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1. MOTIVATION & INTRO

The goal of the PrivateAl Collaborative Research Institute https: //www.private-ai.org is
to push the state of the art on decentralized and privacy-preserving machine learning.
This mission is inspired by our belief that data is everywhere and that centralizing this
data is often neither feasible nor desirable.

The majority of applications as well as a vast body of research today focus on
centralized and batched machine learning (ML): Training data is collected, cleansed,
and associated with labels. The resulting labeled training data are then used to train a
model that is distributed and used for inference by clients.

We believe that this centralized approach to machine learning will be comple-
mented by a wider range of decentralized models of machine learning. The overarch-
ing question we try to answer is "How can we securely and efficiently derive insights
out of decentralized data while preserving the privacy of individuals?"

Federated machine learning is a first step on this trajectory: A central aggrega-
tor collects, aggregates, and redistributes models that resulted from local training by
clients.

1.1 Outline and Research Clusters

The PrivateAl Collaborative Research Institute has two main goals. The first is to
conduct basic and applied research on security and privacy of machine learning with a
focus on decentralized machine learning. The second goal is to conduct applied
research in collaboration with the industry sponsors that renders this research practi-
cally usable for a wide range of application scenarios. Our scope is detailed in Section
2. We push the state of the art in multiple research clusters.

Research on Machine Learning
Rlgorithms (Section 3)

Security and privacy-enhanced algo-
rithms for decentralized machine learn-
ing.

This cluster includes multiple
topologies like federated or decentral-
ized training, security and privacy of data
or model handling, helper algorithms
like private consultation or knowledge
transfer, or tools for core privacy and
security of machine learning which also
includes randomization with privacy
accounting to achieve differential priva-
cy or watermarking to trace stolen
models.

Research on Tools and Accelerators
(Section 4)

Hardware and software to support secu-
rity and privacy enhanced execution of
those algorithms.

This cluster includes hardware
extensions such as Trusted Execution
Environments (TEE) or specific accelera-
tors, including FPGA, to support classes
of algorithms. It also includes cryp-
tographic primitives and protocols such
as Multi-Party Computation (MPC) and
Homomorphic Encryption (HE) that can
strengthen the security and privacy of
the executed algorithms. This also
inludes algorithms for detecting and
mitigating Byzantine behaviors (includ-
ing malicious nodes) during training. For
data cleansing, privacy preserving proto-
cols such as private vector linkage or
private set intersection may be explored.

Research on Validation and
Deployment (Section 5)

Applications that are used to showcase
and validate the algorithms and plat-
forms will drive new requirements and
allow us to demonstrate the benefits of
the developed technologies.

We envision the following impacts that
will be generated by the the developed
technologies.

We envision the following impacts that
will be generated by the
PrivateAl Institute:

Security and Privacy for Machine
Learning

Ourresearch will push the state of the art
in algorithms, run-times, applications
and tooling. Due to the collaboration
with industry, researchers are enabled to
explore new relevant usage scenarios
and requirements and are also able to
validate their research in practical
deployments.

Deploy and Validate key Research
Results

Practitioners will be enabled to deploy
decentralized machine learning with
appropriate security and privacy guaran-
tees. While today, many piecemeal
results exist, it is hard to find the best
technology for a given scenario. One goal
is to provide a toolkit and guidance that
allows practitioners to find and deploy
the best solution based on given param-
eters such as topology, ML architectures,
security and privacy requirements, and
the acceptable trust into the parties and
technologies involved.

At this stage we would like to
stress that the ability to compute on
encrypted data in general and for ML in
particular could provide certain security
gurantees that statisfy the securtiy and
privacy requirement of mistrusting
stakeholders involved in real-world
application scenarios. However, today
such solutions have prohibitive perfor-
mance penalties. As a consequence,
there is no one-size-fits all solution.
Instead, solutions are crafted to fit the
specific trust relations and regulatory
requirements. Furthermore, in addition
to technology advances, investments in
policies and regulation, standardization,
and adoption in educational paths will
be required.




In the following, we will introduce the
conceptual framework used to discuss
machine learning tasks and define the
adversarial setting and security and privacy
objectives that we plan to address in our
research.

2.1 Life cycle framework
of Machine Learning
tasks

Machine learning can be structured into
multiple consecutive phases as parts of a
life-cycle. The overall goal of machine learn-
ing is to to make inferences on new data
that were not used during the training
phase. For this report, we structure machine
learning into following phases (see Figure 1)
where each phase poses their own specific
security and privacy challenges:

Data Acquisition

Before being able to train a model, training
data along with possible corresponding
labels need to be acquired. This may
include extraction of data from databases or
from real-world observations with a poten-
tial automated or manual labeling of
acquired data. Examples of challenges are
related to privacy-friendly data extraction,
data masking, data anonymization, or elimi-
nation of maliciously modified input data
samples.

Local training

Local training denotes the process of com-
puting a model from training data and
possible associated data labels. A privacy
goal of the training step is to prevent recov-
ery of privacy-sensitive information from
the resulting model.

Collaboration and Federation

To improve model quality, multiple players -
each with their local model may collaborate
to enhance their local models or construct a
global model by aggregating local models.
In this phase, sensitive data that may be
contained in a local model should not leak
to other untrusted entities. Similarly, indi-
vidual bad players should not be able to
misuse the collaboration to corrupt the
models of others.

Inference

During this phase, local or global models are
used for inference by feeding new data to
the models. Inference may be collaborative
(similar to medical consultations). A privacy
concern here is how to guarantee proper
protection of identifiable information
contained in the training data. A confidenti-
ality concern is how the input data used for
inference is protected and how to prevent
leakage of the used model to unauthorized
parties.

Forensics

The final stage in the machine learning life
cycle is to conduct forensics to identify bad
players or detect and recover from attacks.
An important goal is model attribution, i.e.,
the ability to identify the original creator of
a potentially stolen model.

While our research agenda is struc-
tured along this life cycle, some technolo-
gies span multiple phases. For example, to
enable forensics, the corresponding tech-
nologies need to be deployed during train-
ing and/or inference. In addition to the
specific phases of the machine learning life
cycle, also the topology of the used learning
architecture has an impact on security and
privacy requirements and challenges. In the

following, we provide an overview of these typical topologies.

2.2 Topologies for Machine Learning

On an abstract level, especially in settings in which data acquisition, training and inference are
performed by a single entity, the machine learning process can be seen as a relatively straight-
forward pipeline in which all steps including data acquisition, training and inference take
place locally. However, in practice, especially when several different players (subsequently
referred to as clients) are involved in the machine learning process, the training of models can
be arranged in a number of different ways. In the following we discuss the main characteristics
of and differences between centralized, federated and decentralized training topologies.

2.2.1 Centralized Training

In a centralized training topology, as shown in Fig. 2a, a number of participating entities
(clients) collaborate to aggregate a joint global model. The training of this global model is
performed by a central entity to which all participating clients submit their local training data-
sets. The central entity merges the individual local training datasets and uses them to train the
global model.

While being simple and straightforward to implement, the centralized training model
has the drawback that it is entirely dependent on a trusted third party acting as the central
entity. The central entity has full visibility to all training data of clients and is therefore a criti-
cal central point of failure. Unless a very strong trust relationship exists between the central
entity and the client the client may be unwilling to share its entire training data with the
central entity. In addition, the centralized model has the drawback that it places high compu-
tational and communication overhead on the central entity, if the size of training datasets and
number of clients is high. Last but not least centralized solutions are typically single point of
failure.

This is one of the reasons why alternative training models have emerged. In particular,
the federated learning model provides benéefits, as it allows to reduce the communication and
computational burden on the central entity and provides advantages with regards to the
privacy of training datasets.

2.2.2 Federated Training

In a Federated Learning (FL) [127, 167] architecture the task of training is federated among a
number of nodes as shown in Fig. 2b. Each participating client trains a local model based on
their own (private) training dataset and shares only the trained local model with the central
entity, who aggregates the clients’ local models using an appropriate aggregation algorithm.
Federated learning has numerous advantages in many usage scenarios. Since the training task
is distributed to individual participating clients, the raw data of clients do not need to be
shared with the central entity nor other clients, thereby providing better privacy for clients’
local datasets. On the other hand, all participating clients can still mutually benefit from the
models of others. This is particularly beneficial in settings like, e.g., loT networks, where the
training datasets of individual clients may be relatively small, as IoT devices do often not
generate much data to train models on. This would make the training of accurate models
based only on individual local datasets very challenging due to the lack of sufficient training
data points.

The federated learning architecture can be organized in a number of different training
set-ups. Kairouz et al. [94] distinguish three different types of centrally-coordinated federated
training set-ups:
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Figure 1: Research Clusters of the PrivateAl Institute

Cross-device

A very large number of devices (e.g. mobile phones) come online
infrequently, train locally and a central entity aggregates model
inputs and distributes updates to the clients. Training data are held
locally by clients.

Cross-silo

A small number of larger organizations (’silos’) that are usually
online (e.g., hospitals) collaborate in training a joint model without
sharing their raw training datasets.

Datacenter-internal
A large dataset under the control of a single organisation is parti-
tioned in order to distribute training workloads among multiple
servers that process the data. Data and models can be moved freely
within the datacenter.

2.2.3 Fully Decentralized / Peer to Peer Training

Federated learning fits well to a setting where the central entity is
trusted by clients. While the federated learning process maintains
confidentiality in the sense that it does not disclose the training
datasets of clients in the clear, the sharing of model parameters,
gradients, or outputs in form of logits or predictions, may enable a
curious central entity to infer potentially sensitive information
about the datasets that clients have used to train their local models.
In scenarios in which the privacy of training data needs to be
preserved also against a curious central entity, a fully decentralized
training topology as shown in Fig. 2c may be preferable.




(a) Centralized Learning

Local Dataset Model Training

(b) Federated Learning

ML Model Model aggregation

Figure 2: Topologies for machine learning

Our research agenda is targeted at solving
prominent security and privacy challenges
that exist in the machine learning settings
outlined above. In the following we provide
an overview over potential threats seeking
to compromise the privacy of training data,
the conficentiality of obtained ML models,
as well as the integrity of models and
reasoning outcome. We also outline the
research problems that need to be resolved
in order to mitigate these threats.
Trustworthy machine learning needs to
satisfy various security and privacy require-
ments. Confidentiality aims to guarantee
non-disclosure of sensitive information to
unauthorized entities. Privacy aims to
guarantee proper protection of sensitive
(e.g., personally identifiable) information,
against inference attacks. Integrity aims to
prevent unauthorized modification of data
and models.

While these requirements are hard
to guarantee for centralized machine learn-
ing, protecting them in a decentralized
setting is even harder since many nodes
collaborate and some of these nodes may
be malicious.

In particular for privacy and confidentiality,
achieving guarantees among mutually
distrusting players is an open challenge

due to the conflicting interests of the stake-
holders [10, 29, 31]: In the case of inference
the data owner wants to query a model with-
out revealing data. The model owner may be
a tenant of the infrastructure owner, and
aims to serve as many queries as possible by
reducing the risk of data owner’s data leak-
age and itsown model IP leakage. In the case
of distributed learning, data owners host
their data onto tenant instances the tenant
accumulates a host of third party data for
which reducing the risk carried by data
breaches is paramount. The future model
owners want to learn from the siloed data
without looking into the data.

2.3.1 Privacy of Training Data

Federated and decentralized learning
enables multiple parties to leverage useful
information from each others’ datasets with-
out actually sharing their data with others.
However, as discussed above, model param-
eters and gradients (that are computed on
the private datasets) can indirectly leak
information about each party’s dataset. In
particular, sharing model parameters
enables a curious aggregator or a participant
to infer sensitive information about the indi-
vidual data records in the private training
sets of other parties. Major inference attacks

(c) Decentralized / Peer-to-peer Learning

include membership inference attacks [139,
168] (determine if a given data point is part
of the training set of a model) and attribute
inference attacks [130] (infer features of the
training data, or statistical information
about them). What makes federated learn-
ing more susceptible to such attacks, com-
pared with centralized training, is that the
adversary observes multiple copies of the
target’s high-dimensional model through-
out the training. The adversary can further
increase this leakage by actively sharing
model parameters that force local gradient
descent algorithms to react to the presence
of particular data points in their training
sets [139]. The attacks pose high risks on the
effective privacy of federated and similar
decentralized learning architectures.

2.3.2 Confidentiality of Models
Federated learning does not necessarily
ensure the confidentiality of the resulting
model. This motivates the search for new
approaches that will provide guarantees of
model confidentiality with different model
ownership arrangements. This requires
model protection across the whole life-cy-
cle from data acquisition to traitor tracing.
The question arises what level of confidenti-
ality protection is required is based on an
ownership model and terms of usage that
correspond to the specific usage scenario:

In the federated learning setting, all
participating organizations need to agree
on an appropriate ownership rights before
implementing federated learning and incor-
porate this into contractual arrangements;
matters to be agreed include how and when
the resulting model can be used, and any
restrictions on distributing the model to
third parties. In peer-to-peer training, there
is no central entity to coordinate agreement
on model ownership, making it difficult to
define the obligations of all the partici-
pants.

Having defined the obligations of
the participants in a federated learning
system, it is necessary to ensure compli-
ance. This can occur in several ways:



This implies the challenge to design a secure aggregation process that is resilient against
attacks in which individual training datasets or local models are manipulated by the adver-
sary. This is a problem that is inherent to the distributed nature of any collaborative
machine learning approaches. Since the set-up typically comprises independent clients
over which other entities do not have direct control over, the contributions of individual
clients participating in the ML process may be influenced by an adversary in an effort to

manipulate the process to its advantage.

Data poisoning

A number of different attack scenarios are possible:

In this attack type, the adversary is able to manipulate the data that one or more
clients use for training their local ML models. For performing this attack, the adver-
sary does not necessarily need to compromise any of the clients, it is sufficient if it
is able to inject manipulated data into the training datasets of benign clients.

Model poisoning
In model poisoning, the adversary seeks to
corrupt the models provided by individual
clients to the collaborative learning
process. Model poisoning can be achieved
by performing data poisoning on the train-
ing dataset, but also other manipulations
are possible, if the adversary is able to com-
promise individual clients. It can then
directly influence the training process or
modify the local model after training. The
adversary can, e.g., modify learning rates,
number of epochs used in training, or, scale
the resulting models in order to optimize
their impact on the result of the collabora-
tive training process to achieve the attack-
er’s goals. A number of aggregation algo-
rithms for federated model aggregation
have been proposed. It has been shown
that the most widely used federated aver-
aging algorithm Federated Averaging (Fed-
Avg) is vulnerable to model poisoning
attacks by which an adversary can, by
suitably scaling the models it submits for
aggregation, effectively introduce mali-
cious functionality into the global model

produced as a result of the aggregation
[16].

Also the motivations and goals of an
adversary performing attacks against the
integrity of data and models can be diverse
and thus target very different outcomes. At
least following attack types can be identi-
fied:

Backdoor attack

In a backdoor attack the adversary seeks to
’hide’ a specific functionality, a backdoor
into the model resulting from the collabora-
tive training process. Typically the adver-
sary seeks to manipulate the model in a
way that it will generate incorrect predic-
tions for a specific set of inputs, the
so-called trigger set. In many cases it seeks
to achieve this in a way that does not
impact the performance of the resulting
model for other inputs in order to make it
for others difficult to notice that the model
has been maliciously modified by the
adversary.

10

Model sabotage

Another motivation for the adversary may
be to influence the performance of the
resulting model in a way that is advanta-
geous for the adversary. A straight-forward
goal would be, e.g., to modify the model in
a way that deteriorates its overall perfor-
mance, thereby reducing its utility. But also
other scenarios are possible, it could be,
e.g., that the adversary would seek to dete-
riorate the performance of the model for
the input data of specific other clients. This
requires that the adversary has sufficient
knowledge about the properties of the
input data of other clients. However, in a
competitive setting between the clients,
this would allow the adversary to gain a

performative advantage over the targeted
other clients.

Various backdoor detection techniques
have been developed in local settings [38,
87, 186, 197]. These methods allow the
defender to inspect whether a pre-trained
model has been backdoored during the
training phase [38, 186, 197], or identify
backdoor trigger for the victim model in
real-time [87]. National Institute of Stan-
dards and Technology (NIST) has lunched a
comptetition on backdoor dection to
ensure safe model deployment [143]. To
ensure model integirty in the federated
setting, researchers design backdoor detec-
tion methods that recognize malicious
model updates from local clients [60, 141].

11



Developping scalable and effective inspection techniques to
guarantee data and model integrity in federated training
remains an open challegne.

2.3.4 Integrity of Data and Models during Inference
Machine Learning has not yet reached true human-level robust-
ness in many machine learning tasks, especially in the vision or
audio domain. This is because many models are vulnerable to
so-called adversarial examples [19, 176]. In the broadest sense,
by adversarial perturbations, we define small imperceptible
changes to data input that alter model predictions. These are
e called e-bounded sensitivity-based adversarial examples. The
. existence of adversarial examples makes it difficult to apply the
- ML models in security critical areas, such as self-driving cars or
= fraud detection applications where adversaries may be able to

modify the data that are used for classification.

. 3 RESEARCH ON 2D A TP

ALGORITHMS FOR
.~ SECURITY AND PRIVACY-
. ~ ENHANCED MACHINE N e X o
LEARNING

3.1 Data Collection and
Preparation

centralized computation of differentially
private statistic using trusted hardware,
secure multi-party computation, or private

section. Often these techniques can be
implemented using trusted hardware or
secure multi-party computation.

Before models can be trained and inferences can be made, data
needs to be collected and prepared. This process is much more
(wall clock) time consuming than the CPU intensive training of
models and heavily relies on human intervention. All down
stream process is affected by these first steps. Data cleaning or
data preparation determines the accuracy of an inference much
more than the tuning of machine learning parameters. If data is
collected in a privacy-preserving manner, (post-) processing this
data using machine learning may also be private. Hence, these

aggregation protocols need to be used.

I How can two or more entities
I How can an entity collect data for link their data sets in order to identify
machine learning purposes from a collec-  errors within their data sets in a proto-
tion of users that is scalable and practical  col thatis scalable and practical in com-
in communication and computation,accu-  putation and accurate and privacy-pre-
rate for a given (small) set of users, serving for the entities’ data sets?
privacy-preserving for the users and does
not require the users to trust the data  The third challenge is private data repair.
Once errors or inconsistencies have been

steps are of crucial importance to designing private Al process- collector?
es. identified, they need to be repaired, e.g.,

The first challenge is concerned with the collection of data from
users over the Internet. In private data collection, a large
number of clients each submit a single or few data elements
and the collector needs to obtain private statistics, e.g., heavy
hitters, sums, median, etc. Privacy for statistics usually means
differential privacy (DP). However, the central model of DP is not
applicable to private data collection, since the collector should
be untrusted. Hence, either local differential privacy, the

The second challenge is private data prepa-  missing fields replaced or contradicting data
ration is the use of multiple data sources.  replaced with a unifying entry. This process
For example, hospitals may try to link their  can itself be done using machine learning
databases joining common patients, in  models and may leak information about the
order to better identify patterns in treat-  (faulty) input data. Hence, not only the input
ment. However, these parties may notwant  to the data preparation (and repair) process
to ex-change plaintext data due to legal  must be protected, e.g., using trusted hard-
compliance or concerns about the infer-  ware or secure multi-party computation,




but also the repaired data released for
machine learning purposes. Privacy in this
case usually means differential privacy
again.

How can data for machine learning
purposes be repaired while protecting the
privacy of the users collected in the data
set?

3.2 Local Training

3.2.1 Privacy of Training Data

The two primary methods for providing
differential privacy (DP) of training data
during local training are DP-SGD [6] and
PATE [148, 149]. These are two different
approaches that achieve the same goal.
DP-SGD makes fewer assumptions about
the ML task than PATE and modifies the
training stage while PATE is oblivious to the
architecture of ML models but requires
training of many models and assumes
access to a public dataset.

DP-SGD(Differentially-Private
Stochastic Gradient Descent) modifies the
minibatch stochastic optimization to make
it differentially private. During the model
training, it tracks the access to the parame-
ter gradients, i.e., the gradients of the loss
with respect to each parameter of the
model, and ensures that this access
preserves differential privacy of the training
data. Thus, the resulting trained model, per
the post-processing property of differential
privacy, limits the exposer of private infor-
mation in the training set. By tracking
detailed information of the privacy loss
using the moments accountant, DP-SGD
obtains tight estimates on the overall priva-
cy loss.

While DP-SGD directly modifies the
training mechanism of a single model, PATE
requires training of an ensemble of models
on private data and then injects the DP

noise at the internal inference stage, after
aggregating outputs from the ensemble. A
model called student is trained on the
differentially private predictions made by
the ensemble, and once again, per the
post-processing property of differential
privacy, the student model protects the
privacy of the training set. The student
model that can be exposed via a public API
is the final result of the PATE method. The
models in the ensemble are called teachers
and they are trained independently on
non-overlapping partitions of the training
set. There are no constraints on how the
teachers are trained but they all aim at solv-
ing the same single-label classification task.
Their predictions that are used to train the
student model are made on a publicly avail-
able dataset.

Local training with privacy guaran-
tees incurs a high overhead in software
complexity, training efficiency, and model
quality. An open question is whether the
overhead can be substantially reduced
while maintaining sufficient privacy guar-
antees.

3.3 Federation and
Collaboration during
Training

3.3.1 Collaboration without leaking
local training data

In federated training, the individual nodes
do not transmit original training data to
other nodes. Instead, information about the
models that were created using local train-
ing are exchanged. While this improves
privacy, it still enables indirect information
leakage [139, 167]. This allows membership
and other inference attacks where an
attacker tries to gain unauthorized informa-
tion about training data used. It is still an

open question how to mitigate such attacks:

14

There exist tools, such as the ML Privacy
Meter [138], to quantify the privacy risks of
models in various “white box” settings,
which can be extended to federated learn-
ing. The open questions about how to
protect privacy of the training data are:

« What is the best methodology for an
online analysis of the privacy risks of feder-
ated learning for each participant?

« How can parties share information about
their local models without significantly
leaking information about the individual
data records in their training sets?

« Randomized algorithms can provide prov-
able differential privacy guarantees, how-
ever with a potential loss in model’s accu-
racy. What are utility-preserving algo-
rithms for privacy-preserving federated
learning?

3.3.2 Secure Federated Learning
Recent works demonstrate that keeping
the training data on users’ devices in feder-
ated learning does not provide sufficient
privacy, as their private training data can
be reconstructed by utilizing inference or
inversion attack based on the model
parameters shared by users [59, 63, 139,
200]. The corresponding research chal-
lenge is

Federated learning derives a
global model from local models. Can we
design privacy-preserving aggregation
protocols ensuring that the individual
local models are kept private and nothing
beyond the aggregated global model is
leaked?

To reach this goal, secure aggregation

protocol is proposed in [26] to ensure that
the privacy of individual model parameters
is protected, both from server and other
users. To guarantee privacy, the locally
trained model parameters are masked by
pairwise randomness and sent to the server
such that the server aggregates users’
models in a privacy-preserving manner.
However, the overhead of the secure aggre-
gation protocol has a major bottleneck in
scalability to the larger number of users, as
the communication and computation over-
head is quadratic in the number of users.
This quadratic growth of secure aggregation
overhead limits its practical applications to
hundreads of users while the scale of feder-
ated learning is in the order of tens of
millons [25]. This leads to further challege:

Quadratic overhead of secure aggre-
gation protocol is the main bottleneck in
scaling secure federated learning to a large
number of users. Is quadratic the minimum
overhead for secure aggregation protocol?
How can we achieve a more efficient (e.g.,
sub-linear) secure aggregation overhead?

Another critical challenge in federated learn-
ing is the communication bottleneck, which
is created by sending the model/gradient
from the clients to the server, where the size
of the gradient estimates or model updates
that must be transmitted to the server at
each iteration, can be extremely large, e.g.,
the 50-layer ResNet network has ~26 million
weight parameters. Researchers have
proposed many approaches to provide a
communication-efficient federated learning
system. One of these approaches is to use
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quantization which allows users to itera-
tively send small model updates [11, 101,
164, 175, 187].

It has been shown in [54] that the
state-of-the-art secure aggregation proto-
col require all users to quantize their model
updates to the same level of quantization
to guarantee correct decoding, even if they
have different transmission rates. This
severely degrades their performance due
to lack of adaptation to both the speed of
the available network (3G, 4G, 5G, WiFi)
and the fluctuation of the network quality
over time. Towards that, the authors in [54]
have proposed a segment grouping
approach that allows for secure model
aggregation while using heterogeneous
quantization.

However, the communication cost
in their approach scales quadratically with
the number of users, limiting its practical
application to only hundreds and a few
thousands of user. This brings us to the
following open and challenging problem

I Can we propose a new efficient
protocol that achieve secure model aggre-
gation with heterogeneous quantization
in federated learning while having a
non-quadratic, e.g., sub-linear, communi-
cation complexity?.

Additionally, the decentralized, distributed
and massive-scale of Federated Learning
opens up unknown attack surfaces that are
often hard to quantify in advance, such as
the presence of intermittent adversaries
during training and inference and the
possibility of malicious servers. Prior works
[88] have attempted to quantitatively
model these unknown attack surfaces and
identify new threats to federated learning
environments, but there remain numerous
unsolved problems that must be
addressed. To address this challenge in the
setting of Independent and identically
distributed (IID) data, a number of strate-
gies have been proposed recently. In this
scenario, gradient updates from the benign
clients tend to be distributed around the
true gradient, while the gradient updates

from the adversarial clients can be arbitrary
and are thus handled by applying robust
estimation techniques for aggregating the
client updates [22, 43, 60, 72, 173, 192].

In practice, however, data may not be IID
across clients [199]. This makese attack resil-
iency more challenging since even updates
from benign clients may be very diverse,
thus degrading the performance of prior
Byzantine resilient approaches in IID setting.
To tackle this conundrum, some recent
works such as [41, 80, 110] deal with hetero-
geneous data distribution in federated learn-
ing. Although these schemes achieve better
performance in comparison to the prior
approaches proposed for the IID data setting
in one or more scenarios, the performance
gap from the optimum achievable accuracy
(in the presence of attacks) is quite high. In
[153], the authors propose DiverseFL, which
is the first work that can achieve near opti-
mum accuracy in federated learning when
data is non-1ID. While [153] provides signifi-
cant empirical results for demonstrating the
gains of DiverseFL in practice, theoretical
guarantees are not provided. Furthermore,
DiverseFL requires each client to share a tiny
fraction (up to 3%) of its local dataset with a
trusted entity (such as some patients shar-
ing their health records with the NIH for
social good) to achieve attack resiliency,
which maybe undesirable in some situa-
tions. This brings us to the following open
and challenging problem in robust federated
learning:

B How can we mitigate Model Poison-
ing attacks if the local datasets if the clients
are non-lID, while providing optimum data
privacy and model perfor-mance guaran-
tees?
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Security and privacy considerations of
secure federated learning are mainly
focused around two seemingly separate
directions: 1) protecting the privacy of indi-
vidual models against honest-but-curious
adversaries and 2) ensuring robustness of
the global model against adversarial manip-
ulations such as model or data poisoning.
Achieving them simultaneously, however,
presents a major challenge. As the local
models are protected by random masks, the
server cannot observe the individual user
updates in the clear, which prevents the
server from utilizing outlier detection proto-
cols to protect the model against model
poisoning. This brings us further challenge:

I How can we make federated learn-
ing protocols robust against model poison-
ing while preserving the privacy of individ-
ual models?

3.3.3 Federated Learning ot Scale

Federated Averaging (FedAvG) is the most
basic parallel optimization algorithm in
Federated Learning. Many variants of
FedAvg have been proposed to achieve the
more robust convergence [113, 198], the
faster convergence [32, 34, 133], and the
higher scaling efficiency [124, 161, 174].
Recently, several researchers proved that
the algorithm achieves the linear speedup
with respect to the number of workers in
parallel training under 11D data distribution
[73, 171, 193]. Unfortunately, it has been
shown that FedAvg cannot achieve the
linear speedup if the data distribution is
non-1ID [114]. That is, as FedAvg scales up,
the training converges more slowly. Feder-
ated Learning assumes a large number of
weak compute resources such as mobile

phones. In order to make it more practical,
therefore, the sub-linear speedup issue
should be addressed.

BN How to efficiently scale secure
privacy-preserving ML to hundreds, thou-
sands, or millions of users? How can this
be achieved if the data is non-IID?

FedAvg allows local clients to independent-
ly train their own models and periodically
averages the model parameters across all
the clients. While having less frequent com-
munications, this approach suffers from a
discrepancy of loss function across the
clients making the global model converge
slowly. Especially with non-IID data distri-
bution, such a discrepancy can result in a
significant drop of convergence rate. To
scale up the Federated Learning solutions
to hundreds, thousands, or even millions of
clients, therefore, itis crucial to improve the
convergence rate of FedAvg. One of the
potential solutions is to design different
model averaging methods. Instead of allow-
ing fully independent updates for many
iterations, the clients may synchronize their
states more frequently, making a practical
trade-off between the communication cost
and the convergence rate. Another potential
solution is to adaptively adjust key
hyper-parameters, such as learning rate,
batch size, and model averaging interval, at
run-time based on the local training prog-
ress. Considering the heterogenous data
distribution, the optimal hyper-parameter
settings for each local model would be likely
different across all the clients. Thus, a faster
global loss minimization can be expected by
customizing the hyper-parameters in a local
progress-aware manner.
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3.3.4 Federated Learning on
Resource-Constrained Systems
Scaling up the deep neural network (DNN)
size (e.g., width, depth, etc.) is known to
effectively improve model accuracy. How-
ever, the large model size impedes training
on resource-constrained edge devices. For
instance, federated learning (FL) may place
undue burden on the compute capability of
edge nodes, even though there is a strong
practical need for federated learning due to
its privacy and confidentiality properties.
The challenge we aim to solve is as follows:

I How can compute resources within
datacenters help to reduce the burden for
edge devices?

To address the resource-constrained reality
of edge devices, Federated Group Knowl-
edge transfer (FedGKT) [77], a group knowl-
edge transfer training algorithm is a prom-
ising approach. FedGKT designs a variant of
the alternating minimization approach to
train small personalized CNNs on edge
nodes and periodically transfer their knowl-
edge by knowledge distillation to a large
server-side CNN. FedGKT consolidates
several advantagesinto a single framework:
reduced demand for edge computation,
lower communication bandwidth for large
CNNs, and asynchronous training, all while
maintaining model accuracy comparable to
FedAvg.

3.3.5 Automated Federoted Learning
(AutoFL)

As [94] points out, when training deep
neural networks under the federated learn-

ing setting where the data is non-lID
(non-identical and independent distribu-
tion), using the predefined model architec-
ture may not be the optimal design choice.
Since the data distribution is invisible to
researchers, to find a better model architec-
ture with higher accuracy, developers must
design or choose multiple architectures,
then tune hyperparameters remotely to fit
the scattered data. This process is extreme-
ly expensive because attempting many
rounds of training on edge devices results in
a remarkably higher communication cost
and on-device computational burden than
the data center environment.

I Can model search (AutoML) help us
optimizing the model architectures of
federated learning?

We advocate automating federated learn-
ing (AutoFL) to simplify the aforementioned
model design and remote hyper-parameter
tunning. Especially, Federated Neural Archi-
tecture Search (FedNAS) [76], which auto-
mates the design process of the model
architecture without inefficient manual
attempts, is a promising direction. Inspired
by the efficient optimization algorithm
proposed by MiLeNAS [79], FedNAS can
help scattered workers collaboratively
searching for a better architecture with
higher accuracy. A distributed AutoFL
system with FedNAS algorithm has been
released at FedML [78]. The experiments on
non-lID dataset show that the architecture
searched by FedNAS can outperform the
manually predefined architecture such as
DenseNet and ResNet.
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3.3.6 Personalization

A defining characteristic of federated learning is that the distributed data are likely to be
heterogeneous, i.e., each client may generate data via a distinct data distribution. Moreover,
the client hardware and system heterogenity also bring challenges to achieve an efficient
federated training system. It is therefore natural to consider techniques that provide
personalized models for clients.

I How can we support personalization, i.e. provide local models that are optimized
to the local data distribution?

To enable personalization, a simple approach is to incorporate client-specific features.
These features may be naturally occurring in the data, or may take the form of some auxilia-
ry meta data. However, in lieu of (or in addition to) including such expressive features, it is
also common to consider techniques that provide personalized models for clients. We
discuss several popular techniques (multi-task learning, clustering, fine-tuning, and
meta-learning) below.

Personalized search

The aforementioned FedGKT and Fed-NAS both have the potental to achive this goal. In
FedGKT [77], the personalized model is not necessary to be of the same weights or architec-
ture. In the scope of FedNAS [79], a personalized searching algorithm can further be devel-
oped to generate personalized model architecture for each client.

Multi-task learning

To model the (possibly) varying data distributions, Xt on each client, it is natural to consider
learning a separate model for each client’s local dataset. If we view learning from the local
data on each client (or possibly a group of clients) as a separate task, we can naturally cast
such a problem as an instance of multi-task learning. In multi-task learning, the goal is to
learn models for multiple related tasks simultaneously. (Smith et al) [170] first proposed
learning personalized models in federated settings via a primal-dual multi-task learning
framework, which is applicable to convex objectives. Other multi-task learning formula-
tions used to produce personalized but related models include interpolating between local
and global models [125], regularizing the local models towards their average [55, 74] or
towards some reference point [51], and enforcing hard parameter sharing [8].
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Clustering

Personalization can also be obtained via
device clustering (or data clustering) and
learning a single model for each cluster [65,
125, 160].

Fine-tuning and Meta-learning

Local fine-tuning is a natural approach for
personalization [194]. Meta-learning can be
mostly viewed as a specific form of fine-tun-
ing where it learns a good initialization start-
ing from which the model can quickly adapt
to new tasks (i.e., devices) with potentially
only a small number of samples. Meta-learn-
ing and federated learning are closely related
[97], and some works have also applied
meta-learning for personalized federated
learning [e.g., 35, 58, 91, 109].

3.3.7 Secure Knowledge Transfer

Sharing model parameters is the simplest
way of exchanging information about train-
ing data in federated learning. This approach
has many security and privacy shortcomings,
in addition to having a significant communi-
cation overhead. Model parameters contain a
significant amount of information about the
training data, and sharing them leaks infor-
mation to curious participants and aggrega-
tors. Also, robust aggregation of high-dimen-
sional vectors is a challenging problem. Mali-
cious participants are able to successfully
manipulate the aggregated model by making
small targeted modifications to their model
updates, which remain undetected by robust
aggregation algorithms. A potential solution
to these problems is to make use of different
knowledge transfer algorithms, which are
inherently more privacy-preserving and
robust [33].

BN How to transfer knowledge between
participants with provable guarantees for
privacy and robustness with respect to
adversarial parties?

3.3.8 Decentralized Collaborative Priva-
cy-preserving Machine Learning .

A general federated learning system uses a
central parameter server to coordinate the
large federation of the participating users.
This cetralized topologies (corresponding to
a star graph) often significant bottleneck on
the central server in terms of communication
bandwidth, latency and fault tolerance. To
address this bottleneck, decentralized (serv-
er-less) framework based on secure
multi-party computing (MPC) and homomor-
phic encryption (HE) have been proposed for
privacy-preserving machine learning. These
approaches, however, fall short of addressing
the scalabiltiy of privacy-preserving machine
learning, i.e., their constructions are limited
to three or four parties [135, 136, 185]. This
leads to research challenge:

BN How can multiple data-owners
(beyond 3-4 parties) jointly train a machine
learning model without a central server
while keeping their individual datasets
private from the other parties?
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3.4 Classification/
Inference

3.4.1 Protection against Adversarial
Examples

I How can the phenomenon of adver-
sarial examples be precisely characterized
and what makes attacks using them
successful?

There are many important problems that
remain open in adversarial machine learn-
ing. The first oneis that it is still unclear how
to precisely define adversarial examples.
The certified defenses against the most
widely accepted definition of e-bounded
adversarial examples ensure that within the
€ distance from a given input, the label
remains constant. There is another notion
of adversarial examples that are called the
invariance-based adversarial examples
[178]. They are &€ bounded from the initial
input, however, the real label of the
perturbed input changes within the ¢ ball.
The robust classifier is too constant in its
predictions and incorrectly assigns the
initial label that is no longer correct.

-

Figure 3: Randomized smoothing. The
initial decision boundaries (left) and the
smoothed decision boundaries (right).

The community has not reached a consen-
sus on the question of what causes the
adversarial examples. It is another open
challenge. Multiple contemporaneous lines
of work studied different aspects of this
problem, postulating linearity and
over-parametrization as possible culprits
[19, 69]. One of the intuitive explanations is
that adversarial examples are caused by
small measure regions of adversarial class
jutting into a correct decision region. This
model is commonly accepted because the
inputs remain correctly classified when
perturbed with small random noise (e.g.,
Uniform or Gaussian). However, we can also
easily find the attack vector that moves the
inputs to decision regions where they
become misclassified. This motivates a very
natural defense strategy. The idea is to
smooth the decision regions by adding
Gaussian noise to the input and selecting
the majority class of the classifier over this
noise [46, 104, 108]. The dotted circles in
Figure 3 (left) are the level sets of the Gauss-
ian noise distribution centered at the input
data point. The initial decision boundaries
of the classifier are rough and with many
cones. After the randomized smoothing
procedure, shown in Figure 3 (right), the
boundaries are more regular and the incor-
rect decision boundary lies much further
away from the data point, which makes
finding the adversarial examples impossi-
ble within the certified region. Randomized
smoothingis a provable adversarial defense
that scales to ImageNet.

I How can one construct effective
defenses against adversarial examples
that are robust? Can such defenses be
theoretically validated?

Unfortunately, the provable defenses
against adversarial examples perform
substantially worse in practice than the
best empirical defenses based on adversar-
ial training (approximately 2X lower robust
accuracy). The idea behind adversarial
training is to combine the training process
with the generation of adversarial exam-
ples. For each input, we find an adversarial
example that is then fed into the training
process with the correct label. We use
over-parameterized deep networks for
standard training but these large models do
not have enough learning capacity for
adversarial training. Using the adversarial
examples during training smoothes the
neighborhood of natural data, which
consumes much more model capacity. Con-
sequently, models with higher learning
capacity can be trained with adversarial
examples more effectively and enable more
robust classification. However, we observe
diminishing returns for larger models. Deep
or wide convolutional networks with a
tremendous number of parameters are
prohibitively difficult to optimize. The main
problems in optimization of such networks
are vanishing, exploding, or noisy gradi-
ents, cliffs, plateaus, saddle points, and
other flat regions. The development of new
vision architectures that train more
efficiently on these datasets becomes
increasingly important and more work is
needed in this area. The Vision Transformer
is a preliminary step towards generic, scal-
able architectures that can solve many
vision tasks, hopefully robustly, and proba-
bly tasks from other domains as well [52].
Another solution to the demand
from high learning capacity for adversarial
training is to utilize the capacity judiciously.
This can be done by reweighting the train-
ing data points. The method assigns larger
weights to the adversarial data whose natu-
ral counterparts are closer to the decision
boundary. Analogously, smaller weights are
assigned to adversarial data points that
were found starting from natural points
further away from the decision boundary.

This method was shown to significantly
improve standard adversarial training
[195]. With ever-increasing dataset sizes,
we still need better methods to improve
robustness.

One of the issues with adversarial
training is that it overfits to the specific
attack used during the creation of the
defense. Even worse, using the specific
attack during training can make the models
even more vulnerable to other types of
attacks. To overcome the problem, one
proposal is to train the model on the stron-
gest adversarial example for a given input,
this is called the max strategy [180]. The
caveat is that the max strategy lowers the
accuracy on clean data and further increas-
es the gap between accuracy on clean data
vs robust accuracy. The open question is if
we have to sacrifice the performance for
legitimate users to train robust models.

I How can one ensure that defenses
against adversarial samples have suffi-
cient coverage and can adapt to potential
changes in attack strategies?

The bottom line is that adversarial training
is rather a brute force method and requires
us to train on many possible perturbations
to be robust. In practice, the computational
cost of such a defense is high. It is also diffi-
cult to construct a theoretical model of how
the adversarial examples are crafted [68].
Adversarial examples are solutions to an
optimization problem that, for example, in
the case of neural networks, is non-linear
and non-convex. Thus, it is very hard to
make a theoretical argument that a given
defense will be robust against all possible
attacks. Adversarial examples require
models to produce good outputs for every
possible input. However, the number of
possible inputs is humongous, and usually,
the machine learning models work well on
a small part of all the possible inputs. Final-
ly, current defenses are not adaptive. For
instance, if an adversary detects that a
defense masks gradients then he or she can
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switch from a white-box attack that leverages the gradient to a black-box attack that is a
gradient-free method. Thus, if a given defense closes some vulnerabilities, it usually leaves
others open. An adversary who uses an adaptive attack seems to have the advantage in this
case.

3.4.2 Private inference

The goal of the private inference is to enable two parties to run a neural network inference
without revealing either party’s data. We consider a user who wants to obtain model
outputs for his or her data and a service provider who exposes a model inference service.
The standard non-private inference on machine learning models compromises one party’s
privacy, where either the user sends sensitive inputs for inference, or the service provider
has to send its proprietary machine learning model to the user. Private inference poses two
research questions. The first research question aims to keep the inputs private. One exam-
pleisto use a public classification service to process some medical data while guaranteeing
the privacy of this data:
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I Can an inference service (potentially malicious) efficiently offer its
services to an honest user while guaranteeing privacy of the user’s data?

The second research question aims to protect the model against leakage:

I Can an (honest) inference service efficiently offer its services to a (poten-
tially) malicious set of users while guaranteeing that its proprietary model is not

leaked?

In the context of neural networks, private
inference typically uses homomorphic
encryption (HE) or secure multi-party com-
putation (MPC) methods. Pure homomor-
phic encryption is computationally expen-
sive and does not support common
non-polynomial activation functions, which
leads to the leaking of preactivation values
(feature maps at hidden layers). It can be
partially ameliorated by using linear
approximations, however, this causes a
drop in accuracy (or other performance
metrics of the models). On the other hand,
tools that use solely secure multi-party
computation protocols avoid leaking
pre-activation values as they can guarantee
data confidentiality on non-polynomial
activation functions but may compromise
the security of the model architecture by
leaking activation functions or model struc-
ture (See also 3.5.1). While solutions based
on MPC are less costly in terms of computa-
tional resources, they typically require
much more communication between the
parties. Recent lines of work on private
inference propose hybrid schemes that
integrate different privacy preserving tools
(e.g., several MPC protocols, or MPC and
HE). These hybrid frameworks combine the
benefits of underlying protocols to maxi-
mize performance and reduce costs.

Zhang et. al. [196] provide a survey
of state-of-the-art solutions for private
inference, along with a comprehensive list
of libraries that implement basic HE and

MPC primitives. Specifically, libraries such
as nGraph-HE [24] and CryptoNets [53]
provide pure homo-morphic encryption
solutions to secure neural network infer-
ence. nGraph-HE, an extension of graph
compiler nGraph, allows secure inference of
neural networks through linear computa-
tions at each layer using CKKS homomor-
phic encryption scheme ([24, 44]. Cryp-
toNets similarly provides private inference
using the leveled homomorphic encryption
scheme, YASHE [53]. Several libraries
employ primarily MPC methods that rely on
ABY [50], a tool providing support for
common non-polynomial activation func-
tions in neural networks through the use of
both Yao’s garbled circutis [191] and the
protocol of Goldreich-Micali-Wigderson
(GMW) [67].

Recent secure prediction systems
that use hybrid protocols and do not rely on
trusted third parties are, for instance:
Gazelle [93], MP2ML [23], and Delphi [132].
These systems execute linear computations
(e.g., convolutional or fully-connected
layers) via HE and non-polynomial activa-
tion functions (e.g., ReLU or MaxPool) via
MPC. Gazelle introduced several improve-
ments over previous methods for private
inference largely related to latency and
confidentiality. In particular, the Gazelle
framework provides homo-morphic
encryption libraries with low latency imple-
mentations of algorithms for single instruc-
tion multiple data (SIMD) operations,
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ciphertext permutation, and homomorphic
matrix and convolutional operations, perti-
nent to convolutional neural networks.
Gazelle utilizes kernel methods to evaluate
homomorphic operations for linear compo-
nents of networks, garbled circuits to com-
pute non-linear activation functions confi-
dentially, and additive secret sharing to
quickly switch between these cryptograph-
ic protocols. MP2ML employs nGraph-HE for
homomorphic encryption and ABY frame-
work for evaluation of non-linear functions
using garbled circuits. Delphi improves
Gazelle’s online runtime by moving heavy
cryptographic operations to an offline
phase, during which model weights are
secret shared. In the online phase when the
client’s input is available, linear operations
are simply performed over secret shared
weights.

Arecent line of work considers modi-
fying and adapting neural network architec-
tures such that the resulting network is
more amenable to secure computation.
CryptoNAS [64] and DeepRe-Duce [89]
design RelLU efficient networks for the
private inference task. Delphi [132] and
SafeNet [118] reduce the cost of ReLU layres
by judiciously replacing them with polyno-
mial approximations. Binary Neural
Networks (BNN) have also shown compel-
ling performance for private inference by
allowing specialized and highly optimized
cryoptographic protocols [84]. There is a
substantial effort in the community to
improve private inference since its perfor-
mance cost in comparison to the standard
inference is substantial (10 or 100X higher).
This calls for new solutions:

I Can we create customized cryp-
tographic solutions, search for crypto
friendly architectures, or better utilize the
underlying hardware to accelearate the
private inference?

3.4.3 Collaborative Classification

We recognize that federated learning is
limited and only fits a particular setting
where a central party is trusted by many
participants. Federated learning only
provides confidentiality, not privacy. In
other words, while participants of a federat-
ed learning protocol do not share their data
directly, the gradients they share still
contain private information initially found
in the data. Federated learning is also limit-
ed to the setting where a central party
wishes to learn from many participants: this
forces all participants to share a common
architecture which is decided upon by the
central party. This begs the question of
whether a collaborative form of machine
learning can be achieved where the partici-
pants are all on an equal foot and learn from
one another rather than simply contributing
to a central party’s model. We refer to this as
collaborative ML in the following. This raises
several technical challenges: how can we
aggregate the predictions of a heterege-
neous ensemble of models? How can we
aggregate these predictions while bounding
any privacy leakage? can this aggregation
be performed in a fully distributed fashion?
While progress in cryptographic primitives
for machine learning and differentially
private machine learning lay the founda-
tions for such a collaborative approach to
machine learning, achieving collaborative

classification requires non-trivial assemblage of these techniques. One direction we propose
to explore is to augment PATE [148, 149] with cryptographic primitives (HE and MPC) to obtain
a protocol which is both confidential and differentially private and allows for collaborative
learning among a limited number of participants: this is the direction we outline in a prelimi-
nary publication where we name this protocol CaPC [45].

CaPC (Confidential and Private Collaborative) ML guarantees the protection of private
information (including personally identifiable information) contained in training data using
PATE and its associated differential privacy guarantees. Thus, it prevents all attacks captured
by the framework of differential privacy for reasoning about privacy: this primarily includes
inferring sensitive information about the individual data records from the training set. For
instance, it protects against membership inference attack (which can determine if a given data
point is part of the training set of a model) or the attribute inference attack (which infers
features of the training data, or statistical information about them). In addition to this differen-
tial privacy guarantee, CaPC preserves the confidentiality of its inputs using hybrid (HE with
MPC) private inference. Additionally, CaPC limits the leakage of information about the models
used in each of the collaborating parties.

There are three main actors in CaPC: a querying party, answering parties, and a privacy
guardian. The collaboration is enabled between any number of parties and each party can act
as querying or answering party. If a querying party wants to label its new data points, it
encrypts them and sends for inference to each answering party. The answering parties do
private inference and their predictions are aggregated using the privacy guardian which adds
noise to answer the query with differential privacy. Encryption of the data provided for infer-
ence protects the confidentiality, whereas noise added by the privacy guardian ensures differ-
ential privacy for the data on which the answering parties trained their models.

This approach provides many advantages: e.g., it provides confidentiality and differen-
tial privacy, it is applicable in settings with few participants whose models are trained with
heteregeneous architectures, allows for improving each participant’s model etc. However,
several research challenges need to be tackled to further the adoption of CaPC in practical
settings. In particular, the use of cryptographic primitives for confidential (i.e., private in the
sense of cryptography) inference introduces a computational overhead. This begs the ques-
tion of whether introducing hardware solutions like trusted execution environments could
help alleviate some of the computational overhead. Furthermore, the current experiments
indicate that about a hundred parties are sufficient to provide good differential privacy guar-
antees. Thus, one of the main questions is:

I Could we reduce the number of collaborating parties to few participants and be able
to preserve their privacy at a relatively low cost?

The current trust model assumed by CaPC is already advantageous but still assumes that
participants place (limited) trust in a third party (called the privacy guardian). Future research
will be able to further lighten assumptions made by CaPC’s trust model to enable its deploy-
ment in settings where a third party cannot be trusted. Other aspects to consider are:

B Which hardware and software innovations will con-tribute to decreasing the trust
needed in the third party or altogether remove the third trusted party from the CaPC proto-
col? Related to this, what techniques can help understand and protect the confidentiality
and privacy of honest participants when more than one of the collaborating parties collude
for malicious purposes?
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3.5 Protecting Intellectual Property and
Forensics

3.5.1 Motivation
As we saw in Section 2.3.2 confidentiality of machine learning models isimportant because,
in many cases, they constitute commercially-sensitive intellectual property. However, in
many applications, these models cannot be commercially exploited without exposing them
to attackers, whether during the training or inference phases.

There has been a line of work on IP protection of pretrained DL models. A unified
DNN watermarking framework is proposed in [48] that supports model ownership proof in
both model distribution (white-box) setting and MLaa$S (black-box) setting. An extension to
model usage tracing is demonstrated in [39] that adapts anti-collusion fingerprinting for DL
models. The paper [37] further provides a hardware-bounded IP protection solution for DL
devices leveraging the idea of on-device attestation. A parallel line of research on DL IP
protection targets to prevent model extraction attacks [103, 181]. The paper [90] suggests
an entangled watermarking method as a defense against model extraction. Instead of
focusing on the pretrained model weights, the paper [123] considers the original dataset
used for training as the valuable IP and designs a technique that allows the owner to claim
authorship on model copies obtained via model extraction.
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It may not be possible to completely
prevent model extraction, where an attack-
er queries the model and uses the informa-
tion gained from the responses to construct
their own surrogate models. Often an
attacker will be in physical possession of a
device that contains the model, allowing
them near-unlimited black box access.
However, if the model can be attributed
back to its source, this can deter the attack-
er from using the extracted model outside
of a private setting.

The goal of deterrence is to
persuade the adversary that the costs of
some undesirable action outweigh the ben-
efits. This can occur in two ways:

« Reducing the benefit that the adversary
gains by model theft by degrading the qual-
ity of the stolen model. This is a proactive
approach that seeks to prevent high-fidelity
model theft in the first place.

« Increasing the cost suffered by the adver-
sary in mounting a model theft attack. This
may involve measures such as increasing
the cost of model queries, or by detecting
attacks in a way that allows retribution by
way of commercial or legal sanctions.

Each approach has its own challeng-
es; reducing the quality of stolen models
inevitably reduces the accuracy of the
model for legitimate users. Deterring model
theft by increasing the cost to the adversary
requires an accurate accounting of the
adversary’s costs and benefits in order to be
effective. How best to deter model theft
therefore remains an open question.

I (How) Can we deter model theft
and model extraction in a way that is easy
to deploy, and does not conflict with priva-
cy-preserving machine learning?

3.5.2 Detecting Model Ownership

Deterrence can be achieved by ensuring
that if one organization violates its confi-
dentiality commitments by distributing the
model into third parties, then other owners
can prove this using techniques such as
watermarking or fingerprinting [7, 14, 37,

39, 48, 119]. However, these methods are
applicable only in the centralized ML, where
a central entity, such as the model owner,
does the training itself. How to apply water-
marking or fingerprinting techniques when
there could be multiple owners (e.g.,
cross-silo federated learning) still remains
as a question.

I How to design strategies for an
ownership demonstration that can be
carried out in federated learning systems?

It is difficult to demonstrate ownership or
prove violations of confidentiality in many
common federated learning settings. For
example, in some large-scale federated
learning settings a large number of clients
participate in the training and have the
right to use the model, but not to redistrib-
ute it. In this case, the large number of
clients makes it extremely challenging for a
central entity to identify who has improper-
ly redistributed the federated learning
model.

In the peer-to-peer setting, where
there is no trusted aggregator that can
ensure proper watermarking or fingerprint-
ing, this is even more challenging. Never-
theless, as peer-to-peer ML training
becomes more popular, the demand for
such solutions will only increase, and own-
ership demonstration mechanisms will
need to accomodate this approach.

3.5.3 Proving Model Ownership

In Section 3.5.1, we proposed deter-
rence by ownership proofs as a mechanism
for the protection of machine learning
models. In addition to finding models that
are owned by oneself, an important addi-
tional goal is to prove ownership to others.
Without such evidence, deterrence is weak-
ened because a potential violator might
reason that their transgressions will not be
punished since decision-makers cannot be
convinced to impose commercial or legal
sanctions. In this section, we explore what
form this evidence might take, and how it
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can be obtained using forensic techniques, which we define broadly to mean techniques that
involve examination of models and inference attempts in order to reveal the history of the
model under examination.

One approach to this is for contributors to a system to try to prove that some model
includes their contribution; they can then demand that the possessor of this model account
for how it came into their possession. They can then follow the trail back until they find either
some illegitimate usage of their contribution, or they conclude that the model was obtained
without any violation of trust.

How can dataset owners and other stakeholders prove their contribution to a
machine learning model?

However, identifying their contribution is a non-trivial task, particularly when the model has
been subject to multiple transformations since the original contribution, and doing so reliably
remains an open research question.

Identifying that misuse has happened at some point in the pastis not enough, as it may
provide impossible to force all parties in the chain to truthfully account for their possession of
the model in question. It is therefore desirable to forensically identify violators without the
cooperation of subsequent users, while allowing those who have obtained a model legitimate-
ly to be confident that the real violator can be identified, so that they will not be implicated in
misuse that took place earlier in their supply chain.

How can the misuse of machine learning models be attributed to the responsible
party?

How this can be achieved remains an open research question, particularly when there are
many stakeholders making diverse contributions to an ML-based system, each of whom wish
to make a reliable ‘imprint’ in the eventual model that can be used to demonstrate the history
of their contribution as it passes through supply chains.

very different. TEEs for embedded systems
[27, 56, 100, 144, 172] often assume the
absence of virtual memory and caches
while satisfying real-time capabilities [27].
TEEs for servers [1-4, 49] support trusted
services within trusted virtual machines.
TEE for end-user devices [12, 13, 81, 86, 126]
aim at flexibility for a wide range of applica-
tions.

4.1.1 End-to-end Integrity of Dota and
Models

In ML TEEs can e.g. be used to process sensi-
tive data, such as privacy-sensitive training
data for ML or to protect ML-models repre-
senting companies’ IP. However, the integri-
ty of the processed data can only be
ensured if the data feed into the TEE is
correct, i.e., if all previous processing steps
of the data also provide integrity guaran-
tees. This leads to important challenges:

How to build a distributed system
that can ensure data integrity for the
entire data-lifecycle assuming that not
every device is equipped with TEE capabil-
ities and can provide guarantees for the
correct processing of data.

Beside the correct processing of data in a
distributed system, the correctness of data
must be ensured already during its genera-
tion or collection. This requires that sensors
and other data-generators must be secure
and enable end-to-end data-integrity guar-
antees for their output to serve as input for
TEEs.

How to provide integrity guaran-
tees for data during their initial generation
and pass these data (preserving the integ-
rity guarantees) to a TEE?



4.2 Cryptographic Accelerator for

Privacy-preserving federated learning

Developing lightweight, privacy-preserving
ML (PPML) inference approaches requires
the designer to explore optimizations in
both algorithm and hardware level. We
discuss four challenges of designing accel-
erators for efficient PPML below.

The first challenge in designing
hardware accelerators for privacy-preserv-
ing federated learning (FL) is assessing the
hardware resources currently available on
Intel processors and identifying potential
scope of improvement. Moreover, our initial
study has revealed that for shorter compu-
tations, the access time of the accelerators
like QAT may become dominant over the
actual computation time. To mitigate this
issue and obtain the best possible perfor-
mance, the computations need to be
performed in large batches. This will require
adapting the current software based imple-
mentations to exploit the inherent parallel-
ism. Furthermore, we need to profile the
batch size vs runtime characteristic to
develop an automated methodology that
will help decide on the best possible config-
uration of the workload.

The performance of different cryp-
tographic primitives vary according to the
required computation. It is common prac-
tice to adopt a mixed protocol solution
where the best protocol is chosen for a
particular task and secure conversion
between them is performed when neces-
sary. Designing hardware accelerators for
individual primitives comes up with their
own sets of challenges - reconfigurability
based on the different security/perfor-
mance parameters, management of the
increased memory requirement caused by
secure execution, reducing the effects of

hardware constraints on the memory
access, to name a few. On top of these,
deployment of a mixed protocol system on a
hardware accelerator makes the manage-
ment of different primitives a daunting task.
There are two possible approaches. In the
first approach, each primitive is placed on a
separate chip. Following this approach, the
communication and conversion between
the protocols needs to be managed in the
software which may result in unacceptable
increase in communication between the
processor and accelerators. In the second
approach, all the primitives reside on the
same chip. This means that a large part of
the control logic has to be on chip and may
not have the flexibility of a software imple-
mentation. However, combining different
primitives on the same chip brings the
opportunity to save resources by merging
some common lower level computations.
While this approach has the potential to
significantly reduce the resource usage,
identifying such computation, and in some
cases co-optimizing the different primitives
to increase the intersection of their respec-
tive operations poses a significant chal-
lenge.

A holistic private Al application has
three components: the Al algorithm, the
cryptographic algorithm that ensures the
privacy of the Al model, and the underlying
hardware computing platform. However,
existing design methods for Al applications
mainly focus on the first component while
leaving the integration of cryptography as
well as hardware acceleration as an after-
thought. Performing co-optimization of
algorithm, cryptography, and hardware is
challenging for the following reasons:
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(i) The Al model needs to be modified to support the selected cryptographic primitive; (ii)
Cryptographic algorithms are typically computation-expensive, thus both the cryptographic
primitive and its hardware implementation needs to be optimized to achieve an efficient solu-
tion; (iii) To facilitate practical deployment, an end-to-end framework that simultaneously
incorporates ML algorithms, cryptography, and hardware is required.

After a private Al model is deployed on the intelligent device, it is still susceptible to
hardware-level attacks that disturb the normal execution of ML applications. For instance,
memory trojan attacks that change the original weight parameters of the ML model might be
performed to degrade the accuracy of the Al model. On the one hand, it is challenging to
detect the existence of such hardware-level attacks in real-time due to the enormous parame-
ter space of ML models. When the attack is detected, we also need an efficient solution that
repairs/patches the model to obtain the correct output. On the other hand, designing a robust
ML model that is resistant to parameter perturbation attacks is difficult since the decision
boundary of the model is highly complex.

L.3 Novel hardware mechonisms for efficient
protection of Al/ML

Cryptographic tools such as MiniONN [116] and CryptoNets [53] have been proposed in order
to allow inference while providing confidentiality guarantees to both data owners and model
owners. However, this approach incurs a significant performance penalty, making it desirable
to consider non-cryptographic approaches that can provide strong guarantees of privacy with
minimal performance overhead

I Can we design hardware mechanisms that can provide a level of privacy for Al com-
parable to the use of state-of-the-art cryptographic techniques but with much greater
efficiency?

One approach is to replace cryptography with a combination of remote attestation and
fine-grained hardware-enforced access control, preventing sensitive data from being exfiltrat-
ed in the event of a compromise.

Providing such strong guarantees of privacy is difficult, even with hardware support;
the complexity of modern processors has led to hardware-related vulnerabilities such as Melt-
down [115] and Spectre [99]. Moving from cryptography to hardware-enforced access control
exposes private data to these vulnerabilities. Despite the difficulty of implementing such
schemes, the potential performance gains make this a promising line of research.




In this section we explore how the envisioned research will be validated in
real-world deployment scenarios and how we can provide software frame-
works to simplify deployment on a larger scale.

5.1 Research on Risk Sharing through
Exchonge

In the following, we elaborate on use cases that will be developed within the
Private-Al Institue to demonstrate the applicability of the developed security
and privacy solutions for distributed Al in practice.

Besides optimizing and training ML for specific use cases, our case
studies aim to drive and validate our research:

What are the requirements of specific real-world ML usage scenari-
os? To what extent do our research results and tools demonstratably satis-
fy these requirement? What gaps and further improvements can be identi-
fied?

Sharing information about cybersecurity risks that were observed by other
organizations or at other locations can greatly improve the security of com-
puting systems through more effective threat detection and by means of
reducing incident response time and increasing awareness about newly
emerging threats. Furthermore, the risk exchange framework can enable
more experienced entities with a sufficient level of security expertise to share
their knowledge about attacks and defense strategies with less experienced
parties.

Nowadays, information exchange about security threats can be
achieved through the use of Cyber-Threat Intelligence (CTI) systems [140]
that rely on sharing of security-relevant data. For example, shared data may
include the record of previously observed incidents, e.g., when they took
place, what organizations and platforms were affected, what kind of vulnera-
bility was exploited, and what was the attack outcome. Other examples of
shared information are malicious IP addresses, suspicious domain names,
and malware signatures. However, according to a study [152] on 1000 IT
professionals, around 70% of the respondents mentioned threat intelligence
is too complex to provide actionable intelligence.

The Private-Al Institute will explore a new kind of risk information to
be shared by the CTI system, which will be expressed in a form of machine
learning models:

How can Cyber-Threat Intelligence systems use distributed machine
learning to predict risks without leaking specific information about past
incidents?
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The goalis to improve automation and facil-
itate fast propagation of threat intelligence
information and its effective utilization by
allinvolved parties. The challenges in realiz-
ing such a system lie in various security and
privacy concerns of involved entities, who
might be mutually untrusted. For instance,
attack vectors such as data and model
poisoning and model sabotage are relevant
and need to be taken into consideration.
Furthermore, exchange of ML models may
leak information about training data, which
is crucial if such datainlcudes privacy-sensi-
tive information.

5.2 Towards Improved
Malware Detection
using Federoted ML

5.2.1 An Introduction to Maolware
Analysis, Detection, and Classification.
There is an increasing volume of new mal-
ware every year. For this reason, effective
and fully automated malware detection is
an important requirement to guarantee
system safety and user protection.

Our goal is to develop automated
procedures that are able to detect if a file is
malware and identifies the family to which
it belongs. There are various ways to
achieve these objectives going from human
reasoning to fully automated techniques. A
very popular approach is based on the use
of distinctive information known as a signa-
ture. The signature of a malware is its DNA.
This is what we can use to recognize it
among a set of cleanware as well as to
distinguish it from other malware.

Signature-based malware detection
normally proceeds in two phases. In the
training phase, a number of samples of the
malware to be detected are obtained. Then,
a database of clean binaries, or goodware,
that should not be detected as malware, is
built. The signatures of each malware and
goodware samples are extracted and com-
pared to try to find common characteristics
of the malware signatures that do not

appear in the goodware signatures. The
characteristics that distinguish the malware
from the goodware are used to build a
signature for the malware. In the classifica-
tion phase, this signature is then compared
against similar signatures of malware to
determine whether the unclassified binary’s
signature indicates malicious behavior.

The main challenges to implement
the procedures above are (1) to acquire
databases of both malware and cleanware,
(2) to develop methodologies to compute
signatures that are powerful enough to
distinguish malware from cleanware, (3) to
extract and generalize signatures so that
they can detect larger malware families
beyond the specific instances inside the
training set, and (4) to efficiently enable
malware detection using the obtained
signatures.

We now examine the related research ques-
tion in detail.

5.2.2 Improving Malware Signatures for
better Detection.
Our first research question is as follows:

How to design an efficient, correct,
and precise procedure for malware detec-
tion? How to generate representative
signatures from existing families? How to
detect such signature in a given file?

A series of recent works (see [21] for a
survey) have proposed a new approach to
malware classification. The methodology
uses concolic execution [71, 165] to extract a
symbolic representation of many behaviors
of a malware sample. These behaviours are
used to reconstitute the System Call Depen-
dency Graph (SCDG) of the sample. The
approach is repeated for each malware of a
given family, each generating an SCDG for
that malware. The GSPAN [189] machine
learning algorithm is used to idenfity
common features between these SCDGs.
Such commonalites become the signature
for the malware family that indicates the
key common behaviour. When a new
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sample needs to be examined, one uses
concolic execution to extract its SCDG and
then apply GSPAN on both this SCDG and
the SCDG of each family. The new sample
belongs to the family for which GSPAN finds
enough similarities. Observe that other
machine learning algorithms can be used.
Observe also that concolic analysis can be
used to directly assist malware analysists in
their daily life [17]. Consequently, any
improvement in the global methodology
will also have a positive impact on this prac-
tical work. Recent results have showed that
the learning-based approach can outpe-
form existing malware analysis techniques
on a wide range of case studies (see [21,
158] for illustration). The use of symbolic
analysis permits to overcome the limit of
static analysis based machine learning
outlined in [9]. We believe that those results
are just the beginning of a promising
research that will drastically improve mal-
ware detection. This opens the door to
explore a wide range of research and appli-
cation opportunities exploiting private
federated learning.

The above procedure contains
several implementation secrets and chal-
lenges that open a wide range of research
directions. For example, due to the curse of
dimensionality concolic execution can only
extract a representation of certain behav-
iors of the system. Thus fine tuning the
procedure so that it extracts behaviors of
interest that are suitably representative for
the sample program’s behaviour can vastly
improve malware detection and classifica-
tion outcomes. In addition, learning algo-
rithms such as GSPAN should be parameter-
ized in an appropriate way to provide
suitable generality without over-fitting. A
preliminary study of those two research
questions has been presented in [163].

5.2.4 Privacy-preserving Collaboro-
tion for Malware Detection using ML

BN How to guarantee that several
contributors can participate without forc-
ing them to reveal their secrets? How can
we guarantee that contributors behave in
an honest way and do not poison the
resulting model?

To complement the above directions, a
federated extension of this machine learn-
ing procedure can be developed. This can
take advantage of the possibility for
contributors to exchange their behavioural
models (currently SCDGs) but not the
procedure which allowed the models to be
built and even less the malware database
used. The idea is classic in the sense that
each participant will train their own model
and then the results will be aggregate in a
central way.

What is more difficult is to define
this aggregation knowing that individual
models may be trained on wide range of
architectures and types of files. Thus, even
detals of the model that is to be shared may
need to account for privacy of the sharer.
Again, metrics of success are clear: the new
approach shall be robust to adversarial
attacks and guarantee the privacy of each
participant. Observe that this approach has
already been considered for the very
restricted case of machine learning applied
to android malware detection [61]. Authors
observed that, in addition to adversarial
attacks, one major challenge will be to
guarantee that local data are not corrupted
[112].

5.3 Deployment
Challenges

5.3.1 Availability of Data for Training
Training deep learning models require large
amounts of data, which might be challeng-
ing to achieve in practice due to privacy
concerns and regulations such as General
Data Protection Regulation (GDPR) in the
European Union. The data collection is
especially challenging at the time of model
development, when the users cannot bene-
fit from the developed model yet and,
hence, have no incentive to provide their
consent for data collection. Oftentimes
such a collection needs to be performed
with the help of paid test users, which natu-
rally limits the amount of data that can be
collected.

The problem related to lack of data
may even appear for large datasets. In
particular, if the dataset is imbalanced, i.e.,
the number of observations per class is not
equally distributed, the problem of lack of
data will affect the minority class, for which
there are fewer samples. The problem of
imbalanced data can appear in such appli-
cations as detection of rare diseases or
natural disasters like earthquakes.

These challenges can be adressed with the
help of open source datasets (if such data-
sets exist for the target task), through the
use of syntethically generated data, and by
means of applying transfer learning meth-
ods. Synthetic data can be created with the
help of data generation algorithms, such as
agent-based modeling that explains an
observed behavior, and then reproduces
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random data using the same model.

Transfer learning enables one to train an initial model on the related task for which the
sufficient amount of data is available, and fine-tune the model with the training using small
amount of data on a target task. That’s said, transfer leanrning transfers knowledge from the
domain of related task to the domain of target task, and reduces the amount of data required
for training in the target domain. In security applications, transfer learning was already
applied to solve the imbalanced data issue in intrusion detection [62], vulnerability detection
(117,120, 142] and loT attack detection systems [184].

5.3.2 Lack of Transparency

Complex machine and deep learning algorithms, also referred to as black-box models, lack
transparency meaning that it is often hard to explain why they made a certain prediction. The
more complex the model is, the more adjustable model parameters one needs to configure,
and there is no one-to-one mapping between input features and parameters. As a result, it
may be challenging to figure out what an algorithm learned during training and which of the
data points have more significant influence on the outcome of classification.(LRP) method
[14] outputs a heatmap over the input features that indicates their relevance to the model
output. DeepLIFT [146] framework additionally treats positive and negative contributions
differently, which improves effectiveness in revealing dependencies. Most approaches were
evaluated using Convolutional Neural Networks (CNNs), while their applicability to other
networks remains open.

Lack of transparency limits the explainability of ML models - or, the extent to which
their internals can be understood by humans. For instance, deep learning models for vulnera-
bility detection in smart contracts [82, 120, 201] can classify contracts into vulnerable and
non-vulnerable categories and even detect vulnerability types, yet do not help to understand
why such a classification was made and, hence, to identify the vulnerable code that needs to
be fixed.

The area of research that deals with improving the explainability of ML models is
Explainable Al (XAl). It aims to develop methods for black-box models to make it possible to
understand the reasons behind model predictions. For instance, the Local Interpretable Mod-
el-Agnostic Explanations (LIME) method [154] outputs a binary vector along with a classifica-
tion decision indicating if an input feature contributed to classification.

5.3.3 Bias in Training Data and Fairness

Training on biased data is likely to result in a biased model, hence it represents a serious
deployment challenge. There are many reasons for having a bias in data, as systematically
analyzed by Mehrabi et al. [129]. For instance, using imbalanced data can create biases against
minority classes. Furthermore, datasets are collected and processed by humans, who may
bring their stereotypical and prejudicial bias in data. Additionally, bias can be introduced
through poorly designed data collection surveys that could lead participants to answer ques-
tions wrongly (e.g., when they lack the knowledge to answer correctly or do not want to
provide the correct answer). Moreover, bias may be caused by incorrect selection of samples
for training from a large population, which may result in a dataset that does not adequately
represent the world the model will operate on.

The challenge of bias in training data is tackled by the area of research for fair machine
learning. Numerous methods were developed for solving problems of fairness in different
domains of machine learning, such as classification [66, 75, 95, 102, 131], clustering [15, 42],
and adversarial learning [107, 188].
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learning. Numerous methods were devel-
oped for solving problems of fairness in
different domains of machine learning,
such as classification [66, 75, 95, 102, 131],
clustering [15, 42], and adversarial learning
[107, 188].

The challenge of bias in training data
will likely get more significance in the
future, especially because more and more
people without deep technical knowledge
are involved in building machine learning
models and deploying them in a large
variety of applications. This trend increases
the risk of biased models penetrating criti-
cal areas of our society, such as medicine,
law, and security applications.

5.3.4 Concept Drift

Concept drift is a phenomena that affects
scenarios where the probability distribu-
tions of a popoulation from which the data
set was sampled from change over time.
The conventional approach to deal with this
problem is to retrain the model once it expe-
riences significant performance degrada-
tion. This strategy is, however, not agile
enough for security applications, which
have to deal with adversaries who change
their attack strategies rapidly to evade
detection by ML-based systems.

To deal with the concept drift in
adversarial settings, Thomas et al. [177]
propose to retrain the model continuously
during operation. Kantchelian et al. [96]
suggest keeping human operators in the
loop to deal with model aging. Maggi et al.
[122] and Jordaney et al. [92] develop meth-
ods for detection of concept drift in
deployed models, which enables re-training
before the model significantly degrades.
Almeida et al. [155] propose to tackle the
concept drift challenge by using dynamic
classifier selection for testing each instance.
They show that selecting the most promis-
ing classifier/ensemble can deal with drifts
regardless of how the selected classifier was
trained. While proposed solutions were
shown effective in targeted application
scenarios (e.g., malware detection [92] or
identification of malicious URLs in the web
[177]), the question if they generalize to
other use cases still remain open.
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5.4 Open Source
Fromeworks and Tooling

To enable wide use of our research results, it is important to
provide prototypes and then mature selected prototypes into
software that is sufficiently mature for wider use. Since each
research covers different aspects of the PrivateAl landscape,
this can lead to piece-meal prototyping. To overcome this risk,
we plan to also invest into open source frameworks and tooling.
This answers the following research question:

I How can software components be optimally packaged
and integrated to enable efficient and usable deployment in
practice?

An ideal research library for federated optimization research
should support various platforms for realistic evaluation,
obtaining realistic system performances like training time, com-
munication cost, and computational cost.

(1) It should keep pace with advances in academia, supporting
various newly published federated optimization algorithms.

(2) Write once, run everywhere. It is better to support seamless
cross-platform migration with one time code writing. Research-
ers in optimization theory can focus on the innovations of algo-
rithms, and let the library do the implementation.

(3) The programming interface should be flexible to enable
diverse network topologies, flexible information exchange
among workers/clients, and various training procedures.

(4) Supporting diverse datasets and models to fairly evaluate
federated optimization algorithms is also a plus.

The diagram in Figure 4 illustrates this design goal. A
representative research library aiming at these goal is FedML
[78]. If researchers can first finish their algorithmic conceptin a
standalone simulation supported by FedML. They can then
easily try their algorithms in a larger scale datasets and models
in distributed computing platforms. Afterwards, for loT plat-
form, there is no need to reimplement the code in another
programming language like Java and C++. Simply reusing the
code at the distributed computing, FedML can support the loT
on-device training. With such a pipeline, theory-oriented opti-
mization researchers can also obtain system-wise performance
evaluation.
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Figure 4: Anideal research library for federated optimization
research [64]

There are also serveral other federated
learning libraries in the recent years.
Distributed training libraries in PyTorch
Distributed [150], TensorFlow [5],
MXNet [40], and distributed train-
ing-specialized libraries such as Horo-
vod [166] and BytePS [151] are
designed for distributed training in
data centers. Although simulation-ori-
ented federated learning libraries such
as TensorFlow-Federated (TFF)[85],
PySyft [156], and LEAF [30] are devel-
oped, they only support centralized
topology-based federated learning
algorithms like FedAvg [128] or FedProx
[157]. Furthermore, they only provide
low-level communication APIs (e.g.,
TTF) or simulate a federation of nodes
using a single machine, making them
unsuitable or difficult to develop feder-
ated learning algorithms that require
the exchange of auxiliary information
and customized training procedures.
Production-oriented libraries such as
FATE [190] and PaddleFL [121] are

released by industry. However, they are
not designed as flexible frameworks
that allow topology changes or allow
drop-in replacement of different kinds
of averaging algorithms.These features
are necessary to support algorithmic
innovation for open federated learning
problems.

A further step to close the gap
between research and production engi-
neering is to support system deploy-
ment and on-device training runtime
engine. In practice, frequent and large
scale deployment of updates, monitor-
ing, and debugging is challenging;
running ML work-loads on end user
device is hampered by the lack of a
portable, fast, small footprint, and flexi-
ble runtime engine for on-device train-
ing. Research libraries like FedML defi-
nitely should support these two core
modules. For more detailed challenges
and practice in these topics, we refer to
the guidance provided by [94, Section
7].
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