4.3. Database
Design

The current database scheme is depicted in Figure 4.2. We briefly explain the design deci-
sions leading to this version of the database. Initially, the only tables used were Encounter,
Scan, and EncounterMatch with their respective relationships. token and tokenHash
were immediately calculated after an encounter and saved directly to Encounter, with
tokenHash serving as a primary key. Encounter also contains the rollingId of the en-
countered device, used to distinguish recently-encountered devices, where a handshake has
already been performed, from new devices (cf. Section 2.4.1).

One or more Scan entities are present for every encounter, generated on every repeated
Bluetooth encounter with the other device and containing a timestamp, Received Signal
Strength Indication (RSSI) signal strength data, and a distance value (for now unused and
always 0). Separately storing these results can be used for more fine-grained classification
of encounters by using historic data.

If an encounter matches a token marked as infected through the server, the matching
process generates an EncounterMatch containing the nonce of the respective message and
the decrypted chainStatus.

In these early versions, as the keys and tokens were generated and calculated on the fly,
no saving of keypairs and encountered public keys was necessary. Later, the database for
TraceCORONA was redesigned and optimized, yielding the final database scheme seen in
Figure 4.2. To preserve battery life, Keypairs are pre-generated before usage, and so need
to be stored in the database. When a device is encountered, the received public key and
rolling ID is stored in the database. Before encounter up-/download and matching, tokens
and token hashes are generated, transforming EncounterTokenParameters entities into
EncounterTokens.

Implementation

The database for the TraceCORONA app is implemented using SQLite [Hip21] and the
Room object-relational mapper [Goo21j], a standard solution for mass data storage on
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30 4. TraceCORONA Implementation

Android. This allows for more straightforward access and interpretations of data than a
proprietary format, as well as easier debugging.

Following the conventions for Room, we implement the database entities/tables as Kotlin
data classes, while queries are implemented as functions in the corresponding Data Access
Object (DAO). Apart from regular getters and setters, storing data in SQLite allows us
to use database queries to retrieve aggregate values, such as the duration of all encounters
in a certain interval, without manually filtering data in code. Another feature provided
by Room are live queries using the LiveData interface of Android, which are used to
automatically update the user interface when the database changes.

Every DAO is then wrapped in a repository, which supplements the SQL queries with
functionality such as converting time to keypair ID (cf. Section 4.5) or converting the
EncounterTokenParameters into EncounterTokens.

4.4. User Interface
Design

To achieve a usable and presentable interface quickly, and due to the robust integration
into the Android framework, the interface design of the TraceCORONA app is based
on Google’s Material Design system [Goo21g]. It consists of a number of single-purpose
screens linked together by an overview using card components, which are well-suited to
group related information and buttons [Goo21d].

A tutorial is launched on the first start of the app only and provides an introduction on
the functionality and usage to the user. Once the tutorial is completed, the user enters
the main screen (see Figure 4.3(a)). Here, contact establishment (cf. Section 4.5) can be
enabled with the main floating action button [Goo21c] “Start Tracing”.

After touching “Check Your Status”, the user is taken to the status screen (see Fig-
ure 4.3(c)), where the encounter download and matching (cf. Section 4.6) is triggered and
a message according to the user’s exposure status is displayed. If at least one encounter is
present in the database, a “More Statistics” button is shown, with which the user can see
a list of daily encounter count and duration. Lastly, the “Upload Your Contacts” button
launches the Transaction Authentication Number (TAN) entry screen (see Figure 4.3(b))
for infection verification and subsequent encounter upload (cf. Section 4.7).

Implementation

The Material Components for Android library [Goo21i] is used to extend the Android
SDK and Android Jetpack support libraries’ built-in functionality. The user interface is
implemented using activities, with the only part using a fragment-based interface being
the WelcomeActivity for the tutorial.

Every activity represents a screen as described in the Design part. To prevent loss of
information when the activity is destroyed, e.g., if the device orientation changes, view
models are used to provide and persist data. MainActivity and AlertsActivity (see
Figure 4.3(a) and Figure 4.3(a)) use a dedicated view model to store information only
needed for the specific screen, while separate view models are used for information from
the database. These handle the database connection and wrap functions and values of the
repositories (cf. Section 4.3).

LiveData values provided by the view models reduce the boilerplate code, as the Observer
pattern can now be used in the activities to update the user interface if values change in
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4.5. Contact Establishment 31

(a) Main screen (MainActivity) (b) Upload Contacts
(UploadContactsActivity)

(c) Status screen
(AlertsActivity)

Figure 4.3.: Screenshots of TraceCORONA user interface

another part of the app, e.g., the database. Additionally, a separate instance of Shared-
Preferences is used for the user interface to persist values such as if the tutorial has been
shown yet or when the matching process was last run.

To implement lists of values, we use the RecyclerView provided by Android Jetpack, which
requires us to implement list adapters. These in turn use the view models to manage the
layout and content of lists.

4.5. Contact Establishment

The tracing package contains the core logic used for Bluetooth contact establishment
and logging. It is organized into three subpackages: handshake, handshake.gatt and
keyGeneration. The root, as well as the former two of these subpackages form a multi-
layered structure handling the different layers of Bluetooth Low Energy (BLE or Bluetooth LE)
communication. The top level contains the classes TraceWorkManager and TraceService,
which are responsible for regular key rotation and scanning/advertising intervals. One level
below, handshake handles the connection process with scanning and advertising, while the
nested gatt package is used for key exchange through the Bluetooth Generic Attribute
Profile (GATT) protocol after initial discovery.

Prerequisites

Before enabling contact establishment, several other requirements have to be fulfilled. The
application checks if Bluetooth is enabled and prompts the user to enable it otherwise.
Another check is performed for the permission to read the fine device location, required by
Android for usage of Bluetooth LE, as Bluetooth beacons may reveal the device location.
For the application to run in the background without risk of being interrupted by Android’s
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32 4. TraceCORONA Implementation

battery optimization, the user has to explicitly exempt this app from being optimized in
the device settings.

The final requirement to use the TraceCORONA app is support for Bluetooth LE adver-
tising in the device’s Bluetooth chipset. Multi-advertisement support, i.e., the ability to
advertise for multiple services and with multiple message parameters at the same time,
is recommended so that other devices and apps can function as normal while TraceCO-
RONA is advertising. The Android developer documentation even states that support
for multi-advertisement should be queried “to check whether LE Advertising is supported
on [the] device”[Goo21b]. However, devices exist where advertisement is supported, but
multi-advertisement is not, e.g., recent Nokia phones per our tests. A toggle was added to
the app to override this check, still, advertising may be unreliable when used with these
phones.

Communication

Bluetooth communication is handled according to the protocol design described in Sec-
tion 2.4.1. For the discovery phase, where no connection is active, Advertisements are
handled by the Advertiser class and scanning is handled by the Scanner class. Once a
device is discovered, the Discovery class then checks if the device is known and triggers
the connection process for the handshake if not.

For this key exchange, the scanning side uses GattClient, which provides an android.
bluetooth.BluetoothGattCallback to control the connection to the GattServer pro-
vided by the advertising device. The exchanged keys and parameters are subsequently
saved to the database as an Encounter with attached Scan and EncounterTokenParameters
entities.

The two WorkManager classes, despite their name, inherit from the androidx.work.Worker
class with the companion object providing a startWorker function for initialization, which
communicates with androidx.work.WorkManager for scheduling. The TraceWorkManager
restarts the TraceService every 30 minutes to regenerate the BLE device address and
switch to a new keypair and rolling ID.

Key Generation

Key generation is a mostly separate part, being similar in architecture to the top level
package with the KeyGenerationService being started by the WorkManager, which then
actually generates keys and saves them to the database. Keys are generated every two
days by default, and for further optimization WorkManager allows to restrict the execution
to times when a battery charger is connected. Keypairs consist of a public and private key,
and are supplied by the Elliptic Curve Diffie-Hellman (ECDH) provider included in the
Bouncy Castle crypto package [Leg20], wrapped in the util.security.ECDHUtil class.

Every keypair is assigned an ID, also used for selecting the correct keypair planned for the
current time window: the first keypair has ID 0 and subsequent keypairs count up. The
timestamp of the first tracing activation is saved to the SharedPreferences, and the time
window for every key is hard coded to 30 minutes. Thus, the ID of the active keypair can
be calculated as IDKeypair = (tcurrent − t1st tracing)/30 min.

4.6. Encounter Download and Matching
All server communication in the app is handled by the Retrofit 2 [Squ20] and Gson [Goo21f]
libraries. Once the user initiates the encounter download process by opening the alerts
screen, the encounterdownload.DownloadService, inheriting from util.Webservice, is
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5.2. Server-Device Communication 37

bandwidth is mostly relevant for estimating the impact on the internet and server caused
by simultaneous communications, and traffic volume is relevant on the server and client
sides, as it is commonly used as a billing unit for servers and mobile data plans1.

For decentralized contact tracing, there are two major traffic-generating operations: up-
loading encounters to the server and downloading encounters from the server. In the two
applications analyzed here all other operations are either unnecessary for the tracing itself,
such as fetching statistical data for display to the user, or specific to the local implemen-
tations, such as verification of infection. We estimate the traffic generated as a function of
the user count n, the rate of infected users λ, and additional variables related to the data
shared by the system. The total traffic volume and bandwidth scales up with the amount
of users and/or infected users.

After estimating and comparing the bandwidth required for both systems in the first
sections, in Section 5.2.5 we highlight another aspect of server-to-device communication:
preventing passive attackers from gaining information about user status.

5.2.1. Generalized Worst Case

To put an upper bound on the traffic volume required by users, we take a look at a
generalized “worst case protocol” first. In this protocol, both sides record each encounter
with a size of senc. For longer encounters, these data are repeated for every time slot. In
case of an infection, all encounter data are distributed to all other users. In the worst
case, every user encounters every other user, i.e., every additional user can generate n− 1
additional encounters. Once an infection is registered, this increased number of encounters
is then distributed to all devices in the system, leading to n transfers for every encounter.
Again assuming the worst case – everyone encounters everyone and is then afterwards
simultaneously diagnosed as positive – yields the maximum traffic volume a distributed
contact tracing system can produce per time slot, referred to as τmax in Equation 5.1.

τmax(n) = n︸︷︷︸
Transmissions

per Enc.

n(n− 1)︸ ︷︷ ︸
Number
of Enc.

senc︸︷︷︸
Size of

Enc. Data

(5.1)

Leaving out the factor n for the transmissions yields the traffic volume per user, while
dividing by the length of the time slots yields the average bandwidth used by this system.
Therefore, this generalized distributed contact tracing system’s traffic per time slot is in
O(n3).

Of course, if everyone is infected, tracing contacts does not make sense anymore. Therefore,
we introduce the rate of infected users, λ, which is the amount of newly-infected users
in this time slot divided by the amount of total users. If a system is encounter-based,
we additionally need the average encounters for the uploaded time period per person,
µenc = µenc/day ·ndays. These variables will be used in the equations describing the systems
in the next sections.

5.2.2. GAEN

In GAEN, to reduce the amount of traffic generated, the system uses keys rotated daily
(TEKs) to then generate the identifiers used in communication between devices (Rolling
Proximity Identifiers (RPIs)). Thus, for server-device communication the size of these
TEKs and the corresponding metadata is relevant. As mentioned above in Section 5.1,

1Note, however, that the traffic of government-supported tracing apps is often zero-rated by mobile service
providers, i.e., users are not billed [Hol20; CJG20].
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Constant Value

mCWA, down 33 B
tCWA, down 52 B

τCWA, up, 14 keys 488 B

Table 5.1.: Corona-Warn-App encounter token upload and download payload size

the GAEN specification includes an exact file format to be used for download of TEKs
from the server [Goo20d; App21b]. For efficient encoding of data this binary file uses the
Protocol Buffers library [Goo21h], which allows for defining custom binary protocols. For
every key this format includes the key data (16 B) as well as the metadata about when the
key was active (4 B + 1 to 2 B), the type of diagnosis (1 B), and the TRL/DSOS values
(see Section 3.1.4, 1 B + 1 B). As every field includes a 1 B header, this adds up to 31 to
32 B per key.

When generating messages for download by the client application, the keys are packaged
into an export message. This includes a time window for the keys in the message (8 B+8 B),
a region string (2 B), batch values for splitting the file into multiple parts (1 to 5 B + 1 to
5 B), information strings about the signature of the file (2 B + 3 B + 19 B), and the keys
(31 to 32 B each, see above). Again adding the sizes together, considering strings and
embedded messages up to 127 bytes in length have 2 B total overhead, the total length of
an export message is at least tCWA, down + nkeys ·mCWA, down = 52 B + nkeys · 33 B.

Messages used for uploading of keys, on the other hand, are not standardized between
implementations. Here CWA also uses a format based on Protocol Buffers. In addition
to up to 14/15 keys2 in the TEK format described above, every upload message includes
strings for the visited countries (2 B each) and the origin country (2 B), a flag controlling
if the message contents are to be federated between different national tracing applications
(1 B), as well as a padding string3 to reduce side channels based on message sizes (28 B
per missing key to pad out to 14 or 15 keys2). Adding these numbers, as well as headers,
yields an upload message size of minimum 405 B + ncountries · 4 B for one key valid for
under ≈ 21 h and maximum 484 B + ncountries · 4 B for 14 keys valid a full day each. For
comparison purposes, we assume ncountries = 1, which results in τCWA, up, 14 keys = 488 B.

Notably, these numbers should be identical or very close due to the padding applied
during upload. However, at the time of writing, two bugs in the padding behavior were
discovered by the author. The amount of keys to be padded to is not consistent between
the Android and iOS apps – 15 keys for Android and 14 for iOS – therefore making the
message size platform-dependent in practice. In addition, the estimate for the additional
length one key adds is set at 28 B, which, due to using variable-length encoding, is too
low for the actual values occurring in the data structure, and was estimated above at 33
to 34 B per key when considering the Protocol Buffers header for the embedded message.
This significantly reduces the usefulness of the padding, as messages with fewer keys are
still smaller. Both bugs were reported to the developers by the author on April 22, 2021
[Roo21], but no response or change in the relevant code segments occurred during the
period of the thesis.

Table 5.1 summarizes the results of our payload size calculations for Corona-Warn-App. If
fake key padding (cf. Section 2.2.4) is utilized, it must be considered, as it nearly multiplies

2The Bluetooth-based contact tracing feature uses up to 14 keys, while the more recent QR code based
check-in feature extends this by one. For the sake of comparison we use 14 keys and ignore the QR
code check-in.

3Not to be confused with fake key padding (cf. Section 2.2.4).
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Constant Value (original) Value (no encoding) Value (optimized)

mTC, down 181 B 80 B 24 B
tTC, down 0 B 0 B 0 B
mTC, up 143 B 96 B 28 B
tTC, up 73 B 0 B 0 B

Table 5.2.: TraceCORONA encounter token upload and download payload size

the generated traffic for key download. However, due to this form of padding not being
used in the CWA at the moment, it is left out here.

5.2.3. TraceCORONA

In contrast to GAEN, TraceCORONA does not use derived keys, instead using Elliptic
Curve Diffie-Hellman (ECDH) to generate a new token per encounter, which is rotated
every 15 minutes. Therefore the upload and download messages must include all hashed en-
counter tokens. In the TraceCORONA prototype, messages are encoded using JavaScript
Object Notation (JSON) and Base64 due to ease of use.

One encounter token takes 16 B and is encoded as 25 B. Additionally, the upload mes-
sage contains the encrypted state and nonce values (48 B, encoded as 68 B), the key
and encrypted key (16 B/25 B each) for every encounter, resulting in a payload size of
mTC, up = 143 B. The JSON labels take up an additional tTC, up = 73 B per packet.

Downloads contain similar information, only omitting the plaintext key used by the server.
Due to the streaming implementation (cf. Section 4.6), every encounter token takes a
total of mTC, down = 181 B, of which 63 B are used for JSON labels and could therefore
be reduced. The inclusion of the nonce data as well as the inefficient encoding leads to
the download size of original TraceCORONA being 11765/533 ≈ 22 times larger for a
period of 13 days and 5 encounters per day, and this is without considering the Hypertext
Transport Protocol (HTTP) headers repeated for each streamed key.

If TraceCORONA instead uses a system where multiple keys are grouped into a single
download package, similar to GAEN, and leaves out some unnecessary metadata sent
with the key, the traffic can be reduced considerably. We estimate the metadata can be
reduced to 4 B, consisting of infection state, date of encounter (as days since epoch) and
calibration data. Together with the token hash and encrypted key for metadata encryption,
this would then consume mTC, down = 24 B for every token, which is 13.3 percent of the
original size. For uploads, this would reduce the upload size to mTC, up = 28 B per key.
As the usage of an encoding like Protobuf is not strictly necessary for TraceCORONA, we
do not assume that one is used here, while for GAEN it is mandatory.

Table 5.2 contains the results of our payload calculations as described in the paragraphs
above.

5.2.4. Comparison of Generated Traffic

After describing the transmission format used by the two protocol implementations, we
compare the traffic generated by the two systems. For this purpose, the previously-
determined parameters are interpolated to realistic daily traffic volumes for a nation-wide
contact tracing system. As described in Section 5.2.1, three parameters are used as vari-
ables: the total amount of users of the system (n), the rate of infected users over the
analyzed time period (λ) and the average encounters per person and day (µenc/day). We
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(a) Varying rate of infected users, 15 000 000 users
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(b) Varying amount of total users, rate of infected
users = 0.001

Figure 5.2.: Comparison of TraceCORONA (raw, 5 or 50 average encounters/person/day)
and Corona-Warn-App (CWA) traffic per day, based on theoretical numbers, logarithmic
scale for both axes
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consider one low contact scenario with µenc/day = 5 and one high contact scenario with a
value of µenc/day = 50.

Three values are compared: the amount of keys/tokens stored on the server, as well as the
total traffic volume used for the upload and matching processes. The plots in Figure 5.2
are split into two columns, where either the rate of infected users or the amount of users
is varied. We plot two variants of TraceCORONA’s traffic volume, one with the proposed
reduced metadata size and ignoring JSON and Base64 encoding (5i and 50i, solid lines)
and one with the original size (5 and 50, dotted lines). Lines are colored according to the
legend, where the numbered lines stand for the TraceCORONA results with the respective
µenc/day value and the dashed CWA line stands for the CWA results.

The amount of keys or encounter tokens is estimated by the functions

ntokens, TC(µenc/day) = µenc/day · ndays

ntokens, TC, total(n, λ, µenc/day) = n · λ · ntokens, TC(µenc/day)
nkeys, CWA, total(n, λ) = n · λ · ndays

and is plotted in the first row of Figure 5.2. As expected, due to the vastly different ap-
proaches of TraceCORONA and GAEN, the amount of cryptographic identifiers stored on
the server is 2-3 orders of magnitude higher for TraceCORONA. Note that this calculation
does not change for the improved versions of TraceCORONA, therefore the dotted and
straight lines are on top of each other.

The upload traffic volume in both systems is calculated by the following equations. Note
here that CWA always uses the same upload size for padding, so even if users only upload
one week of diagnosis keys, the upload traffic does not change significantly:

τTC, up(n, λ, µenc/day) = n · λ · (mTC, up · ntokens, TC(µenc/day) + tTC, up)
τCWA, up(n, λ) = n · λ · τCWA, up, 14 keys

Finally, when examining the download traffic volume, a reason for keeping the number
of keys or tokens to a minimum is revealed – the traffic increases quadratically with the
number of users. This phenomenon is apparent in the function used for estimation, as
the amount of keys/tokens is already dependent on the amount of users, and every user
downloads every key/token:

τTC, down(n, λ, µenc/day) = n · (mTC, down · ntokens, TC, total(n, λ, µenc/day) + tTC, down)
τCWA, down(n, λ) = n · (mCWA, down · nkeys, CWA, total(n, λ) + tCWA, down)

Both for upload and matching we can see that CWA is the most efficient system in terms
of traffic. However, the difference to the improved version of TraceCORONA is under
one order of magnitude in the low contact scenario, so TraceCORONA does not generate
unreasonable traffic. In the high contact scenario, the difference is under two orders of
magnitude. Nevertheless, 50 encounters per day is a large number to be reached with
contacts away from home. The prototyped version of TraceCORONA generates a much
larger amount of traffic (1-3 orders of magnitude higher than CWA), while theoretically
allowing for recursive tracing. This function was not implemented in any decentralized
contact tracing system known to us.

Real values which can be used for interpretation of these results are provided by CWA
download numbers [Hoe21], incidence values [Wor21] and surveys such as [MHJ+08] or
[Rot20] respectively. Note that the definition of encounters is different between the stud-
ies and the actual criteria applied on devices. For TraceCORONA, on one hand signal
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strength and duration are present as metadata to filter encounters, on the other hand long
encounters can be registered as multiple encounters due to periodic key rotation.

Also note that this theoretical comparison excludes headers and verification data such as
TANs. As TraceCORONA’s streaming implementation incurs additional increased over-
head from packet frames and headers, the discrepancies between the current version of
TraceCORONA and GAEN are likely larger in practice. To verify our results and to gen-
erate a more complete picture we conduct real measurements and compare the results with
this analysis in Chapter 7.

5.2.5. Plausible Deniability and Playbooks

One more aspect belonging to the category of server-to-device communication is the no-
tion of masking the infection status of a person from an observer to the communication.
Although the contents of the communication are secured by Transport Layer Security
(TLS), without proper precautions the metadata can be used to infer the infection status
of individual users. To combat this, systems may send fake upload messages appearing
to confirm an infection and sending the ephemeral IDs. Additionally, when a device is
retrieving test results from the server, the responses should have the same size and thus be
indistinguishable for the attacker. As this aspect is not implemented into TraceCORONA
yet, the analysis in this section highlights CWA’s approach to this problem.

Fundamentally, this area involves two security properties of a protocol: plausible denia-
bility and observational equivalence. Plausible deniability is the concept of the attacker
not being able to confirm that a user has a certain property, i.e., knowledge of a secret.
In the case of contact tracing, we can view the possession of a positive test result as the
secret that the user wants to keep, but still be able to transmit to the server. Observa-
tional equivalence is a related notion in which an attacker is not able to distinguish two
processes in a communication protocol, i.e., a fake transmission and a real one. Currently,
the CWA does not use plausible deniability, the feature was disabled before release. If
enabled and configured so that the feature is actually effective, i.e. every user would have
a random chance to send a fake upload, the bandwidth usage of the system would increase
by a large amount.

In CWA, every communication with the server follows an identical pattern enforced by
the so-called playbook system. First, two requests are made to the verification server,
then one request is made to the submission server. All fake requests indicate their nature
to the server in a HTTP header and are consequently answered with a realistic response.
However, for the submission service one detail is not respected: the check-in system added
later adds two headers to the response [Cor21c] which are not present in the response to
the fake message [Cor20c]. This bug was reported to SAP on October 4, 2021. Therefore,
an attacker can distinguish a fake submission in two ways: first, the submission payload
size is always 423 B, as opposed to the variable size described in Section 5.2.2, and second,
the response size is smaller than for real submissions.

Overall, the criteria of plausible deniability and observational equivalence are not fulfilled
by the current version of CWA. It is possible, however, to update the application and
server side to effectively mitigate the possibility of network observers revealing infected
users.

5.3. Device Application
The aspects of the systems discussed in the previous sections all involve the server side.
In this and the next section we focus on the facets of the device applications, as well as
the communications between them.
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App Name Country Framework Derived from

Stopp Corona Austria Native
Coronalert Belgium Native CWA

Stop COVID-19 Croatia Native
eRouška Czechia Native
HOIA Estonia Native

Koronavilkku Finland Native
Corona-Warn-App Germany Native

Immuni Italy Native
Apturi COVID Latvia Native
COVID Alert Malta Native SwissCovid
CoronaMelder Netherlands Native
ProteGO Safe Poland Native
#OstaniZdrav Slovenia Native CWA
Radar Covid Spain Native
SwissCovid Switzerland Native

NHS COVID-19 App UK Native

COVID Alert Canada React Native
CovTracer-EN Cyprus React Native MIT PathCheck
Rakning C-19 Iceland React Native
COVID Tracker Ireland React Native

StayAway COVID Portugal React Native

SmitteStop Denmark Xamarin
Smittestopp Norway Xamarin

Table 5.3.: Frameworks used by open-source official national tracing apps

5.3.1. Multi-Platform Frameworks

Mobile Operating System (OS) such as iOS and Android enforce a strict design and layout
of application packages. Apart from using the official native Software Development Kit
(SDK) of the platform, there are additional frameworks available for sharing code between
platforms, with the currently most widely-used being Facebook’s React Native, Microsoft’s
Xamarin and Google’s Flutter. We surveyed a number of official European contact tracing
applications that published their source code. Among 23 open-source national contact
tracing applications implementing the GAEN Application Programming Interface (API),
16 were using platform native SDKs, 5 were using React Native and 2 were using Xamarin.

We believe this low adoption of multi-platform frameworks to be related to performance
considerations, as well as unavailability of GAEN in these frameworks, requiring native
code for integration. Additionally, a main benefit of multi-platform frameworks is the
implementation of web and/or desktop applications for PCs in the same codebase, which
is not relevant to COVID tracing apps where usage is confined to cellphones.

The TraceCORONA prototype, as stated in Section 4.2, is implemented as a native An-
droid app. Therefore, for device performance comparisons between CWA and TraceCO-
RONA, as in Chapter 7, the framework is not a variable to be accounted for.

5.3.2. Risk Score Calculation

An aspect not implemented in the current prototype of the TraceCORONA app is the
classification of encounters by distance and time to minimize false positives if infection
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is unlikely. GAEN provides a system to classify exposureWindows, which is the term for
single encounters inside a rolling window, by report type, infectiousness, attenuation or
distance, and time.

Figure 5.3.: “High risk” mes-
sage of CWA, from [Cor21a]

As stated in Section 5.2.2, every TEK is assigned a DSOS
value and a report type by the server. The DSOS value
is converted into an infectiousness value of “none”, “low”
or “high” by the GAEN framework, and the report type
is used unchanged as either “unknown”, which leads to
the key not being used for calculation, or one of four pre-
defined values. In total, 8 different states which lead to
the key being counted can be encoded by these two val-
ues. Additionally, GAEN allows weighting the time of the
encounter. The time between repeated scans of the same
RPI is multiplied with a value corresponding to attenua-
tion buckets, i.e., depending on if the value falls between
two defined thresholds, which are provided in advance by
the app, yielding a weightedSeconds value. These three
values can then be used either by GAEN’s built-in sum-
mary features or retrieved for manual calculation by the
app.

Recent versions of GAEN and CWA implement the same
logic for calculation of risk scores. The weightedSeconds
value is multiplied with weights based on infectiousness
and report type, which are again provided in advance by
the app, resulting in the risk score. Every exposureWin-
dow is therefore assigned a risk score, which allows for
filtering of less risky encounters when computing the daily
risk score. It is simply the sum of all exposureWindow
scores on one day.

In CWA, however, DSOS, infectiousness and report type are “abused” to encode a TRL
between 1 and 8. Report types values are mapped to double the enum value, providing the
upper two bits, and infectiousness is used for the lower bit. Still, the algorithm remains
the same with only the server providing different values in the diagnosis key packages.
ExposureWindows with a risk score of 5 to 9 minutes are classified as low risk, while
higher scores are classified as high risk. Similarly, days with less than 9 minutes of risk
score are low risk and days with more are high risk. If there is at least one high risk
day, the user is warned with a red message (see Figure 5.3) telling to self-quarantine and
observe distance rules.

Taking the absolute values for the calculation in CWA [Cor21b; Cor21d] into account, the
risk score of 9 minutes is reduced to ≈ 5.63 min in ideal conditions, i.e., a TRL of 8 and
a Bluetooth Low Energy (BLE or Bluetooth LE) attenuation between 63 and 72 RSSI.
For lower attenuation, i.e., lower distance, this number changes to 7.031 25 min and for
higher attenuations it changes to ≈ 90 min. The absolute worst case of minimum time is
≈ 150 min for the lowest eligible TRL of 3 and a high attenuation.

5.3.3. Limits of GAEN

GAEN has a unique property among contact tracing systems: it is integrated into the
operating systems it runs on. This property allows for unique optimizations and mitiga-
tions for some attacks. Regardless, it is possible on Android to bypass the built-in API
entirely and run a regular app which implements the same functionality. Google does not
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allow such apps into the Google Play Store [Goo20e], but sideloading of apps is officially
supported on Android.

In detail, Google claims to detect and remove “malware that rebroadcasts BLE RPIs” as
well as “apps found to be explicitly capturing BLE RPIs” [Goo20e] to counter possible
relay and profiling attacks.

To prevent abuse of the official API for status-reveal attacks (see 6.1.4), the current ver-
sion of GAEN limits the number of times keys can be imported to 6 per day (note that
the number of keys is not limited further). Additionally, the parameters for risk score
calculation can only be updated once per week [Goo21e; App20].

5.4. Communication Between Devices
Lastly, as the core technology behind Bluetooth LE-based contact tracing, the communi-
cation of devices using BLE plays a crucial role in determining the effectiveness, security
and privacy properties of a system. Thus, the protocols have introduced different mech-
anisms to ensure the system meets its design criteria. In this section, we compare the
different parts of the local communications between tracing devices.

Fundamentally, the purpose of a BLE tracing protocol is to record encounters between
users’ devices in a way that allows for warning if a user is diagnosed as positive. As
described in Section 2.1.1 and Section 2.2.2, the two techniques in use for this are active,
in use by TraceCORONA, and passive contact establishment, which is used by GAEN-
based apps.

Before any contacts can be established, one device must be advertising by sending packets
and another device must be listening, or scanning, for advertisement packets (see Sec-
tion 2.2.1). In GAEN, advertisements are continually sent at low transmission power
“around every 250ms”[Goo20b; Goo21a]. Scanning is only active for a short period of 4
seconds [Goo20b] every 3-5 minutes (based on logs of a Pixel 3a running CWA). This
limits the resolution of the encounter time to these 3-5 minutes.

In both protocols, contact establishment begins with one device discovering each other
through these advertisements. The advertisement payload contains a rolling identifier,
which changes every 15 minutes for GAEN and every 30 minutes in the TraceCORONA
prototype. The former includes a 4-byte Associated Encrypted Metadata (AEM) value,
while the latter also includes the reported transmit power level in an unencrypted form.
See Section 6.3 for more details on these fields.

In both systems, the receiving device now saves the connection data and metadata to a
database and continues listening until the scan interval is over. If a rolling identifier is
scanned again, these data are saved indexed by the identifier to allow for profiling of the
encounter later. For GAEN, this is the whole process, as the system does not establish
contact between devices. TraceCORONA additionally needs to establish an encounter
token, which is triggered by the scanning device not having seen the rolling identifier
before.

In this process, an ECDH key exchange is performed, of which the result is the encounter
token. This leads to the advantage of people being able to redact certain encounters before
uploading their keys, but can also lead to an issue where a large amount of encounter tokens
generated on other devices can be uploaded to the server as well. A detailed description
of this attack vector and its implications can be found in Section 6.4.
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6. Security Analysis

After establishing knowledge about the two protocols by looking at specifications and
code, we now focus our attention on attacks possible against users of the two analyzed
tracing systems. At first, we provide an overview of all attacks for both systems which were
analyzed either in related work or by us in Section 6.1. Then, we perform a formal analysis
of Google/Apple Exposure Notification(s) (GAEN) and TraceCORONA in Section 6.2. At
the end of the chapter, we provide in-depth descriptions and discussions of a a novel attack
we uncovered during our research in Section 6.4.

6.1. Known Attacks
In Table 6.1, we list all attacks known from the literature (cf. Section 3.3) which are appli-
cable to common contact tracing solutions. We have analyzed the impact of these attacks
in the GAEN or specifically Corona-Warn-App (CWA) system, and the TraceCORONA
system.

The results of this analysis are described in the following four sections, each corresponding
to a category of attack, sorted by outcome and technique and marked by horizontal lines
in Table 6.1. Afterwards, the results of the analysis are discussed in Section 6.1.5.

6.1.1. Profiling With or Without Bluetooth LE Communication

First, we examine most1 attacks resulting in untargeted profiling of infected users, i.e.,
gathering information about infected users’ location history or social behavior by ob-
serving their Bluetooth Low Energy (BLE or Bluetooth LE) communication or actively
communicating with them. Along this line, there are multiple aspects to be discussed.

Bluetooth LE Profiling without Server Access

In GAEN, once the users upload their diagnosis keys, an attacker can link the ephemeral
IDs over the course of one day. Therefore, GAEN is vulnerable to profiling with a fixed-
position BLE scanner, as was demonstrated in [BDF+20]. This attack is also called
Paparazzi attack by [ABIV21]. TraceCORONA does not upload ephemeral IDs or related
secrets to the server, instead using Elliptic Curve Diffie-Hellman (ECDH), which protects
the established encounter tokens from passive attackers.

1Attacks using device time modification are described in Section 6.1.3
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Outcome Attack GAEN TC Alternative names/references

P Profile infected users using fixed-position BLE sniffers 7a 3 Privacy [BDF+20], Paparazzi [ABIV21]
P Profile infected users using fixed-position BLE transceivers 7a ◦
P Profile infected users using malware on other devices 7a ◦ De-anonymization [DR20]
AP Link uploaded TEKs/encounter tokens by Transmission Risk Level (TRL) ◦ 3 Section 2.2.4, [Hue20a]
AP Link recorded beacons of infected users by unique metadata values 7 7b Sec. 6.3, CVE-2020-24722 Iss. 2 [Mar20]
P Profile infected users using fixed-position BLE sniffers + server data ◦ 3 Orwell [ABIV21]
P Profile infected users using fixed-position BLE transceivers + server data ◦ ◦ Matrix [ABIV21]
AP Deanonymize encounter data as colluding server + health authority ◦ ◦ Brutus [ABIV21]
P Count infected users’ encounters as colluding server + health authority 3 ◦ Bombolo [ABIV21]
P Profile infected users as colluding server + health authority 3 3 Bombolo [ABIV21]

I Inject targeted fake alerts using BLE sniffer + server access 3 3 Matteotti [ABIV21]
I Replay (record and broadcast later) 7c 3

I Relay (record and immediately broadcast) 7 3 Security [BDF+20], False-Positive [DR20]
AI Modify calculation of attenuation as man-in-the-middle (replay attacker) ◦d 3b Sec. 6.3, CVE-2020-24722 Iss. 1 [Mar20]
AI Modify calculation of attenuation as sender 7 7b

AI Inverse Sybil (pose as one user on multiple devices not able to communicate) 7 7 [ACK+21]
AI Sybil (pose as multiple users at the same time using only one TAN) ◦ ◦b Section 6.4
AI Buy/sell upload of TEKs/encounter tokens using various methods ◦ ◦ [AFV21a]

AI Modify time of device to inflate time of encounter 7 7 Master of Time [IVV21a]
I Modify time of device to inject encounters with IDs outside of validity period 7 7 Belated Replay [IVV21a]
I Modify time of device to inject encounters without knowing TAN ◦ 3 KISS [IVV21a]
AP Modify time of device to gather past/future ephemeral IDs 7 ◦ My-Number: Past/Future [IVV21a]
AP Modify time of device to make it broadcast the same ID for an extended time ◦ 3 My-Number: Far Future [IVV21a]

R Capture photos of infected users using BLE transceiver + directional antenna 7 7 Paparazzi [Vau20], [NAE+21]
R Annotate encounters with location, personal data, possibly share this info 7 7 Nerd [Vau20], Militia [Vau20]
R Malware/trojan horse acts like tracing app, reports results to attacker 7 7 Biosurveillance [DR20]

P: Profiling of infected users, I: Injection of fake encounters, R: Revealing infection status of single users, A: Aid in. . .
7: design vulnerability – can only be corrected with major changes to protocol, ◦: implementation detail – can be prevented in implementation, 3: not vulnerable
a linkable for 1 day, b not yet implemented, c limited to 15 minute windows, d probabilistic Risk: Total(Criticality,Likelyhood of Occurrence)
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To better model TraceCORONA’s security, we introduce a modified attack with the ma-
licious observer being able to send and receive BLE data (transceiver). With only a
transceiver and without access to the server, TraceCORONA has one remaining way to
link observed encounters: the “nonce”, originally meant to allow identified contacted users
to recursively continue tracing (cf. Section 2.4) and therefore able to be decrypted by
all contacted users, allows for linkage of encounters. Transmitting the nonce to clients
is not integral to the functionality of TraceCORONA, which is why we classify it as an
implementation detail to be changed in an eventual deployment.

Both of the previous attacks have assumed a network of fixed-position scanners/transceivers.
[DR20] presents an attack scenario, the so-called de-anonymization attack, in which mal-
ware included as part of advertising Software Development Kits (SDKs) interacts with
users of the tracing app. As phones are able to act as transceivers, this attack is equiva-
lent to the fixed-position transceiver without server access, the only difference being that
location of the device can change, which is recorded through other means. The impact is
identical to the attack above.

Linkage of Diagnosis Keys/Encounter Tokens

Next, we look at attacks which allow to link multiple encounters or diagnosis keys to a
specific user or small anonymity set. Of course, this alone does not result in profiling,
rather aid with processing data gathered in another attack. The first attack, described in
detail in Section 2.2.4, abuses the Transmission Risk Level (TRL) system of CWA and is
only applicable in very specific cases in which a very small amount of users is uploading
diagnosis keys. TraceCORONA, on the other hand, is not vulnerable to this attack, as
there are no daily diagnosis keys and the transmission risk level could be encoded like the
nonce currently is, making it impossible for observers to link encounters by a single user.

Another attack centers on the Received Signal Strength Indication (RSSI) calibration
metadata sent with users’ advertisements. These values can provide another data point
for linkage of multiple tokens or keys, even if transmitted in an encrypted form only
visible to the encountered party. When using less common Android devices with per-
device calibration data, the chance that this device is either the only instance or part of a
small group of a certain model in an attacker’s dataset is high. Even though calibration
metadata are not used in TraceCORONA yet, we argue that both TraceCORONA in a
real world deployment and GAEN would be vulnerable to this attack, as radio calibration
metadata is essential to reliable RSSI-based distance estimation. [Mar20] contains this
attack vector as “Issue 2”.

Profiling with Bluetooth LE and Server Access

A variant of the Paparazzi attack, where the attacker operates fixed-position BLE snif-
fers, is the Orwell attack [ABIV21]. Here, the server is additionally under control of the
attacker. Again, GAEN is vulnerable to this attack, and with server access all keys are
linkable over the whole uploaded period, i.e. users can be tracked over up to 14 days.

When the attacker is able to access the server data, we run into multiple attacks where
both systems fail to protect users by default. In the so-called Matrix attack [ABIV21],
where the attacker has server access and operates fixed-position BLE transceivers, all
uploaded data from users is linkable in both systems, which allows the attacker to link
their observed/exchanged identifiers. If the health authority distributing the Transaction
Authentication Numbers (TANs) for upload by users colludes with this attacker, this data
can even be linked to personal identifying information collected by the testing station or
hotline. The latter case is called Brutus attack in [ABIV21].
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50 6. Security Analysis

As countermeasures against these attacks, blind signatures could be used to make uploaded
data unlinkable, such as in Pronto-C2 [ABIV21]. Additionally, mix networks [Cha81]
operated by Non-Governmental Organizations (NGOs) can be used to then prevent linkage
by IP addresses. Technical solutions such as these serve to decouple the different trust
actors and make an attack with operator level access less likely. Still, the upload process
of contact tracing data requires trust in the authority operating the system – if all actors
of a system collude, the user cannot prevent linkage of their data. Increasing the technical
debt incurred by more complicated processes is likely to harm performance and introduce
bugs leading to more serious issues than would be prevented here.

Non-Bluetooth LE Profiling with Server Access: Bombolo Attack

What would happen if the attacker does not use BLE communications at all, instead only
aiming to gather metadata about the encounter behavior of users and having access to
server-side data by operator and health authority? This attack is known as the Bombolo
attack [ABIV21]. We have separated this attack into two in the table, as a full profile of
the user akin to what a BLE attacker can achieve is not possible in either system.

In GAEN-based systems, performing a Bombolo attack only tells the attacker on which
days tracing was active in the uploaded time period, i.e., the last 14 days, which we do not
regard as useful in any way. TraceCORONA in its current implementation would leak the
number of encounter tokens the user has collected, which could lead to a rough estimate
on the contact behavior of the user. Still, we do not see this as an important flaw of the
system, and the original paper states on this problem: “It is hard to imagine how such
leakage could be exploited by mass surveillance attacks.” [ABIV21].

Nevertheless, securing TraceCORONA is possible by always uploading the maximum
amount of encounter tokens if such a limit exists and padding the data with fake en-
counter tokens. This in turn would increase traffic requirements of the system and prolong
on-device matching. Reducing the granularity of the attack as a compromise between
wasted traffic and user privacy is possible by instead defining fixed quanta of tokens to
pad to.

6.1.2. Fake Alert Injection

In this category we classify attacks which result in – or help with – alerting users about
contacts with infected users which never happened, i.e., generating fake alerts. For our
examined systems, these attacks always require an active attacker broadcasting a BLE
signal.

Full Attacks

Two attacks which do not work either on GAEN or on TraceCORONA are the passive
insertion of fake alerts by reporting people in contact with the user as positive (Matteotti
attack [ABIV21]), as well as the replay attack, in which attackers record transmissions and
later send them at the same or a different location. The former does not work, as both
systems do not upload the transmitted ephemeral ID to the server in plain, but rather a
value either derived from this ephemeral ID or used to derive the ephemeral ID. These
are based on security primitives currently regarded as secure. The replay attack does
not work, as the ephemeral IDs used in both systems change every 15 minutes, and in
the case of TraceCORONA, a two-way handshake is required, which needs a private key
inaccessible to the attacker.

However, for the case of an attacker immediately forwarding and rebroadcasting received
messages at a different location, we proved in [BDF+20] that GAEN allows this attack. We
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dubbed this relay attack “Mind the Security GAP” and a version using malware on devices
was theorized in [DR20] as the False-Positive Attack. TraceCORONA is not vulnerable
to a one-way relay attack, but would require a sophisticated two-way relay attack, which
presents a much higher technical hurdle due to the required real-time capability and the
limited capacity of common off-the-shelf BLE devices.

Partial/Supplemental Attacks

The remaining part of this section covers attacks which on their own do not lead to injection
of fake encounters, but can be combined to achieve this purpose. The first subcategory
of these attacks concerns itself with the Associated Encrypted Metadata (AEM) field in
GAEN Bluetooth LE transmissions. It contains calibration data used to more accurately
estimate the distance between users through the measured signal strength. As this field
uses AES-CTR, which is an unauthenticated encryption mode, relay attackers can modify
this value. However, as it is encrypted, the attacker is limited to flipping bits, hoping
to affect the value in a way which helps them achieve a higher risk score. This attack
vector was reported by Marsiske as “Issue 1” of CVE-2020-24722 [Mar20]. Furthermore,
a malicious sender could directly influence the value used in the message. The former
attack can be fully prevented in TraceCORONA by transmitting the calibration data as
part of the encrypted message currently containing the infection state and nonce. The
latter attack, however, could only be prevented by using a centralized registration which
verifies the device model and a trusted computing concept enforcing this registration,
which is difficult, if not impossible, to implement in a manner usable by lower-cost and
older smartphones.

Another way of maximizing the attack impact of fake alert injection is modifying the
relationship between real devices and device identities. In peer-to-peer systems, which
decentralized contact tracing systems are, abusing multiple identities is called a Sybil
attack. One application of this principle, dubbed “Inverse Sybil attack” [ACK+21], has
an attacker model of multiple devices not being able to communicate with each other and
being able to assume the same identity, therefore being able to feign contact with more
users, ultimately generating fake alerts. For GAEN, this attack can neither be mitigated
nor prevented, while for TraceCORONA a mitigation in the form of encounter limits is
possible. The proposed solution to the issue, creation of a hash chain advancing each time
period or fixed number of encounters [ACK+21], does not prevent the use of a connection
between devices to synchronize these values. In the real world, an internet connection can
be used for this purpose, thus making the attacker model unrealistically limited.

A novel attack is our Sybil attack, where one device pretends to be multiple devices.
This attack, fully detectable and easily preventable in GAEN, is not trivial to handle
in TraceCORONA due to the unlinkability of encounter tokens. When successful, an
attacker can create more encounters, leading to a higher risk score when assuming the risk
calculation from GAEN, thereby reducing the time it takes to inject a fake high risk alert.
However, its impact is limited drastically for most attack scenarios using an encounter
limit. Other countermeasures include requiring a minimum time per encounter for it to
be counted, counting multiple simultaneous encounters as one, or the usage of heuristics
to detect the attack. A more in-depth analysis of this attack can be found in Section 6.4.

Lastly, to realize these latter fake alert injection attacks, an attacker has to upload their
generated diagnosis keys or encounter tokens to the server. For this purpose, the paper
[AFV21b] devises a number of schemes allowing unscrupulous users to sell their infection
status for profit. These mechanics are not part of the core tracing protocol, rather falling
under the responsibility of implementors. Thus, we classify this attack vector as an im-
plementation detail. One countermeasure, at least making it more difficult for users to
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sell their positive test result, would be to tightly couple the release of the test result to
the diagnosis key/encounter token upload. The inconvenience caused by this mitigation
might outweigh its benefits, though.

6.1.3. Time Modification Attacks

Having analyzed attack vectors mainly targeting design flaws of the tracing app and proto-
col itself, we now focus on a security issue highlighted in [IVV21a], namely the possibility
to influence the device time remotely. As time is an essential factor used in the tracing
protocols at hand, modifying the time disrupts certain processes in tracing protocols and
is particularly hard to detect.

Keeping with the theme of the last section, we first look at an attack allowing to inflate the
risk score generated by a fake encounter. This attack, dubbed “Master of Time”[IVV21a],
advances the device clock between two scans of an encounter. As both systems rely on the
device time to measure the length of encounters, they are both vulnerable. The only way to
prevent this attack is to use a timer which always advances independently of the operating
system clock. This can either be a software timer, which consumes a whole CPU core and
wastes power, or a hardware timer, which might not be accessible on mobile phones.

Two attacks used for injection of keys make use of the limited validity period of the
ephemeral IDs used in tracing. Both attacks first modify the device time to a point in this
validity period and then generate an encounter with this ephemeral ID. In GAEN, this
would allow for a “belated” replay attack (after the ephemeral IDs were rotated) [IVV21a].
In TraceCORONA, where replay attacks are not possible, the risk score could be affected
or daily encounter limits bypassed by an attacker. The second attack combines this flaw
with a bug in the servers used by multiple countries, where Temporary Exposure Key
(TEK) that were still valid could be downloaded as part of diagnosis key packages. This
“KISS attack” [IVV21a] allows attackers to inject encounters without having the ability to
upload encounters. It is a bug in the implementation and not relevant to TraceCORONA,
as private keys are not transmitted to the server.

Two other attacks, dubbed “My-Number attack” [IVV21a] allow for exfiltration of past
or future ephemeral IDs from the device. By setting the device time and waiting for
the ephemeral ID to change, the device broadcasts an ID not meant for the current time
frame, rather broadcasting one already used or scheduled to be used. This attack works on
GAEN, as described in the paper, and can also be applied to TraceCORONA if keypairs
and ephemeral IDs are generated in advance. To prevent this, the system can record
if one of these records was used and never use an ephemeral ID twice. As it is not
cryptographically bound to the time as with GAEN, this poses no problem.

Another attack is to set the device time to the far future, which generates an ephemeral ID
scheduled to change at the end of its validity period. This period can last over 100 years,
defeating the “ephemeral” part completely. If successful, the functionality and privacy of
the app are broken completely. However, this attack relies on a logic flaw in the GAEN
system and can be easily fixed.

6.1.4. Status Reveal Attacks, Digital Evidence

Finally, after discussing the impact of several issues where prevention is mostly possible
is some way, we now enter the realm of attacks inherent to existing contact tracing flows.
All of these attacks are possible on both discussed systems and can only be mitigated,
leading to limitations in the platform.

The first class of attacks inherent to (decentralized) contact tracing are status reveal
attacks. These allow the attacker to link certain personally identifiable information with
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the information that a person is infected. One attack, theorized as a “Paparazzi attack”
[Vau20], not to be confused with the one above, and demonstrated in [NAE+21], uses a
camera to capture a photo of a person and establishes an encounter at the same time.
If the encounter token or ephemeral ID is later confirmed as belonging to an infected
person, the attacker can link the photo with it. An approach to mitigate this attack was
discussed in [PF20], in which random people are notified as being infected. This mitigation
was originally devised for a centralized tracing system. Transferring it to a decentralized
system poses some challenges, as people need to be compelled to share their encounter
data for a seemingly arbitrary reason.

Another status reveal attack, dubbed the “Nerd attack” or “Militia attack” [Vau20], pro-
poses the following scenario: A custom client for the contact tracing system is created that
allows people to manually annotate their encounters with additional information about the
encountered person. Later, when the risk score is calculated, the system can tell whom
the risk came from. If this information is shared between users, it could even be used for
suppression of infected people. To mitigate this attack, devices must prevent the access
to contact tracing broadcasts to unauthorized apps. This needs to be enforced on the
operating system level and would make the development of new BLE applications more
difficult. Additionally, a jailbroken or rooted phone could bypass these blocklists, enabling
dedicated users to still perform the attack.

The paper [DR20] proposes one more status reveal attack named “biosurveillance attack”:
this time, unsuspecting people install a trojan horse software including a tracing compo-
nent which does not display its results to the user. Rather, a risk score is then calculated
for the attacker to know if their victim is at risk of infection. Again, this issue can only
be fixed on the platform level, e.g., by the app store providers (cf. Section 5.3.3). The
mitigation described in the last paragraph also applies for this attack, with all its flaws.

After analyzing all of the attacks that we consider as real attacks, we want to remark on
the collection of digital evidence of encounters. Users can use a well-known digital evidence
technique such as publishing a hash on social media or using a blockchain to store their
encounters. Later, they can provide compelling evidence that their encounter was genuine
and not faked after the fact. This scheme is possible on all decentralized tracing protocols,
as all of them record a certain kind of evidence of encounter as part of their functionality.
Therefore, the only “fix” for this property is to use a centralized tracing protocol instead.
It is thematized by [Pie20] and called a “Gossip attack” in [ABIV21]. There, it is discussed
that this could actually be a feature to prove the authenticity of a high risk warning, e.g.,
if it would lead to a free test and therefore an attacker would be motivated to fake a high
risk status.

6.1.5. Discussion of Attack Risk

With all of the discussed attacks, there are different ways to judge their risk, impact or rel-
evance when comparing different systems. In this section, we discuss different approaches
towards summarizing the results of our attack analysis, and why we chose not to.

The industry standard way to rate vulnerabilities in software is the Common Vulnerability
Scoring System (CVSS) [FIR19], in use in the Common Vulnerability Enumeration system,
which two of our evaluated attacks are actually a part of. For our study, we argue that
the system (CVSS v3.1 Base Score) is too coarse-grained in certain areas, while including
metrics difficult to map to contact tracing systems. For example, both attacker models
including Bluetooth LE sniffers and transceivers would fall under the category of an adja-
cent attacker with no privileges. How do we classify user interaction in these attacks? Is
walking by the attacker a form of user interaction? Another attribute in the Base Score
is Scope. This attribute is designed for software and hardware inside a device, but is hard
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to apply to a distributed system such as contact tracing. Overall, we believe the CVSS is
not a good fit for our security rating.

Another system in use to classify the importance of security issues is the DREAD model
[HL02]. It consists of five metrics, which are averaged together in the end. This rating
is more fine-grained than the CVSS, while at the same time having a flawed calculation,
which the author proposes to fix by applying rules more akin to CVSS [LeB07].

[HL02] proposes another, simpler model titled RiskCO, in which there are only two metrics:
Criticality and Likelyhood of Occurrence, which are then multiplied to yield the final score.
Criticality describes the potential damage of an attack, while the likelyhood of occurrence
describes how likely the attack is to affect any user.

The main issue with all of these metrics is their subjective nature. CVSS comes the closest
to an objective rating, while just estimating a numerical risk (or “high, average, low”) is
very subjective. Different actors have reason to estimate attacks in a different light, and
users may also differ in the rating of these attacks. Thus, we decided not to give a rating
to the attacks, rather leaving this estimation to the reader.

Therefore, we can only conclude that TraceCORONA is not vulnerable by design to any
more attacks than GAEN. In concrete numbers, GAEN is affected at least partially by 14
of the attacks listed in Table 6.1, while for TraceCORONA this number is 8.

6.2. Formal Analysis

After the previous section has established the applicability of known attacks, we now focus
on the discovery of new attacks against the systems. For this purpose, we attempt to use
the technique of formal analysis. Section 6.2.1 reviews our choice of tool and Section 6.2.2
discusses the results we are able to gather from the analysis.

6.2.1. Verifpal

In the field of formal analysis, a range of tools allow to verify a given network protocol’s
security and privacy properties by simulating attacks which are possible to model using
the given tool’s modelling language and logic. For comparatively analyzing the security
of TraceCORONA and GAEN, we use the Verifpal [KNT20] tool. This tool, a relatively
recent development in the field, focuses on being understandable rather than allowing to
model every possible property of a protocol. As formal analysis is only a relatively small
part of our work, we assume that the time needed to build basic proficiency with more
advanced modeling tools was better spent understanding and comparing the protocols in
depth.

The manual [Kob21] describes all features of the software intuitively. As queries, Verifpal
can prove confidentiality of values, authentication of messages, freshness of cryptographic
keys, unlinkability of IDs and equivalence of values. The latter two are relevant to our
analysis, as unlinkability of identifiers is a concept especially interesting for contact tracing
and ProVerif [Bla01], an older, more established tool, does not seem to support checking
for equivalence of values.

Some limitations were encountered when modeling the protocol. In a Verifpal model, mes-
sages arrive in the same order every run, with checked primitives being the only way to
model a deviation from the standard control flow by aborting the simulated flow. Addi-
tionally, there are only two attacker models to be checked: either the attacker is completely
passive and can only observe communicated values, or the attacker follows the so-called
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Dolev-Yao active attacker model and can modify, replay, withhold or generate any mes-
sage. The former is more relaxed in ProVerif, as multiple processes run in parallel, while
the latter property is identical.

Modeling all properties of a Transport Layer Security (TLS) connection, while minimizing
the model size, which is required for execution to finish in a reasonable time, is not
trivial. One model even crashed the Verifpal software after running for over two days
on a computer with an Intel Core i7-5820K processor. In the full model, as in the real
world, every connection begins with a certificate check, then a session key is established,
which is later used for communication. A simplified version without establishment of
a fresh session key for every connection allows to prove properties impossible to verify
with the original model. However, here the server communication is vulnerable to replay
attacks. Finding the right balance between modeling too much and having the simulation
not finish, or modeling too little and getting false positives, is the main difficulty in the
analysis process.

A modeling tool with extended features can aid in analysis of complex models such as
the ones described in this section. A predefined notion of TLS communication, a channel
where confidentiality, integrity, authentication, freshness, and perfect forward secrecy are
ensured without having to use the authenticated encryption primitives and exchange keys
manually allows to focus on the contents of the transmission rather than the structure.
Additionally, a feature present in ProVerif, but completely absent from Verifpal by design
are data types, which, when used for simulation, reduce the attacker’s guesswork. In our
largest model, there are 96 constants, which despite optimizations result in a large amount
of useless deductions and unnecessary substitutions in results.

Apart from the features, one bug was encountered and reported to the developers. Initially,
with version 0.26.0 of Verifpal, Diffie-Hellman key exchanges, which we used to approx-
imate the ECDH key exchange in TraceCORONA, were broken completely and did not
yield an equivalent value on both sides. This bug is fixed after our report in the current
version 0.26.1, which is used for the remaining experiments.

We also describe some unexplained behaviors, for which it is not certain if they occur due to
bugs or design limitations. For one, when a private value is first used for some operation,
then afterwards publicly transmitted, the attacker can change the value and it will be
considered changed even for the operation which appeared first. Another unexplained
behavior is a failed authentication query despite all of the secrets and keys being fresh. In
the process of testing the latter issue, an equivalent freshness query takes over one month
to finish, which exceeded our time for this thesis.

Overall, Verifpal manages to provide an easy introduction into protocol verification. How-
ever, despite its advanced capabilities and a provided example model of low-cost DP-3T
(described in Section 3.1.3), we are not able to prove full models of the protocols at hand.

6.2.2. Models and Results

In total, we build 3 models of our protocols leading to different results each. The following
paragraphs therefore describe one model each. Models and queries are listed in full in
Section A and the queries are enumerated the same as in the listing in this section.

tracecorona.vp

For TraceCORONA, the flow modeled here begins, after key generation, with UserI and
UserJ encountering each other. UserJ initiates the handshake using Diffie-Hellman, which
is functionally identical to ECDH. UserI tests positive and receives a TAN from the health
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authority. They then acquire a nonce and upload their encounter token hash generated
earlier, as well as the StateAndNonce packet, to the server. UserJ downloads the encounter
token hash and checks if it is identical to the recorded one (matching process), then
proceeds to decrypt the state and nonce.

This model, as our first attempt at comprehensively modeling the protocol, includes a cer-
tificate authority and health authority, as well as separate ephemeral keys per connection.
A full TLS connection is established for every modeled connection over the internet. The
queries tested with this model include:

1. The confidentiality of the encounter token, which never leaves the device. Diffie-
Hellman is vulnerable to man-in-the-middle attacks, and so Verifpal managed to
disprove this hypothesis by inserting a bogus value into the key exchange. Especially
this result made us discuss the Sybil attack in detail.

2. Another query we test with this model is the equivalence of the encounter tokens for
both users. This is disproven the same way.

3. We try verifying the authentication of the upload message, i.e., if the attacker could
modify or replay the upload message. This should be impossible due to the nonce
being only transmitted over TLS. However, the verification process was not finished
after one week on a computer with an Intel Core i7-8665U processor and we therefore
gave up on this path.

tracecorona-3people-simple.vp

There are two problems with the previous model. If we guard the key exchange, i.e., mark
it as read-only by the attacker, there is no way left for the attacker to interfere with the
protocol. Also, other queries take too long to execute. Therefore, we develop a second
model, in which there are three participants. UserK, our new participant, leaks all of
their secret values to the attacker. To replace the TLS key exchange every connection, we
pre-share one symmetric key each between server and users.

1. Using this model, we verify the confidentiality and equivalence of the encounter token
between users I and J, which now exchange keys with a guarded connection.

2. Also, the private keys of both users are never leaked, which would allow the attacker
to impersonate each user.

3. Again, the attacker is able to modify the exchange between J and K, as this connec-
tion is unguarded.

4. When testing authentication of the upload message, as expected the attacker is able
to replay a previous message due to missing freshness guarantees.

5. Furthermore, the model verifies the confidentiality of the infection state and nonce
value, which is transmitted end-to-end encrypted and should therefore not be read-
able for the attacker.

coronawarn.vp

For the Corona-Warn-App, the flow is similar to the 3-person variant of TraceCORONA.
Instead of exchanging encounter tokens, Rolling Proximity Identifiers (RPIs) and AEM
packets are sent to the other user. In contrast to the other models, we utilize a single
guarded Diffie-Hellman key exchange to establish the session keys for network transmis-
sions at the beginning of the model. Due to the properties of GAEN, several queries yield
a different result.
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1. The AEM key is not confidential after upload of the TEK. Inspired by this result,
we further investigate the metadata transmitted in GAEN in Section 6.3.

2. We check that the AEM contents are the same if the attacker cannot modify the
Bluetooth exchange. This should be the case, but an authenticated and encrypted
value using a fresh key is still able to be modified by the attacker. This is another
unexplained result.

3. Again, the authentication of the upload message is disproven. We believe this result
to be a false positive, possibly due to a bug in the program.

4. Therefore, we instead query for the freshness of the generated secrets. At the same
time, we try to prove that the attacker can link RPI from the same day. These
queries were not finished after over one month of runtime on a computer with an
Intel Core i7-2680QM processor.

To summarize, the results of the formal analysis with Verifpal are limited, in part due to the
issues described above. However, even these analysis results lead to a further investigation
of two attack vectors present in the protocols. These are described in the following two
sections.

6.3. Metadata Attacks
In addition to the information of who was encountered, tracing systems have the ability to
perform filtering of encounters based on signal strength measurements. For this purpose,
Google maintains a database of calibration data for Bluetooth radios of different devices
[Goo20f].

The appropriate values for transmission power and calibration confidence are included in
GAEN advertising packets as the AEM [Goo20a]. Encryption is handled with an AEM
key, derived in the same way as the RPI key, which is first used to encrypt the currently
active RPI and then XORed with the AEM value. This behavior corresponds to the CTR
mode of operation, but without actually counting up, as the size of the AEM is 4 bytes,
smaller than the 16 byte block size of the used AES-128 cipher. No padding is used.

This encryption prevents a hypothetical attack in which users’ phone models could be
identified by comparing the transmitted values to the database. It is only possible for
users diagnosed positive after diagnosis key upload [Mar20]. However, not using an au-
thenticated encryption leaves the system vulnerable to another attack: metadata can be
manipulated in a relay or replay attack scenario to influence distance measurements and
therefore the risk score presented to other users [VV20; Mar20]. Google refused to switch
to an authenticated mode of operation, as relay attackers would be able to falsify measure-
ments anyway by using a high-powered antenna, and therefore a further amplification of
this effect seems to have low impact in their point of view. Additionally, they believe that
relay attacks are a problem of malware to be solved through app store policies, neglecting
the fact that malicious parties may use their own Bluetooth radios [Mar20].

In TraceCORONA, the advertisement packet includes the transmission power level of the
sender as reported by the Android Bluetooth Application Programming Interface (API).
At the time of development, there was no database of Bluetooth calibration data available,
making distance measurements unreliable at best. However, this also prevents a similar
hypothetical vulnerability in TraceCORONA, where this fixed calibration data could be
used for deanonymization. A future version of the protocol designed to utilize the calibra-
tion data should instead use an encrypted variable akin to the infection state and nonce
to transmit this information.
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6.4. Encounter Injection and Sybil Attacks
When analyzing the communication between devices in TraceCORONA, Verifpal alerted
us that the Diffie-Hellman handshake was vulnerable to a man-in-the-middle attack. This
inspired us to devise a scheme for simple encounter injection and encounter injection in
combination with Sybil attacks2. After describing the basic idea in Section 6.4.1, we first
describe our assumptions in Section 6.4.2 and then analyze the impact of Sybil attacks in
detail in Section 6.4.3. Lastly, we discuss possible countermeasures in Section 6.4.4.

6.4.1. Idea

Bluetooth LE-enabled mobile devices often support a mode called “multiple advertise-
ment”, in which the device is able to act as if it were multiple distinct Bluetooth devices.
This property can be used, for example in the “Mind the Security GAP” relay attack
[BDF+20], to broadcast collected ephemeral IDs from other devices. For passive tracing
protocols such as GAEN, this attack allows to fake a number of encounters, which can
increase the risk level on the device.

An attack with a similar outcome, but different attack technique is possible on the
TraceCORONA system. Instead of collecting ephemeral IDs, which is not possible by
design on TraceCORONA due to the use of the ECDH key exchange, the attacker can
generate multiple key pairs and therefore simulate many devices of their own. By encoun-
tering other users with this modified application running, the attacker is able to multiply
the amount of encounters detected by other users.

However, merely generating encounters does not increase the risk score of an individual,
rather these encounters have to be with a user who was later diagnosed with the virus. At
this stage, the fact that token hashes are transmitted to the server individually, which is
a design feature to reduce the traceability of users, becomes an issue. The attacker is able
to send multiple encounter tokens per user to the server by just providing a single TAN,
in turn multiplying the risk score generated by this single encounter.

In fact, this issue goes beyond a single device: if multiple devices share encounter tokens
for upload, the reach of this attack is increased even further. Compared to the relay
attack discussed above, however, the attacker needs to additionally obtain a valid TAN for
encounter upload. Depending on the implementation of the system, methods as described
in [AFV21b] may be utilized for this purpose.

Other types of tracing protocols are more resistant to this kind of attack. Tracing systems
where broadcasted identifiers are uploaded can limit the amount of identifiers per upload
to one per time frame. In practice, in CWA, upload messages are currently checked to
contain a maximum of 14 keys [Cor21e], but not for multiple keys per time frame. Systems
in which observed identifiers are uploaded can filter out duplicate keys.

6.4.2. Assumptions

After describing the basic idea and approach, we now explain a number of assumptions
made in the following impact analysis and discussion.

Attacker Model

We assume the attacker possesses a legitimate TAN for upload of encounters/diagnosis
keys. See Section 3.3.2 for related work in this domain. Furthermore, an attacker has full

2The term Sybil attack was coined in the paper of the same name [Dou02] referring to online peer-to-peer
systems.
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control over the device/devices used for the attack, these devices are able to communicate
both ways with both victims and each other. This implies that an adversary can optimize
all the relevant parameters dependent on the sender, which for GAEN is the signal strength
and the transmission risk level. Physical or hardware limits are not considered for this
attack.

Our analysis is based on the assumption that a real-world deployment of TraceCORONA
would be utilizing the same risk scoring mechanism as GAEN, which is described in Sec-
tion 5.3.2. If an attacker transmits with high power and manipulates the calibration
metadata to fall into the highest attenuation bucket, which we assume to be more realistic
than hitting the optimal target, they need to achieve a measured total encounter time of
7.03 min to trigger a high risk warning. We consider an attack as successful, i.e., a person
as affected, if this warning is triggered.

Also, in GAEN a BLE scan is triggered every 3-5 minutes (cf. Section 5.4). The hypo-
thetical deployment of TraceCORONA is assumed to also scan with this interval.

Encounter Limits

The design of TraceCORONA, in contrast to GAEN, allows for limiting the number of
encounters able to be uploaded with a single nonce value. The amount of encounters
allowed to be uploaded in the system is a tradeoff between functionality and security. If
too little encounters can be uploaded, people at risk of infection may not be warned, but
if too many encounters can be uploaded, the impact of encounter injection attacks such
as the Sybil attacks rises. In this section, to be able to quantify the impact of the attack,
we assume TraceCORONA implements a limit.

To find the correct number of encounters to limit to, there are several studies to be con-
sidered. Averages per day range from 9.9 contacts in a recent US study [Rot20] over 13.4
contacts in an European study [MHJ+08] to 16 average simulated encounters [DHHE07].
Notably, in [Rot20] retail employees averaged 89.4 encounters and manufacturing employ-
ees averaged 46.7 encounters. We consider two scenarios for limits of 160 encounters and
480 encounters over the whole 14 day tracing period, resulting in 11.4 and 34.3 average
allowed daily encounters.

If the server could discern the day an encounter was generated on, the limit could be more
granular. However, this would reveal more data – daily encounter numbers – to the server
than is currently the case.

Attack Scenarios

To compare the impact of a Sybil attack between TraceCORONA and GAEN, we use two
different scenarios:

• Mass scenario: A large number of people are present for longer than 9 min, e.g., a
crowd of people or a busy lecture hall

• Targeted scenario: A small number of people are present for 3 to 9 min, e.g., a short
bus ride or a smoke break

We set the cutoff at 9 min due to this being the minimum amount of time for 4 scans to
occur on users’ devices.

Note that in a benign mass scenario people present over an ephemeral ID change boundary
would “consume” two encounter tokens. By switching off the tracing functionality before
this change occurs, an attacker would be able to limit the count of encounters to one per
person. In a “benign targeted” scenario, there is a chance of people not receiving a high
risk warning even if one of the participants was later diagnosed positive.
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Figure 6.1 & Table 6.2: Impact analysis of encounter injection (Ns = 1, solid lines) and
Sybil attack (Ns > 1, dashed and dash-dotted lines)

Applicability to GAEN

As mentioned above in Section 6.4.1, relay attacks on GAEN rely on the presence of
infected users whose ephemeral IDs are captured. With TraceCORONA, all of the IDs
need to be generated by the attacker themselves due to the usage of ECDH exchanges.
This begs the question: Can an attacker use multiple IDs generated by themselves when
performing an attack against GAEN?

On a conceptual level, this may seem impossible, as RPIs (ephemeral IDs in GAEN) include
the validity time period as part of the key derivation process. In practice, however, RPI
time periods are extended by 3 hours into the future and past to account for unsynchronized
clocks on the device. In the August 2020 source code release of GAEN, we were not able
to find any mechanism allowing to filter invalid RPIs if multiple RPIs in this grace period
are detected at the same time. Confirmation of this possibility remains as future work, as
this code is over a year old at this point and a detection mechanism may have been added
in the mean time. Due to the theoretical possibility of detecting an attack without the
possibility of restricting benign cases – by design, RPIs are linked through the diagnosis
key – we assume Sybil attacks, i.e., simulating multiple devices with the same diagnosis
key, not to be possible on GAEN in the following sections.

6.4.3. Impact Analysis

Now, we estimate the impact of the Sybil attack in the two scenarios highlighted above.

Mass Scenario

Figure 6.1 shows the potential impact of encounter injection and Sybil attacks. Ns is the
amount of sybils: the solid lines represent a simple encounter injection attack, with the
attacker only simulating a single device (Ns = 1), while the dashed and dash-dotted lines
represent a Sybil attack with the attacker simulating two and three devices, respectively.
The amount of affected people in Corona-Warn-App (CWA) with an encounter injection
attack is unlimited, hence the graph shows an identity relation between total and affected.
With TraceCORONA (TC), the amount of affected people is limited by the encounter
limit, which is why after an identical impact for lower counts there is no further increase
after the limit is reached.
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Actually conducting a Sybil attack in the mass scenario does not make sense for the
attacker, provided that an encounter limit is present. It only divides the amount of affected
people by the amount of sybils used, i.e., by half with Ns = 2.

Targeted Scenario

Where the Sybil attack actually makes sense is the targeted scenario. The time required
to trigger a high risk warning is shown in Table 6.2. With the attack active with Ns = 3,
being recognized in two scans is guaranteed to lead to a high risk encounter, as the time
required to trigger a high risk warning is lower than the minimum time between scans
(2.34 min < 3 min). Ns = 2 represents a middle ground, where the attacker is more likely,
but not guaranteed to achieve their goal in two scans and guaranteed in three, while
without the attack (Ns = 1) three or even four scans are always needed.

As we assume only the simple encounter injection attack to be possible on GAEN, only
Ns = 1 applies for this system: three to four scans are needed regardless of the attacker’s
behavior. Therefore, the Sybil attack does not have any effect on GAEN in this scenario.

However, this impact analysis shows the limited use case of the Sybil attack in TraceCO-
RONA with encounter limits. If there are no encounter limits, the limitations of affected
people and brevity of the encounter are related to hardware, i.e., how many devices a
single Bluetooth sender is able to simulate in the given timeframe, and timing, i.e., how
many of these devices are actually detected by users. Still, being able to affect a targeted
group of people in a short time only soliciting a single TAN has the potential to cause
disruption, for example if parliamentarians are prevented from joining a vote.

6.4.4. Countermeasures

After we established the attack impact of the simple encounter injection and encounter
injection with Sybil attacks, we now analyze three approaches to prevent or mitigate the
attack. All of the following countermeasures can be described as tradeoffs between security
and effectiveness. Care must be taken to set the parameters in a way as to avoid preventing
proper functioning of the tracing protocol in a benign scenario.

As analyzed above, the ability to limit encounter tokens per upload is the main counter-
measure to be employed by TraceCORONA against encounter injection attacks by single
individuals. To minimize the effect of the limit on tracing functionality, the app may sort
encounter tokens by infection risk and upload the encounters believed to be most risky for
the exposed person. This in turn allows the Sybil attack to be used for denial of service –
preventing infected people from sharing their encounters – instead of encounter injection.
For this outcome to occur, by using a large amount of sybils and a strong Bluetooth signal,
victims’ devices are forced to record many spoofed high-risk encounters, leading them to
report less real encounters and hindering functionality.

Before March 2021, Corona-Warn only counted encounters with a normalizedTime of at
least 5 minutes, and before February, only encounters with at least 10 minutes, with a
total time to be reached of 15 minutes [Cor21b, old versions]. If we assume these minimum
encounter times, the Sybil attack with over two sybils is not even effective in a targeted
scenario. Due to the emergence of newer virus variants with a much higher infectiousness,
shorter encounters are counted nowadays.

A different approach for mitigation of Sybil attacks is the heuristic detection of these
scenarios. The following can be observed by a device under Sybil attack: (1) multiple
devices with (2) a low attenuation and (3) a weak antenna (“close by”) are encountered
(4) simultaneously for (5) a short period of time. After detection of a scenario of this
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kind, either all encounters from this time period are ignored for risk detection or the user
is warned of a potential disruption. On the other hand, a benign scenario triggering this
behavior could be a short bus ride with multiple people later being tested positive and
uploading their contacts at similar times. These scenarios might neither be discernible to
the user nor the app, leading to false negatives if detected by the heuristic.

Alternatively, instead of heuristic detection, the risk score calculation may be altered to
count all simultaneous encounters as a single encounter. Intuitively, when more than one
infected person is present, the infection risk is higher due to more virus particles in the
air. However, we were not able to find any study correlating this observation to a faster
transmission of the virus.

In conclusion, the simple encounter injection attack is an inherent flaw of anonymous
automated contact tracing, for which TraceCORONA allows to limit the number of affected
users, while GAEN allows an unlimited amount of users in the attacker’s range to establish
encounters. When combined with the Sybil attack, the impact is increased under certain
scenarios, with the limits imposed by TraceCORONA leaving the attacker to a tradeoff
between affecting more people and affecting less people quicker. In GAEN, as well as the
systems using it, checks for duplicate identifiers can be added to eliminate the possibility
of a Sybil attack completely, while we are unsure if these checks are implemented at the
current time.
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7. Traffic Measurements

After the protocols of Google/Apple Exposure Notification(s) (GAEN) and TraceCO-
RONA have now been analyzed theoretically in detail, we make measurements on the
traffic generated by transmissions to and from the server. The results serve as a point
of comparison between the two applications as well as backing up our analysis from Sec-
tion 5.2.

The goal for our traffic measurements is to analyze the download process or matching
process, which is performed on a regular basis by all users, as well as the upload process,
performed only by users who have tested positive. We compare single and multiple (2 or
5) device systems to prove that traffic volumes can be interpolated for large amounts of
devices. All numbers resulting from measurements in this chapter are averages of at least
3 benchmark runs.

Download and upload processes should be measured separately to allow for better com-
parison. To achieve this, our general flow for traffic testing is to first generate a certain
amount of cryptographic identifiers (tokens or keys), then identify as positive and upload
these tokens to the server, and in the second phase download the identifiers again. All of
these steps are done with the same app instance, which is possible as both tested systems
do not require any authentication or discern between clients when downloading keys to
be matched. Before repeating the benchmark with a different number of encounters, the
server side and the client side are reset by deleting the data, and the setup process is done
again.

Section 7.1 describes the tools used for testing, followed by three sections describing each
of the measured systems. Afterwards, in Section 7.5, we compare the results of Corona
Contact Tracing Germany (CCTG) and TraceCORONA, before we verify the results of
Section 5.2 and estimate the feasibility of a large-scale deployment of TraceCORONA in
Section 7.6.

7.1. Instrumentation
To simulate each tracing system, we run the respective server side using the Docker
Engine (version 20.10.8)[Doc21], which is used by both projects for easy deployment
of applications, on a Linux computer. The server versions used are 2.5.0 for Corona-
Warn-App (CWA) and 1.1.9 for TraceCORONA. To evaluate both apps fairly, we aim
to recreate the connection parameters used in the infrastructure of the CWA, namely

63



64 7. Traffic Measurements

https://svc90.main.px.t-online.de/, https://submission.coronawarn.app/, and
https://verification.coronawarn.app/. All servers use HTTP/1.1 exclusively, while
the server behind the former domain offers TLSv1.2 only. The submission and verifica-
tion servers are reachable with TLSv1.3 as well. nginx (version 1.21.3) is used [NGI21] as
a reverse proxy for both TraceCORONA and CWA benchmarks. However, in our main
measurements, the TLSv1.2 cipher suite TLS_RSA_WITH_AES_256_GCM_SHA384 is used, as
it does not provide perfect forward secrecy and allows us to decrypt the communication af-
terwards for analysis purposes. After the session key is established, it functions identically
and as such the performance should be comparable to the original cipher suite.

When running benchmarks, all communication is captured on the server side using Tcp-
dump (version 4.99.1) [The21b]. We filter by the IP address of the host to avoid capturing
server-internal communication. For sanity-checking the data, Wireshark (version 3.4.8)
[Wir21] is used. This utility allows for usage of the RSA private key of the server to
decrypt the TLS connection.

Depending on the test, the client side is run either on a number of emulated Google Pixel
4a devices (Operating System (OS) version RSR1.201211.001.A1) or a real Google Pixel
3a XL (OS version RQ2A.210505.002). All devices are running Android 11, with the
operating system distributed by the manufacturer.

For interfacing with the Android devices and automating the benchmarks, we use Ap-
pium (version 1.21.0) [JS 21], which allows remote control of an Android device using a
WebDriver-based [SB18] interface. In addition to having debugging access enabled, the
devices have Magisk (version 23.0) [Wu21] installed for full access to application data with-
out modifying applications, easy modification of the /etc/hosts file to forego running a
DNS server, as well as allowing instrumentation of the GAEN framework.

On the computer side, the Appium server is interfaced by JavaScript code running in
Node.js (version 16.6.2) [Ope21a] using the WebdriverIO (version 7.7.4) [Ope21b] library.
We chose this language to minimize dependencies, as Appium also runs in Node.js. Ad-
ditionally, the xml2js (version 0.4.23) [Kub21] and better-sqlite3 (version 7.4.1) [Wis21]
libraries are used for parsing and modification of application files.

The benchmarks are orchestrated by a central script calling the necessary utilities (Docker,
Tcpdump and Node.js), allowing for easy repeatibility. Single benchmark steps are sep-
arated into multiple Node.js programs to allow for reuse between benchmarks or even
benchmarked applications (CCTG and CWA). Several functions are implemented in a
separate library file, helpers.js, to further enhance the readability. As Appium provides
a unified interface to the Android Debug Bridge (ADB) and UI Automator tools, we use
it whenever possible.

Tcpdump is configured to output the captured packets into a pcap format file. We then
separate the TCP/TLS connections (streams) using the Tshark utility included with Wire-
shark. Our measurement for the generated traffic volume is the sum of all Ethernet frame
sizes of the relevant HTTPS connections recorded during the benchmark run. This extra
step filters noise created by connections not essential to the measured communication, in
our case CWA/CCTG trying to download extra diagnosis key files.

For the CWA backend, the demo mode of the distribution service is activated to disable
the shifting algorithm (described in 2.2.4) which would prevent diagnosis key packets from
being generated.

7.2. TraceCORONA
As TraceCORONA generates tokens only when actively encountering a device, the ap-
plication database is downloaded after the initial keypair generation and fake encounter
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Figure 7.1.: TraceCORONA traffic volume per device, 1 device

values are inserted into the EncounterTokenParameters and Encounter tables. The data
are converted by the application to encounter tokens before upload. This way, an arbi-
trary amount of encounters can be generated without emulating a Bluetooth device or
programming an app for encounter simulation. Therefore, it allows us to perform tests on
an emulator, eliminating device hardware as a factor.

TraceCORONA only initiates the matching process if prompted to do so by the user, i.e.
when the “Check Your Status” button is pressed. This is a deliberate design decision to
allow the user to decide for themselves when they want to view their status, instead of
being displayed on the main screen as with other tracing apps. For our benchmark, this
proves convenient as no spurious connections are measured in a typical benchmark run.

When looking at the results of the benchmark, plotted in Figure 7.1 and Figure 7.2, we are
still able to observe discrepancies in the upload and download of tokens. Due to the status
of TraceCORONA being a prototype application not developed for real-world usage, we
did not further explore the reasons for these errors and instead assume these to be either
caused by bugs in the application or disturbances in the benchmark. We were not able to
benchmark more than 2 devices, as the errors became more serious, lending credibility to
the theory that these are caused by load on the testing computer.

Leaving the errors out of the picture, though, the results show a near-linear increase in
traffic volume with an increasing amount of encounters per device. For uploads, approx-
imately every 10 encounters a small amount of overhead is added due to the data being
split into one more TCP packet. As expected, verification requires a constant amount of
bytes as well.

7.3. Corona Contact Tracing Germany
The other system in our benchmark, CWA, proves more difficult to instrument, as the ap-
plication uses the GAEN Application Programming Interface (API), which is implemented
by the closed-source Google Play Services and restricted by application signature checks.
The en-13n script [BH20] was created to bypass this check. Unfortunately, this does not
succeed on the recent version of Google Play Services required for current versions of the
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Figure 7.2.: TraceCORONA traffic volume per device, 2 devices. The straight and dotted
lines each represent one device

application. As a workaround, we therefore use the CCTG [con21] application (version
2.5.0.1) instead for this benchmark, which stems from the same code base, but contains an
open-source reimplementation of the GAEN API. To ensure interoperability with Apple
devices, the functionality of the API is fully specified. Therefore, traffic measurements
should not be different, as the networking code is identical to the original CWA Android
application. The tests for CCTG were performed on emulated devices.

Before starting the app for the first time, the date is set nkeys −2 days into the past, where
nkeys is the amount of Temporary Exposure Key (TEK), which later become diagnosis
keys, to be generated in this benchmark run. For all the phones in the benchmark, the
first-run tutorial is confirmed and the necessary permissions for Bluetooth Low Energy
(BLE or Bluetooth LE) are granted, which is required for enabling the contact tracing
functionality and generating TEKs.

Note that the minimum amount of diagnosis keys is 2, as one extra key is generated for
an unknown reason. The maximum amount is 14, as the server will not accept more than
14 keys.

Once the app is started, tracing is turned off, the date is advanced by one day and tracing
is turned back on. This procedure is repeated until the required amount of TEKs is
generated. After generating the TEKs, the keys are uploaded. For this purpose, the
teleTransaction Authentication Number (TAN) workflow is used: a 10-character TAN is
entered (SSS-WUE-TANG) and the default profile of Transmission Risk Levels (TRLs) is
selected, i.e., no Days Since Onset of Symptoms (DSOS) value is provided. A few seconds
later, when the upload is finished, the test result is deleted to again enable the option to
initiate the download and matching process. For this matching process to begin, the main
activity of the app has to be reloaded. This is achieved by closing the app and relaunching
it.

This process is repeated for all devices to be benchmarked. After the benchmark run
is finished, all diagnosis keys are deleted from the server-side database and the object
storage server is cleared. Then, the distribution service is run once, recreating the app
configuration files to avoid errors.
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Figure 7.3.: Corona Contact Tracing Germany traffic volume per device, 1 device

When performing this test without changing any settings on the device, the download and
matching process is initiated at seemingly random times. This is due to the server not
providing any up-to-date diagnosis key packages, forcing the synchronization algorithm in
the app to automatically retry for new packages again and again. To minimize the impact
of these queries on our benchmark results and force devices to download only the current
diagnosis key package, we turn on Airplane Mode at all times when internet access would
lead to erratic measurements, i.e., when Tcpdump is capturing packets and the key upload
process has not begun yet.

Figure 7.3 and Figure 7.4 show the raw measurement results, which is the traffic volume
per device as measured on the server side. The solid part of the submission traffic bar is
the size of the actual submission payload containing the diagnosis keys. Similarly, the solid
part of the download traffic bar is the size of the diagnosis key package that is generated.
Note, however, that this package is downloaded separately and not extracted from the
captured packets in order to provide more reliable results. For some test results, the
download still occurred while measuring the upload mechanism and was counted as part
of the complete upload, so the complete download traffic does not necessarily correspond
with the download traffic.

In general, the complete upload and download numbers do not exhibit any meaningful
properties. Rather, the individual streams show that the verification process, as with
TraceCORONA, always generates the same amount of traffic. The download overhead is
constant in the 1-device test, but varies wildly in the 5-device test. This may be due to the
previously-mentioned random download attempts, however we have not further analyzed
these discrepancies, as the 1-device test numbers can be interpolated to multiple devices.

The submission process generates almost the same amount of traffic regardless of the
number of diagnosis keys. In Section 5.2.2, we discovered a bug that prevents the generated
traffic from being exactly the same every time. When isolating the upload payloads,
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Figure 7.4.: Corona Contact Tracing Germany traffic volume per device, 5 devices – colors
correspond to devices
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Figure 7.5.: Correlation of diagnosis key payload size with number of keys

measuring their size and comparing it to the number of diagnosis keys in each payload,
as in Figure 7.5, we can see the payload size vary with the amount of transmitted keys.
In fact, the payload size differs by only 1 byte for each amount of diagnosis keys. Note
that instead of using the benchmark’s amount of generated keys, we decode the payload
using protoc and count the amount of transmitted keys, which eliminates the benchmark
inaccuracies.

This confirms our discovery from Section 5.2.2 that the payload padding mechanism is
broken and does not hide the number of uploaded diagnosis keys from a passive attacker
observing the exchange. Due to the playbook system of CWA, messages are always sent
in the same order, generating a distinct pattern of sizes even though the communication
itself is encrypted.

7.4. Corona-Warn-App
After conducting a number of measurements on the emulated CCTG app, we were able to
get the original build of CWA running on the Pixel 3a phone. In this section, we measure
the upload and download processes of CWA with a very similar tooling and methodology
to the measurements of CCTG. This helps confirm the results from our original test of
CCTG.

As the app uses certificate pinning, we used the tools Frida and objection to allow connec-
tion to our server. Additionally, as the app only allows to use TLS cipher suites providing
perfect forward secrecy, we opted to use the same cipher suites as in the production ver-
sion of CWA. We were unable to extract the pre-master secrets needed to decrypt the
resulting TLS connections from nginx and opted to instead capture unencrypted traffic
behind the reverse proxy. To verify the results gathered with CCTG, we re-ran the traffic
measurements with one device, resulting in Figure 7.6.

Figure 7.6(a) shows the upload process. Notably, there is some variation in the submission
and verification traffic volumes. This can be attributed to the device being connected
over a shared Wi-Fi network and having to re-send packets. When comparing results to
Figure 7.3, notably, the upload payload size is missing. This is due to the submission
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Figure 7.6.: Corona-Warn-App traffic volume per device, 1 device

backend service using an encrypted connection even behind the reverse proxy, leaving us
unable to gain access to the data. Unfortunately, we are unable to verify the payload
padding bug due to this restriction. Overall, results are similar to the measurements
performed with CCTG, but CWA actually submits one diagnosis key less to the server
than CCTG. This is the expected behavior of the app, while CCTG includes one extra
key that is valid for the current day.

In Figure 7.6(b), an attempt at measuring the download process is shown. CWA proved
to be very temperamental about actually downloading new diagnosis key data and we
were only able to get three measurements of it downloading in total. The measured
download numbers in the graph show the app querying the server for diagnosis key packages
immediately after the key upload, when keys were not yet distributed. Therefore, these
measurements are unreliable.

Besides the one additional diagnosis key generated in CCTG, we observed no difference
in traffic and functionality between the open-source reimplementation of GAEN from the
microG project, which is used in CCTG, and the official version included in Google Play
Services.

7.5. Comparison of TraceCORONA and Corona-Warn-App
After testing scripts and methodology for both TraceCORONA and Corona-Warn-App
have been implemented, the gathered numbers are now used to compare the performance
of GAEN/CWA and TraceCORONA with practical measurements. We repeat the com-
parison from Section 5.2.4, this time interpolating from our real measured numbers. The
result of this interpolation is a more realistic overview of the traffic volume generated by
a system over two weeks of operation.

In the first step, the upload and download measurements for TraceCORONA are regressed
linearly: τ = mTC, (up, down) · nenc + tTC, (up, down). For CWA, in a similar vein, the
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Constant Value

mCWA, down 34.628 B
tCWA, down 9 038.821 B

τCWA, up, 14 keys 16 987.5 B

mTC, down 343.630 B
tTC, down 5 817.037 B
mTC, up 157.273 B
tTC, up 11 314.727 B

ndays 14

Table 7.1.: Trend values and parameters for interpolation

average size of the matching process is regressed linearly, with the measured number of
diagnosis keys contained in the payload (as opposed to the desired value) as a variable:
τ = mCWA, down · nenc + tCWA, down. In this comparison, uploads are assumed to always
contain the full 14 diagnosis keys generated by the app over 2 weeks of operation. However,
as CWA upload packets are padded, the difference in size is neglegible even on a large scale.
Table 7.1 contains these values as extracted from the benchmark results.

These values are then interpolated as per the equations described in Section 5.2.4. Again,
TraceCORONA is analyzed in a low contact and high contact scenario. Figure 7.7 shows
the results of this interpolation. Upload traffic is similar between both TraceCORONA in
the low contact scenario and CWA, which is due to the test result retrieval and verification
processes among with fake requests being included in the measurements. Download traffic
is massively increased for TraceCORONA (2-3 orders of magnitude higher) due to the
inefficient streaming mechanism and high amount of additional data being transmitted
with every encounter token.

To summarize, these results show that the current version of TraceCORONA generates a
traffic volume orders of magnitude higher than a GAEN-based approach such as CWA.
We have shown in Section 5.2 that there is potential for bandwidth savings without loss
of any current functionality. In a real-world deployment scenario of an encounter-based
approach such as TraceCORONA, measures could also be taken to reduce the amount of
keys distributed to each user such as separating the keys by region.

7.6. Comparison of Benchmarks and Theory

In two parts of this thesis, we have compared the estimated traffic for the two systems.
We ask the question: Could TraceCORONA be used as a backend for a national tracing
system? To evaluate this scenario, due to the amount of non-infected users which only
download keys for matching purposes and do not upload keys, we can ignore the upload
processes on a large scale, and are therefore only comparing the matching processes.

Figure 7.8 shows the results of our two comparisons side by side. Note that the dotted
lines in Figure 7.8(a) are equivalent to the solid lines in Figure 7.8(b). Here we can see
that both comparisons yield similar traffic volumes for the original TraceCORONA, with
the values for our theoretical numbers being slightly lower, as expected due to leaving
the overhead of underlying protocols out of the picture. Therefore, our estimates from
Section 5.2 and our measurements from Chapter 7 are able to provide an overview of the
traffic produced by both systems and serve as a means to estimate the feasibility of scaling
up both TraceCORONA and GAEN.
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Figure 7.7.: Comparison of TraceCORONA (5 or 50 average encounters/person/day) and
Corona-Warn-App (CWA) over a 14-day period, logarithmic scale for both axes
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Figure 7.8.: Comparison of TraceCORONA (5 or 50 average encounters/person/day) and
Corona-Warn-App (CWA) matching traffic per day, logarithmic scale for both axes, rate
of infected users = 0.001

What can we gather from these results? TraceCORONA, although producing vastly higher
traffic in the prototype, can be optimized to only need a small multiple of the traffic
volume of CWA at high user counts. To further demonstrate this result, we compare
TraceCORONA with CWA’s situation on December 23, 2020, as recorded by [Böh20]. On
this day, a record 57 201 diagnosis keys were submitted by infected users and between
24.2 and 24.9 million users had downloaded the app. CWA requires a total of 4.7 · 1013 B
of matching traffic volume, while the optimized TraceCORONA version requires between
1.7 ·1014 B and 1.7 ·1015 B for 5 and 50 average encounters per person per day respectively.
Here, TraceCORONA produces between 3.6 and 36.4 times as much traffic as CWA. For
comparison, the largest German internet exchange DE-CIX Frankfurt averages a daily
traffic of 5.9 · 1017 B based on 1-year statistics as of October 3, 2021 [DE-21].
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