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Abstract

Contact tracing apps based on Bluetooth LE are used in the COVID-19 pandemic to au-
tomatically track virus transmissions. At the beginning of the pandemic in early 2020,
a large amount of proposals for automated digital contact tracing were developed, with
Google and Apple’s Exposure Notifications (GAEN) being the most widely-used. This the-
sis explores and compares the security and privacy aspects of GAEN and TraceCORONA,
a protocol developed at TU Darmstadt.

We co-develop the TraceCORONA Android app together with the development team from
TU Darmstadt. Furthermore, we compare it to GAEN as implemented in the German
Corona-Warn-App. For this purpose, we analyze the design and implementation of both
systems, revealing and reporting multiple vulnerabilities in Corona-Warn. We perform an
informal and formal security analysis of both protocols, revealing that TraceCORONA is
more secure against known attacks and discovering a novel attack. Finally, we prove that
TraceCORONA, although generating more network traffic, can reasonably be used in a
national application scenario on the scale of Germany.
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Zusammenfassung

„Corona-Apps“, die auf Bluetooth LE basieren, werden in der COVID-19-Pandemie ver-
wendet, um automatisch die Gefahr der Ansteckung zu bestimmen. Zu Beginn der Pan-
demie im Frühjahr 2020 wurden eine große Anzahl Vorschläge für automatisierte digitale
Kontaktnachverfolgung entwickelt. Die am weitesten verbreitete Lösung ist „Exposure No-
tifications“ von Apple und Google (GAEN). In dieser Arbeit werden die Sicherheit und der
Datenschutz von GAEN und TraceCORONA, welches an der TU Darmstadt entwickelt
wurde, untersucht und miteinander verglichen.

Die TraceCORONA-App wird zusammen mit dem Team der TU Darmstadt prototypisch
auf Android entwickelt. Daraufhin wird diese mit der Corona-Warn-App, die auf GAEN
basiert, verglichen. Hierfür wird der Entwurf und die Umsetzung der beiden Systeme ana-
lysiert, wobei mehrere Schwachstellen in Corona-Warn gefunden und gemeldet werden.
Eine informelle und formelle Untersuchung der Sicherheitsaspekte beider Protokolle wird
erstellt, mit dem Ergebnis, dass TraceCORONA sicherer gegenüber bekannten Angriffen
ist. Zudem wird ein neuer Angriffsvektor entdeckt und analysiert. Obwohl TraceCORONA
mehr Datenverkehr im Internet erzeugt, kann es sinnvoll in einer nationalen Anwendung
in der Größenordnung von Deutschland eingesetzt werden.
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1. Introduction

Epidemics and pandemics have been affecting human life through the ages with the earliest
known pandemic being recorded in the year 430 BC in Ancient Greece [Thu13]. With
advancing medical knowledge and technology, death tolls have been reduced considerably.
Still, controlling a pandemic remains a challenging political and scientific task in current
times, motivating research and development from experts in all scientific disciplines for
ways to reduce the impact of infectious diseases.

The years 2020 and 2021 are overshadowed by the COVID-19 pandemic. As the SARS-
CoV-2 virus is transmitted between humans through the air, isolating people who were
in contact with a known-infected person helps with reducing infections. The effect of
quarantine on the spread of the disease is further boosted as virus transmission happens
in an exponential manner if no countermeasures are in effect. Consequently, preventive
isolation as a countermeasure is facilitated by so-called contact tracing, which since the
earlier SARS pandemic of 2002 and 2003 has been done manually by health officials using
attendance lists and patients’ own recollections.

Instead of or in addition to manual contact tracing, which is error-prone and labor-
intensive, contact tracing can be performed automatically by devices such as smartphones.
The basic idea of automatic contact tracing is to track the transmission of the virus as
exact as possible using devices and technologies which can be easily and quickly used as
an indication of a possible real virus transmission. In practice, this is mostly done using
wireless radio technology, mainly Bluetooth Low Energy, which has a limited range and
low power requirement, making it well-suited for continuous background scanning.

As with every technology, but especially so in the medical field, collection and usage of data
exposes users to risks of abuse of this collected data. Amplified by the fact that receiving
a warning as a result of tracing can lead to drastic measures such as quarantine, attackers
collecting or modifying data are scenarios which need careful consideration. Bearing this
in mind, if the tracing system loses its core functionality in pursuit of perfect privacy and
security, it becomes useless.

At every step of the automatic contact tracing process there are technical decisions to
be made which fundamentally impact the three core metrics of (1) efficiency (in terms of
energy and internet bandwidth), (2) privacy and (3) effectiveness of the tracing protocol.
These decisions, as well as the tradeoffs they lead to, are explored in detail throughout
the thesis.
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2 1. Introduction

Figure 1.1.: Overview of the TraceCORONA system, from [MNS20]

Analyzed Systems

In 2020, the first year of the pandemic, the race to become a local or national tracing
app drove a high research interest in the field of digital contact tracing. After China
announced the usage of digital contact tracing to combat the rapidly-spreading virus in
February [hua20a], researchers and governments began development on various protocols
and applications in the following months. Centralized systems such as TraceTogether
[Gov20a] and PEPP-PT, which later became ROBERT [PF20], as well as decentralized
systems such as Temporary Contact Numbers (TCN) [TCN20b] and DP-3T [TPH+20a]
emerged.

During this time period, development of TraceCORONA was started at the System Secu-
rity Lab of TU Darmstadt. The basic idea of the system, as visualized in Figure 1.1, is to
use two-way communication to establish so-called encounter tokens every time two users
of the system meet. When a user is diagnosed as positive, they upload hashes of their
encounter tokens to the server, which then get distributed to all devices. Only the person
on the other end of the encounter is then able to confirm their contact with an infected
person.

While research and development for TraceCORONA was ongoing, the two leading mo-
bile Operating System (OS) developers Apple and Google announced the integration of
an automatic contact tracing system, Google/Apple Exposure Notification(s) (GAEN)1

[AG20c], into their respective operating systems iOS and Android. Due to restrictions of
the iOS platform (cf. Section 2.2.5), development of tracing applications able to run in the
background was drastically limited, which was resolved by the OS gaining the capability
to run tracing by itself. This new system uses a one-way communication approach to
establish contact between users, as well as utilizing so-called diagnosis keys valid for one
day to reduce the required internet bandwidth.

These design decisions centrally influence the security and privacy of users. The GAEN
system sees worldwide usage to this day: 1.3 billion people live in areas where digital
contact tracing apps based on GAEN are in operation2. Therefore, it is used in this thesis
as a protocol to compare the security and privacy properties, as well as resource efficiency,
of TraceCORONA against.

1Originally called Contact Tracing, Google calls the system Exposure Notifications, while Apple uses the
singular form Exposure Notification.

2Based on the list of GAEN tracing apps in [Wik21] combined with the latest population estimates from
[Uni21; US 21; Sta19].
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Contributions

The main contribution of this work is the co-implementation of the client side of the
previously-designed contact tracing protocol TraceCORONA using an Android applica-
tion. We make significant contributions to the development of this application and docu-
ment the finished prototype in detail. In addition to the implementation work, the research
of this master thesis focuses on comparisons between the two systems TraceCORONA and
GAEN. As a concrete tracing app to be investigated, we use the German Corona-Warn-
App (CWA). In particular, we make the following contributions:

• Co-implementation of the TraceCORONA Android app in joint work with the devel-
opment team from TU Darmstadt, as well as comprehensive documentation of the
implementation

• Comparative analysis of design and implementation aspects of TraceCORONA and
GAEN/CWA, revealing multiple bugs in Corona-Warn which allow attackers to
gather information about infection state by network analysis

• Theoretical and empirical performance evaluation of TraceCORONA and comparison
to GAEN/CWA, proving that TraceCORONA requires more bandwidth, but with
some optimizations can still be reasonably used on the scale of CWA.

• Informal and formal security analysis of TraceCORONA and GAEN/CWA, conclud-
ing that TraceCORONA is more secure against known attacks and more privacy-
preserving

• Discovery, analysis and discussion of a novel attack on contact tracing systems: the
Sybil attack

We come to the result that TraceCORONA trades off resource efficiency for increased
security and privacy of users.

Outline

The first part introduces the reader to the concepts necessary for understanding the work.
Background information on the technical and ethical foundations of digital contact tracing,
as well as the TraceCORONA protocol serving as the basis of our implementation, are
introduced in Chapter 2. Afterwards, Chapter 3 introduces related work in the area of
digital contact tracing protocols, attacks and security analysis.

After the introductory chapters, in Chapter 4 the implementation of the TraceCORONA
protocol, as well as the technical and engineering choices, are described.

A large part of the thesis focuses on evaluations and comparisons. In Chapter 5 GAEN
and TraceCORONA are explained in detail and compared on different theoretical aspects.
Chapter 6 contains a formal and informal analysis of the two protocols, aiming to further
verify the security and privacy claims made. In the practical evaluation of Chapter 7,
traffic measurements are performed on the GAEN and TraceCORONA protocols using
Android smartphone applications.

At the end of the thesis, Chapter 8 summarizes the results of the thesis and elaborates on
potential for further work.
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2. Background

In this chapter, the technological foundations common to all Bluetooth LE-based contact
tracing protocols are described. In Section 2.1, the relevant parts of the Bluetooth wire-
less standard are described. Below, in Section 2.2, further technical considerations and
tradeoffs common to all tracing protocols are explored. After touching upon the ethical
considerations and privacy risks of digital contact tracing in Section 2.3, the focus of the
rest of the chapter is the TraceCORONA protocol, whose co-implementation is a major
contribution of this work (see Section 2.4).

2.1. Bluetooth Low Energy
Bluetooth Low Energy (BLE or Bluetooth LE) is a Wireless Personal Area Network
(WPAN) technology introduced with the Bluetooth 4.0 standard in June 2010 [Blu10],
and used in smartphones since October 2011 [OBr11]. It is a variant of the original Blue-
tooth protocol (named BR/EDR after its modes Basic Rate and Extended Data Rate),
using similar physical and data link layers, but simplifying the upper layers allowing for
lower power consumption at the expense of transmission throughput and security. These
changed upper layers of the BLE stack are the Attribute Protocol (ATT) and Generic
Attribute Profile (GATT). As these core protocols constitute the underlying technology
of all BLE-based technologies, we describe their functionality in detail.

In contrast to BR/EDR, BLE does not require a manual connection process (“pairing”),
although it is supported. Instead, device discovery is handled by the mechanisms of
scanning and advertising in combination with the ATT and GATT protocols [Blu10, p.201].
This mechanism of automatic connections, as well as the large deployed user base in mobile
phones makes the technology a good fit for beacon-based localization and contact tracing
alike. In general, all Bluetooth packets, messages, commands, broadcasts and data – called
Protocol Data Units (PDUs) – conform to the specified format.

2.1.1. Addressing and Link Layer

Every Bluetooth device is identified by a Bluetooth device address in EUI-48 format,
similar to MAC addresses for Ethernet and WLAN devices. It can be either assigned by
the manufacturer (public address) or randomly generated (static address), but by default
it has a fixed value per device or power cycle. This fact enables indefinite tracking of
devices by receiving advertisement messages on other devices, then linking the locations

5



6 2. Background

Figure 2.1.: Structure of the GATT hierarchy, from [Blu19, p.285]

and/or timestamps with the address. To combat this issue, modern Bluetooth devices
support periodic randomization of device addresses (resulting in private addresses), which
also helps protect the user’s privacy while using contact tracing.

The Bluetooth Link Layer handles the device discovery using scanning and advertising. A
device in the advertising state sends advertising events, which are chains of PDUs, with
an interval from under 0.02 to 10.2 seconds[Blu10, p. 2223]. These can include extended
information such as manufacturer information, which can be freely set by the devices
to transmit additional data. Device scanning can be either passive or active: passive
devices just receive and analyze the advertisements, while active devices query advertising
devices for more information before potentially starting a connection. Once a connection
is established, the higher-level protocols can be used.

2.1.2. Attribute-Based Communication

According to the ATT specification, every peer device takes a role of either server or client.
The client sends command PDUs to the server, which allows the client to discover, read
and write to attributes on the server side, while the server responds to the commands from
the client and manages access. Every attribute type is identified by a standard 128-bit
Universally Unique Identifier (UUID), allowing implementors to use random identifiers
for every use-case with low chance of collisions. In addition, every attribute is identified
by a handle, an identifier unique per server, and also used for ordering and grouping of
attributes [Blu10, p. 1834].

To make sure devices implement attributes in a defined and standardized manner, use of
the GATT is mandatory in BLE. It defines a hierarchy of profile, service, characteristic,
and optional descriptors, in which the profile is the sum of all attributes a device imple-
ments. Services, characteristics, and descriptors are types of attributes with a fixed format.

6



2.2. Technical Aspects of Bluetooth Contact Tracing 7

A service groups multiple characteristics and can include other services. This is the unit
that is actually advertised and scanned for device discovery purposes, however a device is
free to implement multiple services for multiple functionalities. Every characteristic has a
value, which can be read and written depending on its properties. It can also contain a
number of descriptors further classifying its contents and context, e.g., the Presentation
Format (name, data type, unit, order of magnitude, and namespace). Figure 2.1 is a visual
representation of this hierarchy.

2.2. Technical Aspects of Bluetooth Contact Tracing
Now, once the underlying wireless protocol has been introduced, the focus shifts to con-
cepts on a higher level present in all contact tracing applications. As these concepts are
necessary for understanding and comparing protocols, in this section we explain concepts
and tradeoffs to be made.

2.2.1. Scanning and Advertising Intervals, Rotating Identifiers

As scanning and advertising is energy-intensive, BLE tracing apps may not scan and
advertise at all times. Instead, scanning and advertising can be started and stopped
at certain intervals. Interval period, duty cycle, and possible randomization are factors
important for effectiveness of tracing and power consumption.

Bluetooth device addresses can – and for privacy, should – be randomized, as stated in
Section 2.1.1. This in turn makes the device address unsuitable as an identifier for tracing.
Instead, at minimum one additional identifier or key has to be generated as a part of the
tracing protocol and used in communications. How and how frequently these identifiers
are generated, and for which purpose they are used, are parameters having an effect on
power consumption and privacy of a protocol.

Some protocols save bandwidth by deriving multiple of these rotating identifiers from a
master key, which is rotated in longer intervals, e.g., daily. This introduces an issue of
linkability: All the keys derived from the master key can be provably linked to one person
in the case of an infection, as the master keys are made public. See Section 3.3.1 for related
work on this attack vector.

2.2.2. Contact Establishment, Matching and Exposure Notification

Once a device running a tracing application has been discovered by another device, there
are different approaches to establishing and tracing the contact, or encounter, with the
device. As with Bluetooth LE scanning itself (see Section 2.1.1), the establishment of
contacts can be done in an active or passive fashion. A device utilizing an active scheme
connects with the encountered device, exchanging additional information, while a passive
scheme only logs the identifiers advertised by the encountered device and uses these for
matching. Connecting to every device can lead to additional power consumption. Ex-
changing more data, however, also opens up more possibilities for use of algorithms to
improve tracing accuracy by increasing resilience to attacks and protecting users’ privacy
by preventing passive profiling.

After contacts have been logged, and once an infection is discovered, users are notified
of possible encounters with the infected person. The mechanism through which matching
of infected users with user contacts is done can be grouped into two general approaches:
centralized and decentralized. Both approaches are depicted in Figure 2.2.

Centralized approaches utilize a central system, such as a server, to detect contacts between
users and match these to the user. In the example in Figure 2.2(a), all devices send the

7



8 2. Background

Contact Establishment

Met B Met A

B met A + A →B

A B

(a) Centralized

Contact Establishment

A B

Met A + A →

A, . . .A, . . .

(b) Decentralized

Confirmed infection, Risk of infection

Figure 2.2.: Comparison of matching approaches

recorded Bluetooth contacts to a server. This allows the operator of the server to have a
complete overview of contacts between users. On one hand, this allows for a more complete
understanding of infection chains and enables faster responses, as well as allowing more
flexibility with protocols to mitigate attacks on privacy by third parties. On the other
hand, it opens the system up for abuse, as the tracing data can be used to extract detailed
movement profiles of users. In case of an exploitation of the server side, this data can all
be leaked to a malicious actor. Even without an exploit, it is available to a central actor
and is more readily available for surveillance purposes, which is not usually a specified
use-case of tracing apps.

Decentralized approaches instead perform the matching of contacts on the device itself.
This is accomplished by synchronizing a list of tokens belonging to devices of known-
infected patients, which the recorded contacts are then matched to. Depending on the
algorithm, the list of tokens may be hashed to add another layer of obfuscation and prevent
non-contacting users from extracting additional information. It is important to note here
that decentralized matching does not preclude the usage of a central service for purposes
other than matching, such as synchronizing tokens – in fact, to our best knowledge, all
currently deployed systems rely on a central server for this purpose.

2.2.3. Proximity Approximation and Transmission Risk Calculation

Pure logging of contacts can lead to a high number of detected encounters which may
suggest the user being close to lots of other users, while in reality the user may be separated
from others by a wall. Thus, and as Bluetooth signal range can vary based on a number
of factors, the sending and receiving signal strength and/or delay is often used to estimate
the distance between users.

The transmission risk, which quantifies the probability of the virus being transmitted in
an encounter, is aggregated for all encounters with confirmed infected users to calculate a
risk score. The estimated distance can either be a component of this risk calculation, or
used to filter encounters outright. Without considering proximity, false alarms will likely
decrease the effectiveness of the system.

8



2.2. Technical Aspects of Bluetooth Contact Tracing 9

In certain scenarios, where the wireless signal is affected by nearby metal surfaces, dis-
tance measurement parameters may need to be calibrated differently or Bluetooth distance
measurement might become completely unreliable, as shown in [LF20].

Not only the proximity is an important factor for transmission risk. On different days of
an infection cycle, patients are more or less likely to infect others on contact. Also, the
ventilation of the area is a factor for virus transmission. Some or all of these factors can
be integrated into a transmission risk calculation, leading to more precise estimates and
outcomes, in turn improving the effectiveness of the protocol.

2.2.4. Shifting and Padding of Transmitted Keys
To reduce server load, and/or due to manufacturer restrictions – e.g., for the newest version
of Google/Apple Exposure Notification(s) (GAEN), only six calls for contact matching are
allowed per day [Goo21e; App20] – several decentralized protocols transmit the keys to be
matched as packages of all the keys generated in a certain time span. If there are always
multiple users submitting keys during this time span, e.g., every hour, keys cannot be
linked without doubt. If not, all the uploaded keys of a user are publically linkable.

To combat this issue of potential linkability, a technique called shifting is employed. If the
number of keys inside a package is too small, the package is instead shifted to the next
time period and merged with the newly-submitted keys, providing the necessary buffer.
This, in turn, prolongs the time between submission of a key and notification of potentially
exposed contacts, reducing effectiveness.

As the case of shifting, which limits the effectiveness, appears often at the beginning of
the rollout or if the infection rate is low, another mechanism is introduced for additional
protection. Every submitted key is padded with a fixed or random amount of other fake
keys. To ensure the padding keys cannot be discerned from real keys by techniques such
as statistical analysis, the metadata of the padding keys must be carefully chosen. For
example, the Corona-Warn-App (CWA), which utilized these features in the past, set the
metadata as being the same as the real keys.

Shifting and padding parameters must be carefully chosen to avoid linkability, which is a
big part of the reason these techniques are applied in the first place. Section 3.3.3 shows
an example of a scenario in which user keys are linkable in a small anonymity set.

2.2.5. Background Services on iOS and Android
To preserve energy and computing resources, the two major mobile platforms iOS and
Android both have strictly-enforced rules about apps running in the background. On
both platforms, once the visible part of an app (the foreground) is minimized, it is subject
to being killed by the operating system at any time to free up resources (processor time
and memory).

On iOS, if an app requires background resources, there are multiple specific Application
Programming Interfaces (APIs) to run certain tasks in the background. In contrast to An-
droid, all of these background tasks are hard-limited by time or a running upload/download
operation. If an app exceeds its time limit, or is finished with its network operation, it
is immediately terminated [App21a]. Regular background tasks are assigned a dynamic
amount of time by the system, while specific types with defined limits are available for
processing (high power, not time critical) or refresh (for regular updates) tasks. Another
mechanism for background activity on iOS are notifications, which can either be triggered
by the Apple Push Notification service or by a system service local to the device.

Critically, none of these strategies allow for an application to decide by itself when it
wants to run, it always has to be triggered by an external source. Moreover, discovery of
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other Bluetooth devices by third-party applications is not possible if the screen is locked
or the application is in the background[TCN20b]. Thus, implementing tracing apps on
iOS without using the GAEN framework, which is integrated into the operating system,
is considerably more difficult than on Android.

On Android, background activity is also restricted, however there are ways to mitigate
this issue. Historically, the IntentService class allows for an application to run in the
background [Goo20c]. With Android 8.0, new limits have been introduced, so background
services are only allowed to run using Firebase Cloud Messaging, broadcasts, or for VPN
services. This more recent restricted behavior is similar to Apple’s background task system.
Another mechanism introduced at this time, scheduled jobs, can run at a time decided by
the application – which is fundamentally different from iOS, as the app can decide itself
when jobs are scheduled, instead of the operating system.

In addition, on Android there are other ways to keep applications running while another
application is open: permanent notifications and so-called foreground services. By provid-
ing feedback of running apps to the user, privacy and power consumption concerns are
made clear, so the apps are allowed to run without occupying the whole screen.

Due to the restrictions imposed by operating systems, which can only be alleviated on
Android, as well as the higher world-wide market-share of Android devices [Sta21] the
development and benchmarking efforts in this thesis concentrate solely on the Android
operating system.

2.3. Tradeoffs Between Efficiency and Privacy
Several civil rights groups, associations and researchers have analyzed and rated the trade-
offs made between efficient and privacy-preserving tracing. Major examples include the
Germany-based Chaos Computer Club (CCC) and USA-based Electronic Frontier Foun-
dation (EFF) and American Civil Liberties Union (ACLU), which are among the most
prominent Non-Governmental Organizations (NGOs) fighting for privacy and against digi-
tal surveillance in their respective countries. All three organizations have published articles
or papers [Neu20; COC20; Gil20] about criteria, safeguards and principles in digital con-
tact tracing during the month of April 2020. In this section, the open letters which these
groups have sent to app developers and governments are summarized and compared to pro-
vide context on societal requirements and privacy issues with certain tracing approaches.

First, the apps must be effective against COVID-19, but only against the disease, and not
be misused for other purposes. This includes, but is not limited to, law enforcement, as
is possible with attendance lists [Brö20]. Furthermore, [Neu20] requires that if the app
lacks efficiency, it is shut down. That this efficiency must be measured and made public
is postulated by [Gil20], which also provides suggestions for metrics such as number of
exposures detected.

A further point the articles concur on is that all apps must be voluntary and free, in that
there are neither fees charged nor incentives given for using the app. [Neu20] makes a
statement about additional data besides information relevant for tracing to be collected
for epidemiological purposes, which must require an additional confirmation, while others
state that these systems “shouldn’t be coupled”[Gil20].

For systems to be trustworthy, they must be independently auditable and verifiable. This
is the reason why all three papers require publication of app source code. In addition,
[Neu20] and [Gil20] require usage of reproducible builds for distribution of the app. These
two articles also demand verifiable privacy not based on “organisational measures, ‘trust’
and promises”[Neu20], but instead on a sound technical design and algorithms.
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On the server side, again all papers agree that a system must not have omniscient central
servers, which rules out most centralized contact tracing approaches. Even so, the language
used and the amount of protection required varies greatly – while [COC20] and [Gil20]
require the “strongest possible technical and legal safeguards”[Gil20], [Neu20] goes as far as
saying that neither server operators nor parties with access to communications metadata
must be able to link the infection status of a user with personally identifiable informations,
such as IP addresses. Fulfilling this requirement would make the usage of peer-to-peer
techniques such as torrents, onion routing or blockchains necessary. Given the limited
resources of the mobile devices targeted by tracing applications, as well as the amount of
extra bandwidth generated, this wording of the requirement is not currently fulfilled by
any tracing application known to the author, although a system has been theorized which
is usable with a blockchain instead of a central server [ABIV21]. Additionally, even if the
server side implementation of a certain protocol has its source code freely available, what
is actually deployed may not match the published code. This makes all protocols based on
a central server, whether it is for contact matching (centralized protocol) or just for data
exchange (decentralized protocol), which is currently the only deployed option, inherently
based on trust that this central server does not misuse data.

As for the data collected and stored on the device, [Neu20] allows only the duration of the
encounter to be stored, while [COC20] allows the signal strength, as well as possibly the
device types for better interpretation, and the date, not the time, “if public health officials
think this is important to contact tracing”. Taking again the example of GAEN, the date
is required for verification of encounter validity, while the duration and signal strength are
combined for risk estimation (see Section 3.1.4 for details), thus not complying with either
policy. [Gil20] makes no such statements, but all papers require the data to be deleted
after it is no longer needed for tracing. In addition, [Neu20] and [Gil20] call for encryption
to be used for the local data on the device to prevent extraction.

[Neu20] and [COC20] mandate the usage of rotating identifiers (see Section 2.2.1) and
explicitly state that the server may not profile the users. Notably, these requirements
are absent from [Gil20], which alongside the others states that if rotating identifiers are
used, they must not be linkable either to each other or to other personally identifiable
information. [Neu20] adds finer-grained statements about the data collected and sent
about devices not being enough to deanonymize anything.

Finally, some points not addressed by [Neu20], but by the other papers, include non-
discrimination of certain population groups, including but not limited to infected and
high-risk people in the context of COVID-19. In addition, the app must have a mechanism
to stop functioning, and must not hinder any other efforts against the pandemic, such as
testing and research on treatments.

To summarize, the technical requirements stated by [Neu20] could be called a technical
“gold standard”, which can prove difficult to achieve especially in the limited time span
where tracing is effective. [COC20] and [Gil20] focus more on the societal impact of
applications, deviating from the CCC article’s hard and fast rules to not make unreasonable
claims, but rather demanding a best effort from developers and government agencies. That
said, all of these articles provide criteria on which all protocols with their tradeoffs can be
measured.

2.4. The TraceCORONA Protocol
The TraceCORONA project was started in early April 2020 with its tracing protocol
being the first step of development. This protocol uses active contact establishment and a
decentralized matching (see Section 2.2.2). As the co-implementation of this protocol in a
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Infected user Other users1. Handshake

2. ECDH

3. Verify Infection

5. Download Tokens4. Upload Tokens

6. Match2. ECDH

Figure 2.3.: Steps of the TraceCORONA protocol, inspired by [NMS20, Fig. 4]
. Note that hashing of encounter tokens is omitted for visual clarity.

prototype application is a major part of the thesis, it is described in detail in this section.
This description is based in part on [MNS20; NMS20].

Figure 2.3 gives a detailed overview of the steps and parties involved in contact tracing
with TraceCORONA. The two large mobile phones signify two users of the system who
meet each other. Later, the left user turns out to be infected and declares this status in
the TraceCORONA app. The following sections each explain one of the steps enumerated
in the figure.

2.4.1. Bluetooth LE Handshake

Every device running TraceCORONA has an active Elliptic Curve Diffie-Hellman (ECDH)
key pair and a randomly-generated rollingID value. While tracing is active, the devices
continuously advertise their rollingID through BLE advertisements with a fixed service
UUID. On a regular basis, devices also scan for BLE advertisements with this UUID.

Figure 2.4 shows the process started when an advertisement is received by a scanning
device. At first, the receiving device checks if it has seen the advertised rollingID already.
If this is the case, the device just saves the metadata of this advertisement (timestamp and
signal strength) to the database as a Scan (see “Rediscovery of same device” in Figure 2.4).

Otherwise, the initial handshake is performed with the encountered device. A GATT
connection is established and a characteristic read request is sent with a fixed characteristic
UUID. The other device then sends back their public key (key with a rectangular head in
Figure 2.3). Afterwards, a characteristic write request is sent with the same UUID with
the initiator’s own public key, the signal strength and transmit power level included in the
received advertisement (Received Signal Strength Indication (RSSI), rssiTx) as well as the
rollingID for cross checking.

At the end of the handshake, both devices save an Encounter, which can have multiple
Scans, as well as the initial Scan for this encounter. Devices change their ECDH key pair
and rollingID after a fixed period of time. If the devices again encounter each other, a
fresh encounter record is generated.

2.4.2. ECDH Token Establishment

Before up- or download of encounter tokens, the gathered encounter data (EncounterTo-
kenParameters) are converted into encounter tokens by means of the ECDH algorithm.
Through this process, a secret is established between the two parties of the encounter.

12
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Device A Device B

Advertisement(serviceUuid, rollingId)
getEncounter(rollingId)

null
Connect

charRead(uuid)
publicKey

charWrite(uuid, publicKey+rssi+rssiTx+rollingId)
saveEncounter(keypairId, encPublicKey, rollingId)

encounterId
saveScan(encId, timestamp, rssi, rssiTx)

saveEncounter(. . . )

saveScan(. . . )

Initial handshakeInitial handshake

Advertisement(serviceUuid, rollingId)
getEncounter(rollingId)

encounterId
saveScan(encounterId, timestamp, rssi, rssiTx)

Rediscovery of same deviceRediscovery of same device

Figure 2.4.: Sequence diagram of Bluetooth LE contact establishment in TraceCORONA
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This secret token is later used for decrypting end-to-end-encrypted metadata and must
never leave the device. Therefore, tokens are also hashed using the HMAC-based Extract-
and-Expand Key Derivation Function (HKDF) [KE10] to yield tokenHashes, which are
used for comparison purposes.

2.4.3. Infection Verification

Once a user tests positive, they receive a Transaction Authentication Number (TAN) from
their health authority to be able to notify the people they encountered in during the tracing
period, i.e., the last 2 weeks. Figure 2.5 shows the communication protocol used when
sharing encounter tokens with the server under “Encounter upload after positive test”. In
the first step, the TAN entered by the user is submitted and the device receives a nonce
value from the server.

2.4.4. Encounter Token Upload

In the remaining part of the upload process, a random key is generated for each encounter
token. This key is used to encrypt the infection state (0 for users which have received
a positive test result) and the nonce received from the server. The random key itself
is then encrypted using the encounter token as a key. The upload message sent to the
server consists of a list of all collected encounter tokenHashes with their corresponding
keyEncryptions and stateAndNonceEncryption parts. In addition, the client sends the
random key for verification on the server side. It will not be distributed to clients later.

Once the server receives the upload message, the nonce and infection status values are
decrypted and checked against the database of valid nonces. If the check succeeds, the
server sends back a confirmation to the client and publishes the upload message, separated
into single tokens and without the unencrypted random keys, to other users.

2.4.5. Encounter Token Download

On a regular basis, or when triggered by the user, the app downloads the published
messages from the server. This flow is depicted in Figure 2.5 as “Encounter download for
matching”. The client submits the time when they last downloaded token messages and
the server only sends the newer messages. In response, the messages are streamed to the
client device.

2.4.6. Matching

As a final step after download of encounter token messages, each encounter token hash is
compared to the device’s own database. If a matching entry is found, this confirms the
encounter between the device with an infection state and the own device. To gain informa-
tion about the infection state of the encounter, the device then retrieves the corresponding
unhashed encounter token from the database, uses it to decrypt the random key, and in
turn decrypt the infection state and the nonce. Based on the gathered metadata about
the encounter, a risk scoring algorithm (cf. Section 2.2.3) is used to quantify the risk for
the exposed user.

Observant readers might wonder what the nonce was transmitted to the client for. If the
tracing remains limited to a single step, which is the current state of implementation, it
is indeed unused and can be omitted by the server. In this case, this is the end of the
protocol.

In addition, TraceCORONA has the ability to recursively trace indirect infections – if the
second user from Figure 2.3 decides to publish their contacts, the message is generated
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DeviceServer

GET /nonce?tan=1234567

nonce

randomKey()

keys[i]
encryptkeys[i](state+nonce)

stateAndNonceEncryption[i]
encrypttokens[i](state+nonce)

keyEncryptions[i]

for each encounter token tokens[i]for each encounter token tokens[i]

POST /upload
keys: [. . . ], keyEncryptions: [. . . ],
stateAndNonceEncryption: [. . . ],
tokenHashes: [. . . ]

decrypt(keys, stateAndNonceEncryption)

state, nonce
check(nonce)

OK

for each uploaded set of valuesfor each uploaded set of values

OK

Encounter upload after positive testEncounter upload after positive test

GET /download?lastRequestTime=x

tokenHashes:. . . , keyEncryptions:. . .
stateAndNonceEncryption: . . .

for each encounter token submitted after time xfor each encounter token submitted after time x

tokenHashes:. . . , keyEncryptions:. . .
stateAndNonceEncryption: . . .

Encounter download for matchingEncounter download for matching

Figure 2.5.: Sequence diagram of server-device communication in TraceCORONA

15



16 2. Background

in a similar fashion. The already-matched keys are omitted, as this would lead to an
unnecessary back-and-forth loop. The newly-generated message retains the nonce value
as a proof the user is part of this potential infection chain (it can only be decrypted
with a matching encounter token), but increments the infection state by 1. Once users
download this message, the users with an indirect encounter (i.e., who were in contact
with a person who has been in contact with a confirmed infected person) can also receive
warning messages. This can be repeated as often as desired. We will not further explore
this possibility in the remainder of the thesis, focusing on single step tracing as is the norm
today.
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3. Related Work

After introducing the technical and ethical basics of Bluetooth-based contact tracing, in
this chapter the existing approaches and work in the field are described and analyzed.

3.1. Existing Contact Tracing Approaches
A large amount of research and development during the COVID-19 pandemic has lead to
various universities, research institutes, and companies developing several approaches, pro-
tocols, and applications for contact tracing. After giving a brief overview of the beginnings
of the field, the remainder of the section introduces some of the different protocols existing
at the moment categorized by type of contact matching (cf. Section 2.2.2), describing the
concrete choices made for the key tradeoffs introduced in Section 2.2 and briefly touching
on the history and usage of each protocol.

3.1.1. Beginnings of Mobile Contact Tracing

In the years 2009 to 2012, the FluPhone project conducted experiments on the usage of
mobile apps for epidemiology purposes. These included contact tracing using the Blue-
tooth Basic Rate/Extended Data Rate (BR/EDR) technology. Designed to run on feature
phones using Java Mobile, the app recorded encounters by scanning for Bluetooth devices
and recording the device address. This data was then sent to a server in full, which makes
FluPhone a centralized approach [Yon09]. Rolling Bluetooth addresses (see Section 2.2.1)
were not implemented in older versions of Bluetooth before Bluetooth Low Energy (BLE
or Bluetooth LE) was introduced, so this was an obvious choice for a unique identifier.
A study was conducted to simulate outbreaks of different diseases, including the SARS
disease related to COVID-19, using this technology [Yon11].

The first occurrence in the news of a mobile app-based contact tracing approach related to
COVID-19 was in early February 2020, when Chinese state news agency Xinhua announced
the development of a “novel coronavirus close contact detection app” [hua20a]. There is
not much information known about the implementation of the application, only that it
uses phone numbers and national ID numbers as identifiers, using a centralized approach
linked with databases from other government agencies to retrieve data. This makes it a
centralized contact tracing approach, however not using any wireless technology for tracing.
Later press releases by Xinhua in the month of February include a digital attendance
list system on the Shanghai public transport system [hua20b]. Because all approaches
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implemented in the country are proprietary to China and details are sparse, we are not
going to be exploring them further.

First ideas about using Bluetooth technology in contact tracing were published in the end
of February, when the CoEpi project (see Section 3.1.3) was created on GitHub [LLCR20]
and beginning of March, when two interviews with scientists [Gor20; SF20] independently
yielded the basic idea. Throughout the month, development began on the first mod-
ern Bluetooth contact tracing protocols and applications. Some of these protocols are
described in the following subsections.

3.1.2. Centralized Approaches

TraceTogether (BlueTrace)

The first BLE contact tracing app rolled out by a government is the TraceTogether app
used in Singapore. It was launched on March 20, 2020 and uses a protocol called BlueTrace
[Gov20a]. A reference implementation for this protocol was made public shortly after under
the GNU General Public License as OpenTrace [Ope20], however the official TraceTogether
application remains closed-source. In addition, a white paper [BKT+20] containing a
detailed description of the protocol and considerations has been published.

Before starting, users are required to register with their phone number, which is subse-
quently linked to a user identifier (UserID) on the server. Temporary identifiers (Tem-
pIDs), which contain symmetrically encrypted UserID and timestamp values, are generated
centrally and transmitted to the users’ phones. This ensures only the server is able to map
TempIDs to UserIDs, and in contrast to locally generating encryption keys, is more energy
efficient on the phone. Every Temporary ID is valid for 15 minutes to prevent profiling
attacks based on observation (see Section 3.3.1), and to make replay attacks more difficult.
Scanning is performed 15 to 20 percent of the time, while advertising takes place 90-100
percent of the time. Finally, provisions are made for interoperability between countries
[BKT+20].

The protocol is deployed in Singapore in a way that is able to cooperate with manual
contact tracers, called “human-in-the-loop” [BKT+20]. Due to the SARS outbreak in
2003, Singapore has an extensive contact tracing force and expertise, which is why this
approach works for the country. In other countries, where SARS was not widespread,
modern manual contact tracing has not been deployed before and the resources to double-
check and follow up on every infection for effective tracing are not available. In general, the
protocol requires users to place full trust in the government, as all the data are collected
centrally and linked to the phone number, which is a personal identifier. If the protocol
were to be deployed stand-alone, without involving manual contact tracing, the phone
number would not be required and notifications could be sent in the app instead.

StopCovid/TousAntiCovid (PEPP-PT/ROBERT)

In Europe, the public research institutes Inria and Fraunhofer AISEC, among a consortium
of institutes, companies and universities began development on the PEPP-PT project in
late March 2020. As the first complete proposal for a centralized protocol was published
by the core group, on April 19 a significant portion of supporters dropped out of the
consortium to pursue decentralized tracing approaches instead [Var20]. This lead to the
creation of the DP-3T project, described in Section 3.1.3. Afterwards, PEPP-PT was
developed into ROBERT, the protocol used by the app called StopCovid. The app, later
renamed to TousAntiCovid, was officially deployed in France on June 2 [Dil20]. A full
description of the protocol was published shortly before the app release [PF20].
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This protocol is a balance between the fully-centralized and deliberately linked BlueTrace
protocol and the decentralized solutions, mixing parts of both to provide more privacy.
In this solution, an initial registration is performed, assigning an identifier without col-
lecting additional data, but employing a Proof of Work mechanism to make abuse harder.
The device regularly downloads so-called Ephemeral Bluetooth Identifiers from the server,
which are then exchanged over Bluetooth with nearby devices. If a user is tested positive,
the app uploads the so-called HELLO messages, which were exchanged in the presumed
period of contagion, to the server. Notification of clients is handled by a regular check-in
from the device, which can be combined with the download of new ephemeral identifiers.
There is also a provision for federation between country servers by transmitting a country
code alongside the HELLO messages [PF20].

The authors propose a unique way of masking the so-called “one-entry” attack, where a
malicious actor only activates tracing when meeting a specific person. By introducing a
random chance that an intentional false positive warning is generated, the attacker cannot
be sure their target is actually infected [PF20]. We explore this attack among other similar
ones in Section 6.1.4.

3.1.3. Decentralized Approaches

CoEpi/Covid Watch (CEN/Temporary Contact Numbers (TCN))

The CoEpi project was started by US-based developers on February 23, 2020 as one
of the first proposals to use Bluetooth LE for contact tracing [LLCR20]. Development
on the mobile applications and server-side code started on March 22 and has stagnated
after August. The protocol of CoEpi, initially called CEN (Contact Event Numbers),
was renamed to TCN on April 8, which marked the beginning of the TCN Coalition
[TCN20b]. By today, the TCN Coalition is a part of the Linux Foundation under the
name Linux Foundation Public Health [Lin20]. In contrast to other state-sponsored work,
the development of this project has always been public and released under the MIT License.
The TCN protocol was also worked on and co-developed by the Covid Watch organization,
starting on March 11 [TCN20a].

In this approach, for a given period of time the phone creates a set of keys called Report
Authorization Key (RAK) and Report Verification Key (RVK), rotated up to every 6 hours.
By utilizing a cryptographic ratchet algorithm1, which includes the SHA-256 hash of the
previous key and the RVK, a number of Temporary Contact Keys (TCKs) are generated.
The TCKs are then concatenated with the sequence number and hashed again to generate
the Temporary Contact Numbers (TCNs), which are broadcast over BLE. TCKs and
TCNs should be rotated in sync with the Bluetooth device addresses to prevent linkability.
This protocol implements the most versatile broadcasting algorithm of the analyzed work,
allowing for Android and iOS in both foreground and background states to communicate.
In case two iOS devices in a background state want to communicate, an Android device
must act as a relay between the two devices, actively mediating communications between
both.

The TCN protocol is an early decentralized tracing protocol, containing interesting ap-
proaches which can be used for further development of other protocols. The Linux Foun-
dation Public Health as well as Covid Watch now use the Google/Apple Exposure Notifi-
cation(s) (GAEN) protocol (introduced in Section 3.1.4) for the deployed versions of their
apps and the development of TCN seems to have stalled.

1Like a mechanical ratchet, cryptographic ratchets are algorithms whose steps can only be advanced, not
reverted back from a future step.
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DP-3T

Researchers from the Swiss universities EPFL and ETHZ, among others, uploaded the
first version of their white paper on the DP-3T standard to GitHub on April 3, 2020
[TPH+20a]. Here, the researchers propose a decentralized standard for contact tracing
using Bluetooth LE. This standard was later expanded into three protocols with varying
tradeoffs made between privacy, amount of bandwidth and processing power needed. The
third protocol is identical to GAEN, if its variable window is chosen to be 24 hours, and
so is not going to be elaborated further in this section. However, the authors criticize
this choice: “We recommend a time window of 2 or 4 hours depending on the bandwidth
availability in the region.” [TPH+20b]

In the original design, later renamed to “low-cost”, the phone generates a seed out of
the previous day’s seed and, using a pseudo-random generator, generates the amount of
ephemeral rolling identifiers needed to cover all time intervals of the day. Every ephemeral
identifier is 16 bytes long due to limitations of the BLE protocol with regards to passive
advertisement and scanning, which is used to establish contacts. The use of a cryptographic
ratchet is comparable with TCN, but instead of every time interval, the ratchet is advanced
daily. If an infection is confirmed, the seed of the predicted starting day of the infection
(e.g. 14 days before discovery) is uploaded and distributed to other users and a new
random seed is used from then on, creating a fully new identity. By uploading a seed
linking all exposures together, by design infected users’ recordings are linkable across all
days of an infection, which can be up to 14 days.

To fix this issue, the DP-3T team developed a second design, called “unlinkable”. Ephemer-
al identifiers are generated from random seeds, which are saved to the phone, and encoun-
tered phones store a hash of the ephemeral identifier and the number of the time interval
in which the identifier was scanned. In the case of an infection, the random seeds are
uploaded. All random seeds are then encoded into a Cuckoo filter, which is distributed to
devices. This design requires more bandwidth, storage and computational power, yielding
a vastly improved privacy for infected users.

Overall, the DP-3T team presented designs focusing on very different goals: one on mini-
mum resource usage with reduced privacy, and one with more resource usage than all other
protocols and very good privacy protection. After the publishing of the DP-3T whitepa-
per, Google and Apple developed GAEN and were certainly inspired by the DP-3T designs
[EL20].

Pronto-C2

A more recent development in the space of decentralized digital tracing protocols, Pronto-
C2 [ABIV21], employs a similar key-based approach to TraceCORONA, in that Elliptic
Curve Diffie-Hellman (ECDH) keys, instead of identifiers as with other protocols, are
shared by a central server. The main difference between the two protocols is the way
in which this key exchange is performed: While TraceCORONA uses a local Bluetooth
connection, Pronto-C2 uses a separate public mapping of Bluetooth identifiers to ECDH
inputs, where each device then retrieves the current mapping.

In addition, the communication between the server and devices uses extra steps for Pronto-
C2: An additional authentication service is introduced to reduce the risk of DoS attacks,
while mixing servers are used to improve anonymity towards the central server. For in-
fection verification, blind signatures are distributed by a separate server after verification
through the health authority and associated with the uploaded keys, while in TraceCO-
RONA the infection status is encrypted with the encounter token and verified by using a
nonce value obtained from the verification server.
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The paper evaluates performance metrics similar in type to the ones we are going to
calculate for TraceCORONA: With 5000 new infections per day, a 15-minute length of
keys and RSA-2048 used as a signature algorithm, each user has to download 177 MB and
upload under 350 KB of data per day. In addition, each device belonging to a non-patient
performs under 3500 exponentiations for the Elgamal cryptography, and if a user is tested
positive, the device needs to perform circa 13500 of these operations.

3.1.4. Google and Apple Exposure Notifications

Currently the most widely used protocol for BLE contact tracing is implemented by the
Google/Apple Exposure Notification(s) (GAEN) framework. It combines features imple-
mented by the DP-3T “low-cost” and “unlinkable” designs to save bandwidth while still
keeping linkability to a day. Temporary Exposure Keys (TEKs) are generated every day,
and a number of Rolling Proximity Identifiers (RPIs) are derived from it by encrypting
a so-called RPI key with the number of the time interval. Metadata, such as the signal
strength, is transmitted alongside the RPI [AG20b; AG20a]. In the case of an infection,
the TEKs, which now become diagnosis keys, are synchronized via the application and sub-
mitted for checking to the operating system Application Programming Interface (API),
which internally computes the RPIs and matches these to the encounter records.

Infection verification and synchronization of keys is left up to the client application. Due
to familiarity and the availability of open source code and analysis tools, we are using the
German Corona-Warn-App (CWA) as an example of a GAEN app. It implements the
infection verification via a system based on Transaction Authentication Numbers (TANs).
A TAN is needed to authenticate against the main backend when uploading diagnosis keys
and can be obtained by one of two flows. In the case of an “integrated laboratory” the test
laboratory is connected to the verification server using the Laboratory Information System
and allows retrieving a TAN if a positive test result is obtained via a QR code containing a
unique identifier. Otherwise, the TAN is generated by an employee of the health authority
and given to the user via a phone call. This flow is called “teleTAN” [Sti20].

After an infected user has registered their positive test result, they are asked to optionally
provide information about the date when symptoms of the disease began to appear, called
Days Since Onset of Symptoms (DSOS) [Hoe20], to be included with every key upload.
Previously, based on this information, a value called the Transmission Risk Level (TRL)
was calculated for each submitted TEK before key upload, in even earlier versions of the
application a fixed sequence of levels going back from the upload date was used. After
keys are transmitted to the server side, the keys with metadata (time of validity and
TRL) are packaged once every hour and distributed to other users. Once other clients
have downloaded the keys, the TRL, as well as the measured signal strength, are used by
GAEN to estimate the risk of an encounter (cf. Section 5.3.2) [Cor20a]. Depending on the
probability of infection, warning messages are displayed to the other users [Wol20].

In Europe, national tracing apps based on GAEN can federate their diagnosis keys between
countries to enable travelers to use their national contact tracing app throughout the
continent. This is facilitated by the European Federation Gateway Service operated by the
German app team. We only focus on the national tracing functionality in this thesis.

3.2. Analysis of Contact Tracing Approaches
Many efforts focus on documenting, analyzing, and improving already deployed tracing
solutions further. Some of these efforts focus on providing an overview and survey of
existing work, while others focus on a specific implementation and aim to track efficiency,
gain insights, and ultimately make concrete proposals for improvements. In this section,
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both categories are going to be discussed: projects aiming to list and compare different
approaches, and projects focusing specifically on the German Corona-Warn-App and the
underlying GAEN framework, which has been the main focus of our research so far.

3.2.1. Lists, Comparisons, Surveys, and Indexes

Throughout the years, there have been several attempts at keeping up-to-date lists of
apps related to contact tracing and other topics around the COVID-19 pandemic. An
early article, giving detailed information about every app and focusing mostly on privacy
aspects, is [SBG+20]. It stopped receiving regular updates in mid-May 2020. Still ongoing
efforts are [ORJ20], which rates apps based on five criteria laid out by the American Civil
Liberties Union (ACLU) (also see Section 2.3) and the Wikipedia article [Wik20].

In addition to listing different apps, yet another category of work covers various aspects
of the protocols used in more detail. [Alb20] is an extensive survey of utilized frameworks
and requested permissions in nearly 500 COVID-related iOS apps, not only focusing on
tracing apps, but also pure informational applications. It concludes that half of all apps
contain at least one framework made by Google. [AAA+20] analyzes the permissions,
privacy policy, reviews, and whether the app is using Transport Layer Security (TLS)-
secured connections for 26 tracing apps. They conclude that several of the applications
are using unclear language in the privacy policy, require too many permissions, and/or,
in five cases, even fail to use TLS. Based on reviews, users are aware of these concerns.
Finally, [AMX+20] is a detailed survey of architectural features, attacks, protocols, and
user concerns about contact tracing.

3.2.2. GAEN and Corona-Warn-App Analysis Tools

On May 17, one month before the final release of the Corona-Warn-App, a project by
developer Huebler, was launched to create a framework for experimenting with and an-
alyzing the data format of the app [Hue20b]. This led, among others, to the discovery
of privacy issues related to key linkability (cf. Section 3.3.3). In addition, this tool was
used in multiple dashboards to visualize different parameters related to app usage, which
allows for analysis of the app’s effectiveness [Pfi20; Böh20]. Later, on October 4, 2021, the
CWA team published a “key figures dashboard” containing statistics on app downloads,
registered tests, sharing behavior (how many users actually share their diagnosis keys) and
issued warnings [Hou21].

3.3. Attacks on Contact Tracing
Apart from privacy concerns in regular usage and operation of contact tracing apps, ma-
licious actors can mount several attacks, which may lead to deanonymization and false
positives, thus decreasing privacy and effectiveness. The paper [BDF+20], co-authored
by us, presents and demonstrates two basic attacks common to most Bluetooth tracing
protocols, such as GAEN. Further research has yielded more weaknesses, allowing for
injection of fake alerts [AFV21b; IVV21b] or linking of rolling identifiers among multiple
days [Hue20a]. Google has published a FAQ document responding to several attack vectors
[Goo20e].

3.3.1. Profiling Using Bluetooth Sniffing

The basic functionality of Bluetooth LE-based tracing makes it necessary to send rotating
identifiers out. Combining received identifiers together with timestamps and locations
of reception allows for the creation of movement profiles, as long as the identifier stays
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the same. This can be combined with the linking of rotating identifiers described in
Section 2.2.1 for the creation of movement profiles of infected people.

For executing an attack in practice, there are multiple options on how to obtain the
data. One can deploy a network of fixed-position Bluetooth sniffers, as demonstated in
[BDF+20]. A case study in this paper estimates the number of tracing stations needed to
collect coarse-grained information about all people working in a city of 160000 inhabitants
during their commute to work at 395 to 465. Another option is to utilize compromised
smartphones of other users by using malware or injecting code through a vulnerable or
modified framework [DR20].

The paper [ABIV21] introduces more variations on this attack to highlight design decisions
of the introduced protocol. Based on the network of Bluetooth sniffers, called Paparazzi
attack, there is the Orwell attack, where server data are also in the hands of the attacker,
as well as the Matrix attack, which allows sending of BLE data in addition to receiving.
As these attacks require more data than the original sniffing attack, they can be seen as an
extension or potential workaround against mitigations introduced for the original attack.

A different angle on Bluetooth sniffing is presented in [NAE+21]. Instead of gathering
movement profiles of users the aim of this work is to gather photographs of infected
individuals. To achieve this purpose, in practice the attacker uses a directional antenna and
receives RPIs from passers-by using GAEN-based applications. Once the signal strength is
high enough, a snapshot from an attached camera is taken and the picture saved together
with the RPI. Later, these simulated encounters are processed one-by-one by the matching
algorithm like real encounters would, which allows the device to know the infection status
of every photographed individual. The same attack, but performed more manually with a
paparazzi spying on celebrities is proposed in [Vau20].

3.3.2. Fake Alert Injection

Users receive alerts if an encounter meeting certain criteria is recorded. Normally, this
encounter is recorded directly from a phone or other token running the same protocol which
is actually in the physical vicinity. There are several ways of injecting fake encounters into
most contact tracing systems.

A wormhole attack, demonstated in [BDF+20], captures the BLE advertisements sent
out by a legitimate app, and forwards them to one or more remote attacker devices,
which re-broadcast the advertisements, acting as a beacon of their own. If an already
infected user or to-be-infected user is on the side of the wormhole where messages are
being captured, people who were not in contact with the infected user are going to register
a risky encounter. The attack was tested using both the DP-3T sample application and
CWA and works in both cases.

To receive a token belonging to an infected or soon-infected person is a challenge which
has been studied by the authors of [AFV21b]. The paper presents several approaches
on how a person with malicious intent could buy TEKs from infected app users without
trusting them: using JSON Web Tokens, or using decentralized oracles. Both attacks were
demonstrated with the Italian Immuni app and the SwissCovid app. The authors note
that a part of the attack, which allows proof of ability to upload keys, is likely also possible
on CWA due to a similarity in the protocol.

Actually injecting fake recent exposures into phones is not trivial, as the TEK of the
current day is kept inaccessible inside the GAEN framework. In order to still generate
a fake warning message, [IVV21b] proposes several methods to manipulate the victim
device’s time. Either setting the time manually, which requires physical access, or using
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rogue NTP servers, mobile base stations, or GNSS senders. Then, replay attacks can be
carried out using the TEK which was valid on the day the phone is now set to.

In [ABIV21], an additional attack resulting in fake alerts is theorized (Matteotti attack).
Here, the attacker colludes with the server and health authority and is able to place
BLE receivers. The hypothetical motivation and outcome is a government trying to stifle
political opposition by sending members of parliament into quarantine [ABIV20].

3.3.3. Linkability of Temporary Exposure Keys

When the CWA was rolled out, the number of users as well as the infection rates were low.
This, combined with the always identical profile of TRLs, a fixed number assigned to the
key dependent on the amount of time passed since the positive test, enabled using data
analysis to link together TEKs of up to 12 days without doubt in special cases [Hue20a].

Figure 3.1 shows an example of a diagnosis key file from the time period when padding
was active and TRL values were not yet varied based on symptom indication. One can
clearly see that three users uploaded their diagnosis keys. If an attacker had recorded one
user’s movement as in [BDF+20], they would have a linkable movement profile over 11-13
days. In this case, it is extremely unlikely that they would have recorded multiple users
from this package with an anonymity set of three users distributed over Germany.

A worst case of linkable users, which could have happened in theory, was described in
[Hue20a]. With a multiplier of 10 and a minimum package size of 140, 13 keys from user
A (which was the maximum amount as the key for the current day was not uploaded) and
1 key from user B (this means the app has been used for one day before uploading keys).
This would allow to link 12 keys of user A without doubt.

However, this problem eventually solved itself as more and more infections were reporting
via the app, so today no padding is applied and shifting is only performed during times
when most recipients of warnings would be asleep anyway.

3.3.4. Server-Side Attacks and Gossip Attack

In addition to attacks which can be performed by users, the paper [ABIV21] also theorized
a class of attacks performed entirely on the server side, by a malicious operator collud-
ing with the health authorities. These include the Brutus attack, where the verification
mechanism is abused to link the rolling identifiers or pseudonyms of users to personally
identifiable information, and the Bombolo attack, where additional information such as
number of contacts and information about which people have met each other is extracted
on the server side. As stated in Section 2.3, only [Neu20] considers this class of attack in
their guidelines.

The final “attack” presented by [ABIV21] is the scenario of a user being able to gather
evidence about a contact with an infected person. First theorized in [Pie20, p. 9], con-
versely, this “weakness” of a scheme could be turned into an advantage: it would enable
an additional confirmation of encounters to third parties such as testing labs.
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Figure 3.1.: Transmission Risk Levels of CWA diagnosis keys from July 5, 2020
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4. TraceCORONA Implementation

Following the last chapters, in which the existing work has been detailed, the focus now
shifts to the TraceCORONA protocol and the prototype implementation of the TraceCO-
RONA app developed by a team of researchers at TU Darmstadt as well as the author of
this thesis. In this chapter the app is described in detail, commenting on architectural and
design decisions. After providing general information about the implementation, the chap-
ter begins with a high-level overview of the app’s architecture, after which the packages
and functional units of the app are explored in detail, one after the other.

4.1. General Information
The Android platform was chosen for our prototype implementation due to the difficulty
of running applications in the background on iOS (cf. Section 2.2.5), as well as the wider
variety of tools available for development and testing on the platform compared to iOS.
Android is also more widely used than iOS, and other mobile operating systems have too
low of a market share to make testing a prototype implementation worthwhile [Sta21].

Due to familiarity with the platform, the TraceCORONA app is written as a native An-
droid application using Kotlin as a language. It has a total of 4983 lines of Kotlin code,
along with 1832 lines of XML code used for user interface files, constant values and graph-
ics.

4.2. Architecture and Packages
Figure 4.1 shows a simplified package diagram1. The Android Application Programming
Interface (API) implements the architectural style of Model-View-ViewModel, introduced
by Microsoft in 2005 [Gos05], which is also the basis for the architecture of our app. Follow-
ing this principle, the “model” is implemented in the database package, with subpackages
for the respective data types. The user interface is implemented in the view, viewmodels
and listadapters packages, which we group in the diagram for sake of clarity. Utilizing
these central parts of the app, the core business logic and functionality is implemented in
the tracing, encounterdownload, infectionverification and encounterupload pack-
ages. Supplemental logic such as interfaces to cryptographic libraries and server connection
functionality is contained in the util package. Finally, code such as views and logging
facilities used only for debugging purposes are contained in debugging, which we omit in
the figure.

1A full package diagram for an older version can be found in Section B
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User Interface database
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Figure 4.1.: Simplified package diagram of TraceCORONA app

4.3. Database
Design

The current database scheme is depicted in Figure 4.2. We briefly explain the design deci-
sions leading to this version of the database. Initially, the only tables used were Encounter,
Scan, and EncounterMatch with their respective relationships. token and tokenHash
were immediately calculated after an encounter and saved directly to Encounter, with
tokenHash serving as a primary key. Encounter also contains the rollingId of the en-
countered device, used to distinguish recently-encountered devices, where a handshake has
already been performed, from new devices (cf. Section 2.4.1).

One or more Scan entities are present for every encounter, generated on every repeated
Bluetooth encounter with the other device and containing a timestamp, Received Signal
Strength Indication (RSSI) signal strength data, and a distance value (for now unused and
always 0). Separately storing these results can be used for more fine-grained classification
of encounters by using historic data.

If an encounter matches a token marked as infected through the server, the matching
process generates an EncounterMatch containing the nonce of the respective message and
the decrypted chainStatus.

In these early versions, as the keys and tokens were generated and calculated on the fly,
no saving of keypairs and encountered public keys was necessary. Later, the database for
TraceCORONA was redesigned and optimized, yielding the final database scheme seen in
Figure 4.2. To preserve battery life, Keypairs are pre-generated before usage, and so need
to be stored in the database. When a device is encountered, the received public key and
rolling ID is stored in the database. Before encounter up-/download and matching, tokens
and token hashes are generated, transforming EncounterTokenParameters entities into
EncounterTokens.

Implementation

The database for the TraceCORONA app is implemented using SQLite [Hip21] and the
Room object-relational mapper [Goo21j], a standard solution for mass data storage on
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Figure 4.2.: TraceCORONA Entity Relationship diagram
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Android. This allows for more straightforward access and interpretations of data than a
proprietary format, as well as easier debugging.

Following the conventions for Room, we implement the database entities/tables as Kotlin
data classes, while queries are implemented as functions in the corresponding Data Access
Object (DAO). Apart from regular getters and setters, storing data in SQLite allows us
to use database queries to retrieve aggregate values, such as the duration of all encounters
in a certain interval, without manually filtering data in code. Another feature provided
by Room are live queries using the LiveData interface of Android, which are used to
automatically update the user interface when the database changes.

Every DAO is then wrapped in a repository, which supplements the SQL queries with
functionality such as converting time to keypair ID (cf. Section 4.5) or converting the
EncounterTokenParameters into EncounterTokens.

4.4. User Interface
Design

To achieve a usable and presentable interface quickly, and due to the robust integration
into the Android framework, the interface design of the TraceCORONA app is based
on Google’s Material Design system [Goo21g]. It consists of a number of single-purpose
screens linked together by an overview using card components, which are well-suited to
group related information and buttons [Goo21d].

A tutorial is launched on the first start of the app only and provides an introduction on
the functionality and usage to the user. Once the tutorial is completed, the user enters
the main screen (see Figure 4.3(a)). Here, contact establishment (cf. Section 4.5) can be
enabled with the main floating action button [Goo21c] “Start Tracing”.

After touching “Check Your Status”, the user is taken to the status screen (see Fig-
ure 4.3(c)), where the encounter download and matching (cf. Section 4.6) is triggered and
a message according to the user’s exposure status is displayed. If at least one encounter is
present in the database, a “More Statistics” button is shown, with which the user can see
a list of daily encounter count and duration. Lastly, the “Upload Your Contacts” button
launches the Transaction Authentication Number (TAN) entry screen (see Figure 4.3(b))
for infection verification and subsequent encounter upload (cf. Section 4.7).

Implementation

The Material Components for Android library [Goo21i] is used to extend the Android
SDK and Android Jetpack support libraries’ built-in functionality. The user interface is
implemented using activities, with the only part using a fragment-based interface being
the WelcomeActivity for the tutorial.

Every activity represents a screen as described in the Design part. To prevent loss of
information when the activity is destroyed, e.g., if the device orientation changes, view
models are used to provide and persist data. MainActivity and AlertsActivity (see
Figure 4.3(a) and Figure 4.3(a)) use a dedicated view model to store information only
needed for the specific screen, while separate view models are used for information from
the database. These handle the database connection and wrap functions and values of the
repositories (cf. Section 4.3).

LiveData values provided by the view models reduce the boilerplate code, as the Observer
pattern can now be used in the activities to update the user interface if values change in
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(a) Main screen (MainActivity) (b) Upload Contacts
(UploadContactsActivity)

(c) Status screen
(AlertsActivity)

Figure 4.3.: Screenshots of TraceCORONA user interface

another part of the app, e.g., the database. Additionally, a separate instance of Shared-
Preferences is used for the user interface to persist values such as if the tutorial has been
shown yet or when the matching process was last run.

To implement lists of values, we use the RecyclerView provided by Android Jetpack, which
requires us to implement list adapters. These in turn use the view models to manage the
layout and content of lists.

4.5. Contact Establishment

The tracing package contains the core logic used for Bluetooth contact establishment
and logging. It is organized into three subpackages: handshake, handshake.gatt and
keyGeneration. The root, as well as the former two of these subpackages form a multi-
layered structure handling the different layers of Bluetooth Low Energy (BLE or Bluetooth LE)
communication. The top level contains the classes TraceWorkManager and TraceService,
which are responsible for regular key rotation and scanning/advertising intervals. One level
below, handshake handles the connection process with scanning and advertising, while the
nested gatt package is used for key exchange through the Bluetooth Generic Attribute
Profile (GATT) protocol after initial discovery.

Prerequisites

Before enabling contact establishment, several other requirements have to be fulfilled. The
application checks if Bluetooth is enabled and prompts the user to enable it otherwise.
Another check is performed for the permission to read the fine device location, required by
Android for usage of Bluetooth LE, as Bluetooth beacons may reveal the device location.
For the application to run in the background without risk of being interrupted by Android’s
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battery optimization, the user has to explicitly exempt this app from being optimized in
the device settings.

The final requirement to use the TraceCORONA app is support for Bluetooth LE adver-
tising in the device’s Bluetooth chipset. Multi-advertisement support, i.e., the ability to
advertise for multiple services and with multiple message parameters at the same time,
is recommended so that other devices and apps can function as normal while TraceCO-
RONA is advertising. The Android developer documentation even states that support
for multi-advertisement should be queried “to check whether LE Advertising is supported
on [the] device”[Goo21b]. However, devices exist where advertisement is supported, but
multi-advertisement is not, e.g., recent Nokia phones per our tests. A toggle was added to
the app to override this check, still, advertising may be unreliable when used with these
phones.

Communication

Bluetooth communication is handled according to the protocol design described in Sec-
tion 2.4.1. For the discovery phase, where no connection is active, Advertisements are
handled by the Advertiser class and scanning is handled by the Scanner class. Once a
device is discovered, the Discovery class then checks if the device is known and triggers
the connection process for the handshake if not.

For this key exchange, the scanning side uses GattClient, which provides an android.
bluetooth.BluetoothGattCallback to control the connection to the GattServer pro-
vided by the advertising device. The exchanged keys and parameters are subsequently
saved to the database as an Encounter with attached Scan and EncounterTokenParameters
entities.

The two WorkManager classes, despite their name, inherit from the androidx.work.Worker
class with the companion object providing a startWorker function for initialization, which
communicates with androidx.work.WorkManager for scheduling. The TraceWorkManager
restarts the TraceService every 30 minutes to regenerate the BLE device address and
switch to a new keypair and rolling ID.

Key Generation

Key generation is a mostly separate part, being similar in architecture to the top level
package with the KeyGenerationService being started by the WorkManager, which then
actually generates keys and saves them to the database. Keys are generated every two
days by default, and for further optimization WorkManager allows to restrict the execution
to times when a battery charger is connected. Keypairs consist of a public and private key,
and are supplied by the Elliptic Curve Diffie-Hellman (ECDH) provider included in the
Bouncy Castle crypto package [Leg20], wrapped in the util.security.ECDHUtil class.

Every keypair is assigned an ID, also used for selecting the correct keypair planned for the
current time window: the first keypair has ID 0 and subsequent keypairs count up. The
timestamp of the first tracing activation is saved to the SharedPreferences, and the time
window for every key is hard coded to 30 minutes. Thus, the ID of the active keypair can
be calculated as IDKeypair = (tcurrent − t1st tracing)/30 min.

4.6. Encounter Download and Matching
All server communication in the app is handled by the Retrofit 2 [Squ20] and Gson [Goo21f]
libraries. Once the user initiates the encounter download process by opening the alerts
screen, the encounterdownload.DownloadService, inheriting from util.Webservice, is
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started and establishes a connection to the TraceCORONA server. If a connection to the
server is possible, the encounters are streamed from the web server to the app, where they
are asynchronously matched to the locally recorded encounters.

Matching is performed by querying the database for EncounterTokens with each down-
loaded encounter hash. When a match is found, the encrypted random key (see Sec-
tion 2.4.6) is used to decrypt the state and nonce information contained in the encounter
data. These data are subsequently saved to the database as an EncounterMatch entity.

Every 41 seconds, a timeout is enforced: if no data was received for the last 40 seconds,
the connection is closed by the client. The streaming system allows for operations on
the server and client side to be parallelized, as no full file has to be downloaded, then
extracted.

4.7. Infection Verification and Encounter Upload
On the TAN entry screen (UploadContactsActivity), after the user has entered their
TAN and confirmed with the “Upload” button, the infectionverification.NonceTan
Service, again inheriting from util.Webservice, is called to send the TAN to the server
and retrieve the nonce value as described in Section 2.4.3. If this query succeeds, the
upload process is started and on failure an error message is displayed to the user.

The next steps are performed in the encounterupload.UploadService. This service,
which is the final descendent of util.Webservice, begins by generating the upload mes-
sage as described in Section 2.4.4. After the upload message is generated, the UploadService
sends it to the server. Finally, the status of the local device is set to “Infected” in the
app-wide SharedPreferences key-value store.
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Implementation Analysis

5.1

5.25.2

5.3 5.35.4

Figure 5.1.: Schematic over-
view of decentralized contact
tracing

The aim of this chapter is to establish claims about the
performance, privacy, security, and efficiency claims of the
contact tracing protocols Google/Apple Exposure Notifi-
cation(s) (GAEN) and TraceCORONA, highlighting sim-
ilarities and differences in both protocols. These claims
are going to be verified by means of formal and practical
analysis in the following chapters. As the GAEN specifi-
cation only describes the device-side communication and
processing, we use the German Corona-Warn-App (CWA)
as a real-world example for an implementation.

Figure 5.1 shows a high-level schematic overview of a de-
centralized tracing system. The following sections each
describe and analyze a single part of this overview, as de-
scribed by the section numbers in the figure.

5.1. Server Side
As both GAEN and TraceCORONA are decentralized tracing protocols (cf. Section 2.2.2),
the server side for both protocols has the purposes of:

(i) verifying positive test results

(ii) receiving identifiers used for matching encounters, verifying their authenticity and
saving them

(iii) distributing these identifiers among devices

Purpose (i) is achieved in both systems by issuing a Transaction Authentication Number
(TAN) for every positive test result. As this mechanism is not part of the TraceCORONA
protocol and prototype, as well as highly country-specific, we are not going into further
detail on this point. For more details on the CWA’s implementation, refer to Section 3.1.4.

Receiving and Verifying Keys/Tokens

The functionality for achieving Purpose (ii) is handled in the CWA by the submission
service [Cor20b]. After receiving a TAN-authenticated submission message containing a
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number of Temporary Exposure Keys (TEKs), the key metadata are sanity-checked. The
Days Since Onset of Symptoms (DSOS) value, used for calculation of the infection risk,
is converted into a Transmission Risk Level (TRL) value, or vice versa, for compatibility
between old and new versions of the application and GAEN framework. Previously, before
October 18, 2020, padding was applied with the same metadata as the uploaded keys (see
Section 2.2.4), however this is disabled in the current deployment, presumably to save
bandwidth. The results are saved into a PostgreSQL database twice: for distribution to
CWA users and upload to the European federation gateway.

The raw data saved into the diagnosis_key table (used for distribution) consists of 17 B
of key data (16 B of key + 1 B byte overhead [The21a]) and a minimum of 113 B of
metadata (more if multiple countries were visited by the patient). On a local install of
the CWA server, the total table size for 67.315 records of automatically generated fake
keys is 13 074 432 B bytes. When adding an additional 9607 fake keys, the size grows to
14 352 384 B. From the difference, we can estimate the average real size of a diagnosis key
stored in the database at ≈ 133 B. Although federation between countries is not further
explored, the federation_upload_key table is nearly identical, only adding a so-called
batch_tag for organization purposes.

In TraceCORONA, as explained in Section 2.4, the submission of keys is a two-step process.
Before keys can be sent from a device, the TAN is exchanged for a randomly-generated
nonce. Once the server receives the upload message, it decrypts the encrypted part con-
sisting of the infection state and the nonce, verifies the nonce is genuine, and then saves
the full messages into a MongoDB database. Further techniques to prevent key linking
such as padding or mixing of messages are not currently implemented in the prototype,
but could be added later.

Distributing Keys/Tokens

Fulfilling the third purpose, distribution of identifiers among devices, is a challenging step
due to the number of app users present. Here, the two implementations employ vastly
different approaches. In the CWA system, the format for transmitting TEKs is specified
by the GAEN framework: they must be packed as a ZIP file containing the keys in a
binary file format and a signature. These files are generated hourly and daily by the back
end and then served through a Content Delivery Network, which distributes the load away
from central database servers and towards dedicated infrastructure.

In contrast, the TraceCORONA server back end streams keys to client devices: once
a device sends a request to download new keys beginning from a certain point, data
are continually sent from a database query until the device closes the connection after a
certain timeout. This architecture yields the benefit of being able to control certain parts
of the response data or metadata on the server side for each client device, which can open
up optimization possibilities. In addition, newly-submitted upload messages are directly
distributed without any architecturally-induced delays, which is more suitable for testing
and demonstrations. On the other hand, this approach cannot easily be adapted to utilize
an external content delivery network, as is the case with CWA, and therefore leads to a
higher server-side processing load.

5.2. Server-Device Communication
In addition to the server side software, the communications between the server and de-
vice play an important role for constraints and tradeoffs of the tracing system. The two
parameters relevant in this part are the bandwidth, measured in bit/s, and the traffic
volume, measured in bits or bytes (B). For the contact tracing protocols analyzed here,
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bandwidth is mostly relevant for estimating the impact on the internet and server caused
by simultaneous communications, and traffic volume is relevant on the server and client
sides, as it is commonly used as a billing unit for servers and mobile data plans1.

For decentralized contact tracing, there are two major traffic-generating operations: up-
loading encounters to the server and downloading encounters from the server. In the two
applications analyzed here all other operations are either unnecessary for the tracing itself,
such as fetching statistical data for display to the user, or specific to the local implemen-
tations, such as verification of infection. We estimate the traffic generated as a function of
the user count n, the rate of infected users λ, and additional variables related to the data
shared by the system. The total traffic volume and bandwidth scales up with the amount
of users and/or infected users.

After estimating and comparing the bandwidth required for both systems in the first
sections, in Section 5.2.5 we highlight another aspect of server-to-device communication:
preventing passive attackers from gaining information about user status.

5.2.1. Generalized Worst Case

To put an upper bound on the traffic volume required by users, we take a look at a
generalized “worst case protocol” first. In this protocol, both sides record each encounter
with a size of senc. For longer encounters, these data are repeated for every time slot. In
case of an infection, all encounter data are distributed to all other users. In the worst
case, every user encounters every other user, i.e., every additional user can generate n− 1
additional encounters. Once an infection is registered, this increased number of encounters
is then distributed to all devices in the system, leading to n transfers for every encounter.
Again assuming the worst case – everyone encounters everyone and is then afterwards
simultaneously diagnosed as positive – yields the maximum traffic volume a distributed
contact tracing system can produce per time slot, referred to as τmax in Equation 5.1.

τmax(n) = n︸︷︷︸
Transmissions

per Enc.

n(n− 1)︸ ︷︷ ︸
Number
of Enc.

senc︸︷︷︸
Size of

Enc. Data

(5.1)

Leaving out the factor n for the transmissions yields the traffic volume per user, while
dividing by the length of the time slots yields the average bandwidth used by this system.
Therefore, this generalized distributed contact tracing system’s traffic per time slot is in
O(n3).

Of course, if everyone is infected, tracing contacts does not make sense anymore. Therefore,
we introduce the rate of infected users, λ, which is the amount of newly-infected users
in this time slot divided by the amount of total users. If a system is encounter-based,
we additionally need the average encounters for the uploaded time period per person,
µenc = µenc/day ·ndays. These variables will be used in the equations describing the systems
in the next sections.

5.2.2. GAEN

In GAEN, to reduce the amount of traffic generated, the system uses keys rotated daily
(TEKs) to then generate the identifiers used in communication between devices (Rolling
Proximity Identifiers (RPIs)). Thus, for server-device communication the size of these
TEKs and the corresponding metadata is relevant. As mentioned above in Section 5.1,

1Note, however, that the traffic of government-supported tracing apps is often zero-rated by mobile service
providers, i.e., users are not billed [Hol20; CJG20].
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Constant Value

mCWA, down 33 B
tCWA, down 52 B

τCWA, up, 14 keys 488 B

Table 5.1.: Corona-Warn-App encounter token upload and download payload size

the GAEN specification includes an exact file format to be used for download of TEKs
from the server [Goo20d; App21b]. For efficient encoding of data this binary file uses the
Protocol Buffers library [Goo21h], which allows for defining custom binary protocols. For
every key this format includes the key data (16 B) as well as the metadata about when the
key was active (4 B + 1 to 2 B), the type of diagnosis (1 B), and the TRL/DSOS values
(see Section 3.1.4, 1 B + 1 B). As every field includes a 1 B header, this adds up to 31 to
32 B per key.

When generating messages for download by the client application, the keys are packaged
into an export message. This includes a time window for the keys in the message (8 B+8 B),
a region string (2 B), batch values for splitting the file into multiple parts (1 to 5 B + 1 to
5 B), information strings about the signature of the file (2 B + 3 B + 19 B), and the keys
(31 to 32 B each, see above). Again adding the sizes together, considering strings and
embedded messages up to 127 bytes in length have 2 B total overhead, the total length of
an export message is at least tCWA, down + nkeys ·mCWA, down = 52 B + nkeys · 33 B.

Messages used for uploading of keys, on the other hand, are not standardized between
implementations. Here CWA also uses a format based on Protocol Buffers. In addition
to up to 14/15 keys2 in the TEK format described above, every upload message includes
strings for the visited countries (2 B each) and the origin country (2 B), a flag controlling
if the message contents are to be federated between different national tracing applications
(1 B), as well as a padding string3 to reduce side channels based on message sizes (28 B
per missing key to pad out to 14 or 15 keys2). Adding these numbers, as well as headers,
yields an upload message size of minimum 405 B + ncountries · 4 B for one key valid for
under ≈ 21 h and maximum 484 B + ncountries · 4 B for 14 keys valid a full day each. For
comparison purposes, we assume ncountries = 1, which results in τCWA, up, 14 keys = 488 B.

Notably, these numbers should be identical or very close due to the padding applied
during upload. However, at the time of writing, two bugs in the padding behavior were
discovered by the author. The amount of keys to be padded to is not consistent between
the Android and iOS apps – 15 keys for Android and 14 for iOS – therefore making the
message size platform-dependent in practice. In addition, the estimate for the additional
length one key adds is set at 28 B, which, due to using variable-length encoding, is too
low for the actual values occurring in the data structure, and was estimated above at 33
to 34 B per key when considering the Protocol Buffers header for the embedded message.
This significantly reduces the usefulness of the padding, as messages with fewer keys are
still smaller. Both bugs were reported to the developers by the author on April 22, 2021
[Roo21], but no response or change in the relevant code segments occurred during the
period of the thesis.

Table 5.1 summarizes the results of our payload size calculations for Corona-Warn-App. If
fake key padding (cf. Section 2.2.4) is utilized, it must be considered, as it nearly multiplies

2The Bluetooth-based contact tracing feature uses up to 14 keys, while the more recent QR code based
check-in feature extends this by one. For the sake of comparison we use 14 keys and ignore the QR
code check-in.

3Not to be confused with fake key padding (cf. Section 2.2.4).
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Constant Value (original) Value (no encoding) Value (optimized)

mTC, down 181 B 80 B 24 B
tTC, down 0 B 0 B 0 B
mTC, up 143 B 96 B 28 B
tTC, up 73 B 0 B 0 B

Table 5.2.: TraceCORONA encounter token upload and download payload size

the generated traffic for key download. However, due to this form of padding not being
used in the CWA at the moment, it is left out here.

5.2.3. TraceCORONA

In contrast to GAEN, TraceCORONA does not use derived keys, instead using Elliptic
Curve Diffie-Hellman (ECDH) to generate a new token per encounter, which is rotated
every 15 minutes. Therefore the upload and download messages must include all hashed en-
counter tokens. In the TraceCORONA prototype, messages are encoded using JavaScript
Object Notation (JSON) and Base64 due to ease of use.

One encounter token takes 16 B and is encoded as 25 B. Additionally, the upload mes-
sage contains the encrypted state and nonce values (48 B, encoded as 68 B), the key
and encrypted key (16 B/25 B each) for every encounter, resulting in a payload size of
mTC, up = 143 B. The JSON labels take up an additional tTC, up = 73 B per packet.

Downloads contain similar information, only omitting the plaintext key used by the server.
Due to the streaming implementation (cf. Section 4.6), every encounter token takes a
total of mTC, down = 181 B, of which 63 B are used for JSON labels and could therefore
be reduced. The inclusion of the nonce data as well as the inefficient encoding leads to
the download size of original TraceCORONA being 11765/533 ≈ 22 times larger for a
period of 13 days and 5 encounters per day, and this is without considering the Hypertext
Transport Protocol (HTTP) headers repeated for each streamed key.

If TraceCORONA instead uses a system where multiple keys are grouped into a single
download package, similar to GAEN, and leaves out some unnecessary metadata sent
with the key, the traffic can be reduced considerably. We estimate the metadata can be
reduced to 4 B, consisting of infection state, date of encounter (as days since epoch) and
calibration data. Together with the token hash and encrypted key for metadata encryption,
this would then consume mTC, down = 24 B for every token, which is 13.3 percent of the
original size. For uploads, this would reduce the upload size to mTC, up = 28 B per key.
As the usage of an encoding like Protobuf is not strictly necessary for TraceCORONA, we
do not assume that one is used here, while for GAEN it is mandatory.

Table 5.2 contains the results of our payload calculations as described in the paragraphs
above.

5.2.4. Comparison of Generated Traffic

After describing the transmission format used by the two protocol implementations, we
compare the traffic generated by the two systems. For this purpose, the previously-
determined parameters are interpolated to realistic daily traffic volumes for a nation-wide
contact tracing system. As described in Section 5.2.1, three parameters are used as vari-
ables: the total amount of users of the system (n), the rate of infected users over the
analyzed time period (λ) and the average encounters per person and day (µenc/day). We
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(a) Varying rate of infected users, 15 000 000 users
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(b) Varying amount of total users, rate of infected
users = 0.001

Figure 5.2.: Comparison of TraceCORONA (raw, 5 or 50 average encounters/person/day)
and Corona-Warn-App (CWA) traffic per day, based on theoretical numbers, logarithmic
scale for both axes
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consider one low contact scenario with µenc/day = 5 and one high contact scenario with a
value of µenc/day = 50.

Three values are compared: the amount of keys/tokens stored on the server, as well as the
total traffic volume used for the upload and matching processes. The plots in Figure 5.2
are split into two columns, where either the rate of infected users or the amount of users
is varied. We plot two variants of TraceCORONA’s traffic volume, one with the proposed
reduced metadata size and ignoring JSON and Base64 encoding (5i and 50i, solid lines)
and one with the original size (5 and 50, dotted lines). Lines are colored according to the
legend, where the numbered lines stand for the TraceCORONA results with the respective
µenc/day value and the dashed CWA line stands for the CWA results.

The amount of keys or encounter tokens is estimated by the functions

ntokens, TC(µenc/day) = µenc/day · ndays

ntokens, TC, total(n, λ, µenc/day) = n · λ · ntokens, TC(µenc/day)
nkeys, CWA, total(n, λ) = n · λ · ndays

and is plotted in the first row of Figure 5.2. As expected, due to the vastly different ap-
proaches of TraceCORONA and GAEN, the amount of cryptographic identifiers stored on
the server is 2-3 orders of magnitude higher for TraceCORONA. Note that this calculation
does not change for the improved versions of TraceCORONA, therefore the dotted and
straight lines are on top of each other.

The upload traffic volume in both systems is calculated by the following equations. Note
here that CWA always uses the same upload size for padding, so even if users only upload
one week of diagnosis keys, the upload traffic does not change significantly:

τTC, up(n, λ, µenc/day) = n · λ · (mTC, up · ntokens, TC(µenc/day) + tTC, up)
τCWA, up(n, λ) = n · λ · τCWA, up, 14 keys

Finally, when examining the download traffic volume, a reason for keeping the number
of keys or tokens to a minimum is revealed – the traffic increases quadratically with the
number of users. This phenomenon is apparent in the function used for estimation, as
the amount of keys/tokens is already dependent on the amount of users, and every user
downloads every key/token:

τTC, down(n, λ, µenc/day) = n · (mTC, down · ntokens, TC, total(n, λ, µenc/day) + tTC, down)
τCWA, down(n, λ) = n · (mCWA, down · nkeys, CWA, total(n, λ) + tCWA, down)

Both for upload and matching we can see that CWA is the most efficient system in terms
of traffic. However, the difference to the improved version of TraceCORONA is under
one order of magnitude in the low contact scenario, so TraceCORONA does not generate
unreasonable traffic. In the high contact scenario, the difference is under two orders of
magnitude. Nevertheless, 50 encounters per day is a large number to be reached with
contacts away from home. The prototyped version of TraceCORONA generates a much
larger amount of traffic (1-3 orders of magnitude higher than CWA), while theoretically
allowing for recursive tracing. This function was not implemented in any decentralized
contact tracing system known to us.

Real values which can be used for interpretation of these results are provided by CWA
download numbers [Hoe21], incidence values [Wor21] and surveys such as [MHJ+08] or
[Rot20] respectively. Note that the definition of encounters is different between the stud-
ies and the actual criteria applied on devices. For TraceCORONA, on one hand signal
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strength and duration are present as metadata to filter encounters, on the other hand long
encounters can be registered as multiple encounters due to periodic key rotation.

Also note that this theoretical comparison excludes headers and verification data such as
TANs. As TraceCORONA’s streaming implementation incurs additional increased over-
head from packet frames and headers, the discrepancies between the current version of
TraceCORONA and GAEN are likely larger in practice. To verify our results and to gen-
erate a more complete picture we conduct real measurements and compare the results with
this analysis in Chapter 7.

5.2.5. Plausible Deniability and Playbooks

One more aspect belonging to the category of server-to-device communication is the no-
tion of masking the infection status of a person from an observer to the communication.
Although the contents of the communication are secured by Transport Layer Security
(TLS), without proper precautions the metadata can be used to infer the infection status
of individual users. To combat this, systems may send fake upload messages appearing
to confirm an infection and sending the ephemeral IDs. Additionally, when a device is
retrieving test results from the server, the responses should have the same size and thus be
indistinguishable for the attacker. As this aspect is not implemented into TraceCORONA
yet, the analysis in this section highlights CWA’s approach to this problem.

Fundamentally, this area involves two security properties of a protocol: plausible denia-
bility and observational equivalence. Plausible deniability is the concept of the attacker
not being able to confirm that a user has a certain property, i.e., knowledge of a secret.
In the case of contact tracing, we can view the possession of a positive test result as the
secret that the user wants to keep, but still be able to transmit to the server. Observa-
tional equivalence is a related notion in which an attacker is not able to distinguish two
processes in a communication protocol, i.e., a fake transmission and a real one. Currently,
the CWA does not use plausible deniability, the feature was disabled before release. If
enabled and configured so that the feature is actually effective, i.e. every user would have
a random chance to send a fake upload, the bandwidth usage of the system would increase
by a large amount.

In CWA, every communication with the server follows an identical pattern enforced by
the so-called playbook system. First, two requests are made to the verification server,
then one request is made to the submission server. All fake requests indicate their nature
to the server in a HTTP header and are consequently answered with a realistic response.
However, for the submission service one detail is not respected: the check-in system added
later adds two headers to the response [Cor21c] which are not present in the response to
the fake message [Cor20c]. This bug was reported to SAP on October 4, 2021. Therefore,
an attacker can distinguish a fake submission in two ways: first, the submission payload
size is always 423 B, as opposed to the variable size described in Section 5.2.2, and second,
the response size is smaller than for real submissions.

Overall, the criteria of plausible deniability and observational equivalence are not fulfilled
by the current version of CWA. It is possible, however, to update the application and
server side to effectively mitigate the possibility of network observers revealing infected
users.

5.3. Device Application
The aspects of the systems discussed in the previous sections all involve the server side.
In this and the next section we focus on the facets of the device applications, as well as
the communications between them.
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App Name Country Framework Derived from

Stopp Corona Austria Native
Coronalert Belgium Native CWA

Stop COVID-19 Croatia Native
eRouška Czechia Native
HOIA Estonia Native

Koronavilkku Finland Native
Corona-Warn-App Germany Native

Immuni Italy Native
Apturi COVID Latvia Native
COVID Alert Malta Native SwissCovid
CoronaMelder Netherlands Native
ProteGO Safe Poland Native
#OstaniZdrav Slovenia Native CWA
Radar Covid Spain Native
SwissCovid Switzerland Native

NHS COVID-19 App UK Native

COVID Alert Canada React Native
CovTracer-EN Cyprus React Native MIT PathCheck
Rakning C-19 Iceland React Native
COVID Tracker Ireland React Native

StayAway COVID Portugal React Native

SmitteStop Denmark Xamarin
Smittestopp Norway Xamarin

Table 5.3.: Frameworks used by open-source official national tracing apps

5.3.1. Multi-Platform Frameworks

Mobile Operating System (OS) such as iOS and Android enforce a strict design and layout
of application packages. Apart from using the official native Software Development Kit
(SDK) of the platform, there are additional frameworks available for sharing code between
platforms, with the currently most widely-used being Facebook’s React Native, Microsoft’s
Xamarin and Google’s Flutter. We surveyed a number of official European contact tracing
applications that published their source code. Among 23 open-source national contact
tracing applications implementing the GAEN Application Programming Interface (API),
16 were using platform native SDKs, 5 were using React Native and 2 were using Xamarin.

We believe this low adoption of multi-platform frameworks to be related to performance
considerations, as well as unavailability of GAEN in these frameworks, requiring native
code for integration. Additionally, a main benefit of multi-platform frameworks is the
implementation of web and/or desktop applications for PCs in the same codebase, which
is not relevant to COVID tracing apps where usage is confined to cellphones.

The TraceCORONA prototype, as stated in Section 4.2, is implemented as a native An-
droid app. Therefore, for device performance comparisons between CWA and TraceCO-
RONA, as in Chapter 7, the framework is not a variable to be accounted for.

5.3.2. Risk Score Calculation

An aspect not implemented in the current prototype of the TraceCORONA app is the
classification of encounters by distance and time to minimize false positives if infection
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is unlikely. GAEN provides a system to classify exposureWindows, which is the term for
single encounters inside a rolling window, by report type, infectiousness, attenuation or
distance, and time.

Figure 5.3.: “High risk” mes-
sage of CWA, from [Cor21a]

As stated in Section 5.2.2, every TEK is assigned a DSOS
value and a report type by the server. The DSOS value
is converted into an infectiousness value of “none”, “low”
or “high” by the GAEN framework, and the report type
is used unchanged as either “unknown”, which leads to
the key not being used for calculation, or one of four pre-
defined values. In total, 8 different states which lead to
the key being counted can be encoded by these two val-
ues. Additionally, GAEN allows weighting the time of the
encounter. The time between repeated scans of the same
RPI is multiplied with a value corresponding to attenua-
tion buckets, i.e., depending on if the value falls between
two defined thresholds, which are provided in advance by
the app, yielding a weightedSeconds value. These three
values can then be used either by GAEN’s built-in sum-
mary features or retrieved for manual calculation by the
app.

Recent versions of GAEN and CWA implement the same
logic for calculation of risk scores. The weightedSeconds
value is multiplied with weights based on infectiousness
and report type, which are again provided in advance by
the app, resulting in the risk score. Every exposureWin-
dow is therefore assigned a risk score, which allows for
filtering of less risky encounters when computing the daily
risk score. It is simply the sum of all exposureWindow
scores on one day.

In CWA, however, DSOS, infectiousness and report type are “abused” to encode a TRL
between 1 and 8. Report types values are mapped to double the enum value, providing the
upper two bits, and infectiousness is used for the lower bit. Still, the algorithm remains
the same with only the server providing different values in the diagnosis key packages.
ExposureWindows with a risk score of 5 to 9 minutes are classified as low risk, while
higher scores are classified as high risk. Similarly, days with less than 9 minutes of risk
score are low risk and days with more are high risk. If there is at least one high risk
day, the user is warned with a red message (see Figure 5.3) telling to self-quarantine and
observe distance rules.

Taking the absolute values for the calculation in CWA [Cor21b; Cor21d] into account, the
risk score of 9 minutes is reduced to ≈ 5.63 min in ideal conditions, i.e., a TRL of 8 and
a Bluetooth Low Energy (BLE or Bluetooth LE) attenuation between 63 and 72 RSSI.
For lower attenuation, i.e., lower distance, this number changes to 7.031 25 min and for
higher attenuations it changes to ≈ 90 min. The absolute worst case of minimum time is
≈ 150 min for the lowest eligible TRL of 3 and a high attenuation.

5.3.3. Limits of GAEN

GAEN has a unique property among contact tracing systems: it is integrated into the
operating systems it runs on. This property allows for unique optimizations and mitiga-
tions for some attacks. Regardless, it is possible on Android to bypass the built-in API
entirely and run a regular app which implements the same functionality. Google does not
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allow such apps into the Google Play Store [Goo20e], but sideloading of apps is officially
supported on Android.

In detail, Google claims to detect and remove “malware that rebroadcasts BLE RPIs” as
well as “apps found to be explicitly capturing BLE RPIs” [Goo20e] to counter possible
relay and profiling attacks.

To prevent abuse of the official API for status-reveal attacks (see 6.1.4), the current ver-
sion of GAEN limits the number of times keys can be imported to 6 per day (note that
the number of keys is not limited further). Additionally, the parameters for risk score
calculation can only be updated once per week [Goo21e; App20].

5.4. Communication Between Devices
Lastly, as the core technology behind Bluetooth LE-based contact tracing, the communi-
cation of devices using BLE plays a crucial role in determining the effectiveness, security
and privacy properties of a system. Thus, the protocols have introduced different mech-
anisms to ensure the system meets its design criteria. In this section, we compare the
different parts of the local communications between tracing devices.

Fundamentally, the purpose of a BLE tracing protocol is to record encounters between
users’ devices in a way that allows for warning if a user is diagnosed as positive. As
described in Section 2.1.1 and Section 2.2.2, the two techniques in use for this are active,
in use by TraceCORONA, and passive contact establishment, which is used by GAEN-
based apps.

Before any contacts can be established, one device must be advertising by sending packets
and another device must be listening, or scanning, for advertisement packets (see Sec-
tion 2.2.1). In GAEN, advertisements are continually sent at low transmission power
“around every 250ms”[Goo20b; Goo21a]. Scanning is only active for a short period of 4
seconds [Goo20b] every 3-5 minutes (based on logs of a Pixel 3a running CWA). This
limits the resolution of the encounter time to these 3-5 minutes.

In both protocols, contact establishment begins with one device discovering each other
through these advertisements. The advertisement payload contains a rolling identifier,
which changes every 15 minutes for GAEN and every 30 minutes in the TraceCORONA
prototype. The former includes a 4-byte Associated Encrypted Metadata (AEM) value,
while the latter also includes the reported transmit power level in an unencrypted form.
See Section 6.3 for more details on these fields.

In both systems, the receiving device now saves the connection data and metadata to a
database and continues listening until the scan interval is over. If a rolling identifier is
scanned again, these data are saved indexed by the identifier to allow for profiling of the
encounter later. For GAEN, this is the whole process, as the system does not establish
contact between devices. TraceCORONA additionally needs to establish an encounter
token, which is triggered by the scanning device not having seen the rolling identifier
before.

In this process, an ECDH key exchange is performed, of which the result is the encounter
token. This leads to the advantage of people being able to redact certain encounters before
uploading their keys, but can also lead to an issue where a large amount of encounter tokens
generated on other devices can be uploaded to the server as well. A detailed description
of this attack vector and its implications can be found in Section 6.4.
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6. Security Analysis

After establishing knowledge about the two protocols by looking at specifications and
code, we now focus our attention on attacks possible against users of the two analyzed
tracing systems. At first, we provide an overview of all attacks for both systems which were
analyzed either in related work or by us in Section 6.1. Then, we perform a formal analysis
of Google/Apple Exposure Notification(s) (GAEN) and TraceCORONA in Section 6.2. At
the end of the chapter, we provide in-depth descriptions and discussions of a a novel attack
we uncovered during our research in Section 6.4.

6.1. Known Attacks
In Table 6.1, we list all attacks known from the literature (cf. Section 3.3) which are appli-
cable to common contact tracing solutions. We have analyzed the impact of these attacks
in the GAEN or specifically Corona-Warn-App (CWA) system, and the TraceCORONA
system.

The results of this analysis are described in the following four sections, each corresponding
to a category of attack, sorted by outcome and technique and marked by horizontal lines
in Table 6.1. Afterwards, the results of the analysis are discussed in Section 6.1.5.

6.1.1. Profiling With or Without Bluetooth LE Communication

First, we examine most1 attacks resulting in untargeted profiling of infected users, i.e.,
gathering information about infected users’ location history or social behavior by ob-
serving their Bluetooth Low Energy (BLE or Bluetooth LE) communication or actively
communicating with them. Along this line, there are multiple aspects to be discussed.

Bluetooth LE Profiling without Server Access

In GAEN, once the users upload their diagnosis keys, an attacker can link the ephemeral
IDs over the course of one day. Therefore, GAEN is vulnerable to profiling with a fixed-
position BLE scanner, as was demonstrated in [BDF+20]. This attack is also called
Paparazzi attack by [ABIV21]. TraceCORONA does not upload ephemeral IDs or related
secrets to the server, instead using Elliptic Curve Diffie-Hellman (ECDH), which protects
the established encounter tokens from passive attackers.

1Attacks using device time modification are described in Section 6.1.3
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Outcome Attack GAEN TC Alternative names/references

P Profile infected users using fixed-position BLE sniffers 7a 3 Privacy [BDF+20], Paparazzi [ABIV21]
P Profile infected users using fixed-position BLE transceivers 7a ◦
P Profile infected users using malware on other devices 7a ◦ De-anonymization [DR20]
AP Link uploaded TEKs/encounter tokens by Transmission Risk Level (TRL) ◦ 3 Section 2.2.4, [Hue20a]
AP Link recorded beacons of infected users by unique metadata values 7 7b Sec. 6.3, CVE-2020-24722 Iss. 2 [Mar20]
P Profile infected users using fixed-position BLE sniffers + server data ◦ 3 Orwell [ABIV21]
P Profile infected users using fixed-position BLE transceivers + server data ◦ ◦ Matrix [ABIV21]
AP Deanonymize encounter data as colluding server + health authority ◦ ◦ Brutus [ABIV21]
P Count infected users’ encounters as colluding server + health authority 3 ◦ Bombolo [ABIV21]
P Profile infected users as colluding server + health authority 3 3 Bombolo [ABIV21]

I Inject targeted fake alerts using BLE sniffer + server access 3 3 Matteotti [ABIV21]
I Replay (record and broadcast later) 7c 3

I Relay (record and immediately broadcast) 7 3 Security [BDF+20], False-Positive [DR20]
AI Modify calculation of attenuation as man-in-the-middle (replay attacker) ◦d 3b Sec. 6.3, CVE-2020-24722 Iss. 1 [Mar20]
AI Modify calculation of attenuation as sender 7 7b

AI Inverse Sybil (pose as one user on multiple devices not able to communicate) 7 7 [ACK+21]
AI Sybil (pose as multiple users at the same time using only one TAN) ◦ ◦b Section 6.4
AI Buy/sell upload of TEKs/encounter tokens using various methods ◦ ◦ [AFV21a]

AI Modify time of device to inflate time of encounter 7 7 Master of Time [IVV21a]
I Modify time of device to inject encounters with IDs outside of validity period 7 7 Belated Replay [IVV21a]
I Modify time of device to inject encounters without knowing TAN ◦ 3 KISS [IVV21a]
AP Modify time of device to gather past/future ephemeral IDs 7 ◦ My-Number: Past/Future [IVV21a]
AP Modify time of device to make it broadcast the same ID for an extended time ◦ 3 My-Number: Far Future [IVV21a]

R Capture photos of infected users using BLE transceiver + directional antenna 7 7 Paparazzi [Vau20], [NAE+21]
R Annotate encounters with location, personal data, possibly share this info 7 7 Nerd [Vau20], Militia [Vau20]
R Malware/trojan horse acts like tracing app, reports results to attacker 7 7 Biosurveillance [DR20]

P: Profiling of infected users, I: Injection of fake encounters, R: Revealing infection status of single users, A: Aid in. . .
7: design vulnerability – can only be corrected with major changes to protocol, ◦: implementation detail – can be prevented in implementation, 3: not vulnerable
a linkable for 1 day, b not yet implemented, c limited to 15 minute windows, d probabilistic Risk: Total(Criticality,Likelyhood of Occurrence)
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To better model TraceCORONA’s security, we introduce a modified attack with the ma-
licious observer being able to send and receive BLE data (transceiver). With only a
transceiver and without access to the server, TraceCORONA has one remaining way to
link observed encounters: the “nonce”, originally meant to allow identified contacted users
to recursively continue tracing (cf. Section 2.4) and therefore able to be decrypted by
all contacted users, allows for linkage of encounters. Transmitting the nonce to clients
is not integral to the functionality of TraceCORONA, which is why we classify it as an
implementation detail to be changed in an eventual deployment.

Both of the previous attacks have assumed a network of fixed-position scanners/transceivers.
[DR20] presents an attack scenario, the so-called de-anonymization attack, in which mal-
ware included as part of advertising Software Development Kits (SDKs) interacts with
users of the tracing app. As phones are able to act as transceivers, this attack is equiva-
lent to the fixed-position transceiver without server access, the only difference being that
location of the device can change, which is recorded through other means. The impact is
identical to the attack above.

Linkage of Diagnosis Keys/Encounter Tokens

Next, we look at attacks which allow to link multiple encounters or diagnosis keys to a
specific user or small anonymity set. Of course, this alone does not result in profiling,
rather aid with processing data gathered in another attack. The first attack, described in
detail in Section 2.2.4, abuses the Transmission Risk Level (TRL) system of CWA and is
only applicable in very specific cases in which a very small amount of users is uploading
diagnosis keys. TraceCORONA, on the other hand, is not vulnerable to this attack, as
there are no daily diagnosis keys and the transmission risk level could be encoded like the
nonce currently is, making it impossible for observers to link encounters by a single user.

Another attack centers on the Received Signal Strength Indication (RSSI) calibration
metadata sent with users’ advertisements. These values can provide another data point
for linkage of multiple tokens or keys, even if transmitted in an encrypted form only
visible to the encountered party. When using less common Android devices with per-
device calibration data, the chance that this device is either the only instance or part of a
small group of a certain model in an attacker’s dataset is high. Even though calibration
metadata are not used in TraceCORONA yet, we argue that both TraceCORONA in a
real world deployment and GAEN would be vulnerable to this attack, as radio calibration
metadata is essential to reliable RSSI-based distance estimation. [Mar20] contains this
attack vector as “Issue 2”.

Profiling with Bluetooth LE and Server Access

A variant of the Paparazzi attack, where the attacker operates fixed-position BLE snif-
fers, is the Orwell attack [ABIV21]. Here, the server is additionally under control of the
attacker. Again, GAEN is vulnerable to this attack, and with server access all keys are
linkable over the whole uploaded period, i.e. users can be tracked over up to 14 days.

When the attacker is able to access the server data, we run into multiple attacks where
both systems fail to protect users by default. In the so-called Matrix attack [ABIV21],
where the attacker has server access and operates fixed-position BLE transceivers, all
uploaded data from users is linkable in both systems, which allows the attacker to link
their observed/exchanged identifiers. If the health authority distributing the Transaction
Authentication Numbers (TANs) for upload by users colludes with this attacker, this data
can even be linked to personal identifying information collected by the testing station or
hotline. The latter case is called Brutus attack in [ABIV21].
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As countermeasures against these attacks, blind signatures could be used to make uploaded
data unlinkable, such as in Pronto-C2 [ABIV21]. Additionally, mix networks [Cha81]
operated by Non-Governmental Organizations (NGOs) can be used to then prevent linkage
by IP addresses. Technical solutions such as these serve to decouple the different trust
actors and make an attack with operator level access less likely. Still, the upload process
of contact tracing data requires trust in the authority operating the system – if all actors
of a system collude, the user cannot prevent linkage of their data. Increasing the technical
debt incurred by more complicated processes is likely to harm performance and introduce
bugs leading to more serious issues than would be prevented here.

Non-Bluetooth LE Profiling with Server Access: Bombolo Attack

What would happen if the attacker does not use BLE communications at all, instead only
aiming to gather metadata about the encounter behavior of users and having access to
server-side data by operator and health authority? This attack is known as the Bombolo
attack [ABIV21]. We have separated this attack into two in the table, as a full profile of
the user akin to what a BLE attacker can achieve is not possible in either system.

In GAEN-based systems, performing a Bombolo attack only tells the attacker on which
days tracing was active in the uploaded time period, i.e., the last 14 days, which we do not
regard as useful in any way. TraceCORONA in its current implementation would leak the
number of encounter tokens the user has collected, which could lead to a rough estimate
on the contact behavior of the user. Still, we do not see this as an important flaw of the
system, and the original paper states on this problem: “It is hard to imagine how such
leakage could be exploited by mass surveillance attacks.” [ABIV21].

Nevertheless, securing TraceCORONA is possible by always uploading the maximum
amount of encounter tokens if such a limit exists and padding the data with fake en-
counter tokens. This in turn would increase traffic requirements of the system and prolong
on-device matching. Reducing the granularity of the attack as a compromise between
wasted traffic and user privacy is possible by instead defining fixed quanta of tokens to
pad to.

6.1.2. Fake Alert Injection

In this category we classify attacks which result in – or help with – alerting users about
contacts with infected users which never happened, i.e., generating fake alerts. For our
examined systems, these attacks always require an active attacker broadcasting a BLE
signal.

Full Attacks

Two attacks which do not work either on GAEN or on TraceCORONA are the passive
insertion of fake alerts by reporting people in contact with the user as positive (Matteotti
attack [ABIV21]), as well as the replay attack, in which attackers record transmissions and
later send them at the same or a different location. The former does not work, as both
systems do not upload the transmitted ephemeral ID to the server in plain, but rather a
value either derived from this ephemeral ID or used to derive the ephemeral ID. These
are based on security primitives currently regarded as secure. The replay attack does
not work, as the ephemeral IDs used in both systems change every 15 minutes, and in
the case of TraceCORONA, a two-way handshake is required, which needs a private key
inaccessible to the attacker.

However, for the case of an attacker immediately forwarding and rebroadcasting received
messages at a different location, we proved in [BDF+20] that GAEN allows this attack. We
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dubbed this relay attack “Mind the Security GAP” and a version using malware on devices
was theorized in [DR20] as the False-Positive Attack. TraceCORONA is not vulnerable
to a one-way relay attack, but would require a sophisticated two-way relay attack, which
presents a much higher technical hurdle due to the required real-time capability and the
limited capacity of common off-the-shelf BLE devices.

Partial/Supplemental Attacks

The remaining part of this section covers attacks which on their own do not lead to injection
of fake encounters, but can be combined to achieve this purpose. The first subcategory
of these attacks concerns itself with the Associated Encrypted Metadata (AEM) field in
GAEN Bluetooth LE transmissions. It contains calibration data used to more accurately
estimate the distance between users through the measured signal strength. As this field
uses AES-CTR, which is an unauthenticated encryption mode, relay attackers can modify
this value. However, as it is encrypted, the attacker is limited to flipping bits, hoping
to affect the value in a way which helps them achieve a higher risk score. This attack
vector was reported by Marsiske as “Issue 1” of CVE-2020-24722 [Mar20]. Furthermore,
a malicious sender could directly influence the value used in the message. The former
attack can be fully prevented in TraceCORONA by transmitting the calibration data as
part of the encrypted message currently containing the infection state and nonce. The
latter attack, however, could only be prevented by using a centralized registration which
verifies the device model and a trusted computing concept enforcing this registration,
which is difficult, if not impossible, to implement in a manner usable by lower-cost and
older smartphones.

Another way of maximizing the attack impact of fake alert injection is modifying the
relationship between real devices and device identities. In peer-to-peer systems, which
decentralized contact tracing systems are, abusing multiple identities is called a Sybil
attack. One application of this principle, dubbed “Inverse Sybil attack” [ACK+21], has
an attacker model of multiple devices not being able to communicate with each other and
being able to assume the same identity, therefore being able to feign contact with more
users, ultimately generating fake alerts. For GAEN, this attack can neither be mitigated
nor prevented, while for TraceCORONA a mitigation in the form of encounter limits is
possible. The proposed solution to the issue, creation of a hash chain advancing each time
period or fixed number of encounters [ACK+21], does not prevent the use of a connection
between devices to synchronize these values. In the real world, an internet connection can
be used for this purpose, thus making the attacker model unrealistically limited.

A novel attack is our Sybil attack, where one device pretends to be multiple devices.
This attack, fully detectable and easily preventable in GAEN, is not trivial to handle
in TraceCORONA due to the unlinkability of encounter tokens. When successful, an
attacker can create more encounters, leading to a higher risk score when assuming the risk
calculation from GAEN, thereby reducing the time it takes to inject a fake high risk alert.
However, its impact is limited drastically for most attack scenarios using an encounter
limit. Other countermeasures include requiring a minimum time per encounter for it to
be counted, counting multiple simultaneous encounters as one, or the usage of heuristics
to detect the attack. A more in-depth analysis of this attack can be found in Section 6.4.

Lastly, to realize these latter fake alert injection attacks, an attacker has to upload their
generated diagnosis keys or encounter tokens to the server. For this purpose, the paper
[AFV21b] devises a number of schemes allowing unscrupulous users to sell their infection
status for profit. These mechanics are not part of the core tracing protocol, rather falling
under the responsibility of implementors. Thus, we classify this attack vector as an im-
plementation detail. One countermeasure, at least making it more difficult for users to
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sell their positive test result, would be to tightly couple the release of the test result to
the diagnosis key/encounter token upload. The inconvenience caused by this mitigation
might outweigh its benefits, though.

6.1.3. Time Modification Attacks

Having analyzed attack vectors mainly targeting design flaws of the tracing app and proto-
col itself, we now focus on a security issue highlighted in [IVV21a], namely the possibility
to influence the device time remotely. As time is an essential factor used in the tracing
protocols at hand, modifying the time disrupts certain processes in tracing protocols and
is particularly hard to detect.

Keeping with the theme of the last section, we first look at an attack allowing to inflate the
risk score generated by a fake encounter. This attack, dubbed “Master of Time”[IVV21a],
advances the device clock between two scans of an encounter. As both systems rely on the
device time to measure the length of encounters, they are both vulnerable. The only way to
prevent this attack is to use a timer which always advances independently of the operating
system clock. This can either be a software timer, which consumes a whole CPU core and
wastes power, or a hardware timer, which might not be accessible on mobile phones.

Two attacks used for injection of keys make use of the limited validity period of the
ephemeral IDs used in tracing. Both attacks first modify the device time to a point in this
validity period and then generate an encounter with this ephemeral ID. In GAEN, this
would allow for a “belated” replay attack (after the ephemeral IDs were rotated) [IVV21a].
In TraceCORONA, where replay attacks are not possible, the risk score could be affected
or daily encounter limits bypassed by an attacker. The second attack combines this flaw
with a bug in the servers used by multiple countries, where Temporary Exposure Key
(TEK) that were still valid could be downloaded as part of diagnosis key packages. This
“KISS attack” [IVV21a] allows attackers to inject encounters without having the ability to
upload encounters. It is a bug in the implementation and not relevant to TraceCORONA,
as private keys are not transmitted to the server.

Two other attacks, dubbed “My-Number attack” [IVV21a] allow for exfiltration of past
or future ephemeral IDs from the device. By setting the device time and waiting for
the ephemeral ID to change, the device broadcasts an ID not meant for the current time
frame, rather broadcasting one already used or scheduled to be used. This attack works on
GAEN, as described in the paper, and can also be applied to TraceCORONA if keypairs
and ephemeral IDs are generated in advance. To prevent this, the system can record
if one of these records was used and never use an ephemeral ID twice. As it is not
cryptographically bound to the time as with GAEN, this poses no problem.

Another attack is to set the device time to the far future, which generates an ephemeral ID
scheduled to change at the end of its validity period. This period can last over 100 years,
defeating the “ephemeral” part completely. If successful, the functionality and privacy of
the app are broken completely. However, this attack relies on a logic flaw in the GAEN
system and can be easily fixed.

6.1.4. Status Reveal Attacks, Digital Evidence

Finally, after discussing the impact of several issues where prevention is mostly possible
is some way, we now enter the realm of attacks inherent to existing contact tracing flows.
All of these attacks are possible on both discussed systems and can only be mitigated,
leading to limitations in the platform.

The first class of attacks inherent to (decentralized) contact tracing are status reveal
attacks. These allow the attacker to link certain personally identifiable information with
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the information that a person is infected. One attack, theorized as a “Paparazzi attack”
[Vau20], not to be confused with the one above, and demonstrated in [NAE+21], uses a
camera to capture a photo of a person and establishes an encounter at the same time.
If the encounter token or ephemeral ID is later confirmed as belonging to an infected
person, the attacker can link the photo with it. An approach to mitigate this attack was
discussed in [PF20], in which random people are notified as being infected. This mitigation
was originally devised for a centralized tracing system. Transferring it to a decentralized
system poses some challenges, as people need to be compelled to share their encounter
data for a seemingly arbitrary reason.

Another status reveal attack, dubbed the “Nerd attack” or “Militia attack” [Vau20], pro-
poses the following scenario: A custom client for the contact tracing system is created that
allows people to manually annotate their encounters with additional information about the
encountered person. Later, when the risk score is calculated, the system can tell whom
the risk came from. If this information is shared between users, it could even be used for
suppression of infected people. To mitigate this attack, devices must prevent the access
to contact tracing broadcasts to unauthorized apps. This needs to be enforced on the
operating system level and would make the development of new BLE applications more
difficult. Additionally, a jailbroken or rooted phone could bypass these blocklists, enabling
dedicated users to still perform the attack.

The paper [DR20] proposes one more status reveal attack named “biosurveillance attack”:
this time, unsuspecting people install a trojan horse software including a tracing compo-
nent which does not display its results to the user. Rather, a risk score is then calculated
for the attacker to know if their victim is at risk of infection. Again, this issue can only
be fixed on the platform level, e.g., by the app store providers (cf. Section 5.3.3). The
mitigation described in the last paragraph also applies for this attack, with all its flaws.

After analyzing all of the attacks that we consider as real attacks, we want to remark on
the collection of digital evidence of encounters. Users can use a well-known digital evidence
technique such as publishing a hash on social media or using a blockchain to store their
encounters. Later, they can provide compelling evidence that their encounter was genuine
and not faked after the fact. This scheme is possible on all decentralized tracing protocols,
as all of them record a certain kind of evidence of encounter as part of their functionality.
Therefore, the only “fix” for this property is to use a centralized tracing protocol instead.
It is thematized by [Pie20] and called a “Gossip attack” in [ABIV21]. There, it is discussed
that this could actually be a feature to prove the authenticity of a high risk warning, e.g.,
if it would lead to a free test and therefore an attacker would be motivated to fake a high
risk status.

6.1.5. Discussion of Attack Risk

With all of the discussed attacks, there are different ways to judge their risk, impact or rel-
evance when comparing different systems. In this section, we discuss different approaches
towards summarizing the results of our attack analysis, and why we chose not to.

The industry standard way to rate vulnerabilities in software is the Common Vulnerability
Scoring System (CVSS) [FIR19], in use in the Common Vulnerability Enumeration system,
which two of our evaluated attacks are actually a part of. For our study, we argue that
the system (CVSS v3.1 Base Score) is too coarse-grained in certain areas, while including
metrics difficult to map to contact tracing systems. For example, both attacker models
including Bluetooth LE sniffers and transceivers would fall under the category of an adja-
cent attacker with no privileges. How do we classify user interaction in these attacks? Is
walking by the attacker a form of user interaction? Another attribute in the Base Score
is Scope. This attribute is designed for software and hardware inside a device, but is hard
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to apply to a distributed system such as contact tracing. Overall, we believe the CVSS is
not a good fit for our security rating.

Another system in use to classify the importance of security issues is the DREAD model
[HL02]. It consists of five metrics, which are averaged together in the end. This rating
is more fine-grained than the CVSS, while at the same time having a flawed calculation,
which the author proposes to fix by applying rules more akin to CVSS [LeB07].

[HL02] proposes another, simpler model titled RiskCO, in which there are only two metrics:
Criticality and Likelyhood of Occurrence, which are then multiplied to yield the final score.
Criticality describes the potential damage of an attack, while the likelyhood of occurrence
describes how likely the attack is to affect any user.

The main issue with all of these metrics is their subjective nature. CVSS comes the closest
to an objective rating, while just estimating a numerical risk (or “high, average, low”) is
very subjective. Different actors have reason to estimate attacks in a different light, and
users may also differ in the rating of these attacks. Thus, we decided not to give a rating
to the attacks, rather leaving this estimation to the reader.

Therefore, we can only conclude that TraceCORONA is not vulnerable by design to any
more attacks than GAEN. In concrete numbers, GAEN is affected at least partially by 14
of the attacks listed in Table 6.1, while for TraceCORONA this number is 8.

6.2. Formal Analysis

After the previous section has established the applicability of known attacks, we now focus
on the discovery of new attacks against the systems. For this purpose, we attempt to use
the technique of formal analysis. Section 6.2.1 reviews our choice of tool and Section 6.2.2
discusses the results we are able to gather from the analysis.

6.2.1. Verifpal

In the field of formal analysis, a range of tools allow to verify a given network protocol’s
security and privacy properties by simulating attacks which are possible to model using
the given tool’s modelling language and logic. For comparatively analyzing the security
of TraceCORONA and GAEN, we use the Verifpal [KNT20] tool. This tool, a relatively
recent development in the field, focuses on being understandable rather than allowing to
model every possible property of a protocol. As formal analysis is only a relatively small
part of our work, we assume that the time needed to build basic proficiency with more
advanced modeling tools was better spent understanding and comparing the protocols in
depth.

The manual [Kob21] describes all features of the software intuitively. As queries, Verifpal
can prove confidentiality of values, authentication of messages, freshness of cryptographic
keys, unlinkability of IDs and equivalence of values. The latter two are relevant to our
analysis, as unlinkability of identifiers is a concept especially interesting for contact tracing
and ProVerif [Bla01], an older, more established tool, does not seem to support checking
for equivalence of values.

Some limitations were encountered when modeling the protocol. In a Verifpal model, mes-
sages arrive in the same order every run, with checked primitives being the only way to
model a deviation from the standard control flow by aborting the simulated flow. Addi-
tionally, there are only two attacker models to be checked: either the attacker is completely
passive and can only observe communicated values, or the attacker follows the so-called
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Dolev-Yao active attacker model and can modify, replay, withhold or generate any mes-
sage. The former is more relaxed in ProVerif, as multiple processes run in parallel, while
the latter property is identical.

Modeling all properties of a Transport Layer Security (TLS) connection, while minimizing
the model size, which is required for execution to finish in a reasonable time, is not
trivial. One model even crashed the Verifpal software after running for over two days
on a computer with an Intel Core i7-5820K processor. In the full model, as in the real
world, every connection begins with a certificate check, then a session key is established,
which is later used for communication. A simplified version without establishment of
a fresh session key for every connection allows to prove properties impossible to verify
with the original model. However, here the server communication is vulnerable to replay
attacks. Finding the right balance between modeling too much and having the simulation
not finish, or modeling too little and getting false positives, is the main difficulty in the
analysis process.

A modeling tool with extended features can aid in analysis of complex models such as
the ones described in this section. A predefined notion of TLS communication, a channel
where confidentiality, integrity, authentication, freshness, and perfect forward secrecy are
ensured without having to use the authenticated encryption primitives and exchange keys
manually allows to focus on the contents of the transmission rather than the structure.
Additionally, a feature present in ProVerif, but completely absent from Verifpal by design
are data types, which, when used for simulation, reduce the attacker’s guesswork. In our
largest model, there are 96 constants, which despite optimizations result in a large amount
of useless deductions and unnecessary substitutions in results.

Apart from the features, one bug was encountered and reported to the developers. Initially,
with version 0.26.0 of Verifpal, Diffie-Hellman key exchanges, which we used to approx-
imate the ECDH key exchange in TraceCORONA, were broken completely and did not
yield an equivalent value on both sides. This bug is fixed after our report in the current
version 0.26.1, which is used for the remaining experiments.

We also describe some unexplained behaviors, for which it is not certain if they occur due to
bugs or design limitations. For one, when a private value is first used for some operation,
then afterwards publicly transmitted, the attacker can change the value and it will be
considered changed even for the operation which appeared first. Another unexplained
behavior is a failed authentication query despite all of the secrets and keys being fresh. In
the process of testing the latter issue, an equivalent freshness query takes over one month
to finish, which exceeded our time for this thesis.

Overall, Verifpal manages to provide an easy introduction into protocol verification. How-
ever, despite its advanced capabilities and a provided example model of low-cost DP-3T
(described in Section 3.1.3), we are not able to prove full models of the protocols at hand.

6.2.2. Models and Results

In total, we build 3 models of our protocols leading to different results each. The following
paragraphs therefore describe one model each. Models and queries are listed in full in
Section A and the queries are enumerated the same as in the listing in this section.

tracecorona.vp

For TraceCORONA, the flow modeled here begins, after key generation, with UserI and
UserJ encountering each other. UserJ initiates the handshake using Diffie-Hellman, which
is functionally identical to ECDH. UserI tests positive and receives a TAN from the health
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authority. They then acquire a nonce and upload their encounter token hash generated
earlier, as well as the StateAndNonce packet, to the server. UserJ downloads the encounter
token hash and checks if it is identical to the recorded one (matching process), then
proceeds to decrypt the state and nonce.

This model, as our first attempt at comprehensively modeling the protocol, includes a cer-
tificate authority and health authority, as well as separate ephemeral keys per connection.
A full TLS connection is established for every modeled connection over the internet. The
queries tested with this model include:

1. The confidentiality of the encounter token, which never leaves the device. Diffie-
Hellman is vulnerable to man-in-the-middle attacks, and so Verifpal managed to
disprove this hypothesis by inserting a bogus value into the key exchange. Especially
this result made us discuss the Sybil attack in detail.

2. Another query we test with this model is the equivalence of the encounter tokens for
both users. This is disproven the same way.

3. We try verifying the authentication of the upload message, i.e., if the attacker could
modify or replay the upload message. This should be impossible due to the nonce
being only transmitted over TLS. However, the verification process was not finished
after one week on a computer with an Intel Core i7-8665U processor and we therefore
gave up on this path.

tracecorona-3people-simple.vp

There are two problems with the previous model. If we guard the key exchange, i.e., mark
it as read-only by the attacker, there is no way left for the attacker to interfere with the
protocol. Also, other queries take too long to execute. Therefore, we develop a second
model, in which there are three participants. UserK, our new participant, leaks all of
their secret values to the attacker. To replace the TLS key exchange every connection, we
pre-share one symmetric key each between server and users.

1. Using this model, we verify the confidentiality and equivalence of the encounter token
between users I and J, which now exchange keys with a guarded connection.

2. Also, the private keys of both users are never leaked, which would allow the attacker
to impersonate each user.

3. Again, the attacker is able to modify the exchange between J and K, as this connec-
tion is unguarded.

4. When testing authentication of the upload message, as expected the attacker is able
to replay a previous message due to missing freshness guarantees.

5. Furthermore, the model verifies the confidentiality of the infection state and nonce
value, which is transmitted end-to-end encrypted and should therefore not be read-
able for the attacker.

coronawarn.vp

For the Corona-Warn-App, the flow is similar to the 3-person variant of TraceCORONA.
Instead of exchanging encounter tokens, Rolling Proximity Identifiers (RPIs) and AEM
packets are sent to the other user. In contrast to the other models, we utilize a single
guarded Diffie-Hellman key exchange to establish the session keys for network transmis-
sions at the beginning of the model. Due to the properties of GAEN, several queries yield
a different result.
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1. The AEM key is not confidential after upload of the TEK. Inspired by this result,
we further investigate the metadata transmitted in GAEN in Section 6.3.

2. We check that the AEM contents are the same if the attacker cannot modify the
Bluetooth exchange. This should be the case, but an authenticated and encrypted
value using a fresh key is still able to be modified by the attacker. This is another
unexplained result.

3. Again, the authentication of the upload message is disproven. We believe this result
to be a false positive, possibly due to a bug in the program.

4. Therefore, we instead query for the freshness of the generated secrets. At the same
time, we try to prove that the attacker can link RPI from the same day. These
queries were not finished after over one month of runtime on a computer with an
Intel Core i7-2680QM processor.

To summarize, the results of the formal analysis with Verifpal are limited, in part due to the
issues described above. However, even these analysis results lead to a further investigation
of two attack vectors present in the protocols. These are described in the following two
sections.

6.3. Metadata Attacks
In addition to the information of who was encountered, tracing systems have the ability to
perform filtering of encounters based on signal strength measurements. For this purpose,
Google maintains a database of calibration data for Bluetooth radios of different devices
[Goo20f].

The appropriate values for transmission power and calibration confidence are included in
GAEN advertising packets as the AEM [Goo20a]. Encryption is handled with an AEM
key, derived in the same way as the RPI key, which is first used to encrypt the currently
active RPI and then XORed with the AEM value. This behavior corresponds to the CTR
mode of operation, but without actually counting up, as the size of the AEM is 4 bytes,
smaller than the 16 byte block size of the used AES-128 cipher. No padding is used.

This encryption prevents a hypothetical attack in which users’ phone models could be
identified by comparing the transmitted values to the database. It is only possible for
users diagnosed positive after diagnosis key upload [Mar20]. However, not using an au-
thenticated encryption leaves the system vulnerable to another attack: metadata can be
manipulated in a relay or replay attack scenario to influence distance measurements and
therefore the risk score presented to other users [VV20; Mar20]. Google refused to switch
to an authenticated mode of operation, as relay attackers would be able to falsify measure-
ments anyway by using a high-powered antenna, and therefore a further amplification of
this effect seems to have low impact in their point of view. Additionally, they believe that
relay attacks are a problem of malware to be solved through app store policies, neglecting
the fact that malicious parties may use their own Bluetooth radios [Mar20].

In TraceCORONA, the advertisement packet includes the transmission power level of the
sender as reported by the Android Bluetooth Application Programming Interface (API).
At the time of development, there was no database of Bluetooth calibration data available,
making distance measurements unreliable at best. However, this also prevents a similar
hypothetical vulnerability in TraceCORONA, where this fixed calibration data could be
used for deanonymization. A future version of the protocol designed to utilize the calibra-
tion data should instead use an encrypted variable akin to the infection state and nonce
to transmit this information.
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6.4. Encounter Injection and Sybil Attacks
When analyzing the communication between devices in TraceCORONA, Verifpal alerted
us that the Diffie-Hellman handshake was vulnerable to a man-in-the-middle attack. This
inspired us to devise a scheme for simple encounter injection and encounter injection in
combination with Sybil attacks2. After describing the basic idea in Section 6.4.1, we first
describe our assumptions in Section 6.4.2 and then analyze the impact of Sybil attacks in
detail in Section 6.4.3. Lastly, we discuss possible countermeasures in Section 6.4.4.

6.4.1. Idea

Bluetooth LE-enabled mobile devices often support a mode called “multiple advertise-
ment”, in which the device is able to act as if it were multiple distinct Bluetooth devices.
This property can be used, for example in the “Mind the Security GAP” relay attack
[BDF+20], to broadcast collected ephemeral IDs from other devices. For passive tracing
protocols such as GAEN, this attack allows to fake a number of encounters, which can
increase the risk level on the device.

An attack with a similar outcome, but different attack technique is possible on the
TraceCORONA system. Instead of collecting ephemeral IDs, which is not possible by
design on TraceCORONA due to the use of the ECDH key exchange, the attacker can
generate multiple key pairs and therefore simulate many devices of their own. By encoun-
tering other users with this modified application running, the attacker is able to multiply
the amount of encounters detected by other users.

However, merely generating encounters does not increase the risk score of an individual,
rather these encounters have to be with a user who was later diagnosed with the virus. At
this stage, the fact that token hashes are transmitted to the server individually, which is
a design feature to reduce the traceability of users, becomes an issue. The attacker is able
to send multiple encounter tokens per user to the server by just providing a single TAN,
in turn multiplying the risk score generated by this single encounter.

In fact, this issue goes beyond a single device: if multiple devices share encounter tokens
for upload, the reach of this attack is increased even further. Compared to the relay
attack discussed above, however, the attacker needs to additionally obtain a valid TAN for
encounter upload. Depending on the implementation of the system, methods as described
in [AFV21b] may be utilized for this purpose.

Other types of tracing protocols are more resistant to this kind of attack. Tracing systems
where broadcasted identifiers are uploaded can limit the amount of identifiers per upload
to one per time frame. In practice, in CWA, upload messages are currently checked to
contain a maximum of 14 keys [Cor21e], but not for multiple keys per time frame. Systems
in which observed identifiers are uploaded can filter out duplicate keys.

6.4.2. Assumptions

After describing the basic idea and approach, we now explain a number of assumptions
made in the following impact analysis and discussion.

Attacker Model

We assume the attacker possesses a legitimate TAN for upload of encounters/diagnosis
keys. See Section 3.3.2 for related work in this domain. Furthermore, an attacker has full

2The term Sybil attack was coined in the paper of the same name [Dou02] referring to online peer-to-peer
systems.
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control over the device/devices used for the attack, these devices are able to communicate
both ways with both victims and each other. This implies that an adversary can optimize
all the relevant parameters dependent on the sender, which for GAEN is the signal strength
and the transmission risk level. Physical or hardware limits are not considered for this
attack.

Our analysis is based on the assumption that a real-world deployment of TraceCORONA
would be utilizing the same risk scoring mechanism as GAEN, which is described in Sec-
tion 5.3.2. If an attacker transmits with high power and manipulates the calibration
metadata to fall into the highest attenuation bucket, which we assume to be more realistic
than hitting the optimal target, they need to achieve a measured total encounter time of
7.03 min to trigger a high risk warning. We consider an attack as successful, i.e., a person
as affected, if this warning is triggered.

Also, in GAEN a BLE scan is triggered every 3-5 minutes (cf. Section 5.4). The hypo-
thetical deployment of TraceCORONA is assumed to also scan with this interval.

Encounter Limits

The design of TraceCORONA, in contrast to GAEN, allows for limiting the number of
encounters able to be uploaded with a single nonce value. The amount of encounters
allowed to be uploaded in the system is a tradeoff between functionality and security. If
too little encounters can be uploaded, people at risk of infection may not be warned, but
if too many encounters can be uploaded, the impact of encounter injection attacks such
as the Sybil attacks rises. In this section, to be able to quantify the impact of the attack,
we assume TraceCORONA implements a limit.

To find the correct number of encounters to limit to, there are several studies to be con-
sidered. Averages per day range from 9.9 contacts in a recent US study [Rot20] over 13.4
contacts in an European study [MHJ+08] to 16 average simulated encounters [DHHE07].
Notably, in [Rot20] retail employees averaged 89.4 encounters and manufacturing employ-
ees averaged 46.7 encounters. We consider two scenarios for limits of 160 encounters and
480 encounters over the whole 14 day tracing period, resulting in 11.4 and 34.3 average
allowed daily encounters.

If the server could discern the day an encounter was generated on, the limit could be more
granular. However, this would reveal more data – daily encounter numbers – to the server
than is currently the case.

Attack Scenarios

To compare the impact of a Sybil attack between TraceCORONA and GAEN, we use two
different scenarios:

• Mass scenario: A large number of people are present for longer than 9 min, e.g., a
crowd of people or a busy lecture hall

• Targeted scenario: A small number of people are present for 3 to 9 min, e.g., a short
bus ride or a smoke break

We set the cutoff at 9 min due to this being the minimum amount of time for 4 scans to
occur on users’ devices.

Note that in a benign mass scenario people present over an ephemeral ID change boundary
would “consume” two encounter tokens. By switching off the tracing functionality before
this change occurs, an attacker would be able to limit the count of encounters to one per
person. In a “benign targeted” scenario, there is a chance of people not receiving a high
risk warning even if one of the participants was later diagnosed positive.
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Figure 6.1 & Table 6.2: Impact analysis of encounter injection (Ns = 1, solid lines) and
Sybil attack (Ns > 1, dashed and dash-dotted lines)

Applicability to GAEN

As mentioned above in Section 6.4.1, relay attacks on GAEN rely on the presence of
infected users whose ephemeral IDs are captured. With TraceCORONA, all of the IDs
need to be generated by the attacker themselves due to the usage of ECDH exchanges.
This begs the question: Can an attacker use multiple IDs generated by themselves when
performing an attack against GAEN?

On a conceptual level, this may seem impossible, as RPIs (ephemeral IDs in GAEN) include
the validity time period as part of the key derivation process. In practice, however, RPI
time periods are extended by 3 hours into the future and past to account for unsynchronized
clocks on the device. In the August 2020 source code release of GAEN, we were not able
to find any mechanism allowing to filter invalid RPIs if multiple RPIs in this grace period
are detected at the same time. Confirmation of this possibility remains as future work, as
this code is over a year old at this point and a detection mechanism may have been added
in the mean time. Due to the theoretical possibility of detecting an attack without the
possibility of restricting benign cases – by design, RPIs are linked through the diagnosis
key – we assume Sybil attacks, i.e., simulating multiple devices with the same diagnosis
key, not to be possible on GAEN in the following sections.

6.4.3. Impact Analysis

Now, we estimate the impact of the Sybil attack in the two scenarios highlighted above.

Mass Scenario

Figure 6.1 shows the potential impact of encounter injection and Sybil attacks. Ns is the
amount of sybils: the solid lines represent a simple encounter injection attack, with the
attacker only simulating a single device (Ns = 1), while the dashed and dash-dotted lines
represent a Sybil attack with the attacker simulating two and three devices, respectively.
The amount of affected people in Corona-Warn-App (CWA) with an encounter injection
attack is unlimited, hence the graph shows an identity relation between total and affected.
With TraceCORONA (TC), the amount of affected people is limited by the encounter
limit, which is why after an identical impact for lower counts there is no further increase
after the limit is reached.
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Actually conducting a Sybil attack in the mass scenario does not make sense for the
attacker, provided that an encounter limit is present. It only divides the amount of affected
people by the amount of sybils used, i.e., by half with Ns = 2.

Targeted Scenario

Where the Sybil attack actually makes sense is the targeted scenario. The time required
to trigger a high risk warning is shown in Table 6.2. With the attack active with Ns = 3,
being recognized in two scans is guaranteed to lead to a high risk encounter, as the time
required to trigger a high risk warning is lower than the minimum time between scans
(2.34 min < 3 min). Ns = 2 represents a middle ground, where the attacker is more likely,
but not guaranteed to achieve their goal in two scans and guaranteed in three, while
without the attack (Ns = 1) three or even four scans are always needed.

As we assume only the simple encounter injection attack to be possible on GAEN, only
Ns = 1 applies for this system: three to four scans are needed regardless of the attacker’s
behavior. Therefore, the Sybil attack does not have any effect on GAEN in this scenario.

However, this impact analysis shows the limited use case of the Sybil attack in TraceCO-
RONA with encounter limits. If there are no encounter limits, the limitations of affected
people and brevity of the encounter are related to hardware, i.e., how many devices a
single Bluetooth sender is able to simulate in the given timeframe, and timing, i.e., how
many of these devices are actually detected by users. Still, being able to affect a targeted
group of people in a short time only soliciting a single TAN has the potential to cause
disruption, for example if parliamentarians are prevented from joining a vote.

6.4.4. Countermeasures

After we established the attack impact of the simple encounter injection and encounter
injection with Sybil attacks, we now analyze three approaches to prevent or mitigate the
attack. All of the following countermeasures can be described as tradeoffs between security
and effectiveness. Care must be taken to set the parameters in a way as to avoid preventing
proper functioning of the tracing protocol in a benign scenario.

As analyzed above, the ability to limit encounter tokens per upload is the main counter-
measure to be employed by TraceCORONA against encounter injection attacks by single
individuals. To minimize the effect of the limit on tracing functionality, the app may sort
encounter tokens by infection risk and upload the encounters believed to be most risky for
the exposed person. This in turn allows the Sybil attack to be used for denial of service –
preventing infected people from sharing their encounters – instead of encounter injection.
For this outcome to occur, by using a large amount of sybils and a strong Bluetooth signal,
victims’ devices are forced to record many spoofed high-risk encounters, leading them to
report less real encounters and hindering functionality.

Before March 2021, Corona-Warn only counted encounters with a normalizedTime of at
least 5 minutes, and before February, only encounters with at least 10 minutes, with a
total time to be reached of 15 minutes [Cor21b, old versions]. If we assume these minimum
encounter times, the Sybil attack with over two sybils is not even effective in a targeted
scenario. Due to the emergence of newer virus variants with a much higher infectiousness,
shorter encounters are counted nowadays.

A different approach for mitigation of Sybil attacks is the heuristic detection of these
scenarios. The following can be observed by a device under Sybil attack: (1) multiple
devices with (2) a low attenuation and (3) a weak antenna (“close by”) are encountered
(4) simultaneously for (5) a short period of time. After detection of a scenario of this
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kind, either all encounters from this time period are ignored for risk detection or the user
is warned of a potential disruption. On the other hand, a benign scenario triggering this
behavior could be a short bus ride with multiple people later being tested positive and
uploading their contacts at similar times. These scenarios might neither be discernible to
the user nor the app, leading to false negatives if detected by the heuristic.

Alternatively, instead of heuristic detection, the risk score calculation may be altered to
count all simultaneous encounters as a single encounter. Intuitively, when more than one
infected person is present, the infection risk is higher due to more virus particles in the
air. However, we were not able to find any study correlating this observation to a faster
transmission of the virus.

In conclusion, the simple encounter injection attack is an inherent flaw of anonymous
automated contact tracing, for which TraceCORONA allows to limit the number of affected
users, while GAEN allows an unlimited amount of users in the attacker’s range to establish
encounters. When combined with the Sybil attack, the impact is increased under certain
scenarios, with the limits imposed by TraceCORONA leaving the attacker to a tradeoff
between affecting more people and affecting less people quicker. In GAEN, as well as the
systems using it, checks for duplicate identifiers can be added to eliminate the possibility
of a Sybil attack completely, while we are unsure if these checks are implemented at the
current time.
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7. Traffic Measurements

After the protocols of Google/Apple Exposure Notification(s) (GAEN) and TraceCO-
RONA have now been analyzed theoretically in detail, we make measurements on the
traffic generated by transmissions to and from the server. The results serve as a point
of comparison between the two applications as well as backing up our analysis from Sec-
tion 5.2.

The goal for our traffic measurements is to analyze the download process or matching
process, which is performed on a regular basis by all users, as well as the upload process,
performed only by users who have tested positive. We compare single and multiple (2 or
5) device systems to prove that traffic volumes can be interpolated for large amounts of
devices. All numbers resulting from measurements in this chapter are averages of at least
3 benchmark runs.

Download and upload processes should be measured separately to allow for better com-
parison. To achieve this, our general flow for traffic testing is to first generate a certain
amount of cryptographic identifiers (tokens or keys), then identify as positive and upload
these tokens to the server, and in the second phase download the identifiers again. All of
these steps are done with the same app instance, which is possible as both tested systems
do not require any authentication or discern between clients when downloading keys to
be matched. Before repeating the benchmark with a different number of encounters, the
server side and the client side are reset by deleting the data, and the setup process is done
again.

Section 7.1 describes the tools used for testing, followed by three sections describing each
of the measured systems. Afterwards, in Section 7.5, we compare the results of Corona
Contact Tracing Germany (CCTG) and TraceCORONA, before we verify the results of
Section 5.2 and estimate the feasibility of a large-scale deployment of TraceCORONA in
Section 7.6.

7.1. Instrumentation
To simulate each tracing system, we run the respective server side using the Docker
Engine (version 20.10.8)[Doc21], which is used by both projects for easy deployment
of applications, on a Linux computer. The server versions used are 2.5.0 for Corona-
Warn-App (CWA) and 1.1.9 for TraceCORONA. To evaluate both apps fairly, we aim
to recreate the connection parameters used in the infrastructure of the CWA, namely
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https://svc90.main.px.t-online.de/, https://submission.coronawarn.app/, and
https://verification.coronawarn.app/. All servers use HTTP/1.1 exclusively, while
the server behind the former domain offers TLSv1.2 only. The submission and verifica-
tion servers are reachable with TLSv1.3 as well. nginx (version 1.21.3) is used [NGI21] as
a reverse proxy for both TraceCORONA and CWA benchmarks. However, in our main
measurements, the TLSv1.2 cipher suite TLS_RSA_WITH_AES_256_GCM_SHA384 is used, as
it does not provide perfect forward secrecy and allows us to decrypt the communication af-
terwards for analysis purposes. After the session key is established, it functions identically
and as such the performance should be comparable to the original cipher suite.

When running benchmarks, all communication is captured on the server side using Tcp-
dump (version 4.99.1) [The21b]. We filter by the IP address of the host to avoid capturing
server-internal communication. For sanity-checking the data, Wireshark (version 3.4.8)
[Wir21] is used. This utility allows for usage of the RSA private key of the server to
decrypt the TLS connection.

Depending on the test, the client side is run either on a number of emulated Google Pixel
4a devices (Operating System (OS) version RSR1.201211.001.A1) or a real Google Pixel
3a XL (OS version RQ2A.210505.002). All devices are running Android 11, with the
operating system distributed by the manufacturer.

For interfacing with the Android devices and automating the benchmarks, we use Ap-
pium (version 1.21.0) [JS 21], which allows remote control of an Android device using a
WebDriver-based [SB18] interface. In addition to having debugging access enabled, the
devices have Magisk (version 23.0) [Wu21] installed for full access to application data with-
out modifying applications, easy modification of the /etc/hosts file to forego running a
DNS server, as well as allowing instrumentation of the GAEN framework.

On the computer side, the Appium server is interfaced by JavaScript code running in
Node.js (version 16.6.2) [Ope21a] using the WebdriverIO (version 7.7.4) [Ope21b] library.
We chose this language to minimize dependencies, as Appium also runs in Node.js. Ad-
ditionally, the xml2js (version 0.4.23) [Kub21] and better-sqlite3 (version 7.4.1) [Wis21]
libraries are used for parsing and modification of application files.

The benchmarks are orchestrated by a central script calling the necessary utilities (Docker,
Tcpdump and Node.js), allowing for easy repeatibility. Single benchmark steps are sep-
arated into multiple Node.js programs to allow for reuse between benchmarks or even
benchmarked applications (CCTG and CWA). Several functions are implemented in a
separate library file, helpers.js, to further enhance the readability. As Appium provides
a unified interface to the Android Debug Bridge (ADB) and UI Automator tools, we use
it whenever possible.

Tcpdump is configured to output the captured packets into a pcap format file. We then
separate the TCP/TLS connections (streams) using the Tshark utility included with Wire-
shark. Our measurement for the generated traffic volume is the sum of all Ethernet frame
sizes of the relevant HTTPS connections recorded during the benchmark run. This extra
step filters noise created by connections not essential to the measured communication, in
our case CWA/CCTG trying to download extra diagnosis key files.

For the CWA backend, the demo mode of the distribution service is activated to disable
the shifting algorithm (described in 2.2.4) which would prevent diagnosis key packets from
being generated.

7.2. TraceCORONA
As TraceCORONA generates tokens only when actively encountering a device, the ap-
plication database is downloaded after the initial keypair generation and fake encounter
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Figure 7.1.: TraceCORONA traffic volume per device, 1 device

values are inserted into the EncounterTokenParameters and Encounter tables. The data
are converted by the application to encounter tokens before upload. This way, an arbi-
trary amount of encounters can be generated without emulating a Bluetooth device or
programming an app for encounter simulation. Therefore, it allows us to perform tests on
an emulator, eliminating device hardware as a factor.

TraceCORONA only initiates the matching process if prompted to do so by the user, i.e.
when the “Check Your Status” button is pressed. This is a deliberate design decision to
allow the user to decide for themselves when they want to view their status, instead of
being displayed on the main screen as with other tracing apps. For our benchmark, this
proves convenient as no spurious connections are measured in a typical benchmark run.

When looking at the results of the benchmark, plotted in Figure 7.1 and Figure 7.2, we are
still able to observe discrepancies in the upload and download of tokens. Due to the status
of TraceCORONA being a prototype application not developed for real-world usage, we
did not further explore the reasons for these errors and instead assume these to be either
caused by bugs in the application or disturbances in the benchmark. We were not able to
benchmark more than 2 devices, as the errors became more serious, lending credibility to
the theory that these are caused by load on the testing computer.

Leaving the errors out of the picture, though, the results show a near-linear increase in
traffic volume with an increasing amount of encounters per device. For uploads, approx-
imately every 10 encounters a small amount of overhead is added due to the data being
split into one more TCP packet. As expected, verification requires a constant amount of
bytes as well.

7.3. Corona Contact Tracing Germany
The other system in our benchmark, CWA, proves more difficult to instrument, as the ap-
plication uses the GAEN Application Programming Interface (API), which is implemented
by the closed-source Google Play Services and restricted by application signature checks.
The en-13n script [BH20] was created to bypass this check. Unfortunately, this does not
succeed on the recent version of Google Play Services required for current versions of the
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Figure 7.2.: TraceCORONA traffic volume per device, 2 devices. The straight and dotted
lines each represent one device

application. As a workaround, we therefore use the CCTG [con21] application (version
2.5.0.1) instead for this benchmark, which stems from the same code base, but contains an
open-source reimplementation of the GAEN API. To ensure interoperability with Apple
devices, the functionality of the API is fully specified. Therefore, traffic measurements
should not be different, as the networking code is identical to the original CWA Android
application. The tests for CCTG were performed on emulated devices.

Before starting the app for the first time, the date is set nkeys −2 days into the past, where
nkeys is the amount of Temporary Exposure Key (TEK), which later become diagnosis
keys, to be generated in this benchmark run. For all the phones in the benchmark, the
first-run tutorial is confirmed and the necessary permissions for Bluetooth Low Energy
(BLE or Bluetooth LE) are granted, which is required for enabling the contact tracing
functionality and generating TEKs.

Note that the minimum amount of diagnosis keys is 2, as one extra key is generated for
an unknown reason. The maximum amount is 14, as the server will not accept more than
14 keys.

Once the app is started, tracing is turned off, the date is advanced by one day and tracing
is turned back on. This procedure is repeated until the required amount of TEKs is
generated. After generating the TEKs, the keys are uploaded. For this purpose, the
teleTransaction Authentication Number (TAN) workflow is used: a 10-character TAN is
entered (SSS-WUE-TANG) and the default profile of Transmission Risk Levels (TRLs) is
selected, i.e., no Days Since Onset of Symptoms (DSOS) value is provided. A few seconds
later, when the upload is finished, the test result is deleted to again enable the option to
initiate the download and matching process. For this matching process to begin, the main
activity of the app has to be reloaded. This is achieved by closing the app and relaunching
it.

This process is repeated for all devices to be benchmarked. After the benchmark run
is finished, all diagnosis keys are deleted from the server-side database and the object
storage server is cleared. Then, the distribution service is run once, recreating the app
configuration files to avoid errors.
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Figure 7.3.: Corona Contact Tracing Germany traffic volume per device, 1 device

When performing this test without changing any settings on the device, the download and
matching process is initiated at seemingly random times. This is due to the server not
providing any up-to-date diagnosis key packages, forcing the synchronization algorithm in
the app to automatically retry for new packages again and again. To minimize the impact
of these queries on our benchmark results and force devices to download only the current
diagnosis key package, we turn on Airplane Mode at all times when internet access would
lead to erratic measurements, i.e., when Tcpdump is capturing packets and the key upload
process has not begun yet.

Figure 7.3 and Figure 7.4 show the raw measurement results, which is the traffic volume
per device as measured on the server side. The solid part of the submission traffic bar is
the size of the actual submission payload containing the diagnosis keys. Similarly, the solid
part of the download traffic bar is the size of the diagnosis key package that is generated.
Note, however, that this package is downloaded separately and not extracted from the
captured packets in order to provide more reliable results. For some test results, the
download still occurred while measuring the upload mechanism and was counted as part
of the complete upload, so the complete download traffic does not necessarily correspond
with the download traffic.

In general, the complete upload and download numbers do not exhibit any meaningful
properties. Rather, the individual streams show that the verification process, as with
TraceCORONA, always generates the same amount of traffic. The download overhead is
constant in the 1-device test, but varies wildly in the 5-device test. This may be due to the
previously-mentioned random download attempts, however we have not further analyzed
these discrepancies, as the 1-device test numbers can be interpolated to multiple devices.

The submission process generates almost the same amount of traffic regardless of the
number of diagnosis keys. In Section 5.2.2, we discovered a bug that prevents the generated
traffic from being exactly the same every time. When isolating the upload payloads,
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Figure 7.4.: Corona Contact Tracing Germany traffic volume per device, 5 devices – colors
correspond to devices
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Figure 7.5.: Correlation of diagnosis key payload size with number of keys

measuring their size and comparing it to the number of diagnosis keys in each payload,
as in Figure 7.5, we can see the payload size vary with the amount of transmitted keys.
In fact, the payload size differs by only 1 byte for each amount of diagnosis keys. Note
that instead of using the benchmark’s amount of generated keys, we decode the payload
using protoc and count the amount of transmitted keys, which eliminates the benchmark
inaccuracies.

This confirms our discovery from Section 5.2.2 that the payload padding mechanism is
broken and does not hide the number of uploaded diagnosis keys from a passive attacker
observing the exchange. Due to the playbook system of CWA, messages are always sent
in the same order, generating a distinct pattern of sizes even though the communication
itself is encrypted.

7.4. Corona-Warn-App
After conducting a number of measurements on the emulated CCTG app, we were able to
get the original build of CWA running on the Pixel 3a phone. In this section, we measure
the upload and download processes of CWA with a very similar tooling and methodology
to the measurements of CCTG. This helps confirm the results from our original test of
CCTG.

As the app uses certificate pinning, we used the tools Frida and objection to allow connec-
tion to our server. Additionally, as the app only allows to use TLS cipher suites providing
perfect forward secrecy, we opted to use the same cipher suites as in the production ver-
sion of CWA. We were unable to extract the pre-master secrets needed to decrypt the
resulting TLS connections from nginx and opted to instead capture unencrypted traffic
behind the reverse proxy. To verify the results gathered with CCTG, we re-ran the traffic
measurements with one device, resulting in Figure 7.6.

Figure 7.6(a) shows the upload process. Notably, there is some variation in the submission
and verification traffic volumes. This can be attributed to the device being connected
over a shared Wi-Fi network and having to re-send packets. When comparing results to
Figure 7.3, notably, the upload payload size is missing. This is due to the submission
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Figure 7.6.: Corona-Warn-App traffic volume per device, 1 device

backend service using an encrypted connection even behind the reverse proxy, leaving us
unable to gain access to the data. Unfortunately, we are unable to verify the payload
padding bug due to this restriction. Overall, results are similar to the measurements
performed with CCTG, but CWA actually submits one diagnosis key less to the server
than CCTG. This is the expected behavior of the app, while CCTG includes one extra
key that is valid for the current day.

In Figure 7.6(b), an attempt at measuring the download process is shown. CWA proved
to be very temperamental about actually downloading new diagnosis key data and we
were only able to get three measurements of it downloading in total. The measured
download numbers in the graph show the app querying the server for diagnosis key packages
immediately after the key upload, when keys were not yet distributed. Therefore, these
measurements are unreliable.

Besides the one additional diagnosis key generated in CCTG, we observed no difference
in traffic and functionality between the open-source reimplementation of GAEN from the
microG project, which is used in CCTG, and the official version included in Google Play
Services.

7.5. Comparison of TraceCORONA and Corona-Warn-App
After testing scripts and methodology for both TraceCORONA and Corona-Warn-App
have been implemented, the gathered numbers are now used to compare the performance
of GAEN/CWA and TraceCORONA with practical measurements. We repeat the com-
parison from Section 5.2.4, this time interpolating from our real measured numbers. The
result of this interpolation is a more realistic overview of the traffic volume generated by
a system over two weeks of operation.

In the first step, the upload and download measurements for TraceCORONA are regressed
linearly: τ = mTC, (up, down) · nenc + tTC, (up, down). For CWA, in a similar vein, the
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Constant Value

mCWA, down 34.628 B
tCWA, down 9 038.821 B

τCWA, up, 14 keys 16 987.5 B

mTC, down 343.630 B
tTC, down 5 817.037 B
mTC, up 157.273 B
tTC, up 11 314.727 B

ndays 14

Table 7.1.: Trend values and parameters for interpolation

average size of the matching process is regressed linearly, with the measured number of
diagnosis keys contained in the payload (as opposed to the desired value) as a variable:
τ = mCWA, down · nenc + tCWA, down. In this comparison, uploads are assumed to always
contain the full 14 diagnosis keys generated by the app over 2 weeks of operation. However,
as CWA upload packets are padded, the difference in size is neglegible even on a large scale.
Table 7.1 contains these values as extracted from the benchmark results.

These values are then interpolated as per the equations described in Section 5.2.4. Again,
TraceCORONA is analyzed in a low contact and high contact scenario. Figure 7.7 shows
the results of this interpolation. Upload traffic is similar between both TraceCORONA in
the low contact scenario and CWA, which is due to the test result retrieval and verification
processes among with fake requests being included in the measurements. Download traffic
is massively increased for TraceCORONA (2-3 orders of magnitude higher) due to the
inefficient streaming mechanism and high amount of additional data being transmitted
with every encounter token.

To summarize, these results show that the current version of TraceCORONA generates a
traffic volume orders of magnitude higher than a GAEN-based approach such as CWA.
We have shown in Section 5.2 that there is potential for bandwidth savings without loss
of any current functionality. In a real-world deployment scenario of an encounter-based
approach such as TraceCORONA, measures could also be taken to reduce the amount of
keys distributed to each user such as separating the keys by region.

7.6. Comparison of Benchmarks and Theory

In two parts of this thesis, we have compared the estimated traffic for the two systems.
We ask the question: Could TraceCORONA be used as a backend for a national tracing
system? To evaluate this scenario, due to the amount of non-infected users which only
download keys for matching purposes and do not upload keys, we can ignore the upload
processes on a large scale, and are therefore only comparing the matching processes.

Figure 7.8 shows the results of our two comparisons side by side. Note that the dotted
lines in Figure 7.8(a) are equivalent to the solid lines in Figure 7.8(b). Here we can see
that both comparisons yield similar traffic volumes for the original TraceCORONA, with
the values for our theoretical numbers being slightly lower, as expected due to leaving
the overhead of underlying protocols out of the picture. Therefore, our estimates from
Section 5.2 and our measurements from Chapter 7 are able to provide an overview of the
traffic produced by both systems and serve as a means to estimate the feasibility of scaling
up both TraceCORONA and GAEN.
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Figure 7.7.: Comparison of TraceCORONA (5 or 50 average encounters/person/day) and
Corona-Warn-App (CWA) over a 14-day period, logarithmic scale for both axes
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Figure 7.8.: Comparison of TraceCORONA (5 or 50 average encounters/person/day) and
Corona-Warn-App (CWA) matching traffic per day, logarithmic scale for both axes, rate
of infected users = 0.001

What can we gather from these results? TraceCORONA, although producing vastly higher
traffic in the prototype, can be optimized to only need a small multiple of the traffic
volume of CWA at high user counts. To further demonstrate this result, we compare
TraceCORONA with CWA’s situation on December 23, 2020, as recorded by [Böh20]. On
this day, a record 57 201 diagnosis keys were submitted by infected users and between
24.2 and 24.9 million users had downloaded the app. CWA requires a total of 4.7 · 1013 B
of matching traffic volume, while the optimized TraceCORONA version requires between
1.7 ·1014 B and 1.7 ·1015 B for 5 and 50 average encounters per person per day respectively.
Here, TraceCORONA produces between 3.6 and 36.4 times as much traffic as CWA. For
comparison, the largest German internet exchange DE-CIX Frankfurt averages a daily
traffic of 5.9 · 1017 B based on 1-year statistics as of October 3, 2021 [DE-21].
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8. Conclusion

The aim of this thesis was to further document and evaluate TraceCORONA, an alternative
to the established Google/Apple Exposure Notification(s) (GAEN) tracing protocol. Based
on in-depth analyses of both systems, we conclude that TraceCORONA can achieve a
higher resilience against security and privacy attacks, while being feasible for an operator
to implement in a large scale tracing system similar to Corona-Warn-App (CWA). Novel
implementation issues in CWA and potential design weaknesses in TraceCORONA were
discovered, discussed and reported.

Throughout the course of this thesis we conducted several different analyses, experiments
and measurements. This also left behind a number of unanswered questions and pointers
for future research on the topic. Below, we list ideas for future work:

• Implementation

– Implementation of proposed protocol extensions and improvements
for TraceCORONA: During our architectural and security analyses we pro-
posed to improve the TraceCORONA protocol by removing the nonce from
distributed token messages and instead duplicating or moving the transmission
power to this field. Additionally, we proposed to implement risk scoring sim-
ilar to CWA into the application. Implementing these proposals would move
the TraceCORONA prototype towards being a more full-fledged protocol and
tracing application.

• Architectural Analysis and Comparison

– Server-Device Encoding and Compression: A large part of the bandwidth
used by a tracing system is the fixed overhead in every packet sent to or from
the system. Most of it is caused by the usage of HTTP/1.1 for transmission.
Switching to the more recent HTTP/3 protocol could yield significant benefits
that have the potential to partially mitigate the influence of a tracing protocol
sending more data for purposes of unlinkability.

• Security Analysis

– Profiling by server-device communication: In our analysis of the fake
request scheme used by CWA, we discovered some discrepancies that could be
used by attackers to negate the effect of this plausible deniability scheme. A
proof of concept of this attack could be created to further demonstrate the issue
at hand and possibly lead to its fix.
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– Sybil attack on GAEN: We applied a known attack from peer-to-peer sys-
tems to contact tracing systems: the Sybil Attack. However, we were unable
to provide results on whether the current version of GAEN on Android and/or
iOS is vulnerable to the attack as well. Despite it being preventable, the attack
may have already caused false positives if it is possible.

– Proof of concept of Sybil attack: Both for TraceCORONA and CWA or
other GAEN-based systems, a proof of concept attack application could be
developed to further demonstrate, test and refine the Sybil attack, similar to
the work in [BDF+20].

– Formal analysis using different tools: We chose Verifpal for our formal
analysis. Instead, another tool such as ProVerif [Bla01] or Tamarin Prover
[MSCB13] could be applied to the GAEN and TraceCORONA protocols to
prove them as secure or discover yet-unknown attacks.

• Benchmarks

– Interpolation of results based on real numbers: We have interpolated
the measured traffic values from our apps based on a hypothetical scenario.
However, the real usage numbers of CWA required to make more accurate
estimates are available and could be used to estimate the actual bandwidth
used by the system at all times, as well as the total traffic volume.

– Power measurements: We evaluated the internet traffic caused by the opera-
tion of tracing apps. Another important tradeoff is the power consumed by the
tracing process running in the background. As the TraceCORONA prototype
is not optimized for power, a fair comparison with CWA was not possible at
this time. If TraceCORONA is optimized for power in the future, comparative
measurements can be conducted.

– Functional testing: The functionality of TraceCORONA could be evaluated
in a range of laboratory and real-world tests to test the claims made by Google
that “forms of two-way interactions between participants’ phones result in error-
prone implementations” [Goo20e].

• Future Research Directions

– Re-implementations of GAEN: Projects such as microG [mic21] have re-
implemented the GAEN tracing protocol. Are these re-implementations equiv-
alent in security, privacy and functionality or do they have flaws in this regard?

– Alternative devices: Singapore introduced a centralized tracing system based
on dedicated hardware [Gov20b]. Could the decentralized protocols developed
for tracing apps work on non-smartphone devices which do not have a per-
manent internet connection and need to preserve energy and how would the
properties change?

– Expand analysis to more tracing protocols/apps: The focus of this thesis
were the GAEN protocol widely used in different countries and the experimental
TraceCORONA protocol among its prototype, as well as the German implemen-
tation of GAEN, CWA. Of course, other tracing systems both in the real world
and in academia can be the focus of future research and have the potential
to fix security issues and/or provide a better balance of security, privacy and
efficiency than existing systems.

– Investigate usage of Private Set Intersection: Established protocols for
private set intersection are used in contact discovery. This goal seems to be
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well-aligned at first glance with digital contact tracing. Could these protocols
be used as an alternative approach for contact tracing and which benefits or
drawbacks in terms of tradeoffs would private set intersection algorithms have?
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Appendix

A. Verifpal Models

Listing 1: tracecorona.vp
1 attacker[active]
2
3 // Beforehand: Server certificate signed by CA, guarded against attacks -> []
4
5 principal Server[
6 knows private ServerPrivateKey
7 ServerPublicKey = G^ServerPrivateKey
8 ]
9
10 principal CA [
11 knows private CAPrivateKey
12 CAPublicKey = G^CAPrivateKey
13 ]
14
15 CA -> UserI: [CAPublicKey]
16 CA -> UserJ: [CAPublicKey]
17 CA -> HealthAuthority: [CAPublicKey]
18 Server -> CA: [ServerPublicKey]
19
20 principal CA [
21 ServerCert = SIGN(CAPrivateKey, ServerPublicKey)
22 ]
23
24 CA -> Server: [ServerCert]
25
26 // Phones generate keys, rolling IDs
27
28 principal UserI[
29 // literal post box and key of the user, for delivery of TANs
30 // modelled using PKE
31 knows private UserIPostboxKey
32 UserIPostbox = G^UserIPostboxKey
33
34 // protocol values
35 generates UserIPrivateKey1

99



100 8. Appendix

36 UserIPublicKey1 = G^UserIPrivateKey1
37 generates UserIRollingID1
38 ]
39
40 principal UserJ[
41 generates UserJPrivateKey1
42 UserJPublicKey1 = G^UserJPrivateKey1
43 generates UserJRollingID1
44 ]
45
46 // Advertisement/Scanning: UserJ discovers UserI is nearby
47
48 UserI -> UserJ: UserIRollingID1
49
50 // UserJ begins App-to-App handshake using (EC)DH
51
52 UserJ -> UserI: UserJPublicKey1
53 UserI -> UserJ: UserIPublicKey1
54
55 principal UserI[
56 UserIEncToken1 = UserJPublicKey1^UserIPrivateKey1
57 UserIEncTokenHash1 = HASH(UserIEncToken1)
58 ]
59
60 principal UserJ[
61 UserJEncToken1 = UserIPublicKey1^UserJPrivateKey1
62 UserJEncTokenHash1 = HASH(UserJEncToken1)
63 ]
64
65 // UserI is tested positive, health authority distributes TAN secretly to user

and server
66
67 UserI -> HealthAuthority: [UserIPostbox]
68
69 principal HealthAuthority[
70 generates TAN
71 // Note: PKE_ENC in this case is likely a letter or phone call
72 // An attacker cannot intercept the letter, hence does not gain knowledge or

is able to modify the TAN in this model
73 TANForUser = PKE_ENC(UserIPostbox, TAN)
74 // Server-side communication over TLS with DHE
75 generates HAClientRandom
76 ]
77
78 HealthAuthority -> UserI: [TANForUser]
79
80 principal UserI[
81 // User unlocks postbox and opens letter with positive test result + TAN
82 UserTAN = PKE_DEC(UserIPostboxKey, TANForUser)
83 ]
84
85 // ClientHello
86 HealthAuthority -> Server: HAClientRandom
87
88 principal Server[
89 generates HAServerRandom
90 generates HADHServerSecret
91 HADHServerParam = G^HADHServerSecret
92 ]
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93
94 // ServerHello
95 Server -> HealthAuthority: HAServerRandom, HADHServerParam, ServerPublicKey,

ServerCert
96
97 principal HealthAuthority[
98 knows public HAsalt, info, tanAD
99 HAServerOK = SIGNVERIF(CAPublicKey, ServerPublicKey, ServerCert)?
100 generates HADHClientSecret
101 HADHClientParam = G^HADHClientSecret
102 HADHClientPreMasterSecret = HADHServerParam^HADHClientSecret
103 HADHClientTrafficKey = HKDF(HAsalt, HADHClientPreMasterSecret, info)
104 TANForServer = AEAD_ENC(HADHClientTrafficKey, TAN, tanAD)
105 ]
106
107 // ClientResponse
108 HealthAuthority -> Server: HADHClientParam, TANForServer
109
110 principal Server[
111 knows public HAsalt, info, tanAD
112 HADHServerPreMasterSecret = HADHClientParam^HADHServerSecret
113 HADHServerTrafficKey = HKDF(HAsalt, HADHServerPreMasterSecret, info)
114 ServerTAN = AEAD_DEC(HADHServerTrafficKey, TANForServer, tanAD)
115 ]
116
117 // UserI establishes TLS, requests nonce
118
119 principal UserI[
120 generates UIClientRandom
121 ]
122
123 // ClientHello
124 UserI -> Server: UIClientRandom
125
126 principal Server[
127 generates UIServerRandom
128 generates UIDHServerSecret
129 UIDHServerParam = G^UIDHServerSecret
130 ]
131
132 // ServerHello
133 Server -> UserI: UIServerRandom, UIDHServerParam, ServerPublicKey, ServerCert
134
135 principal UserI[
136 knows public UIsalt, info, tan2AD
137 UIServerOK = SIGNVERIF(CAPublicKey, ServerPublicKey, ServerCert)?
138 generates UIDHClientSecret
139 UIDHClientParam = G^UIDHClientSecret
140 UIDHClientPreMasterSecret = UIDHServerParam^UIDHClientSecret
141 UIDHClientTrafficKey = HKDF(UIsalt, UIDHClientPreMasterSecret, info)
142 UserTANForServer = AEAD_ENC(UIDHClientTrafficKey, UserTAN, tan2AD)
143 ]
144
145 // ClientResponse
146 UserI -> Server: UIDHClientParam, UserTANForServer
147
148 principal Server[
149 knows public UIsalt, tan2AD, nonceAD
150 UIDHServerPreMasterSecret = UIDHClientParam^UIDHServerSecret
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151 UIDHServerTrafficKey = HKDF(UIsalt, UIDHServerPreMasterSecret, info)
152 ServerUserTAN = AEAD_DEC(UIDHServerTrafficKey, UserTANForServer, tan2AD)
153 TANMatches = ASSERT(ServerUserTAN, ServerTAN)?
154 generates ServerNonce
155 NonceForUser = AEAD_ENC(UIDHServerTrafficKey, ServerNonce, nonceAD)
156 ]
157
158 Server -> UserI: NonceForUser
159
160 principal UserI[
161 knows public nonceAD, uploadAD, keyAD
162 UserNonce = AEAD_DEC(UIDHClientTrafficKey, NonceForUser, nonceAD)
163 knows private State
164 StateAndNonce = CONCAT(State, UserNonce)
165 generates StateAndNonceKey
166 StateAndNonceEncrypted = ENC(StateAndNonceKey, StateAndNonce)
167 StateAndNonceKeyEncrypted = ENC(UserIEncToken1, StateAndNonceKey)
168 EncTokenUploadMessage = CONCAT(UserIEncTokenHash1, StateAndNonceKeyEncrypted,

StateAndNonceEncrypted)
169 EncTokenUploadMessageForServer = AEAD_ENC(UIDHClientTrafficKey,

EncTokenUploadMessage, uploadAD)
170 StateAndNonceKeyForServer = AEAD_ENC(UIDHClientTrafficKey, StateAndNonceKey,

keyAD)
171 ]
172
173 UserI -> Server: EncTokenUploadMessageForServer, StateAndNonceKeyForServer
174
175 principal Server[
176 // verify nonce in upload message
177 ServerEncTokenUploadMessage = AEAD_DEC(UIDHServerTrafficKey,

EncTokenUploadMessageForServer, uploadAD)
178 ServerStateAndNonceKey = AEAD_DEC(UIDHServerTrafficKey,

StateAndNonceKeyForServer, keyAD)
179 ServerEncTokenHash1, ServerStateAndNonceKeyEncrypted,

ServerStateAndNonceEncrypted = SPLIT(ServerEncTokenUploadMessage)
180 ServerStateAndNonce = DEC(ServerStateAndNonceKey,

ServerStateAndNonceEncrypted)
181 ServerState, ServerNonceFromUser = SPLIT(ServerStateAndNonce)
182 ServerNonceMatches = ASSERT(ServerNonce, ServerNonceFromUser)?
183 ]
184
185 // Download process: UserJ downloads list of encounter tokens
186
187 principal UserJ[
188 generates UJClientRandom
189 ]
190
191 // ClientHello
192 UserJ -> Server: UJClientRandom
193
194 principal Server[
195 generates UJServerRandom
196 generates UJDHServerSecret
197 UJDHServerParam = G^UJDHServerSecret
198 ]
199
200 // ServerHello
201 Server -> UserJ: UJServerRandom, UJDHServerParam, ServerPublicKey, ServerCert
202
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203 principal UserJ[
204 knows public UJsalt, info
205 UJServerOK = SIGNVERIF(CAPublicKey, ServerPublicKey, ServerCert)?
206 generates UJDHClientSecret
207 UJDHClientParam = G^UJDHClientSecret
208 UJDHClientPreMasterSecret = UJDHServerParam^UJDHClientSecret
209 UJDHClientTrafficKey = HKDF(UJsalt, UJDHClientPreMasterSecret, info)
210 ]
211
212 // ClientResponse
213 UserJ -> Server: UJDHClientParam
214
215 principal Server[
216 knows public UJsalt, downloadAD
217 UJDHServerPreMasterSecret = UJDHClientParam^UJDHServerSecret
218 UJDHServerTrafficKey = HKDF(UJsalt, UJDHServerPreMasterSecret, info)
219 EncTokenDownloadMessageForUserJ = AEAD_ENC(UJDHServerTrafficKey,

ServerEncTokenUploadMessage, downloadAD)
220 ]
221
222 Server -> UserJ: EncTokenDownloadMessageForUserJ
223
224 principal UserJ[
225 knows public downloadAD
226 EncTokenDownloadMessage = AEAD_DEC(UJDHClientTrafficKey,

EncTokenDownloadMessageForUserJ, downloadAD)
227 UserJEncTokenHash1Download, UserJStateAndNonceKeyEncrypted,

UserJStateAndNonceEncrypted = SPLIT(EncTokenDownloadMessage)
228 UserJEncTokenHashMatches = ASSERT(UserJEncTokenHash1Download,

UserJEncTokenHash1)?
229 UserJStateAndNonceKey = DEC(UserJStateAndNonceKeyEncrypted, UserJEncToken1)
230 UserJStateAndNonce = DEC(UserJStateAndNonceEncrypted, UserJStateAndNonceKey)
231 ]
232
233 queries[
234 // 1: Encounter token is never released publicly (false)
235 confidentiality? UserJEncToken1
236
237 // 2: Encounter token established between users I and J is the same on both

sides (true)
238 equivalence? UserIEncToken1, UserJEncToken1
239
240 // The following query did not finish in 1 week of runtime
241
242 // 3: Attacker cannot upload encounter tokens or modify them (should be true)
243 authentication? UserI -> Server: EncTokenUploadMessageForServer
244 ]

Listing 2: tracecorona-3people-simple.vp
1 // Simple model:
2 // - Instead of approximating TLS by DH and signature verification, use pre-

shared keys
3 // - Leave out the health authority
4 // - Leave out rolling IDs for now
5
6 attacker[active]
7
8 // Beforehand: Server and client pre-share keys (simulating TLS)
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9
10 principal Server[
11 knows private ServerUserIKey
12 knows private ServerUserJKey
13 knows private ServerUserKKey
14 ]
15
16 // Phones generate keys, rolling IDs
17
18 principal UserI[
19 knows private ServerUserIKey
20 generates UserIPrivateKey1
21 UserIPublicKey1 = G^UserIPrivateKey1
22 ]
23
24 principal UserJ[
25 knows private ServerUserJKey
26 generates UserJPrivateKey1
27 UserJPublicKey1 = G^UserJPrivateKey1
28 ]
29
30 principal UserK[
31 knows private ServerUserKKey
32 generates UserKPrivateKey1
33 UserKPublicKey1 = G^UserKPrivateKey1
34 leaks UserKPrivateKey1
35 ]
36
37 // UserJ begins App-to-App handshake with UserI using (EC)DH, this cannot be

influenced
38
39 UserJ -> UserI: [UserJPublicKey1]
40 UserI -> UserJ: [UserIPublicKey1]
41
42 principal UserI[
43 UserIEncToken1 = UserJPublicKey1^UserIPrivateKey1
44 UserIEncTokenHash1 = HASH(UserIEncToken1)
45 ]
46
47 principal UserJ[
48 UserJEncToken1 = UserIPublicKey1^UserJPrivateKey1
49 UserJEncTokenHash1 = HASH(UserJEncToken1)
50 ]
51
52 // UserK (malicious) begins App-to-App handshake with UserK using (EC)DH
53 // UserJ private key is the same (same 30 minute time window)
54
55 phase[1]
56
57 UserK -> UserJ: UserKPublicKey1
58 UserJ -> UserK: UserJPublicKey1
59
60 principal UserJ[
61 UserJEncToken2 = UserKPublicKey1^UserJPrivateKey1
62 UserJEncTokenHash2 = HASH(UserJEncToken2)
63 ]
64
65 principal UserK[
66 UserKEncToken2 = UserJPublicKey1^UserKPrivateKey1
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67 UserKEncTokenHash2 = HASH(UserKEncToken2)
68 ]
69
70 // UserI requests nonce
71 principal UserI [
72 knows public tan2AD
73 knows private UserITAN
74 UserTANForServer = AEAD_ENC(ServerUserIKey, UserITAN, tan2AD)
75 ]
76
77 // ClientResponse
78 UserI -> Server: UserTANForServer
79
80 principal Server[
81 knows public nonceAD, tan2AD
82 knows private UserITAN
83 ServerUserTAN = AEAD_DEC(ServerUserIKey, UserTANForServer, tan2AD)?
84 TANMatches = ASSERT(ServerUserTAN, UserITAN)?
85 generates ServerNonce
86 NonceForUser = AEAD_ENC(ServerUserIKey, ServerNonce, nonceAD)
87 ]
88
89 Server -> UserI: NonceForUser
90
91 principal UserI[
92 knows public nonceAD, uploadAD, keyAD
93 UserNonce = AEAD_DEC(ServerUserIKey, NonceForUser, nonceAD)?
94 knows private State
95 StateAndNonce = CONCAT(State, UserNonce)
96 generates StateAndNonceKey
97 StateAndNonceEncrypted = ENC(StateAndNonceKey, StateAndNonce)
98 StateAndNonceKeyEncrypted = ENC(UserIEncToken1, StateAndNonceKey)
99 EncTokenUploadMessage = CONCAT(UserIEncTokenHash1, StateAndNonceKeyEncrypted,

StateAndNonceEncrypted)
100 EncTokenUploadMessageForServer = AEAD_ENC(ServerUserIKey,

EncTokenUploadMessage, uploadAD)
101 StateAndNonceKeyForServer = AEAD_ENC(ServerUserIKey, StateAndNonceKey, keyAD)
102 ]
103
104 UserI -> Server: EncTokenUploadMessageForServer, StateAndNonceKeyForServer
105
106 principal Server[
107 // verify nonce in upload message
108 ServerEncTokenUploadMessage = AEAD_DEC(ServerUserIKey,

EncTokenUploadMessageForServer, uploadAD)?
109 ServerStateAndNonceKey = AEAD_DEC(ServerUserIKey, StateAndNonceKeyForServer,

keyAD)?
110 ServerEncTokenHash1, ServerStateAndNonceKeyEncrypted,

ServerStateAndNonceEncrypted = SPLIT(ServerEncTokenUploadMessage)
111 ServerStateAndNonce = DEC(ServerStateAndNonceKey,

ServerStateAndNonceEncrypted)
112 ServerState, ServerNonceFromUser = SPLIT(ServerStateAndNonce)
113 ServerNonceMatches = ASSERT(ServerNonce, ServerNonceFromUser)?
114 ]
115
116 // Download process: UserJ downloads list of encounter tokens
117
118 principal Server[
119 knows public downloadAD
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120 EncTokenDownloadMessageForUserJ = AEAD_ENC(ServerUserJKey,
ServerEncTokenUploadMessage, downloadAD)

121 ]
122
123 Server -> UserJ: EncTokenDownloadMessageForUserJ
124
125 principal UserJ[
126 knows public downloadAD
127 UserJEncTokenDownloadMessage = AEAD_DEC(ServerUserJKey,

EncTokenDownloadMessageForUserJ, downloadAD)?
128 UserJEncTokenHash1Download, UserJStateAndNonceKeyEncrypted,

UserJStateAndNonceEncrypted = SPLIT(UserJEncTokenDownloadMessage)
129 UserJEncTokenHashMatches = ASSERT(UserJEncTokenHash1Download,

UserJEncTokenHash1)?
130 UserJStateAndNonceKey = DEC(UserJStateAndNonceKeyEncrypted, UserJEncToken1)
131 UserJStateAndNonce = DEC(UserJStateAndNonceEncrypted, UserJStateAndNonceKey)
132 ]
133
134 // Download process: UserK downloads list of encounter tokens
135
136 principal Server[
137 knows public download2AD
138 EncTokenDownloadMessageForUserK = AEAD_ENC(ServerUserKKey,

ServerEncTokenUploadMessage, download2AD)
139 ]
140
141 Server -> UserK: EncTokenDownloadMessageForUserK
142
143 principal UserK[
144 knows public download2AD
145 UserKEncTokenDownloadMessage = AEAD_DEC(ServerUserKKey,

EncTokenDownloadMessageForUserK, download2AD)?
146 UserKEncTokenHash1Download, UserKStateAndNonceKeyEncrypted,

UserKStateAndNonceEncrypted = SPLIT(UserKEncTokenDownloadMessage)
147 // No tokens match, so UserK cannot proceed
148 ]
149
150 queries[
151 // 1a: Encounter token is never released publicly (true)
152 confidentiality? UserJEncToken1
153
154 // 1b: Encounter token established between users I and J is the same on both

sides (true)
155 equivalence? UserIEncToken1, UserJEncToken1
156
157 // 2: Private keys of users I and J are not leaked (true)
158 confidentiality? UserIPrivateKey1
159 confidentiality? UserJPrivateKey1
160
161 // 3: Encounter token established between users J and K is the same on both

sides (false)
162 equivalence? UserJEncToken2, UserKEncToken2
163
164 // 4: Attacker cannot upload encounter tokens or modify them (false)
165 authentication? UserI -> Server: EncTokenUploadMessageForServer
166
167 // 5: Attacker cannot decrypt state, only UserJ can (true)
168 confidentiality? State
169 ]
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Listing 3: coronawarn.vp
1 // Simple model:
2 // - Instead of approximating TLS by DH and signature verification, use pre-

shared keys
3 // - Leave out the health authority
4 // - Leave out rolling IDs for now
5
6 attacker[active]
7
8 // Beforehand: Server and client pre-share keys (simulating TLS)
9
10 principal UserI[
11 generates UIDHClientSecret
12 UIDHClientParam = G^UIDHClientSecret
13 ]
14 UserI -> Server: [UIDHClientParam]
15
16 principal UserJ[
17 generates UJDHClientSecret
18 UJDHClientParam = G^UJDHClientSecret
19 ]
20 UserJ -> Server: [UJDHClientParam]
21
22 principal UserK[
23 generates UKDHClientSecret
24 UKDHClientParam = G^UKDHClientSecret
25 ]
26 UserK -> Server: [UKDHClientParam]
27
28 principal Server[
29 generates UIDHServerSecret
30 UIDHServerParam = G^UIDHServerSecret
31 ServerUserIKey = UIDHClientParam^UIDHServerSecret
32 generates UJDHServerSecret
33 UJDHServerParam = G^UJDHServerSecret
34 ServerUserJKey = UJDHClientParam^UJDHServerSecret
35 generates UKDHServerSecret
36 UKDHServerParam = G^UKDHServerSecret
37 ServerUserKKey = UKDHClientParam^UKDHServerSecret
38 ]
39 Server -> UserI: [UIDHServerParam]
40 Server -> UserJ: [UJDHServerParam]
41 Server -> UserK: [UKDHServerParam]
42
43 principal UserI[
44 UserIServerKey = UIDHServerParam^UIDHClientSecret
45 ]
46
47 principal UserJ[
48 UserJServerKey = UJDHServerParam^UJDHClientSecret
49 ]
50
51 principal UserK[
52 UserKServerKey = UKDHServerParam^UKDHClientSecret
53 leaks UserKServerKey
54 ]
55
56
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57 // Phones generate TEKs, RPIs
58
59 principal UserI[
60 knows public ENRPIKString, ENAEMKString, PaddedData1, PaddedData2
61 knows private UserIMetadata11, UserIMetadata12
62 generates UserITEK1
63 UserIRPIK1 = HKDF(nil, UserITEK1, ENRPIKString)
64 UserIRPI11 = ENC(UserIRPIK1, PaddedData1)
65 UserIAEMK1 = HKDF(nil, UserITEK1, ENAEMKString)
66 UserIAEMK11 = CONCAT(UserIAEMK1, UserIRPI11) // extra step to simulate AES-

CTR with RPI as IV
67 UserIAEM11 = ENC(UserIAEMK11, UserIMetadata11)
68 UserIBroadcast11 = CONCAT(UserIRPI11, UserIAEM11)
69 UserIRPI12 = ENC(UserIRPIK1, PaddedData2)
70 UserIAEMK12 = CONCAT(UserIAEMK1, UserIRPI12) // extra step to simulate AES-

CTR with RPI as IV
71 UserIAEM12 = ENC(UserIAEMK12, UserIMetadata12)
72 UserIBroadcast12 = CONCAT(UserIRPI12, UserIAEM12)
73 ]
74
75 principal UserJ[
76 knows public ENRPIKString, ENAEMKString, PaddedData1
77 ]
78
79 principal UserK[
80 knows public ENRPIKString, ENAEMKString, PaddedData1
81 ]
82
83 // UserJ and UserI exchange their RPIs, without MITM
84
85 UserI -> UserJ: [UserIBroadcast11]
86
87 principal UserJ [
88 UserJUserIRPI11, UserJUserIAEM11 = SPLIT(UserIBroadcast11)
89 ]
90
91 // UserK (malicious) and UserI exchange RPIs
92 // UserI has same TEK, but different RPI (same day, different time window)
93 UserI -> UserK: UserIBroadcast12
94
95 principal UserK[
96 UserKUserIRPI12, UserKUserIAEM12 = SPLIT(UserIBroadcast12)
97 ]
98
99 // UserI requests registration token
100 principal UserI[
101 knows public tan2AD
102 knows private UserITAN
103 UserTANForServer = AEAD_ENC(UserIServerKey, UserITAN, tan2AD)
104 ]
105
106 // ClientResponse
107 UserI -> Server: UserTANForServer
108
109 principal Server[
110 knows public tan2AD, regTokenAD
111 knows private UserITAN
112 ServerUserTAN = AEAD_DEC(ServerUserIKey, UserTANForServer, tan2AD)?
113 TANMatches = ASSERT(ServerUserTAN, UserITAN)?
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114 generates ServerRegToken
115 RegTokenForUser = AEAD_ENC(ServerUserIKey, ServerRegToken, regTokenAD)
116 ]
117
118 Server -> UserI: RegTokenForUser
119
120 principal UserI[
121 knows public regToken2AD, regTokenAD
122 UserRegToken = AEAD_DEC(UserIServerKey, RegTokenForUser, regTokenAD)?
123 RegTokenForServer = AEAD_ENC(UserIServerKey, UserRegToken, regToken2AD)
124 ]
125
126 UserI -> Server: RegTokenForServer
127
128 principal Server[
129 knows public regToken2AD, testResultAD, positiveTestResult
130 ServerUserRegToken = AEAD_DEC(ServerUserIKey, RegTokenForServer, regToken2AD)

?
131 RegTokenMatches = ASSERT(ServerUserRegToken, ServerRegToken)?
132 TestResultForUser = AEAD_ENC(ServerUserIKey, positiveTestResult, testResultAD

)
133 ]
134
135 Server -> UserI: TestResultForUser
136
137 principal UserI[
138 knows public testResultAD, positiveTestResult, uploadAD
139 UserTestResult = AEAD_DEC(UserIServerKey, TestResultForUser, testResultAD)?
140 IsTestPositive = ASSERT(positiveTestResult, UserTestResult)?
141 UploadMessage = CONCAT(UserRegToken, UserITEK1)
142 UploadMessageForServer = AEAD_ENC(UserIServerKey, UploadMessage, uploadAD)
143 ]
144
145 UserI -> Server: UploadMessageForServer
146
147 principal Server[
148 knows public uploadAD
149 // verify regToken in upload message
150 ServerUploadMessage = AEAD_DEC(ServerUserIKey, UploadMessageForServer,

uploadAD)?
151 ServerUserRegToken2, ServerUserITEK1 = SPLIT(ServerUploadMessage)
152 RegTokenMatches2 = ASSERT(ServerRegToken, ServerUserRegToken2)?
153 ]
154
155 // Download process: UserJ downloads list of encounter tokens
156
157 principal Server[
158 knows public downloadAD
159 DownloadMessageForUserJ = AEAD_ENC(ServerUserJKey, ServerUserITEK1,

downloadAD)
160 ]
161
162 Server -> UserJ: DownloadMessageForUserJ
163
164 principal UserJ[
165 knows public downloadAD
166 UserJDownloadMessage = AEAD_DEC(UserJServerKey, DownloadMessageForUserJ,

downloadAD)?
167 UserJUserIRPIK1 = HKDF(nil, UserJDownloadMessage, ENRPIKString)
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168 UserJUserIRPI11Downloaded = ENC(UserJUserIRPIK1, PaddedData1)
169 UserJKeyMatches = ASSERT(UserJUserIRPI11, UserJUserIRPI11Downloaded)?
170 UserJUserIAEMK1 = HKDF(nil, UserJDownloadMessage, ENAEMKString)
171 UserJUserIAEMK11 = CONCAT(UserJUserIAEMK1, UserJUserIRPI11) // extra step to

simulate AES-CTR with RPI as IV
172 UserJUserIMetadata = DEC(UserJUserIAEMK11, UserJUserIAEM11)
173 ]
174
175 // Download process: UserK downloads list of encounter tokens
176
177 principal Server[
178 knows public downloadAD
179 DownloadMessageForUserK = AEAD_ENC(ServerUserKKey, ServerUserITEK1,

downloadAD)
180 ]
181
182 Server -> UserK: DownloadMessageForUserK
183
184 principal UserK[
185 knows public downloadAD
186 UserKDownloadMessage = AEAD_DEC(UserKServerKey, DownloadMessageForUserK,

downloadAD)?
187 leaks UserKDownloadMessage
188 UserKUserIRPIK1 = HKDF(nil, UserKDownloadMessage, ENRPIKString)
189 UserKUserIRPI12Downloaded = ENC(UserKUserIRPIK1, PaddedData2)
190 UserKKeyMatches = ASSERT(UserKUserIRPI12, UserKUserIRPI12Downloaded)?
191 UserKUserIAEMK1 = HKDF(nil, UserKDownloadMessage, ENAEMKString)
192 UserKUserIAEMK12 = CONCAT(UserKUserIAEMK1, UserKUserIRPI12) // extra step to

simulate AES-CTR with RPI as IV
193 UserKUserIMetadata = DEC(UserKUserIAEMK12, UserKUserIAEM12)
194 ]
195
196 queries[
197 // 1: Attacker cannot decrypt metadata, only UserJ can (false)
198 confidentiality? UserIMetadata12
199 confidentiality? UserIMetadata11
200
201 // 2a: Encounter metadata established between users J and K is the same on

both sides (false)
202 equivalence? UserIMetadata12, UserKUserIMetadata
203
204 // 2b: Encounter metadata established between users I and J is the same on

both sides (should be true, but is false)
205 equivalence? UserIMetadata11, UserJUserIMetadata
206
207 // 3: Attacker cannot upload diagnosis keys or modify them (should be true,

but is false)
208 authentication? UserI -> Server: UploadMessageForServer
209
210 // The following queries did not finish in >1 month of runtime
211
212 // 4a: Freshness of generated keys (should be true)
213 freshness? UIDHClientSecret
214 freshness? UIDHServerSecret
215 freshness? UJDHClientSecret
216 freshness? UJDHServerSecret
217 freshness? UKDHClientSecret
218 freshness? UKDHServerSecret
219 freshness? UserIServerKey
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220 freshness? UserJServerKey
221 freshness? UserKServerKey
222
223 // 4b: If one knows one RPI, they cannot infer that others come from the same

person (should be false)
224 unlinkability? UserIRPI11, UserIRPI12
225 ]
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B. Full TraceCORONA UML package diagram
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Figure B.1.: Full TraceCORONA package diagram, from a slightly older version than
described in the thesis
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