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1 Introduction

A Wireless Sensor Network (WSN) is an infrastructure of physically separated sensor nodes that
communicate through wireless network technology. Sensor nodes in this context are typically
low cost highly integrated embedded devices with limited power carrying out sensing and data
processing tasks. They typically consist of a power source, a processing unit, a sensing unit and a
radio transceiver for node-to-node communication. Restrictions on deployment capabilities and
energy available in the target environment impose strong limits on hardware features of sensor
nodes and power consumption. The resulting limits on available computational performance and
communication abilities are the main characteristics of WSNs.

Due to advances in wireless communication and in the miniaturization of electronic compo-
nents, sensor network technology has grown rapidly during the last few years. The development
of large scale sensor networks o�ers economically viable monitoring solutions for a wide range of
applications including home, industry and environment control.

WSNs are increasingly considered for critical applications like surveillance of critical infras-
tructures, control of medical equipment or fast provisioning of reliable communication networks.
In such areas, WSNs must be resistant against accidents and human error but also against tar-
geted attacks. Hence WSNs must also feature security mechanisms such as device authentication,
secure routing and secure bootstrapping. Reaching strong security on the one hand and the de-
sign and implementation of lightweight security mechanisms suitable for resource constrained
devices on the other hand is a challenging task, and still subject of ongoing research.

Generally wireless networks are prone to security attacks since the nature of wireless commu-
nication easily allows eavesdropping and alteration of messages. Moreover, deployment of WSNs
in a �eld where sensor nodes have to operate unattended assume that an adversary has physical
access to sensor nodes and is able to launch physical attacks. Although di�erent schemes have
been proposed to encounter threats to con�dentiality and integrity of data transmitting over the
network, vulnerability of sensor nodes to physical compromise has not been well investigated yet.

1.1 Objectives and Outline

The goals of this project is to study the state-of-the-art of WSNs and to propose an integrated
solution for a Trusted Embedded Secure Operating System (TeSOS) consisting of the architecture
design for sensor nodes and lightweight security concept for a WSN.

We call the project TeSOS throughout this document. TeSOS consists of the following parts:

(1) WSN design overview.

(2) Security objectives and requirement analysis.

(3) Investigation of related work on WSN security, hardware architectures and open-source
operating systems.

(4) Analysis of related work in order to identify if existing literature covers all required by
TeSOS aspects.
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(5) Developing of new protocols/mechanisms/paradigms in case if existing literature does not
provide all required solutions to satisfy TeSOS security requirements.

(6) Developing an integrated concept for secure WSNs based on the preceding analysis.

This document is structured as following: Chapter 2 gives an overview on the common WSN
design approaches and deployment strategies. Chapter 3 de�nes security objectives and analyses
security requirements speci�c for this project. Chapter 4 provides the study of the related work
on WSN security aspects. Chapter 5 concerns current microprocessor-architectures in order to
clarify their applicability for secure WSNs. Chapter 6 analyzes the related work presented in
Chapter 4 and concludes if existing literature covers all required by TeSOS security aspects.
When required, new protocols/mechanisms/paradigms will be developed and introduced in this
chapter. Chapter 7 provides comparative study of the nowadays operating systems for embedded
systems. Chapter 8 integrates preceding results into a single integrated solution for secure WSN.

1.2 Sample Application Scenarios

Possible scenarios for TeSOS WSNs are listed below:

1. Monitoring of public places, temporary or permanent. Temporary monitoring is needed
during high risk events, e.g., demonstrations, open air concerts. Permanent monitoring is
required in crowded places such as airports, train stations and stadiums.

2. Border control, i.e., anti-intrusion perimeter systems to provide alerting and intrusion
blocking facilities for important, vital, or restricted regions an areas (e.g., shipping detection
and surveillance at the European coastline).

3. Situational monitoring systems, which enable the ability to identify, process and compre-
hend the critical information about an incident (e.g., a system to detect certain bioterrorism
agents in air or water).

All listed applications focus on detecting crucial events, location sensing and object tracking.
Some of these applications require permanent deployment of WSNs (e.g., border control), the
others should be deployed on-demand (e.g., monitoring of high-risk events). Permanently de-
ployed WSNs may be statical, while on-demand deployed networks should be highly scalable,
extensible and self-organizing. Although functional requirements to these applications can di�er,
they have similar requirements on enhanced security and high network reliability.

1.3 Milestones

Milestone Module Work Package
1 - October 2009 Kick-O� Workshop �
2 - January 2010 M1 - Assumptions and Goals �

3 - March 2010
M2 - Related Work �
M3 - Hardware Evaluation WP1

4 - November 2010
M4 - TeSOS Analysis WP2
M5 - OS Evaluation WP3

5 - January 2011 M6 - Integration WP4
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2 General WSN Design

WSNs can be used in many di�erent scenarios. This results in several di�erent design approaches,
deployment strategies and operational requirements. Here we describe possible network structure,
architecture and topology, explain typical life cycle of WSNs and provide a de�nition for security
objectives that are fundamental for WSNs.

2.1 WSN Architectures

WSNs can be distinguished according to their architecture as clustered (also named as hierarchi-
cal [cY05]) and non-clustered (also referred as distributed [cY05], decentralized [SWAG07] and
�at [dAFN+08]). Both, clustered and non-clustered WSNs, usually have a single central node to
collect information from sensor nodes. This central node is often referred as Base Station (BS)
and typically serves as a gateway to another network, a powerful data processing or storage
center, or an access point for a human interface.

Figure 2.1 illustrates information �ow in networks of both categories. A clusteredWSN [YYA02]
consists of clusters where special devices, so-called Cluster Heads (CHs), are typically used as
fusion points for aggregation of data within clusters. They carry out in-network data processing
in order to reduce the amount of data that is actually transmitted to the BS. Clustering can
be purely static, when once elected, cluster heads serve for the entire lifetime of the network,
or dynamic, when role of CH is periodically rotated randomly among all nodes, as proposed in
LEACH [HCB00]. Dynamic clustering is applied to ensure that energy resources of all nodes will
be exhausted at about the same time, so minimum e�orts are required to replace empty batteries
with new ones.

In contrast to clustered WSNs, non-clustered networks feature device nodes of equal func-
tionality.

As clustered WSNs provide more powerful nodes, called "Base stations", in most cases it
is not necessary for the sensor nodes to provide their own in-network data processing, in spite
of it would be possible for them to simple process their data, even if they are not that high-
performance, compared with the base stations.

Such approach may result in performance degradation when applied to large scale WSN
due to overhead of sensor nodes located near to BS. The non-clustered architecture is typically
used due to the limited physical access to the target area. The device nodes are scattered
randomly in the target area so that the location of individual nodes cannot be determined prior
to deployment. In other cases, if the physical absolute or relative location of device nodes
is known prior to deployment, this knowledge can be used to optimize key management and
communication patterns, often resulting in a clustered WSN architecture.

2.2 WSN Structures

Beside architecture di�erences, WSNs can di�er with regards to capabilities of sensor nodes [MR04].
Networks consisting of identical sensor nodes in terms of battery energy and hardware complex-
ity introduce type of networks with homogeneous structure. Networks, where resource-rich and
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Figure 2.1: Information �ow in a WSN with a) clustered architecture; b) non-clustered architec-
ture.

resource-constrained nodes are used, introduce a second type of networks referred as heteroge-
neous. The motivation to use heterogeneous networks is that more complex hardware and extra
battery energy can be embedded only in CH nodes, thereby reducing the hardware costs of the
rest of the network [MR04]. However, �xing the cluster head nodes means that rotation of CH
role is no longer possible. Consequently, there always exists a non-uniform energy drainage
pattern in the network.

2.3 WSN Topologies

In WSNs, energy constraints dictate the need to reduce power of wireless transmitters resulting in
small communication coverage of the sensor nodes. To deliver data packages to distances longer
than the radio range of a single node, wireless sensor nodes cooperate employing multi-hop
communication. Many nodes in the sensor network acts as repeaters, thereby reducing the link
range coverage required and, in turn, the transmission power. Such repeating nodes are called
routers or Full Function Devices (FFDs), while nodes without abilities to forward messages
through the network are referred as measuring nodes or Reduced Function Devices (RFDs).
There are two basic multi-hop network topologies, tree and mesh, as depicted in Figure 2.2.

2.3.1 Tree Topology

The tree network topology follows a hierarchical pattern, as illustrated in Figure 2.2a. Routers
play the role of parents for other routers and measuring nodes in the next level of hierarchy.
With tree topology, each node maintains a single route to the destination point. Hence, such
a topology su�ers from single point failure problem: If one router goes down, all routes relying
on it become broken. Moreover, wireless networks with tree topology have other shortcomings.
First of all, ine�ciency of point to point communication is typical for tree-based networks: In
cases where source and destination nodes are organized in two branches of the tree, data message
is always forwarded via root of the tree. E.g., the route from the source node to the destination
node in tree-based network illustrated in Figure 2.2a includes 4 hops, while mesh-based network
with similar layout could provide 2 hop route, as can be seen in Figure 2.2b. Second, tree-based
wireless networks do not scale well due to topology features imposing bottle-neck problem with
increasing of network size. For instance, the root of the tree (Base Station in Figure 2.2a),
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Figure 2.2: Multihop network topologies: a) Tree topology b) Mesh topology

will experience signi�cant overload since it should forward all messages between nodes located
in di�erent tree branches. Third, addressing schemes applied in tree-based networks have a
drawback of free network address space exhausting [CRM+07].

While featuring the number of disadvantages, tree-based networking does not require signif-
icant energy, memory and computational resources due to simplicity of routing protocols. Tree-
based network topology can be e�ectively used for small or middle-size networks for applications
which do not require high network reliability.

2.3.2 Mesh Topology

In mesh network, routers have communication link with all other routers in wireless range,
as depicted in Figure 2.2b. Measuring nodes have single communication link with one of the
selected routers in radio range, direct communication between two RFDs is not possible. The
mesh network topology eliminates problems typical for tree topology. It provides redundant
routes: Nodes maintain multiple routes to the destination point, so that if one router node goes
down, the network automatically reroutes the data. For instance, a message from source node to
destination node depicted in Figure 2.2b can be delivered either via shortest route consisting of
two hopes, or via alternative route, if forwarding node in shortest route becomes unavailable. As
result, mesh-based networks provide robust infrastructure for data �ows and feature high system
reliability.

Mesh-based networks also demonstrate better e�ciency: Routing protocols search for the best
available route to destination node. It is not always the shortest one: Depending on metrics used
for route cost calculation, routing protocols might take into account quality of communication
links and current workload of routers. Latter metric helps to avoid bottle-neck e�ect when
network size is increasing. Hence, good e�ciency and high scalability are features of networks
with mesh topology. However, the price for improved abilities of mesh networking is complex
routing protocols that require more energy and hardware resources available on the routers.

2.3.3 Mixed Topologies

Trade-o� between functionality and costs can be achieved by mixing both tree and mesh network
topologies. It can be done in networks with clustered architecture by using di�erent topologies
inside clusters and for communication among CHs. For instance, cluster heads could support
mesh communication while inter-cluster communication may be tree-based.
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Figure 2.3: WSN Life Cycle

2.4 Life Cycle of Wireless Sensor Networks

WSNs with di�erent topologies and architectures feature similar life cycle which can represented
as shown in Figure 2.3.

Design In the design phase, the device nodes are produced and assembled.

Initialization In the initialization phase, device nodes are programmed according to the re-
quired WSN layout and purpose.

Deployment In the deployment phase, device nodes are deployed in the target environment.

Network Setup After deployment phase, on �rst activation, the WSN enters the network setup
phase. This phase can be used by device nodes to discover communication peers, negotiate
cryptographic keys and initialize any other services required for WSN operation.

Operation In this phase, the WSN is operational, i.e., the system works to ful�ll its intended
purpose within the target environment.

Upgrade Part or all of the WSN enter the upgrade phase if a modi�cation of the deployed WSN
interrupts normal operation. Examples for such modi�cations are adding hardware nodes
or distributing software updates.

Undeployment In the redeployment phase, nodes are collected from the environment of the
previous deployment.

Note that, since elimination of WSN components must be expected at any time during
operational or upgrade phase (e.g., due to battery failure), there is no need to explicitly model
a (partial) shutdown of the WSN. Similarly, the physical replacement of device nodes (due to
malfunction or upgrade) can be modeled through the node elimination and subsequent upgrade
of the WSN.

2.5 Security Objectives of Sensor Networks

In the following we provide a short description of the security objectives that are fundamental
for every WSN. Security objectives address the protection of assets, i.e., security-critical objects
of a WSN.

Integrity ensures that the asset is protected against unauthorized alternation (and refers to the
ability to con�rm that the asset has not been tampered with or modi�ed).

Authenticity ensures that the asset is genuine, i.e., originates from legitimate entity.

Con�dentiality ensures that the asset is protected against unauthorized access.
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Availability ensures that the asset is always accessible for legitimate purposes.

Freshness ensures that no out-of-date version of the asset has been replayed.

Unclonability ensures that the asset cannot be copied.

Anonymity ensures unlinkability of the asset and its origin.

Security aspects of di�erent applications di�er, thus depending on particular application
scenario security objectives may vary. Some application scenarios require to consider all security
objectives listed here while security requirements of other applications may be ful�lled with the
subset of these objectives.
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3 Security Considerations (M1)

In this chapter, we consider the security aspects that are speci�c to the application scenarios
targeted by the TeSOS project.

3.1 Problem De�nition

This section describes the security-related aspects of the operational environment in which se-
cure Wireless Sensor Networks (WSNs) are to be used. This includes the de�nition of the
security-critical information to be processed in this context (Section 3.1.1), the assumptions
made (Section 3.1.2), the adversary model (Section 3.1.3), and typical threats against WSNs
(Section 3.1.4).

3.1.1 Assets

Assets in a WSN can be particular kinds of data in the network (data), general information
about the WSN and its components and operation (meta-data), or certain devices and services
of the WSN. The identi�cation of assets is used to formulate typical threats against WSNs in
Section 3.1.4 and to de�ne the security objectives of a secure WSN in Section 3.2.

WSN.Application.Data Measurements of individual devices of the WSN or intermediate
results stored locally for aggregation/processing within the WSN.

WSN.Location.Data Information of the physical location (coordinates) of a sensor or a subset
of sensors of the WSN.

WSN.Control.Data Information that serves the general operation, synchronization, and
signaling within the WSN. Examples of WSN control data are timing and interval data, power
consumption management, routing information, and commands that induce speci�c actions of
sensor nodes.

Sensor.Code All software and �rmware that is stored on a sensor. Examples are the operating
system of sensor nodes, custom applications, and software updates sent over the network.

Sensor.Metadata Metadata of employed hardware and software of a sensor node. Examples
are node identi�er, vendor, product and version numbers as well as information about software
patch levels and employed algorithms.

Sensor.Con�guration Software and �rmware con�guration of a sensor node. Examples
are the con�guration of operating system and provided services as well as parameters for key
management and communication behavior.

We do not consider individual network nodes as primary assets since WSNs are typically
designed to tolerate fault and even compromise of one or several network nodes. However,
primary assets residing on a particular node can be a�ected when the node is attacked.
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3.1.2 Assumptions

In the following, we document the assumptions that have been agreed upon for the TeSOS project.
We describe the security aspects of the environment in which the secure WSN will be used or is
intended to be used, including information about the intended usage, possible limitations of use,
as well as physical, personnel, and connectivity aspects.

WSN.Devices The sensor network is heterogeneous, i.e., it consists of a single Base Sta-
tion (BS) and two types of sensor nodes with di�erent (hardware) capabilities, named Big
Node (BN) and Small Node (SN).

WSN.Topology The sensor network features a hierarchical structure of clusters, where each
cluster consists of one Big Node (BN) and several Small Node (SN). Basically, SNs communicate
primarily with a speci�c BN, their Cluster Head (CH), and the BNs maintain communication
with the Base Station (BS) and other clusters. Each cluster consists of a single BN and 5 to 50
SNs.

WSN.Routing The BNs communicate primarily with the BS using mesh-networking with
other BN if required. Small Nodes (SNs) normally communicate directly with their desig-
nated Cluster Head (CH), i.e., in normal mode they employ one-hop communication, but mesh-
networking is also supported as fall-back mechanism if the designated CH is not reachable.

WSN.Size The total number of devices in the WSN does not exceed N = 1000 nodes.

WSN.Deployment The location of each WSN node is known prior to deployment.

WSN.Location Each node is aware of its relative or absolute location in the WSN.

WSN.Dynamics TeSOS WSN is not dynamic, i.e., we assume that BNs and SNs have static
positions after deployment unless manipulated by the adversary.

WSN.dataDelivery We assume periodic data delivery model with a single collection endpoint.
Sensor nodes report measured data periodically to a single BS.

Nodes.Resources The BS has hardware resources compared to a Personal Digital Assis-
tant (PDA)/Smart Phone. The BNs possess su�cient hardware resources to run multi-task
operating system and regularly execute asymmetric cryptographic operations such as Elliptic
Curve Cryptography (ECC), as well as state of the art symmetric cryptography. SNs have less
computational resources and support only symmetric cryptography like hash functions, block
ciphers, and stream ciphers.

Nodes.Hardware The hardware used in the WSN works according to its speci�cation.

Nodes.Software The operating system and programs that run on the WSN nodes are imple-
mented correctly. They are not malicious unless speci�ed otherwise.

Nodes.Crypto The hardware used for the BNs optionally supports accelerated symmetric and
asymmetric cryptography and a Pseudo-Random Number Generator (PRNG).

Nodes.PUF The hardware of BNs and SNs optionally also integrates a Physically Unclon-
able Function (PUF), a device-characteristic tamper-evident one-way function in hardware that
cannot be simulated by the adversary.

3.1.3 Adversary Model

The adversary model de�nes the computational and storage capabilities of the adversary, i.e.,
the logical party that may want to violate security objectives of a WSN. These capabilities are
used to derive the attack classes the adversary can launch. As proposed in [FB08], we represent
adversary's capabilities as a set of values on the three dimensions Intervention, Presence and
Duration:

Intervention de�nes attacks the adversary can apply.
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1. Passive outsider. The adversary can eavesdrop on radio transmissions.

2. Active outsider. The adversary can eavesdrop on radio transmissions, but also inject
bits in the channel and replay previously overheard packets.

3. Resource constraint insider. The adversary can eavesdrop on radio transmissions,
inject bits in the channel and replay previously overheard packets. Moreover, an
adversary is able to capture honest sensor nodes, tamper with their hardware and
compromise cryptographic material.

4. Resource powerful insider. The adversary can eavesdrop on radio transmissions, inject
bits in the channel and replay previously overheard packets. Also, an adversary is
able to capture honest sensor nodes, tamper with their hardware and compromise
cryptographic material. Moreover, an adversary can introduce malicious nodes which
are more powerful in terms of energy and computational power than network nodes,
e.g., lap-top class devices.

Presence de�nes the scale of attack and location where it is applied.

1. Local. The adversary a�ects a limited area of the network, e.g., radio transmissions
within a limited radio range, or a small connected subset of sensors.

2. Distributed. The adversary a�ects several disjoint limited areas of the network, i.e., he
can eavesdrop radio transmissions in di�erent locations within a limited radio range,
or he can a�ect small subsets of nodes distributed overall network. All adversarial
nodes are able to communicate via out-of-band channels.

3. Global. The adversary a�ects all nodes in the network. All adversarial nodes are able
to communicate via out-of-band channels.

Duration describes time available to the adversary for launching the attack.

1. Short time. The adversary has short time ad-hoc access to a WSN during it's operation
excluding initial WSN deployment phase.

2. Long time. The adversary has long time access to a WSN during it's operation
excluding initial WSN deployment phase.

3. Life time. The adversary has possibility to launch attacks as long as he needs and at
any time, even during initial WSN deployment.

In context of TeSOS we consider a resource powerful insider with distributed presence and
long time access to the network. Particularly, we consider an adversary with unlimited access to
WSN during its operational phase, who can perform any attacks against sensor nodes and WSN
communication links. The adversary can eavesdrop on radio transmissions, inject bits in the
channel, and replay previously overheard packets. Also, an adversary is able to capture honest
sensor nodes, tamper with their hardware and compromise cryptographic material. Moreover,
the adversary can introduce malicious nodes which are more powerful in terms of energy and
computational capabilities than legitimate sensor nodes. Multiple small connected subsets of
adversarial nodes can be distributed overall network and are able to communicate via out-of-
band channels and can use all compromised cryptographic secrets. However, we assume the
following limitations on the adversary's capabilities:

ADV.OperationalPhase Physical security is provided during deployment, initialization and
upgrade phase of the WSN such that an adversary can launch attacks only in the operational
phase.

ADV.TrustedBS The BS cannot be compromised by the adversary.
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3.1.4 Threats

In this section, we illustrate some typical WSN attacks or attack classes. We do not aim to
present a complete list of attacks but only list the most typical.

For each described threat we (i) explain how threat can be mounted, (ii) provide examples
and (iii) mention the security goals they violate. To �t to the general adversary model, the
attacks described here are split into two groups: (i) Communication link intrusion and (ii) node
intervention.

Attacks on Communication Link

Communication link attacks may a�ect all assets which are supposed to be transmitted over the
network, i.e., WSN.Application.Data, WSN.Location.Data, WSN.Control.Data. Additionally,
the asset Sensor.Code can be delivered to the nodes over-the-air during software update. Further,
we will refer to the subset of these assets as �transmitting assets�.

Link.Jamming An adversary may deliberately interfere with radio frequencies that WSN is
using to interrupt a communication channel, e.g., in order to isolate parts of the network. This
threat violates availability of transmitting assets.

Link.Eavesdropping An adversary may eavesdrop the transmitted data and analyze it, e.g.,
as preliminary step before routing attack is launched. Here the adversary needs to place wire-
less transmitter near to the targeted WSN node. Moreover, more sophisticated adversary can
use high power transmitter and very sensitive receiver and monitor data �ows in wide ranges.
Eavesdropping violates con�dentiality of transmitting assets.

Link.Data.Injection An adversary may inject forged data messages to the communication
channel in order to a�ect data �ow transmitted over the network. For example, the adversary
can attack the routing protocol in order to disrupt routing, or he can �ood the network with
multiply forged data messages in order to exhaust energy resources of the network nodes taking
part in forwarding and processing of these messages. This threat violates authenticity of the
transmitting assets. Moreover, indirectly availability of these assets may be a�ected, e.g., in case
if the routing is disrupted.

Link.Data.Replay An adversary may record eavesdropped messages and then replay them at
later time. For example, some attacks on routing protocols can be launched by replying route
messages, e.g., sinkhole attack [KW03] can be mounted by replaying �route advertise� messages of
the BS. This threat violates freshness of the transmitting assets and may a�ect their availability
(e.g., if the routing protocol is a�ected resulting in disrupted routes).

Link.Data.Modify An adversary may modify transmitting messages. Typical attack scenario
requires the adversary to inject false node into a WSN. The false node may modify routed
messages. This can result in false data reporting, in route disrupting or in replacing the legitimate
node software with malicious code during software update. This threat violates integrity of the
transmitting assets.

Link.Data.Relay An adversary may relay data messages in order to intercept communication
between two legitimate nodes (so-called man-in-the-middle attack). One known example of
man-in-the-middle attack on the routing protocol is the Neighbor attack [NN06], that makes
two nodes that are in fact out of each other's communication range to believe that they can
communicate directly. Neighbor attack can be applied in order to disrupt routing or to forward
tra�c selectively. This threat violates authenticity of the transmitting assets.

End-point Attacks

End-point attacks may a�ect all assets which are hosted by the nodes, i.e., Sensor.Metadata,
Sensor.Code and Sensor.Con�guration. Moreover, the asset WSN.Application.Data can be also
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a�ected due to it is typically produced or processed by the nodes.

Node.Destruction An adversary can physically destroy a node making a node unavailable,
that will result in impossibility to perform a task the node is intended for, e.g., take and report
measurements, aggregate and process data or route messages though the network. This threat
violates availability of the WSN.Application.Data asset.

Node.Manipulation An adversary can access a network node and manipulate it. He can
in�uence sensor readings (e.g., by heating a temperature sensor), screw out an antenna or simply
remove batteries. In�uenced sensor readings will result in reporting false data, while removing
batteries or removing antenna will result in node unavailability. This threat violates integrity
and availability of the WSN.Application.Data asset.

Node.Compromise An adversary may compromise one or more legitimate node(s) remotely,
for example, by exploiting software vulnerability or by replacing the origin software with mali-
cious code via over-the-air software update. When under control of the adversary, the node may
access and modify data stored on the node, report false data, manipulate or misroute data being
transmitted over WSN. This threat violates integrity of the assets Sensor.Code, Sensor.Metadata,
Sensor.Con�guration and WSN.Application.Data. In another attack scenario targeting similar
goals, the adversary replaces the origin software with legitimate, but out-of-date software version
which may have security critical vulnerabilities. Then the adversary may exploit such vulner-
abilities and take control over the node. In the latter attack scenario freshness of the asset
Sensor.Code is violated.

Node.Tampering A strong adversary may tamper with a node with the goal to extract sen-
sitive information or manipulate the behavior of the node. For instance, he may observe power
consumption and electromagnetic emissions of the analyzed device (side-channel attacks) or em-
ploy invasive tampering of internal node components (e.g., microprobing and UV lighting [Sko05])
to analyze or modify the internal node state. This threat violates con�dentiality and integrity
of the assets Sensor.Code, Sensor.Metadata, Sensor.Con�guration and WSN.Application.Data.

3.2 Security Objectives

In the following, we describe the security objectives of the TeSOS WSN based on identi�ed
assets. The objectives are designed to cover all identi�ed threats for the application scenarios
considered in this study.

Con�dentiality This property is required for the assets WSN.Application.Data as well as
Sensor.Con�guration. The assets WSN.Location.Data, WSN.Control.Data, Sensor.Code and
Sensor.Metadata require con�dentiality depending on the usage scenario.

Integrity This property is required for all de�ned assets. Assets WSN.Application.Data,
WSN.Location.Data, WSN.Control.Data and Sensor.Code require integrity protection while in
transit. Integrity of assets Sensor.Code, Sensor.Metadata and Sensor.Con�guration should be
ensured while they are hosted by the sensor node.

Authenticity This property is required for the assets WSN.Application.Data, WSN.Location.Data,
WSN.Control.Data and Sensor.Code while they are in transit over the network.

Freshness This property is required for the assets WSN.Application.Data, WSN.Location.Data,
WSN.Control.Data and Sensor.Code while they are in transit over the network and for the asset
Sensor.Code while it is hosted by the node.

Availability This property is desirable for the assets WSN.Application.Data, WSN.Location.Data,
WSN.Control.Data and Sensor.Code while they are in transit over the network. While full avail-
ability is hard to achieve, a certain resilience against Denial of Service (DoS)1 attacks should be

1DoS attacks degrade or disrupt some capability or service in the WSN
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provided, speci�cally with regards to (1) power consumption of individual nodes (secure wake-up
and signaling) and robustness of the communication network against malicious interference (se-
cure routing).

Table 3.1 illustrates the cross relation of the assets and considered security objectives. Se-
curity goals are represented by interception of the rows and columns in the table. We mark
the security goals which should be met by the TeSOS system with 'X' and additional, use-case
dependent security goals with '?'.
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WSN.Application.Data ? X X X X
WSN.Location.Data ? X X X X
WSN.Control.Data ? X X X X
Sensor.Code ? X X X X
Sensor.Metadata ? X
Sensor.Con�guration X X

Notation:
X- required;
? - required depending on use-case;

Table 3.1: Security Goals: Intersections of Security Objectives and Assets
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4 Related Work (M2)

In this chapter we provide an overview of the main related work on Wireless Sensor Networks
(WSNs) security issues. We start with a detailed overview of known attacks and corresponding
mitigation techniques or countermeasures in Section 4.1. Section 4.2 provides a comprehensive
summary of literature on basic security mechanisms in sensor networks. We close the chapter
with a summary of remaining problems with regards to the practical scenario focused in this
study.

4.1 Attacks in WSNs and Countermeasures

Current WSN designs are vulnerable to attacks due to several reasons. First, wireless nature of
node-to-node communication makes it easy to attack communication channels. An adversary may
eavesdrop on data in transit or intercept communication unnoticed. Second, many application
scenarios for WSNs assume that sensor nodes are deployed in hostile environments. When
unattended, they are easy targets for physical attacks. Third, typical resource constrains with
regard to power, memory and computational abilities make the task of securing WSNs very
challenging. Fourth, many �rst generation WSN protocols were not designed with security in
mind. Although they might be suitable for many applications, they cannot be used for security
critical application scenarios. Finally, even in those WSN protocols which were designed as secure
researchers discover vulnerabilities.

Possible attacks on WSN have been extensively studied during last years. Surveys [PS09],
ontologies [ZMB08b] and taxonomies [HCGD06, RSS06, WS04] o�er di�erent approaches to
classify these attacks. We distinguish endpoint and communication link attacks to comply with
the adversary model introduced in Section 3.1.3.

4.1.1 Endpoint Attacks

Deployment of WSNs in hostile environments and typically, network nodes are not designed as
tamper resistant to keep their costs low. Moreover, they can be deployed in hostile environments
so that an adversary can easily access sensor nodes. These prerequisites make it easy for the
adversary to launch physical attacks on sensor nodes. They can be destroyed, or their hardware
can be attacked with the goal to compromise or replace software running on the nodes or to
extract cryptographic material.

Node Destruction

Node destruction, a form of endpoint Denial of Service (DoS) attacks, poses a signi�cant threat in
WSNs that are deployed in hostile environment. The impact of this attack can be mitigated, i.e.,
by placing redundant nodes and camou�aging [RM08], but such a countermeasure can encounter
only limited amount of destroyed nodes. Thus an alternative defense mechanism is desired such
as node failure detection and reporting (e.g., by utilizing protocols proposed in [RCK+05, TC05,
RB06, SMLB07, MMSK08]. Typically, node failure detection is based on the idea of monitoring
of sensor node liveness. Each node in the network sends heartbeat messages to their vicinity,
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thus node's disappearance can be detected. In general, a node can become unavailable if it
runs out of energy, experiences program failure, or if an adversary performs endpoint attack and
either destroys or captures the node1. To distinguish between energy exhaustion and possible
attacker in�uence, the detection approach might be extended with reporting of battery voltage
to predict failures induced by energy exhaustion [TC05]. To mitigate possible node capturing,
key revocation mechanisms might be invoked to exclude suspicious nodes from the network, as
proposed in [BBBD06].

Hardware Attacks on Sensor Nodes

Hardware attacks that involve structural modi�cation of internal device components are typically
referred as tampering [BBBD06], while attacks which consider circuit board level are referred as
physical attacks [BBBD06], hardware attacks [Sko05] or node capturing [TP08].

Hardware attacks can be classi�ed according to two criteria: behavior of the attacker and
degree of invasiveness, as proposed in Ph.D. Thesis [Sko05]. The attacker can behave actively
and passively. The active attacker in�uences general behavior of the device (e.g., tampers with
internal device components), while the goal of passive attacker is to observe certain physical
properties of the device in order to reveal security sensitive information (e.g., eavesdropping on
the conductor wires connecting an external memory chip to a microcontroller). Degree of attack
invasiveness can be categorized as following: Invasive, semi-invasive and non-invasive.

• Invasive attacks. Invasive attacks access the chip's internals. They require expert knowl-
edge from the adversary and costly equipment. Examples of invasive attacks are reverse
engineering and microprobing.

• Non-invasive attacks. Non-invasive attacks are relatively cheap and easy to conduct.
Examples of non-invasive attacks are analysis of timing behavior or power consumption of
a sensor node in order to reveal its cryptographic key (so-called side-channel attacks).

• Semi-invasive attacks are between noninvasive and invasive attacks. Examples of semi-
invasive attacks are UV lightning and active photon probing (laser, X-rays). [Sko05] con-
siders semi-invasive attacks as greater threat to hardware security, as they are almost as
e�ective as invasive attacks but at lower cost.

The authors of [BBBD06] determine the actual cost and e�orts needed to attack currently
available sensor nodes. They show that hardware attacks are not so easy as it is usually assumed
in the literature. Most of the attacks require signi�cant amount of time to be launched and
thus can be detected due to regular communication with neighboring nodes typical for WSNs.
In contrast, results reported in [HBH05] show that very damaging attacks such as reading out
content of Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash and Static
Random Access Memory (SRAM) memory can be performed fast enough to remain undetected
(< 1 minute). Note that SRAM is considered as safest place to store keys and other sensitive
information due to its volatile nature. However, the ease with which the data can be extracted
from SRAM (matter of seconds) motivates to look for alternative solutions.

Node capture attacks are formalized from the adversary perspective in [TP08]. Attacks are
decomposed into sets of primitive events with a goal to understand their impact on the network
protocols and security mechanisms. This paper do not propose a solution to defend against node
capture attacks, but discuss the potential use of event-based decomposition and evaluation of
metrics de�ned with respect to the decomposition for the developing suitable defense strategy.

Physical attacks described above di�er from software-based endpoint attacks, which do not
require physical access to sensor nodes to be launched.

1The work [BBBD06] shows that many hardware attacks result in temporary disappearance of the victim node
from the network
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Software Attacks on Sensor Nodes

Software attacks aim to exploit software vulnerabilities of the sensor nodes. In contrast to
hardware attacks, software attacks may a�ect large number of nodes since many or all sensor
nodes typically run the same software. As a result, the whole sensor network or a signi�cant
part of it can be compromised.

Limitations typical for WSN embedded software can simplify software attacks in some as-
pects, since operating systems for sensors (e.g., TinyOS [HSW+00b]) usually do not use memory
protection and do not distinguish kernel mode or user mode execution. Though they are ex-
tremely challenging due to limited size of a single wireless message that imposes a hard limit
into size of malicious code (e.g., 802.15.4 packet has size limit 128 bytes [IEE06]).

The �rst exploit for a wireless sensor node was presented in [Goo07] and extended in [Goo08,
Goo09]. The author described stack over�ow exploit mounted on sensor nodes based on MSP430
microcontroller. MSP430 has a Von Neumann architecture (VNA) that makes injected malicious
code immediately executable. The authors of [GDKP10] introduced self-propagating worms
in WSN nodes with VNA.

In contrast, infecting sensors with Harvard architecture (Harvard architecture) is considerably
more complicated. Data containing in a malicious message can only be placed into data memory
and hence cannot be executed. Work [GN08] introduces �rst attack on sensor nodes with Harvard
architecture. The authors use a technique known as return-oriented programming (ROP) [One96]
for execution of program code which is already presented in the sensor node. They exploit
bu�er-over�ow vulnerability of the receiving function and invoke a subroutine which broadcasts
content of the transceiver bu�er while malicious packet resides in it. In this way, malicious packet
propagates throw the network. This attack is transient and does not a�ect code memory of the
infected node.

The �rst permanent code injection for sensor nodes with Harvard architecture was introduced
in [FC08]. The attack targets Mica family sensor nodes based on ATmega128 microcontroller. It
is shown that it is possible to inject code in the program memory due to the fact that in reality
microcontrollers with Harvard architecture allow to write into the code memory under some
circumstances, e.g., during software update procedure. If sensor node software contains code for
�rmware update, such instructions are presented in the memory and thus ROP technique can be
applied to invoke them and to copy malicious code into code memory permanently.

Recommended preventive countermeasures against software attacks are selection of micro-
controllers with Harvard architecture for sensor nodes [Goo07], heterogeneous network design
and standard methods from software engineering to exclude code vulnerabilities [BBBD06]. Ad-
ditionally, one may attempt to detect unauthorized software changes in the sensor. Known
techniques to ensure software integrity are remote attestation and secure boot, we consider them
in Section 4.2.4 and Section 4.2.2 respectively.

4.1.2 Communication Link Attacks

Communication link attacks are often classi�ed according to network layers they are applied to
(e.g., in [RSS06, ZMB08a]). We will follow a similar approach and split them into groups accord-
ing to typical layers found in a sensor network stack: Physical, link, network and application.

Physical Layer Attacks

The physical layer de�nes the means of transmitting raw bits over a physical link connecting
network nodes. The physical layer attacks target the transmission media of the communication
link.

• Jamming. The objective of jamming attacks is to prevent sensor nodes from communi-
cating by causing radio interference. In [XMTZ06] the authors survey di�erent jamming
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attacks and distinguish four jamming strategies: Constant jamming emits continuous ra-
dio signal; deceptive jamming injects continuously regular packets to the channel; random
jamming alternates between sleeping and jamming periods to save energy and reactive
jamming transmits a radio signal only if activity on the channel is sensed. Constant, de-
ceptive and reactive jamming strategies may cause the packet delivery ratio to fall to zero
or almost zero, but are energy-ine�cient. Random jamming is energy-e�cient but less
e�ective [XTZW05].

Countermeasures against jamming attacks include noise-resistant spread spectrum tech-
niques and employment of error correcting codes to restore corrupted messages [NP03,
Sta00]. Spread spectrum techniques, e.g., Frequency-Hopping Spread Spectrum (FHSS)
and Direct Sequence Spread Spectrum (DSSS), transmit the signal over a wide bandwidth,
much wider than the signal would require. The signal spread over the spectrum has high re-
silience to interference with narrow-band jamming. Unfortunately, transceivers employing
su�ciently strong spreading techniques to resist jamming (such as FHSS) are too expensive
to be used in most commodity WSNs. Error-correcting codes [Moo05] provide a mechanism
to tolerate a certain level of corruption in messages, however, the error-correcting codes
themselves also incur additional processing and communication overhead.

Reactive countermeasures against jamming include attack detection and defense actions.
Jamming detection is typically based on statistics such as signal strength, carrier sensing
time and packet delivery ration [XMTZ06]. When an attack is detected, the victim node
may try to inform the rest of the network about the attack. It can either try to compete
with the jamming signal by increasing transmission power or avoid it by changing frequency
or physical location [XWTZ04]. Di�erent from these strategies, [CCH07] proposes to tun-
nel messages from the jammed region to una�ected area via out-of-band communication
channel (for instance, certain number of sensor nodes can be coupled with wired connection
or be organized as frequency hopping pairs, e.g., using Bluetooth). When no a�ected by
a jammer nodes are informed about presence of the attacker, the appropriate countermea-
sures can be undertaken. For instance, [WSS03] proposes to map out the jammed regions
of a WSN, and to adjust routes in order to reduce the impact of the jamming on the whole
network.

Link Layer Attacks

The link or Media Access Control (MAC) layer is responsible for node-to-node (hop-to-hop) frame
delivery and provides channel arbitration for neighbors communication. Cooperative schemes
that rely on carrier sense which let nodes detect if other nodes are transmitting face some
security risks, particularly they are vulnerable to DoS attacks.

• Link Layer Jamming. Works [LHdHH05, LvHD+05] introduce energy e�cient link
layer jamming attack. The core idea is to jam packets (similarly to reactive jamming),
but to use sleep periods in between (as in random jamming). To make the attack more
energy e�cient than random jamming, knowledge of link layer protocols and probability
distribution techniques are used to predict time of message appearance. The authors
simulated the attack for link layer protocols Sensor MAC (S-MAC) [YHE02, YHE04],
Lightweight MAC (LMAC) [vHH04] and Berkeley MAC (B-MAC) [PHC04]) and conclude
that all of them are vulnerable, although LMAC seems to be more resistant than S-MAC
and B-MAC. They also explore some potential countermeasures and conclude that all of
them are not very e�ective.

• Collisions. In the collision attack, the adversary makes short time jamming of packets
sent by legitimate nodes in order to corrupt the message [WS02]. It causes CRC error so
that packet is retransmitted resulting in bandwidth loss and energy exhaustion of sensor
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nodes while the attacker is relatively energy-e�cient. Error-correcting codes [Moo05] pro-
vide a �exible mechanism for tolerating variable levels of corruption in messages, however,
malicious nodes can adopt to corrupt more data than the protocol can correct. Collision
attacks can be detected by analyzing the packet delivery failure rate.

• Denial of Sleep. The denial-of-sleep attack targets energy resources of the WSN. Typi-
cally, WSN nodes have limited energy resources upon deployment. To conserve this critical
resource, sensor nodes alternate periods of activity with low-power sleep mode in order to
extend the network lifetime. Denial-of-sleep attacks force nodes to exhaust their energy
and reduce the network life time signi�cantly.

Since the dominant source of power loss of sensor nodes is the radio transceiver, the attacker
aims to keep the radio of the victim device awake, either in idle listening or in sending
mode. Thus, defensive strategies typically aim to limit radio usage. As the data link layer
is responsible for managing the radio, the protection mechanisms incorporated into link
layer protocols are the most e�ective.

The �rst study on denial-of-sleep attacks in WSN was introduced in [BGD05]. This work
studies how the broadcast denial-of-sleep attack a�ects link layer protocols S-MAC [YHE02,
YHE04], Timeout MAC (T-MAC) [vDL03] and B-MAC [PHC04]. In the broadcast attack,
a single malicious node transits unauthenticated broadcast messages, forcing other nodes
to receive them. Even if these broadcast messages are discarded upon reception due to
authentication failure, the fact that all nodes stay awake to receive the messages has signif-
icant impact on network lifetime. The S-MAC protocol is shown to perform better under
attack than T-MAC and B-MAC, but all of them are vulnerable to denial-of-sleep. Thus,
a new MAC protocol is proposed for clustered WSNs, Gateway MAC (G-MAC), which
performs better under the attack. In G-MAC only gateways (or cluster heads in our termi-
nology) are vulnerable to broadcast attacks but nodes inside the cluster are not a�ected.
To distribute the energy requirements among all sensors, G-MAC periodically elects new
gateway nodes (and is thus limited to homogeneous WSNs).

Studies [Ray08, RMBM06, RMBM09] discuss how jamming and the broadcast denial-of-
sleep attacks in�uence power consumption. Additionally they introduce two new types
of denial-of-sleep attacks: An intelligent reply attack and a full domination attack2. In
the intelligent reply attack the attacker knows the MAC protocol and is able to distinguish
control tra�c from data tra�c. Although details of the attack di�er for di�erent protocols,
the main idea is similar: To delay the sleep period of the nodes by replying control messages.
This keeps all the nodes awake until they run out of power. The full domination attack
assumes presence of an internal attacker. Once the network is penetrated, all of the MAC
protocols are susceptible to worst-case power consumption scenarios. In this case all nodes
can be forced to remain continually in receive mode.

The following defense strategies are proposed by the authors to counter these attacks: (i)
link-layer authentication, (ii) anti-replay protection, (iii) jamming detection and mitigation,
and (iv) broadcast attack defense. A novel approach to defend against broadcast denial-of-
sleep attacks is proposed in [RM07]: A lightweight intrusion-detection mechanism employed
at the MAC layer that classi�es each incoming packet as either legitimate (meaning that it
passes authentication and anti-replay checks) or malicious. Tracking the ratio of legitimate
to malicious tra�c, along with the percentage of time that the device is able to sleep, is
used to identify a denial-of-sleep broadcast attack.

• Acknowledgment Spoo�ng. Several sensor network routing algorithms rely on implicit
or explicit link layer acknowledgments [KW03]. Due to the use of broadcast media, an

2particularly protocols S-MAC, T-MAC, B-MAC and G-MAC are considered
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adversary can spoof link layer acknowledgments for overheard packets addressed to neigh-
boring nodes. Attack goals include convincing the sender that a bad quality link is good
or that a dead or disabled node is alive. Such manipulations can be used to a�ect net-
work routes which may be selected in accordance with link reliability reported by the link
layer. This vulnerability can be addressed by ensuring that link layer data is encrypted
and authenticated.

Routing Layer Attacks

The routing layer in WSNs is responsible for end-to-end packet delivery through intermediate
sensor nodes. Most attacks on the routing layer require an adversary who penetrated the network
(i.e., a malicious node presented in the network). However, attacks can be launched by an external
adversary even if all tra�c in the network authenticated, encrypted and replay protected.

Generally, the attacker can have the following goals: (i) to insert a malicious node into the
route with a goal to launch other attacks, (ii) to eavesdrop or manipulate forwarded messages,
(iii) to attract data generated by legitimate nodes, e.g., for analyzing them and (iii) to disrupt
routing with the goal of DoS.

• Routing State Corruption. Attackers are able to manipulate routing tables stored on
sensor nodes by spoo�ng, altering, or replaying routing information in transit by creating
routing loops, attracting or redirecting network tra�c, extending source routes, increasing
end-to-end delay, etc.

Message authentication and replay protection can defeat these attacks in case of outside
attackers. Preventive defense may include usage of stateless protocols like IGF [BHSS03]
which make forwarding decisions �on-the-�y� and do not require routing tables to be stored
on the node.

• Bad-Mouthing Attack. Some routing protocols may use reputation-based systems to
�nd a most trustworthy candidate to forward message. Second hand evidence can be used
to judge the trustworthiness of a node [LRAFG10]. In a bad-mouthing attack, a malicious
node votes against honest member reducing its chances to be selected.

To mitigate bad-mouthing attacks, second hand reports can be ignored or handled with less
priority. Depending on the reputation system, it is possible to reliably detect the adversary
as its reports are outliers within a larger set of reports about a speci�c node. In this case,
the malicious node can be excluded from the system or assigned a lower trust value to
mitigate the impact of its attack [HZR09].

• Rushing Attack. The rushing attack was introduced in [HPJ03b]. The goal of the
attacker is to increase the probability for the malicious node to invade the route. Rushing
can take place in some demand-driven routing protocols such as tinyAODV [Tin07] and
TinyHop [SCHM08] which use the duplicate suppression mechanism for their operation.
Duplicate suppression mechanism consist in forwarding the �rst received Route Discovery
packet and ignoring any duplicates arriving at later time. To launch the attack, an attacker
quickly propagates further received Route Discovery packets, ignoring speci�ed protocol
delays. Alternatively, the attacker can use a powerful transmitter to deliver the packet to
destination within more than one hop at once. In both cases, such Route Discovery packet
has higher probability to reach its destination faster.

[HPJ03b] proposes three components for defense against the rushing attack: (i) secure
neighbor detection (employs a reply protected mutual-authentication protocol which also
takes into account response delays, (ii) a secure route delegation where each node should
decide, which neighbors will forward its route-request, (iii) a randomized route-request
forwarding where the selection of the Route Request message to forward is randomized.
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• Wormhole Attack. Another e�ective way to insert a malicious node into a route is
creating a wormhole [HPJ03a].

To mount a wormhole attack, the adversary involves two distant malicious nodes connected
with a high-speed channel, e.g., laptop-based nodes equipped with WiFi. Messages received
in one part of the network are tunneled via the low-delay channel and replayed at the other
end. If one malicious node is located near to the base station and forwards routing updates
to the second malicious node through the fast channel, i.e., wormholes them, such packets
will reach the targeted area considerably faster and provide a high-quality route to the
base station. As result, all tra�c in the surrounding area will be routed via malicious node
since alternate routes are less attractive. Note that the attack will succeed even if route
update message is encrypted, authenticated and replay protected.

Preventive countermeasures against wormholes include the selection of geographic routing
protocols [KK00, Kar05], in which the next forwarding node is selected according to its
geographical location. Geographic routing protocols require deployment knowledge which
can be provided either manually during network setup, or can be obtained using local-
ization algorithms [LP04, XOL+07]. Alternative approaches follow the detection strat-
egy. They rely on observation of the symptoms induced by wormholes, e.g., localization
anomalies [DFN06], distortions of substructures on network connectivity graph [MGD07,
ZMB08a], inconsistencies of network layout (i.e., network connectivity graph and distance
between neighbor nodes in a graph) [WB04, DLL+09], abnormal variations of length of the
routes [LB05, RGCL09], mismatches of neighborhood observations [LB05] or mismatches
between the key used to sign a message and the message radio �ngerprint [RC07].

Many existing solutions make speci�c assumptions on the network such as known node lo-
calization [DFN06, RGCL09], presence of special anchor nodes [RGCL09] or speci�c com-
munication models [MGD07]. Detection algorithms proposed in [WB04, BDV05, RC07]
are centralized and thus do not scale well. The most recent distributed detection approach
is introduced in [DLL+09]. It claims not to impose any rigorous requirements and assump-
tions on the network, has nearly 100% detection rate and does not cause false positives.
Although promising, the computational and communication overhead imposed by this al-
gorithm is not yet analyzed.

Once the malicious node invades the route, the adversary can analyze, �lter, drop, alter,
reply or delay forwarding messages.

• Jelly-Fish Attack. If the attacker delays forwarded messages in order to decrease the per-
formance of real-time applications, such an attack is referred to as jelly-�sh attack [AHK04].
As the jelly-�sh attack does not lead to unavailability of services provided by the network
but only decreases performance, this attack got a little attention of researchers: No mech-
anisms are designed to defend against jelly-�sh attack. It appears that detection and
diagnosis of this attack is too costly for resource constraint WSNs since it maintains com-
pliance with protocols.

• Black-hole and gray-hole attacks. The attacker may be interested in dropping for-
warded messages rather than delay them. If the attacker silently drops all received pack-
ets, such an attack is known as a black-hole attack. Very sophisticated adversary can drop
packets selectively and forward correctly the remaining tra�c in order to avoid raising
suspicions. Such variation of attack is named selective forwarding or gray-hole attack.
More powerful variations of black hole and gray-hole attacks occur when several com-
promised nodes cooperate in order to launch the so-called cooperative black or gray-hole
attack. These attacks were �rst discovered and studied in the context of ad-hoc wireless
networks [RFS+03, AGD08, Ban08, SA08a, SA08b].
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In general, defense strategies against the selective forwarding attack in WSNs include
multi-path routing, attack detection or a mixture of both approaches. Multi-path routing
protocols like [GGSE01, DQW03, MLWSW07] enhance the reliability of the data trans-
mission in presence of the attacker, especially if disjoint paths are discovered or multiple
base stations are available. A variety of mechanisms are developed to detect and localize
the attacker in the network. An Intrusion Detection System (IDS) proposed in [YX06]
and improved in [XYG07] uses multi-hop acknowledgments to detect routing misbehav-
ior. REWARD scheme [Kar05] employs neighbor monitoring to detect nodes which fail to
forward received messages. To detect cooperative malicious nodes, REWARD proposes to
forward messages with increased power such that two-hop neighbor monitoring is possi-
ble. The solution o�ered in [LC06] utilizes secure two-hop neighbor discovery and one-hop
neighbor monitoring. The mechanism proposed in [KSMS07] is carried out entirely by
the base station and utilizes a classi�cation method based on support vector machines
(SVMs)3 to analyze routing information local to the base station: The hop count and
bandwidth. Scheme [DSWC09] applies watermarking to detect dropped messages and to
localize suspicious nodes, and manages trust values which re�ect the trust credit of each
sensor node in the network. The Dynamic Trust Management System (DTMS) [RSCD08]
also associates trust with values: It assigns each node in the network with a trust vector
consisting of three parameters. Apart from selective forwarding attacks, DTMS is able to
detect sinkholes (described below).

In recent research, there is a trend to design IDS which are able to detect two and more
attacks in WSN rather than to defend against a speci�c attack. We will discuss such
systems in Section 4.2.7.

• Sinkhole Attack. In a sinkhole attack [KW03, KGD08a], a malicious node tries to attract
all tra�c from the surrounding network by making the node look very attractive to the
nearby nodes with respect to the routing metric. The sinkhole attack can be launched
quite e�ectively in networks with aggregation routes, where measured data is aggregated
from multiple sources to a single Base Station (BS). In this case, a malicious node tries to
convince the neighboring nodes it has the best route to the BS. For instance, it can spoof
or replay an advertisement from the BS with an extremely high quality route metric. To
control all tra�c in the network, the adversary needs only to launch the sinkhole attack as
close as possible to the BS. In this case neighboring nodes will choose a malicious node as
the best candidate to forward messages, and all the tra�c coming from them will end up in
the sinkhole. So the attack can be very e�ective even when launched by a single malicious
node.

Authenticated and replay protected communication helps to prevent an external attacker
from launching the sinkhole attack. But these countermeasures cannot defeat against in-
ternal adversary (i.e., the adversary who compromised a number of nodes and retrieved
their cryptographic material). The approach presented in [PFVS08, PFVS09] proposes
two topology-based recon�guration protocols which are resilient to sinkhole attacks. Un-
fortunately, they are limited to only networks with tree-based routing topologies. All other
solutions [NLL06, KDGM07, NLL07, MC09]4 rely on an IDS for sinkhole detection.

• Sybil Attack. The Sybil attack was �rst described in [Dou02] in the context of peer-
to-peer networks. In a Sybil attack, a malicious node pretends to be multiple nodes by
claiming multiple node identities. This attack can a�ect routing mechanisms in sensor
networks , fair resource allocation , voting algorithms and data aggregation.

Following major approaches exist to defeat against the Sybil attack: (i) cryptographic

3SVMs are a class of machine learning algorithms [CV95]
4IDS presented in [KDGM07] also detects black-hole and selective forwarding attacks
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approach, (ii) identity registration, (iii) remote software attestation (see Section 4.2.4) and
(iv) attack detection.

The cryptographic approach relies on associating the node identity with the keys assigned
to the node. For instance, the node identity can be associated with the veri�able public
key certi�cates, or with key-related information preloaded into each sensor node in key
predistribution schemes (see Section 4.2.1 and Section 4.2.1). These keys or certi�cates
can be validated by other nodes in the network. Validation can be performed either locally,
by single nodes independent of other nodes, or globally, via collaboration of many nodes.

Identity registration can prevent the Sybil attack, since any node can check by asking a
central authority for a list of legal identities to validate another node as legitimate. The
disadvantage of this approach is its centralized nature.

Remote software attestation (see Section 4.2.4) can be employed to prevent Sybil attack,
since the code running on a malicious node must be di�erent from that on a legitimate
node.

Many approaches have been proposed by researchers to detect the Sybil attack. The
radio resource testing as proposed in [NSSP04] is based on the assumption that an at-
tacker cannot use one device to send on multiple channels simultaneously. Location
based solutions [SM06, SM09] check that no identities are at the same position. They
require deployment knowledge and suitable only for static networks. Methods proposed
in [DS06, WYSC07, AMP08, LWZZ08] make use of the Received Signal Strength Indicator
(RSSI) to infer the distance between two identities and further determines the positions by
use of the RSSI information from multiple neighbor nodes. They are also suitable in static
networks only. The solution proposed in [WLZC08] utilizes Time Di�erence of Arrival
(TDoA) method to detect Sybil nodes. It requires time synchronization in the network
and uses the so-called beacon nodes with known locations which overhear the network traf-
�c looking for messages with the same TDoA ratio but di�erent identities. The algorithms
proposed in [SWC09, WSC10] are based on neighbor knowledge of each node and do not
rely on knowledge of deployment.

• Neighbor Attack. A neighbor attack can be launched by an internal attacker: Malicious
node can replay control packets without updating them as required by the routing protocol.
For instance, in many-to-one/source routing protocol included into ZigBee (ZigBee) net-
working stack the forwarding node must record its Id in the packet before forwarding the
packet to the next node. Omitting this operation makes upstream and downstream neigh-
bors to wrongly believe that they are within communication range of each other, resulting
in a disrupted route.

Countermeasures against neighbor attack include applying link layer security framework to
defend against an external attacker. To resist an internal adversary, mechanisms to detect
black and gray hole attacks can be applied, since breaking a route at a forwarding node
can be considered as dropping data packets at that node in a black-hole attack [NN06].

• Hello Flood Attack. Many routing algorithms require nodes to broadcast special packets,
so-called hello messages, to announce themselves to their neighbors. Nodes receiving such
a packet may assume that they are within regular radio range of the sender. In the hello
�ood attack [KW03], the attacker transmits spoofed or overheard hello packets using a
powerful radio transmitter, announcing false neighbor status to the network. This way,
legitimate nodes will attempt transmission to the malicious node, although many of them
are out of its radio range.

The attack is possible even if the attacker has no sensitive receiver, since broadcast packets
do not typically require acknowledges. Thus, authors of [HMORH06b, HMORH06a] o�er
to verify link bi-directionality between neighbor nodes to mitigate the attack. To resist an
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attacker possessing sensitive receiver, they propose multi-path multi-base station routing
protocol which increases probability for data to be delivered in presence of the attacker.

The author of [Kho08] proposes detection mechanism as countermeasure. In the proposed
scheme a few randomly selected nodes cast a vote to the base station for each hello packet
received and the base station validates the legitimacy of the hello request. Voting nodes are
periodically reselected by turn rolling algorithm. This solution is limited to WSNs where
all nodes are aware of their geographical region.

A preventive countermeasure is to utilize network layer protocols which do not rely on
HELLO packets. For example, stateless routing protocols like IGF [BHSS03] make for-
warding decisions independently hop by hop.

Application Layer Attacks

The application layer deals with data produced and processed by the network. In application
layer attacks the adversary typically injects forged data packets in order to in�uence (aggre-
gated) sensor readings or with a goal of DoS. Combining packet authentication and anti replay
protection mitigate these attacks, but these countermeasures are less e�ective if the network has
compromised nodes.

• Data Spoo�ng. An adversary can inject crafted data packets with a goal, e.g., to arise
false alarms or to in�uence results of aggregated and processed sensor readings. Secure
aggregation techniques (e.g., [Wag04]) help to tolerate a small number of false sensor ob-
servations. A second direction for resilience to false sensor observations is to gather mul-
tiple, redundant views of the environment and crosscheck them for consistency [PSW04].
Meanwhile, when many data values are collected, a histogram may be constructed; extreme
outliers may indicate malicious spoofed data.

• Data Flooding. In a data �ooding attack, an attacker injects multiply forged or replayed
data packets into the network. The goal of the attacker is to consume network resources
such as bandwidth and energy by forcing network nodes to route messages to a base sta-
tion. This attack is especially e�ective in a context of WSNs with a tree topology (see
Section 2.3.1. This particular variation of the attack got a name Path-based DoS (PDoS)
attack and was studied in works [DHM05, DHM06a]. A PDoS attack not only exhausts
nodes along the path, but also exploits the tree-structured routing resulting in inability of
leaf nodes to communicate with the base station. Rate-limiting5 can mitigate the impact
of the attack. Work [DHM05] propose a high resilient to node compromise solution based
one-way hash chains to enable PDoS attack detection by each intermediate node.

• Overwhelm Attack. In an overwhelm attack [RM08], an attacker injects forged or re-
played query messages, as opposite to data �ooding attack, where data messages are in-
jected. The overwhelm attack is more powerful since a single query message sent broadcast
over the network force multiply sensors to report sensor measurements. This cause the
network to forward a large volume of tra�c to a base station consuming network band-
width and draining nodes energy. This attack cannot take place if sensor measurements are
reported at �xed intervals and are not driven by data query requests. Rate-limiting and
data-aggregation algorithms can reduce attacks' e�ects by reducing a volume of network
tra�c.

5Limiting the number of packets an intermediate node can forward per second
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4.2 Security Mechanisms in WSNs

Current research on security mechanisms in WSNs can be divided into four categories [RZL05]:
(i) Key management; (ii) Secure routing; (iii) Specialized security services such as attestation,
secure wake up, secure time synchronization and trust management; (iv) Intrusion Detection
Systems (IDSs). In the following we provide an overview of related work on these topics.

4.2.1 Secure Key Management

Key management is the provisioning of cryptographic keys to low-level cryptographic algorithms
for, e.g., authentication or encryption of data. Two basic cryptographic schemes must be distin-
guished, symmetric and asymmetric schemes.

To reduce the impact of key compromise, symmetric key schemes require a separate key
for each communication channel between a set of parties. The number of keys to manage thus
increases quickly with the number of involved parties and channels. Further, the fact that a
key is shared between multiple parties reduces the robustness of the overall system towards
compromise of individual parties. On the other hand, cryptographic operations on asymmetric
keys typically involve much higher computational costs than operations using symmetric keys.
Key management systems thus typically combine di�erent techniques to meet security as well
as performance requirements of practical systems. Forward security, i.e., the protection of past
communication against key compromise in the future, is another important security objective of
such systems.

In case of WSNs, the performance impact of di�erent key management schemes is of partic-
ular importance. As such, these systems focus less on the management and negotiation of keys
and more on a clever pre-distribution prior to deployment that allows e�cient yet secure com-
munication. Further, due to the inherent and much higher computational costs, WSN literature
mainly explored symmetric key management and only recently considered the use of asymmetric
schemes. Regarding performance considerations, we lend the following requirements from the
comprehensive survey in [cY05]:

• Storage. The amount of data storage required on the individual node to save di�erent
types of keys and parameters.

• Computation. The amount of computation required for setting up individual communi-
cation channels.

• Communication. The amount of communication required to to set up an individual
communication channel.

• Scalability. The ability of the scheme to scale to any desired network size, particularly
large sizes. Also, the support for upgrade (i.e., enlargement) of the network after initial
deployment.

• Connectivity. Probability that two parties can generate or �nd a shared key.

• Resilience. The amount of nodes in the system that can be compromised without a�ecting
the security of communication channels of other parties.

While several key distribution systems have been proposed, most of them are designed for speci�c
WSN architectures and deployment scenarios. None of them �t the possibilities and requirements
of the TeSOS scenario, i.e. the use of Physically Unclonable Functions (PUFs) in a hierarchical,
rather small scale network with possible hardware security mechanisms and hardware acceler-
ation on the Cluster Heads (CHs). We thus provide a general overview of available ideas and
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architectures that might be used for the key management in TeSOS. For a more detailed descrip-
tion and comprehensive performance comparison of key distribution schemes published until
2005, see [cY05].

The two trivial extremes for key distribution in WSNs are to either provide a dedicated key
for each possible communication link or to use a single master key for all communication links
between all nodes. The �rst solution provides maximum resilience but requires each node to
store N − 1 keys and corresponding node IDs, where N is the WSN size, i.e., the number of
devices in the WSN. The second solution requires minimal storage but provides no resilience
against compromise. In the following three sections we present the several trade-o�s between
these two extremes that have been proposed in literature. We distinguish (i) pairwise key man-
agement schemes, (ii) hierarchical and group-wise schemes and (iii) general enhancements to
symmetric key management schemes. We close with a review of current work on asymmetric key
management.

Deterministic Pair-wise Schemes

The work in [LN03c] proposes to use knowledge about the physical topology to provide only
the fraction p of keys that are actually reachable and that the individual node is desired to
communicate with. The storage complexity is reduced to 2pN +1 to save the peer keys together
with the corresponding node ID plus the node's own secret key. Another approach is to interpret
the network as a graph that is composed of star-like sub-graphs, as proposed in [LS05b]. Nodes
are then provided with an individual master key and a link key derived from the master key of
the respective root node. As a result, any node is either root or leaf node towards another node
and can thus either generate a link key or use a stored derived key. The storage complexity for
each node is reduced to 2r + 1 for keys and their corresponding key IDs as well as the node's
own key, where r is the number of children of the respective node. Work [LS05b] also o�ers to
extend the scalability of the scheme by grouping l sensor nodes into a single node, i.e., using
each master key for l nodes simultaneously and thus sacri�cing resilience.

Using Combinatorial Design Theory as proposed in [cY04, LS05a], key distribution can be
mathematically designed such that in a network of size n2+n+1, n2+n+1 keys are distributed
to a set of n+1 nodes such that after deployment, each pair of nodes has exactly one common key
in its key chain. As an example, for n = 2 and N = 7, the keys K1,K2,K3,K4,K5,K6,K7 can
be arranged into 7 key chains as follows: (K1,K2,K3), (K1,K4,K5), (K1,K6,K7), (K2,K4,K6),
(K2,K5,K6), (K3,K4,K7), (K3,K5,K6).

In this scheme, n must be a prime power and the probability that a link is compromised when
a node is captured is 1

n+1 . The authors of [cY04] also propose an extension such that, while not
every pair has a common key, there are is always a third node that can be used to establish a
path between them. Naturally, this requires that such a third party node is within the reachable
neighborhood and thus results only in a probabilistic key connectivity. To address the restriction
of n being a prime power, [cY04] also describes a combination of this approach with a pair-wise
probabilistic key distribution scheme.

The key matrix-based scheme �rst proposed in [Blo85] was adapted for WSNs in [DDHV03,
LS05b]. A matrix-based key distribution scheme interprets the set of all possible pair-wise link
keys of a WSN as elements of a symmetric N ×N matrix K. The matrix is then divided into a
public key matrix G and private key matrix D such that K = (D ∗G)T ∗G. The individual node
ni of the WSN stores row i of the private and column i of the public key matrix. To compute a
link key, two nodes ni and nj exchange their public key data and each derive the corresponding
element Kij or Kji of the key matrix K. Since K is symmetric, Kij = Kji is the shared link key.
Link keys of uncompromised nodes are secure while less than λ nodes are compromised, where
λ is a linear factor in the size of the generated public and private key matrices. The scheme
is further generalized in [DDHV03], where the authors create multiple private matrices Dr and
give a random selection of p such matrices to each node, trading key connectivity for resilience.
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In a similar approach, [LS05b] deterministically divides the set of nodes into partitions such that
nodes of di�erent partitions can not establish a direct link key. Resilience is increased since now
a coalition of λ nodes from the same partition is required to compromise all other link keys.

An approach based on a polynomials was proposed in [BDSV+98]. In this scheme, a symmet-
rical polynomial P (x, y) = P (y, x) with coe�cients from GF (q) for su�ciently large prime q is
used to derive pair-wise link keys. Each node ni stores a localized version fi(x) = P (i, x) of the
polynomial. For node ni to derive the common key Kij with node nj , it simply evaluates fi(j).
The number λ of coe�cients of P determines the resilience of the scheme in the sense that a
coalition of λ+1 nodes is needed to derive all link keys. Similar to previous trade-o� approaches,
[LN03b] proposes to partition the WSN, distributing multiple polynomials and thus sacri�cing
key connectivity for scalability and/or resilience, since polynomials can be smaller but some node
pairs may not have a shared polynomial to derive a common key from. The polynomials to store
on each node can be selected randomly, in a grouped fashion to reduce communication overhead
or based on available deployment topology information as proposed in [LN03c].

Probabilistic Pair-wise Schemes

The amount of required key storage for pre-distributed pair-wise keys is reduced in [EG02, CPS03]
by storing only N ∗ p keys, where 0 ≤ p ≤ 1 is the probability that any two nodes will be able to
communicate in the resulting system. Another approach to modify the fraction of keys known
to each node is presented in [DDH+04], where an approximate knowledge of the later physical
topology is assumed and keys are distributed where the likelihood of reachability is large.

The authors of [ZSJ03] assume that the adversary needs a minimum time t to compromise a
node. In the deployment or upgrade phase, they deploy a node A with a master key Km, two
keyed hash functions fx(·) and hx(·) where x is a node identity string, and a derived device key
KA = hA(Km).

Within the time frame t, A can establish a pair-wise key KAB with any discovered node B
using KAB = fKB

(A), since B still knows its derived key KB and A can derive it as KB =
hB(Km). After time t, key Km is deleted but KA is kept. As a result, only new nodes with
knowledge of Km can establish new links with node A. To establish keys with sleeping nodes that
do not wake up until t, [ZSJ03] suggests that A asks available nodes for a list of node IDs within
the area and derives the corresponding link keys in advance. Key connectivity and resilience
of this scheme are probabilistic, but can be very good if t is chosen correctly. However, results
on residual memory traces [HSH+08] and the sensor node's very limited resistance to physical
attacks [HBH05] limit the practicality of this solution.

Enhancements to Pair-wise Schemes

Several protocols require an additional key discovery phase after deployment to determine what
peers are reachable, whether link keys can be established with them and what other nodes
can be reached via these links. In this phase, typically each node broadcasts the list of key
IDs from its key chain and observes the corresponding announcements of any neighbors. The
communication load in this phase can be reduced by grouping key IDs such that all IDs in a group
are known from the corresponding group ID [HLV04] or, in probabilistic key distribution, by using
a Pseudo-Random Function (PRF) to generate the list of IDs known to each node [ZSJ03] and
only transmitting the respective PRF seed.

The storage complexity can be further reduced by grouping l link keys into a single localized
master key. This reduces resilience as any compromised node will compromise the communication
link security of l − 1 other nodes, however, the required storage is also reduced by a factor
of l [LS05b]. A similar idea is described in [DCL04], where multiple master keys are used in
combination with random nonces and a PRF to reduce storage. Each generation of nodes uses
its own master key as well as derived keys of the master keys of future (anticipated) generations.
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However, while such a scheme is useful in WSNs that are upgraded frequently, the resilience
against compromise of a single generation of nodes is very low.

To improve the resilience of link keys, multiple key enforcement mechanisms have been pro-
posed. The work in [CPS03] proposes to demand q common keys between a pair of nodes in
the key discovery phase to derive a composite link key using a one-way function with the q keys
as input. Unfortunately, this approach also has a direct impact on key connectivity. This is
mitigated in [CPS03, ZSJ03] by sending additional key shares through alternative already es-
tablished communication paths towards the target node or by letting cooperative nodes provide
this information based on already established link keys [DPMM03]. While key reinforcement
techniques can achieve higher key resilience, an adversary who recovers the initial link keys of a
node might be able to deduce a reinforced key based on recorded communication. In general, the
lack of forward security is a serious problem for any of the symmetric key distribution schemes.

Hierarchical and Group Key Schemes

Communication in hierarchical WSNs is typically structured in a tree-like graph with more robust
or powerful sensor nodes close to the root of the tree. As a result it may be a�ordable to deploy
dedicated pair-wise symmetric keys for each leaf to communicate with its respective adjacent root
node. Root nodes can then either be trusted to forward messages directly, transport random
end-to-end session keys or assist in establishing a shared secret [AUJP04, CCWW00, ZSJ03,
LCEH03]. The authors of [ZSJ03] emphasize how battery use can be reduced if sensor nodes can
listen to communication of their peers, e.g., to prevent transmission of redundant sensor readings.
They suggest the use of group or even network-wide keys so that neighbors can decrypt such
messages as well.

A simple approach to establish group keys is to leverage a pair-wise key distribution scheme. A
group key can then be chosen by one of the group members and transported to all others [DCL04,
ZSJ03]. In [BDSV+98], each group member chooses a random key share and sends it to all other
members. Each member then computes the group key as a function of the received key shares.
The latter approach is slightly more robust as there is no single party that choses the group key
but requires a signi�cant communication overhead. Another scheme proposed in [BDSV+98] is
an extension of the polynomial key distribution scheme from Section 4.2.1. It uses a polynomial
with l arguments instead of two, thus allowing up to l nodes to establish a shared link key.

The µ-TESLA authenticated broadcast scheme presented in [PSW+01] uses a delayed key
disclosure and a hash-key chain instead of asymmetric mechanisms. Messages are send in �xed
time intervals known to sender and receiver. A broadcast message of interval i, where 0 < i < n
is authenticated with a symmetric key Ki disclosed later in interval i+1. The keys Ki are taken
from from a hash chain such that Ki = f(Ki+1). Nodes are pre-supplied with an authenticated
key K0 and thus able to authenticate successive disclosures of Ki since K0 = f i(Ki). The
scheme is robust to transmit errors as lost keys can be recovered once later keys are disclosed,
however, it requires that sender and receiver are loosely time-coupled or a receiver might accept a
message whose authentication key was already disclosed to the network. As receivers must cache
broadcast data until it can be veri�ed in the next time interval, µ-TESLA introduces a potential
DoS vulnerability where an adversary may �ood nodes with spoofed messages. Intervals can
be shortened to reduce the impact of this attack but this will result in increased overhead for
publishing and computing authentication keys. Work [SNW06] thus proposes to use a short
interval for sending data followed by a long interval where the corresponding authentication key
is sent.

µ-TESLA is used in [ZSJ03] to authenticate a group encryption key in advance before relying
on the individual nodes to distribute it.

The authors of [BT03] modify µ-TESLA into a certi�cate revocation scheme where the base
station resembles a Certi�cate Authority (CA) that discloses expired certi�cate keys. Other
modi�cations are presented in [LN03a, LN04] to reduce the communication load for initial µ-
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TESLA bootstrapping.

Asymmetric Schemes

Due to the disadvantages of symmetric key cryptography, the suitability of asymmetric key
cryptography for sensor networks received increasing consideration in recent years.

The �rst general evaluation of RSA and Elliptic Curve Cryptography (ECC) for sensors
with 8bit Atmel ATmega128 and ChipCon CC1010 processors concluded that asymmetric cryp-
tography is expensive but generally possible [GPW+04]. They review and implement common
optimization techniques like the use of Mersenne Primes and projective coordinate systems and
conclude that ECC is more suitable for WSN because of the potentially lower key size and better
scalability for processors with small word size [GPW+04].

At the same time, an RSA-based protocol suite was proposed and implemented in [WKC+04]
with the general result that even RSA is possible on the Crossbow MICA2, although each use
considerably drains the battery. Another proposal in [HCK+03] is to use a hybrid scheme where
one of the peers, e.g., a Cluster Head (CH), is su�ciently powerful to carry out asymmetric
computations.

ECC was later implemented in [MWS08, LN08] for TinyOS (see Section 7.4). Both works
evaluate computation time, memory usage and energy consumption for several sensor platforms
and conclude that ECC-based key management is a viable solution, e.g., for initial key estab-
lishment after deployment. With the evaluated hardware however, energy consumption and
computation time are too high for regular use of ECC. According to the authors, depending on
implementation and platform, a node's battery can be consumed within 50 ECC operations.

Works [EAA+06, AQ05, AQR07] leverage a highly e�cient authenticated DH protocol pre-
sented informally and without security proof in [Ara99]. Work [EAA+06] presents a pairwise key
agreement with the option to o�oad one of the exponentiations to another party while [AQ05]
simply uses the pairwise key agreement to circulate a common symmetric key in a group. Work
[AQR07] uses short RSA public key exponents and RSA key transport to impose a signi�cantly
higher computational burden on the requester of a connection, thus mitigating DoS attacks by
compromised WSN nodes. However, the use of RSA generally drains the battery about twice as
fast as ECC and the work does not consider stronger adversaries with special purpose hardware
or laptops.

The authors of [ODL+07] point out that Identity-based Encryption (IBE) is well suited to
WSNs. Using IBE, nodes can identify themselves using their serial number or other strings like
in symmetric key management, yet only a few critical global key parameters must be distributed
before deployment. Also, the key escrow problem of IBE schemes is mitigated in WSN deploy-
ments as all nodes are typically owned by the same party. The work in [YWCR07] continues to
propose an IBE-based broadcast encryption scheme to solve the problem of securely distributing
the initial keys and parameters for µ-TESLA (see Section 4.2.1). Identity-based encryption for
heterogeneous sensor networks is implemented in [SC09]. The authors propose to o�oad the
larger computation load to the Cluster Head (CH) of the WSN and evaluate time and energy
consumption for two common sensor node architectures. Recent work [FG10] also presents a
lightweight id-based DH key agreement that does not use bilinear mappings and is as e�cient as
the best known authenticated DH key exchange protocols.

As no direct hardware support for ECC is currently available in sensor nodes, the authors of
[YSF09] successfully evaluate the use of Digital Signal Processors (DSPs) for accelerated ECC
computations on sensor nodes.

4.2.2 Secure Boot

Secure Boot describes a security mechanism which ensures that a platform only loads allowed
components during bootstrap phase. If invalid code is detected the bootstrap process is inter-
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rupted and the code is not loaded [TY94].
AEGIS [AFS97] is a comprehensive architecture that applies this concept to PCs, so that the

BIOS and all subsequently loaded components each verify the respective following component
before delegating control to it. In case of AEGIS, the root of this chain is the immutable part of
the BIOS that is loaded �rst to initialize the base system and load subsequent expansion ROM
and the bootloader. The system was later extended with an automated recovery mechanism
that allows the bootloader to retrieve an authenticated operating system over network in case
the local system is compromised [AKFS98].

In the area of WSN, such mechanisms did not yet appear to �nd application. Due to the
threat model and the requirement to reprogram nodes for re-deployment in other applications,
it must be expected that the adversary is able to use any reprogramming facility that is not
cryptographically protected. For performance reasons sensor systems also tend to be less complex
and modular, limiting the bene�t of the secure boot concept.

4.2.3 Secure Routing

While secure routing for homogeneous wireless sensor networks has been widely studied during
recent years, only a few works address secure routing in Heterogeneous Wireless Sensor Networks
(HSNs). In contrast, many secure routing protocols for homogeneous networks were proposed,
but these cannot be applied directly to heterogeneous networks. However, they can be adopted
for a single layer of the HSN hierarchy. Thus, in the following we survey existing secure routing
protocols for both, heterogeneous and homogeneous networks.

Secure routing protocols for homogeneous sensor networks. One can di�er two routing
strategies for homogeneous sensor networks: Location-based and �at-based. Location-based
routing protocols use information about node location to make forwarding decisions, while �at-
based routing is used in networks without knowledge of location information.

Location-based secure routing protocols. The integration of trust-based reputation systems
into geographic routing protocols like Greedy Perimeter Stateless Routing (GPSR) [KK00] was
proposed in [TDBH04, HLK07, ZLV+09]. Reputation systems associate a trust score with each
sensor node in the network. They honor well-behaving nodes and punish suspicious behavior,
providing means to identify malicious or sel�sh sensor nodes and to select well-behaving nodes
for forwarding. However, these protocols do not assume the location information advertised
by nodes to be veri�ed, although trustworthy location information is essential to make correct
forwarding decisions. Thus, a malicious node can falsify its location and compromise the basis
of location-based routing.

Resilient Geographic Routing (RGR) [AGKL05, KLAG06] is also based on GPSR [KK00].
It employs a trust-based route selection based on locally generated trust information assigned to
neighboring nodes and multipath forwarding. In contrast to [TDBH04, HLK07, ZLV+09], RGR
relies on veri�ed location information certi�ed by trusted nodes. Additionally, RGR employs
rate control and packet scheduling to defend against data �ooding.

Secure Implicit Geographic Forwarding (SIGF) [WFSH06] and its enhanced version Dynamic
Window Secured Implicit Geographic Forwarding (DWSIGF) [HIJM09] are secure counterparts
of Implicit Geographic Forwarding (IGF) [BHSS03], the stateless hybrid MAC/network routing
protocol. SIGF comprises of three layers: SIGF-0, SIGF-1, and SIGF-2. Each layer provides dif-
ferent trade-o�s between security and required resources. SIGF-0 is a lowest layer, it provides only
probabilistic defenses against attacks, SIGF-1 integrates a trust-based reputation management
system, while SIGF-2 enables cryptographic operations to provide authenticity, con�dentiality,
integrity, and freshness of messages. Additionally, DWSIGF provides an additional countermea-
sure against a protocol speci�c Clear-to-Send rushing attack that allows a malicious node to
be selected for forwarding. In contrast to RGR, protocols from the SIGF family do not rely on
certi�ed location information. However, the trust-based management system implemented in the
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SIGF-1 layer can mitigate location falsi�cation attacks as it includes a metric to re�ect location
consistency reported by a node6.

Secure routing protocols with a �at-based routing strategy. INtrusion-tolerant routing protocol
for wireless SEnsor NetworkS (INSENS) [DHM06a] is a centralized link-state routing protocol,
where routing information is �rst calculated in a centralized manner by a trusted base sta-
tion based on the link and neighbor information gathered from the network and then securely
distributed among the nodes. Security of route establishment phase of INSENS was formally
proven in [ABV07]. While a design decision to assign route calculation to a trusted party im-
plicitly eliminates many potential attacks, its centralized nature makes it unsuitable for TeSOS,
because cluster heads (equivalents of a base station in the cluster) are untrusted in the TeSOS
adversary model.

Secure SPIN (S-SPIN) [TL09] is a secure version of Sensor Protocols for Information via Ne-
gotiation (SPIN) [KHB02], the representative of data-centric routing protocols. In data-centric
routing protocols, a sensor node interested in the particular data transmits a data request, de-
scribing the data it is interested in, to all nodes using �ooding. The nodes possessing the data
reply to the request. SPIN is much more e�cient than classical �ooding, as it avoids trans-
mission of redundant data among sensors by negotiating individual sensor observations before
transmitting the actual data. S-SPIN extends the basic SPIN with a Message Authentication
Code (MAC) to ensure authenticity and integrity of SPIN messages. S-SPIN has been proven to
be secure in the model proposed in [ABV06].

Secure-tinyLUNAR [Á09] is a secure version of Tiny Lightweight Underlay Ad hoc Rout-
ing protocol (tinyLUNAR) [Osi07] protocol, which is designed to support multiple communica-
tion paradigms at the same time: Data-centric, geographic-based and address-centric. Multi-
addressing is a unique feature of tinyLUNAR which might be desired by certain application
scenarios. However, functional universality of the protocol comes at a price of increased com-
plexity. Moreover, tinyLUNAR supports reactive routing with on-demand route establishment,
while the TeSOS network requires a proactive routing strategy which is more essential for mon-
itoring applications.

Another protocol for networks with direct node-to-node communication proposes a recursive
grouping algorithm to pattern establish routing tables and network addresses [PLGP06]. The de-
terministic nature of the grouping algorithm limits ability of compromised nodes to a�ect routing
information. However, because the grouping algorithm assigns network addresses together with
routing information, this limits its applicability for the intra-cluster communication, as network
addresses of each node must be unique within the whole network, but not only within the cluster.
Moreover, the communication pattern typical for the TeSOS network is node-to-sink rather than
node-to-node.

Secure routing protocols for Hierarchical WSN. Two-Tier Secure Routing (TTSR) pro-
tocol [DGXC07] represents the network as two tiers, one tier is responsible for the inter-cluster
communication, while another one for the intra-cluster communication. Location-based routing
strategy is applied for communication across cluster heads, while tree-based routing is used for
communication within the cluster. TTSR cannot be applied to TeSOS network, as it assumes
weaker adversary model: Cluster heads are trusted in TTSR, while in TeSOS WSN the adver-
sary is able to compromise them (with accordance to the TeSOS adversary model formulated in
Section 3.1.3).

Resource Oriented Security Solution (ROSS) [CC07] is a framework that aims at protecting
a network layer of HSNs from malicious attacks. The adversary model of ROSS assumes that
cluster heads are not trusted, however, no proactive measures are taken against adversarial CHs,
but the framework relies on the assumption that compromised nodes are somehow detected,

6It is natural to assume that initially any network has no compromised nodes. When a node gets compromised,
it replaces true location information with a forged one, thus the reported location information changes.
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and subsequently excluded from the network. This reactive strategy is not very suitable for the
TeSOS network, as it is preferable to tolerate possible compromises of the cluster heads rather
than to detect them.

4.2.4 Secure Wake-Up and Attestation

Secure wake-up can be divided into two problems, the security of sleep cycles of WSN nodes and
the integrity of nodes after wake-up.

Secure Sleep Cycles Not much has been published on the security of sleep cycles in WSNs.
As described in Section 4.1.2, denial of sleep attacks are very di�cult to mitigate. It is typically
insu�cient to validate incoming service requests since the communication interface itself and
message processing and validation already consume a signi�cant amount of energy. One approach
is to reduce wake-up cycles and the need for sensors to be woken up through communication
signals. The authors of [LCCK07] present a detailed classi�cation and analysis of events in a
WSN to optimize this behavior. Another approach presented in [SBS02] uses a secondary low-
power radio that wakes up the energy-intensive components after the wake-up command was
validated. The authors of [FH09] adapt this idea for sensor networks and propose the use of
authorization cookies using symmetric cryptography that are directly veri�ed by the �rmware of
the low-power radio.

Endpoint Integrity The goal of endpoint integrity is to let a remote veri�er have assurance
in the integrity of a sensor platform at a given point in time, i.e., to exclude the possibility of
malicious or unwanted software running on the device. This is a di�cult problem as a compro-
mised platform must be assumed to lie about its internal state towards a veri�er. There are two
known approaches to this problem: Either a special component of the system is assumed to be
robust against compromise and can thus be used to report the state of the overall system, or the
attestation procedure is designed such that it is hard for an attacker to emulate.

A well-known example for the former solution is the Trusted PlatformModule (TPM) [TCG05b,
TCG04] developed by the Trusted Computing Group (TCG). In this design, a hardware compo-
nent is introduced that maintains a secure log of the system state. When receiving a challenge
from the veri�er, the hardware module creates a report from this system log that can be used
by the veri�er to evaluate if the remote platform can be trusted or if unknown code was loaded.

The latter solution, also known as software attestation [SPvDK04] exploits the fact that an
adversary must emulate the attestation procedure to create a result that is accepted by the
veri�er. Assuming that the adversary is not able to physically modify the platform, [SPvDK04,
SLS+05] thus implement the attestation procedure such that any emulation leads to delays that
can be detected by the veri�er. The method was adapted for secure software update for sensor
sensor networks in [SLP+06]. Unfortunately, software attestation is very di�cult to implement
securely [SCT04, CFPS09] and requires impractical assumptions like a secure channel to the
compromised platform.

Generally, while such measures make it harder for an adversary to remain undetected, there
are also a number of unsolved problems: It is still unclear what properties must be measured and
if speci�c properties exist at all whose state can be used to reliably detect modi�cation of running
software. In general, execution of code depends on the data to be processed. Implementation
�aws can be used to give the data complete control over the program �ow, even if it resides in not
executable memory regions [BRSS08]. However, integrity measurement of the data that some
software is working with is only meaningful if the veri�er can validate this measurement, which
makes it hard to validate unanticipated data like regular sensor measurements or user (adversary)
input [CFPS09, SCT04].
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4.2.5 Secure Time Synchronization

Secure Time Synchronization, the identi�cation of clock o�sets between peers in the presence
of adversaries, has multiple known and practical solutions in area of network systems [SBK05].
In case of WSNs however, [MRS05, EE01, SBK05] argue that known fault-tolerant solutions
for distributed systems like the Flood Time Synchronization Protocol (FSTP) [MKSL04] or
the Network Time Protocol (NTP) [Mil91] are not suitable for use in WSNs. Due to the strong
hardware constrains, even listening for radio broadcasts, which some of the existing protocols use
for e�cient information exchange, is considered highly expensive. Additionally, WSNs scenarios
are complicated by stronger adversaries that can delay or even speed up the �ow of packets. It is
shown in [JDUX09] that secure distributed time synchronization in face of compromised nodes
is NP-hard in general and still polynomially hard in case of fully connected network subgraphs,
e.g., within a local WSN cluster.

As pointed out in [MRS05], the easiest way to address this problem is to not require time
synchronization at all. If time synchronization is required by the application, the algorithm
should be reviewed to identify the speci�c requirements. For instance, the µ-TESLA protocol
presented in Section 4.2.1 does not require a very precise synchronization. On the other hand,
a localization service based on triangulation7 of sound measurements requires highly precise
synchronization, but only for the corresponding local subgraph of the WSN [MRS05]. In both
cases, the synchronized time must not necessarily be synchronized with an external clock, like
the standard Coordinated Universal Time (UTC).

In correspondence with [JDUX09, Ya07], we categorize WSN time synchronization proto-
cols as creating either relative or absolute synchronization amongst the participants. In case of
absolute time synchronization, there is obviously always a reference that acts as sender to syn-
chronize recipients. However, in case of relative time synchronization, we can further distinguish
sender-to-receiver and receiver-to-receiver synchronization: In contrast to sender-to-receiver syn-
chronization, which uses a sender as authority regarding the current time, receiver-to-receiver
synchronization only establishes a common time reference between neighbors by identifying their
clock o�sets relative to a third party. Further, we can distinguish single-hop from multi-hop
synchronization in that multi-hop protocols attempt to synchronize nodes that are unable to
reach each other directly.

WSN-speci�c attacks on time synchronization protocols were �rst described in [MRS05].
Apart from illustrating attacks on predominant time synchronization methods for WSNs, the
authors of [MRS05] also made �rst suggestions for secure time synchronization. In case of single-
hop sender-receiver synchronization, they suggest to use µ-TESLA to authenticate messages of
the sender. For receiver-receiver synchronization, they suggest to randomly elect a node to act
as sender. In case of multi-hop synchronization, the single-hop synchronization protocol is used
iteratively along the path to the target node. For additional security, the authors of [MRS05]
propose seldom µ-TESLA-protected broadcasts of the current WSN time by central authorities
to reduce the overall error margin a possible adversary may introduce. Similar to [SZC07] they
further suggest to use redundant synchronization with di�erent nodes to detect deviations intro-
duced by adversaries and to discard synchronization messages from such nodes (containment).

The problem of timeliness of time synchronization messages was identi�ed in [GvHS, GPvS08].
The works propose protocols for pair-wise, group-wise and multi-hop time synchronization, all of
which leverage authenticated time stamps and the observation that the average sender-receiver
delay for direct neighbors mostly depends on the speed of the radio, which allows to detect and
discard delayed or speeded packets. Secure Pairwise Synchronisation (SPS) is the base protocol
of the suite, using a simple challenge-response protocol to establish the clock o�set to a neighbor.

7Triangulation is a technique to localize an object's position relative to a receiver based on the time that it
takes for, e.g., radio emissions, to reach that receiver. It takes at least three receivers to unambiguously locate an
object within a two-dimensional plane. When combining the relative measurements and receiver positions, the
estimate of the position of the object is determined by the accuracy of the receiver's clock synchronization.
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It is used in Secure Groupwise Synchronization (SGS) to synchronize each member of a group
with every other member using a batched broadcasts. Secure Transitive Multi-hop Synchroniza-
tion (STM) on the other hand is intended to establish a global time reference in a WSN using
SPS in an iterated fashion. Identi�cation of malicious nodes in SGS is possible but requires
computation and communication e�ort that increases at least linearly with the group size. To
prevent compromised nodes in STM from providing arbitrary time references to their children,
[GPvS08] also proposes the use of multiple alternate paths.

TinyReSync [SNW06] is a synchronization protocol implemented for TinyOS [HSW+00b]. It
uses SPS from [GvHS] but inserts time stamps at the MAC-layer as proposed in [GKS03]. After
local (relative) synchronization, the global WSN time is established via iterated and repeated
broadcast of the local clock di�erences by each node in the WSN. Additionally, TinyReSync
authenticates timestamps and timeliness of broadcasts using the improved µ-TESLA described
in Section 4.2.1. Since each node repeatedly broadcasts its time di�erence to the common WSN
time source, a node that receives t time references can trivially identify up to t−1

2 compromised
nodes.

Another approach to µ-TESLA authenticated time synchronization is presented in [YQF07],
where initial synchronization is established using a global master key that is purged after ini-
tialization of the network. The authors of [San07] use SPS together with clock skew estimation
from [GTS+09] to synchronize a hierarchical network in three phases, by synchronizing clusters,
cluster heads, and optionally the resulting overall WSN time to an external reference.

4.2.6 Trust Management

Due to the distributed and highly exposed nature of WSN deployments, the trustworthiness of
peer nodes is a central problem. While trust management generally also includes matters like
key distribution and authorization, this section only re�ects trust management as perceived in
sensor network literature, which concentrates on identifying malicious or sel�sh sensor nodes to
prevent them from in�uencing network operation.

To achieve these goals, trust management systems collect evidence of good or bad behavior,
recorded either through direct observation or in form of second hand information from other
nodes. Examples are recordings of similar sensor data reports from other nodes or con�rmations
of successfully routed data packets. Depending on the architecture, the evidence is evaluated on
the individual nodes (distributed design) or gathered at central authorities. The �rst approach
results in individual (asymmetric) trust relations, while the centralized design produces a globally
consistent and complete view of all trust relations at the cost of additional communication.
Depending on the kind of evidence collected and the purpose of the network, the assigned trust
levels can be used to improve routing decisions, data aggregation, election of cluster heads or
other critical operations. A more detailed discussion and classi�cation of trust management and
reputation systems can be found in [HZR09].

In one of the �rst works on trust management in sensor networks [KR05], the authors propose
that the Cluster Head (CH) compares reported sensor measurements to those of physically close
neighbors nodes. After statistical analysis to detect outliers, a Trust Index maintained by the
CH is updated to re�ect the reliability of the nodes based on good or faulty data reports. Nodes
with high trust levels are preferred in future CH elections. Further, Shadow Cluster Heads are
introduced as fall-back to prevent the loss of the Trust Index table. The process is modi�ed
in [CPG06, PC07] such that each node in a cluster maintains its own record of evidence for
each neighbor. The resulting trust values are used only when electing the new cluster head, i.e.,
each node will elect the node with the highest trust level in its local trust table. The opposite
approach is used in [SJL+06] to achieve higher scalability in case of distributed WSNs. In this
design, a hierarchy of CHs are used to organize the WSN and each CH computes an aggregated
trust value from its respective cluster members. Each cluster head reports the aggregated value
to the next higher CH until the Base Station (BS) is reached. The BS then classi�es the reported
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trust values and broadcasts which clusters are trusted, untrusted or uncertain.
Since these works are prone to bad-mouthing attacks (see Section 4.1.2), [CWZG07] intro-

duces an agent-based trust management where dedicated authorized agent nodes are inserted
in the WSN to collect evidence and report computed trust values. In contrast, the work
in [CWZG07] proposes to use software agents that run in secure isolated execution environ-
ments that are assumed to be available on each sensor node. The agents monitor the actions
of their local platform and provide certi�cates to local applications that can be used to indicate
the trust level of the local platform towards peers.

Later systems like [GBS08, Zia08, TMK+09] make use of reputation models to improve on
their trust inference mechanism. The concept of reputation allows a more accurate evaluation by
including second hand evidence with the appropriate trust factor of the reporting party. Further,
it allows to include multiple types of evidence in correspondence to their practical impact and
to emphasize current behavior over older evidence (aging). As emphasized in [HZR09], the
association of recorded evidence with the corresponding reporting identities is also essential to
mitigate bad-mouthing and Sybil attacks.

Other works use second hand information to improve data aggregation [GBS08] and net-
work routing [Zia08]. Both are prone to bad-mouthing attacks, however, [GBS08] mitigates this
e�ect by prioritizing �rst hand evidence and considering the trust level of nodes that report
the second hand evidence. In case of network routing decisions, sensor nodes with high trust
can concentrate work load onto them and quickly exhaust their battery. To avoid this, works
[TMK+09, SPT+09] thus also include the remaining battery power into the calculations. To col-
lect �rst hand evidence on good routing decisions, [Zia08] proposes to let the sensor node listen
after sending to con�rm if the chosen neighbor correctly forwards the message. However, to fully
prevent malicious manipulation it is required that the �nal receiver of a message acknowledges
the received message [TMK+09]. Other types of evidence are the willingness of a node to partic-
ipate in the propagation of second hand evidence and the proper use of cryptographic protocols,
e.g., properly authenticated messages [TMK+09].

As shown in [JIB07, HZR09], many methods can be used for calculation and representation
of trust. Instead of employing arbitrary metrics, [HZX08, LTS09] use the notion of entropy to
represent the uncertainty of a node about the trustworthiness of another. An evaluation of the
proposed trust management systems and a list of best practices can be found in [LRAFG10].
An analysis of the energy consumption of three reputation-based trust management systems is
presented in [SLL09], however, no practical energy consumption measurements are provided.

4.2.7 Intrusion Detection

In recent research, there is a trend to design IDSs which are able to detect two and more attacks
in a WSN rather than to defend against a speci�c attack. Two major models of intrusion
detection include anomaly detection and misuse detection [KV02] (signature-based) detection.
Anomaly detection builds a model of normal behavior, and compares the model with detected
behavior. Such a system may be able to detect unknown attacks, but can also produce high rate
false positive alarms. Signature-based systems compare observed behavior with known attack
patterns (signatures). They have higher accuracy, but detect only known attacks and may require
signi�cant amount of memory to store all known signatures.

A complete architecture for IDSs in WSN typically has three building blocks [KDF07]: (i)
network monitoring, (ii) decision making and (iii) action.

In a monitoring phase, network nodes perform detection by analyzing local information and
overhearing neighbor communication. Most common approach to detect intrusion in WSNs is
anomaly-based [dSMR+05, OM05, LNLP06, BG06, KDF07, HHC07, KGD08b, YT08, HHJ09,
PGS09, BMAAdG09]. Some of them analyze statistics of tra�c patterns [OM05, LNLP06,
BMAAdG09], while others are rule-based, i.e., use rules which characterize normal behavior
and monitor any behavior which breaks these rules. Systems based on misuse detection are not
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common in WSN due to the imposed overhead, but they exist, e.g., the IDS presented in [YWL09]
utilizes a mixture of both, anomaly and misuse detection approaches.

In the decision making phase, the decision can be made either by a certain trusted sensor
node (e.g., by a cluster head in [HHJ09]) or nodes can cooperate in order to produce a global
intrusion detection decision [HHC07, KDF07, KGD08b, KBG+09], e.g., using voting schemes.
When global decision is produced as positive, the network should perform the prede�ned action
to mitigate or defend against the attack.

Possible defense actions can be divided into two subcategories [KDF07]: direct and indirect
response. Direct response assumes excluding the suspicious node from any paths and forcing
regeneration of new cryptographic keys with the rest of the neighbors. Indirect response involves
notifying the base station about the intruder or reducing the quality estimation for the link to
that node so that it will gradually loose its path reliability, or reducing trust value for that node
in case if trust management system is applied.

In context of TeSOS project, we are interested at most in those IDSs which are designed
for hierarchical heterogeneous WSNs. IDSs proposed in [LNLP06, HHC07, HHJ09, PGS09] are
intended for clustered WSNs, but they assume re-election of the cluster heads and thus cannot
be applied to heterogeneous TeSOS WSN. The only systems which assume a heterogeneous
network structure are proposed in [SCKH05, YWL09]. The work in [SCKH05] concentrates
on key establishment mechanisms and general architecture of the IDS without considering any
concrete techniques to detect attacks (i.e., it is assumed that attack is somehow detected in a
monitoring phase). In this approach, cluster heads are responsible for monitoring regular nodes
in own cluster, while several elected nodes in a cluster perform monitoring of a cluster head.
Work [YWL09] proposes the Hybrid Intrusion Detection System (HIDS) which utilizes rule-
based anomaly detection to detect intrusion and then classi�es the attack by applying neural
network learning technique based on the Back Propagation Network (BPN) model. Simulation
results demonstrate very high accuracy and low false positive rate. Unfortunately no information
is provided about the imposed overhead, which can be high because of the two passes (�rst
to detect attack and second to classify it) and misuse detection technique which is already
concluded [KDF07] to be resource expensive.
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5 Hardware for Embedded and Sensor
Devices (M3)

The main goal of this chapter is to analyse and compare current microprocessor architectures
concerning their applicability for sensor nodes in secure sensor networks. Therefore, the following
sections de�ne test criteria and analyse available hardware platforms with particular focus on:

• Applicability for using cryptographic algorithms in general

• Support of cryptographic algorithms in hardware

• Integration of Digital Signal Processors (DSPs)

• Applicability for sensor networks

This chapter is structured into four main parts. The �rst part (Section 5.1) de�nes test criteria
to be used during the analysis and comparison of potential sensor network hardware. The second
part (Section 5.2) analyses the suggested hardware, followed by the third part in Section 5.3,
which compares the features of the analysed hardware architectures. The fourth part (Section 5.4)
analyses the energy e�ciency of each hardware architecture.

5.1 Test Criteria

This section de�nes the test criteria to be used during the analysis and comparison of potential
sensor network hardware. We distinguish the following seven categories:

1. Interfaces: Interfaces to the IT environment or external hardware devices, such as sensors

2. Memory: The type and amount of memory

3. Performance: The performance of the Central Processing Unit (CPU) and memory

4. Security Extensions: The availability of CPU-internal or -external security extensions

5. Power Management: The availability of sleep states of the CPU or external devices

6. Assurance: Whether the platform is certi�ed according to some security criteria

7. Additional Criteria: Additional hardware-speci�c extensions or functions

The following subsections discuss each category in more detail.
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5.1.1 Interfaces (Input/Output, I/O)

Communication between sensor nodes is one of the most essential functionalities of Wireless
Sensor Networks (WSNs). Moreover, sensor nodes have to be capable to access additional mea-
surement hardware, in order to collect and to capture data of their environment. Therefore, a
WSN node has to include interfaces to communicate with its environment. The following list
de�nes the I/O interfaces to be considered in this analysis:

• Network

� IEEE 802.15.4 (ZigBee)

� IEEE 802.11 (Wireless Local Area Network (WLAN))

� IEEE 802.3 (Ethernet)

� Other interfaces

• Peripheral/Programming

� Universal Asynchronous Receiver/Transmitter (UART)

� Universal Serial Bus (USB)

� Secure Digital Input Output (SDIO)

� General Purpose Input/Output (GPIO)

� Serial Peripheral Interface Bus (SPI)

� Inter-Integrated Circuit (I2C)

Regarding communication between sensor nodes, LAN, ZigBee, and WLAN are considered. Re-
garding communication between sensor nodes and additional measurement hardware, UART,
USB, SDIO, GPIO, SPI, and I2C are considered. In some cases, additional crypto-hardware is
connected, using one of the above mentioned interfaces.

5.1.2 Memory

The available embedded devices di�er from each other, regarding the amount and type of memory
they provide. We mainly focus on the amount of memory, which the embedded device is capable
to use and the type of memory, which is used. The memory type is especially important, because
some devices need very fast memory, while some other devices need additional memory to store
data for internal backups of measured sensordata. We thus examine:

• Available amount of memory

• Memory-technology (Static Random Access Memory (SRAM), Synchronous Dynamic Ran-
dom Access Memory (SDRAM), Flash, others)

• Memory-management with regards to quality, including durability or Mean Time Between
Failures (MTMF)

5.1.3 Performance

Typically, embedded or wireless sensor hardware is designed to save as much resources as possible,
thus performance has a low priority. However, secure embedded operating systems that use
strong encryption and computationally intensive hashing algorithms typically need hardware
with a higher performance. Based on the classi�cation of sensor nodes into Big Nodes (BNs) and
Small Nodes (SNs) (see Section 3.1.2), the following list de�nes performance aspects considered
in this analysis:
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• Memory performance (access speed of volatile storage and caches)

• Processor speed for operations such as hashing, encryption, or decryption

• Availability of cryptographic co-processors

• Network performance

• Storage performance (speed of persistent storage such as Electrically Erasable Programmable
Read-Only Memory (EEPROM))

5.1.4 Security Extensions

Very often, hardware-based security extensions provide a higher degree of security than security
mechanisms only based on software. Moreover, hardware-based security extensions are often
more e�cient in terms of speed and resource consumption. Therefore, it is analysed, whether
the hardware platforms provide hardware-based security extensions, such as:

Security domains / Isolation: Security domains are used to segment existing IT infrastruc-
ture into logical zones with a common trust level. A security domain could be an isolated subset
of a network or hardware/software system combined with the computing resources attached to
that subset. Isolation is provided through software or hardware con�guration (e.g., Virtual Local
Area Networks (VLANs)), internal �rewalls, or virtualisation. The level of security results from
implementation of the policies, processes, and security technology deployed within a domain, as
well as the isolation boundary that de�nes the domain edges. The most important techniques
that help to secure WSNs are listed below:

• Virtual address spaces

• TrustZone (see Section 5.2.1)

• Protection Rings

• Other realisations of security domains

Secure or authenticated boot: As described in Section 4.2.2, secure or authenticated boot
gives the possibility to ensure that a platform only loads allowed components during bootstrap-
ping. We focus on the the following techniques, to ensure the unchanged software state of a
sensor node.

• Texas-Instruments M-Shield: M-Shield is a security extension [JA] designed by Texas In-
struments to provide a high-security solution inside mobile platforms. Key bene�ts of
M-Shield are on-chip cryptographic keys, secure execution environment, secure storage,
secure chip-interconnects, Standard API to connect with TrustZone, Tampering detection,
and high-performance hardware-based cryptographic accelerators.

• TPM: A hardware device, protected against manipulation and designated for opt-in us-
age, providing protected capabilities and shielded locations. The Trusted Platform Mod-
ule (TPM) is a passive component and contains engines for random number generation,
calculation of hash values and RSA key generation. A TPM generates and stores keys, signs
or binds data to the platform and provides secure storage of measurement information of
the platform's current state. The TPM is available in two versions: The new version 1.2
speci�ed in [TCG05a] and the deprecated version 1.1b speci�ed in [TCG02]
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• Qualcomm SecureMSM: Originally designed to provide Digital Rights Management (DRM)
inside multimedia-oriented devices, Qualcomm designed a security extension called Se-
cureMSM [Qua]. As stated by Qualcomm, the key functionalities of SecureMSM are trusted
execution of applications, �ne granularity of permissions of executable content and API ac-
cess control, trusted boot with integrity checking of the mobile device software, and a secure
�le system to ensure integrity of sensitive data.

Secure storage: Many security primitives (ciphers, pseudo-random numbers, authentication
codes) require the availability of cryptographic keys. However, due to the large scale of sensor
networks and the limited hardware capabilities of sensor nodes, standard methods of key storing,
such as storing the key on a persistent memory, are not applicable. A secure storage has to
provide con�dentiality, integrity, and freshness. In addition to [WRLZ09], describing techniques
of a distributed data storage by proposing a novel dependable and secure data storage scheme
with dynamic integrity assurance, a secure storage can be realised in hardware. Examples of
security extensions that can be used to realise secure storage are M-Shield [JA], a TPM, or
Qualcomms SecureMSM [Qua].

Random Number Generator: The �randomness� necessary to generate secure cryptographic
keys requires a high quality, i.e. a lot of entropy, which cannot be generated by software mecha-
nisms only. Therefore, a physical device designed to generate such a sequence of random numbers
or bitstrings is required. The key material should be obtained from a true random source with
high entropy so that the security relevant mechanisms inside a WSNs can trust on, e.g., secure
cryptographic keys. In general, good mechanisms to generate secure randomness is a hardware-
generator based on microscopic phenomena, such as thermal noise or the photoelectric e�ect,
which are, in theory, completely unpredictable.

5.1.5 Power Management

As energy is the most relevant limiting factor for the operration of WSNs, especially in the
context of small sensor networks, this section analyses which power management features the
di�erent hardware platforms support. It is also analysed, how e�cient the hardware platform
is, i.e., how much energy it requires for important operations, such as cryptographic operations
(e.g., Advanced Encryption Standard (AES), Elliptic Curve Cryptography (ECC) or Secure Hash
Algorithm-1 (SHA1)). In detail, the following aspects will be considered:

Types of sleep-modes: Some architectures already include di�erent types of sleep modes
within their own power management mechanisms. These sleep-modes are listed and described
shortly.

Power-consumption: Depending on the processor speed, there is a strong interrelation be-
tween performance and consumed energy. Moreover, as the processor is one of the main energy-
consuming parts of a sensor node, we focus on the consumption of an activated or deactivated
radio. Since some architectures provide di�erent types of sleep-modes, these sleep-modes are
considered, regarding their reduction of the consumed energy.

E�ciency: Depending on the instruction set, the design, and additional power-management
functionalities, processors consume di�erent amounts of energy to realise the same software
function. Especially cryptographic operation, such as AES, ECC, or SHA1, and other typical
functions inside WSNs, strongly depend on e�cient implementations inside software and/or
hardware.
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5.1.6 Assurance

To allow a high-level estimation of the quality of security mechanisms used inside WSNs, existing
certi�cates and their availability inside WSNs are considered. A special focus will be on the
following standards:

FIPS: Used as standards and guidelines, the United States federal government publicly an-
nounce their Federal Information Processing Standards (FIPS) [oSN] for use by all non-military
government agencies and by government contractors. Especially the FIPS 140-standard with its
four levels of certi�cation are relevant in the area of WSNs since, they also focus on requirements
for physical tamper-evidence and -resistance.

Common Criteria: The Common Criteria (CC) permits comparability between the results of
independent security evaluations. The CC does so by providing a common set of requirements
for the security functionality of IT products and for assurance measures applied to these IT
products during a security evaluation. These evaluations are partly applied in WSNs and their
used hardware platforms.

5.1.7 Additional Criteria

These criteria include organisational or even political aspects, such as the country where the
embedded hardware is developed and produced or the price, which can also be important aspects
to be considered.

Integration of signal processors: In some cases, available devices have integrated DSPs,
which can be used for accelerated computation inside the sensor node.

Word size width of processor architecture: Depending on the available word size of the
processor architecture, its Instruction Set Architectures (ISA) can be more or less powerful, i.e.,
operate on more data at the same time. Also, addressing high amounts of memory depends on
the size of the used registers. For example, loading data from high memory addresses requires
two or more CPU-cycles if the full address is bigger then the CPU's word size.

Manufacturer: In security related areas, such as military or governmental usage, it can be of
interest who the manufacturer of the sensor hardware is.

Price: In WSNs with a huge amount of sensor nodes, the price of each node is also relevant,
thus this criterion is also considered in this document. Additional costs not examined in this
work are programming, maintenance, and deployment of the WSN.

5.2 Hardware Architectures

This section analyses and compares common hardware platforms used for embedded systems and
sensor nodes. The analysed hardware architectures are:

• ARM-Architecture, especially Cortex M0 [ARMb]

• Leon2-Architecture [Gaic]

• Leon3-Architecture [Gaif]

• Atmel AVR XMEGA [Atma]
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• Atmel SecureAVR [Atmf]

• Texas Instruments MSP430 [Texb]

• Trusted Sensor Node (TSN), based on Leon2 and provided by the Bundesamt für Sicherheit
in der Informationstechnik (BSI)

The following sections discuss these architectures in detail, focusing on their speci�c features
and di�erences. Section 5.3 summarises this chapter by a tabular comparison of these platforms,
based on the criteria de�ned in Section 5.1.

5.2.1 ARM-Architecture

This section gives a short overview of the currently available ARM-Architectures followed by
a more detailed look into the Cortex-M0 processor. Especially the Cortex-M0 processor has
been designed by ARM Holdings (ARM) to provide a secure mobile computing device where less
performance is needed.

Architecture Overview

ARM provides di�erent sub-types of their hardware architecture. Figure 5.1 gives an overview
of the currently available ones.

Figure 5.1: Di�erent types of currently available ARM-Architectures

Each hardware architecture represents a family of ARM processors with its own set of features,
such as Thumb, Thumb-2, Single instruction multiple data (SIMD), TrustZone, or Jazelle. Since
this document focuses on hardware platforms that can be used as sensor nodes, we concentrate
on the ARM Cortex-M series, which is designed for fast interrupt processing and cost-sensitive
devices requiring high energy e�ciency.
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ARM TrustZone

Since security domains are a desired security feature, this section brie�y introduce the ARM
TrustZone technology.

As already described in Section 5.1.4, security domain structuring is an approach to segment
existing infrastructure into logical zones, based on a common trust level. The ARM TrustZone
extension provides hardware support for two separate address spaces, such that code executing
in the non-secure world cannot gain access to an address space marked as secure. A special
monitor mode secures transition between the two worlds (see Figure 5.2).

The TrustZone technology provides a secure environment for system features, such as key
management and authentication mechanisms enabled by the operating system. The protection
provided by the technology is useful for consumer privacy and extending a range of services, such
as mobile banking and multimedia entertainment, to widespread consumer adoption and use.

Currently, TrustZone is implemented only in the ARM Cortex-A8, Cortex-A9, Cortex-A9
MPCore and ARM1176JZ(F)-S, thus it is not available in the Cortex-M-series.

Figure 5.2: Modes in an ARM core using TrustZone

As Figure 5.2 illustrates, the physical processor core(s) that implement TrustZone provide
two virtual cores, one considered non-secure and the other secure, and a mechanism to perform
secure context switches between them, known as monitor mode. The value of the �NS bit�, a
Secure Con�guration Register (SCR) [ARMg] that can only be accessed in secure (privileged)
modes, sent on the main system bus, is the identity of the virtual core that performed the
instruction or data access. This enables trivial integration of the virtual processors into the
system security mechanism; the non-secure virtual processor can only access non-secure system
resources, but the secure virtual processor can see all resources. For additional information about
ARM TrustZone we refer to [ARMi] and [ARMf].

Although it is assumed in Section 3.1.2 that SNs are not equipped with additional features,
such as TrustZone, the ability to separate the physical processor core into two di�erent parts
could be used in BNs as an additional hardware security feature.
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Cortex-M-series

Since the Cortex-M-series seems to be best suitable to be used as a basis for WSN nodes,
especially for SNs, the following sections discuss this CPU family in more detail. Inside the
Cortex-M-series, ARM implemented a couple of techniques that are shortly described in the
following.

Thumb technology: Since memory in WSN nodes is very limited, all operations on these
platforms have to be optimised for code size. The ARM Thumb technology [ARMe] is an exten-
sion of the 32-bit ARM-Architecture and a possible solution to solve this code size issue. The
Thumb instruction set features a subset of the most commonly used 32-bit ARM instructions
compressed into 16-bit wide opcodes. On execution, these 16-bit instructions are decompressed
transparently in the instruction pipeline to full 32-bit ARM instructions in real time. Designers
can use both 16-bit Thumb and 32-bit ARM instructions sets and therefore have the �exibility
to emphasise performance or code size on a sub-routine level as their applications require.

Thumb-2 technology: In addition to the reduced code size realised by the Thumb technology,
Thumb-2 [ARMc] reduces the code-size even more. Thumb-2 core technology adds a mixed mode
capability to the CPU, de�ning an additional set of 32-bit instructions that execute alongside
traditional 16-bit instructions in Thumb state. This reduces or removes the need for balancing
ARM and Thumb code in a system, since the 32-bit Thumb-2 instructions do not need to
be decompressed. Thumb-2 technology is a superset of Thumb technology and is backwards
compatible with existing ARM and Thumb solutions.

NVIC: The Nested Vectored Interrupt Controller (NVIC) ([ARMd], Chapter 5, page 47) is an
integral part of Cortex-M processors and provides the processors' interrupt handling abilities.
The Cortex-M processor uses a vector table that includes the address of the function to be
executed for a particular interrupt handler. On accepting an interrupt, the processor fetches
the address from the vector table. To reduce gate count and enhance system �exibility, the
Cortex-M processor uses a stack based exception model. When an exception takes place, critical
general purpose registers are pushed on to the stack. Once the stacking and instruction fetch are
completed, the interrupt service routine or fault handler is executed, followed by the automatic
restoration of the registers to enable the interrupted program to resume normal execution. This
approach removes the need to write assembler wrappers that are required to perform stack
manipulation for traditional interrupt service routines based on the programming language C,
which reduces code size and thus saves memory in WSNs. The NVIC supports nesting (stacking)
of interrupts, allowing an interrupt to be serviced earlier by exerting higher priority.

WIC: The Wake-up Interrupt Controller (WIC) provides a low power interrupt detection logic
that can emulate the full NVIC behaviour when correctly primed by the full NVIC on entry to
very-deep-sleep. For low power applications, it is desirable to reduce the dynamic and static
power-consumption of the processor while in deeper sleep modes. This can be achieved by
stopping clocks, removing power from the processor or both. When powered o�, the NVIC is
unable to detect interrupts, so that knowing when to come out of sleep becomes problematic.

Unlike the NVIC, the WIC has no prioritisation logic. It implements a simple interrupt
masking system, signalling for wake-up as soon as a non-masked interrupt is detected. The WIC
is invisible to end users of the device.

Cortex M0 processor

For the purpose of this study, we focus on the ARM Cortex-M0 processor with its low gate count,
an energy e�cient processor based on the ARMv6M architecture that is intended for microcon-

47



troller and highly embedded applications. The Cortex-M0 is a con�gurable, 32-bit Reduced
Instruction Set Computer (RISC) processor, has an AMBA High-performance Bus (AHB)-Lite
interface and includes an NVIC component. It also has optional hardware debug functionality
and can execute Thumb code.

Figure 5.3 illustrates a block diagram of the architecture overview of the Cortex-M0 processor.

Figure 5.3: ARM Cortex-M0 processor design

Key features of this processor include Thumb instruction set with decreased code-size and
power-control using NVIC and WIC, in order to permit a slower processor clock or increased
time in sleep mode. Moreover, a 32-bit hardware multiplier is included in this architecture. The
ARM Cortex-M0 can be con�gured with additional features, such as a multiplier optimised for
speed or size, up to 32 external interrupts, up to four breakpoint comparators or up to two
watchpoint comparators. The 32x32-bit multiplier of the processor can be implemented either as
a fast single cycle array or a 32-cycle interactive multiplier, thus the processor can be optimised
for power consumption or performance.

Power Management and Performance: For the Cortex-M0 processor, ARM estimates a
power consumption of about 85 microwatts/MHz (0.085 milliwatts). Dhrystone benchmark [Ala]
reaches up to 0.9 DMIPS/MHz [ARMh].

Applicability in WSNs: A manufacture that is currently using the ARM Cortex-M0 as a
sensor node is NXP Semiconductors (NXP) [NXPb] with its LPC11xx microcontroller. NXP
designed the device to be used in battery-powered systems, e-Metering, consumer peripherals,
remote sensors or any 16/32-bit applications [NXPa]. Compared to other architectures, such as
the TI MSP430 (see Section 5.2.7), the Cortex-M0 is not widely used in the area of WSNs.

5.2.2 Leon2-Architecture

The Leon2 is a Very-high-speed integrated circuits Hardware Description Language (VHDL)-
model designed by Gaisler Research [Gaid] and is published as Open-Source component, based
on the GNU Lesser General Public Licence (LGPL) license [Freb]. The Leon2 is a 32-bit RISC-
processor build from the SPARC-V8-architecture, which is described in IEEE 1754 [IEEc]. An
advantage of the LGPL license is that the Leon2 can be used as a core in a system-on-chip design
without having to publish the source code of possibly additional used cores.
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Architecture Overview

The Leon2 o�ers separate instruction and data caches, a hardware multiplier and divider, an
interrupt controller, a debug support unit with trace bu�er, two 24-bit timers, two UARTs, a
power-down function, a watchdog, a 16-bit I/O port, a memory controller, an Ethernet Media
Access Control (MAC), and a Peripheral Component Interconnect (PCI) interface.

New modules can easily be added, using the on-chip Advanced Microcontroller Bus Archi-
tecture (AMBA) AHB/Advanced Peripheral Bus (APB) buses (more details can be found in
[ARMa]). The VHDL model is fully synthesisable with most synthesis tools and can be imple-
mented on both, Field-Programmable Gate Arrays (FPGAs) and Application-Speci�c Integrated
Circuits (ASICs). Simulation can be done with all VHDL-87 [IEEa] compliant simulators.

Moreover, the Leon2 o�ers advanced fault-tolerance features to withstand arbitrary Single
Event Upset (SEU) errors without loss of data. SEU-errors are changes of states caused by ions
or electro-magnetic radiation striking a sensitive node in a micro-electronic device, such as in
a microprocessor, semiconductor memory, or power transistors. The fault-tolerance is provided
at design VHDL level, and does neither require an SEU-tolerant semiconductor process nor a
custom cell library or special back-end tools. A block diagram of Leon2 is shown in Figure 5.4.

Figure 5.4: Leon2 processor design

Since the Leon2 is an open architecture, a comprehensive public documentation exists, which
makes it possible to describe every element of the Leon2-Architecture in detail.

Integer unit: The Leon integer unit implements the full Scalable Processor Architecture (SPARC)
V8 standard, including all multiply and divide instructions. The number of register windows is
con�gurable within the limit of the SPARC standard (2 - 32), with a default setting of 8.

Floating-point unit and co-processor: The Leon processor model provides an interface
to the high-performance GRFPU (Gaisler Research �oating-Point Unit (FPU)) [Gaia], or the
Meiko FPU core (Sun Microsystems). Furthermore, a generic co-processor interface is provided
to allow interfacing of custom co-processors. It is thus possible to attach additional modules,
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e.g., cryptographic co-processors, to the processor, which can be useful in the context of secure
WSNs.

Memory management unit: The (optional) Memory Management Unit (MMU) implements
a SPARC V8 reference MMU and allows usage of commodity operating systems, such as Linux or
Solaris. The MMU can have a separate instruction bu�er, data bu�er, or a common Translation
Look-aside Bu�er (TLB). The TLB is con�gurable for 2 to 32 fully associative entries.

Debug support unit: The (optional) Debug Support Unit (DSU) allows non-intrusive de-
bugging on target hardware. The DSU allows to insert breakpoints, watchpoints, and access to
all on-chip registers from a remote debugger. A trace bu�er is provided to trace the executed
instruction �ow and/ or AHB bus tra�c. The DSU has no impact on performance and has low
area complexity. Communication to an outside debugger (e.g., gdb [Frea]) is achieved by using
a dedicated UART (RS232) or through any AHB master (e.g., PCI).

Memory interface: The �exible memory interface provides a direct interface Programmable
Read-Only Memory (PROM), memory mapped I/O devices, SRAM and SDRAM. The memory
areas can be programmed to either 8-, 16-, or 32-bit data width.

Timers: Two 24-bit timers are provided on-chip.

Watchdog: A 24-bit watchdog is provided on-chip. The watchdog is clocked by the timer
prescaler. When the watchdog reaches zero, an output signal is asserted, which can be used to
generate a system reset.

UARTs: Two 8-bit UARTs are provided on-chip.

Interrupt controller: The interrupt controller manages a total of 15 interrupts, originating
from internal and external sources. Each interrupt can be programmed to one of two priority
levels. A chained, secondary controller for up to 32 additional interrupts is also available.

Parallel I/O port: A 16/32-bit parallel I/O port is provided.

AMBA on-chip buses: The processor has a full implementation of AMBA AHB and APB
on-chip buses. A �exible con�guration scheme makes it simple to add new cores. Also, all
provided peripheral units implement the AMBA AHB/APB interface making it easy to add
more of them, or reuse them on other processors using AMBA. More information about the
AMBA can be found in [ARMa].

PCI interface: A low complexity PCI interface can be enabled and can also be used for
debugging.

Ethernet MAC: An Ethernet 10/100 Mbit MAC can be enabled. The MAC is based on the
Ethernet MAC core from OpenCores ([Ope]), with an additional AHB interface.

On-chip RAM: A (small) on-chip Random Access Memory (RAM) can be attached to the
AHB bus, providing fast local memory. The size can be con�gured from 1 to 64 kB.

Also, the Leon2-Architecture provides the possibility to integrate a hardware multiplier into
the design. It was designed under contract from the European Space Agency [Eur], and is
now available as a radiation-hardened components from Atmel (AT697 and AT7913). More
information on the Leon2 can be found in [Gaie] or [Gaic].
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Power Management and Performance

Since the Leon2 design does not include power management, it has to be implemented by the
device vendor or other designers.

Using 4K + 4K caches and a 16x16 multiplier, the Dhrystone 2.1 benchmark ([Ala]) reports
1,550 iteration/s/MHz using the gcc-2.95.2 compiler. This translates to 0.9 Dhrystone Million
Instructions Per Second (MIPS)/ MHz using the VAX 11/780 value a reference for one MIPS
[Res].

Leon2 o�ers a 5-steps pipeline to execute commands, which is separated into the following:

• Fetch: Fetch the instruction from the memory, using the memory controller

• Decode: Decode the instruction and get the operands out of the register-window

• Execute: Operation is executed inside the ALU

• Memory: The Result from the execute step is stored in the data-cache

• Write: The Result from the execute step is written back to the corresponding register-
windows

Assuming the necessary data is already in cache, almost all operations can be done in only
one clock-cycle. Excluded are jump, load, and store operations. A complete table of cycles of
important functions is illustrated in Section Table 5.1.

Table 5.1: Instruction timings inside Leon2

Instruction Cycles

JMPL 2
Double load 2
Single store 2
Double store 3
SMUL/UMUL 1/2/4/5/35 (depends on multiplier conf.)
SDIV/UDIV 35
Taken Trap 4
Atomic load/store 3
All other instructions 1

More detailed information on power consumption of this architecture can be found in Sec-
tion 5.4.2.

Applicability in WSNs

The Leon2 brings a lot of bene�ts for designing a sensor node. It is available for free, and
designers can modify it to their own needs. An example for the suitability of Leon2 for sensor
nodes in WSNs is the Trusted Sensor Node (Section 5.2.6).

5.2.3 Leon3-Architecture

As an advancement of the Leon2 architecture described in Section 5.2.2, the Leon3 is a 32-bit
processor based on the SPARC V8 architecture with support for multiprocessing con�gurations.
The processor is fully synthesisable and up to 16 CPU cores can be implemented in Asymmetric
Multiprocessing (AMP) or Synchronous Multiprocessing (SMP) con�gurations. The multiproces-
sor core is available in full source code under GNU General Public Licence (GPL) for evaluation,
research, and educational purposes. A low cost license is available for commercial applications.
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Architecture Overview

The Leon3 provides hardware support for cache coherency, processor enumeration, and interrupts
steering. A debug interface allows non-intrusive hardware debugging of both single- and multiple-
processor systems, and provides access to all on-chip registers and memory. Trace bu�ers for
both instructions and AMBA bus tra�c are available. Each core can be con�gured to use an
IEEE-754 [IEEb] compliant FPU for �oating-point operations (for area critical designs one FPU
can be shared between CPU cores). A SPARC reference MMU is provided for advanced memory
management and protection. Figure 5.5 illustrates the architecture of a Leon3 processor.

Figure 5.5: Leon3 Architecture Design

The Leon3 processor is highly con�gurable. The con�guration of each processor in terms of
cache size, FPU, and MMU usage can be individually de�ned. Asymmetric con�gurations, such
as two main processors with FPU and MMU and two I/O processors, are supported. The Leon3
processor system takes full advantage of the plug&play capabilities of the GRLIB IP-library
[Aer], increasing �exibility and reducing development time.

For SMP con�gurations, the operating systems Linux 2.6 SMP and eCos have been ported for
Leon3. Linux 2.6 SMP is able to automatically load balance applications across multiple Leon3
cores, providing hardware/software architectures for high performance systems. For loosely cou-
pled (message passing) AMP con�gurations, operating systems, such as RTEMS [Corc] and
uCLinux [DI], are available. More information about operating systems can be found in Chap-
ter 7.

A �exible implementation using between 1 and 16 processors, and sizing of both, data and
instruction cache is between 0k and 2 MB across each CPU is possible. The GRLIB IP-library
with plug&play functionality enables rapid and �exible SoC designs. Also, an optional IEEE-
754 Floating Point Unit [IEEb] and a SPARC reference MMU can be added to the processor.
Additional information on Leon3 can be found in [Gaig] or [Gaif].

Power Management and Performance

Individual processors can be shut down, which provides signi�cant savings for dynamic power
consumption. Also, each processor's clock CPU can be individually gated o� in power down

52



mode for further reduction of both, dynamic and static power consumption.
A typical con�guration with four processors is capable of delivering up to 1600 Dhrystone

[Ala] MIPS of performance.
With its SPARC V8 architecture multiprocessor-capable instruction set architecture used,

400 MHz on a 0.13 um ASIC process, giving up to 6400 Dhrystone MIPS of performance is
reached. This brings up to 1.4 DMIPS/MHz, 1.8 CoreMark/MHz (using gcc version 4.1.2).

Applicability in WSNs

Leon3 is the successor of the Leon2. The Leon3 adds multicore options to the architecture and
o�ers increased performance in combination with power management. Regarding WSNs, the
Leon3 is less useful for SNs, but much more for BNs. The Leon3 o�ers a good starting point to
design customised sensor device, since the design is using a public license and gives the designer
the possibility to design a fast device in a relatively small amount of time. Currently, there are
no sensor nodes publicly available, which use the Leon3-Architecture.

A special version of Leon3, the LEON3FT-RTAX Fault-tolerant Processor is used in combi-
nation with the radiation resistant FPGA made by Actel in the satellite systems Chandrayaan-1,
Prisma, and the Taiwanese Argo. This shows the potential of Leon3 to be used in a very low
power area with suitable performance and fault tolerance even over years [Gaih].

5.2.4 Atmel AVR XMEGA

In the year 2008, Atmel announced their XMEGA-Controller, which is based on their 8-bit AVR
core with additional features in peripherals and functions. The following section introduces the
architecture, followed by aspects of power and memory management.

Architecture Overview

The XMEGA is a family of low power, high performance and peripheral rich Complementary
Metal-Oxide Semiconductor (CMOS) 8/16-bit microcontrollers, based on the AVR enhanced
RISC architecture.

The AVR CPU combines an instruction set with 32 general purpose working registers. All
the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two inde-
pendent registers to be accessed in a single instruction, executed in one clock cycle. The resulting
architecture is more code e�cient and achieves many times faster throughput than conventional
single-accumulator or Complex Instruction Set Computer (CISC) based microcontrollers. Also
AES and Digital Encryption Standard (DES) are supported in hardware. The block diagram in
Figure 5.6 introduces the architecture of the Atmel XMEGA.

The XMEGA devices provide the following In-System Programmable Flash with Read-While-
Write capabilities, Internal EEPROM and SRAM, four-channel Direct Memory Access (DMA)
controller, eight-channel Event System and Programmable Multi-level Interrupt Controller, up
to 78 general purpose I/O lines and a 16- or 32-bit Real-Time Clock (RTC). Furthermore, up to
eight �exible 16-bit Timer/Counters with compare modes and power management, up to eight
UARTs, up to four I2C and System Management Bus (SMB) compatible Two Wire Interfaces
(TWIs) and a lot of other features are o�ered by the AVR XMEGA. Interesting for the purpose
of TeSOS is the availability of an AES and DES cryptographic engine in hardware.

The program Flash memory can be reprogrammed in-system through Joint Test Action
Group (JTAG) interface. A bootloader can use any interface to download the application pro-
gram to the �ash memory. The bootloader software in the boot �ash section will continue to run
while the application �ash section is updated, providing true read-while-write operation. More
details on the XMEGA architecture can be found in [Atmd] and [Atmb].
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Figure 5.6: XMEGA block diagram

Power Management and Performance

The XMEGA devices have �ve software selectable power saving modes.

• Idle: The Idle mode stops the CPU, while allowing the SRAM, DMA controller, event
system, interrupt controller, and all peripherals to continue functioning.

• Power-down: The Power-down mode saves the SRAM and register contents but stops the
oscillators, disabling all other functions until the next TWI or pin-change interrupt, or
Reset.

• Power-save: In Power-save mode, the asynchronous RTC continues to run, allowing the
application to maintain a timer base while the rest of the device is sleeping.

• Standby : In Standby mode, the Crystal/Resonator Oscillator is kept running while the rest
of the device is sleeping. This allows fast start-up combined with low power consumption.

• Extended Standby : In Extended Standby mode, both the main Oscillator and the Asyn-
chronous Timer continue to run.

To further reduce the power consumption, Atmel included so-called Power Reduction Registers.
These registers provide a method to stop the clock of individual peripherals. When this is done,
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the current state of the peripheral is frozen and the associated I/O registers cannot be read or
written. Resources used by the peripheral will remain occupied, hence the peripheral should in
most cases be disabled before stopping the clock. Enabling the clock to a peripheral again puts
the peripheral in the same state as before it was stopped. This can be used in idle mode and
active mode to reduce the overall power consumption signi�cantly. In all other sleep modes, the
peripheral clock is already stopped. Not all devices have all the peripherals associated with a bit
in the power reduction registers.

With XMEGA, using second generation picoPower [Cora], battery life is further increased
by additional features like true 1.6V operation and a combined watchdog timer- and Brown-Out-
Detector (a detector for a drop in voltage in an electrical power supply) current consumption of
only 1 uA. True 1.6V operation means all functions, including Flash reprogramming, EEPROM
write, analogue conversions, and internal oscillators, are operative at 1.6V. In battery powered
applications, such as mobile phones, AVR XMEGA devices can be connected to a 1.8V (+/- 10%)
regulated power supply to save cost and increase battery life. In Power-down mode with RAM
retention, current consumption is 100 nA. The RTC function using a 32 kHz crystal oscillator
has a power consumption of only 650 nA [Atme].

Atmel also o�ers a document on how to minimise the power consumption of the XMEGA,
including C code, which makes it possible to decrease development time of a low power device
[Atmc].

By executing instructions in a single clock cycle, the XMEGA achieves throughputs of up to
1 MIPS per MHz. The clock of the internally used AVR CPU can be up to 32 MHz.

Applicability in WSNs

The XMEGA devices are general purpose microcontrollers well suited for a variety of applica-
tions, including audio systems, ZigBee or medical applications, power tools, board controllers,
networking, metering, optical transceivers, or motor control. Including its AES and DES cryp-
tographic engines in hardware, it o�ers a wide spectrum of functionalities for WSNs and may be
a good choice for TeSOS BNs.

5.2.5 Atmel SecureAVR

Originally Atmel has di�erent kinds of product families with its own sub-families. One of those
families is the Atmel XMEGA (see Section 5.2.4), which is designed to be used as a sensor
platform. Another platform is the Atmel SecureAVR family, which contrary to the XMEGA, is
designed to run inside smartcards. However, we discuss this platform here, since the functional-
ities protect some of the assets described in Section 3.1.1, e.g., parts of the sensor code or key
information can be securely stored inside the device.

Architecture Overview

The AT90SC family Secure AVR integrates a Random Number Generator (RNG), cryptographic
co-processor, and on-chip security features to ful�l assurance requirements of EAL5+ [Cri]. The
block diagram in Figure 5.7 gives an overview of the architecture.

The device performs encryption functions in real time, enabling Global System for Mobile
communications (GSM) Subscriber Identity Module (SIM) cards, Internet transactions, pay TV,
or banking designs. To also increase the performance of RSA, Digital Signature Algorithm (DSA),
ECC, and Di�e-Hellman, it optionally supports a cryptographic co-processor called AdvX, an
n-bit multiplier-accumulator dedicated to perform fast encryption and authentication functions.
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Figure 5.7: SecureAVR block diagram

Example: AT90SC288144RU

The AT90SC288144RU is a 8-/16-bit microcontroller with Read-Only Memory (ROM) program
memory and EEPROM memory, based on the SecureAVR enhanced RISC architecture.

The AT90SC288144RU uses the SecureAVR architecture that allows the linear addressing
of up to 8 MB of code and up to 16 MB of data, as well as a number of new functional and
security features. It features 144 KB of EEPROM. The ability to map the EEPROM into code
space allows parts of the program memory to be reprogrammed at runtime. Additional security
features include logical scrambling on program data and addresses so that data and addresses
are stored more randomly in the memory, in addition with power analysis countermeasures and
a memory accesses controlled by a supervisor mode.

Key aspects of the 8/16-bit microcontroller AT90SC288144RU are 135 instructions (most
executed in a single clock cycle), 288 KB ROM, 144 KB EEPROM, including 128 One-Time
Programmable (OTP) bytes and 384-byte bit-addressable bytes, an RNG, hardware DES and
3DES, which are Di�erential Power Analysis (DPA) resistant and a checksum accelerator.

The device also o�ers dedicated hardware for protection against Simple Power Analysis (SPA),
DPA, Simple Electromagnetic Analysis (SEMA), and Di�erential Electromagnetic Analysis (DEMA)
attacks [KGO01, QS01], protection against physical attacks, a voltage monitor, and a secure
memory management with access protection. More information on features and criteria of the
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SecureAVR can be found in [Atmh] or [Atmg].

Power Management and Performance

By executing instructions in a single clock cycle, the AT90SC288144RU achieves a throughput
close to 1 MIPS per MHz. Its architecture includes 32 general-purpose working registers directly
connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed
in one single instruction executed in one clock cycle.

Currently, it seems there are no further documents on power consumption of the SecureAVR,
however, it can be expected to be very low, since the SecureAVR is only used in very low power
scenarios. In Smardcard scenarios, power-consumption is less important, since a Smartcard has
a constant voltage/current supply.

Applicability in WSNs

Since the device is not designed as a sensor node, it is not used as microcontroller for sensor
nodes. Thus, the SecureAVR seems not to be feasible in WSNs, despite the available security
features protect some of the assets described in Section 3.1.1. One reason for this could be the
absence of wireless or wired interfaces and the, compared to, e.g., the ARM Cortex-M0, lower
system performance.

5.2.6 Trusted Sensor Node (TSN)

Due to the absence of devices equipped with cryptographic co-processors in combination with
very low power consumption, IHP [Gmb] develops a device to be used as sensor node inside
security critical WSNs. The following part gives an overview of this upcoming device.

Architecture Overview

Based on the Leon2-Architecture (see Section 5.2.2), the TSN is divided into a single-chip, which
includes the processor, hardware co-processor, and additional memory. The node is build to be
a bridge between IEEE 802.11 and IEEE 802.15.4 wireless technology. Therefore it is equipped
with both types of radio modules.

To ful�l the security requirements, such as integrity and con�dentiality (see Section 3.2), the
TSN was upgraded, compared to the Leon2 reference design, with co-processors for AES, SHA1,
Pseudo-Random Number Generator (PRNG), as well as ECC, which are used for encryption,
decryption and signing of messages. Figure 5.8 illustrates the architecture of the TSN, core
characteristics of the TSN are shown in Table 5.2.

Table 5.2: TSN: Core characteristics

Attribute Value

Area 30 mm2

Signal Ports 98
Power Ports 24
BIST/Scan Ports 5
Cache 2x4 KB
Maximum Frequency (MHz) 16
Core voltage (V) 2.5
Pad Voltage (V) 3.3

The main part of the sensor node is the TSN-processor. Additionally external memory, such
as RAM or Flash complete the sensor node. The TSN supports two communication interfaces,
namely 802.11 and 802.15.4.
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Figure 5.8: TSN block diagram

Memory The TSN supports 4 KB cache for commands and additional 4 KB cache for data.
To minimize the chip size, the TSN does not support any on-chip �ash memory but supports up
to 16 MB external �ash memory. Additionally, the TSN is equipped with 16 KB up to 16 MB
RAM on the sensor board. Both RAM and �ash are connected using the AMBA AHB-Bus and
a memory controller using 32-bit words. Due to the low amount of I/O-pins, external memory
can only be accessed using two 16-bit words, which means every load and store operation of a
32-bit value results in two accesses using 16-bit values.

Cryptographic co-processors The TSN supports an on-chip implementation of AES (AES
128 bit in Electronic Code Book (ECB)-Mode), ECC (ECC 233 bit), SHA1 and a PRNG. All
three implementations are directly connected to the internal memory controller.

Power Management and Performance

The following Table 5.3 shows the energy consumption of the TSN, which is calculated in a way
similar described like in Section 5.4.3.

Table 5.3: Power consumption and performance of the TSN

Component Energy consumption Runtime Clock-cycles

SHA-1 8.12 mW 5125 ns 82
AES 3.94 mW 4875 ns 78
ECC 29 mW 822875 ns 13166
LEON 47.2 mW about 6.25 ms about 100000
whole TSN-system 95 mW about 6.25 ms about 100000

Applicability in WSNs

Compared with other architectures, e.g., the SecureAVR (see Section 5.2.5), the TSN is highly
applicable in WSNs. It is equipped with cryptographic accelerators to increase the speed of the
node and it consumes a low amount of energy.

5.2.7 Texas Instruments MSP430

The currently most used sensor node in WSNs is the Texas Instruments (TI) MSP430. This
architecture with very low power consumption provides a solution for a wide range of low power
and portable applications. TI provides robust design support for the MSP430 microcontroller,
including technical documents, training, tools, and software.

General Overview

There are seven di�erent types of the 16-bit RISC MSP430-based architectures o�ered by Texas
Instruments. 1xx is the oldest, 5xx the newest series of the MSP430:

• 1xx 8 MHz Series

• 2xx 16 MHz Series

• G2xx Value Series

• 3xx Legacy 8 MHz Series

• 4xx 8/16 MHz LCD Series

• 5xx 25 MHz Series
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• CC430 RF SoC Series

The MSP430 supports a wide range of hardware integrated peripherals like 10-/12 bit succes-
sive approximation ADC (SARADC), 16-bit Sigma Delta Analog-to-Digital Converter (ADC),
UART, I2C, or SPI. A complete list of available peripherals and interfaces can be found at [Texc].

Since there is a very huge spectrum of sub-architectures, we focus on the MSP430F5xx. It
is the �ash-based microcontroller family featuring low power consumption and performance up
to 25 MIPS. It has an operation voltage range from 1.8V up to 3.6V, has an integrated power
management module, including an internally controlled voltage regulator, and a wide range of
memory options up to 256 kB.

Power Management and Performance

This next generation MSP430 microcontroller o�ers about 165 µA per MIPS, 2.5 µA consumption
in standby and 0.1 µA in shut-down mode. The platform can wake up from standby in less the
5 µs. It supports up to 12 MHz at 1.8V, what can be increased up to 25 MHz. The MSP430
supports 1.8V �ash erase and write, fail-safe and �exible clocking system, and up to 1 MB linear
memory addressing [Texc].

Like the di�erent types of MSP430 families, there are over 30 di�erent types of sensor nodes
in each family. Thus it is impossible to give a clear de�nition of performance and memory of
this type of architecture. In this document we take two speci�c MSP430 sensors of the F5xx
family, the MSP430F5529 and the MSP430F5438, compare both processors to each other and
give a overview of their key features.

Example: MSP430F5529 and the MSP430F5438A

Table 5.4 lists the features of both nodes to introduce and give an example on what is possible
in sensors using this type of architecture.

Table 5.4: Comparison of the MSP430F5529 and the
MSP430F5438

MSP430F5529 MSP430F5438A

Program (kB) 128 256
SRAM (kB) 8(+2 if USB is disabled) 16
I/O 63 83
16-bit Timers 4 3
Watchdog and RTC yes yes
Power Management yes yes
UART/LIN/IrDA/SPI 2 4
I2C/SPI 2 4
DMA 3ch 3ch
MPY yes yes
Comp_B yes yes
Temperature Sensor yes yes
ADC Ch/Res 16ch ADC 12A 16ch ADC 12A
Additional Features USB 25 MIPS
Packages 80 PN 100 PZ, 113 ZQW
Price per 1kU 4.00 4.85
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Applicability in WSNs

Together with the Atmel ATmega (MICAz [Cro]), which is not mentioned in this document, the
Texas Instruments MSP430 is one of the current standards in the �eld of WSNs. It is equipped
with a huge amount of peripheral interfaces and has a low amount of power consumption, thus
it is a good solution as SNs.

5.3 Comparison Of Hardware Architectures Regarding Hardware

Criteria

Regarding hardware criteria introduced in Section 5.1, the following tables illustrate how the
considered architectures handle each of the considered criteria. Also a short conclusion of every
comparison is given.

In most of the cases, the criteria strongly depend on the speci�c sensor node, using the
mentioned hardware architecture, thus not all criteria could be analysed in detail.

5.3.1 Interfaces

Table 5.5 illustrates the supported interfaces of sensor nodes, based on each hardware architec-
ture. Especially the peripheral interfaces strongly depend on the speci�c sensor and its architec-
ture. As an example, the ARM Architecture introduced in Section 5.2.1 o�ers a huge amount of
interfaces, and is the most �exible architecture mentioned in this study, compared to the Secu-
reAVR introduced in Section 5.2.5, which o�ers almost no interface, due to the usage in only a
speci�c microcontroller area.

Table 5.5: Interfaces of each hardware architecture

ARM Leon2 Leon3 XMEGA Sec.AVR TSN MSP430

Ethernet partial yes yes no no yes no
ZigBee partial partial unknown unknown no yes partial
WLAN partial partial unknown unknown no yes partial
UART partial yes yes yes no yes yes
USB partial no yes no yes no yes
SDIO partial no no no no no no
GPIO partial no no no no no no
SPI partial yes no yes no yes yes
I2C partial no no yes no no yes

5.3.2 Performance

Table 5.6 illustrates the performance criteria for each hardware architecture. In this analysis,
it was not possible to compare the memory performance for each architecture, since it strongly
depends on the implemented sensor node. Also, the processor speed depends on implementation-
speci�c aspects such as clock speed, which depends on the power-management, and temperature
requirements of the node. Regarding the performance of the cryptographic engine of the device,
it can be said that if a device has a build-in hardware-accelerator, such as AES or DES, the over-
all speed of this architecture, using these speci�c operations, is strongly increased. In Section 5.4,
a short comparison of common cryptographic operations implemented in each hardware archi-
tecture, is made, taking the TSN as an example (see Section 5.2.6), the clock-cycles of common
cryptographic operations dramatically decreases with build-in accelerators (see Table 5.3). Since
this analysis is based on the architectures, the speed of network-interfaces of each architecture
also could not be estimated.
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Table 5.6: Performance of each hardware architecture

ARM Leon2 Leon3 XMEGA Sec.AVR TSN MSP430

Memory 1 1 1 1 1 1 1

Processor high high high medium low high low
Crypto medium medium medium high low high low
Network 1 1 1 1 1 1 1

1. unknown

5.3.3 Security Extensions

The majority of the analysed hardware architectures has no hardware security extension. Since
the SecureAVR (see Section 5.2.5) is not used as sensor node in WSNs, the XMEGA architecture
introduced in Section 5.2.4, together with some ARM architectures, are the only architectures
with build-in security extensions to increase cryptographic speed or o�er the possibility to sep-
arate untrusted code from trusted code (see Section 5.2.1). As a conclusion, it could be said
that in the past security was a less important aspect in designing microcontroller architectures,
however, more and more architectures are designed with a more clear focus to be used in secu-
rity relevant areas. Currently, security of available sensors strongly depend on the additionally
implemented security features of the sensor manufacturer. As an example, the TSN introduced
in Section 5.2.6 implements security extensions on top of the Leon2 architecture, described in
Section 5.2.2. Table 5.7 illustrates the implemented security extensions inside each hardware
architecture.

Table 5.7: Security Extensions inside each hardware architec-
ture

ARM Leon2 Leon3 XMEGA Sec.AVR TSN MSP430

Isolation partly no no no no no no
Booting partly no no no unknown no no
Storage partly no no no yes no no
RNG no no no no partly no no
Crypto HW partly no no yes partly yes no

5.3.4 Memory

Similar to performance and interfaces, the available amount and type of memory of the analysed
hardware architectures strongly depends on the implemented sensor node and less depends on
the architecture itself. Most of the architectures o�er interfaces to access internal or external
memory, but do not have a �xed amount of memory by design. Regarding the fault management,
the Leon3 (introduced in Section 5.2.3) is the only architecture capable to provide this feature
by design.

Table 5.8 illustrates all test criteria regarding memory of each hardware architecture.

Table 5.8: Memory aspects of each hardware architecture

ARM Leon2 Leon3 XMEGA Sec.AVR TSN MSP430

Available dep.1 dep.1 dep.1 dep.1 dep.1 4KB 2, dep.1

Memory 0-16MB
Memory dep.1 PROM, PROM, Flash, Flash, Flash, unknown
Type SRAM, SRAM, EEPROM, EEPROM, RAM

SDRAM SDRAM SRAM ROM,
Continuing next page
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Memory aspects of each hardware architecture - continued

ARM Leon2 Leon3 XMEGA Sec.AVR TSN MSP430
RAM

Fault no unknown partly no unknown no no
Managem.
1. depends on implementation
2. commands and data

5.3.5 Power Management

A sensor node with an e�cient power management o�ers a better node lifetime, thus power
management is one of the main aspects of a comparison of hardware architectures in WSNs.
Section 5.4 analyses the energy e�ciency of each mentioned architecture in detail, while running
common cryptographic operations, such as AES and SHA1. Additionally, most of the hardware
architectures o�er their own power management capabilities that, if used intensively, also increase
the node lifetime. However, the overall e�ciency strongly depends on the sensor node itself,
less on the architecture used inside the node. Due to the fact that this analysis is based on
hardware architectures but not sensor nodes, there cannot be a clear conclusion about the power
management of a speci�c sensor node used inside WSNs.

5.3.6 Assurance

The only hardware architecture that ful�ls assurance requirements is the SecureAVR (introduced
in Section 5.2.5). Accordingly, we can conclude that currently available architecture used in
WSNs do not implement on-chip security features to ful�l common assurance requirements.

Table 5.9 illustrates all existing security standards of the considered hardware architectures.

Table 5.9: Assurance of each hardware architecture

ARM Leon2 Leon3 XMEGA Sec.AVR TSN MSP430

Sec. standard none none none none EAL5+ none none
1. unknown

5.3.7 Additional Criteria

Depending on the performance and power management aspects of each architecture, a conclusion
could be that sensor nodes with a focus on low power consumption use 16-bit architectures, while
those with more features and more performance use 32-bit architectures. However, none of the
analysed architectures was equipped with an DSP by design. Table 5.10 summarises all additional
criteria of each considered hardware architecture.

Table 5.10: Additional criteria of each hardware architecture

ARM Leon2 Leon3 XMEGA Sec.AVR TSN MSP430

DSP no no no no no no no
Architecture 32-bit 32-bit 32-bit 8-/16-bit 16-bit 32-bit 16-bit
Manufacture several several several several unkn.1 Germ. several
WSN capable partly partly partly yes no yes yes
Price unkn.1 unkn.1 unkn.1 unkn.1 unkn.1 unkn.1 unkn.1

1. unknown
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5.4 Energy e�ciency

Energy e�ciency is one of the most important aspects in WSNs or embedded devices in general,
since an energy e�cient sensor node consumes less energy, resulting in a longer node-life-time.
Thus, this section describes the methodology used to estimate the energy consumption or energy
e�ciency of hardware architectures described in Section 5.2.

5.4.1 Methodology

In general, consumed energy is the product of time and power consumption. The power-
consumption is based on 100% duty cycles and is sometimes provided by the manufacture of
the speci�c hardware architecture. The time is the cycle-count of the operation to be measured.
To give an easy example, we assume that a processor consumes 30 mW, running at 10 MHz.
With these values, while operating 1 million cycles, the processor would consume:

1Million/10MHz ∗ 30mW = 3mWs = 3mJ (5.1)

In this analysis, we apply three steps to estimate the energy e�ciency of each architecture
as described in the following:

1. Compile a piece of code: We focus on the operations AES and SHA1. Publicly available
example-programs using AES and SHA1 will be cross-compiled for the speci�c architecture.
The detailed information how the source-code was compiled for each architecture, is de-
scribed in the following hardware-speci�c sections. The source-code that was used for this
comparison are the AES [Hooa, Hoob] and SHA1 [Hood] reference implementation of the
Hoozi Resources team [Hooc], which is listed in the corresponding sections Section 5.4.4,
Section 5.4.5, and Section 5.4.6. Each cross-compilation resulted in speci�c assembler code,
generated to run on the targeted architecture.

2. Sum-up each speci�c assembler command: In this step, the cross-compiled source-code was
summed-up by every single assembler operation. These assembler-operations are used in
step three for the calculation of the clock-cycles.

3. Calculation of the clock-cycles: Based on the summed-up assembler-operation of the prior
step, together with the list of necessary clock-cycles of each assembler-operation of each
architecture, the total clock-cycles of the operations AES and SHA1 are calculated.

The application of this methodology represents the �rst creterion for the energy e�ciency of
each architecture. An additional, more complicated but also more detailed way to calculate the
consumed energy is described in Section 5.4.3.

5.4.2 Energy E�ciency Analysis

In the following section, each architecture is considered regarding the described methodology in
Section 5.4.1.

ARM-Architecture, especially Cortex-M0

The �rst step to estimate the energy e�ciency of the Cortex-M0 processor is to compile the
source-code listed in Section 5.4.4, Section 5.4.5 and Section 5.4.6. For this purpose, the ARM
toolchain from CodeSourcery was used [Cod]. This toolchain provides a modi�ed version of the
gcc-4.4.1 compiler, and is capable to compile source-code for the ARM Cortex-M0 processor,
introduced in Section 5.2.1. The source-code is compiled using the commands:
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arm-none-eabi-gcc -S aes-dec.c -o aes-dec.cortex-m0

arm-none-eabi-gcc -S aes-enc.c -o aes-enc.cortex-m0

arm-none-eabi-gcc -S sha1.c -o sha1.cortex-m0

The second step includes a sum-up of every assembler command to count the quantity of each
operation. According to the ARM Cortex-M0 technical reference manual [ARMd], the processor
implements the ARMv6-M Thumb instruction set (Section 5.2.1), including a number of 32-bit
instructions that use Thumb-2 technology (Section 5.2.1). Table 5.11 lists the ARM Cortex-M0
instructions and their cycle counts that are based on a system with zero wait-states. Taking these
instructions and the summed-up assembler operations, Table 5.12 lists each type of operation
with its quantity and the necessary clock-cycles. Moreover, the total amount of clock-cycles for
AES-decryption, AES-encryption and SHA1 is listed.

Thus, as a �rst estimation of the energy e�ciency, the ARM Cortex-M0 uses 718 clock-cycles
for SHA1, 1484 clock-cycles for AES-encryption, and 3466 clock-cycles for AES-decryption, using
assembler-code that was not speci�cally optimised for the ARM Cortex-M0 architecture.

Table 5.11 illustrates the instruction summary of the ARM Cortex-M0 architecture and gives
an overview of the clock-cycles needed for each type of operation.

Table 5.11: ARM Cortex-M0 instruction summary

Operation Description Assembler Cycles

Move 8-bit immediate MOVS Rd, #<imm> 1
Lo to Lo MOVS Rd, Rm 1
Any to Any MOV Rd, Rm 1
Any to PC MOV PC, Rm 3

Add 3-bit immediate ADDS Rd, Rn, #<imm> 1
All registers Lo ADDS Rd, Rn, Rm 1
Any to Any ADD Rd, Rd, Rm 1
Any to PC ADD PC, PC, Rm 3
8-bit immediate ADDS Rd, Rd, #<imm> 1
With carry ADCS Rd, Rd, Rm 1
Immediate to SP ADD SP, SP, #<imm> 1
Form address from SP ADD Rd, SP, #<imm> 1
Form address from PC ADR Rd, <label> 1

Subtract Lo and Lo SUBS Rd, Rn, Rm 1
3-bit immediate SUBS Rd, Rn, #<imm> 1
8-bit immediate SUBS Rd, Rd, #<imm> 1
With carry SBCS Rd, Rd, Rm 1
Immediate from SP SUB SP, SP, #<imm> 1
Negate RSBS Rd, Rn, #0 1

Multiply Multiply MULS Rd, Rm, Rd 1 or 32a

Compare Compare CMP Rn, Rm 1
Negative CMN Rn, Rm 1
Immediate CMP Rn, #<imm> 1

Logical AND ANDS Rd, Rd, Rm 1
Exclusive OR EORS Rd, Rd, Rm 1
OR ORRS Rd, Rd, Rm 1
Bit clear BICS Rd, Rd, Rm 1
Move NOT MVNS Rd, Rm 1
AND test TST Rn, Rm 1

Continuing next page
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ARM Cortex-M0 instruction summary - continued

Operation Description Assembler Cycles

Shift Logical shift left by immediate LSLS Rd, Rm, #<shift> 1
Logical shift left by register LSLS Rd, Rd, Rs 1
Logical shift right by immediate LSRS Rd, Rm, #<shift> 1
Logical shift right by register LSRS Rd, Rd, Rs 1
Arithmetic shift right ASRS Rd, Rm, #<shift> 1
Arithmetic shift right by register ASRS Rd, Rd, Rs 1

Rotate Rotate right by register RORS Rd, Rd, Rs 1

Load Word, immediate o�set LDR Rd, [Rn, #<imm>] 2
Halfword, immediate o�set LDRH Rd, [Rn, #<imm>] 2
Byte, immediate o�set LDRB Rd, [Rn, #<imm>] 2
Word, register o�set LDR Rd, [Rn, Rm] 2
Halfword, register o�set LDRH Rd, [Rn, Rm] 2
Signed halfword, register o�set LDRSH Rd, [Rn, Rm] 2
Byte, register o�set LDRB Rd, [Rn, Rm] 2
Signed byte, register o�set LDRSB Rd, [Rn, Rm] 2
PC-relative LDR Rd, <label> 2
SP-relative LDR Rd, [SP, #<imm>] 2
Multiple, excluding base LDM Rn!, <loreglist> 1+N b

Multiple, including base LDM Rn, <loreglist> 1+N b

Store Word, immediate o�set STR Rd, [Rn, #<imm>] 2
Halfword, immediate o�set STRH Rd, [Rn, #<imm>] 2
Byte, immediate o�set STRB Rd, [Rn, #<imm>] 2
Word, register o�set STR Rd, [Rn, Rm] 2
Halfword, register o�set STRH Rd, [Rn, Rm] 2
Byte, register o�set STRB Rd, [Rn, Rm] 2
SP-relative STR Rd, [SP, #<imm>] 2
Multiple STM Rn!, <loreglist> 1+N b

Push Push PUSH <loreglist> 1+N b

Push with link register PUSH <loreglist>, LR 1+N b

Pop Pop POP <loreglist> 1+N b

Pop and return POP <loreglist>, PC 4+N c

Branch Conditional B<cc> <label> 1 or 3d

Unconditional B <label> 3
With link BL <label> 4
With exchange BX Rm 3
With link and exchange BLX Rm 3

Extend Signed halfword to word SXTH Rd, Rm 1
Signed byte to word SXTB Rd, Rm 1
Unsigned halfword UXTH Rd, Rm 1
Unsigned byte UXTB Rd, Rm 1

Reverse Bytes in word REV Rd, Rm 1
Bytes in both halfwords REV16 Rd, Rm 1
Signed bottom half word REVSH Rd, Rm 1

State change Supervisor Call SVC #<imm> −e
Continuing next page
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ARM Cortex-M0 instruction summary - continued

Operation Description Assembler Cycles
Disable interrupts CPSID i 1
Enable interrupts CPSIE i 1
Read special register MRS Rd, <specreg> 4
Write special register MSR <specreg>, Rn 4
Breakpoint BKPT #<imm> −e

Hint Send event SEV 1
Wait for event WFE 2f

Wait for interrupt WFI 2f

Yield Y IELDg 1
No operation NOP 1

Barriers Instruction synchronization ISB 4
Data memory DMB 4
Data synchronization DSB 4

a. Depends on multiplier implementation.
b. N is the number of elements.
c. N is the number of elements in the stack-pop list including PC and assumes load or store
does not generate a hard-fault exception.

d. 3 if taken, 1 if not-taken.
e. Cycle count depends on core and debug con�guration.
f. Excludes time spent waiting for an interrupt or event.
g. Executes as NOP.

Table 5.12: Quantity of assembler operations compiled for the
ARM Cortex-M0

Operation Cycles AES-dec AES-enc SHA1

Move 1 1082 145 72
Add 1 375 104 67
Subtract 1 32 23 14
Subtract negate 1 4 4 4
Logical AND 1 325 43 8
Logical OR 1 0 0 3
Logical Exclusive OR 1 190 25 7
Load Multiple 1 35 34 6
Load Word, immediate o�set 2 199 223 134
Load Byte, immediate o�set 2 243 84 5
Store 2 113 96 70
Store multiple 1 31 28 6
Compare 1 22 22 12
Brunch conditional (taken) 3 21 21 10
Brunch unconditional 3 18 17 10
Brunch with exchange 3 9 8 3
Brunch with link 4 29 28 8

Sum of cycles 3466 1484 718
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Leon2-Architecture

As for the ARM example, the �rst step included the compilation of the source code. For this
purpose, the LEON Bare-C Cross Compilation System (BCC) from Gaisler Research [Gaib] has
been used. It operates with a modi�ed version of the gcc 3.4.4 and is capable to compile source-
code for the Leon2-Architecture, introduced in Section 5.2.2, which is based on the SPARC V8
architecture. The source-code is compiled using the commands:

sparc-elf-gcc -S aes-dec.c -o aes-dec.SPARC

sparc-elf-gcc -S aes-enc.c -o aes-enc.SPARC

sparc-elf-gcc -S sha1.c -o sha1.SPARC

The second step includes a sum-up of every assembler operation to count their quantity.
Compared to the energy-e�ciency-analysis of the ARM Cortex-M0 (Section 5.4.2), the analysis
of the Leon2-Architecture cannot be that detailed, since the timing in SPARC V8 architectures
is strictly implementation-dependent [Inca]. Thus we use Table 5.13 as an approximation of
cycle-counts of the Leon2-Architecture. It uses the cycles per instruction (assuming cache hit
and no load interlock) and is based on the Leon2 Processor User's Manual [Res].

Table 5.13: Leon2 instruction summary and cycle counts

Instruction Cycles AES-dec AES-enc SHA1

JMPL (Jump and Link) 2 0 0 0
Double load 2 0 0 0
Single store 2 88 93 10
Double store 3 0 0 0
SMUL/UMUL (Sig./Uns. Int. Multiply) (1/2/4/5/35)1 0 0 0
SDIV/UDIV (Sig./Uns. Int. Divide) 35 0 0 0
Taken Trap 4 87 84 24
Atomic load/store 2 0 0 0
All other instructions 1 2483 758 155

Sum of cycles 3007 1280 271
1. Depends on multiplier implementation.

Summarising this analysis, it can be said, that the Leon2 architecture uses 271 clock-cycles
for SHA1, 1280 clock-cycles for AES-encryption, and 3007 clock-cycles for AES-decryption, using
assembler-code that was not speci�cally optimised for the Leon2 architecture.

Leon3-Architecture

Since the Leon3-Architecture introduced in Section 5.2.3 is based on the Leon2-Architecture
(Section 5.2.2), the analysis of clock-cycles is not necessary, since there is no di�erence on the
instruction or architecture level that executes each operation. Both are based on a SPARC
architecture and di�er only by the fact that Leon3 supports a multi-core environment, whereas
Leon2 is a single-core architecture.

Atmel AVR XMEGA

Considering to the three steps de�ned in Section 5.4.1, we compiled the source-code listed in
Section 5.4.4, Section 5.4.5, and Section 5.4.6, using the cross-compiler avr-gcc, an open-source
cross-compiler published by Atmel that includes a modi�ed version of the avr-gcc 4.3.4 and is
capable to compile code for the AVR XMEGA, described in Section 5.2.4. In this analysis, an
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Ubuntu 9.10, x86-64 testing system is used, thus the pre-compiled package [AVRa, AVRb] had
to be installed with the following command:

sudo dpkg --force-architecture -i avr-gcc-4.3.4-avrfreaks-09-mar-2010.deb

export PATH=/usr/local/avr/bin/:$PATH

After the successful installation, the source-code was compiled with the commands:

avr-gcc -mmcu=avrxmega3 -S aes-enc.c -o aes-enc.XMEGA

avr-gcc -mmcu=avrxmega3 -S aes-dec.c -o aes-dec.XMEGA

avr-gcc -mmcu=avrxmega3 -S sha1.c -o sha1.XMEGA

The parameter �-mmcu=avrxmega3� optimises the code for devices with an amount of �ash
memory between 8 KB and 64 KB, including more than 64 KB RAM. If necessary, the command
�avr-gcc �target-help� gives an overview about the architectures, supported by the used compiler.

The resulting assembler-code is analysed according the AVR XMEGA clock-cycles of each as-
sembler operation. Table 5.14 lists the CPU clock-cycles for all instructions of the AVR XMEGA.
All information are based on the XMEGA Manual [Atmd].

Table 5.14: AVR XMEGA instruction summary

Instruction Description Cycl. AES-d AES-e SHA1

ADD Add without Carry 1 304 23 42
ADC Add wit Carry 1 304 23 76
ADIW Add Immediate to Word 2 49 48 18
SUB Subtract without Carry 1 4 4 3
SUBI Subtract Immediate 1 99 84 64
SBC Subtract with Carry 1 60 4 4
SBCI Subtract Immediate with Carry 1 98 82 64
SBIW Subtract Immediate from Word 2 13 9 4
AND Logical AND 1 0 0 16
ANDI Logical AND with Immediate 1 112 0 8
OR Logical OR 1 0 0 24
EOR Exclusive OR 1 302 25 36
COM One's Complement 1 0 0 5
INC Increment 1 0 0 1
DEC Decrement 1 0 0 3
TST Test for Zero or Minus 1 2 3 2
CLR Clear Register 1 88 4 10
RJMP Relative Jump 2 20 22 14
RCALL Relative Call Subroutine 2/31 7 7 0
CALL Call Subroutine 3/41 27 27 9
RET Subroutine Return 4/51 9 8 2
CP Compare 1 4 5 2
CPC Compare with Carry 1 20 20 10
CPI Compare with Immediate 1 16 15 8
SBRC Skip if Bit in Register Cleared 1/2/3 0 0 3
BREQ Branch if Equal 1/2 2 2 0
BRNE Branch if Not Equal 1/2 7 6 2
BRGE Branch if Greater or Equal, Sig. 1/2 6 6 10
BRLT Branch if Less Than, Signed 1/2 11 11 2
Continuing next page
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AVR XMEGA instruction summary - continued

Instruction Description Cycl. AES-d AES-e SHA1
MOV Copy Register 1 307 25 16
MOVW Copy Register Pair 1 534 96 81
LDI Load Immediate 1 230 47 69
LDS LoadDirectfrom data space 212 48 50 0
LD Load Indirect 1/212 41 45 28
LDD Load Indirect with Displacement 212 413 268 337
STS Store Direct to Data Space 21 16 16 0
ST Store Indirect 1/212 40 32 24
STD Store Indirect with Displacem. 21 134 128 203
IN In From I/O Location 1 24 22 16
OUT Out To I/O Location 1 30 26 12
PUSH Push Register on Stack 11 24 21 8
POP Pop Register from Stack 21 34 31 8
LSL Logical Shift Left 1 837 82 31
LSR Logical Shift Right 1 0 0 2
ROL Rotate Left Through Carry 1 1013 0 37
ROR Rotate Right Through Carry 1 5 95 9
ASR Arithmetic Shift Right 1 5 5 0
SWAP Swap Nibbles 1 0 0 8

Sum of cycles 6114 2084 1940
1. Data memory accesses cycles assume internal memory accesses.
2. One extra cycle must be added when accessing internal SRAM.

Summarising this analysis, it can be said that the XMEGA architecture uses 1940 clock-cycles
for SHA1, 2084 clock-cycles for AES-encryption, and 6114 clock-cycles for AES-decryption, using
assembler-code that was not speci�cally optimised for the XMEGA architecture.

The XMEGA architecture is an excellent example that the performance and power-management
extremely depends on the implementation of hardware and software. Referencing [Ott], it is
possible to implement the AES algorithm highly optimised so that the AES-decryption only
uses 4443 clock-cycles, build for an AVR microcontroller with a 8-bit architecture. Since the
AVR XMEGA has a build-in AES accelerator, it is assured that the clock-cycles of the already
optimised algorithm can be decreased in size and clock-cycles even more. Since this study did
not use these highly-optimised assembler-codes, only the above mentioned estimated clock-cycles
could be used.

Atmel SecureAVR

There is no public document on the clock-cycles of the Atemel SecureAVR (Section 5.2.5) avail-
able, thus an energy e�ciency analysis could not be conducted in this study.

Texas Instruments MSP430

According to the three steps de�ned in Section 5.4.1, we compiled the source-code listed in
Section 5.4.4, Section 5.4.5, and Section 5.4.6, using the cross-compiler mspgcc4, an open-source
cross-compiler published on sourceforge [Und], which includes a modi�ed version of the gcc 4.4.2
and using the following commands:

msp430-gcc -S sha1.c -o sha1.MSP430

msp430-gcc -S aes-enc.c -o aes-enc.MSP430

msp430-gcc -S aes-dec.c -o aes-dec.MSP430
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The resulting assembler-code is analysed according the Texas Instruments MSP430 clock-
cycles of each assembler operation. Table 5.15 lists the CPU clock-cycles for reset, interrupts, and
subroutines, Table 5.16 lists the CPU cycles for all addressing modes of instructions with single-
operand and Table 5.17 lists the CPU cycles for all addressing modes with multiple-operands.
All these information are based on the MSP430x5xx Family User's Guide ([Texa]).

Table 5.15: Interrupt, return and reset cycles of the Texas
Instruments MSP430

Operation Cycles

Return from interrupt RETI 5
Return from subroutine RET 4
Interrupt request service (cycles needed before �rst instruction 6
WDT reset 4
Reset (RST/NMI) 4

Table 5.16: Instruction with single-operand cycles of the
Texas Instruments MSP430

Adress Mode Cycl.(RRA,RRC, Cycles Cycles Exam.
SWPB,SXT) PUSH CALL

Rn 1 3 4 SWPB R5
@Rn 3 3 4 RRC @R9
@Rn+ 3 3 4 SWPB @R10+
#N N/A 3 4 CALL #LABEL
X(Rn) 4 4 5 CALL 2(R7)
EDE 4 4 5 PUSH EDE
&EDE 4 4 6 SXT &EDE

Table 5.17: Instruction with single-operand cycles of the
Texas Instruments MSP430

Source Destination Cycles Example

Rn Rm 1 MOV R5,R8
PC 4 BR R9
x(Rm) 4 ADD R5,4(R6)
EDE 4 XOR R8,EDE
&EDE 4 MOV R5,&EDE

@Rn Rm 2 AND @R4,R5
PC 4 BR @R8
x(Rm) 5 XOR @R5,8(R6)
EDE 5 MOV @R5,EDE
&EDE 5 XOR @R5,&EDE

@Rn+ Rm 2 ADD @R5+,R6
PC 4 BR @R9+
x(Rm) 5 XOR @R5,8(R6)
EDE 5 MOV @R9+,EDE
&EDE 5 MOV @R9+,&EDE

Continuing next page

70



Instruction with single-operand cycles of the Texas Instru-
ments MSP430 - continued

Source Destination Cycles Example

#N Rm 2 MOV #20,R9
PC 3 BR #2AEh
x(Rm) 5 MOV #0300h,0(SP)
EDE 5 ADD #33,EDE
&EDE 5 ADD #33,&EDE

x(Rn) Rm 3 MOV 2(R5),R7
PC 5 BR 2(R6)
TONI 6 MOV 4(R7),TONI
x(Rm) 6 ADD 4(R4),6(R9)
&TONI 6 MOV 2(R4),&TONI

EDE Rm 3 AND EDE,R6
PC 5 BR EDE
TONI 6 CMP EDE,TONI
x(Rm) 6 MOV EDE,0(SP)
&TONI 6 MOV EDE,&TONI

&EDE Rm 3 MOV &EDE,R8
PC 5 BR &EDE
TONI 6 MOV &EDE,TONI
x(Rm) 6 MOV &EDE,0(SP)
&TONI 6 MOV &EDE,&TONI

Now the generated assembler-code was analysed and an assumption of used clock-cycles for
AES and SHA1 was made. Table 5.18 lists the results of approximately used clock-cycles in the
Texas Instruments MSP430 architecture.

Table 5.18: Quantity of assembler operations compiled for the
Texas Instruments MSP430

AES-dec AES-enc SHA1

4284 cycles 1520 cycles 1307 cycles

Summarising this analysis, it can be said that the TI MSP430 architecture uses 1307 clock-
cycles for SHA1, 1520 clock-cycles for AES-encryption, and 4284 clock-cycles for AES-decryption,
using assembler-code that was not speci�cally optimised for the MSP430 architecture.

Trusted Sensor Node (TSN), based on Leon2

Since the TSN (introduced in Section 5.2.6) is based on the Leon2-Architecture (Section 5.2.2),
a separated analysis of the energy e�ciency based on the clock-cycles is not necessary. A precise
list of used clock-cycles and consumed power is listed in Table 5.3. This list is made, using a
more precise methodology introduced in Section 5.4.3.

Comparison of architectures

Figure 5.9, and Table 5.19 illustrate the used clock-cycles of each analysed architecture for the
operations AES-decryption, AES-encryption and SHA1. As mentioned before, the Leon3 and
the SecureAVR could not be analysed with regard to their used clock-cycles, since no further
information was available.
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Table 5.19: Comparison of clock-cycles of each hardware ar-
chitecture

Architecture AES-dec AES-enc SHA1

ARM Cortex-M0 3466 cycles 1484 cycles 718 cycles
Leon2 3007 cycles 1280 cycles 271 cycles
AVR XMEGA 6114 cycles 2084 cycles 1940 cycles
TSN 78 cycles 78 cycles 82 cycles
MSP430 4284 cycles 1520 cycles 1307 cycles

Figure 5.9: Comparison of clock-cycles of each hardware architecture

5.4.3 More precise methodology

The methodology described in Section 5.4.1 is a rough estimation of the real consumed energy of
each architecture. A more precise methodology to calculate the energy of a speci�c code running
on a hardware architecture is to simulate each architecture with all used gates and to execute
the source-code inside these simulators. This leads to a very precise estimation of the energy-
consumption of each architecture, since it is known, how much energy each gate consumes and,
based on the VHDL-code of the used source-code, a precise calculation can be achieved.

Due to the fact that such an analysis needs very cost-intensive hardware- and software-
simulators , such as Modul-SIM [Gra], power-analysis tools of Synopsys [Incb], or similar pro-
grams, this second methodology of energy consumption analysis could not be conducted in this
study.

An example of this more precise methodology is the TSN (Section 5.2.6), where precise
information about the energy consumption of AES, SHA1, and even ECC are available. The
amount of used energy is listed in Table 5.3.
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5.4.4 Used source-code of AES encryption

This section lists the source-code of AES encryption, used inside the energy e�ciency analysis
in Section 5.4.

/*

******************************************************************

** Advanced Encryption Standard implementation in C. **

** By Niyaz PK **

** E-mail: niyazpk@gmail.com **

** Downloaded from Website: www.hoozi.com **

******************************************************************

This is the source code for encryption using the latest AES algorithm.

******************************************************************

*/

// Include stdio.h for standard input/output.

// Used for giving output to the screen.

#include<stdio.h>

// The number of columns comprising a state in AES. This is a constant

// in AES. Value=4

#define Nb 4

// The number of rounds in AES Cipher. It is simply initiated to zero.

// The actual value is recieved in the program.

int Nr=0;

// The number of 32 bit words in the key. It is simply initiated to zero.

// The actual value is recieved in the program.

int Nk=0;

// in - it is the array that holds the plain text to be encrypted.

// out - it is the array that holds the output CipherText after encryption.

// state - the array that holds the intermediate results during encryption.

unsigned char in[16], out[16], state[4][4];

// The array that stores the round keys.

unsigned char RoundKey[240];

// The Key input to the AES Program

unsigned char Key[32];

int getSBoxValue(int num)

{

int sbox[256] = {

//0 1 2 3 4 5 6 7 8 9 A B C D E F

0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, //0

0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, //1

0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, //2

0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, //3

0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, //4

0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, //5

0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, //6

0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, //7

0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, //8

0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, //9

0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, //A

0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, //B

0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, //C

0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, //D

0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, //E

0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; //F

return sbox[num];

}

// The round constant word array, Rcon[i], contains the values given by

// x to th e power (i-1) being powers of x (x is denoted as {02}) in the

// field GF(28)

// Note that i starts at 1, not 0).

int Rcon[255] = {

0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,

0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
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0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,

0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,

0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,

0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,

0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,

0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,

0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,

0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,

0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,

0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,

0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,

0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,

0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,

0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb };

// This function produces Nb(Nr+1) round keys. The round keys are used in

// each round to encrypt the states.

void KeyExpansion()

{

int i,j;

unsigned char temp[4],k;

// The first round key is the key itself.

for(i=0;i<Nk;i++)

{

RoundKey[i*4]=Key[i*4];

RoundKey[i*4+1]=Key[i*4+1];

RoundKey[i*4+2]=Key[i*4+2];

RoundKey[i*4+3]=Key[i*4+3];

}

// All other round keys are found from the previous round keys.

while (i < (Nb * (Nr+1)))

{

for(j=0;j<4;j++)

{

temp[j]=RoundKey[(i-1) * 4 + j];

}

if (i % Nk == 0)

{

// This function rotates the 4 bytes in a word to the left once.

// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]

// Function RotWord()

{

k = temp[0];

temp[0] = temp[1];

temp[1] = temp[2];

temp[2] = temp[3];

temp[3] = k;

}

// SubWord() is a function that takes a four-byte input word and

// applies the S-box to each of the four bytes to produce an output word.

// Function Subword()

{

temp[0]=getSBoxValue(temp[0]);

temp[1]=getSBoxValue(temp[1]);

temp[2]=getSBoxValue(temp[2]);

temp[3]=getSBoxValue(temp[3]);

}

temp[0] = temp[0] ^ Rcon[i/Nk];

}

else if (Nk > 6 && i % Nk == 4)

{

// Function Subword()

{

temp[0]=getSBoxValue(temp[0]);

temp[1]=getSBoxValue(temp[1]);

temp[2]=getSBoxValue(temp[2]);

temp[3]=getSBoxValue(temp[3]);

}
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}

RoundKey[i*4+0] = RoundKey[(i-Nk)*4+0] ^ temp[0];

RoundKey[i*4+1] = RoundKey[(i-Nk)*4+1] ^ temp[1];

RoundKey[i*4+2] = RoundKey[(i-Nk)*4+2] ^ temp[2];

RoundKey[i*4+3] = RoundKey[(i-Nk)*4+3] ^ temp[3];

i++;

}

}

// This function adds the round key to state.

// The round key is added to the state by an XOR function.

void AddRoundKey(int round)

{

int i,j;

for(i=0;i<4;i++)

for(j=0;j<4;j++)

state[j][i] ^= RoundKey[round * Nb * 4 + i * Nb + j];

}

// The SubBytes Function Substitutes the values in the

// state matrix with values in an S-box.

void SubBytes()

{

int i,j;

for(i=0;i<4;i++)

for(j=0;j<4;j++)

state[i][j] = getSBoxValue(state[i][j]);

}

// The ShiftRows() function shifts the rows in the state to the left.

// Each row is shifted with different offset.

// Offset = Row number. So the first row is not shifted.

void ShiftRows()

{

unsigned char temp;

// Rotate first row 1 columns to left

temp=state[1][0];

state[1][0]=state[1][1];

state[1][1]=state[1][2];

state[1][2]=state[1][3];

state[1][3]=temp;

// Rotate second row 2 columns to left

temp=state[2][0];

state[2][0]=state[2][2];

state[2][2]=temp;

temp=state[2][1];

state[2][1]=state[2][3];

state[2][3]=temp;

// Rotate third row 3 columns to left

temp=state[3][0];

state[3][0]=state[3][3];

state[3][3]=state[3][2];

state[3][2]=state[3][1];

state[3][1]=temp;

}

// xtime is a macro that finds the product of {02} and the argument to

// xtime modulo {1b}

#define xtime(x) ((x<<1) ^ (((x>>7) & 1) * 0x1b))

// MixColumns function mixes the columns of the state matrix

// The method used may look complicated, but it is easy if you know

// the underlying theory.

// Refer the documents specified above.

void MixColumns()

{

int i;

unsigned char Tmp,Tm,t;

for(i=0;i<4;i++)

{
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t=state[0][i];

Tmp = state[0][i] ^ state[1][i] ^ state[2][i] ^ state[3][i] ;

Tm = state[0][i] ^ state[1][i] ; Tm = xtime(Tm); state[0][i] ^= Tm ^ Tmp ;

Tm = state[1][i] ^ state[2][i] ; Tm = xtime(Tm); state[1][i] ^= Tm ^ Tmp ;

Tm = state[2][i] ^ state[3][i] ; Tm = xtime(Tm); state[2][i] ^= Tm ^ Tmp ;

Tm = state[3][i] ^ t ; Tm = xtime(Tm); state[3][i] ^= Tm ^ Tmp ;

}

}

// Cipher is the main function that encrypts the PlainText.

void Cipher()

{

int i,j,round=0;

//Copy the input PlainText to state array.

for(i=0;i<4;i++)

for(j=0;j<4;j++)

state[j][i] = in[i*4 + j];

// Add the First round key to the state before starting the rounds.

AddRoundKey(0);

// There will be Nr rounds.

// The first Nr-1 rounds are identical.

// These Nr-1 rounds are executed in the loop below.

for(round=1;round<Nr;round++)

{

SubBytes();

ShiftRows();

MixColumns();

AddRoundKey(round);

}

// The last round is given below.

// The MixColumns function is not here in the last round.

SubBytes();

ShiftRows();

AddRoundKey(Nr);

// The encryption process is over.

// Copy the state array to output array.

for(i=0;i<4;i++)

for(j=0;j<4;j++)

out[i*4+j]=state[j][i];

}

int main()

{

int i;

// Receive the length of key here.

while(Nr!=128 && Nr!=192 && Nr!=256)

{

printf("Enter the length of Key(128, 192 or 256 only): ");

scanf("%d",&Nr);

}

// Calculate Nk and Nr from the received value.

Nk = Nr / 32;

Nr = Nk + 6;

// Part 1 is for demonstrative purpose. The key and plaintext are given

// in the program itself.

// Part 1: ********************************************************

// The array temp stores the key.

// The array temp2 stores the plaintext.

unsigned char temp[16] = {0x00 ,0x01 ,0x02 ,0x03 ,0x04 ,0x05 ,

0x06 ,0x07 ,0x08 ,0x09 ,0x0a ,0x0b ,0x0c ,0x0d ,0x0e ,0x0f};

unsigned char temp2[16]= {0x00 ,0x11 ,0x22 ,0x33 ,0x44 ,0x55 ,

0x66 ,0x77 ,0x88 ,0x99 ,0xaa ,0xbb ,0xcc ,0xdd ,0xee ,0xff};

// Copy the Key and PlainText
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for(i=0;i<Nk*4;i++)

{

Key[i]=temp[i];

in[i]=temp2[i];

}

// *********************************************************

// Uncomment Part 2 if you need to read Key and PlainText from the keyboard.

// Part 2: ********************************************************

/*

//Clear the input buffer

flushall();

//Recieve the Key from the user

printf("Enter the Key in hexadecimal: ");

for(i=0;i<Nk*4;i++)

scanf("%x",&Key[i]);

printf("Enter the PlainText in hexadecimal: ");

for(i=0;i<Nb*4;i++)

scanf("%x",&in[i]);

*/

// ********************************************************

// The KeyExpansion routine must be called before encryption.

KeyExpansion();

// The next function call encrypts the PlainText with the Key using AES algorithm.

Cipher();

// Output the encrypted text.

printf("\nText after encryption:\n");

for(i=0;i<Nk*4;i++)

printf("%02x ",out[i]);

printf("\n\n");

return 0;

}

5.4.5 Used source-code of AES decryption

This section lists the source-code of AES decryption, used inside the energy e�ciency analysis
in Section 5.4.

/*

******************************************************************

** Advanced Encryption Standard implementation in C. **

** By Niyaz PK **

** E-mail: niyazpk@gmail.com **

** Downloaded from Website: www.hoozi.com **

******************************************************************

This is the source code for decryption using the latest AES algorithm.

******************************************************************

*/

// Include stdio.h for standard input/output.

// Used for giving output to the screen.

#include<stdio.h>

// The number of columns comprising a state in AES. This is a constant

// in AES. Value=4

#define Nb 4

// The number of rounds in AES Cipher. It is simply initiated to zero.

// The actual value is recieved in the program.

int Nr=0;

// The number of 32 bit words in the key. It is simply initiated to zero.
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// The actual value is recieved in the program.

int Nk=0;

// in - it is the array that holds the CipherText to be decrypted.

// out - it is the array that holds the output of the for decryption.

// state - the array that holds the intermediate results during decryption.

unsigned char in[16], out[16], state[4][4];

// The array that stores the round keys.

unsigned char RoundKey[240];

// The Key input to the AES Program

unsigned char Key[32];

int getSBoxInvert(int num)

{

int rsbox[256] = {

0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,

0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,

0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,

0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,

0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,

0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,

0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,

0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,

0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,

0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,

0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,

0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,

0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,

0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,

0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,

0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };

return rsbox[num];

}

int getSBoxValue(int num)

{

int sbox[256] = {

//0 1 2 3 4 5 6 7 8 9 A B C D E F

0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,

0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,

0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,

0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,

0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,

0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,

0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,

0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,

0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,

0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,

0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,

0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,

0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,

0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,

0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,

0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };

return sbox[num];

}

// The round constant word array, Rcon[i], contains the values given by

// x to th e power (i-1) being powers of x (x is denoted as {02}) in the

// field GF(2^8)

// Note that i starts at 1, not 0).

int Rcon[255] = {

0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,

0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,

0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,

0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,

0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,

0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,

0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,

0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,

0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,

0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
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0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,

0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,

0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,

0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,

0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,

0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb };

// This function produces Nb(Nr+1) round keys. The round keys are used in

// each round to decrypt the states.

void KeyExpansion()

{

int i,j;

unsigned char temp[4],k;

// The first round key is the key itself.

for(i=0;i<Nk;i++)

{

RoundKey[i*4]=Key[i*4];

RoundKey[i*4+1]=Key[i*4+1];

RoundKey[i*4+2]=Key[i*4+2];

RoundKey[i*4+3]=Key[i*4+3];

}

// All other round keys are found from the previous round keys.

while (i < (Nb * (Nr+1)))

{

for(j=0;j<4;j++)

{

temp[j]=RoundKey[(i-1) * 4 + j];

}

if (i % Nk == 0)

{

// This function rotates the 4 bytes in a word to the left once.

// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]

// Function RotWord()

{

k = temp[0];

temp[0] = temp[1];

temp[1] = temp[2];

temp[2] = temp[3];

temp[3] = k;

}

// SubWord() is a function that takes a four-byte input word and

// applies the S-box to each of the four bytes to produce an

// output word.

// Function Subword()

{

temp[0]=getSBoxValue(temp[0]);

temp[1]=getSBoxValue(temp[1]);

temp[2]=getSBoxValue(temp[2]);

temp[3]=getSBoxValue(temp[3]);

}

temp[0] = temp[0] ^ Rcon[i/Nk];

}

else if (Nk > 6 && i % Nk == 4)

{

// Function Subword()

{

temp[0]=getSBoxValue(temp[0]);

temp[1]=getSBoxValue(temp[1]);

temp[2]=getSBoxValue(temp[2]);

temp[3]=getSBoxValue(temp[3]);

}

}

RoundKey[i*4+0] = RoundKey[(i-Nk)*4+0] ^ temp[0];

RoundKey[i*4+1] = RoundKey[(i-Nk)*4+1] ^ temp[1];

RoundKey[i*4+2] = RoundKey[(i-Nk)*4+2] ^ temp[2];

RoundKey[i*4+3] = RoundKey[(i-Nk)*4+3] ^ temp[3];

i++;

}
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}

// This function adds the round key to state.

// The round key is added to the state by an XOR function.

void AddRoundKey(int round)

{

int i,j;

for(i=0;i<4;i++)

for(j=0;j<4;j++)

state[j][i] ^= RoundKey[round * Nb * 4 + i * Nb + j];

}

// The SubBytes Function Substitutes the values in the

// state matrix with values in an S-box.

void InvSubBytes()

{

int i,j;

for(i=0;i<4;i++)

for(j=0;j<4;j++)

state[i][j] = getSBoxInvert(state[i][j]);

}

// The ShiftRows() function shifts the rows in the state to the left.

// Each row is shifted with different offset.

// Offset = Row number. So the first row is not shifted.

void InvShiftRows()

{

unsigned char temp;

// Rotate first row 1 columns to right

temp=state[1][3];

state[1][3]=state[1][2];

state[1][2]=state[1][1];

state[1][1]=state[1][0];

state[1][0]=temp;

// Rotate second row 2 columns to right

temp=state[2][0];

state[2][0]=state[2][2];

state[2][2]=temp;

temp=state[2][1];

state[2][1]=state[2][3];

state[2][3]=temp;

// Rotate third row 3 columns to right

temp=state[3][0];

state[3][0]=state[3][1];

state[3][1]=state[3][2];

state[3][2]=state[3][3];

state[3][3]=temp;

}

// xtime is a macro that finds the product of {02} and the argument to xtime

// modulo {1b}

#define xtime(x) ((x<<1) ^ (((x>>7) & 1) * 0x1b))

// Multiplty is a macro used to multiply numbers in the field GF(2^8)

#define Multiply(x,y) (((y & 1) * x) ^ ((y>>1 & 1) * xtime(x)) ^ ((y>>2 & 1)

* xtime(xtime(x))) ^ ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ ((y>>4 & 1)

* xtime(xtime(xtime(xtime(x))))))

// MixColumns function mixes the columns of the state matrix.

// The method used to multiply may be difficult to understand for beginners.

// Please use the references to gain more information.

void InvMixColumns()

{

int i;

unsigned char a,b,c,d;

for(i=0;i<4;i++)

{

a = state[0][i];

b = state[1][i];

c = state[2][i];
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d = state[3][i];

state[0][i] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);

state[1][i] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);

state[2][i] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);

state[3][i] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);

}

}

// InvCipher is the main function that decrypts the CipherText.

void InvCipher()

{

int i,j,round=0;

//Copy the input CipherText to state array.

for(i=0;i<4;i++)

for(j=0;j<4;j++)

state[j][i] = in[i*4 + j];

// Add the First round key to the state before starting the rounds.

AddRoundKey(Nr);

// There will be Nr rounds.

// The first Nr-1 rounds are identical.

// These Nr-1 rounds are executed in the loop below.

for(round=Nr-1;round>0;round--)

{

InvShiftRows();

InvSubBytes();

AddRoundKey(round);

InvMixColumns();

}

// The last round is given below.

// The MixColumns function is not here in the last round.

InvShiftRows();

InvSubBytes();

AddRoundKey(0);

// The decryption process is over.

// Copy the state array to output array.

for(i=0;i<4;i++)

for(j=0;j<4;j++)

out[i*4+j]=state[j][i];

}

int main()

{

int i;

// Receive the length of key here.

while(Nr!=128 && Nr!=192 && Nr!=256)

{

printf("Enter the length of Key(128, 192 or 256 only): ");

scanf("%d",&Nr);

}

// Calculate Nk and Nr from the received value.

Nk = Nr / 32;

Nr = Nk + 6;

// Part 1 is for demonstrative purpose. The key and plaintext are given in

// the program itself.

// Part 1: ********************************************************

// The array temp stores the key.

// The array temp2 stores the plaintext.

unsigned char temp[32] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};

unsigned char temp2[16]= {0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30, 0xd8, 0xcd,

0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a};

// Copy the Key and CipherText

for(i=0;i<Nk*4;i++)

{
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Key[i]=temp[i];

in[i]=temp2[i];

}

// *********************************************************

// Uncomment Part 2 if you need to read Key and CipherText from the keyboard.

// Part 2: ********************************************************

/*

//Clear the input buffer

flushall();

//Recieve the Key from the user

printf("Enter the Key in hexadecimal: ");

for(i=0;i<Nk*4;i++)

scanf("%x",&Key[i]);

printf("Enter the CipherText in hexadecimal: ");

for(i=0;i<Nb*4;i++)

scanf("%x",&in[i]);

*/

// ********************************************************

//The Key-Expansion routine must be called before the decryption routine.

KeyExpansion();

// The next function call decrypts the CipherText with the Key using

// AES algorithm.

InvCipher();

// Output the decrypted text.

printf("\nText after decryption:\n");

for(i=0;i<Nb*4;i++)

printf("%02x ",out[i]);

printf("\n\n");

return 0;

}

5.4.6 Used source-code of SHA1

This section lists the source-code of SHA1, used inside the energy e�ciency analysis in Section 5.4.

/*

******************************************************************

This source code is under development. Even though you can use it as

such, it is recommended you check back after a few days for an updated

version. The current version lacks descriptive comments also.

******************************************************************

*/

#include<stdio.h>

#include<string.h>

#include<malloc.h>

#include<math.h>

#include<stdlib.h>

#define rotateleft(x,n) ((x<<n) | (x>>(32-n)))

#define rotateright(x,n) ((x>>n) | (x<<(32-n)))

void SHA1(unsigned char * str1)

{

unsigned long int h0,h1,h2,h3,h4,a,b,c,d,e,f,k,temp;

h0 = 0x67452301;

h1 = 0xEFCDAB89;

h2 = 0x98BADCFE;

h3 = 0x10325476;

h4 = 0xC3D2E1F0;
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unsigned char * str;

str = (unsigned char *)malloc(strlen((const char *)str1)+100);

strcpy((char *)str,(const char *)str1);

int current_length = strlen((const char *)str);

int original_length = current_length;

str[current_length] = 0x80;

str[current_length + 1] = '\0';

char ic = str[current_length];

current_length++;

int ib = current_length % 64;

if(ib<56)

ib = 56-ib;

else

ib = 120 - ib;

int i=0;

for(i=0;i < ib;i++)

{

str[current_length]=0x00;

current_length++;

}

str[current_length + 1]='\0';

for(i=0;i<6;i++)

{

str[current_length]=0x0;

current_length++;

}

str[current_length] = (original_length * 8) / 0x100 ;

current_length++;

str[current_length] = (original_length * 8) % 0x100;

current_length++;

str[current_length+i]='\0';

int number_of_chunks = current_length/64;

unsigned long int word[80];

int j=0;

int m=0;

for(i=0;i<number_of_chunks;i++)

{

for(j=0;j<16;j++)

{

word[j] = str[i*64 + j*4 + 0] * 0x1000000 + str[i*64 + j*4 + 1]

* 0x10000 + str[i*64 + j*4 + 2] * 0x100 + str[i*64 + j*4 + 3];

}

for(j=16;j<80;j++)

{

word[j] = rotateleft((word[j-3] ^ word[j-8] ^ word[j-14] ^ word[j-16]),1);

}

a = h0;

b = h1;

c = h2;

d = h3;

e = h4;

for(m=0;m<80;m++)

{

if(m<=19)

{

f = (b & c) | ((~b) & d);

k = 0x5A827999;

}

else if(m<=39)

{

f = b ^ c ^ d;

k = 0x6ED9EBA1;

}

else if(m<=59)

{

f = (b & c) | (b & d) | (c & d);
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k = 0x8F1BBCDC;

}

else

{

f = b ^ c ^ d;

k = 0xCA62C1D6;

}

temp = (rotateleft(a,5) + f + e + k + word[m]) & 0xFFFFFFFF;

e = d;

d = c;

c = rotateleft(b,30);

b = a;

a = temp;

}

h0 = h0 + a;

h1 = h1 + b;

h2 = h2 + c;

h3 = h3 + d;

h4 = h4 + e;

}

printf("\n\n");

printf("Hash: %x %x %x %x %x",h0, h1, h2, h3, h4);

printf("\n\n");

}

int main()

{

SHA1((unsigned char *)"The quick brown fox jumps over the lazy dog");

return 0;

}

84



6 Security Mechanisms in Sensor
Networks (M4)

In this chapter we combine and extend security mechanisms discussed in Chapter 4 to ful�ll the
security requirements of Section 3.2 based on the functional assumptions outlined in Section 3.1.2.

As a main contribution we propose a novel remote attestation scheme for sensor networks
that combines software attestation with PUFs. We use this attestation scheme to enhance key
management and allow collaborative attestation of nodes after software update, reboot or sus-
pected compromise. For secure time synchronization and secure software update we can use
existing techniques.

6.1 High-level Architecture

As depicted in in Figure 6.1, the TeSOS system can be represented as a layered set of modules.
Modules in the Hardware and OS layers that are responsible for base functionality of the WSN
and can be found in many standard WSN systems are shown in gray. In contrast, the security-
relevant modules that are designed and integrated within the TeSOS project reside in the Security
and Application layers, except for optional security hardware like PUF for cryptographic accel-
erators and the new �Attestation Mode� in the kernel layer. The attestation mode introduces a
new mode in the operating system where most local processes and interaction with other systems
is suspended to maximize local processing power and minimize unexpected interference.

In the following, we describe these additional security services and how they meet the expected
security objectives.

Hardware

Kernel

Security
Services

(Security-)
Applications

CPU + Memory
WiFi /
   Comm. Link

Network Stack Attestation Mode
Process + Mem.
      Management

Key Mgmt + 
       Key Storage

Secure RoutingSecure Channels

Secure Sleep +
            Wakeup

Crypto-Library

Power Mgmt.

PUF / 
     Crypto-CPU

Time
  Synchronization

Data Reports +
        Commands

Software
         Update

Secure
       Aggregation

Sensors + Actors

Figure 6.1: High-level TeSOS Architecture
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6.2 Key Management

The functional requirements for key management in TeSOS are rather conservative in comparison
to the assumptions made in the research literature. As detailed in Section 3.1.2, TeSOS Wireless
Sensor Networks (WSNs) are comprised of at most N = 1000 nodes in a hierarchical topology
where up to 50 Small Nodes (SNs) communicate mainly with their respective cluster head (Big
Node, Big Node (BN)). The sensor nodes are installed statically and their location is known
prior to deployment. However, TeSOS requires a limited resilience against failure of individual
cluster heads (BNs), by supporting a mesh network of Small Nodes (SNs) to the next BN as a
fallback solution.

Considering the above requirements, even a simple pair-wise key distribution that uses a
priori information on node locations can be functionally su�cient: If we assume that the at most
50 SN that are reachable by each Cluster Head (CH) are the maximum amount of nodes that any
node communicates with directly, each node requires only about (50−1)·80/8/1024 ≈ 0.5 KBytes
of key storage, plus node identi�er information for each key. However, based on Section 3.2 one
must also consider the following security requirements:

• Secure Key Storage. The sensor nodes require secure storage or a PUF to maintain
con�dentiality and integrity of encrypted data and messages despite hardware attacks.

• Extendability. The WSN must be extensible with additional nodes after deployment.

• Revocation. If a node is compromised or in unknown state, it must be possible to log-
ically exclude it from the regular network to maintain integrity and con�dentiality of the
remaining network (revocation).

• Forward and Backward Security. The impact of compromised short- and long-term
keys must be limited, i.e., it should not be possible to derive new session keys or long-term
keys based on compromised older session keys, and if long-term keys are compromised it
should not be possible to compromise session keys.

6.2.1 Symmetric vs. Asymmetric Key Management

A major question is whether the key management should rely on symmetric or asymmetric
long-term (authentication) keys and/or asymmetric key exchange methods such as Ephemeral
Di�e-Hellman (EDH). The following major di�erences between symmetric and asymmetric key
management can be identi�ed:

• Scalability. In symmetric systems, two parties can only communicate if they share a
common secret key. However, for resilience against key compromise and unambiguous
authentication of peers, every pair of nodes should use an independent common shared
secret. As a result, the required key storage per node rises linearly in the number of peers.
By contrast, key exchange based on asymmetric long-term authentication keys only requires
each node to store its own key pair and the public key of a common certi�cation (or key
distribution) authority. A peer's public key is signed by the certi�cation authority and the
signature is veri�ed during key exchange to authenticate the peer. Another advantage over
symmetric key systems is that networks can be easily extended by having the certi�cation
authority sign the key pairs of new participants. In symmetric schemes, network extension
is only possible if the existing network has a priori knowledge on the new participant's
secret key. This is typically implemented at the cost of resilience, by introducing a global
master secret. Alternatively, it would be possible to maintain a (limited) reserve of spare
pairwise secrets on all participants.
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Hence, symmetric key management is usually only practical in �closed� systems, where
the size of the overall system can be estimated in advance and non-repudiation, i.e., un-
ambiguous attribution of data to its sender, is not required. As the overall amount of
pair-wise keys rises quadratically in the number of participants, symmetric key manage-
ment requires some form of master key or other assumptions to reduce the required key
storage in scenarios with many participants.

• Forward and Backward Security. Forward security considers the security of old session
keys after the long-term keys that were involved in negotiation of the session keys have been
compromised. To prevent an adversary from deriving all previous session keys based on
compromised long-term keys, an additional secret must be involved in the key negotiation
that is not available to the adversary even after key compromise. The property is typically
achieved with an ephemeral Di�e-Hellman exchange as part of the session key negotiation,
where the private ephemeral Di�e-Hellman keys are deleted after the negotiation is �nished.
Forward security is also possible with a purely symmetric key exchange, by replacing the
long-term shared secret with a hash chain and periodically replacing the current secret
key such that the previous secret cannot be reconstructed [BY03]. However, this method
requires all involved peers to be synchronized with respect to their current position in the
hash chain, and it must be hard for an adversary to desynchronize any two legitimate
communication partners.

Backward security considers the security of future session and long-term keys in face of
compromised older session keys. Backward security is easily achieved by applying a cryp-
tographic one-way functions (hash functions) on the session key before using it to protect
the communication.

• Resilience. Key distribution in symmetric key management systems implies that all
keys are also known to the Key Distribution Center (KDC). However, many ID-based
encryption schemes also su�er from this so-called key escrow and even in non-ID-based
asymmetric key schemes, the certi�cation authority can forge certi�cates and launch man-
in-the-middle-attacks. The problem can be mitigated by procedural measures, for example,
by introducing multiple certi�cation authorities and requiring a valid peer key to be signed
by all of them independently. Similarly, the KDC in a symmetric or identity-based scheme
can and should delete any knowledge on third party's pair-wise keys.

• Performance.
Symmetric authentication and encryption algorithms typically require signi�cantly less
computational resources than the respective asymmetric alternatives. For the SN, asym-
metric cryptography is therefore generally not practical due to message size and compu-
tational constraints. Even for BN asymmetric cryptography is only practical if hardware
acceleration can be provided to reduce the computational cost.

Due to the closed nature of the considered sensor network and its rather low requirements on
scalability, a symmetric key distribution scheme is functionally su�cient. Due to the assump-
tion that nodes are not compromised in the deployment and upgrade phases, a protocol such as
Localized Encryption and Authentication Protocol (LEAP) can provide the required scalability
and extendibility of the network while maintaining resilience against partial network compro-
mise. Simple counters can be used for forward security since nodes typically do not change their
communication partners, mitigating the problem of desynchronization. However, the assump-
tion of secure deployment and upgrade is rather uncommon and may not be practical in some
situations. In the following we thus present two alternative solutions, one solution based on
LEAP that is purely symmetric and one that combines LEAP with identity-based Elliptic Curve
Cryptography (ECC) for additional robustness against key compromise.
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6.2.2 A Forward-Secure Symmetric Key Management with Key Refresh

To meet the functional requirements and security goals of TeSOS, we suggest to combine the
LEAP key management scheme [ZSJ03] with forward secure encryption based on one-way func-
tions [BY03]. Optionally, remote attestation can be used for secure on-demand key refresh and
re-synchronization of nodes. PUF-based remote attestation is introduced in later Section 6.5 and
is modeled here simply as an oracle OAT that yields a fresh symmetric secret shared between the
sensor node and the base station.

As explained in Section 4.2.1, LEAP exploits a limited time frame t after deployment in
which the adversary has not yet succeeded to compromise any node. Within this time frame,
all nodes can thus be equipped with a master key Km and negotiate link keys with node dis-
covered neighbors as KB = h(Km, IDB) and KAB = fKB

(IDA, IDB, N1, N2), where h(·), f(·)
are cryptographic one-way functions, A,B are the public identities of the involved sensor nodes
broadcasted during network setup phase and N1, N2 are fresh random nonces. The resulting
key KA is the device key of A and KAB the pairwise key shared between A and B. The master
key Km is purged from memory after time t, which is by design larger than the duration of the
network setup phase, ensuring maximum resilience to node compromise once t is elapsed. As
described in [ZSJ03], the scheme also supports group-keys and extensions of the network with
new nodes. Note that in general, KAB 6= KBA. So if both, A and B, are in possession of Km

(e.g., immediately after deployment), then concurrent key negotiations must detected and the
two parties must agree on which of the negotiated keys to use (e.g., by interpreting the node IDs
as integers and canceling the key negotiation that was initiated by the node with the lower ID).

We introduce forward and backward security into this scheme by using the pairwise shared key
KAB as the root of a one-way key chain (K1,K2, ...,KN ), where Ki = f(Ki−1) and K1 = KAB.
To assure synchronization of the intervals i in a loosely coupled WSN with sleepy participants,
we let the interval changes be triggered actively, by sending an authenticated command to the
respective peer after another successful communication event occurred, to indicate the interval
transition. An adversary may attempt to drop such indications or their acknowledgment, result-
ing in permanent desynchronization and potential DoS. Hence, peers must maintain a cache for
the previously active keys until a successful authenticated interaction based on the new session
key occurred. Keys from old intervals should be securely overwritten to guarantee forward secu-
rity. In the event of desynchronization attacks, e.g., a man-in-the-middle repeatedly discarding
certain noti�cation messages, the nodes should report the problem to the Base Station (BS). In
any case, a given symmetric key should never be used once ciphertext collisions become possible.

The protocol for key setup is depicted in Figure 6.2 and is equivalent with the standard
LEAP protocol from [ZSJ03]: A and B generate pairwise shared keys KAB and KBA based on
Km and chose one of them as pairwise master secret. Note that, in later a WSN Upgrade phase,
the older node (B, in Figure 6.2) has deleted Km and only knows KB. Still, both nodes can
generate a common key KAB for as long as A has not deleted its Km.

The authors of LEAP also propose an extension to their scheme to increase the robustness
against key compromise. Speci�cally, multiple instances of di�erent keys Km can be used over
distinct phases ti in the life time of the WSN. A node A added in phase ti is equipped with
the corresponding Km,t1 to work in the scheme as described above, and additionally with device
keys KA,tj , for all other life phases tj 6= ti. We can generalize this scheme to let the BS disclose
additional master keys Km,ti to speci�c nodes A (e.g., a cluster head) after deployment, using
the oracle OAT . The mechanism can also be used to recover from compromised master and node
keys as well as whenever key chains become desynchronized. The refresh protocol using on the
remote attestation oracle OAT is illustrated in Figure 6.3.

For sensor node revocation, we follow the approach of LEAP [ZSJ03] to let the BS announce
revoked nodes by broadcasting their public identities (IDA, IDB in the above example) to all
nodes in the network, which then delete all link and group keys established with that node. Since
master keysKm,ti are deleted within a time frame where no compromise (and thus, no revocation)
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Node A Node B
Stores: Stores:

Derive:

Chose random:

Chose random:

Delete:
...

Figure 6.2: LEAP Key Setup Phase: Pairwise keys can be generated as long as either party has
knowledge of Km. After time t, deletion of Km results in full resilience against node compromise

Base Station Node A
Stores: Stores:

Attest A:
Attestation:

Chose random:

Verify:

Verify:

Updated master key:

Figure 6.3: LEAP Key Refresh Phase: After recovery from compromise, desynchronization of
nodes or for re-initialization of nodes after undeployment, the remote attestation protocol (OAT )
can be used to securely distribute a new master key K ′m

occurs, the deletion of all link keys is su�cient to prevent revoked nodes from participating in
the secure WSN. Additionally, since new keys Km,ti may be selectively disclosed to speci�c nodes
or are temporarily available for newly deployed nodes when extending the WSN, these systems
must also be informed of the current set of revoked sensor nodes.

6.2.3 Hybrid Key Management for Heterogeneous Sensor Networks

As we also note in Section 4.2.1 ID-based cryptography is well-suited for WSNs [ODL+07]. In
the following we describe a combination of asymmetric and symmetric key exchange algorithms
such that cluster heads communicate securely without requiring globally secure deployment and
upgrade phases, while the key generation between cluster head (BN) and cluster members (SN)
is done with the more e�cient LEAP protocol.

Speci�cally, we choose a modi�cation of the Arazi-Qi identity-based Di�e-Hellman exchange
as proposed in [HUW11] to generate fresh keys between the BN. Communication between BN
and SN is can then be protected by LEAP schemes deployed local to the respective sensor node
cluster. As shown in Figure 6.4, each BN (including the Base Station (BS)) is equipped with
the elliptic curve parameters E(q,G), where q is the group modulus and G is the generator of
E mode q, a global public key (�root certi�cate�) R and the node identity ID. The KDC then
generates public and private keys U, x for each sensor node, where they are veri�ed and stored.
Note that in contrast to LEAP, the KDC is not identical with the base station. Instead, the base
station is treated as one of the BNs. After deployment, the cluster heads can use the key pairs
to establish pair-wise keys securely, as illustrated in Figure 6.5.

The integration with LEAP, to allow secure communication between BN and SN, is straight-
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Figure 6.4: Key generation for the modi�ed Arazi-Qi scheme.
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Figure 6.5: Ephemeral key agreement with the modi�ed Arazi-Qi scheme.

forward: Since TeSOS assumes that the location of nodes is known in advance (seeWSN.Deployment
in Section 3.1.2), we can simply apply LEAP to the individual clusters by providing the cluster
head (BN) and all cluster nodes (SN) of the same cluster c with the same uniformly random
chosen LEAP master key Kc

m. To allow SN to fall back on alternative cluster heads (see Sections
3.1.2, 6.6), SN of di�erent clusters must also be able to communicate securely. For this purpose,
we propose to use the respective cluster heads of the two SN to distribute a new shared symmet-
ric master key on demand. The LEAP protocols outlined in Section 6.2.2 can then be applied
to the individual clusters, when one of the communication partners is an SN while the Arazi-Qi
scheme (cf. Figure 6.5) is used if both communication participants are BNs.

6.2.4 Secure Key Storage

TeSOS nodes must provide secure key storage to meet the con�dentiality and authenticity ob-
jectives for transferred messages and local data in face of hardware attacks. This particularly
interesting for the LEAP protocol, where it is critical that the long-term keys cannot be extracted
within time frame t.

Unfortunately, cryptographic modules that provide secure storage are not commonly avail-
able and likely too expensive for SNs and possibly also BNs. By contrast, Physically Unclonable
Functions (PUFs) are already integrated in some embedded systems, although not commonly
available yet. Physically Unclonable Functions (PUFs) are hardware functions that exploit in-
trinsic inaccuracies in chip production, and thus more cost-e�cient by design.

Hence, we propose to adopt PUF-based key storage [TB05]: Instead of directly storing long-
term keys such as Km or KAB in memory, only a PUF challenge (pch) and helper data (ph) are
stored instead of the actual key material. To access long-term keys, the PUF is then queried
with pch. The PUF response is fed into a fuzzy extractor together with helper data ph to derive
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the original secret key. During manufacturing, the memory that holds the PUF challenge is
physically surrounded by the PUF. As a result, the PUF challenge cannot be extracted from the
hardware without destroying the PUF, which in turn renders the extracted data useless.

To also mitigate the problem of software attacks, long-term keys should only be kept in
memory while they are needed and securely overwritten afterwards [Gut01].

We emphasize that Km must be protected in both, the purely LEAP-based scheme as well
as the hybrid ECC/LEAP scheme. However, the hybrid keying scheme of Section 6.2.3 is less
vulnerable to compromise since Km is split in multiple localized cluster keys Kc

m. On the other
hand, if the location and neighborhood of sensor nodes is known before deployment, this can
also be done for the simple LEAP-based scheme.

6.2.5 Broadcast Authentication

Secure broadcast authentication must not only assure the authenticity of messages but also
prevent replay and impersonation attacks. We identify two major approaches for secure broadcast
authentication, µ-TESLA and asymmetric cryptographic signatures:

µ-TESLA. As described in Section 4.2.1, µ-TESLA uses delayed disclosure of symmetric au-
thentication keys and loose time synchronization between all participants [PSW+01, LN03a,
LN04]. The delayed disclosure prevents which is based only on symmetric receivers from imper-
sonating the sender while still allowing a (delayed) authentication of genuine broadcast messages.
Unfortunately, the scheme is very vulnerable to denial of service attacks, since receivers must
bu�er all received messages until the next respective authentication key is disclosed. Time inter-
vals can be shortened, but as a result the time synchronization becomes tighter and it becomes
more expensive for sender and receiver to maintain and validate the authentication keys.

Asymmetric Signatures. Signatures allow the veri�cation of messages without possession of
the secret key, and are thus by design more suitable for (broadcast) authentication of messages.
However, asymmetric cryptography is generally much more expensive with regards to the required
computation and communication e�orts. We identify three options that can make broadcast
authentication based on asymmetric cryptography more suitable for TeSOS:

• Rabin-Williams Signatures. As an optimization of the standard RSA signatures, Rabin-
Williams signatures allow highly e�cient signature veri�cation that amounts to a simple
modular squaring of the message. Other optimizations allow the message size, which is
typically at least as large as the modulus, to be reduced by half [Ber08]. As a result,
it becomes feasible to verify signatures in software. Signature creation at the BS is only
slightly more expensive, however, the BS is assumed to be a rather powerful, laptop-class
device. The main disadvantage of this approach is that it is bound to RSA, which is
generally more resource intensive and produces longer message sizes than Elliptic Curve
Cryptography (ECC). If an asymmetric pair-wise key establishment system is deployed with
hardware support or other modi�cations, broadcast authentication with Rabin-Williams
signatures cannot bene�t from them.

• Hardware Acceleration. By requiring sensor nodes to support certain base operations in
hardware, their energy and time consumption can be reduced drastically. In fact, optimal
hardware acceleration for speci�c cryptographic operations can make the cost for individual
operations almost negligible. However, such hardware extensions increase production cost
and are often not available for low-cost devices (SNs).

• Delegated Authentication. To reduce the cost of signature veri�cation, it may be viable
to delegate authentication from the less resourceful leaves of the WSN (SNs) to the more
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powerful Cluster Heads (CHs). In this case, SNs must trust their respective CH to authen-
ticate messages correctly and to not become compromised. In turn, the SN are not required
to authenticate asymmetric signatures but can use pair-wise shared keys for much more
e�cient Message Authentication Codes (MACs). Since the pair-wise shared key is only
known to the individual SN and their respective CH, the SN has assurance that messages
are not spoofed as long as the CH is secure. The disadvantages of this approach are slightly
higher communication and computation costs for pairwise authentication of messages, and
the higher risk of compromised CHs.

To provide basic replay protection, a counter can be included in each message such that the
receiver can compare the counter value and drop older messages. If the WSN supports basic
time synchronization, a time stamp can be used instead of the counter to provide freshness of
the message and support the time synchronization.

6.3 Data Channel Security

The TeSOS WSN features data �ows typical for monitoring applications, where all data is col-
lected by a base station, or distributed from a base station to all nodes in the network. In
other words, the TeSOS network may have node-to-BS and BS-to-node data links, but never
node-to-node communication patterns.

Providing end-to-end data security in networks with node-to-node communication is challeng-
ing in large WSNs, as this requires storing a large number of pair-wise keys [CP03]. However,
it is rather straightforward for networks with data �ows starting or ending in BS, as it requires
each node to store only keys shared with the BS.

The general requirements for end-to-end data security are con�dentiality, integrity, authen-
ticity, freshness and availability (as de�ned in Table 3.1, page 17). In the following, we discuss
end-to-end data security in the following application scenarios: (i) Collection of data reports;
(ii) distribution of base station commands; and (iii) super distribution of code images.

6.3.1 Collecting Data Reports

Data reports include measurements and event reports collected by sensor nodes. Data reports are
sent from individual sensor nodes to a base station, typically by means of unicast transmissions.
The standard mechanism to ensure integrity and authenticity of unicast messages are MACs
calculated over the message using a pair-wise key shared between the reporting sensor and the BS.
Protection against replay attacks can be achieved using time stamps (see Section 6.7) or simple
counters. When con�dentiality of data reports is desired, messages must also be encrypted.

Availability of data reports is the most challenging requirement since we must assume that
compromised nodes exist in the network. Compromised nodes can report non-existing events
or refuse to forward messages. The state-of-the-art approach to tolerate such interference is to
add redundancy. For instance, the underlying routing protocol can provide multiple routes to
the destination (e.g., INSENS [DHM06a]). To mitigate reporting of false events, multiple nodes
sensing the same event can also generate joint reports (e.g., [YYY+05, RLZ08]). Both techniques
increase intrusion tolerance of the network, however, at the cost of increased resource consump-
tion (time and energy). Depending on requirements of a particular application on availability,
none, both of these techniques of either of them can be integrated into the �nal system design.

Aggregated data reports. Data collected from sensor nodes can be merged by aggregation
nodes to produce compact small output data that is forwarded to the destination, rather than
sending individual data items. Aggregation nodes process collected data, e.g., apply actual
aggregation functions to data, e.g., average, minimum or maximum (�lossy aggregation�), or
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compress several small reports into a single message in order to reduce protocol overhead (�lossless
aggregation�).

In the TeSOS WSN, BNs can adopt the role of data aggregators as they are the CHs and
data reports of cluster nodes are always routed through the respective CH. Also, BNs possess
more processing power and energy reserves and can thus a�ord the additional computing and
communication loads.

Aggregating data reports reduces communication overhead, but also enables new attacks. An
adversary may try to falsify the result of the aggregation output generated by each cluster, and
to make the BS accepting false aggregation results. The easiest way to achieve such an attack
would to be compromise the aggregating node and then generate arbitrary data reports. This
is equivalent to compromising a signi�cant portion of sensors of a cluster and supplying a big
amount of bogus readings but requires much less e�orts.

A number of algorithms has been proposed to secure data aggregation process [CPS06,
YWZC08, HPP+07, TG08, BLM07, BLMB07]. Early protocols [CPS06, YWZC08] are not ro-
bust against network faults, as a single node failure results in rejection of a whole aggregation
result. Protocols [HPP+07, TG08] are able to detect and localize fault or malicious nodes, how-
ever, at the penalty of high communication costs. The most suitable aggregation protocol for
the TeSOS WSN is Secure Aggregation Protocol for Cluster-Based (SAPC) proposed by Bekara
et al. [BLM07, BLMB07]. SAPC is intended for clustered sensor networks and is resilient to
compromised aggregation nodes. In SAPC, the aggregation is computed and authenticated by
the aggregating node and approved by all members of the cluster. Each cluster member observes
data reported by other cluster members, calculates the aggregated value and computes MAC
(with a key shared with the BS) over it. MACs are sent to a cluster head and included into a
�nal report produced by a cluster head and transferred to a base station. The BS veri�es the
authenticity of the aggregation results calculated by each cluster member, and accepts the result
if it is con�rmed by the majority of cluster members.

Analysis. SAPC cannot be directly applied to the TeSOS network due to di�erences in as-
sumptions on a network layout. Firstly, the SAPC network model assumes that all sensors
within the cluster are placed within one-hop range and thus are able to hear broadcast messages
of each other. In contrast, sensor nodes in a TeSOS cluster are within the radio range of CH
but may not be within communication range of all other members of the cluster (see assump-
tion WSN.Topology, Section 3.1.2). Secondly, SAPC does not consider the fall-back mechanism
required in TeSOS where data can be delivered through alternative CHs. In both cases, cluster
members may not be able to hear messages of all the nodes that contributed into the aggregation
value. These di�erences can be addressed by (i) establishing direct radio range among cluster
members where possible and (ii) not aggregating reports from SNs located beyond radio range,
but delivering them individually, especially in case of SNs reporting via fall-back CHs. Note that
SAPC requires broadcast authentication so that sensor nodes can receive and validate their peer's
data reports broadcast messages and act as witness. SAPC proposes to use a MAC, calculated
with a key from on one-way key chain. Speci�cally, the sender generates a sequence of one-hash
chain keys {K0,K1, ...,Kn}, such that Ki−1 = H(Ki), where i = 1...n. A �rst commitment K0

is distributed among all broadcast receivers, e.g., sent via authenticated unicast messages. The
message is authenticated with MAC calculated with Ki, which is also included into a broadcast
message. The broadcast recipient can authenticate the key by verifying Ki−1 = H(Ki). Each
key is used only once for authentication, and each broadcast receiver only accepts the �rst mes-
sage authenticated with Ki. A major drawback of this approach is that the broadcast can be
intercepted, such that arbitrary messages can be sent based on the disclosed current key Ki.
On the other hand, digital signatures are likely too expensive and µ-TESLA incurs rather large
management overhead.
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6.3.2 Distribution of Base Station Commands

In TeSOS, a base station can send commands to regulate and control network operation. For
instance, it can request a particular data report, or change time interval for automated data
reporting. The commands can be addressed to individual nodes, groups of nodes (e.g., a cluster),
or to the whole network. Typically, multicast transmissions in WSNs are implemented as a
�ltered broadcast. To prevent replay of BS commands, a time stamp or counter value can be
included and checked by the receiver counters synchronized among a sender and a receiver.
Integrity and authenticity can be ensured by MAC calculated over the message with a pair-wise
key shared by a base station and by a node the message is addressed to, or using one of the
broadcast authentication schemes outlined in Section 6.2.5.

6.3.3 Secure Code Super Distribution

A typical application scenario that requires transmission of large amounts of data is the update
sensor node program code with a new so-called code image. This process is usually carried out
in a super-distribution fashion, i.e., the new code images are recursively distributed to all nodes
in the network. The mechanism requires security measures to ensure the integrity, freshness and
authenticity of a new code image. However, due to the size of the transferred data it is also
highly susceptible to Denial of Service (DoS) attacks because the corruption of a single piece of
the code image results in rejection of whole image due to authentication failure.

Hence, a stateful-veri�er τ -time signature scheme was proposed which is based on purely
cheap cryptographic primitives (i.e., hash function) and does not require time synchroniza-
tion [UWB09]. When the entire code image is authenticated with only a single signature, this
solution is susceptible to DoS attacks and transmission errors, since it is not possible to localize
the corrupted part of the image. Thus, retransmission of entire code image would be required
even if small block of the code image is lost or fault.

To address this problem, modern designs apply two major techniques: The �rst technique
aims to divide the entire code image into pages and authenticates individual pages rather than
the entire image [LGN06]. The hash of each page is included in the previous page, while the
hash image of the �rst page is signed and included in a signature packet. However, their page
size is larger than the size of the wireless package, thus the package cannot be authenticated on
the �y, but only when the entire code page is received. Hence the approach is still vulnerable to
DoS attacks. A second technique to improve DoS-resilience of secure code update was proposed
based on Merkle hash trees [DHM06b]. The Merkle hash tree is used to allow each packet to
be immediately authenticated upon receipt. However, this approach requires transmission of
a Merkle hash tree for every page, thus increases communication costs and slows down code
propagation.

The Seluge code super-distribution protocol builds up on earlier works but has an opti-
mization to allow immediate authentication of each packet upon receipt without disrupting the
e�cient code image propagation [HNLD08]. They include hash image of each packet in the
corresponding packet on the previous page, while Merkle hash tree is used to facilitate the au-
thentication of the hash images of the packets in the �rst page.

Another line of research in the area of secure code distribution builds security mechanisms
on Fountain Codes. Fountain Codes [Lub02] are designed to maintain high e�ciency, in terms
of protocol overhead, when transmitting small packets over lossy channels. Fountain Codes were
adopted for super distribution in WSN and extended with resource-aware security extensions that
allow to authenticate the source packets e�ciently and almost on the �y[RZS+08, BHUW09].
Another extension to reduce protocol overhead integrates fuzzy control theory [MHU+09].

Analysis. Seluge [HNLD08] is a de-facto standard for a secure code super distribution in
WSNs. However, it is designed for non-hierarchical homogeneous networks, where sensor nodes
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feature similar hardware and software. To be used in TeSOS network, it has to be adopted to a
heterogeneous structure and a hierarchical network architecture.

For an update of a code image of BNs, unmodi�ed Seluge can be used, because (i) BS and
BNs can be seen as a non-hierarchical homogeneous network, and (ii) BNs are able to verify
signatures made by a base station over the new image. However, the code update by SNs is
more challenging. First of all, SNs reside on the second layer of network hierarchy, thus Seluge
should be modi�ed to be applicable for hierarchical networks. Second, SNs are not able to verify
signatures made by BS, as they do not support asymmetric cryptographic operations.

The �rst issue can be addressed as following: a new code image for SNs can be �rst distributed
among BNs, where stored in the external memory. As a next step, it can be distributed within
the cluster. When all the nodes within the cluster feature the same functionality, the code update
within the cluster can be performed by means of broadcast transmissions.

Although BNs can verify signature of BS over a new code image of SNs, it is not desirable
to delegate signature veri�cation to untrusted cluster heads. When compromised, a BN can
compromise the rest of the cluster by replacing a code image with a malicious one. To enable
a code image authentication by SNs, we propose usage of authentication tokens generated by a
base station. This works like following: A base station generates authentication tokens for each
SN in the network. The token is a MAC over a new code image (or, more precisely, over a �rst
page of a code image) calculated with a pair-wise key shared by BS and a particular SN. The
tokens are distributed among SNs such that they are able to authenticate the new code image.
Without the valid token, the image update procedure is denied.

An alternative way to authenticate a �rst page of a new code image would be to use µ-TESLA.
This would reduce network tra�c (a single broadcast instead of multiple unicasts addressed to
each SN in the network). However, this would enable an adversary to launch DoS attacks, as
data authenticated with µ-TESLA scheme can be validated only after a certain delay.

6.4 Secure Boot and Wakeup

While Secure Boot is a well-established concept in mobile and entertainment systems, its appli-
cation to sensor networks must additionally consider the strong hardware constrains on sensor
network hardware: Continuous reboot or wakeup events may be used by an adversary to mount
denial of sleep attacks (see Section 4.1.2). Furthermore, sensor nodes do not typically feature
the required secure storage and wireless communication with trusted parties is expensive.

6.4.1 When to Boot: Secure Sleep Cycles

There are two major approaches to address the problem of sensor node wake-ups and reboots.
One is to use authenticated commands from the base station, cluster head or other authorized
parties, while the other is to schedule wake-up or reboot events in advance or based on sensory
input (environmental events).

Authenticated Commands. Authenticated commands require not only a key infrastructure
but also that the receiver can receive and validate the message before reacting to it. In case
of wake-up commands, this only makes sense if the command can be validated in an operation
mode that requires signi�cantly less power. Since radio and CPU must be active, this approach
only seems suitable for BN or nodes with additional peripherals that require large amounts of
energy. If the WSN nodes are custom built, the approach of [SBS02, FH09] may be viable where
a secondary low-power radio with integrated message authentication is used to boot or wake up
the main hardware.

Scheduled Wake-Up. Periodic or event-based wake-up of devices is highly cost e�cient, as it
works with the standard timer hardware on existing sensor nodes. However, it also complicates
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the overall operation of the WSN as nodes are not reachable on demand, requiring caching
and time synchronization. Furthermore, the scheduling of wake-up events is complicated if
measurements should be reported to the base station quickly: While the sensor nodes can often
be build such that the actual sensor can trigger a wake-up event for the local device, the delivery
of the sensor measurement to other nodes is limited by the availability of intermediate nodes.

Analysis. The possibilities and limits of sleep cycles are highly dependent on the application
of the sensor network. A mixture of scheduled wake-ups and authenticated commands for �ne-
tuning of the current sleep schedule appears promising to maintain �exibility for commodity
hardware. If fast reporting of events is required, the wakeup of SN should be triggered by the
sensor. For quick propagation of messages to the base station, the BN should then support a
secondary low-power radio or wake up frequently, possibly listening for additional authenticated
wake-up commands from peers.

6.4.2 What to Boot: Secure and Authenticated Boot

Secure Boot solutions typically require a secure hardware model that can be used to iteratively
validate code that is loaded during bootstrapping. A typical implementation would authenticate
all code with a digital signature before the code itself is executed. However, although �rst
sensor hardware with hardware-accelerated cryptographic algorithms are available, secure and
cost-e�cient key storage is currently only (assumed to be) possible with PUFs.

A Secure Boot solution for sensor networks requires a bootloader in ROM that can verify a
digital signature of the currently stored OS image. The public key used for veri�cation must be
stored in ROM or linked to the PUF and its corresponding challenge and helper data stored in
ROM, such that it cannot be exchanged by the adversary. Furthermore, ROM and signature
veri�cation as well as the memory interfaces must be protected against hardware attacks, to
prevent the adversary from exchanging the OS image on the �y, after signature veri�cation, or
manipulating the ROM.

The alternate Authenticated Boot approach can be realized with additional hardware support,
such as a Trusted Platform Module (TPM), or based on the more complex and computationally
expensive software attestation scheme we describe in later Section 6.5.

Analysis Secure boot in face of strong hardware attacks appears impractical and costly, as
the adversary has many attack vectors to manipulate program code. The merit of secure boot
is also mitigated by the fact that the adversary can simply add additional nodes to the WSN
or replace existing ones. In contrast, PUF-based key storage and remote attestation mitigate
such attacks and also detect strong attacks involving hardware manipulation of benign nodes.
We thus recommend to apply only rudimentary secure boot techniques, such as locally verifying
and decrypting the software image before boot-up. On SNs, the required symmetric veri�cation
keys should be bound to the PUF for security against certain hardware attacks and on BN, an
asymmetric veri�cation key (i.e., public key of the BS) should be stored in ROM, if available.

6.5 Remote Attestation

Remote attestation allows to (re-)establish trust in remote systems, i.e., it provides assurance to
a veri�er V (e.g., the WSN base station) on the current (software) state of a remote device (prover
P). This allows to validate correct operation of WSN nodes, i.e., if it is executing the expected
code or if undesired code was introduced by an adversary. It is useful in cases where unclear
loss in service quality (correctness of measurements, bad network connection in speci�c areas of
the network) is experienced or after recovery from possible software compromise (e.g., remote
software update and reboot).
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Verifier V Prover P
Stores D = {. . . , (I, SI , δI), . . .} Stores (I, S)

Choose random challenge r
r

for i = 1 to k do
(ai, ri)← GenMemAddr(ri−1)

σi ← SwSum(σi−1, S[ai])

end
σk

Save current time t

Save current time t′

if (t′ − t) ≤ δj and σk = σ′k then accept P
else reject P

σ0 ← InitSwSum(r0)

for i = 1 to k do
(ai, ri)← GenMemAddr(ri−1)

σ′i ← SwSum(σ′i−1, SI [ai])

end

σ′0 ← InitSwSum(r0)

r0 ← rr0 ← r

Figure 6.6: Concept of software attestation

Unfortunately, existing remote attestation schemes require a trusted (hardware) component
on every deployed sensor, which is expensive to protect against hardware attacks. The alternative
software attestation schemes [SLS+05, SLP+06] on the other hand require that the veri�er has
a �direct�, i.e., implicitly authenticated, connection to the prover, which is impractical for many
WSN deployments. In the following, we describe an attestation scheme that provides true remote
attestation by combining existing software attestation with PUFs [SSW11].

6.5.1 Combined Hardware/Software Attestation

A software attestation scheme is a two-party protocol between an prover P and a veri�er V,
where V requires the assurance that P is in a trusted (software) state S, i.e., that P is not
running any malicious software. Typically, P is an embedded device with constrained computing
capabilities (e.g., a wireless sensor node), whereas V is a more powerful computing device (e.g.,
a laptop). V can simulate any algorithm that can be executed by P and maintains a database
D containing the identity I and the exact hard- and software con�guration of each prover P.

All known software attestation schemes follow the general concept illustrated in Figure 6.6.
Abstractly, software attestation exploits the computational limits of P to assure that nothing
else than a speci�c algorithm can be executed within a speci�c time frame δ. This algorithm
is designed as a self-checksumming algorithm that also measures some additional parts of the
software state of the system. Its execution time is optimized to the respective platform such
that forging of the computed checksum, i.e., manipulating the checksum algorithm such that
modi�cations to the measured system state are not re�ected in the checksum, is not possible
within the expected running time of the unmanipulated checksum algorithm. By measuring the
delay between sending the attestation challenge and receiving the corresponding response from
P, V thus gains assurance on the software state of P.

Existing software attestation schemes are implemented by iteratively applying a simple check-
sum function to speci�c memory blocks, merging their content into the current checksum state.
To prevent e�cient memory-remapping attacks, the order of memory blocks is typically chosen
pseudo-randomly by a software-PRNG that is part of the overall software attestation. The PRNG
is seeded based on the attestation challenge, which makes the overall software attestation proce-
dure unpredictable to the adversary, preventing pre-computation attacks and also guaranteeing
freshness of the attestation response.

In contrast to existing purely software-based attestation schemes, our solution provides assur-
ance to the veri�er that the attestation response was actually computed by the original hardware
of the prover. This prevents the adversary from outsourcing the checksum computation to an-
other, possibly more powerful device, or spoo�ng a di�erent hardware con�guration to forge the
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checksum in time.
Speci�cally, our scheme incorporates a characteristic hardware checksum in each iteration of

the software attestation routine to generate a huge amount of additional input into the attestation
routine that (1) cannot be generated by any other device except the prover P and the veri�er V
and (2) cannot be transferred to an external device without signi�cantly increasing the overall
time required for the attestation procedure, such that the response of P to V is rejected at V.

We achieve (1) by instantiating the hardware checksum procedure with a PUFs. In particular,
in use cases like wireless sensor networks, where provers are deployed in hostile environments
and are subject to hardware attacks, the tamper-evidence property of PUFs can ensure that
modi�cations to the hardware of an prover can be detected. Property (2) is achieved by creating
a strong interdependency between hardware and software checksum so that they cannot be
parallelized e�ciently and by ensuring that the overall amount of data exchanged between the
algorithms is su�ciently high to prevent guessing or successive execution within the time frame
allowed by V.

We exploit that an adversary A is forced to use the external (wired or wireless) interfaces
of P to transmit the hardware checksum results to a colluding device that is not bound by the
computational performance of P and may thus compute a forged software attestation checksum
in time. However, due to the limited transfer speed of these interfaces, we can ensure that A
cannot obtain all hardware checksum results in time. On the other hand, an uncompromised node
can execute the software checksum in time and use the typically much faster internal interfaces
of P to exchange data between hardware and software checksums during attestation. Although
an adversary may attempt to also access such faster internal interfaces of P at runtime, such an
attack is signi�cantly more complex, in particular when they are protected by tamper-evident
hardware (e.g., a coating PUF [TS�+06, vMKT06] that is distributed over the surface of the
integrated circuits of P).

Unfortunately, the veri�cation of the hardware checksum by the veri�er V is not straightfor-
ward. To be compliant with existing software attestation schemes, V must be able to predict the
outputs of the hardware checksum while this must be infeasible for the adversary A. To achieve
this, we discuss di�erent approaches and instantiations of our protocol and evaluate their com-
munication complexity and security. Hereby, we focus on solutions based on PUFs. However,
predicting or verifying the output of a PUF to an unknown input is generally infeasible. Hence,
the integration of PUFs into software attestation protocols is challenging and requires careful
consideration.

Algorithm 1 illustrates the proposed overall attestation scheme. We abstract the pseudo-
random address generator of the software attestation scheme illustrated in Figure 6.6 as a PRNG
and merge additional random data from the HwSum into its internal state at runtime, e.g., using
bitwise XOR. This way, each inclusion of output from HwSum also in�uences all future iterations
of the SwSum, increasing the entanglement between the two functions.

6.5.2 Practical Considerations

In the following, we discuss some practical issues and options when deploying a PUF-based
remote attestation scheme. For security analysis and additional details we refer to [SSW11].

Key Establishment

An important practical aspect of remote attestation is the establishment of a fresh shared key,
since (1) previously used keys may have been compromised and (2) subsequent operations of the
prover P, like a software update, can be cryptographically bound to the device that succeeded
in the attestation.

In contrast to purely software-based attestation, which are currently unable to establish
a common shared key without assuming an existing uncompromised key at P, our scheme can
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Algorithm 1: High-level attestation protocol that pseudo-randomly interleaves hardware
and software checksum functions HwSum, SwSum.
Input:
r: PRNG seed of the veri�er's attestation challenge
q: CRP o�set of the veri�er's attestation challenge
Output:
σk: Final checksum value and attestation response
Temporary Variables:
i: Loop counter
ri: PRNG state in iteration i
xi: Input to HwSum in round i
yi: Output from HwSum in round i
ai: Input to SwSum in round i (address of memory block to be measured)
σi: Intermediate overall checksum value in iteration i

AttestLocal(r, q)
begin

(r0, σ0)← PRNG(r ); for i = 0 to k do
xi ← q ⊕ σi−1
yi ← HwChkSum(xi)
(ai, ri)← PRNG(ri−1, ai−1, yi)
σi ← SwChkSum(σi−1, ai, i, ri)

end
return σk

end

leverage the unclonability property of the hardware checksum HwSum () to generate shared secrets
between prover and veri�er. In fact, the �nal checksum value of our attestation protocol already
includes a signi�cant amount of data from the hardware checksum that is unpredictable to the
adversary, as otherwise the hardware checksum and thus the complete attestation process could
be simulated in software.

We can thus use the �nal checksum σk directly as a shared secret key: Instead of directly
disclosing it to the veri�er in the attestation response, we continue with explicit key con�rmation,
i.e., exchange proofs of knowledge of the common shared secret using cryptographic hashes of σk
and additional random nonces from each party.

On Demand CRP Generation

As described in Section 6.5.1, our solution for non-simulatable PUFs requires the veri�er to
generate sets of Challenge-Response Pairs (CRPs) before deployment and to commit to the
number of possible attestations during the life-time of the node. The approach can be problematic
due to the required amount of storage at the veri�er and, more importantly, it may be unsuitable
for dynamic trust management, where the demand for a (possibly rather expensive) remote
attestation procedure with P is determined by the individual behavior of P, e.g., based on the
correctness of its actions or reports.

An important extension of our attestation scheme is thus the generation of additional CRPs
after deployment. While this would normally require either an exhaustive database of the ex-
ponentially large amount of CRPs per prover or a completely deterministic attestation routine
with a �xed software state S, we can extend the attestation routine described in Algorithm 1 to
maintain full �exibility: We modify the PUF challenge x with a reduction function f(), such that
xi = (q ⊕ f(σi−1)). As a result, individual attestation procedures use a smaller CRP sub-space
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that is determined by the o�set q chosen by the veri�er and the size of the CRP sub-space, which
is determined by f(): 2|f(σ)|.

To simulate the resulting attestation protocol for arbitrary software states S, the veri�er must
now commit to function f() and o�set q and store the resulting CRP sub-space. The required
storage can be optimized by storing the PUF responses yi for each o�set q in a sorted list, with
implicit list index xi. Furthermore, we can shorten the bit length of the PUF responses yi, e.g.,
by using only their least signi�cant bit in the checksum computation.

To generate additional CRP sub-spaces on demand, the veri�er instructs the attested prover
to generate and transfer a new list of responses yi for a given o�set q. The transfer must be con-
�dential, e.g., protected by the common shared secret established by the attestation scheme (see
Section 6.5.2).

Cooperative Attestation

In wireless sensor networks, hop-to-hop communication combined with energy restrictions at the
sensor nodes used for routing can impose high transmission delays and more importantly jitter.
The time measurement of the attestation should therefore be delegated to the direct neighbors
of the prover, as discussed in [YWZC07]. The measuring neighbor can record response time and
forward it to the veri�er in an authenticated fashion, together with the original response of the
prover. Multiple neighbor nodes in the same broadcast zone can collaborate in this action and
inform the base station about their measured time, resulting in a threshold-secure attestation
scheme.

To attest the whole sensor network, the base station should start at its immediate neighbors
and iteratively attest all nodes in the network. Note that the security of this approach also
depends on the integrity nodes that the time measurement is delegated to, i.e., the time it takes
the adversary to compromise a given set of nodes after attestation. However, the attack surface
can be minimized by keeping nodes that are still to be used for delegated time measurements in
a constrained mode, where not all software and hardware components are active.

6.6 Secure Routing

A survey of the related work (see Section 4.2.3) has identi�ed two secure routing protocols that
are designed speci�cally for a Heterogeneous Wireless Sensor Network (HSN): Two-Tier Secure
Routing (TTSR) [DGXC07] and Resource Oriented Security Solution (ROSS) [CC07]. However,
none of them meets security and functional requirements of TeSOS WSN. TTSR cannot be ap-
plied to the TeSOS network due to a weaker adversary model that assumes trusted cluster heads.
ROSS does not require cluster heads to be trusted, but relies on reactive measures (detection
and revocation of compromised nodes) rather than provides a tolerance against intrusion. More-
over, neither of these protocols support alternative routes to backup cluster heads, while such a
functionality is required by TeSOS.

Generally, a hierarchical TeSOS WSN can be seen as consisting of two non-hierarchical layers.
The �rst layer composed by BNs and BS provides inter-cluster communication. The second layer
consisting of SNs and CHs is responsible for intra-cluster communication. In a normal operational
mode no routing is required within the cluster, as SNs are able to communicate directly with
their cluster heads (as depicted in Figure 6.7a). However, the network supports also a backup
mode of operation which is applied in a case of failure or compromise of a main cluster head. In
backup mode SNs can act as relays and forward data from other SNs (Figure 6.7b). To discover
routes to backup cluster heads, intra-cluster routing is required.

The TeSOS WSN should provide a means to establish relationships between SNs and their
main and backup cluster heads. Secure selection of backup cluster heads is not a straightforward
task, as those are out of direct radio range of corresponding SNs. Typically, cluster formation and
selection of cluster heads is a task of network clustering mechanisms. Existing works on network
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Figure 6.7: Operational modes of a clustered TeSOS network: (a) a normal mode; (b) a back-up
mode

clustering do not address the problem of associating cluster members with backup cluster heads,
thus a novel network clustering mechanism is required.

6.6.1 Network Clustering

In the following, we propose a novel network cluster representation which provides a means to
establish relationships among SNs and their main and backup CHs. We represent a network
as a set of inner and exterior clusters formed around cluster heads, as depicted in Figure 6.8.
The inner cluster (depicted as grayed areas) includes only SNs located within a direct radio
range from a cluster head. The radius of the inner cluster Ri has upper bound r, where r is a
communication range of a small node.

The exterior cluster has radius Re ≥ r, thus, not all SNs are able to communicate a cluster
head directly, but may reach it via hop-by-hop communication. Exterior clusters of respective
cluster heads overlap, thus a single SN can be a member of several exterior clusters. For instance,
in Figure 6.8, a small node d is a member of three exterior clusters formed around cluster heads
A,B,C, and a member of an inner cluster of X. A membership in a single exterior cluster
provides SN with a single route to a corresponding backup cluster head, while a membership in
an inner cluster associates the node with its main cluster head. For instance, the node d has
three routes to backup cluster heads A,B and C and is associated with a main cluster head X.

To form inner network clusters, SNs (randomly) select one of the available BNs in the direct
radio range as a main cluster head. For forming exterior clusters, the location-based approach
can be used, where a main cluster head supplies own location and location of its neighbors to
members of inner clusters. SNs pick up (a de�ned number of) backup cluster heads among BNs
that are neighbors of its main cluster head.

Analysis. The location-based approach for clustering requires location information to be trust-
worthy to defeat possible location manipulation-based attacks.

An alternative solution is to use �ooding to advertise presence of backup cluster heads to SNs
and hop count to limit �ooded area. However, a hop counter included into a �ooding message
should be protected from manipulations, which is impossible to achieve in networks where nodes
can be compromised. Indeed, a compromised node can arbitrary manipulate a hop counter of
the forwarded message instead of decrementing it (as dictated by the protocol).

The location-based approach seems to be more feasible, but would require either certi�ed
BN location and ability to verify this information by SNs, or to trust to a main cluster head to
accomplish such a veri�cation. In TeSOS, the BN's location can be certi�ed by a trusted BS,
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but neither are the BNs assumed to be trusted1, nor can SNs perform signature veri�cation.
A solution to eliminate the necessity to provide a trusted environment for network clustering

is to enable SNs to verify location information themselves. When used with highly e�cient
signature veri�cation this solution can be feasible even for resource constraint SNs.

An alternative approach which would not require trusted BNs and any Public Key Cryptogra-
phy (PKC) operations from SNs is to run network clustering procedure in a secure environment,
e.g., during network initialization, under assumption that an adversary cannot a�ect this phase
(this assumption holds for the TeSOS network). However, following this approach would leave
maintenance issues open, as addition of new BNs which might happen in operational phase would
require re-clustering conducted in a secure environment.

6.6.2 Inter-cluster Secure Routing

Good candidates for inter-cluster routing in the TeSOS network are geographic (or location-
based) protocols, as the TeSOS network is static and location aware. Geographic protocols are
resilient to a number of routing attacks, such as as wormholes [HPJ03a], sinkholes [KW03],
and HELLO �ood [KW03], thus no additional mechanisms are required to defeat against them.
We identi�ed two location-based secure routing protocols which can be suitable for TeSOS: Re-
silient Geographic Routing (RGR) [AGKL05, KLAG06] and Dynamic Window Secured Implicit
Geographic Forwarding (DWSIGF) [HIJM09].

These protocols follow the concept of lazy binding, where forwarding nodes select a next
hop relay at the last moment before data is forwarded. To maintain lazy binding, nodes use
Request-to-Send (RTS)/Clear-to-Send (CTS) handshake procedure.

RTS/CTS handshake is initiated by a source node broadcasting a RTS package. Typically,

1However, in Section 8.2.1 we propose an integrated solution of security mechanisms for TeSOS with trusted
BNs
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RTS includes the source and destination locations. All neighboring nodes located towards the
destination (e.g., in the 60◦ sextant) replay with a unicast CTS message, pretending to be a next
forwarding node. In RGR, a source node collects CTS replays from all neighbors before the next
hop is selected, while DWSIGF collects responses during a collection window time.

Lazy binding increases fault tolerance, as a handshake reduces the chance that packets are
forwarded to a failed or sleeping nodes, and also enables the use of newly arriving nodes. To
eliminate selection of malicious nodes for forwarding, both protocols incorporate trust manage-
ment systems that honor well-behaving nodes and punish suspicious ones. Moreover, protocols
support principles of multi-path routing: k neighbors can be selected from the candidates for
forwarding, thus enable redundancy to tolerate intrusions.

Analysis. As both protocols rely on location information to make forwarding decisions, this
information must be trustworthy to ensure correct routing. RGR uses trusted nodes (anchors)
to certify veri�ed location information, while DWSIGF incorporates a metric for location consis-
tency reported by the node into the trust management system. In TeSOS, location information
can be certi�ed by a base station, as BNs support PKC and can verify BS signature. Location
information can be exchanged among BNs in a network initialization phase, as network nodes
typically do not change their positions.

One challenging issue in adopting RGR and DWSIGF protocols to TeSOS WSN is the fact
that RTS packages have to be sent as broadcasts, while authentication of broadcast messages in
WSNs is not trivial. Although BNs support PKC, authenticating RTS messages with signatures
would be extremely costly, as RTS messages are generated at each hop along the path. µ-TESLA
broadcast authentication scheme [PSW+01] is a good solution for a small number of broadcast
sources (as requires key chain synchronization among a sender and all receivers), but does not
�t well in this particular case, where every node may need to send broadcasts. Moreover, µ-
TESLA scheme provides delayed authentication, thus its application would result in a signi�cant
end-to-end delay accumulated at each hop.

An authentication scheme applied in SAPC [BLM07, BLMB07] can be considered as a can-
didate for this particular use case. In this scheme, the message is authenticated with a key from
a one-way-hash chain (synchronized among a source node and all its neighbors), while the key
is enclosed to the message. Although generally the scheme is vulnerable to a forgery attack (as
was already discussed in Section 6.3), RTS message can be formatted in such a way that it does
not contain any �elds that can be forged. For instance, DWSIGF protocol proposes an option to
omit location information in the RTS message. When location data is excluded, RTS message
has only a message type and identity information of the sender. If a key chain is associated with
a message type and a sender identity, an adversary cannot successfully forge this information.

When RTS node does not include sender and destination locations, the neighbors of a node
can determine whether they are in the forwarding area by using knowledge of neighbor locations.
Thus, those of them what are located in the area towards the destination should respond with
CTS messages. When the data message is relayed to the selected node, it must contain the
destination's location to enable subsequent routing.

6.6.3 Intra-cluster Secure Routing

Intra-cluster routing protocol is required to discover routes within exterior clusters. The most
suitable protocol we identi�ed is INtrusion-tolerant routing protocol for wireless SEnsor Net-
workS (INSENS) [DHM03, DHM04, DHM06a].

INSENS protocol has two major phases: Route discovery and data forwarding. Route discov-
ery collects information about the topology of the sensor network and sets up appropriate routing
tables at each node by exchanging control messages. In a data forwarding phase messages are
forwarded to their destination with accordance to routing tables stored on the nodes.
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Route discovery is performed in three phases. In the �rst phase, the base station securely
�oods a request message to all nodes in the network. In the second phase, sensor nodes send their
local topology information using a feedback message back to the base station. In the third phase,
the base station validates the submitted by nodes local topology information and reconstructs a
global network view, calculates multipath routing tables for each sensor node and unicasts those
tables in a breadth-�rst manner to the respective nodes using a routing update message.

Analysis. Because all routes in INSENS are calculated by a trusted party (the BS), an adver-
sary is limited in manipulating routing information. This strategy equalizes chances of compro-
mised and non-compromised nodes to be selected for forwarding and rules out routing attacks
where a compromised node makes itself attractive for forwarding by advertising a high qual-
ity route metric (e.g., a sinkhole attack). However, in the intra-cluster communication level
of the TeSOS network, equivalents of the BS are cluster heads, that are not trusted. In case
a backup cluster head gets compromised, it can manipulate all the routes within the exterior
cluster. Though, we suppose it still can be applied in context of TeSOS, as compromised cluster
heads can manipulate only a single backup route leading to itself, but cannot a�ect other backup
routes. It makes no sense for the attacker to include more compromised nodes into the route,
as the compromised cluster head is already inside. Still, a compromised CH can perform DoS
attacks a�ecting all nodes of the exterior cluster. For instance, it can construct loops in the
route, thus forcing SNs to continuously forward messages and waste energy.

Another problem of the INSENS protocol is hidden in a data forwarding phase: The protocol
assumes broadcast transmissions for data delivery. All the nodes hearing a data message decide if
they have to forward the message further based on a routing table. For broadcast authentication
of data messages, the protocol relies on a MAC calculated with a symmetric key shared by a
node and all its neighbors. This scheme has low resilience to a node compromise, because by
compromising a single node the adversary will be able to forge messages of all its neighbors.

Taking into account mentioned above problems, INSENS is not a perfect candidate for usage
in TeSOS network. A new protocol has to be designed that (i) does not entirely rely on cluster
heads to calculate the path, but decision is taken cooperatively by the cluster head and cluster
members, and (ii) does not require broadcast transmissions in a data forwarding phase. Currently,
designing such a protocol is our work in progress.

6.7 Time Synchronization

For time synchronization we leverage the existing TinyReSync [SNW06] protocol implemented for
TinyOS. It uses Secure Pairwise Synchronisation (SPS) for pairwise synchronization as described
in [GvHS] but inserts time stamps at the MAC-layer as proposed in [GKS03]. In Secure Pairwise
Synchronisation (SPS), the sender A issues an authenticated challenge at time T1 containing a
nonce NA to the receiver B, who in turn responds with an authenticated message that contains
the time T2 when the challenge was received as well as when the response is issued (T3) and
the nonce NA. A records the time when the response is received as T4, computes the average
end-to-end delay d and if it is within reasonable range, the clock o�set o:

1. A → B: A,B,NA

2. A ← B: B,A, T2, T3, NA,MACKAB(B,A,NA, T2, T3)

3. A: d = ((T2 − T1) + (T4 − T3))/2, o = ((T2 − T1)− (T4 − T3))/2

When leveraging a-priori knowledge on topology and physical network layout, plain SPS
can be applied iteratively, similar to the Secure Transitive Multi-hop Synchronization (STM)
protocol presented in [GvHS]: The base station starts with its immediate neighbor BN, which
in turn synchronize the BN that are directly reachable from any of the synchronized nodes.
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Once synchronized, each BN also synchronizes the respective SN that belong to its cluster. To
synchronize time downwards in the WSN hierarchy, i.e., synchronize nodes further out from the
base station according to their respective next closer hop, SPS must be extended such that the
initializer of the message exchange is informed about the �nal clock o�set. This can be done
by either inserting an additional authenticated sync message from B to A to the exchange, or
by appending a third message from A to B that informs B on the calculated clock o�set o in
an authenticated message. The �rst alternative reduces load on central parts in the network,
by distributing computation load to the leaves. In contrast, the second alternative allows nodes
more close to the base station to collect information about network drift of their neighbors.
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7 Operating Systems for Sensor
Nodes (M5)

Several embedded operating systems for sensors have been developed in the last few years.
Examples are operating systems such as TinyOS [HSW+00a], MANTIS [BCD+05a], Contiki
[DGV04], or SOS [HKS+05]. However, none of them protects the operating system from the
applications due to the fact that many micro controllers do not provide hardware support for
security features1. Therefore, it is di�cult to create reliable sensor network software that runs
safely on these operating systems.

In this chapter, the most common operating systems for embedded systems and Wireless
Sensor Networks (WSNs) will be analyzed and compared. The following Section 7.1 discusses
the criteria used for the analysis and comparison, followed by a detailed analysis of the di�erent
embedded operating systems in Section 7.2 to Section 7.7. Section 7.8 summarizes this chapter
and suggests embedded operating systems to be used with TeSOS.

7.1 Criteria of Operating System Evaluation

To cover the huge amount of di�erent operating systems in the world of embedded devices, which
are also used in the area of WSNs, detailed criteria have to be de�ned. Each criterion handles
its own district inside the operating system, thus each of these criteria is speci�ed and de�ned
in the following section.

7.1.1 Process Management

One of the most central aspects in any type of operating system is the process, an abstraction of
a running program. These processes have to be handled in a proper way, since very often strong
relationship between di�erent processes exists, causing dependencies that have to be solved
during process life-time. If only one Central Processing Unit (CPU) is available, the system has
to make a choice which process to handle next. Therefore, also the scheduler is of importance
since a good scheduler can make a big di�erence in perceiving performance and user satisfaction.
In the following, the most important scheduler types are brie�y introduced:

• First-Come First-Served: This type of scheduling algorithm is the simplest method to
manage non-preemptive processes. With this algorithm there is a simple queue of processes
that are assigned to the CPU and processed in sequence. New processes are appended at
the end of the queue. If a process is blocked it will also be appended at the end of the
queue. The biggest advantages of this type of algorithm is that it is very easy to understand
and implement. Unfortunately, �rst-come �rst-served also has disadvantages, for example,
if a process is combined with input-/output processes, this could block the whole system.

• Shortest Job First: When several jobs with an equal importance are present, this scheduling
algorithm picks the shortest job �rst. However, it is provably optimal, it still could cause

1A incomplete list of hardware-based security features has been presented in Section 5.1.4
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the problems of blocking systems if a very short job arrives, but is not yet ready to be
processed. Resulting other jobs will be processed before, the algorithm does not behave
optimal any more.

• Short Remaining Time Next: This algorithm is a preemptive version of shortest job �rst.
Here, the scheduler always chooses the process whose remaining run time is the shortest,
which, of course, only works, if the runtime is known in advance.

• Three-Level Scheduling: At the beginning of this scheduling-scheme, all jobs are stored
inside an Input Queue, which is in most of the cases a linked list. After this queue, the
Admission Scheduler decides which job is going to be delivered to the system (the memory).
It is also possible that the Admission Scheduler prefers some other jobs inside its own list.
Being delivered to the memory, the Memory Scheduler decides which jobs are swapped to
the other external storage. Since this swapping is often very expensive, very short jobs are
normally not swapped to the external memory. Last step in the Three-Level Scheduling is
the CPU Scheduler, which picks the jobs from the Memory Scheduler and processes them
until �nished, regarding aspects, such as process-imminentness, -size, and -time the process
had before.

• Round-Robin Scheduling: Using Round-Robin Scheduling, each process is assigned a pre-
de�ned time interval. If the interval is not big enough, the process is transfered to the end
of the internal process list and the next process in the list gets access to CPU time.

• Priority Scheduling: In comparison to e.g., Round-Robin Scheduling, Priority Scheduling
assigns another indicator to current processes of the system - priority. For example, some
nuclear plant real-time process gets a higher priority than a process delivering emails to
the user. Also it is possible to prevent processes from running inde�nitely, which is done
by the ability to lower the priority of currently running processes.

• Multiple Queues: To reduce swapping, the Multiple Queues algorithm increases the as-
signed CPU time every time a process is currently running. This results in a very fast job
processing for small jobs. Bigger processes would run less and less frequently, saving the
CPU for short, interactive processes.

• Shortest Process Next: Since Shortest Job First produces the minimum average response
time for batch system, a similar system in interactive systems would be necessary. Short-
est Process Next handles each process in interactive systems as a pattern of waiting for
commands and executing commands. Execution of the commands is handled as job, whose
execution time is estimated in this scheduling algorithm. Followed by this estimation,
the Jobs are ordered by their execution time, which produces an approximately minimal
average runtime.

• Guaranteed Scheduling: In comparison to other scheduling algorithms, Guaranteed Schedul-
ing ensures that each process get exactly the same amount of CPU time. For example,
there are 10 processes, every process gets a guaranteed CPU-time of 1/10. If one of the 10
processes uses more than 1/10 of its time, it is automatically lowered in its priority.

• Lottery Scheduling: Using the Lottery Scheduling algorithm, each process gets tickets to
various system resources, such as CPU time. Each scheduling decision that has to be made,
one ticket is chosen randomly. A process with more lottery tickets has a bigger chance to
get the system resource than other processes with less tickets.

• Fair-Share Scheduling: Compared to all other scheduling algorithms, the Fair-Share Schedul-
ing algorithm also integrates the owner of processes to the internal scheduling. For example,
user 1 produces 5 processes, user 2 produces only 1 process. If both users are scheduled with
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50 percent of the CPU time, process number 6 (the one from user 2) would be scheduled
every 2nd time a process runs.

Using the above observed scheduling algorithms in Real-Time systems is often very di�cult
or even not possible. An autopilot of an aircraft, or some monitoring in an intensive-care unit
in hospitals need to have their CPU time at a prede�ned level. In general, real-time systems
are divided into (i) hard real time systems with its absolute deadlines that must be met and
(ii) soft real time systems, meaning that missing an occasional deadline is undesirable, but
still tolerable. Furthermore, the events in a real-time system can be categorized as periodic or
aperiodic, regarding their predictability of their system behavior. The job of the scheduler is to
schedule all processes in such a way that all deadlines are met.

Regarding thread scheduling, two levels of parallelism have to be distinguished: processes
and threads. Scheduling in such systems depends on whether kernel-level threads or user-level
threads are present in the system. With user-level threads, due to the fact that the kernel is not
aware of the existence of threads, it always gives each process a speci�c CPU-time to run. The
thread scheduler within this process decides which thread to run next. In comparison to user-
level threads, with kernel-level threads the kernel picks a particular thread to run. It does not
have to take care about, which process the thread belongs to. The major di�erence between both
approaches is the performance. Processing a thread switch with user-level threads takes only a
few machine instructions, in contrast a thread switch with kernel-threads requires a full context
switch, changing the memory map and invalidating the cache. Also, it has to be mentioned that
using kernel-threads, a block of some input or output device does not suspend the entire process
as it does with user-level threads.

7.1.2 Resource Management

Managing resources of computer systems that can only be used by one process at a time, such as
printers, tape drives, and so on, can cause the system to enter a situation where several processes
block each other, called deadlock. For example, having two processes using the same �le system
table slot will invariably lead to a corrupted �le system. In consequence, all operating systems
have the ability to grant a single process access to a speci�c system resource.

Categorizing the resources, there are preemptable resources, such as the speci�c amount of
memory and non-preemptable resources, such as if a process begins to burn a DVD and the
DVD recorder is suddenly taken away. In general, deadlocks are generated by non-preemptable
resources, preemptive deadlocks can usually be resolved by reallocating resources from one pro-
cess to another. Four conditions must be present for a deadlock to occur:

• Mutual exclusion condition: Either a resource is available, or it is assigned to exactly one
process.

• Hold and wait condition: A Process that allocates a speci�c resource before, is still able to
request for additional resources.

• No preemption condition: Each resource that has been assigned to a speci�c process can
not be taken away from the process without the process releases it on its own.

• Circular wait condition: In a chain of processes waiting for resources, other processes of
the chain hold the requested resources.

Deadlocks can be detected, avoided, and resolved by algorithms, such as the Banker's Algo-
rithm2 or by preventing speci�c conditions as mentioned before.

Since memory is a very rare resource, especially in embedded systems, special memory man-
agement mechanisms must be present to share the available amount of memory in a proper way.

2Described in http://www.isi.edu/~faber/cs402/notes/lecture9.html
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The part of the operating system that manages the memory is called memory manager. Its job
is to keep track of which parts of memory are in use and which parts are not in use, if needed to
allocate some memory to speci�c processes and to manage swapping between di�erent types of
memory, such as main memory, �ash, or special caches of embedded hardware. Commonly used
memory management algorithms include:

• Monoprogramming without Swapping or Paging: Only one program is running at a time
in parallel to the operating system. Organized in this way, only one process can run at a
time.

• Multiprogramming with Fixed Partitions: Since today almost all embedded systems run
several processes in parallel, available memory has to be available for all processes, ideally
in parallel. The easiest way to achieve this is by dividing the available memory into
partitions, where each process gets access to the �rst partition big enough to hold it.
Di�erent algorithms are available to solve problems, such as relocation and protection.

• Swapping: Using �xed partitions in a batch system is very simple and e�ective. In most
cases time sharing is used to keep the CPU busy all the time. Therefore, a di�erent
technology is needed if not enough memory for all active processes is available. The simplest
way to solve this issue is using a technology called swapping, where a process is running
for a while and than its state is put back on persistent memory.

• Paging: An even more complex strategy to the issue targeted by swapping is called paging,
which allows programs to run even when they are only partially in main memory.

7.1.3 Protection

Introducing the protection of embedded operating system, it has to be de�ned what an operating
system should be capable to protect. In general, the following aspects need to be taken into
consideration by the operating system software:

• Direct access to hardware: Since the operating system is the instance that has to be fully
trusted, it has to control the access to the hardware of the embedded device. It de�nes, for
instance, which process is granted access to the input and output devices, or which process
is prioritized and which not. Sharing the CPU-time and protecting the taken decisions is
a very important aspect of each operating system.

• Memory protection within several processes: Since there are usually several processes run-
ning in parallel in common embedded systems, the available memory has to be managed
to guarantee that no process gets access to the memory of another process. In hardware
this is mostly realized by using an Memory Management Unit (MMU), however, not all
hardware platforms are equipped with an MMU.

One of the protection mechanisms in operating systems is called protection rings. Here, each
process is running at a �xed level beginning with �ring 0�, which represents the kernel itself, up
to �ring 3�, which represents the user programs. Each �ring� has its own permissions to grant or
to restrict access to hardware or memory.

Another common protection mechanism is called access matrix. Here, a system wire matrix
is presented, which consists of the user rights per user and hardware. Each time a process owned
by a de�ned user tries to get access to parts of the system, the operating system checks its access
matrix, whether the process or user is authorized. More general but especially addressing current
problems of data leakage, the Bell-LaPadula security model, presented in 1973, was developed at
the government funded Mitre Corporation, in order to realize a new security model for military
computer usage. The goal of Bell-LaPadula was to grant data leakage prevention inside an
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operating system. The basic concept is that an unclassi�ed user should not be able to read
classi�ed information, while a classi�ed user should not be able to write classi�ed information
into an unclassi�ed part of the system. Therefore, di�erent security levels are de�ned, where
each user or process belongs to. Very important in this scenario is a proper enforcement of given
rules inside the underlying system, thus it can be mathematically proven to prevent information
at any given security level from �owing to a "lower" security level. Typically security levels are
called �secret�, �unclassi�ed� or �classi�ed�, rules could be either reading or writing, de�ning if
reading or writing is allowed or not. A �rst realization of such a system inside embedded sensor
nodes and WSNs is presented in [BGHL10].

7.1.4 Power Management

Since power management in sensor nodes is one of the most important aspects, the operating
system is playing an important role here. In general, there are two approaches to reduce energy
consumption. The �rst is to turn o� parts of the sensor (input-/output devices, disconnect parts
of the memory from power-supply, disable radio devices, and so on). The second approach is to
optimize the application programs in such a way that the CPU consumes less time to achieve
equal results. Important aspects of power management are:

• CPU: Common operating systems support features, such as the reduction of the speed of
the CPU. A reduction of the speed directly reduces the power consumption of the overall
system, which of course increases the necessary time to compute a given problem or to
complete its processes. Often the used CPUs supports special sleep modes that can be
addressed by the operating system directly.

• Memory: In the world of embedded systems, it is sometimes possible to disable parts of the
system memory. Disconnecting these areas from power saves energy and therefore increases
the life-time of sensor nodes equipped with such features.

• I/O: Similar to the memory, it is sometimes possible to disconnect several input- and
output devices, which also decreases the power-consumption of the embedded system.

• Multi-Core support: Upcoming systems are equipped with more and more performance.
The general trend is to increase the amount of cores inside the CPUs. As long as the used
operating system and its running processes are capable to divide a computing problem
into several threads, this feature increases dramatically the overall performance of the
system. However, it commonly occurs that the current running program does not need (or
is not able) to be computed within multiple CPU cores. In this case, disconnecting the
additional cores will save a lot of energy. This behavior must also be controlled by the
operating system.

7.1.5 External Factors

In addition to criteria, such as power management, protection, or resource management, some
boundary conditions could also be of interest. Accordingly, this analysis will also mention the
following aspects:

• Circulation: If a WSN is deployed, one of the main aspects is that there must be support
for hard- and software over a prede�ned period. It can be expected that operating systems
with a wide spread circulation do have a bigger community and therefore circulation helps
to guarantee a better support of these systems.

• Assurance: In security-critical, governmental, or company-based scenarios, a certi�cation
of the operating system is becoming more and more important, thus this analysis analyses
whether the system is certi�ed according to some criteria.
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• Actuality: Similar to circulation, a high actuality of an operating system is very important.
This document tries to mention how frequent there are system updates.

• Country of Origin: For special security or �nancial reasons, it could be of interest who is
developing the operating system and what the country of origin is.

• Programming Language: Not all operating systems use (or are based on) the programming
language C. Possible other languages include nesC, C++, Basic, or languages based on
assembler.

7.1.6 Total Cost of Ownership

Estimating the price of the realization of a speci�c project is one of the most important criteria.
Realizing projects for WSNs requires appropriate hardware and later costs for soft- and hardware
updates to keep the sensor nodes running during project lifetime. Also important cost aspects
are values, such as the software development and the hardware development. Since the operating
system is one of the most important parts of the overall system, this document also �gures out
the licensing model. In this context the Total cost of ownership (TCO) will be mentioned, since
the TCO is a �nancial estimation, having the purpose to help determining direct and indirect
costs of a product or system. Also of interest is the licensing model of each operating system,
since it could be possible that modi�cations of the software needs to be done during project
lifetime.

7.1.7 Manageability

Realizing projects with embedded systems often requires a deep knowledge of the underlying
hardware system, thus the realization of WSNs often requires an adaptation of the used software
to achieve a complete system, running in the proposed way. Knowledge of the hardware is one
thing, understanding the internals of the operating system another. To be able to modify the
operating system, one needs two important requirements:

• Documentation of the operating system: The more complete and structured the documen-
tation of an possibly highly complex software system is, the more easy is every possible
software adaptation. Thus, a well documentation of the operating system signi�cantly
supports the development process.

• Licensing model: Even if the documentation of the operating system is well written, a
�tting licensing model is still necessary to be allowed to modify hardware drivers or other
components within the context of the operating system. Modi�cations of the operating
system are necessary, if it does not support the features that should be included in ones
WSN project. Also, the pricing structure of the used software could be of interest.

An additional criteria when analyzing an operating system is the usability. �How much
time do software developers need to get familiar with the system?�, and �Is there any software
development environment available?� are questions to be answered during analysis and will be
addressed in this document.

7.1.8 Performance-Analysis

Although the performance of operating systems is an important aspect, the realization of a full
performance analysis is not feasible within this study. Several hardware devices, each capable
to run all operating systems to be compared, would be necessary to achieve su�cient results.
In�uencing aspects of the system performance would be mainly the used scheduler and the
performance of caching and communication between di�erent processes. Since no hardware
measurement is done in this study, no detailed performance analysis can be done.
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7.1.9 Using the operating system

This section will introduce some basic aspects on how to install and use the analyzed operating
system. If possible, basic examples will be given.

7.1.10 Applicability for TeSOS technologies

This section analyses the applicability of results of Chapter 6 to be used in each embedded
operating system. It is mentioned whether it would be possible to modify the operating system
to implement the proposed features.

7.2 eCos

The embedded operating system eCos (embedded con�gurable operating system) is a real-time
embedded kernel providing thread scheduling, synchronization, timer, and communication prim-
itives. Currently, the most recent version of eCos is version 3.0. The operating system handles
hardware resources such as interrupts, exceptions, memory and caches. On the application level,
eCos supports the µITRON and the POSIX Application Programming Interfaces (APIs), giving
the possibility to run POSIX-conform software on top of this embedded kernel. eCos is imple-
mented in C/C++, includes a thread-safe ISO standard C library, and a math library. eCos was
designed to be able to run on hardware platforms that are not equipped with enough memory
to run embedded Linux that needs about 2 Megabytes of Random Access Memory (RAM). The
eCos Package Administration Tool can be used to add or remove di�erent software packages from
the component repository. The eCos Con�guration Tool can include or exclude these packages
from the con�guration being built.

In comparison to other operating systems, the eCos kernel itself is an optional package not
required to build very simple applications. Moreover, memory allocation is handled by a fully
separated package. All device drivers are represented as attachable packages. The above men-
tioned con�guration tool is then used to integrate all required packages into one application.
eCos supports multiple hardware platforms, including

• ARM,
• CalmRISC,
• FR-V,
• Hitachi H8,
• Motorola 68000,
• Matsushita AM3x,
• MIPS,
• NEC V8xx,
• Nios II,
• PowerPC,
• SPARC, and
• SuperH.

For some of these platform, eCos o�ers limited Synchronous Multiprocessing (SMP) support.
In addition to the operating system itself, the software package is distributed with Red-

Boot. The RedBoot ROM monitor is an application that uses the eCos Hardware Abstraction
Layer (HAL) for additional portability. RedBoot provides serial-based and ethernet-based boot-
ing and debug services during development. In addition, eCos o�ers drivers for

• �le system,
• FLASH,
• Serial Peripheral Interface Bus (SPI),
• Inter-Integrated Circuit (I2C),
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• Controller Area Network (CAN),
• Analog-to-Digital Converter (ADC), and
• frame bu�er.

For networking, a TCP/IP stack is available. It is even possible to use IPSEC or PPP, if the
FreeBSD network stack is used. A simple embedded HTTP server, aimed to remote control
applications on the embedded device, an File Transfer Protocol (FTP) client, sn Simple Net-
work Time Protocol (SNTP) client, and an implementation of the POSIX Cyclic Redundancy
Check (CRC) calculation are also provided. Features, such as Universal Serial Bus (USB)-slave,
USB-ethernet, USB-serial, and MultiMediaCard (MMC)-support with an upper limit of 4 GB
are also provided.

7.2.1 Process- and Resource Management

Using eCos, it is possible to write single-threaded applications without an eCos kernel. One
example of such a single-thread application is the above mentioned RedBoot. In general, single-
thread applications are managed by only one central loop that handles continually checking of all
device drivers and possible interaction with input- and output devices. Of course, each calculation
generates additionally delay for any interaction with the nodes I/O. If the requirements are more
complicated, a multi-threaded application can be build by using the eCos kernel. The eCos
kernel is also required for more complex software packages such as the TCP/IP stack. When
the kernel package is used, the driver functions directly map to the equivalent kernel functions.
Without a kernel, the common HAL package implements the driver API directly. Using the
kernel functionality, two di�erent possibilities are given:

• Using the kernel's own C-API: eCos-speci�c functions such as cyg_thread_create() and
cyg_mutex_lock() can directly be used from application code or by other packages.

• Using a standard API: In addition to the kernel API, it is possible to use existing APIs,
such as POSIX threads or µITRON, allowing application code to call standard functions,
such as pthread_create(). Using these packages of course improves the possibility to reuse
applications in di�erent environments.

Since there are some di�erences between the semantics of API calls (e.g., to be strict µITRON
compliant it is required that kernel time-slicing has been disabled) there are two important
limitations. On the one hand, it is not always possible to combine two di�erent compatibility
packages into the same eCos con�guration due to con�icting requirements of the underlying eCos
kernel. On the other hand, the kernel's own C API is less detailed de�ned, because, for example,
the command cyg_mutex_lock() will always try to lock a de�ned mutex, hence various other
con�guration options inside the kernel determine the behavior when the mutex is already locked,
leading to the possibility of a priority inversion.

eCos o�ers di�erent types of events that can be monitored. Examples of these events are:

• scheduler events,
• thread operations,
• interrupts,
• mutex operations,
• binary semaphore operations,
• counting semaphore operations, or
• clock ticks and interrupts.

If multi-threading is necessary, the kernel can be con�gured with one of two possible sched-
ulers, described in the following:
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• Bitmap Scheduler: The bitmap scheduler is more e�cient, but has a number of limitations.
The scheduler only allows one thread per priority level, thus amount of usable threads
depends on the maximum priority-level.

• Multi-Level Queue (MLQ) scheduler: Almost all eCos based systems use the MLQ sched-
uler, which is described in Section 7.1. It allows multiple threads to run at the same
priority-level. Therefore, the number of threads of an eCos application is only limited by
the amount of available memory. However, some operations, such as �nding the high-
est priority runnable thread, of the MLQ scheduler are more expensive due to its higher
complexity. The MLQ scheduler also supports time-slicing.

Both schedulers, the bitmap and the MLQ scheduler, use a one-byte-based priority to de�ne
which thread should currently run. The number of priority levels is con�gurable via the option
CYGNUM_KERNEL_SCHED_PRIORITIES. Typical, embedded system have up to 32 prior-
ity levels, therefore priorities will be in the range from 0 to 31, where a low number indicates a
high priority. The priority 0 thread will usually be the idle thread of an eCos application. The
kernel automatically decreases the priority-level of blocked threads.

The used scheduler is capable to handle event types, such as:

• scheduler lock,
• scheduler unlock,
• rescheduling or
• time-slicing.

The default behavior of an eCos system is last-in-�rst-out queuing, i.e., if multiple threads are
waiting on a semaphore and an event is posted, the thread that gets access to CPU-time next is
the last one that called cyg_semaphore_wait(). This implies that the thread with the highest
priority is not always woken up. In contrast, if the bitmap scheduler is enabled, priority queuing
is automatically enforced. However, some kernel functionality is only supported with the multi-
level queue scheduler, in contrast to the bitmap scheduler. This includes support for SMP
systems and protection against priority inversion using either mutex priority ceilings or priority
inheritance.

The eCos HAL provides a device driver API, containing some of the mentioned synchro-
nization methods. This API, e.g., allows an interrupt handler to signal events to higher-level
code. Moreover, synchronization between threads within eCos is provided using the following
primitives.

• Mutexes: Mutexes serve di�erent purposes from the other primitives. It allows multiple
threads to share a resource safely: A thread �rst locks a mutex, manipulates the shared
resource, and then unlocks the mutex again.

• Condition Variables: These variables are used by mutexes so that it is possible to wake
up threads by other threads. When a thread waits on a condition variable, the mutex
is released before waiting. It releases the mutex before waiting, and when it wakes up
it reacquires it before proceeding. Since these operations are atomic, race conditions are
excluded.

• Counting Semaphores: A counting semaphore is used to indicate the occurrence of a par-
ticular event.

• Mail Boxes: If an event occurred, mail boxes are allowing one data item to be exchanged
per event. Typically, this data item is a pointer to a data structure. Since this additional
data-storage needs memory on his own, there exists a prede�ned maximum number of mail
boxes, since the amount of memory is limited very strictly. If no more memory is available,
the thread will be blocked until enough new memory is available.
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• Event Flags: Event �ags can be used to wait on a number of di�erent events, and to signal
that one or several of these events have occurred. Every occurred event is �agged with
some corresponding bits in a bit-mask.

Using these synchronization primitives, the interrupt handler can signal a condition variable,
post to a semaphore, or use one of the other primitives. The thread would perform a single
wait operation on the same primitive. This would not consume any CPU cycles until the input-
/output event had occurred, and when the event does occur, the thread can start running again
immediately.

The eCos kernel uses a two-level approach to implement interrupt handling. Every interrupt
vector is associated with an Interrupt Service Routine (ISR) that will be privileged regarding
priority and CPU time such that it can service the hardware as fast as possible. This ISR can
only make very few calls from the kernel, and it is impossible to make system calls that can
wake up other threads. If it is detected that an input-/output operation has been �nished and a
corresponding thread should wake up, the ISR can cause the associated Deferred Service Routine
(DSR) to run, which is equipped with more rights and is allowed to make additional kernel calls,
e.g., signaling a condition variable or posting to a semaphore. In some cases, it is possible for
threads to disable interrupts for a few instructions. Similar to disable interrupts, the kernel has a
scheduler lock. Kernel functions, such as cyg_mutex_lock and cyg_semaphore_post(), rise the
scheduler lock, manipulate the kernel data structures, and then release the scheduler lock again.
If an interrupt results in a DSR being requested and the scheduler is currently locked, the DSR
remains pending. When the scheduler lock is released, any pending DSRs will continue running,
possibly posting events to other synchronization primitives, causing other higher priority threads
to be woken up.

Since only certain calls are allowed from inside each context, eCos de�nes the following
contexts:

• Initialization: During startup of the system, eCos sets up the embedded hardware and
initializes the C++ static constructors. During initialization, interrupts are disabled
and the scheduler is locked. The �nal operation of the initialization is a call named
cyg_scheduler_start() which enables interrupts, unlocks the scheduler, and delivers con-
trol to the thread with the highest priority. It is also possible to run some applications
before the scheduler is started. Thus it is possible to run, e.g., the constructors of a written
C++ application or a special optional C function called cyg_user_start().

• Thread: The Initialization process is ending with the call of cyg_scheduler_start(). In the
context of threads, almost all kernel functions are available.

• Interrupt Service Routine: If the processor receives an external interrupt, control is trans-
ferred from the current thread. The system will then switch to the appropriate interrupt
service routine which can be provided by a HAL package, a device driver, or by the appli-
cation itself. Being in the context of the ISR also means that most of the kernel functions
calls are not usable, including synchronization primitives, such as semaphores to indicate
an event.

• Deferred Service Routine: After leaving the ISR context, the system can enter the deferred
service routine context for e.g., running alarm functions. The DSR context only allows
a few kernel functions, even if there are more functions possible, compared with the ISR
context.

eCos follows a common error handling strategy: In principle, error handling is possible to
ensure that each function is used correctly. If an error is detected, a suitable error code is
returned. For example, the POSIX function pthread_mutex_lock() can return various error
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codes including EINVAL and EDEADLK. Several problems may occur if applications implement
error handling routines:

• Error handling during mutex lock or any kernel function requires CPU resources not to be
underestimated.
• It is not unusual that functions return error codes which are not handled by the calling
function, since the programmers often expect that the called function works as expected.
• Each caller of a function has to check for possible errors returned by the called function.
This also costs CPU cycles and increases the code size of the application.
• It can happen that an error occurs where there is no way to handle it, e.g., EINVAL. The
only thing an application can do in this case is to abort the application.

In contrast to common error handling, the eCos now does the following: Functions, such as
cyg_mutex_lock() will not return an error code. Instead, eCos functions contain a couple of
assertions which can be enabled or disabled. Normally, these assertions are left enabled during the
development phase and a lot of kernel functions will perform parameter checks and other system
consistency checks. If a problem is detected, an assertion will be reported and the application
will be terminated, allowing developers to check for possible errors. If the application is released,
these assertions are disabled during compile-time. In general, this is similar to a debug-�ag of
some common desktop applications where additional debug-operations are included with some
compiler-�ag.

An error condition of several APIs functions is lack of memory. Some kernel functions allocate
some memory dynamically for some thread stack or other per-thread data. If now the used
hardware is not equipped with enough memory or the application contains a memory leak, the
function call would fail. The eCos kernel now avoids such problems by never performing dynamic
memory allocations. Instead, it is the responsibility of the application code to provide all memory
required for kernel data structures. A lot of applications handle this with de�ning data structures
statically and not dynamically. Problems, such as memory fragmentation or leaks, cannot occur
if all data is allocated statically.

Since eCos partly supports SMP, some adaptations are required, e.g., the scheduling has to
be di�erent since now threads have to be divided into several CPUs leading to additional race
conditions. During the initialization phase, the system behaves as if only one CPU is present.
In principle, the used scheduler lock is converted into a nestable spin-lock, achieved by adding
a spin-lock and a CPU id to the original counter. If a thread causes a scheduler lock and the
CPU id is equal to the current CPU then it can increment the internal counter and continue.
If the id does not match, the CPU must spin on the spin-lock, after which it may increment
the corresponding counter and store its own identity number in the CPU id. Releasing the lock
again is possible through decrementing the counter. If the counter reaches zero, the spin-lock is
cleared. In the current version of eCos, SMP is only supported by the above mentioned Multi-
Level Queue scheduler. Therefore, the scheduler now divides its threads to run the threads with
the highest priority on all available CPUs.

7.2.2 Protection

eCos does not support any additional protection models, nor restricts the direct access to hard-
ware, or secure mechanisms to grand or deny access to the memory (except by the already
described resource-management). There are no protection rings or any support for trusted an-
chors as introduced in Section 5.1.4.

7.2.3 Power Management

Although the eCos operating system provides a package responsible for power management,
functionality to save energy is very limited. The package does not support any reduction of
CPU speed or any other power-saving method provided by the hardware. In comparison, eCos
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provides a HAL, o�ering further implementations to easily support additional power management
functionalities of the underlying hardware. A function or power management policy that forces
the system to enter any low-power modes is also not available, however, the provided package
builds a base framework to implement these features by your own. Power modes de�ned in the
power management packages are:

• Active: The system is running at maximum speed and fully operational. It can be expected
that power consumption is at the maximum.

• Idle: If there is almost no or only a little activity over a prede�ned short period of time, the
system would be in the idle state. This causes a reduction of the CPU speed or disabling
some of the input- or output devices. It has to be mentioned that due to the fact the idle
thread is always running, it has to be de�ned when to enter the idle state. After some
interrupt occurs, the idle mode can easily be left again.

• Sleep: Also to be de�ned by some power management rules, if the system is in idle mode
for a prede�ned period of time, the system will go into the sleep mode. In this state it is
expected to shut down almost all power-consuming devices of the hardware.

• O�: Shutting down the system means that the power consumption is minimized. All
attached hardware is disabled. Possibly it is necessary to do additional actions to wake up
the system again.

The main function of the power management package is to control all available power con-
trollers of the hardware platform. These power controllers could be controllers for LCD displays
or CPUs. It often happens that a hardware platform implements its own power controllers as
part of the relevant device driver package, it also can happen that there is no hardware support
for any power management at all. The eCos documentation gives some short exampled how to
implement a basic power controller.

7.2.4 External Factors

eCosCentric Limited, a 2002 founded commercial provider of eCos products and services located
in the United Kingdom, a�rms that in the fragmented embedded operating systems market eCos
is one of the major players, with global market usage of around 5-6 percent according to multiple
surveys including CMP's Embedded Study 2007, and EDC's Embedded Development Survey
20073. Famous products using eCos are e.g., Playstation 3 (used to provide the Playstation's
Wi-Fi support based on the Marvell 88W8580 WLAN chip) or Samsung's LCD HDTVs, includ-
ing the latest �M� and �F� top-of-the-line ranges of 32-70 inch sets. The TVs feature multi-media
playback via USB2 from cameras, mp3 players, and �ash drives. A detailed list of products/pro-
jects using eCos can be found at http://www.ecoscentric.com/ecos/examples.shtml. The
used programming language for eCos applications is C/C++.

Beginning around the year 1997, eCos continually receives updates on supported hardware
or additional packages, such as the PPP stack in April 2004. The current eCos version 3.0 was
released in March 2009. However, a lot of contributions to the project were implemented from
single persons, while the big releases are contributed by eCosCentric. Parts of the system also
are contributed by RedHat, a leading open source provider located in USA and Canada. Except
of a small number of packages, the copyright of the eCos public source repository is owned by
the Free Software Foundation (FSF), thus the origin country of eCos is the same as the FSF.
The Free Software Foundation Inc. is located in Bosten, USA.

At the moment, no certi�cation of eCos is available.
3http://www.researchandmarkets.com/reports/c90477
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7.2.5 Total Cost of Ownership

Since eCos is licensed under the terms of a modi�ed version of the GPL, there are no direct costs
on purchasing the operating system. Indirect costs can hardly be estimated since this heavily
depends on the scenario of the project eCos is used for. Support of eCos is possible in two ways:

• Mailing List: Free and open to everyone is the public mailing list of eCos. Core developers
read and post there.

• Commercial: It is possible to buy commercial support for eCos and/or RedBoot from
a number of di�erent vendors. This support includes, e.g., support for tool chain, new
features of drivers, or porting to a new platform.

7.2.6 Manageability

eCos is one of the open source kernels that has been published under the terms of the GPL.
For an easy start of development with eCos, it o�ers an easy graphical con�guration tool to
help users to con�gure and build a custom version of the operating system. Two versions of the
con�guration tool are available. While version 1 still provides more features, it can be expected
that version 1 will be fully replaced by version 2. Version 2 is a cross-platform application
using the wxWindows toolkit (http://www.wxwindows.org). The tool uses the GTK+ widget
set under Linux, and the WIN32 API on Windows.

The source code of the con�guration tool is also available using CVS and an anonymous ac-
count. In addition to source code, binary packages are also available. A user-guide of eCos is also
online available at http://ecos.sourceware.org/docs-latest/user-guide/ecos-user-guide.
html.

From the authors perspective, eCos is well documented including examples describing how
to port the the operating system or its HAL to new platforms and how to develop new drivers.
Based on the fact it is licensed under the terms of the GPL, eCos o�ers a wide variety of additional
developments and projects in the area of embedded systems.

7.2.7 Using the operating system

Following the instructions at http://ecos.sourceware.org/getstart.html, additional pack-
ages might be necessary to be installed. At least libstdc++ v3 must be present. After down-
loading the installation tool using:

wget --passive-ftp ftp://ecos.sourceware.org/pub/ecos/ecos-install.tcl

eCos and a corresponding tool chain can be installed with the command:

sh ecos-install.tcl

After installation, a �rst eCos application could be build using:

ecosconfig new <target_name> redboot

ecosconfig import $(ECOS_REPOSITORY)/hal/<architecture>/<platform>/_

<version>/misc/redboot_ROM.ecm

ecosconfig tree

make

This will produce the RedBoot ROM monitor mentioned before to ensure eCos is running in a
very simple version. Connecting a device with a serial interface will then create the following
output:
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RedBoot(tm) bootstrap and debug environment [ROMRAM]

Non-certified release, version UNKNOWN - built 15:42:24, Mar 14 2002

Platform: <PLATFORM> (<ARCHITECTURE> <VARIANT>)

Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.

RAM: 0x00000000-0x01000000, 0x000293e8-0x00ed1000 available

FLASH: 0x24000000 - 0x26000000, 256 blocks of 0x00020000 bytes each.

RedBoot>

If this output is visible, the initialization phase and the serial connection is working properly.

7.3 Contiki

Another open source minimal operating system is Contiki. The current version is 2.5 release
candidate 1, published in November 2010. Contiki is a multi-tasking capable operating system
for memory-e�cient networked embedded systems and wireless sensor networks. It is easily
portable to new platforms, and designed for micro controllers with small amounts of memory.
A typical con�guration using Contiki as operating system uses 2 KB RAM and about 40 KB of
ROM. Contiki is already used in many di�erent embedded systems, such as digital TV decoders,
or wireless vibration sensors.

Supported micro controllers are the MSP430, the AVR, and old home computers. In detail,
Contiki currently supports the following hardware platforms:

• The Modular Sensor Board: The Modular Sensor Board (MSB430) developed by FU-Berlin
is supported by Contiki since spring of 2007. In its basic version, this board uses a Texas
Instruments MSP430f1612 processor (introduced in Section 5.2.7), a Chipcon CC1020 radio
chip, an MMA7260Q accelerometer, and a Sensirion SHT11 temperature and humidity
sensor. The device also supports an SD device, thus the board is suitable for storage-centric
sensor networks. In addition, there are other versions of the board that are equipped with
a GPRS-modem and a GPS-receiver.

• The ESB Embedded Sensor Board: The ESB (Embedded Sensor Board) is a prototype
wireless sensor network device developed at FU Berlin. It uses a Texas Instruments MSP430
low-power micro controller with 2k RAM and 60k �ash ROM, a TR1001 radio transceiver,
a 32k serial EEPROM, an RS232 port, a JTAG port, a beeper, and a number of sensors
(passive IR, active IR sender/receiver, vibration/tilt, microphone, temperature).

• The Tmote Sky Board: The Tmote Sky platform is a wireless sensor board from Moteiv.
It is also MSP430-based and equipped with an 802.15.4-compatible CC2420 radio chip, a
1 MB external serial �ash memory, and two light sensors.

• RZRAVEN LCD 3290p: The Raven LCD Driver application software was designed for a
user interface to the Contiki 6LoWPAN collaboration on board of the ATmega3290p.

• RZRAVEN USB Stick (Jackdaw): A USB stick with the overall idea to emulate an Ethernet
interface. The Jackdaw can function as an 802.15.4 sni�er, and can sni� the raw 802.15.4
frame at the same time it is providing network functionality.

7.3.1 Networking

As Contiki introduced the idea of using IP communication in WSNs, an IETF standard and
the IPSO Alliance, an internal industry alliance was build. Today, IP communication based on
IPv4 and IPv6 (IPv6 Ready Phase 1 certi�ed) is supported. Moreover, the kernel supports two
di�erent communication stacks:
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• uIP: A TCP/IP stack that is RFC-compliant, to give the possibility to communicate also
over the Internet. The stack contains the IP, ICMP, UDB and TCP protocols.

• Rime: A very lightweight communication stack that provides communication primitives,
such as �best-e�ort local area broadcast�, or �reliable multi-hop bulk data �ooding�.

To be able to use TCP/IP with Contiki, the uIP stack has been developed. Since with com-
mon sensor architectures only a few kilobytes of RAM is available, dynamic memory allocation
is not used by the uIP implementation. Instead, a single global packet bu�er to hold packets
is used in combination with a �xed table for holding the connection state. This packet bu�er
is large enough to contain at least one packet of maximum size. This packet bu�er will not be
overwritten by new packets before the corresponding application has processed the data. It can
also happen that packets arrive when the application did not �nish the processing of old packets.
Therefore, the new packet must be queued, either by the network device or by the device driver.
Most network controllers have on-chip bu�ers, large enough to contain about 4 maximum sized
Ethernet frames. If this is not su�cient, the packet is going to be dropped.

In uIP, there is only one packet bu�er for incoming and outgoing tra�c. This global bu�er
can also be used by application to temporary store data.

The amount of memory necessary for the uIP stack depends on the applications of the used
embedded device. It is possible to run the uIP implementation with only 200 bytes of RAM,
but such a con�guration will provide low throughput and will only allow a small number of
simultaneous connections.

To handle TCP connections very easily, the protosocket library provides an interface similar
to the traditional BSD socket interface to the uIP stack. Unlike applications written for the
uIP event-driven interface, applications written with the protosocket library are executed in a
sequential order and do not have to be implemented as explicit state machines. This sequential
control �ow is provided by the usage of so-called protothreads, a type of lightweight stackless
threads, designed for severely memory constrained systems such as WSNs. This makes the
protosockets lightweight in terms of memory usage. However, protosockets inherit the functional
limitations of protothreads, since each protosocket consists of a single function block. Automatic
variables, such as stack variables, are not necessarily retained across a protosocket library function
call.

In contrast to uIP, the Rime communication stack provides a set of lightweight communication
primitives ranging from best-e�ort anonymous local area broadcast to reliable network �ooding.
The implemented protocols are build using a layered topology, with the more complex protocols
implemented using less complex protocols. The type of communication in the Rime stack is
based on scenarios to be used in typical sensor network protocols. Applications or even protocols
running on top of the Rime stack can be attached at any layer of the stack and can use any of
the communication primitives.

Both, single-hop and multi-hop communication primitives are supported by the Rime stack.
To be able to implement arbitrary routing protocols on top of multi-hop primitives, the Rime
stack does not specify how each packet is routed through the network. Instead, the application
itself, or any upper layer protocol, is invoked on every node to choose the next-hop neighbor.

Moreover, every protocol or any application running on top of the Rime stack can implement
other protocols that are currently not part of the Rime stack. If a protocol or application running
on top of the Rime stack needs a communication primitive that is currently not in the stack, the
application or protocol can implement the primitive on top of other communication primitives
of the stack.

In addition to the communication stack, additional libraries can be linked to applications.
These libraries could be a simple timer library or memory block management (described in
Section 7.3.2). Furthermore, basic data structures, such as a linked list library, are available.

Access to the �ash memory is possible using Co�ee, a very simple, small, and easy to use
�le system. File access is handled based on C �le access. Files can be read, written, or closed,
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Contiki manages the access to �ash memory in background.

7.3.2 Process- and Resource management

Each process in Contiki consists of a single protothread, introduced in Section 7.3. The event
driven Contiki kernel does not provide multi-threading, however, preemptive multi-threading is
implemented as an additional library that optionally can be linked with user-applications. This
additional library mainly consists of two parts:

• a platform independent part, which is the same for all platforms on which Contiki runs,

• and a platform speci�c part, which must be implemented speci�cally for the platform that
the multi-threading library should run.

Without the additionally linked library, only rudimentary process-management is available,
such as process_start, process_exit, process_post and so on. A Contiki subprocess is simply a
process in a process.

In comparison to other embedded kernels, the Contiki kernel does not provide support for
events based on timings. Nevertheless applications have the possibility to use timers by explicitly
using the timer library. This library provides additional functions for setting, resetting, and
restarting timers, and for checking if a timer has expired. It has to be mentioned, that each
application must check on their own if its timers have expired. There is no automatism regarding
timer-events. However a real-time module handles the scheduling and execution of real-time tasks
(with predictable execution times).

Regarding the memory management of Contiki, memory blocks of �xed size have to be set.
Therefore, allocation routines, such as memb_init, memb_alloc, and memb_free are provided.
During compilation, a set of memory blocks is statically declared with the MEMB() macro.
Memory blocks are allocated from the declared memory by the memb_alloc() function, and are
deallocated with the memb_free() function. An additional available function of Contiki is its
memory manager module that can be also linked to user applications. It keeps the allocated
memory free from fragmentation by compacting the memory when blocks are freed. A program
that uses the managed memory module cannot be sure that allocated memory stays in place.
Therefore, a level of indirection is used: access to allocated memory must always be done using
a special macro.

7.3.3 Protection

There is no security mechanism implemented in the Contiki operating system. Normally, the
underlying hardware platforms does not support a MMU, thus, access to all memory-blocks are
possible at any time.

7.3.4 Power Management

Contiki does not implement any power management functionality.

7.3.5 External Factors

Compared to other embedded operating systems, such as eCos (introduced in Section 7.2) the
extension of Contiki in commercial or professional environments is much lower. Contiki is pub-
lished under an Open Source, BSD-style license. The main programming language of Contiki is
C.

Contiki is developed by groups of academic and industry partners, leaded by Adam Dunkels
from the Swedish Instidute of Computer Science. The development team also includes 16 addi-
tional developers from TU Munich, NewAE, Atmel, Cisco, SAP AG, and SICS.

121



At the moment, there is no certi�cation of Contiki available and no commercial support
o�ered. Two mailing lists are available:

• contiki-commits Automatically generated mails when CVS �les are changed.

• contiki-developers For developers of Contiki applications and ports to new architectures.

Moreover, a project page http://sourceforge.net/apps/trac/contiki/ and a project Wiki
http://sourceforge.net/apps/mediawiki/contiki/ is available. All necessary basic informa-
tion can be found at the project homepage http://www.sics.se/~adam/contiki/.

At the moment, there are about 27 publications about Contiki published by di�erent authors.
Thus it can be stated that there is a relatively high circulation of the operating system at least
in the scienti�c environment.

7.3.6 Total Cost Of Ownership

Since Contiki is licensed under the terms of a BSD-like license, there are no direct costs on
purchasing the operating system. Indirect costs can hardly be estimated, since they heavily
depend on the scenario of the project. As mentioned before, support of Contiki is only available
via a mailing list.

7.3.7 Manageability

The documentation of Contiki is mainly based on doxygen4, therefore detailed descriptions of
each system function depends on the source-code documentation. Each data structure and
function is described in a rudimentary but su�cient way. The user can �nd basic tutorials on
the supported platforms, including instructions on how to start development. The Contiki Wiki
is still in an early state but helps the user to �nd additional information about the operating
system.

Contiki is using a BSD-like license, thus the source-code can be downloaded and modi�ed
regarding the user's scenarios. As mentioned in Section 7.3.8, a �rst entry to the system is very
user friendly.

From the authors perspective, Contiki is su�ciently documented (but less, compared with
other operating systems) to start development. The absence of a professional commercial support
rises the danger of a long time continuation of this operating system, thus this operating system
is used more in educational projects than commercial products. However, the usability of the
system seems to be very good.

7.3.8 Using the operating system

The easiest way to build a development environment for Contiki is to download the pre-build
image of a fully functional environment based on a Ubuntu Linux System. The Image is about 1
GB of size and can be download from http://www.sics.se/contiki/instant-contiki.html.

The image requires about 6 GB of disk space and a CPU of about 1,5 GHz. Moreover,
about 2 GB of memory is required. The image can be executed using VMware Player (Windows
only, http://www.vmware.com/products/player/) or VirtualBox (Windows, Linux, or Mac,
http://www.virtualbox.org/wiki/Downloads).

After starting the virtual machine, the Log-In is easily possible with the user �user� and the
password �user�. Contiki is pre-installed and the development can start immediately.

More details on installing the Instant Contiki environment can be found at http://www.

sics.se/contiki/instant-contiki.html

4See http://www.doxygen.org/index.html

122

http://sourceforge.net/apps/trac/contiki/
http://sourceforge.net/apps/mediawiki/contiki/
http://www.sics.se/~adam/contiki/
http://www.sics.se/contiki/instant-contiki.html
http://www.vmware.com/products/player/
http://www.virtualbox.org/wiki/Downloads
http://www.sics.se/contiki/instant-contiki.html
http://www.sics.se/contiki/instant-contiki.html
http://www.doxygen.org/index.html


7.4 TinyOS

Specially designed to be used in WSNs, TinyOS was developed during the last 5 years by the
University of Berkeley. After several software iterations, TinyOS is now available for several
sensor boards, such as:

• telos family
• micaZ,
• ITIS,
• mica2,
• the shimmer family,
• epic,
• mulle,
• tinynode,
• span, and
• iMote2.

Moreover, TinyOS supports the following micro controller platforms:

• the Texas Instruments MSP430 family,
• Atmel's Atmega128, Atmega128L, and Atmega1281, and
• the Intel px27ax processor.

Currently, support for the ARM Cortex M3 processor, which is similar to the Cortex M0 (see
Section 5.2.1), is under development.

A typical TinyOS platform is equipped with 10 KB of RAM, 100 KB of ROM, and consumes
10 µA to 25 mA, depending on which components are currently active.

TinyOS features a small footprint with a low system overhead and low power consumption.
It has a clear focus to support low-power operation, including wireless networking to be used
in WSNs. These operations were also used in TinyOS network link layers (with single-hop or
multi-hop communication). TinyOS also supports secure networking on speci�c network radio
chips, such as the CC2420, of the leading 802.15.4/ZigBee radio chips. This support for network
communication has become de-facto standard in the world of WSNs, also caused by the fact
that many low-power wireless research groups that have released their code use TinyOS as their
operating system.

In detail, TinyOS supports time synchronization in multi-hop scenarios using the FTSP
protocol [MKSL04], data collection to a designated gateway or root with the CTP protocol
[GFJ+09], reliable data delivery to all network nodes with the Trickle algorithm [LCH+], and
installing new binaries over the WSN using the Deluge protocol [Hui].

7.4.1 Process- and Resource management

Based on an event-driven architecture, simple tasks can be implemented on top of sensor nodes
using TinyOS. TinyOS uses the static programming language nesC in which all run-time memory
usage is preallocated during compile-time.

Compared to other operating systems, TinyOS is less a classical kernel. The access to hard-
ware is not granted by the kernel, but is managed directly by the user-applications. There is no
process-management and only one process that runs on the �y. Also, there is no virtual memory
allocation, thus TinyOS provides a single linear physical address space. The application memory
has to be assigned at compile time, caused by the absence of a dynamic memory allocation.

There exists no exception handling or implementation of software signals, TinyOS is again
focused to be as minimalistic as possible. Instead, the applications call functions to handle their
proper fault-management.

Regarding the internal design, TinyOS is divided into di�erent components. Every component
provides and uses interfaces, which is the only way to interact with other components. These
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interfaces are bi-directional and declare a set of functions (called commands), the provider of the
interface must provide. Function calls (events) used by the interface also have to be implemented.
These components consist of:

• Frame: A Frame represents the internal state of a component.

• Functions: Functions are responsible for the computation of the application code itself.

• Interface: Interfaces include the events and commands of TinyOS components.

Moreover, TinyOS distinguishes between two di�erent types of components:

• Modules: Modules represent the application code. They implement one or more interfaces
to hard-/software of the system.

• Con�guration: The component �con�guration� is designed to connect other components
together. It connects interfaces used by other components. This technique is called wiring.

Components and their interfaces are a set of commands and events. They de�ne interaction
boundaries between other components, commands as their entry points, and events as their
callback points. The before mentioned component wiring provides functionality to all other
components. Also there is no restrictions on usage of components � all components can use other
components as they want.

Each nesC application is described by a top-level con�guration, wiring together all its com-
ponents inside. TinyOS does not block events at all, however, the latest version includes a thread
library. In general, it is possible to run a threaded application on top of the rest of all other
applications of the operating system. This threaded application now has a blocking API, and
can also include large loops. This new library also allows the author to write applications in C,
rather than nesC, what even reduces the e�ort or learning a new programming language.

7.4.2 Protection

In contrast to old versions of TinyOS, version 2.1 introduced some signi�cant enhancements to
core TinyOS components and interfaces. Special interest is the fully preemptable application-
level threads library known as TOSThreads, and a runtime memory protection service called Safe
TinyOS that enables the operating system to be able to make basic memory safety checks.

TOSThreads provides an extension to the pre 2.1 TinyOS concurrency model, requiring
some changes to the TinyOS kernel In the existing TinyOS concurrency model, there were two
execution contexts:

• synchronous (tasks), and

• asynchronous (interrupts).

Asynchronous code can preempt synchronous code but synchronous code is unable to pre-
empt asynchronous code. TOSThreads provides a third execution context: user-level application
threads. All threads are able to synchronize with each other and the system, using common syn-
chronization techniques such as semaphores, mutexes, barriers, or condition variables. Switching
the context produces an overhead of about 0.92 percentage, compared to applications without
implemented threading techniques.

Current development also introduces TinyLD, a dynamic linker and loader for TinyOS. How-
ever the development is still not �nished. After deployment, TinyLD can be used to dynamically
deploy and execute TOSThreads based applications at runtime.

Optionally, TinyOS 2.1 applications can be used with its safe mode where the compiler is
used to enforce memory safety at runtime. Using this mode, the programmer has to provide some
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extra annotations describing bounds of arrays and branches of unions. The compiler (Deputy
compiler) then adds an additional check before each potentially unsafe operation. If the check
fails, the application jumps to a fault handler. However, debugging with this feature is di�cult,
but in the past it helped �nding unknown bugs as well as bugs that were already known. Safe
TinyOS permits safe code to be freely mixed with unsafe code using new module-level nesC
attributes safe and unsafe, with unsafe being the default.

Except these two protection mechanisms, TinyOS does not o�er additional protection mech-
anisms.

7.4.3 Power Management

Since TinyOS is event-based, neither polling or blocking has to be handled, and therefore a more
energy-e�cient system can be designed. If the CPU is not used, cycles can be switched to sleep
state, in contrast to actively waiting for an event.

7.4.4 External Factors

According to public available information, TinyOS is downloaded more than 35.000 times per
year, what implicates that the operating system is widely used in di�erent �elds of application
of industry and academic use. O�cial commercial users include Motorola, Intel, Arch Rock,
Crossbow, and the People Power Company. From the authors perspective, it can be estimated
that TinyOS is one of the most circulated operating systems in the area of WSNs. Since there is
no commercial support available on the market, developers have to fall back to o�cial mailing-
lists.

The country of origin of TinyOS is the USA, University of Berkeley. As mentioned before,
the current version is version 2.1.1, updates are published in regular intervals. TinyOS is written
in nesC, a modularized programming language that provides structured component-based appli-
cations. NesC is an extension of the well-known C-language. Within TinyOS the new �lename
extension �.nc� is used. These �nesCurses� �les are responsible for all source-�les, interfaces,
modules, and con�guration.

7.4.5 Total Cost Of Ownership

There are currently no public details on a commercial usage of products based on TinyOS, thus
an estimation of the total cost of ownership is not possible. In general, TinyOS is open-source
and it can be used without any primary costs.

7.4.6 Manageability

There is a huge documentation and wide-spread community that helps interested users. The
documentation is mainly published online (see [oB]).

TinyOS is open-source and uses the BSD-Licensing model. In contrast to the well known
GPL-license, the TinyOS license does not require the developers to redistribute the source code.
The license does have some restrictions, such as including copyright notices in documentation
and not using the names of the developers to promote or endorse products. A copy with more
details of this BSD-Licensing model is distributed with the source-code.

7.5 Re�ex

REFLEX (Real-time Event FLow EXecutive) is an operating system implemented in C++ for
embedded systems and wireless sensor nodes. The currently available version is 1.6. It is based
on the event-�ow principle, presented in [WN07]. This event-�ow model was implemented in
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C++ and allows to use common programming toolchains for development to lower the needed
e�ort to port the system to new platforms. Currently supported controllers are:

• Atmel ATMega128,
• Freescale HCS12,
• Renesas H8/300,
• TI MSP430,
• normal PCs running Linux, and
• ARM based controllers.

Supported platforms including one of the above mentioned controllers are:

• CardS12,
• Mega128,
• Lega RCX,
• TmoteSky,
• OMNetPP,
• SERNet, and
• EZ430-Chronos.

The possibility of code-update is currently implemented in a basic version for the TI MSP430/TmoteSky
as part of Re�ex version 1.6. Future releases plan to integrate a user interaction interface.

7.5.1 Process- and Resource management

The Re�ex operating system includes a scheduling framework which allows to choose between
di�erent schedulers, interrupt handling mechanisms, and event channels. Common I/O handling,
memory management, power management, and virtual timer management are also included.

Since interrupt handling and synchronization of tasks need to be handled together, Re�ex
provides a common interrupt handling scheme. This code already implements the synchronisation
with the system. As interface, the class InterruptHandler is given, which declares the abstract
handle() method which has to be implemented by the speci�c handler.

Since in sensor systems have only a very little amount of RAM, Re�ex does not support
a classical memory management, thus the memory needs to be preallocated. However, Re�ex
supports di�erent types of bu�ers, such as SizedStack, or SizedFifoBu�er. These bu�ers allow
to pre-allocate memory space by instantiation of a pool and afterwards support dynamic access
to it by allocating and freeing the corresponding bu�ers. These bu�ers are static allocated in
size and number of elements at compile time. Moreover, the access to these bu�ers is optimized
for communication usage (by including headers and trailers to each packet without copying any
data). Since communication is asynchronous, it requires the presence of adequate bu�ers. In
case of errors, references to a bu�er can be kept in memory, e.g., for retransmission. When the
reference count reaches zero, the bu�er is implicitly freed again. In Re�ex, a bu�er can be used
in two ways: as a stack and as a FIFO.

From version 1.6 on, Re�ex supports so-called virtual timers. One hardware timer is virtu-
alized to provide various components with timer events in millisecond precision. As an example,
the most basic virtual timer available in all computer systems is the clock. Compared to previous
versions of Re�ex, the clock is now just another virtual timer, kept for legacy purposes.

With the introduction of virtual timers, Re�ex does not use a static tick system but rather
dynamic time ticks. The system will only wake on clock ticks when the next timer event is due
or the hardware timer over-�ows. Each internal component that needs a (virtual) timer input
simply creates a new VirtualTimer object. Compared to the past, this virtual timer does not
need anymore to be connected to any input sources or hardware timers. The timer will trigger
the timer events automatically.

When an application needs even higher precision than the millisecond grained virtual timer
can provide, another hardware timer on the corresponding platform must be implemented and
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used directly.

7.5.2 Power Management

In Re�ex, so called activities are schedulable entities whenever a task was posted to its associated
event bu�er. Power Management in Re�ex is divided into two views, the system view and the
user view. The �rst is responsible to �nd the deepest sleep mode of the system. The second gives
the programmer two di�erent possibilities, groups and modes, to handle all hard and software
components. Both views are shortly introduced in the following part.

• System View: Here, Re�ex provides the class EnergyManageAble. Every instance of this
class includes a variable, specifying the deepest possible sleep mode of the system. The
implemented power manager includes a table of counters for every available sleep mode of
the used microcontrollers. If a task is running, its possible sleep mode is signaled to the
power manager by increasing its counter in the sleep mode table. If a task stops running,
the counter is decreased again. If no task is running, the scheduler calls the powerDown()
function.

• User View: During startup, each object is registered at the power management and
assigned to one or more groups, de�ned by the programmer. This assignment allows a
very easy way to enable or disable a several objects during runtime with only one method
call. The groups also can be managed by prede�ned modes, dividing the execution of the
application into di�erent phases. The programmer is now responsible to switch between
these modes, e.g., a times module could be implemented to change between modes.

In Re�ex, there are two di�erent types of interrupts. Those caused by external events, and
interrupts as a result of software events. Therefore, the implemented power management is
designed for interrupts caused by software events, since the drivers know when an interrupt has
to be enabled. The decision which interrupt should be enabled is to be decided by the application
programmer.

Regarding the Power consumption, [SWNN] shows a comparison of Re�ex and TinyOS 2.0.2
on a TMoteSky [Corb] hardware. For the used application, Re�ex consumed about 38 percent
respectively 51 percent less energy, depending on the used system voltage.

7.5.3 External Factors

As programming language, C++ is used inside Re�ex. The authors only found a few projects
where Re�ex was used [TCa, TCb], thus it can be estimated that Re�ex is more or less only
used in an educational environment. A commercial usage of this operating system could not be
found. There is no certi�cation on common assurance level criteria, the origin country of Re�ex
is Germany (Re�ex is a project of the TU-Cottbus). The �rst o�cial release was in the beginning
of 2007, the latest version (version 1.6) was published in January 2010.

7.5.4 Total Cost Of Ownership

There is no market study available with real costs of the system, therefore no estimation could
be given. However, the Lesser GNU General Public License is used, thus direct costs of licensing
the product are not necessary.

7.5.5 Manageability

Most of the documentation is created by Doxygen. Also a wiki-based documentation on the
installation procedure and further information on the supported platforms is available. Pro-
grammers in Re�ex are requested to follow prede�ned code style guidelines, published on the
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o�cial website of the project [TCf]. Also, two detailed PDF documents are available, describing
details on programming Re�ex, as well as system internals for further reading [TCc] and [TCg].

7.5.6 Using the operating system

As mentioned before, the current version of Re�ex is 1.6. It can be downloaded either using
the subversion repository [TCd] or using a tar.gz version [TCe]. Depending on the desired
destination platform, the included Make�le needs to be adopted. Detailed information on each
platform can be found at [TCf]. A template Make�le is already included in the package, therefore
the following commands lead to a �rst compilation of the system.

Goto bin directory (applications$APPLICATION/platform$Platform/bin) and type

cp Makefile_default Makefile

vi Makefile

make clean

make all

make download

For compilation on an ARM platform, one needs to install the packages binutils, gcc, and newlib.
binutils:

wget http://www.gnuarm.com/binutils-2.16.1.tar.bz2

tar xjf binutils-2.16.1.tar.bz2

mkdir objdir

cd objdir

../configure --target=arm-elf --prefix=/usr/local/gnuarm --enable-interwork --enable-multilib

make all

su

make install

gcc:

export PATH=/usr/local/gnuarm/bin:$PATH

wget http://www.gnuarm.com/gcc-4.0.2.tar.bz2

tar xjf gcc-4.0.2.tar.bz2

cd gcc-4.0.2

mkdir objdir

cd objdir

../configure --target=arm-elf --prefix=/usr/local/gnuarm --enable-interwork --enable-multilib --enable-languages="c,c++" --with-newlib

make all-gcc

su

make install-gcc

newlib:

wget http://www.gnuarm.com/newlib-1.14.0.tar.gz

tar xzf newlib-1.14.0.tar.gz

cd newlib-1.14.0

mkdir objdir

cd objdir

../configure --target=arm-elf --prefix=/usr/local/gnuarm --enable-interwork --enable-multilib

make all

su

make install

128



7.6 PikeOS

The PikeOS architecture, a real-time operating system developed by the German company
SYSGO, is based on a small microkernel, providing a core set of services. Version 3.1 of PikeOS
was released in March 2010, while version 3.2 was released in March 2011. Version 3.2 supports
SMP on several platforms, along with performance improvements, and many enhancements in
the o�ered system tools. The currently supported processors are:

• x86
• PowerPC
• MIPS
• ARM
• SPARC

PikeOS enables the so-called Safe and Secure Virtualization (SSV) technology that uses multiple
operating system interfaces, called Personalities, to work on isolated separate parts of resources
within a single device. These personalities can be native C/C++ programs, ARINC 653, Linux,
POSIX, Certi�ed POSIX, and RTEMS. Following SYSGO, a Windows Personality is currently
being developed. However, PikeOS o�ers a wide range of features, but is still very simple and
compact. The resulting design achieves a suitable real-time performance. Its support of multi-
core architectures o�ers a �exible approach to the user who can select an execution model ranging
from a pure AMP (Asymmetric Multi Processing) to full SMP.

An overview of the PikeOS architecture is shown in Figure 7.1

Figure 7.1: PikeOS architecture

7.6.1 Process- and resource management

Running applications inside an operating system that uses virtualization technologies requires
a complex scheduling mechanism, since complex embedded systems must support a mixture of
applications with a broad range of timing requirements: hard real-time, soft real-time, and non
real time. Therefore, PikeOS o�ers a scheduler that is capable of combining time-driven and
priority-driven scheduling. This scheduler ensures deterministic mapping between virtual-time
and real-time, dynamic re-allocation of excess computing time and priority-based responsiveness.
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Every virtual machine (here: Personality) is statically assigned an individual time slice. The
virtual machine scheduler periodically executes each virtual machine in turn for the duration
of their respective time slices. Therefore, each personality receives �xed amounts of processing
capacity at prede�ned points in time. Thus, they are able to schedule real-time processes them-
selves. However, if a virtual machine has no runnable processes during its active time slice, or
if its processes have completed before the time slice is over, it can not simply do a switch to
another virtual machine.

In addition, PikeOS combines time-driven scheduling and priority-based scheduling. Each
virtual machine can also be assigned with a speci�c priority. As an example, all real-time virtual
machines receive the same mid-level priority. These virtual machines get time to process in
a time-driven procedure. In contrast, all non-real-time virtual machines are assigned to a low
priority. With this lower priority, the switching of each virtual machine is realized with a simple
robin scheduler to achieve basic load balancing. In addition, if a real-time virtual machine (mid-
level priority) has currently no processes to run, it sleeps and a switch to the next low-priority
virtual machine is done for the remaining free process time of the mid-level virtual machine.

Within PikeOS, it is possible to create memory objects that are shared between multiple
partitions. These shared memory objects have to be prede�ned at compile-time. They are
created a boot time and were never deleted. A shared memory object does not belong to a
speci�c partition: it can be accessed by any partition, as long as it was de�ned that it is allowed
to access this memory object.

Using PikeOS, the existence of an MMU is essential. An MMU translates all virtual addresses
of running code back into physical addresses. Moreover, for every memory access it is checked
whether the corresponding task is allowed to access the speci�c part of memory, or not. If there
is no permission to access, the MMU will generate an exception.

7.6.2 Protection

The partitioning concept of PikeOS is described in the ARINC 653 speci�cation for system
partitioning and scheduling. This speci�cation is often required in safety-critical systems in the
avionics industry. On top of the microkernel of PikeOS, multiple partitions are allowed to run
in parallel. These partitions can contain real-time operating systems or run-time environments.
Each partition receives its own set of system resources, fully isolated from each other. Each
application operates completely isolated and is only controlled by the underlying microkernel.
In theory, there is no way for a program in one partition to harm any application of another
partitions. This idea of isolated processing is also currently used in desktop systems of security
relevant areas.

The PikeOS microkernel only provides basic functionalities, such as memory management,
access to attached devices, and granting CPU-time. It divides the underlying hardware to the
above partitions. Therefore, it prevents to execute privileged application instructions through
the implementation of para-virtualization.

A partition only has access to the memory and input-/output resources which are previously
speci�ed in the partition con�gurations. Memory is instantly available for the application upon
startup. Memory that has been allocated to a partition will never be returned to the system,
even if the partition itself is shut down. If the partition is later restarted, it will have access to
exactly the same memory resources as before. This ensures:

• Predictive application behavior. Resources once available will not exhaust in a second run

• Information cannot be accidentally exchanged between partitions due to a re-assignment
of physical memory pages.

PikeOS also provides a message-based communication through prede�ned communication
channels. A communication channel is a link between two communication ports (source and
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destination). The source and destination can be located within the same partition, within two
di�erent partitions, or within one partition and a system extension.

7.6.3 External Factors

The basic design idea of PikeOS gives the possibility to be used in safety-critical applications and
has validated according to safety standards, such as DO-178B, EN 50128, IEC 62304, IEC 61508,
ISO 26262, IEC 61513 of either the avionics, automotive, railway, medical, industrial automation,
or nuclear power plants. Since only the underlying microkernel is allowed to run in privileged
mode, the kernel application directly contributes to the trusted code base of every application
that runs on top of it. Therefore, the PikeOS microkernel consists of less than 10.000 lines of
code making certi�cation less expensive than that of conventional monolithic real-time operating
systems. PikeOS currently is certi�able to safety standards such as DO-178B, IEC 61508 or EN
50128, it is Multiple Independent Level of Security (MILS) compliant, and is currently involved
in various security standard CC EAL certi�cation projects.

According to the MILS standard, PikeOS o�ers three levels of security. This MILS architec-
ture o�ers a separation microkernel allowing the combination of trusted and untrusted code on
a single hardware platform.

7.6.4 Total Cost Of Ownership

PikeOS is published using a proprietary license. A detailed pricing-model is not publicly avail-
able, therefore the total cost of ownership can not be estimated. However, since SYSGO o�ers
commercial professional support of its operating system, it can be estimated that bugs will be
�xed in an appropriate time. Also, missing ports to additional platforms could possibly be done
by SYSGO.

7.6.5 Manageability

The package of PikeOS is shipped with a complete development environment called CODEO,
an Eclipse-based IDE. CODEO makes graphical con�guration tools available and o�ers a guided
con�guration, remote debugging (down to the hardware instruction level), target monitoring,
remote application deployment, and timing analyses. In addition, CODEO provides standard
application development features, such as compiler, assembler, and linker. The development
environment includes

• project management,
• code browser,
• scheduling con�gurator
• con�guration management, and
• interface components.

As an example of the CODEO feature, the scheduling con�gurator is shown in Figure 7.2.
Moreover, PikeOS with its CODEO o�ers the possibility to analyze the timing behavior of

the developed applications. Trace points can be set, used as triggers, and extended using the
graphical trace con�guration and visualization editor, shown in Figure 7.3. Concurrent tracing
is possible on multiple personalities.

Since debugging is sometimes essential, PikeOS also o�ers a debugging-tool called Muxa.
With Muxa it is possible for external users to communicate with running applications through
several communication channels. Also a trace tool is available to be able to trace schedule
changes, system calls, interrupts, exceptions, and other relevant information.

Since PikeOS is not published under the terms of an open source license, the source-code
is not publicly available, which prevents direct modi�cations of the source code. Therefore, a
port to a new platform strongly depends on the manufacturer and the required e�orts cannot be
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Figure 7.2: CODEO Scheduling Con�gurator

estimated. Additionally, since a proprietary license is used, no public documentation is available
without buying PikeOS. Thus, there can be no conclusion about the quality of the documentation,
shipped with PikeOS.

Public information of this analysis is mainly based on the Internet, press releases, and public
available deliverables of projects, SYSGO is involved in. More details on PikeOS can also be found
in http://www.tecom-project.eu/downloads/deliverables2009/TECOM-D2.5-Comparison-\

and-synthesis-PikeOS-and-Linux-personality.pdf

7.6.6 Using the operating system

Although command-line tools are available, the common user is advised to use the before
mentioned CODEO development environment. Command-line tools are available for Linux or
through Cygwin. They are used for creating a new project, cloning an existing project, or build-
ing the project. If ELinOS, the Linux personality of PikeOS, is used, an additional tool called
ELK (Embedded Linux Kon�gurator) can be used to de�ne which features should be included
into a Linux partition. Possible features include network support, startup method parameters,
or additional features. Also, ELK is used to modify the Linux kernel itself.

7.7 MANTIS

Around 2003, the MANTIS (MultimodAl system for NeTworks of In-situ wireless Sensors) was
introduced to the public. It was designed to provide a multi-threaded embedded operating
system that could be adopted to other sensor platforms, used for WSNs. However, since a lot
of di�erent embedded operating systems were already on the market, the designers of MANTIS
tried to focus on the aggregation of processing complex tasks, such as compression, preemptive
multi-threading, or signal processing together with time-sensitive tasks.

Since MANTIS is designed to be used within sensor nodes, it has to be very memory e�cient.
To achieve this memory e�ciency, it is implemented in a way that it �ts in less than 500 bytes
of memory � including kernel, scheduler, and network stack. In addition, additional power-
management features are o�ered by the operating system, described in Section 7.7.2. The two
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Figure 7.3: CODEO System Tracer

key-achievements are a lightweight memory footprint as well as an energy-e�cient operation.
Another interesting feature of MANTIS is its design to support remote management of in-situ5

sensors via dynamic reprogramming and remote login.
MANTIS is by design very �exible regarding the supported hardware platforms, such that

the same application code can be executed on di�erent hardware platforms. MANTIS o�cially
supports ATMEGA platforms, x86 platforms, and di�erent micro sensor platforms, such as
MICA2, Moteiv's Telos RevB, or MANTIS Nymph. The goal of MANTIS is also to support
features, such as dynamic reprogramming of sensor nodes via wireless, remote debugging of
sensor nodes, and multi-modal prototyping of virtual and deployed sensor nodes.

Figure 7.1 illustrates the general architecture of MANTIS, being a multi-threaded layered
operating system, capable of running in less than 500 bytes of RAM.

Regarding the essential feature of code update within WSNs, the goal of MANTIS is to achieve
dynamic reprogramming, �ashing the entire operating system, reprogramming of a single thread,
and changing variables within a thread. MANTIS also provides a remote shell that enables a user
to login to a speci�c sensor to observe its memory of a running thread. Realization of support
for dynamic reprogramming of the entire operating system is currently in progress.

7.7.1 Process- and resource management

MANTIS provides a subset of POSIX threads6, a priority based thread-scheduling with round-
robin semantics including priority levels. The operating system also supports binary (MUTEX)
and counting semaphores. Each priority level has its own ready-list and tail pointer. There
are �ve default priority levels consuming 20 bytes in total. The time-sliced multi-threading
o�ers automatic preemption leading to a system where a single segment of application code
cannot block the execution of other tasks. Multi-threading in MANTIS includes the necessity
to switch context during run-time, which requires additional stack memory for each thread.
However, the advantages of multi-threading preponderance the costs. Depending on the used

5In situ sensing, or local sensing, describes the process of measuring an object locally, with a sensing device
that is closer to the object than the size of the sensor itself.

6See https://computing.llnl.gov/tutorials/pthreads/
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Figure 7.4: General MANTIS OS architecture

sensor architecture, each context switch requires about 60 microseconds (a representation of
about 120 instructions), since 30 registers have to be stored and restored. The default stack size
in MANTIS is 128 bytes.

MANTIS divides the RAM in two distinct sections: an area managed as a heap, and space for
global variables, de�ned and allocated during compilation. Every new thread results in allocation
of some space of the heap. If the thread �nished, this memory is available for new threads. A
dynamically allocation of the heap during run-time is not possible, caused by the fact that with
very limited memory inside sensor nodes, memory management has to be very well planned.

The main data structure inside MANTIS is the global thread table, statically allocated during
compilation, leading to the fact that the maximum number of threads has to be statically de�ned
beforehand. Each table entry is 10 bytes and contains the stack pointer, base-pointer and size,
the threads priority level, and the next thread pointer to be used as a linked list. The context of
each thread needs only to be stored on its stack during it is allocated, thus the static overhead
of the thread table is with 120 bytes very small. The MANTIS scheduler in total needs not more
than 144 bytes.

The only interrupt, handled by the MANTIS kernel, is the timer interrupt. All other inter-
rupts are directly forwarded to the associated device drivers.

One of the more user-level threads is the implemented network stack. It give the user the
possibility to easily modify the network stack in user space and also decrease the amount of work
needed to support cross-platform prototyping of network stack functionality. It supports layer
three and above, thus network layer routing, transport layer, and application layer. Overall, the
network stack of MANTIS consumes less than 200 bytes of RAM.

All implemented device drivers are located in the internal device layer. POSIX-style system
calls are implemented for each device in a simple device layer. In addition, a single static
table is used to store function pointer for each device implementation. This device scheme has
been implemented for EEPROM, several assorted sensors, and is planned in the near future for
accessing �ash storage.
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7.7.2 Power Management

As one of the few analyzed operating systems with a build-in power management, the following
part describes the features of MANTIS to increase the energy e�ciency:

To achieve energy e�ciency, MANTIS modi�es the internal scheduler. It sleeps the micro
controller after all active threads have called the MANTIS function sleep(), resulting in a reduc-
tion of the current consumption to the µA range. To use the sleep() functions, all application
threads have to enable power-save mode by calling the function mos_enable_power_mgt().
Also, each thread can be forced to sleep over a prede�ned period of time, realized with the
method mos_thread_sleep(PERIOD). Combining both methods, MANTIS o�ers basic power
management while maintaining a thread-capable scheduling mechanism. Figure 7.5 illustrates
the general architecture of the MANTIS scheduler and its power management capabilities.

Figure 7.5: MANTIS scheduler architecture

In addition to threads created by drivers and users, MANTIS always runs an idle thread
created by the kernel at startup. This idle thread uses the lowest priority and runs when all
other threads are blocked. It gives the system the possibility to add power-aware mechanisms to
increase the power e�ciency of the sensor node running MANTIS by adjusting kernel parameters
to save energy. However these adjusted parameters to lower the CPU performance are not
included in the operating system. Regarding the ATMEL sensor node architecture, if all threads
called sleep(), the system will go into the deep power-save sleep mode.

All implemented devices can run in three states: on, o�, and idle. These states have to be
enabled manually, also the resume of an idle device has to be handled by the application.

7.7.3 External Factors

The MANTIS kernel is written in the programming language C and developed by the wireless
sensor networking research group at the University of Colorado, Boulder. The last changes are
noted at January 2008, further changes of the system are not known, thus it can be expected
that the circulation is more related to the educational area. This also leads to the fact that there
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is currently no certi�cation according to some criteria.

7.7.4 Total Cost Of Ownership

Currently, there is no public study on costs of MANTIS, thus direct and indirect costs of MANTIS
cannot be estimated in a proper way.

7.7.5 Manageability

The code of MANTIS is very compact. It allows moderate programmers with basic skills in C
programming, rapidly create prototypes within a reasonable amount of time. As the authors of
[BCD+05b] mention, an application including a frequency-hopping protocol included with a port
of the RC5 security standard would be implemented in less than tree days.

For interaction with the system and in-/output, MANTIS o�ers a set of system APIs. A
complete documented list of the APIs can be found at [UoC]. Since MANTIS is optimized to
support cross-platforms, the C programming language leads to the fact that no or only little
adaptations need to be done when using a di�erent platform.

In addition, MANTIS o�ers the possibility to be used inside a virtual network of sensor
nodes. Therefore, applications can be evaluated in a virtual environment and later deployed to
the real world. A combination is also possible, since virtual nodes can communicate with real
nodes outside.

Current unstable versions of MANTIS are available under the BSD license. The current
stable version (0.95) is available under an eCOS-style license.

Basic documentation of the API, troubleshooting, and installing how-tos are available. How-
ever, more detailed documentation is not provided.

7.7.6 Using the operating system

The complete source-code, including installation instructions, can be downloaded from the MAN-
TIS home page7. As a �rst result, the authors admit that MANTIS currently is still work in
progress. Due to this fact, it comes out that MANTIS is probably less of interest for usage within
TeSOS, however we assume that in the near future the possible outcome of the operating system
is very interesting. This is mainly resulted by the less frequent update cycle and the missing
application in real world scenarios. Also missing public or commercial support argues against
the usage of MANTIS within TeSOS.

7.8 Conclusion and suggested operating system to be used in

TeSOS Integration

As an interactive process with ongoing discussions, BSI and TeSOS members came to the con-
clusion that for the Big Nodes (BNs), some more powerful operating system should be used.
Therefore we suggest PikeOS (Section 7.6) or eCOS (Section 7.2). For the small nodes we sug-
gest a minimalistic operating system such as TinyOS (Section 7.4). In the future, MANTIS
(Section 7.7) is also interesting as a basis operating system for small nodes due to its included
power management support. However, at the current status of development, the use of MANTIS
cannot be suggested.

7http://www.mantisos.org
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8 An Integrated Solution for Secure
Sensor Networks (M6)

In this section, we discuss which of the components discussed in M3 to M5 can be combined
sensibly to provide a comprehensive solution for TeSOS.

8.1 Sensor Base Platform

Operating System According to the analysis of Chapter 7, the two embedded operating sys-
tems MANTIS (see Section 7.7) and TinyOS (see Section 7.4) seem to be two adequate solutions
to realize TeSOS: The main advantage of MANTIS is the support of power management, an
important feature in the context of sensor nodes. However, the main disadvantages of MANTIS
are the lack of commercial support and the long support cycles. In contrast, TinyOS has a
big development community, short development cycles, and includes many additional software
packages, e.g., for time synchronization, that are required for the intended security mechanisms.
Therefore, we suggest at the moment to use the TinyOS operating system for both big nodes
and small nodes.

If the Big Nodes (BNs) should support multitasking or execute trusted and untrusted code
in parallel or isolate tasks for higher resilience against programming �aws, a microkernel-based
operating system such as PikeOS or eCos should be chosen over MANTIS and TinyOS for better
support of memory protection and isolation.

Hardware From the security standpoint, the Atmel SecureAVR (see Section 5.2.5) microcon-
troller is a good candidate for both big and small nodes, since it includes many security extensions
such as a random number generator, hardware acceleration for common operations in RSA, DSA
and ECC and secure storage. However, the SecureAVR is not supported by any of the analyzed
operating systems and requires reimplementation or porting of the desired software stack.

Another good candidate is the Trusted Sensor Node (TSN, see Section 5.2.6). Its crypto-
graphic co-processor supports a random number generator as well as ECC/RSA/SHA processing.
However, the Leon processor of the TSN is currently only supported by the PikeOS and the eCos
operating system.

If TinyOS is the operating system of choice due to its �exibility and functionality, only the
TI MSP430 or Atmel's Atmega128x series can be used as the underlying hardware platform of
TeSOS. However, these micro processors do not provide security extensions or cryptographic
co-processors.

8.2 Security Mechanisms

For optimal interaction with Small Nodes (SNs), the BNs should support RSA acceleration for
creating Rabin-Williams signatures, while ECC is more suitable for interaction between BN
due to its shorter cipher text sizes. However, as discussed in previous section Section 8.1, only
two hardware platforms are available that support ECC as well as RSA acceleration, but the
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SecureAVR does not support commonly used embedded operating systems and the TSN is only
a prototype and not suitable for production level systems.

In the following, we thus discuss two alternative approaches for the security concept of TeSOS.
The �rst solution is optimized for a sensor network with implicitly trusted BNs. These BNs
feature advanced security hardware for secure memory and ECC acceleration. In this scenario,
we delegate critical security operations from the SNs to the BNs to reduce computation and
communication loads, so that SNs are not required to process ECC ciphertext.

In the second scenario, we assume that the BN have the same or higher risk of compromise
as the SN (i.e., they are not trusted), so that a delegation of security critical operations is not
sensible. In this scenario, we thus aim to provide end-to-end security with all nodes at the cost
of higher computation and communication load. For this purpose, the BNs are equipped with
RSA acceleration that can be used to create signatures that the SNs can verify with reasonable
costs.

8.2.1 Delegate Security to Trusted Big Nodes

If BN are trusted it is reasonable to delegate critical tasks to them to save energy consumption
of SN and for the overall network. Hence, we delegate the authentication of broadcast messages,
including Base Station (BS) commands and program code super-distribution, to the BN and
use Message Authentication Codes (MACs) to protect the �last hop� from BNs to their respec-
tive Cluster Heads (BN). Moreover, super-distribution for SN can be cheaper since additional
assumptions can be made on the availability of BNs. The detailed combination of the security
protocols is outlined below.

Key Management For e�cient and �exible key management in TeSOS, we suggest the com-
bination of hardware-accelerated Elliptic Curve Cryptography (ECC) among BN as described
in Section 6.2.3 combined with simple symmetric schemes for interaction between BN and SN.
We exploit the assumed pre-deployment knowledge (see WSN.Deployment in Section 3.1.2) to
deploy the LEAP master keys cluster-wise and establish keys between SNs of di�erent clusters
using key transport, as described in Section 6.2.3. The scheme yields a pair-wise key K between
any two neighbor nodes in the network. In addition, a pair-wise shared key between BSs and
each sensor node should be distributed during deployment. These pair-wise shared keys are never
used directly but only to generate keys for speci�c protocols of other security mechanisms, such
as symmetric authentication or encryption keys for secure communication.

Data Channels As discussed in Section 6.3, data channels can be divided into unicast channels
from the sensor nodes (SN, BN) to BS and multicast channels from BS to the sensor nodes. As
shown in Table 3.1 on page 17, exchanged information must be authenticated and fresh while
encryption is optional. Hence, we suggest the use of end-to-end authentication for data sent to
the BS as outlined in Section 6.3.1 but without complex data aggregation protocols since the
BN can be trusted to aggregate data correctly. For data sent from the BS to the sensor nodes
we suggest a hybrid broadcast authentication scheme as described in Section 6.2.5: Using ECC
signatures for BNs and MACs for SNs, we can integrate hardware acceleration while at the same
time reducing load on the SNs, which do not support hardware acceleration. We suggest to
use time stamps as loosely synchronized freshness counters. They can also be used to provide
time synchronization between nodes. Such synchronization is not very e�cient due to network
delay, but it can be enough for certain applications or be used to support the high-precision time
synchronization discussed below. For encrypted communication between BS and other sensors,
we distinguish unicast and multicast communication. For unicast communication, encryption
keys can be derived from K. This is not practical for multicast communication, so we suggest
to simply use link encryption in this case.
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Super-distribution We suggest to use the Seluge protocol described in Section 6.3.3 for super-
distribution of code images using ECC signatures for authentication. However, to mitigate the
problem of signature veri�cation on the SNs Seluge should only be executed between BNs and
the BS. Once a BN received and validated a complete code image update (or other larger data
chunks to be distributed in the network), it should inform each of its cluster nodes (SNs) about
the update. Upon receiving this information, the contacted SN enters a special upgrade mode
where it can receive the code image, authenticated by the pair-wise authentication key shared
between SN and its Cluster Head (BN).

Software Integrity As discussed in Section 6.4, secure boot is rather expensive and hard
to implement when considering hardware attacks. To validate the integrity of a remote sensor
node, we thus suggest the use of Combined Hardware/Software Attestation as introduced in
Section 6.5.1. The mechanism can be used when the integrity of a sensor is in question due
to recorded misbehavior or when sensors are updated or re-programmed after undeployment.
We emphasize that the proposed mechanism can also be implemented with simple keyed hash
functions (MACs) instead of PUFs, if the tamper evidence property of PUFs is not required. In
this case, the physical function can be easily simulated if the veri�er knows the respective secret
key, eliminating the problem of Challenge-Response Pair (CRP) generation and maintenance.
On the other hand, pure software-based attestation can only be used if the veri�er can assure
the identity and hardware integrity of the prover and any undesired communication during
attestation can be prevented reliably.

Secure Routing The TeSOS network should be clustered into inner and exterior clusters, as
proposed in Section 6.6.1. Further, we suggest to use di�erent routing protocol for inter- and
intra-cluster communication.

Network clustering. We propose a double-cluster network representation, where network is
clustered into inner and exterior clusters formed around respective cluster heads, as proposed
in Section 6.6.1. For network clustering, location-based approach is feasible, where veri�cation
of BN locations is delegated to a main cluster head.

Intra-cluster routing. We propose the use of INtrusion-tolerant routing protocol for wireless
SEnsor NetworkS (INSENS) [DHM03, DHM04, DHM06a] protocol for inter-cluster communi-
cation in TeSOS network. We suggest to modify the protocol as discussed in Section 6.6.3 to
replace the weakly authenticated broadcast messages with unicast transactions.

Inter-cluster routing. We propose to use the Dynamic Window Secured Implicit Geo-
graphic Forwarding (DWSIGF) [HIJM09] protocol for inter-cluster routing. We require the
following options for DWSIGF (cf. Section 6.6.2): (i) use the SIGF-2 protocol layer to main-
tain neighborhood-shared state and to enable cryptographic operations for authenticity, con�-
dentiality, integrity, and freshness of messages, (ii) use random or multiple choice of the next
hop candidate, (iii) omit transmission of location information in Request-to-Send (RTS) mes-
sages. Moreover, propose the following protocol modi�cations: (i) Broadcast authentication
scheme to authenticate RTS messages as used in Secure Aggregation Protocol for Cluster-
Based (SAPC) [BLM07, BLMB07], (ii) the location information which is used to make forwarding
decisions should be certi�ed by a trusted BS.

Time Synchronization The existing TinyReSync [SNW06] protocol can be used for time
synchronization in TeSOS as presented in Section 6.7. The system requires only pair-wise shared
authentication keys and can be used to establish the clock skew between two systems. Based on
this, a common time can be established between individual nodes, clusters or in the complete
WSN.
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8.2.2 End-to-End Security with Untrusted Big Nodes

If the BNs have similar risk of becoming compromised as SNs, they should only be used as orga-
nizational backbone of the network infrastructure but not as explicit trust anchors. In this case,
authentication of data in broadcast and super-distribution should be carried out independently
by the respective connections endpoints and not be delegated to the BNs. In the following we
provide a choice of alternative protocols that support this functionality at a reasonable energy
consumption level. Note that the Software Integrity and Time Synchronization mechanisms do
not speci�cally leverage the BNs and can be used as described in Section 8.2.1.

Key Management We propose to use the LEAP key management scheme to establish pair-
wise shared keys between all sensor nodes, as outlined in Section 6.2.2. The protocol is highly
suitable since TeSOS guarantees the secure deployment, initialization and upgrade of sensors
as by the assumption ADV.OperationalPhase, Section 3.1.3. As a result, LEAP provides high
resilience, scalability and extendability at low communication and computational costs. The pre-
deployment knowledge of sensor locations(see WSN.Deployment, Section 3.1.2) can be used to
deploy LEAP with di�erent master keys to further increase its resilience to key compromise. Note
that, if precise pre-deployment knowledge is given, an even simpler direct deployment of pair-wise
keys can be used (see Section 4.2.1 and speci�cally [LN03c]) In this case, a few additional keys
should be deployed to each sensor node for future extensions of the network. The scheme yields a
pair-wise key K between any two neighbor nodes in the network. In addition, a pair-wise shared
key between BSs and each sensor node should be distributed during deployment.

Data Channels and Super-Distribution For e�cient broadcast authentication for SN de-
spite the lack of hardware acceleration we suggest to leverage Rabin-Williams Signatures [Ber08].
As we discuss in Section 6.2.5, Rabin-Williams signatures are an optimized form of RSA signa-
tures that allow very e�cient signature veri�cation at only slightly higher signature creation cost.
The same approach can be adopted for the Seluge protocol to provide end-to-end authentication
also for the super-distribution of data.

A general problem of the RSA signature approach is the rather large message size due to
the large RSA modulus. However, the much more frequent upstream messages from sensors to
the BS can still be secured using pair-wise authentication keys between BNs/SNs and the BS,
same as commands intended only for small groups of sensors. The actual impact of broadcast
authentication message size therefore depends on application and implementation and should be
evaluated based on a prototype implementation or simulation.

Secure Routing We use a modi�ed version of INSENS and DWSIGF with Rabin-Williams
signatures to provide secure routing in face of untrusted Cluster Heads (CHs).

Network clustering. For network clustering, a location based approach can be used similar
to the scheme described in Section 8.2.1. The location information provided by the BNs should
be signed using Rabin-Williams signatures so that they can be veri�ed by the SNs.

Intra-cluster routing. We suggest to use a modi�ed INSENS protocol as discussed in Sec-
tion 8.2.1 and Section 6.6.3. However, as we discuss in Section 6.6.3, the protocol is still vul-
nerable to DoS; no existing protocol can satisfy the TeSOS security requirements if BNs cannot
assumed to be trusted. A novel protocol that ful�lls these requirements is still work in progress.

Inter-cluster routing. The DWSIGF [HIJM09] protocol is suitable for inter-cluster routing
in TeSOS with untrusted BNs, when modi�ed as discussed in Section 8.2.1.
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9 Conclusion

We reviewed and discussed the state-of-the-art hardware, software and security technology avail-
able for sensor networks. With regards to the speci�c requirements of the TeSOS scenario
considered in this work, it becomes apparent that certain areas such as software integrity and
secure routing are largely unexplored while other areas such as key management and (mostly)
insecure routing protocols were discussed in great detail. Similarly, we note that few hardware
platforms support security extensions such as random number generators or hardware acceler-
ation of modern cryptographic algorithms, such as AES or SHA-1, and only the SecureAVR
provides a type of secure memory.

We identify the problems of hardware compromise, remote software integrity veri�cation
and secure routing as the major problems in secure sensor network design. We provided �rst
steps toward software integrity veri�cation and secure routing but cannot address the problem of
hardware compromise. Based on our analysis we propose to extend secure sensor hardware with
secure memory that is directly attached to symmetric and asymmetric cryptographic accelerators
to reduce the risk of key compromise during hardware attacks. PUFs present an interesting option
for the implementation of such mechanisms.
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Glossary and Acronyms

Advanced Encryption Standard (AES) The Advanced Encryption Standard (AES) is an en-
cryption standard recommended by the National Institute of Standards and Technology
(NIST). 43, 53, 55, 57, 58, 60, 62�64, 67, 69, 71�73, 77

Advanced Microcontroller Bus Architecture (AMBA) The Advanced Microcontroller
Bus Architecture was introduced in 1996 and is widely used as the on-chip bus for ARM
processors. [ARMa]. 49, 50, 52, 58

Advanced Peripheral Bus (APB) APB is designed for low bandwidth control accesses, for
example register interfaces on system peripherals. This bus has an address and data
phase similar to AHB, but a much reduced low complexity signal list, for example no
bursts [ARMa]. 49, 50

AMBA High-performance Bus (AHB) AHB is a bus protocol introduced in Advanced
Microcontroller Bus Architecture version 2 published by ARM Ltd company [ARMa].
48�50, 58

Analog-to-Digital Converter (ADC) A device which converts continuous analog signals to
discrete digital numbers. 59, 113

Application Programming Interface (API) A particular set of rules and speci�cations that
a software program can follow to access and make use of the services and resources
provided by another particular software program that implements that API. 112�114,
116, 136

Application-Speci�c Integrated Circuit (ASIC) An application-speci�c integrated circuit
(ASIC) is an Integrated Circuit (IC) customized for a particular use, rather than intended
for general-purpose use. 49, 53

Arithmetic Logic Unit (ALU) In computing, an arithmetic logic unit (ALU) is a digital
circuit that performs arithmetic and logical operations. 57

ARM Holdings (ARM) ARM Holdings (LSE: ARM, NASDAQ: ARMH) is a technology
company headquartered in Cambridge, England, UK. 45�48

Asymmetric Multiprocessing (AMP) A concept for multiple-CPU computing where some
CPUs have di�erent capabilities and/or purpose. 51, 52

Base Station (BS) Centralized control and aggregating data center. Typically Base Station
serves as a gateway to another network, a powerful data processing or storage center, or
an access point for a human interface. 7, 13�15, 25, 37, 88, 89, 91�93, 95, 96, 100, 101,
103, 104, 138�140

Berkeley MAC (B-MAC) . 21, 22
Big Node (BN) Sensor network node with comparably high computational performance and

energy reserves. 13, 41, 46, 53, 55, 86, 87, 89, 90, 93, 95, 96, 100�105, 136�140
Bundesamt für Sicherheit in der Informationstechnik (BSI) The Bundesamt für Sicher-

heit in der Informationstechnik (abbreviated BSI - in English: Federal O�ce for Infor-
mation Security) is the German government agency in charge of managing computer
and communication security for the German government. 45

Central Processing Unit (CPU) The Central Processing Unit (CPU) or the processor is the
portion of a computer system that carries out the instructions of a computer program,
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and is the primary element carrying out the computer's functions. 40, 44, 47, 51�55, 68,
70, 106�110, 115�117, 125, 130, 135

Certi�cate Authority (CA) A trusted entity that certi�es public keys of communication
parties to assign them a valid identity in the network. 31

Challenge-Response Pair (CRP) A pair of values that correspond to each other w.r.t. a
speci�c task. 99, 139

Clear-to-Send (CTS) Clear-to-Send message is a part of the two-way request-to-send/clear to
send (RTS/CTS) handshake that many MAC protocols use to mitigate the hidden node
problem. 102, 103

Cluster Head (CH) Nodes in WSN carrying out special functions such as aggregation of data
within clusters and inter-cluster communication. 7�9, 13, 28, 32, 34, 37, 86, 92, 93, 100,
101, 104, 140

Common Criteria (CC) The Common Criteria for Information Technology Security Evalu-
ation (abbreviated as Common Criteria or CC) is an international standard (ISO/IEC
15408) for computer security certi�cation. 44

Complementary Metal-Oxide Semiconductor (CMOS) A technology for constructing in-
tegrated circuits using complementary transistor arrangements for low static power con-
sumption. 53

Complex Instruction Set Computer (CISC) An instruction set architecture in which each
instruction can execute several low-level operations in a single instruction. 53

Controller Area Network (CAN) A vehicle bus standard designed to allow microcontrollers
and devices to communicate with each other within a vehicle without a host computer.
113

Coordinated Universal Time (UTC) A universal time standard that tracks mean solar time
on Earth. 36

Cyclic Redundancy Check (CRC) A hash function designed to detect accidental changes to
raw computer data, and is commonly used in digital networks and storage devices such
as hard disk drives. 113

Debug Support Unit (DSU) The Debug Support Unit (DSU) is an in-circuit emulator (ICE),
a hardware device used to debug the software of an embedded system. It was historically
in the form of bond-out processor which has many internal signals brought out for
the purpose of debugging. These signals provided information about the state of the
processor. 50

Denial of Service (DoS) A class of attacks on a network that is designed to make network
services or resources unavailable. 16, 18, 21, 23, 27, 32, 94, 104

Di�erential Electromagnetic Analysis (DEMA) Di�erential electromagnetic analysis is a
more advanced form of electromagnetic analysis which can allow an attacker to compute
the intermediate values within cryptographic computations by statistically analyzing
data collected from multiple cryptographic operations. 56

Di�erential Power Analysis (DPA) Di�erential power analysis (DPA) is a more advanced
form of power analysis which can allow an attacker to compute the intermediate val-
ues within cryptographic computations by statistically analyzing data collected from
multiple cryptographic operations. 56

Digital Encryption Standard (DES) The Digital Encryption Standard (DES) is an (out-
dated) encryption standard. 53, 55, 56, 60

Digital Rights Management (DRM) A generic term for access control technologies that can
be used by hardware manufacturers, publishers, copyright holders and individuals to
impose limitations on the usage of digital content and devices. 43

Digital Signal Processor (DSP) A processor that is optimized for digital signal processing.
32, 40, 44, 62

Digital Signature Algorithm (DSA) The Digital Signature Algorithm (DSA) is a signature
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standard recommended by the National Institute of Standards and Technology (NIST).
55

Direct Memory Access (DMA) A technology that allows devices to get direct access to
computer memory, reducing CPU usage and thus increasing data throughput. 53, 54

Direct Sequence Spread Spectrum (DSSS)Method of transmitting radio signals. The data
being transmitted is multiplied by a "noise" signal. This noise signal is a pseudorandom
sequence of 1 and -1 values, at a frequency much higher than that of the original signal,
thereby spreading the energy of the original signal into a much wider band. This noise-
like signal can be used to exactly reconstruct the original data at the receiving end, by
multiplying it by the same pseudorandom sequence. 21

Dynamic Window Secured Implicit Geographic Forwarding (DWSIGF) . 33, 102, 103,
139, 140

Electrically Erasable Programmable Read-Only Memory (EEPROM) A type of non-
volatile memory used in computers and other electronic devices to store small amounts
of data that must be saved when power is removed, e.g., calibration tables or device
con�guration. 19, 42, 53, 55, 56, 61

Electronic Code Book (ECB) A method of using block ciphers to encrypt data that is longer
than the block length of the cipher. 58

Elliptic Curve Cryptography (ECC) A class of public key cryptography algorithms based
on point-multiplication. 13, 32, 43, 55, 57, 58, 72, 87, 91, 138, 139

Ephemeral Di�e-Hellman (EDH) A Di�e-Hellman (DH) key exchange using ephemeral DH
keys for both involved parties. 86

Federal Information Processing Standards (FIPS) Federal Information Processing Stan-
dards (FIPS) are publicly announced standards developed by the United States federal
government for use by all non-military government agencies and by government contrac-
tors. 44

Field-Programmable Gate Array (FPGA) A �eld-programmable gate array (FPGA) is an
integrated circuit designed to be con�gured by the customer or designer after manufac-
turing. 49, 53

File Transfer Protocol (FTP) A standard network protocol used to copy a �le from one host
to another over a TCP-based network, such as the Internet. 113

�oating-Point Unit (FPU) A �oating-point unit is a part of a computer system specially
designed to carry out operations on �oating point numbers. 49, 52

Frequency-Hopping Spread Spectrum (FHSS) Method of transmitting radio signals by
rapidly switching a carrier among many frequency channels, using a pseudorandom se-
quence known to both transmitter and receiver. 21

Full Function Device (FFD) Wireless sensor node with ability to forward messages via net-
work. 8

General Purpose Input/Output (GPIO) An interface available on some devices. A micro-
processor, microcontroller or interface device may have one or more GPIO connections
to interface with external devices and peripherals. 41

Global System for Mobile communications (GSM) GSM (Global System for Mobile Com-
munications: originally from Groupe SpÃ c©cial Mobile) is the most popular standard
for mobile telephony systems in the world. 55

GNU General Public Licence (GPL) The GNU General Public License (GNU GPL or
simply GPL) is a widely used free software license. 51

GNU Lesser General Public Licence (LGPL) The GNU Lesser General Public License
(formerly the GNU Library General Public License) or LGPL is a free software license
published by the Free Software Foundation (FSF). 48
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Greedy Perimeter Stateless Routing (GPSR) Geographic routing algorithm for wireless
sensor networks. 33

Hardware Abstraction Layer (HAL) An abstraction layer, implemented in software, between
the physical hardware of a computer and the software that runs on that computer. 112�
115, 117, 118

Harvard architecture (Harvard architecture) Features physically separate storage for in-
structions and data. 20

Heterogeneous Wireless Sensor Network (HSN) Wireless sensor networks with heteroge-
neous hardware. 33, 34, 100

Identity-based Encryption (IBE) An asymmetric encryption scheme where an arbitrary text
string can be used as public key. 32

Implicit Geographic Forwarding (IGF) . 33
Instruction Set Architectures (ISA) An instruction set is a list of all the instructions, and

all their variations, that a processor (or in the case of a virtual machine, an interpreter)
can execute. 44

Integrated Circuit (IC) In electronics, an integrated circuit (also known as IC, microcircuit,
microchip, silicon chip, or chip) is a miniaturized electronic circuit (consisting mainly of
semiconductor devices, as well as passive components) that has been manufactured in
the surface of a thin substrate of semiconductor material. 142

Inter-Integrated Circuit (I2C) Also called I2C, a multi-master serial computer bus invented
by Philips that is used to attach low-speed peripherals to a motherboard, embedded
system, or cellphone. 41, 53, 59, 112, 148

Intrusion Detection System (IDS) An agent designed to detect malicious presence and, if
possible, react appropriately to prevent the intruder from accessing or damaging the
system. 25, 28, 38, 39

INtrusion-tolerant routing protocol for wireless SEnsor NetworkS (INSENS) . 34,
103, 104, 139, 140

Joint Test Action Group (JTAG) A standard for testing and debugging of electronic devices,
published as IEEE standard 1149.1. 53

Key Distribution Center (KDC) A trusted party that securely generates and distributes
keys to other systems. 87, 89

Lightweight MAC (LMAC) An energy-e�cient lightweight medium access protocol for wire-
less sensor networks. 21

Localized Encryption and Authentication Protocol (LEAP) A key distribution protocol
for WSN that supports link- and cluster-keys and allows for later extensions of the
network with additional nodes. 87, 88

Mean Time Between Failures (MTMF) The arithmetic mean (average) time between fail-
ures of a system. 41

Media Access Control (MAC) The Media Access Control (MAC) data communication pro-
tocol sub-layer, also known as the Medium Access Control, is a sublayer of the Data
Link Layer speci�ed in the seven-layer OSI model (layer 2). 21, 22, 37, 49, 50

Memory Management Unit (MMU) A memory management unit, sometimes called paged
memory management unit (PMMU), is a computer hardware component responsible for
handling accesses to memory requested by the central processing unit (CPU). 50, 52,
109, 121, 130

Message Authentication Code (MAC) A cryptographic primitive that provides message au-
thentication. Typically implemented as a Hash-MAC, where the message concatenated
with a secret authentication key are fed to a cryptographically secure hash function to
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generate an authentication token for the respective message called MAC or tag.. 34,
92�94, 104, 138

Million Instructions Per Second (MIPS) A well-known measure for the speed for a CPU.
51, 53, 55, 57, 59

MultiMediaCard (MMC) A �ash memory memory card standard. 113

Nested Vectored Interrupt Controller (NVIC) An interrupt controller of ARM embedded
Cortex processors. 47, 48

One-Time Programmable (OTP) One-time programmable, a type of programmable read-
only memory (PROM) in electronics. 56

Peripheral Component Interconnect (PCI) Conventional PCI (part of the PCI Local Bus
standard and often shortened to PCI) is a computer bus for attaching hardware devices
in a computer. 49, 50

Personal Digital Assistant (PDA) Mobile device typically used to organize a person's life
by taking notes, holding contacts, and connecting to the Internet. It is also known as a
palmtop computer. 13

Physically Unclonable Function (PUF) A function that can not be cloned physically. 13,
28, 90, 96, 98

Programmable Read-Only Memory (PROM) A form of digital memory where the setting
of each bit is locked by a fuse or antifuse. Such PROMs are used to store programs
permanently. The key di�erence from a strict ROM is that the programming is applied
after the device is constructed. 50, 61

Pseudo-Random Function (PRF) An idealized cryptographic primitive that deterministi-
cally maps any input to an output string of �xed length, such that it is arbitrary hard
to �nd collisions, i.e., inputs that result in the same output. 30

Pseudo-Random Number Generator (PRNG)A pseudorandom number generator (PRNG)
is an algorithm for generating a sequence of numbers that approximates the properties
of random numbers. 13, 57, 58

Public Key Cryptography (PKC) Cryptographic methods to transform messages using
asymmetric key algorithms. 102, 103

Random Access Memory (RAM) Random-access memory is a form of computer data stor-
age. 50, 55, 57, 58, 61, 62, 68, 112, 126, 133, 134

Random Number Generator (RNG) A computational or physical device designed to gen-
erate a squence of numbers or symbols that lack any pattern, i.e. appear random. 55,
56

Read-Only Memory (ROM) Read-only memory is a class of storage media used in computers
and other electronic devices. 56, 61

Real-Time Clock (RTC) A real-time clock (RTC) is a computer clock (most often in the form
of an integrated circuit) that keeps track of the current time. 53�55

Reduced Function Device (RFD) Wireless sensor node without ability to forward messages
via network, such nodes typically take measurements. 8, 9

Reduced Instruction Set Computer (RISC) A CPU design strategy based on the insight
that simpli�ed instructions can provide higher performance if this simplicity enables
much faster execution of each instruction. 48, 53, 56, 58

Request-to-Send (RTS) Request-to-Send message is a part of the two-way request-to-send/clear
to send (RTS/CTS) handshake that many MAC protocols use to mitigate the hidden
node problem. 102, 103, 139

Resilient Geographic Routing (RGR) . 33, 102, 103
Resource Oriented Security Solution (ROSS) A framework to protect a network layer of

heterogeneous sensor networks from attacks. 34, 100
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Scalable Processor Architecture (SPARC) SPARC (from Scalable Processor Architecture)
is a RISC instruction set architecture (ISA) developed by Sun Microsystems and intro-
duced in 1986. 49�53, 67

Secure Aggregation Protocol for Cluster-Based (SAPC) A Secure Aggregation Protocol
for Cluster-Based Wireless Sensor Networks. 93, 103, 139

Secure Con�guration Register (SCR) A register of a CPU with ARM TrustZone. This
register and its �NS bit� directly represent if the SCR corresponds to the secure or
non-secure virtual processor. 46

Secure Digital Input Output (SDIO) Secure Digital (SD) is a non-volatile memory card
format developed by Matsushita, SanDisk, and Toshiba for use in portable devices. An
SDIO card is a combination of an SD card and an I/O device. 41

Secure Groupwise Synchronization (SGS) A group-wise time synchronization protocol. 37
Secure Hash Algorithm-1 (SHA1) In cryptography, SHA-1 is a cryptographic hash function

designed by the National Security Agency (NSA) and published by the National Institute
of Standards and Technology (NIST) as a U.S. Federal Information Processing Standard.
43, 57, 58, 62�64, 67, 69, 71, 72, 82

Secure Implicit Geographic Forwarding (SIGF) . 33
Secure Pairwise Synchronisation (SPS) A pair-wise time synchronization protocol. 36, 37,

104, 105
Secure SPIN (S-SPIN) Secure counterpart of the SPIN protocol. 34
Secure Transitive Multi-hop Synchronization (STM) A multi-hop time synchronization

protocol. 37, 104
Sensor MAC (S-MAC) . 21, 22
Sensor Protocols for Information via Negotiation (SPIN) A family of adaptive protocols

for sensor networks with �at topology. 34
Serial Peripheral Interface Bus (SPI) A synchronous serial data link standard named by

Motorola that operates in full duplex mode. 41, 59, 112
Simple Electromagnetic Analysis (SEMA) Simple electromagnetic analysis involves visu-

ally interpreting electromagnetic traces, or graphs of electrical activity over time. 56
Simple Network Time Protocol (SNTP) A protocol for synchronizing the clocks of computer

systems over packet-switched, variable-latency data networks. 113
Simple Power Analysis (SPA) Simple power analysis (SPA) involves visually interpreting

power traces, or graphs of electrical activity over time. 56
Single Event Upset (SEU) A single event upset (SEU) is a change of state caused by ions or

electro-magnetic radiation striking a sensitive node in a micro-electronic device, such as
in a microprocessor, semiconductor memory, or power transistors. 49

Single instruction multiple data (SIMD) Single instruction, multiple data (SIMD), is a
class of parallel computers in Flynn's taxonomy. It describes computers with multiple
processing elements that perform the same operation on multiple data simultaneously.
45

Small Node (SN) Sensor network node with very little computational performance and energy
reserves. 13, 41, 46, 47, 53, 60, 86, 87, 89�93, 95, 96, 100�102, 104, 105, 137�140

Static Random Access Memory (SRAM) Static RAM, RAM that does not need periodic
refresh like Dynamic RAM. 19, 41, 50, 53, 54, 61, 69

Subscriber Identity Module (SIM) A subscriber identity module (SIM) on a removable SIM
card securely stores the service-subscriber key (IMSI) used to identify a subscriber on
mobile telephony devices (such as mobile phones and computers). 55

successive approximation ADC (SARADC) A type of analog-to-digital converter that
converts a continuous analog waveform into a discrete digital representation via a binary
search through all possible quantization levels before �nally converging upon a digital
output for each conversion. 59

Synchronous Dynamic Random Access Memory (SDRAM) Synchronous dynamic ran-
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dom access memory (SDRAM) is dynamic random access memory (DRAM) that has a
synchronous interface. 41, 50, 61

Synchronous Multiprocessing (SMP) A concept for multiple-CPU computing where all
CPUs run identical hardware. 51, 52, 112, 114, 116, 129

System Management Bus (SMB) The System Management Bus (abbreviated to SMBus or
SMB) is a single-ended simple two-wire bus for the purpose of lightweight communica-
tion. 53

Timeout MAC (T-MAC) . 22
Tiny Lightweight Underlay Ad hoc Routing protocol (tinyLUNAR) A routing protocol

for wireless sensor networks which supports multiple communication paradigms at the
same time: Data-centric, geographic-based and address-centric. 34

Total cost of ownership (TCO) A �nancial estimate whose purpose is to help consumers and
enterprise managers determine direct and indirect costs of a product or system. 111

Translation Look-aside Bu�er (TLB) A translation lookaside bu�er (TLB) is a CPU cache
that memory management hardware uses to improve virtual address translation speed.
It was the �rst cache introduced in processors. 50

Trusted Computing Group (TCG) An International standards group focusing on the spec-
i�cation and promotion of Trusted Computing standards. 35

Trusted Platform Module (TPM) A hardware device, protected against manipulation and
designated for opt-in usage, providing protected capabilities and shielded locations. The
TPM is a passive component and contains engines for random number generation, cal-
culation of hash values and RSA key generation. A TPM generates and stores keys,
signs or binds data to the platform and measures the platform's current state. 35, 42,
43, 96

Trusted Sensor Node (TSN) A sensor node based on the Leon2-Architecture, enhanced with
additional cryptographic hardware like AES, ECC and SHA1. 45

Two Wire Interface (TWI) TWI-Bus or Two Wire Interface, a variant of Inter-Integrated
Circuit (I2C). 53

Two-Tier Secure Routing (TTSR) A secure protocol for heterogeneous wireless sensor net-
works. 34, 100

Universal Asynchronous Receiver/Transmitter (UART) A type of "asynchronous re-
ceiver/transmitter", a piece of computer hardware that translates data between parallel
and serial forms. 41, 49, 50, 53, 59

Universal Serial Bus (USB) A serial bus standard to connect devices to a host computer. .
41, 113

Very-high-speed integrated circuits Hardware Description Language (VHDL) VHDL
is a hardware description language used in electronic design automation to describe
digital and mixed-signal systems such as �eld-programmable gate arrays and integrated
circuits. 48, 49, 72

Virtual Local Area Network (VLAN) A group of hosts with a common set of requirements
that communicate as if they were attached to the same broadcast domain, regardless of
their physical location. 42

Von Neumann architecture (VNA) Features a single physical storage structure for storing
both code instructions and data. 20

Wake-up Interrupt Controller (WIC) An interrupt controller of ARM embedded Cortex
processors, providing interrupt detection logic while the processor is in sleep mode. 47,
48

Wireless Local Area Network (WLAN) A wireless local area network (WLAN) links devices
via a wireless distribution method (typically spread-spectrum or OFDM) and usually
provides a connection through an access point to the wider Internet. 41
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Wireless Sensor Network (WSN) Wireless network build up from a set of sensor nodes.
Typically with random physical topology. 5�8, 10, 12�16, 18�25, 27�39, 41�44, 47, 48,
50, 51, 53, 55, 57, 58, 60�63, 86, 89, 92�94, 96, 97, 100, 103, 105, 106, 110, 111, 120,
123, 125, 132, 133

ZigBee (ZigBee) A speci�cation for a suite of high level communication protocols based on
the IEEE 802.15.4 standard for wireless personal area networks. 26
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