Private Al Collaborative Research Institute

VISION

CHALLENGES

OPPORTUNITIES

,’ / TN

/ NS
/ I \
S // N \

aavast O borsetta intel. Ai

Ahmad-Reza Sadeghi
Ferdinand Brasser
Markus Miettinen
Thien Duc Nguyen
Technical University of
Darmstadt

Thomas Given-Wilson
Axel Legay

Université Catholique de
Louvain

Murali Annaaram
Salman Avestimeh
University of Southern
California

Alexandra Dmitrienko
University of Wuerzburg

Farinaz Koushanfar
University of California
San Diego

Buse Giil Atli

Florian Kerschbaum
Lachlan J. Gunn

N. Asokan

University of Waterloo
and Aalto University

Rosario Cammarota
Matthias Schunter
Intel Labs

Adam Dziedzic
Nicolas Papernot
University of Toronto
and Vector Institute

Virginia Smith

Carnegie Mellon University

Reza Shokri
National University of
Singapore

Content

Motivation and Intro
1.1 Outline and Research Clusters

Scope of the PrivateAl Institute

2.1 Life cycle framework of Machine Learning tasks
2.2 Topologies for Machine Learning

2.3 Modelling Adversary and Requirements

Research on Algorithms for Security and Privacy-enhanced
Machine Learning

3.1 Data Collection and Preparation

3.2 Local Training

3.3 Federation and Collaboration during Training

3.4 Classification/Inference

3.5 Protecting Intellectual Property and Forensics

Hardware and Acceleration for Security-and Privacy-enhanced
Machine Learning

4.1 Trusted Execution for Al/ML

4.2 Cryptographic Accelerators for Privacy-preserving federated
learning

4.3 Novel hardware mechanisms for efficient protection of Al/ML

Research on Validation and Deployment

5.1 Research on Risk Sharing through Exchange of ML-based
Models

5.2 Towards Improved Malware Detection using Federated ML
5.3 Deployment Challenges

5.4 Open Source Frameworks and Tooling

(USC-Chaoyang He)

References

Images References

N

co U1~ BpH

12
14
14
22
28

30

30
32

33

34
34

35

37

40

42

57

1. MOTIVATION & INTRO

The goal of the PrivateAl Collaborative Research Institute https: //www.private-ai.org is
to push the state of the art on decentralized and privacy-preserving machine learning.
This mission is inspired by our belief that data is everywhere and that centralizing this
data is often neither feasible nor desirable.

The majority of applications as well as a vast body of research today focus on
centralized and batched machine learning (ML): Training data is collected, cleansed,
and associated with labels. The resulting labeled training data are then used to train a
model that is distributed and used for inference by clients.

We believe that this centralized approach to machine learning will be comple-
mented by a wider range of decentralized models of machine learning. The overarch-
ing question we try to answer is "How can we securely and efficiently derive insights
out of decentralized data while preserving the privacy of individuals?"

Federated machine learning is a first step on this trajectory: A central aggrega-
tor collects, aggregates, and redistributes models that resulted from local training by
clients.

1.1 Outline and Research Clusters

The PrivateAl Collaborative Research Institute has two main goals. The first is to
conduct basic and applied research on security and privacy of machine learning with a
focus on decentralized machine learning. The second goal is to conduct applied
research in collaboration with the industry sponsors that renders this research practi-
cally usable for a wide range of application scenarios. Our scope is detailed in Section
2. We push the state of the art in multiple research clusters.

Research on Machine Learning
Rlgorithms (Section 3)

Security and privacy-enhanced algo-
rithms for decentralized machine learn-
ing.

This cluster includes multiple
topologies like federated or decentral-
ized training, security and privacy of data
or model handling, helper algorithms
like private consultation or knowledge
transfer, or tools for core privacy and
security of machine learning which also
includes randomization with privacy
accounting to achieve differential priva-
cy or watermarking to trace stolen
models.

Research on Tools and Accelerators
(Section 4)

Hardware and software to support secu-
rity and privacy enhanced execution of
those algorithms.

This cluster includes hardware
extensions such as Trusted Execution
Environments (TEE) or specific accelera-
tors, including FPGA, to support classes
of algorithms. It also includes cryp-
tographic primitives and protocols such
as Multi-Party Computation (MPC) and
Homomorphic Encryption (HE) that can
strengthen the security and privacy of
the executed algorithms. This also
inludes algorithms for detecting and
mitigating Byzantine behaviors (includ-
ing malicious nodes) during training. For
data cleansing, privacy preserving proto-
cols such as private vector linkage or
private set intersection may be explored.

Research on Validation and
Deployment (Section 5)

Applications that are used to showcase
and validate the algorithms and plat-
forms will drive new requirements and
allow us to demonstrate the benefits of
the developed technologies.

We envision the following impacts that
will be generated by the the developed
technologies.

We envision the following impacts that
will be generated by the
PrivateAl Institute:

Security and Privacy for Machine
Learning

Ourresearch will push the state of the art
in algorithms, run-times, applications
and tooling. Due to the collaboration
with industry, researchers are enabled to
explore new relevant usage scenarios
and requirements and are also able to
validate their research in practical
deployments.

Deploy and Validate key Research
Results

Practitioners will be enabled to deploy
decentralized machine learning with
appropriate security and privacy guaran-
tees. While today, many piecemeal
results exist, it is hard to find the best
technology for a given scenario. One goal
is to provide a toolkit and guidance that
allows practitioners to find and deploy
the best solution based on given param-
eters such as topology, ML architectures,
security and privacy requirements, and
the acceptable trust into the parties and
technologies involved.

At this stage we would like to
stress that the ability to compute on
encrypted data in general and for ML in
particular could provide certain security
gurantees that statisfy the securtiy and
privacy requirement of mistrusting
stakeholders involved in real-world
application scenarios. However, today
such solutions have prohibitive perfor-
mance penalties. As a consequence,
there is no one-size-fits all solution.
Instead, solutions are crafted to fit the
specific trust relations and regulatory
requirements. Furthermore, in addition
to technology advances, investments in
policies and regulation, standardization,
and adoption in educational paths will
be required.

In the following, we will introduce the
conceptual framework used to discuss
machine learning tasks and define the
adversarial setting and security and privacy
objectives that we plan to address in our
research.

2.1 Life cycle framework
of Machine Learning
tasks

Machine learning can be structured into
multiple consecutive phases as parts of a
life-cycle. The overall goal of machine learn-
ing is to to make inferences on new data
that were not used during the training
phase. For this report, we structure machine
learning into following phases (see Figure 1)
where each phase poses their own specific
security and privacy challenges:

Data Acquisition

Before being able to train a model, training
data along with possible corresponding
labels need to be acquired. This may
include extraction of data from databases or
from real-world observations with a poten-
tial automated or manual labeling of
acquired data. Examples of challenges are
related to privacy-friendly data extraction,
data masking, data anonymization, or elimi-
nation of maliciously modified input data
samples.

Local training

Local training denotes the process of com-
puting a model from training data and
possible associated data labels. A privacy
goal of the training step is to prevent recov-
ery of privacy-sensitive information from
the resulting model.

Collaboration and Federation

To improve model quality, multiple players -
each with their local model may collaborate
to enhance their local models or construct a
global model by aggregating local models.
In this phase, sensitive data that may be
contained in a local model should not leak
to other untrusted entities. Similarly, indi-
vidual bad players should not be able to
misuse the collaboration to corrupt the
models of others.

Inference

During this phase, local or global models are
used for inference by feeding new data to
the models. Inference may be collaborative
(similar to medical consultations). A privacy
concern here is how to guarantee proper
protection of identifiable information
contained in the training data. A confidenti-
ality concern is how the input data used for
inference is protected and how to prevent
leakage of the used model to unauthorized
parties.

Forensics

The final stage in the machine learning life
cycle is to conduct forensics to identify bad
players or detect and recover from attacks.
An important goal is model attribution, i.e.,
the ability to identify the original creator of
a potentially stolen model.

While our research agenda is struc-
tured along this life cycle, some technolo-
gies span multiple phases. For example, to
enable forensics, the corresponding tech-
nologies need to be deployed during train-
ing and/or inference. In addition to the
specific phases of the machine learning life
cycle, also the topology of the used learning
architecture has an impact on security and
privacy requirements and challenges. In the

following, we provide an overview of these typical topologies.

2.2 Topologies for Machine Learning

On an abstract level, especially in settings in which data acquisition, training and inference are
performed by a single entity, the machine learning process can be seen as a relatively straight-
forward pipeline in which all steps including data acquisition, training and inference take
place locally. However, in practice, especially when several different players (subsequently
referred to as clients) are involved in the machine learning process, the training of models can
be arranged in a number of different ways. In the following we discuss the main characteristics
of and differences between centralized, federated and decentralized training topologies.

2.2.1 Centralized Training

In a centralized training topology, as shown in Fig. 2a, a number of participating entities
(clients) collaborate to aggregate a joint global model. The training of this global model is
performed by a central entity to which all participating clients submit their local training data-
sets. The central entity merges the individual local training datasets and uses them to train the
global model.

While being simple and straightforward to implement, the centralized training model
has the drawback that it is entirely dependent on a trusted third party acting as the central
entity. The central entity has full visibility to all training data of clients and is therefore a criti-
cal central point of failure. Unless a very strong trust relationship exists between the central
entity and the client the client may be unwilling to share its entire training data with the
central entity. In addition, the centralized model has the drawback that it places high compu-
tational and communication overhead on the central entity, if the size of training datasets and
number of clients is high. Last but not least centralized solutions are typically single point of
failure.

This is one of the reasons why alternative training models have emerged. In particular,
the federated learning model provides benéefits, as it allows to reduce the communication and
computational burden on the central entity and provides advantages with regards to the
privacy of training datasets.

2.2.2 Federated Training

In a Federated Learning (FL) [127, 167] architecture the task of training is federated among a
number of nodes as shown in Fig. 2b. Each participating client trains a local model based on
their own (private) training dataset and shares only the trained local model with the central
entity, who aggregates the clients’ local models using an appropriate aggregation algorithm.
Federated learning has numerous advantages in many usage scenarios. Since the training task
is distributed to individual participating clients, the raw data of clients do not need to be
shared with the central entity nor other clients, thereby providing better privacy for clients’
local datasets. On the other hand, all participating clients can still mutually benefit from the
models of others. This is particularly beneficial in settings like, e.g., loT networks, where the
training datasets of individual clients may be relatively small, as IoT devices do often not
generate much data to train models on. This would make the training of accurate models
based only on individual local datasets very challenging due to the lack of sufficient training
data points.

The federated learning architecture can be organized in a number of different training
set-ups. Kairouz et al. [94] distinguish three different types of centrally-coordinated federated
training set-ups:

— Collaborative Inference
Research on Algorithms (by Life-cycle) [Section 3] One example of decgntrglized lea.rning is the collaborative inference .[45]. We recognize
a B e oo o e Lot lels i, AR e ... i that federated learning fits a particular setting where a central party is trusted by many
3 p i Data ' 1 Local i 1 Federation& 1 i Inference/ participants. As mentioned federated learning has been shown not to provide full priva-
= 2 + Acquisition ' : Training ! ! Collaboration ! Classification ! cy, and it also forces all participants to share a common architecture. In the decentral-
2 9 R T T S R e g 2 = = ized learning via collaborative inference, the collaborating parties exchange predictions,
S -:—" : Forensics and Traitor Tracing : softmax outputs, or logits. These are common and same strucutre information released
S S T Siasininieieinieteiniintinieteinteletelebntnintnletmeite e ¥ as model outputs. They are not dependent on model architecture and of much smaller
— . . .
< E, memory footprint than the model updates in form of gradients or parameters. These
[4 i . . .
s _: Research on Tools and Acceleration [Section 4] propertles.enable collal?oratlon'between pqrtles with heterogengoys model architec-
9 o - e e Al N o SR . tures and tighter protection of privacy. The privacy leakage can be limited when exchang-
x 2 ' Trusted 1 i 1 Secure i i iy ing only final model predictions. One approach to solve the problem is to aggregate
3 ' : =5 Crypto 1) i1 Acceleration 1 i . ;
' Execution ! ! 8 Computing ¥ s | predictions obtained from many parties, add noise to obtain the differential privacy guar-
A a'nte.es, anq release a noisy, but in most cases correct, result. We elaborate on this solu-
. ’ . tion in Section 3.4.3
Figure 1: Research Clusters of the PrivateAl Institute

Cross-device

A very large number of devices (e.g. mobile phones) come online
infrequently, train locally and a central entity aggregates model
inputs and distributes updates to the clients. Training data are held
locally by clients.

Cross-silo

A small number of larger organizations (’silos’) that are usually
online (e.g., hospitals) collaborate in training a joint model without
sharing their raw training datasets.

Datacenter-internal
A large dataset under the control of a single organisation is parti-
tioned in order to distribute training workloads among multiple
servers that process the data. Data and models can be moved freely
within the datacenter.

2.2.3 Fully Decentralized / Peer to Peer Training

Federated learning fits well to a setting where the central entity is
trusted by clients. While the federated learning process maintains
confidentiality in the sense that it does not disclose the training
datasets of clients in the clear, the sharing of model parameters,
gradients, or outputs in form of logits or predictions, may enable a
curious central entity to infer potentially sensitive information
about the datasets that clients have used to train their local models.
In scenarios in which the privacy of training data needs to be
preserved also against a curious central entity, a fully decentralized
training topology as shown in Fig. 2c may be preferable.

(a) Centralized Learning

Local Dataset Model Training

(b) Federated Learning

ML Model Model aggregation

Figure 2: Topologies for machine learning

Our research agenda is targeted at solving
prominent security and privacy challenges
that exist in the machine learning settings
outlined above. In the following we provide
an overview over potential threats seeking
to compromise the privacy of training data,
the conficentiality of obtained ML models,
as well as the integrity of models and
reasoning outcome. We also outline the
research problems that need to be resolved
in order to mitigate these threats.
Trustworthy machine learning needs to
satisfy various security and privacy require-
ments. Confidentiality aims to guarantee
non-disclosure of sensitive information to
unauthorized entities. Privacy aims to
guarantee proper protection of sensitive
(e.g., personally identifiable) information,
against inference attacks. Integrity aims to
prevent unauthorized modification of data
and models.

While these requirements are hard
to guarantee for centralized machine learn-
ing, protecting them in a decentralized
setting is even harder since many nodes
collaborate and some of these nodes may
be malicious.

In particular for privacy and confidentiality,
achieving guarantees among mutually
distrusting players is an open challenge

due to the conflicting interests of the stake-
holders [10, 29, 31]: In the case of inference
the data owner wants to query a model with-
out revealing data. The model owner may be
a tenant of the infrastructure owner, and
aims to serve as many queries as possible by
reducing the risk of data owner’s data leak-
age and itsown model IP leakage. In the case
of distributed learning, data owners host
their data onto tenant instances the tenant
accumulates a host of third party data for
which reducing the risk carried by data
breaches is paramount. The future model
owners want to learn from the siloed data
without looking into the data.

2.3.1 Privacy of Training Data

Federated and decentralized learning
enables multiple parties to leverage useful
information from each others’ datasets with-
out actually sharing their data with others.
However, as discussed above, model param-
eters and gradients (that are computed on
the private datasets) can indirectly leak
information about each party’s dataset. In
particular, sharing model parameters
enables a curious aggregator or a participant
to infer sensitive information about the indi-
vidual data records in the private training
sets of other parties. Major inference attacks

(c) Decentralized / Peer-to-peer Learning

include membership inference attacks [139,
168] (determine if a given data point is part
of the training set of a model) and attribute
inference attacks [130] (infer features of the
training data, or statistical information
about them). What makes federated learn-
ing more susceptible to such attacks, com-
pared with centralized training, is that the
adversary observes multiple copies of the
target’s high-dimensional model through-
out the training. The adversary can further
increase this leakage by actively sharing
model parameters that force local gradient
descent algorithms to react to the presence
of particular data points in their training
sets [139]. The attacks pose high risks on the
effective privacy of federated and similar
decentralized learning architectures.

2.3.2 Confidentiality of Models
Federated learning does not necessarily
ensure the confidentiality of the resulting
model. This motivates the search for new
approaches that will provide guarantees of
model confidentiality with different model
ownership arrangements. This requires
model protection across the whole life-cy-
cle from data acquisition to traitor tracing.
The question arises what level of confidenti-
ality protection is required is based on an
ownership model and terms of usage that
correspond to the specific usage scenario:

In the federated learning setting, all
participating organizations need to agree
on an appropriate ownership rights before
implementing federated learning and incor-
porate this into contractual arrangements;
matters to be agreed include how and when
the resulting model can be used, and any
restrictions on distributing the model to
third parties. In peer-to-peer training, there
is no central entity to coordinate agreement
on model ownership, making it difficult to
define the obligations of all the partici-
pants.

Having defined the obligations of
the participants in a federated learning
system, it is necessary to ensure compli-
ance. This can occur in several ways:

This implies the challenge to design a secure aggregation process that is resilient against
attacks in which individual training datasets or local models are manipulated by the adver-
sary. This is a problem that is inherent to the distributed nature of any collaborative
machine learning approaches. Since the set-up typically comprises independent clients
over which other entities do not have direct control over, the contributions of individual
clients participating in the ML process may be influenced by an adversary in an effort to

manipulate the process to its advantage.

Data poisoning

A number of different attack scenarios are possible:

In this attack type, the adversary is able to manipulate the data that one or more
clients use for training their local ML models. For performing this attack, the adver-
sary does not necessarily need to compromise any of the clients, it is sufficient if it
is able to inject manipulated data into the training datasets of benign clients.

Model poisoning
In model poisoning, the adversary seeks to
corrupt the models provided by individual
clients to the collaborative learning
process. Model poisoning can be achieved
by performing data poisoning on the train-
ing dataset, but also other manipulations
are possible, if the adversary is able to com-
promise individual clients. It can then
directly influence the training process or
modify the local model after training. The
adversary can, e.g., modify learning rates,
number of epochs used in training, or, scale
the resulting models in order to optimize
their impact on the result of the collabora-
tive training process to achieve the attack-
er’s goals. A number of aggregation algo-
rithms for federated model aggregation
have been proposed. It has been shown
that the most widely used federated aver-
aging algorithm Federated Averaging (Fed-
Avg) is vulnerable to model poisoning
attacks by which an adversary can, by
suitably scaling the models it submits for
aggregation, effectively introduce mali-
cious functionality into the global model

produced as a result of the aggregation
[16].

Also the motivations and goals of an
adversary performing attacks against the
integrity of data and models can be diverse
and thus target very different outcomes. At
least following attack types can be identi-
fied:

Backdoor attack

In a backdoor attack the adversary seeks to
’hide’ a specific functionality, a backdoor
into the model resulting from the collabora-
tive training process. Typically the adver-
sary seeks to manipulate the model in a
way that it will generate incorrect predic-
tions for a specific set of inputs, the
so-called trigger set. In many cases it seeks
to achieve this in a way that does not
impact the performance of the resulting
model for other inputs in order to make it
for others difficult to notice that the model
has been maliciously modified by the
adversary.

10

Model sabotage

Another motivation for the adversary may
be to influence the performance of the
resulting model in a way that is advanta-
geous for the adversary. A straight-forward
goal would be, e.g., to modify the model in
a way that deteriorates its overall perfor-
mance, thereby reducing its utility. But also
other scenarios are possible, it could be,
e.g., that the adversary would seek to dete-
riorate the performance of the model for
the input data of specific other clients. This
requires that the adversary has sufficient
knowledge about the properties of the
input data of other clients. However, in a
competitive setting between the clients,
this would allow the adversary to gain a

performative advantage over the targeted
other clients.

Various backdoor detection techniques
have been developed in local settings [38,
87, 186, 197]. These methods allow the
defender to inspect whether a pre-trained
model has been backdoored during the
training phase [38, 186, 197], or identify
backdoor trigger for the victim model in
real-time [87]. National Institute of Stan-
dards and Technology (NIST) has lunched a
comptetition on backdoor dection to
ensure safe model deployment [143]. To
ensure model integirty in the federated
setting, researchers design backdoor detec-
tion methods that recognize malicious
model updates from local clients [60, 141].

11

Developping scalable and effective inspection techniques to
guarantee data and model integrity in federated training
remains an open challegne.

2.3.4 Integrity of Data and Models during Inference
Machine Learning has not yet reached true human-level robust-
ness in many machine learning tasks, especially in the vision or
audio domain. This is because many models are vulnerable to
so-called adversarial examples [19, 176]. In the broadest sense,
by adversarial perturbations, we define small imperceptible
changes to data input that alter model predictions. These are
e called e-bounded sensitivity-based adversarial examples. The
. existence of adversarial examples makes it difficult to apply the
- ML models in security critical areas, such as self-driving cars or
= fraud detection applications where adversaries may be able to

modify the data that are used for classification.

. 3 RESEARCH ON 2D A TP

ALGORITHMS FOR
.~ SECURITY AND PRIVACY-
. ~ ENHANCED MACHINE N e X o
LEARNING

3.1 Data Collection and
Preparation

centralized computation of differentially
private statistic using trusted hardware,
secure multi-party computation, or private

section. Often these techniques can be
implemented using trusted hardware or
secure multi-party computation.

Before models can be trained and inferences can be made, data
needs to be collected and prepared. This process is much more
(wall clock) time consuming than the CPU intensive training of
models and heavily relies on human intervention. All down
stream process is affected by these first steps. Data cleaning or
data preparation determines the accuracy of an inference much
more than the tuning of machine learning parameters. If data is
collected in a privacy-preserving manner, (post-) processing this
data using machine learning may also be private. Hence, these

aggregation protocols need to be used.

I How can two or more entities
I How can an entity collect data for link their data sets in order to identify
machine learning purposes from a collec- errors within their data sets in a proto-
tion of users that is scalable and practical col thatis scalable and practical in com-
in communication and computation,accu- putation and accurate and privacy-pre-
rate for a given (small) set of users, serving for the entities’ data sets?
privacy-preserving for the users and does
not require the users to trust the data The third challenge is private data repair.
Once errors or inconsistencies have been

steps are of crucial importance to designing private Al process- collector?
es. identified, they need to be repaired, e.g.,

The first challenge is concerned with the collection of data from
users over the Internet. In private data collection, a large
number of clients each submit a single or few data elements
and the collector needs to obtain private statistics, e.g., heavy
hitters, sums, median, etc. Privacy for statistics usually means
differential privacy (DP). However, the central model of DP is not
applicable to private data collection, since the collector should
be untrusted. Hence, either local differential privacy, the

The second challenge is private data prepa- missing fields replaced or contradicting data
ration is the use of multiple data sources. replaced with a unifying entry. This process
For example, hospitals may try to link their can itself be done using machine learning
databases joining common patients, in models and may leak information about the
order to better identify patterns in treat- (faulty) input data. Hence, not only the input
ment. However, these parties may notwant to the data preparation (and repair) process
to ex-change plaintext data due to legal must be protected, e.g., using trusted hard-
compliance or concerns about the infer- ware or secure multi-party computation,

but also the repaired data released for
machine learning purposes. Privacy in this
case usually means differential privacy
again.

How can data for machine learning
purposes be repaired while protecting the
privacy of the users collected in the data
set?

3.2 Local Training

3.2.1 Privacy of Training Data

The two primary methods for providing
differential privacy (DP) of training data
during local training are DP-SGD [6] and
PATE [148, 149]. These are two different
approaches that achieve the same goal.
DP-SGD makes fewer assumptions about
the ML task than PATE and modifies the
training stage while PATE is oblivious to the
architecture of ML models but requires
training of many models and assumes
access to a public dataset.

DP-SGD(Differentially-Private
Stochastic Gradient Descent) modifies the
minibatch stochastic optimization to make
it differentially private. During the model
training, it tracks the access to the parame-
ter gradients, i.e., the gradients of the loss
with respect to each parameter of the
model, and ensures that this access
preserves differential privacy of the training
data. Thus, the resulting trained model, per
the post-processing property of differential
privacy, limits the exposer of private infor-
mation in the training set. By tracking
detailed information of the privacy loss
using the moments accountant, DP-SGD
obtains tight estimates on the overall priva-
cy loss.

While DP-SGD directly modifies the
training mechanism of a single model, PATE
requires training of an ensemble of models
on private data and then injects the DP

noise at the internal inference stage, after
aggregating outputs from the ensemble. A
model called student is trained on the
differentially private predictions made by
the ensemble, and once again, per the
post-processing property of differential
privacy, the student model protects the
privacy of the training set. The student
model that can be exposed via a public API
is the final result of the PATE method. The
models in the ensemble are called teachers
and they are trained independently on
non-overlapping partitions of the training
set. There are no constraints on how the
teachers are trained but they all aim at solv-
ing the same single-label classification task.
Their predictions that are used to train the
student model are made on a publicly avail-
able dataset.

Local training with privacy guaran-
tees incurs a high overhead in software
complexity, training efficiency, and model
quality. An open question is whether the
overhead can be substantially reduced
while maintaining sufficient privacy guar-
antees.

3.3 Federation and
Collaboration during
Training

3.3.1 Collaboration without leaking
local training data

In federated training, the individual nodes
do not transmit original training data to
other nodes. Instead, information about the
models that were created using local train-
ing are exchanged. While this improves
privacy, it still enables indirect information
leakage [139, 167]. This allows membership
and other inference attacks where an
attacker tries to gain unauthorized informa-
tion about training data used. It is still an

open question how to mitigate such attacks:

14

There exist tools, such as the ML Privacy
Meter [138], to quantify the privacy risks of
models in various “white box” settings,
which can be extended to federated learn-
ing. The open questions about how to
protect privacy of the training data are:

« What is the best methodology for an
online analysis of the privacy risks of feder-
ated learning for each participant?

« How can parties share information about
their local models without significantly
leaking information about the individual
data records in their training sets?

« Randomized algorithms can provide prov-
able differential privacy guarantees, how-
ever with a potential loss in model’s accu-
racy. What are utility-preserving algo-
rithms for privacy-preserving federated
learning?

3.3.2 Secure Federated Learning
Recent works demonstrate that keeping
the training data on users’ devices in feder-
ated learning does not provide sufficient
privacy, as their private training data can
be reconstructed by utilizing inference or
inversion attack based on the model
parameters shared by users [59, 63, 139,
200]. The corresponding research chal-
lenge is

Federated learning derives a
global model from local models. Can we
design privacy-preserving aggregation
protocols ensuring that the individual
local models are kept private and nothing
beyond the aggregated global model is
leaked?

To reach this goal, secure aggregation

protocol is proposed in [26] to ensure that
the privacy of individual model parameters
is protected, both from server and other
users. To guarantee privacy, the locally
trained model parameters are masked by
pairwise randomness and sent to the server
such that the server aggregates users’
models in a privacy-preserving manner.
However, the overhead of the secure aggre-
gation protocol has a major bottleneck in
scalability to the larger number of users, as
the communication and computation over-
head is quadratic in the number of users.
This quadratic growth of secure aggregation
overhead limits its practical applications to
hundreads of users while the scale of feder-
ated learning is in the order of tens of
millons [25]. This leads to further challege:

Quadratic overhead of secure aggre-
gation protocol is the main bottleneck in
scaling secure federated learning to a large
number of users. Is quadratic the minimum
overhead for secure aggregation protocol?
How can we achieve a more efficient (e.g.,
sub-linear) secure aggregation overhead?

Another critical challenge in federated learn-
ing is the communication bottleneck, which
is created by sending the model/gradient
from the clients to the server, where the size
of the gradient estimates or model updates
that must be transmitted to the server at
each iteration, can be extremely large, e.g.,
the 50-layer ResNet network has ~26 million
weight parameters. Researchers have
proposed many approaches to provide a
communication-efficient federated learning
system. One of these approaches is to use

15

quantization which allows users to itera-
tively send small model updates [11, 101,
164, 175, 187].

It has been shown in [54] that the
state-of-the-art secure aggregation proto-
col require all users to quantize their model
updates to the same level of quantization
to guarantee correct decoding, even if they
have different transmission rates. This
severely degrades their performance due
to lack of adaptation to both the speed of
the available network (3G, 4G, 5G, WiFi)
and the fluctuation of the network quality
over time. Towards that, the authors in [54]
have proposed a segment grouping
approach that allows for secure model
aggregation while using heterogeneous
quantization.

However, the communication cost
in their approach scales quadratically with
the number of users, limiting its practical
application to only hundreds and a few
thousands of user. This brings us to the
following open and challenging problem

I Can we propose a new efficient
protocol that achieve secure model aggre-
gation with heterogeneous quantization
in federated learning while having a
non-quadratic, e.g., sub-linear, communi-
cation complexity?.

Additionally, the decentralized, distributed
and massive-scale of Federated Learning
opens up unknown attack surfaces that are
often hard to quantify in advance, such as
the presence of intermittent adversaries
during training and inference and the
possibility of malicious servers. Prior works
[88] have attempted to quantitatively
model these unknown attack surfaces and
identify new threats to federated learning
environments, but there remain numerous
unsolved problems that must be
addressed. To address this challenge in the
setting of Independent and identically
distributed (IID) data, a number of strate-
gies have been proposed recently. In this
scenario, gradient updates from the benign
clients tend to be distributed around the
true gradient, while the gradient updates

from the adversarial clients can be arbitrary
and are thus handled by applying robust
estimation techniques for aggregating the
client updates [22, 43, 60, 72, 173, 192].

In practice, however, data may not be IID
across clients [199]. This makese attack resil-
iency more challenging since even updates
from benign clients may be very diverse,
thus degrading the performance of prior
Byzantine resilient approaches in IID setting.
To tackle this conundrum, some recent
works such as [41, 80, 110] deal with hetero-
geneous data distribution in federated learn-
ing. Although these schemes achieve better
performance in comparison to the prior
approaches proposed for the IID data setting
in one or more scenarios, the performance
gap from the optimum achievable accuracy
(in the presence of attacks) is quite high. In
[153], the authors propose DiverseFL, which
is the first work that can achieve near opti-
mum accuracy in federated learning when
data is non-1ID. While [153] provides signifi-
cant empirical results for demonstrating the
gains of DiverseFL in practice, theoretical
guarantees are not provided. Furthermore,
DiverseFL requires each client to share a tiny
fraction (up to 3%) of its local dataset with a
trusted entity (such as some patients shar-
ing their health records with the NIH for
social good) to achieve attack resiliency,
which maybe undesirable in some situa-
tions. This brings us to the following open
and challenging problem in robust federated
learning:

B How can we mitigate Model Poison-
ing attacks if the local datasets if the clients
are non-lID, while providing optimum data
privacy and model perfor-mance guaran-
tees?

16

Security and privacy considerations of
secure federated learning are mainly
focused around two seemingly separate
directions: 1) protecting the privacy of indi-
vidual models against honest-but-curious
adversaries and 2) ensuring robustness of
the global model against adversarial manip-
ulations such as model or data poisoning.
Achieving them simultaneously, however,
presents a major challenge. As the local
models are protected by random masks, the
server cannot observe the individual user
updates in the clear, which prevents the
server from utilizing outlier detection proto-
cols to protect the model against model
poisoning. This brings us further challenge:

I How can we make federated learn-
ing protocols robust against model poison-
ing while preserving the privacy of individ-
ual models?

3.3.3 Federated Learning ot Scale

Federated Averaging (FedAvG) is the most
basic parallel optimization algorithm in
Federated Learning. Many variants of
FedAvg have been proposed to achieve the
more robust convergence [113, 198], the
faster convergence [32, 34, 133], and the
higher scaling efficiency [124, 161, 174].
Recently, several researchers proved that
the algorithm achieves the linear speedup
with respect to the number of workers in
parallel training under 11D data distribution
[73, 171, 193]. Unfortunately, it has been
shown that FedAvg cannot achieve the
linear speedup if the data distribution is
non-1ID [114]. That is, as FedAvg scales up,
the training converges more slowly. Feder-
ated Learning assumes a large number of
weak compute resources such as mobile

phones. In order to make it more practical,
therefore, the sub-linear speedup issue
should be addressed.

BN How to efficiently scale secure
privacy-preserving ML to hundreds, thou-
sands, or millions of users? How can this
be achieved if the data is non-IID?

FedAvg allows local clients to independent-
ly train their own models and periodically
averages the model parameters across all
the clients. While having less frequent com-
munications, this approach suffers from a
discrepancy of loss function across the
clients making the global model converge
slowly. Especially with non-IID data distri-
bution, such a discrepancy can result in a
significant drop of convergence rate. To
scale up the Federated Learning solutions
to hundreds, thousands, or even millions of
clients, therefore, itis crucial to improve the
convergence rate of FedAvg. One of the
potential solutions is to design different
model averaging methods. Instead of allow-
ing fully independent updates for many
iterations, the clients may synchronize their
states more frequently, making a practical
trade-off between the communication cost
and the convergence rate. Another potential
solution is to adaptively adjust key
hyper-parameters, such as learning rate,
batch size, and model averaging interval, at
run-time based on the local training prog-
ress. Considering the heterogenous data
distribution, the optimal hyper-parameter
settings for each local model would be likely
different across all the clients. Thus, a faster
global loss minimization can be expected by
customizing the hyper-parameters in a local
progress-aware manner.

17

3.3.4 Federated Learning on
Resource-Constrained Systems
Scaling up the deep neural network (DNN)
size (e.g., width, depth, etc.) is known to
effectively improve model accuracy. How-
ever, the large model size impedes training
on resource-constrained edge devices. For
instance, federated learning (FL) may place
undue burden on the compute capability of
edge nodes, even though there is a strong
practical need for federated learning due to
its privacy and confidentiality properties.
The challenge we aim to solve is as follows:

I How can compute resources within
datacenters help to reduce the burden for
edge devices?

To address the resource-constrained reality
of edge devices, Federated Group Knowl-
edge transfer (FedGKT) [77], a group knowl-
edge transfer training algorithm is a prom-
ising approach. FedGKT designs a variant of
the alternating minimization approach to
train small personalized CNNs on edge
nodes and periodically transfer their knowl-
edge by knowledge distillation to a large
server-side CNN. FedGKT consolidates
several advantagesinto a single framework:
reduced demand for edge computation,
lower communication bandwidth for large
CNNs, and asynchronous training, all while
maintaining model accuracy comparable to
FedAvg.

3.3.5 Automated Federoted Learning
(AutoFL)

As [94] points out, when training deep
neural networks under the federated learn-

ing setting where the data is non-lID
(non-identical and independent distribu-
tion), using the predefined model architec-
ture may not be the optimal design choice.
Since the data distribution is invisible to
researchers, to find a better model architec-
ture with higher accuracy, developers must
design or choose multiple architectures,
then tune hyperparameters remotely to fit
the scattered data. This process is extreme-
ly expensive because attempting many
rounds of training on edge devices results in
a remarkably higher communication cost
and on-device computational burden than
the data center environment.

I Can model search (AutoML) help us
optimizing the model architectures of
federated learning?

We advocate automating federated learn-
ing (AutoFL) to simplify the aforementioned
model design and remote hyper-parameter
tunning. Especially, Federated Neural Archi-
tecture Search (FedNAS) [76], which auto-
mates the design process of the model
architecture without inefficient manual
attempts, is a promising direction. Inspired
by the efficient optimization algorithm
proposed by MiLeNAS [79], FedNAS can
help scattered workers collaboratively
searching for a better architecture with
higher accuracy. A distributed AutoFL
system with FedNAS algorithm has been
released at FedML [78]. The experiments on
non-lID dataset show that the architecture
searched by FedNAS can outperform the
manually predefined architecture such as
DenseNet and ResNet.

18

3.3.6 Personalization

A defining characteristic of federated learning is that the distributed data are likely to be
heterogeneous, i.e., each client may generate data via a distinct data distribution. Moreover,
the client hardware and system heterogenity also bring challenges to achieve an efficient
federated training system. It is therefore natural to consider techniques that provide
personalized models for clients.

I How can we support personalization, i.e. provide local models that are optimized
to the local data distribution?

To enable personalization, a simple approach is to incorporate client-specific features.
These features may be naturally occurring in the data, or may take the form of some auxilia-
ry meta data. However, in lieu of (or in addition to) including such expressive features, it is
also common to consider techniques that provide personalized models for clients. We
discuss several popular techniques (multi-task learning, clustering, fine-tuning, and
meta-learning) below.

Personalized search

The aforementioned FedGKT and Fed-NAS both have the potental to achive this goal. In
FedGKT [77], the personalized model is not necessary to be of the same weights or architec-
ture. In the scope of FedNAS [79], a personalized searching algorithm can further be devel-
oped to generate personalized model architecture for each client.

Multi-task learning

To model the (possibly) varying data distributions, Xt on each client, it is natural to consider
learning a separate model for each client’s local dataset. If we view learning from the local
data on each client (or possibly a group of clients) as a separate task, we can naturally cast
such a problem as an instance of multi-task learning. In multi-task learning, the goal is to
learn models for multiple related tasks simultaneously. (Smith et al) [170] first proposed
learning personalized models in federated settings via a primal-dual multi-task learning
framework, which is applicable to convex objectives. Other multi-task learning formula-
tions used to produce personalized but related models include interpolating between local
and global models [125], regularizing the local models towards their average [55, 74] or
towards some reference point [51], and enforcing hard parameter sharing [8].

19

Clustering

Personalization can also be obtained via
device clustering (or data clustering) and
learning a single model for each cluster [65,
125, 160].

Fine-tuning and Meta-learning

Local fine-tuning is a natural approach for
personalization [194]. Meta-learning can be
mostly viewed as a specific form of fine-tun-
ing where it learns a good initialization start-
ing from which the model can quickly adapt
to new tasks (i.e., devices) with potentially
only a small number of samples. Meta-learn-
ing and federated learning are closely related
[97], and some works have also applied
meta-learning for personalized federated
learning [e.g., 35, 58, 91, 109].

3.3.7 Secure Knowledge Transfer

Sharing model parameters is the simplest
way of exchanging information about train-
ing data in federated learning. This approach
has many security and privacy shortcomings,
in addition to having a significant communi-
cation overhead. Model parameters contain a
significant amount of information about the
training data, and sharing them leaks infor-
mation to curious participants and aggrega-
tors. Also, robust aggregation of high-dimen-
sional vectors is a challenging problem. Mali-
cious participants are able to successfully
manipulate the aggregated model by making
small targeted modifications to their model
updates, which remain undetected by robust
aggregation algorithms. A potential solution
to these problems is to make use of different
knowledge transfer algorithms, which are
inherently more privacy-preserving and
robust [33].

BN How to transfer knowledge between
participants with provable guarantees for
privacy and robustness with respect to
adversarial parties?

3.3.8 Decentralized Collaborative Priva-
cy-preserving Machine Learning .

A general federated learning system uses a
central parameter server to coordinate the
large federation of the participating users.
This cetralized topologies (corresponding to
a star graph) often significant bottleneck on
the central server in terms of communication
bandwidth, latency and fault tolerance. To
address this bottleneck, decentralized (serv-
er-less) framework based on secure
multi-party computing (MPC) and homomor-
phic encryption (HE) have been proposed for
privacy-preserving machine learning. These
approaches, however, fall short of addressing
the scalabiltiy of privacy-preserving machine
learning, i.e., their constructions are limited
to three or four parties [135, 136, 185]. This
leads to research challenge:

BN How can multiple data-owners
(beyond 3-4 parties) jointly train a machine
learning model without a central server
while keeping their individual datasets
private from the other parties?

21

3.4 Classification/
Inference

3.4.1 Protection against Adversarial
Examples

I How can the phenomenon of adver-
sarial examples be precisely characterized
and what makes attacks using them
successful?

There are many important problems that
remain open in adversarial machine learn-
ing. The first oneis that it is still unclear how
to precisely define adversarial examples.
The certified defenses against the most
widely accepted definition of e-bounded
adversarial examples ensure that within the
€ distance from a given input, the label
remains constant. There is another notion
of adversarial examples that are called the
invariance-based adversarial examples
[178]. They are &€ bounded from the initial
input, however, the real label of the
perturbed input changes within the ¢ ball.
The robust classifier is too constant in its
predictions and incorrectly assigns the
initial label that is no longer correct.

-

Figure 3: Randomized smoothing. The
initial decision boundaries (left) and the
smoothed decision boundaries (right).

The community has not reached a consen-
sus on the question of what causes the
adversarial examples. It is another open
challenge. Multiple contemporaneous lines
of work studied different aspects of this
problem, postulating linearity and
over-parametrization as possible culprits
[19, 69]. One of the intuitive explanations is
that adversarial examples are caused by
small measure regions of adversarial class
jutting into a correct decision region. This
model is commonly accepted because the
inputs remain correctly classified when
perturbed with small random noise (e.g.,
Uniform or Gaussian). However, we can also
easily find the attack vector that moves the
inputs to decision regions where they
become misclassified. This motivates a very
natural defense strategy. The idea is to
smooth the decision regions by adding
Gaussian noise to the input and selecting
the majority class of the classifier over this
noise [46, 104, 108]. The dotted circles in
Figure 3 (left) are the level sets of the Gauss-
ian noise distribution centered at the input
data point. The initial decision boundaries
of the classifier are rough and with many
cones. After the randomized smoothing
procedure, shown in Figure 3 (right), the
boundaries are more regular and the incor-
rect decision boundary lies much further
away from the data point, which makes
finding the adversarial examples impossi-
ble within the certified region. Randomized
smoothingis a provable adversarial defense
that scales to ImageNet.

I How can one construct effective
defenses against adversarial examples
that are robust? Can such defenses be
theoretically validated?

Unfortunately, the provable defenses
against adversarial examples perform
substantially worse in practice than the
best empirical defenses based on adversar-
ial training (approximately 2X lower robust
accuracy). The idea behind adversarial
training is to combine the training process
with the generation of adversarial exam-
ples. For each input, we find an adversarial
example that is then fed into the training
process with the correct label. We use
over-parameterized deep networks for
standard training but these large models do
not have enough learning capacity for
adversarial training. Using the adversarial
examples during training smoothes the
neighborhood of natural data, which
consumes much more model capacity. Con-
sequently, models with higher learning
capacity can be trained with adversarial
examples more effectively and enable more
robust classification. However, we observe
diminishing returns for larger models. Deep
or wide convolutional networks with a
tremendous number of parameters are
prohibitively difficult to optimize. The main
problems in optimization of such networks
are vanishing, exploding, or noisy gradi-
ents, cliffs, plateaus, saddle points, and
other flat regions. The development of new
vision architectures that train more
efficiently on these datasets becomes
increasingly important and more work is
needed in this area. The Vision Transformer
is a preliminary step towards generic, scal-
able architectures that can solve many
vision tasks, hopefully robustly, and proba-
bly tasks from other domains as well [52].
Another solution to the demand
from high learning capacity for adversarial
training is to utilize the capacity judiciously.
This can be done by reweighting the train-
ing data points. The method assigns larger
weights to the adversarial data whose natu-
ral counterparts are closer to the decision
boundary. Analogously, smaller weights are
assigned to adversarial data points that
were found starting from natural points
further away from the decision boundary.

This method was shown to significantly
improve standard adversarial training
[195]. With ever-increasing dataset sizes,
we still need better methods to improve
robustness.

One of the issues with adversarial
training is that it overfits to the specific
attack used during the creation of the
defense. Even worse, using the specific
attack during training can make the models
even more vulnerable to other types of
attacks. To overcome the problem, one
proposal is to train the model on the stron-
gest adversarial example for a given input,
this is called the max strategy [180]. The
caveat is that the max strategy lowers the
accuracy on clean data and further increas-
es the gap between accuracy on clean data
vs robust accuracy. The open question is if
we have to sacrifice the performance for
legitimate users to train robust models.

I How can one ensure that defenses
against adversarial samples have suffi-
cient coverage and can adapt to potential
changes in attack strategies?

The bottom line is that adversarial training
is rather a brute force method and requires
us to train on many possible perturbations
to be robust. In practice, the computational
cost of such a defense is high. It is also diffi-
cult to construct a theoretical model of how
the adversarial examples are crafted [68].
Adversarial examples are solutions to an
optimization problem that, for example, in
the case of neural networks, is non-linear
and non-convex. Thus, it is very hard to
make a theoretical argument that a given
defense will be robust against all possible
attacks. Adversarial examples require
models to produce good outputs for every
possible input. However, the number of
possible inputs is humongous, and usually,
the machine learning models work well on
a small part of all the possible inputs. Final-
ly, current defenses are not adaptive. For
instance, if an adversary detects that a
defense masks gradients then he or she can

23

switch from a white-box attack that leverages the gradient to a black-box attack that is a
gradient-free method. Thus, if a given defense closes some vulnerabilities, it usually leaves
others open. An adversary who uses an adaptive attack seems to have the advantage in this
case.

3.4.2 Private inference

The goal of the private inference is to enable two parties to run a neural network inference
without revealing either party’s data. We consider a user who wants to obtain model
outputs for his or her data and a service provider who exposes a model inference service.
The standard non-private inference on machine learning models compromises one party’s
privacy, where either the user sends sensitive inputs for inference, or the service provider
has to send its proprietary machine learning model to the user. Private inference poses two
research questions. The first research question aims to keep the inputs private. One exam-
pleisto use a public classification service to process some medical data while guaranteeing
the privacy of this data:

24

I Can an inference service (potentially malicious) efficiently offer its
services to an honest user while guaranteeing privacy of the user’s data?

The second research question aims to protect the model against leakage:

I Can an (honest) inference service efficiently offer its services to a (poten-
tially) malicious set of users while guaranteeing that its proprietary model is not

leaked?

In the context of neural networks, private
inference typically uses homomorphic
encryption (HE) or secure multi-party com-
putation (MPC) methods. Pure homomor-
phic encryption is computationally expen-
sive and does not support common
non-polynomial activation functions, which
leads to the leaking of preactivation values
(feature maps at hidden layers). It can be
partially ameliorated by using linear
approximations, however, this causes a
drop in accuracy (or other performance
metrics of the models). On the other hand,
tools that use solely secure multi-party
computation protocols avoid leaking
pre-activation values as they can guarantee
data confidentiality on non-polynomial
activation functions but may compromise
the security of the model architecture by
leaking activation functions or model struc-
ture (See also 3.5.1). While solutions based
on MPC are less costly in terms of computa-
tional resources, they typically require
much more communication between the
parties. Recent lines of work on private
inference propose hybrid schemes that
integrate different privacy preserving tools
(e.g., several MPC protocols, or MPC and
HE). These hybrid frameworks combine the
benefits of underlying protocols to maxi-
mize performance and reduce costs.

Zhang et. al. [196] provide a survey
of state-of-the-art solutions for private
inference, along with a comprehensive list
of libraries that implement basic HE and

MPC primitives. Specifically, libraries such
as nGraph-HE [24] and CryptoNets [53]
provide pure homo-morphic encryption
solutions to secure neural network infer-
ence. nGraph-HE, an extension of graph
compiler nGraph, allows secure inference of
neural networks through linear computa-
tions at each layer using CKKS homomor-
phic encryption scheme ([24, 44]. Cryp-
toNets similarly provides private inference
using the leveled homomorphic encryption
scheme, YASHE [53]. Several libraries
employ primarily MPC methods that rely on
ABY [50], a tool providing support for
common non-polynomial activation func-
tions in neural networks through the use of
both Yao’s garbled circutis [191] and the
protocol of Goldreich-Micali-Wigderson
(GMW) [67].

Recent secure prediction systems
that use hybrid protocols and do not rely on
trusted third parties are, for instance:
Gazelle [93], MP2ML [23], and Delphi [132].
These systems execute linear computations
(e.g., convolutional or fully-connected
layers) via HE and non-polynomial activa-
tion functions (e.g., ReLU or MaxPool) via
MPC. Gazelle introduced several improve-
ments over previous methods for private
inference largely related to latency and
confidentiality. In particular, the Gazelle
framework provides homo-morphic
encryption libraries with low latency imple-
mentations of algorithms for single instruc-
tion multiple data (SIMD) operations,

25

ciphertext permutation, and homomorphic
matrix and convolutional operations, perti-
nent to convolutional neural networks.
Gazelle utilizes kernel methods to evaluate
homomorphic operations for linear compo-
nents of networks, garbled circuits to com-
pute non-linear activation functions confi-
dentially, and additive secret sharing to
quickly switch between these cryptograph-
ic protocols. MP2ML employs nGraph-HE for
homomorphic encryption and ABY frame-
work for evaluation of non-linear functions
using garbled circuits. Delphi improves
Gazelle’s online runtime by moving heavy
cryptographic operations to an offline
phase, during which model weights are
secret shared. In the online phase when the
client’s input is available, linear operations
are simply performed over secret shared
weights.

Arecent line of work considers modi-
fying and adapting neural network architec-
tures such that the resulting network is
more amenable to secure computation.
CryptoNAS [64] and DeepRe-Duce [89]
design RelLU efficient networks for the
private inference task. Delphi [132] and
SafeNet [118] reduce the cost of ReLU layres
by judiciously replacing them with polyno-
mial approximations. Binary Neural
Networks (BNN) have also shown compel-
ling performance for private inference by
allowing specialized and highly optimized
cryoptographic protocols [84]. There is a
substantial effort in the community to
improve private inference since its perfor-
mance cost in comparison to the standard
inference is substantial (10 or 100X higher).
This calls for new solutions:

I Can we create customized cryp-
tographic solutions, search for crypto
friendly architectures, or better utilize the
underlying hardware to accelearate the
private inference?

3.4.3 Collaborative Classification

We recognize that federated learning is
limited and only fits a particular setting
where a central party is trusted by many
participants. Federated learning only
provides confidentiality, not privacy. In
other words, while participants of a federat-
ed learning protocol do not share their data
directly, the gradients they share still
contain private information initially found
in the data. Federated learning is also limit-
ed to the setting where a central party
wishes to learn from many participants: this
forces all participants to share a common
architecture which is decided upon by the
central party. This begs the question of
whether a collaborative form of machine
learning can be achieved where the partici-
pants are all on an equal foot and learn from
one another rather than simply contributing
to a central party’s model. We refer to this as
collaborative ML in the following. This raises
several technical challenges: how can we
aggregate the predictions of a heterege-
neous ensemble of models? How can we
aggregate these predictions while bounding
any privacy leakage? can this aggregation
be performed in a fully distributed fashion?
While progress in cryptographic primitives
for machine learning and differentially
private machine learning lay the founda-
tions for such a collaborative approach to
machine learning, achieving collaborative

classification requires non-trivial assemblage of these techniques. One direction we propose
to explore is to augment PATE [148, 149] with cryptographic primitives (HE and MPC) to obtain
a protocol which is both confidential and differentially private and allows for collaborative
learning among a limited number of participants: this is the direction we outline in a prelimi-
nary publication where we name this protocol CaPC [45].

CaPC (Confidential and Private Collaborative) ML guarantees the protection of private
information (including personally identifiable information) contained in training data using
PATE and its associated differential privacy guarantees. Thus, it prevents all attacks captured
by the framework of differential privacy for reasoning about privacy: this primarily includes
inferring sensitive information about the individual data records from the training set. For
instance, it protects against membership inference attack (which can determine if a given data
point is part of the training set of a model) or the attribute inference attack (which infers
features of the training data, or statistical information about them). In addition to this differen-
tial privacy guarantee, CaPC preserves the confidentiality of its inputs using hybrid (HE with
MPC) private inference. Additionally, CaPC limits the leakage of information about the models
used in each of the collaborating parties.

There are three main actors in CaPC: a querying party, answering parties, and a privacy
guardian. The collaboration is enabled between any number of parties and each party can act
as querying or answering party. If a querying party wants to label its new data points, it
encrypts them and sends for inference to each answering party. The answering parties do
private inference and their predictions are aggregated using the privacy guardian which adds
noise to answer the query with differential privacy. Encryption of the data provided for infer-
ence protects the confidentiality, whereas noise added by the privacy guardian ensures differ-
ential privacy for the data on which the answering parties trained their models.

This approach provides many advantages: e.g., it provides confidentiality and differen-
tial privacy, it is applicable in settings with few participants whose models are trained with
heteregeneous architectures, allows for improving each participant’s model etc. However,
several research challenges need to be tackled to further the adoption of CaPC in practical
settings. In particular, the use of cryptographic primitives for confidential (i.e., private in the
sense of cryptography) inference introduces a computational overhead. This begs the ques-
tion of whether introducing hardware solutions like trusted execution environments could
help alleviate some of the computational overhead. Furthermore, the current experiments
indicate that about a hundred parties are sufficient to provide good differential privacy guar-
antees. Thus, one of the main questions is:

I Could we reduce the number of collaborating parties to few participants and be able
to preserve their privacy at a relatively low cost?

The current trust model assumed by CaPC is already advantageous but still assumes that
participants place (limited) trust in a third party (called the privacy guardian). Future research
will be able to further lighten assumptions made by CaPC’s trust model to enable its deploy-
ment in settings where a third party cannot be trusted. Other aspects to consider are:

B Which hardware and software innovations will con-tribute to decreasing the trust
needed in the third party or altogether remove the third trusted party from the CaPC proto-
col? Related to this, what techniques can help understand and protect the confidentiality
and privacy of honest participants when more than one of the collaborating parties collude
for malicious purposes?

27

1]
a
1
B
:l
-.
1}
0t
aa
8,
1
a
L
a
a

3.5 Protecting Intellectual Property and
Forensics

3.5.1 Motivation
As we saw in Section 2.3.2 confidentiality of machine learning models isimportant because,
in many cases, they constitute commercially-sensitive intellectual property. However, in
many applications, these models cannot be commercially exploited without exposing them
to attackers, whether during the training or inference phases.

There has been a line of work on IP protection of pretrained DL models. A unified
DNN watermarking framework is proposed in [48] that supports model ownership proof in
both model distribution (white-box) setting and MLaa$S (black-box) setting. An extension to
model usage tracing is demonstrated in [39] that adapts anti-collusion fingerprinting for DL
models. The paper [37] further provides a hardware-bounded IP protection solution for DL
devices leveraging the idea of on-device attestation. A parallel line of research on DL IP
protection targets to prevent model extraction attacks [103, 181]. The paper [90] suggests
an entangled watermarking method as a defense against model extraction. Instead of
focusing on the pretrained model weights, the paper [123] considers the original dataset
used for training as the valuable IP and designs a technique that allows the owner to claim
authorship on model copies obtained via model extraction.

-
~e
-

g A D R D U iy

- -~ B~ - -l

-0 po -0-0- 0 L se - —m—e .

— - .
B . T

-——@-00 -
- - =00 -
e~-0 88~-0

b

-3
-

RS- mrs

e~~8~-0--0
a-00-00E-68

B =0 =0 -===0~- ==

It may not be possible to completely
prevent model extraction, where an attack-
er queries the model and uses the informa-
tion gained from the responses to construct
their own surrogate models. Often an
attacker will be in physical possession of a
device that contains the model, allowing
them near-unlimited black box access.
However, if the model can be attributed
back to its source, this can deter the attack-
er from using the extracted model outside
of a private setting.

The goal of deterrence is to
persuade the adversary that the costs of
some undesirable action outweigh the ben-
efits. This can occur in two ways:

« Reducing the benefit that the adversary
gains by model theft by degrading the qual-
ity of the stolen model. This is a proactive
approach that seeks to prevent high-fidelity
model theft in the first place.

« Increasing the cost suffered by the adver-
sary in mounting a model theft attack. This
may involve measures such as increasing
the cost of model queries, or by detecting
attacks in a way that allows retribution by
way of commercial or legal sanctions.

Each approach has its own challeng-
es; reducing the quality of stolen models
inevitably reduces the accuracy of the
model for legitimate users. Deterring model
theft by increasing the cost to the adversary
requires an accurate accounting of the
adversary’s costs and benefits in order to be
effective. How best to deter model theft
therefore remains an open question.

I (How) Can we deter model theft
and model extraction in a way that is easy
to deploy, and does not conflict with priva-
cy-preserving machine learning?

3.5.2 Detecting Model Ownership

Deterrence can be achieved by ensuring
that if one organization violates its confi-
dentiality commitments by distributing the
model into third parties, then other owners
can prove this using techniques such as
watermarking or fingerprinting [7, 14, 37,

39, 48, 119]. However, these methods are
applicable only in the centralized ML, where
a central entity, such as the model owner,
does the training itself. How to apply water-
marking or fingerprinting techniques when
there could be multiple owners (e.g.,
cross-silo federated learning) still remains
as a question.

I How to design strategies for an
ownership demonstration that can be
carried out in federated learning systems?

It is difficult to demonstrate ownership or
prove violations of confidentiality in many
common federated learning settings. For
example, in some large-scale federated
learning settings a large number of clients
participate in the training and have the
right to use the model, but not to redistrib-
ute it. In this case, the large number of
clients makes it extremely challenging for a
central entity to identify who has improper-
ly redistributed the federated learning
model.

In the peer-to-peer setting, where
there is no trusted aggregator that can
ensure proper watermarking or fingerprint-
ing, this is even more challenging. Never-
theless, as peer-to-peer ML training
becomes more popular, the demand for
such solutions will only increase, and own-
ership demonstration mechanisms will
need to accomodate this approach.

3.5.3 Proving Model Ownership

In Section 3.5.1, we proposed deter-
rence by ownership proofs as a mechanism
for the protection of machine learning
models. In addition to finding models that
are owned by oneself, an important addi-
tional goal is to prove ownership to others.
Without such evidence, deterrence is weak-
ened because a potential violator might
reason that their transgressions will not be
punished since decision-makers cannot be
convinced to impose commercial or legal
sanctions. In this section, we explore what
form this evidence might take, and how it

29

can be obtained using forensic techniques, which we define broadly to mean techniques that
involve examination of models and inference attempts in order to reveal the history of the
model under examination.

One approach to this is for contributors to a system to try to prove that some model
includes their contribution; they can then demand that the possessor of this model account
for how it came into their possession. They can then follow the trail back until they find either
some illegitimate usage of their contribution, or they conclude that the model was obtained
without any violation of trust.

How can dataset owners and other stakeholders prove their contribution to a
machine learning model?

However, identifying their contribution is a non-trivial task, particularly when the model has
been subject to multiple transformations since the original contribution, and doing so reliably
remains an open research question.

Identifying that misuse has happened at some point in the pastis not enough, as it may
provide impossible to force all parties in the chain to truthfully account for their possession of
the model in question. It is therefore desirable to forensically identify violators without the
cooperation of subsequent users, while allowing those who have obtained a model legitimate-
ly to be confident that the real violator can be identified, so that they will not be implicated in
misuse that took place earlier in their supply chain.

How can the misuse of machine learning models be attributed to the responsible
party?

How this can be achieved remains an open research question, particularly when there are
many stakeholders making diverse contributions to an ML-based system, each of whom wish
to make a reliable ‘imprint’ in the eventual model that can be used to demonstrate the history
of their contribution as it passes through supply chains.

very different. TEEs for embedded systems
[27, 56, 100, 144, 172] often assume the
absence of virtual memory and caches
while satisfying real-time capabilities [27].
TEEs for servers [1-4, 49] support trusted
services within trusted virtual machines.
TEE for end-user devices [12, 13, 81, 86, 126]
aim at flexibility for a wide range of applica-
tions.

4.1.1 End-to-end Integrity of Dota and
Models

In ML TEEs can e.g. be used to process sensi-
tive data, such as privacy-sensitive training
data for ML or to protect ML-models repre-
senting companies’ IP. However, the integri-
ty of the processed data can only be
ensured if the data feed into the TEE is
correct, i.e., if all previous processing steps
of the data also provide integrity guaran-
tees. This leads to important challenges:

How to build a distributed system
that can ensure data integrity for the
entire data-lifecycle assuming that not
every device is equipped with TEE capabil-
ities and can provide guarantees for the
correct processing of data.

Beside the correct processing of data in a
distributed system, the correctness of data
must be ensured already during its genera-
tion or collection. This requires that sensors
and other data-generators must be secure
and enable end-to-end data-integrity guar-
antees for their output to serve as input for
TEEs.

How to provide integrity guaran-
tees for data during their initial generation
and pass these data (preserving the integ-
rity guarantees) to a TEE?

4.2 Cryptographic Accelerator for

Privacy-preserving federated learning

Developing lightweight, privacy-preserving
ML (PPML) inference approaches requires
the designer to explore optimizations in
both algorithm and hardware level. We
discuss four challenges of designing accel-
erators for efficient PPML below.

The first challenge in designing
hardware accelerators for privacy-preserv-
ing federated learning (FL) is assessing the
hardware resources currently available on
Intel processors and identifying potential
scope of improvement. Moreover, our initial
study has revealed that for shorter compu-
tations, the access time of the accelerators
like QAT may become dominant over the
actual computation time. To mitigate this
issue and obtain the best possible perfor-
mance, the computations need to be
performed in large batches. This will require
adapting the current software based imple-
mentations to exploit the inherent parallel-
ism. Furthermore, we need to profile the
batch size vs runtime characteristic to
develop an automated methodology that
will help decide on the best possible config-
uration of the workload.

The performance of different cryp-
tographic primitives vary according to the
required computation. It is common prac-
tice to adopt a mixed protocol solution
where the best protocol is chosen for a
particular task and secure conversion
between them is performed when neces-
sary. Designing hardware accelerators for
individual primitives comes up with their
own sets of challenges - reconfigurability
based on the different security/perfor-
mance parameters, management of the
increased memory requirement caused by
secure execution, reducing the effects of

hardware constraints on the memory
access, to name a few. On top of these,
deployment of a mixed protocol system on a
hardware accelerator makes the manage-
ment of different primitives a daunting task.
There are two possible approaches. In the
first approach, each primitive is placed on a
separate chip. Following this approach, the
communication and conversion between
the protocols needs to be managed in the
software which may result in unacceptable
increase in communication between the
processor and accelerators. In the second
approach, all the primitives reside on the
same chip. This means that a large part of
the control logic has to be on chip and may
not have the flexibility of a software imple-
mentation. However, combining different
primitives on the same chip brings the
opportunity to save resources by merging
some common lower level computations.
While this approach has the potential to
significantly reduce the resource usage,
identifying such computation, and in some
cases co-optimizing the different primitives
to increase the intersection of their respec-
tive operations poses a significant chal-
lenge.

A holistic private Al application has
three components: the Al algorithm, the
cryptographic algorithm that ensures the
privacy of the Al model, and the underlying
hardware computing platform. However,
existing design methods for Al applications
mainly focus on the first component while
leaving the integration of cryptography as
well as hardware acceleration as an after-
thought. Performing co-optimization of
algorithm, cryptography, and hardware is
challenging for the following reasons:

32

(i) The Al model needs to be modified to support the selected cryptographic primitive; (ii)
Cryptographic algorithms are typically computation-expensive, thus both the cryptographic
primitive and its hardware implementation needs to be optimized to achieve an efficient solu-
tion; (iii) To facilitate practical deployment, an end-to-end framework that simultaneously
incorporates ML algorithms, cryptography, and hardware is required.

After a private Al model is deployed on the intelligent device, it is still susceptible to
hardware-level attacks that disturb the normal execution of ML applications. For instance,
memory trojan attacks that change the original weight parameters of the ML model might be
performed to degrade the accuracy of the Al model. On the one hand, it is challenging to
detect the existence of such hardware-level attacks in real-time due to the enormous parame-
ter space of ML models. When the attack is detected, we also need an efficient solution that
repairs/patches the model to obtain the correct output. On the other hand, designing a robust
ML model that is resistant to parameter perturbation attacks is difficult since the decision
boundary of the model is highly complex.

L.3 Novel hardware mechonisms for efficient
protection of Al/ML

Cryptographic tools such as MiniONN [116] and CryptoNets [53] have been proposed in order
to allow inference while providing confidentiality guarantees to both data owners and model
owners. However, this approach incurs a significant performance penalty, making it desirable
to consider non-cryptographic approaches that can provide strong guarantees of privacy with
minimal performance overhead

I Can we design hardware mechanisms that can provide a level of privacy for Al com-
parable to the use of state-of-the-art cryptographic techniques but with much greater
efficiency?

One approach is to replace cryptography with a combination of remote attestation and
fine-grained hardware-enforced access control, preventing sensitive data from being exfiltrat-
ed in the event of a compromise.

Providing such strong guarantees of privacy is difficult, even with hardware support;
the complexity of modern processors has led to hardware-related vulnerabilities such as Melt-
down [115] and Spectre [99]. Moving from cryptography to hardware-enforced access control
exposes private data to these vulnerabilities. Despite the difficulty of implementing such
schemes, the potential performance gains make this a promising line of research.

In this section we explore how the envisioned research will be validated in
real-world deployment scenarios and how we can provide software frame-
works to simplify deployment on a larger scale.

5.1 Research on Risk Sharing through
Exchonge

In the following, we elaborate on use cases that will be developed within the
Private-Al Institue to demonstrate the applicability of the developed security
and privacy solutions for distributed Al in practice.

Besides optimizing and training ML for specific use cases, our case
studies aim to drive and validate our research:

What are the requirements of specific real-world ML usage scenari-
os? To what extent do our research results and tools demonstratably satis-
fy these requirement? What gaps and further improvements can be identi-
fied?

Sharing information about cybersecurity risks that were observed by other
organizations or at other locations can greatly improve the security of com-
puting systems through more effective threat detection and by means of
reducing incident response time and increasing awareness about newly
emerging threats. Furthermore, the risk exchange framework can enable
more experienced entities with a sufficient level of security expertise to share
their knowledge about attacks and defense strategies with less experienced
parties.

Nowadays, information exchange about security threats can be
achieved through the use of Cyber-Threat Intelligence (CTI) systems [140]
that rely on sharing of security-relevant data. For example, shared data may
include the record of previously observed incidents, e.g., when they took
place, what organizations and platforms were affected, what kind of vulnera-
bility was exploited, and what was the attack outcome. Other examples of
shared information are malicious IP addresses, suspicious domain names,
and malware signatures. However, according to a study [152] on 1000 IT
professionals, around 70% of the respondents mentioned threat intelligence
is too complex to provide actionable intelligence.

The Private-Al Institute will explore a new kind of risk information to
be shared by the CTI system, which will be expressed in a form of machine
learning models:

How can Cyber-Threat Intelligence systems use distributed machine
learning to predict risks without leaking specific information about past
incidents?

34

The goalis to improve automation and facil-
itate fast propagation of threat intelligence
information and its effective utilization by
allinvolved parties. The challenges in realiz-
ing such a system lie in various security and
privacy concerns of involved entities, who
might be mutually untrusted. For instance,
attack vectors such as data and model
poisoning and model sabotage are relevant
and need to be taken into consideration.
Furthermore, exchange of ML models may
leak information about training data, which
is crucial if such datainlcudes privacy-sensi-
tive information.

5.2 Towards Improved
Malware Detection
using Federoted ML

5.2.1 An Introduction to Maolware
Analysis, Detection, and Classification.
There is an increasing volume of new mal-
ware every year. For this reason, effective
and fully automated malware detection is
an important requirement to guarantee
system safety and user protection.

Our goal is to develop automated
procedures that are able to detect if a file is
malware and identifies the family to which
it belongs. There are various ways to
achieve these objectives going from human
reasoning to fully automated techniques. A
very popular approach is based on the use
of distinctive information known as a signa-
ture. The signature of a malware is its DNA.
This is what we can use to recognize it
among a set of cleanware as well as to
distinguish it from other malware.

Signature-based malware detection
normally proceeds in two phases. In the
training phase, a number of samples of the
malware to be detected are obtained. Then,
a database of clean binaries, or goodware,
that should not be detected as malware, is
built. The signatures of each malware and
goodware samples are extracted and com-
pared to try to find common characteristics
of the malware signatures that do not

appear in the goodware signatures. The
characteristics that distinguish the malware
from the goodware are used to build a
signature for the malware. In the classifica-
tion phase, this signature is then compared
against similar signatures of malware to
determine whether the unclassified binary’s
signature indicates malicious behavior.

The main challenges to implement
the procedures above are (1) to acquire
databases of both malware and cleanware,
(2) to develop methodologies to compute
signatures that are powerful enough to
distinguish malware from cleanware, (3) to
extract and generalize signatures so that
they can detect larger malware families
beyond the specific instances inside the
training set, and (4) to efficiently enable
malware detection using the obtained
signatures.

We now examine the related research ques-
tion in detail.

5.2.2 Improving Malware Signatures for
better Detection.
Our first research question is as follows:

How to design an efficient, correct,
and precise procedure for malware detec-
tion? How to generate representative
signatures from existing families? How to
detect such signature in a given file?

A series of recent works (see [21] for a
survey) have proposed a new approach to
malware classification. The methodology
uses concolic execution [71, 165] to extract a
symbolic representation of many behaviors
of a malware sample. These behaviours are
used to reconstitute the System Call Depen-
dency Graph (SCDG) of the sample. The
approach is repeated for each malware of a
given family, each generating an SCDG for
that malware. The GSPAN [189] machine
learning algorithm is used to idenfity
common features between these SCDGs.
Such commonalites become the signature
for the malware family that indicates the
key common behaviour. When a new

35

sample needs to be examined, one uses
concolic execution to extract its SCDG and
then apply GSPAN on both this SCDG and
the SCDG of each family. The new sample
belongs to the family for which GSPAN finds
enough similarities. Observe that other
machine learning algorithms can be used.
Observe also that concolic analysis can be
used to directly assist malware analysists in
their daily life [17]. Consequently, any
improvement in the global methodology
will also have a positive impact on this prac-
tical work. Recent results have showed that
the learning-based approach can outpe-
form existing malware analysis techniques
on a wide range of case studies (see [21,
158] for illustration). The use of symbolic
analysis permits to overcome the limit of
static analysis based machine learning
outlined in [9]. We believe that those results
are just the beginning of a promising
research that will drastically improve mal-
ware detection. This opens the door to
explore a wide range of research and appli-
cation opportunities exploiting private
federated learning.

The above procedure contains
several implementation secrets and chal-
lenges that open a wide range of research
directions. For example, due to the curse of
dimensionality concolic execution can only
extract a representation of certain behav-
iors of the system. Thus fine tuning the
procedure so that it extracts behaviors of
interest that are suitably representative for
the sample program’s behaviour can vastly
improve malware detection and classifica-
tion outcomes. In addition, learning algo-
rithms such as GSPAN should be parameter-
ized in an appropriate way to provide
suitable generality without over-fitting. A
preliminary study of those two research
questions has been presented in [163].

5.2.4 Privacy-preserving Collaboro-
tion for Malware Detection using ML

BN How to guarantee that several
contributors can participate without forc-
ing them to reveal their secrets? How can
we guarantee that contributors behave in
an honest way and do not poison the
resulting model?

To complement the above directions, a
federated extension of this machine learn-
ing procedure can be developed. This can
take advantage of the possibility for
contributors to exchange their behavioural
models (currently SCDGs) but not the
procedure which allowed the models to be
built and even less the malware database
used. The idea is classic in the sense that
each participant will train their own model
and then the results will be aggregate in a
central way.

What is more difficult is to define
this aggregation knowing that individual
models may be trained on wide range of
architectures and types of files. Thus, even
detals of the model that is to be shared may
need to account for privacy of the sharer.
Again, metrics of success are clear: the new
approach shall be robust to adversarial
attacks and guarantee the privacy of each
participant. Observe that this approach has
already been considered for the very
restricted case of machine learning applied
to android malware detection [61]. Authors
observed that, in addition to adversarial
attacks, one major challenge will be to
guarantee that local data are not corrupted
[112].

5.3 Deployment
Challenges

5.3.1 Availability of Data for Training
Training deep learning models require large
amounts of data, which might be challeng-
ing to achieve in practice due to privacy
concerns and regulations such as General
Data Protection Regulation (GDPR) in the
European Union. The data collection is
especially challenging at the time of model
development, when the users cannot bene-
fit from the developed model yet and,
hence, have no incentive to provide their
consent for data collection. Oftentimes
such a collection needs to be performed
with the help of paid test users, which natu-
rally limits the amount of data that can be
collected.

The problem related to lack of data
may even appear for large datasets. In
particular, if the dataset is imbalanced, i.e.,
the number of observations per class is not
equally distributed, the problem of lack of
data will affect the minority class, for which
there are fewer samples. The problem of
imbalanced data can appear in such appli-
cations as detection of rare diseases or
natural disasters like earthquakes.

These challenges can be adressed with the
help of open source datasets (if such data-
sets exist for the target task), through the
use of syntethically generated data, and by
means of applying transfer learning meth-
ods. Synthetic data can be created with the
help of data generation algorithms, such as
agent-based modeling that explains an
observed behavior, and then reproduces

37

random data using the same model.

Transfer learning enables one to train an initial model on the related task for which the
sufficient amount of data is available, and fine-tune the model with the training using small
amount of data on a target task. That’s said, transfer leanrning transfers knowledge from the
domain of related task to the domain of target task, and reduces the amount of data required
for training in the target domain. In security applications, transfer learning was already
applied to solve the imbalanced data issue in intrusion detection [62], vulnerability detection
(117,120, 142] and loT attack detection systems [184].

5.3.2 Lack of Transparency

Complex machine and deep learning algorithms, also referred to as black-box models, lack
transparency meaning that it is often hard to explain why they made a certain prediction. The
more complex the model is, the more adjustable model parameters one needs to configure,
and there is no one-to-one mapping between input features and parameters. As a result, it
may be challenging to figure out what an algorithm learned during training and which of the
data points have more significant influence on the outcome of classification.(LRP) method
[14] outputs a heatmap over the input features that indicates their relevance to the model
output. DeepLIFT [146] framework additionally treats positive and negative contributions
differently, which improves effectiveness in revealing dependencies. Most approaches were
evaluated using Convolutional Neural Networks (CNNs), while their applicability to other
networks remains open.

Lack of transparency limits the explainability of ML models - or, the extent to which
their internals can be understood by humans. For instance, deep learning models for vulnera-
bility detection in smart contracts [82, 120, 201] can classify contracts into vulnerable and
non-vulnerable categories and even detect vulnerability types, yet do not help to understand
why such a classification was made and, hence, to identify the vulnerable code that needs to
be fixed.

The area of research that deals with improving the explainability of ML models is
Explainable Al (XAl). It aims to develop methods for black-box models to make it possible to
understand the reasons behind model predictions. For instance, the Local Interpretable Mod-
el-Agnostic Explanations (LIME) method [154] outputs a binary vector along with a classifica-
tion decision indicating if an input feature contributed to classification.

5.3.3 Bias in Training Data and Fairness

Training on biased data is likely to result in a biased model, hence it represents a serious
deployment challenge. There are many reasons for having a bias in data, as systematically
analyzed by Mehrabi et al. [129]. For instance, using imbalanced data can create biases against
minority classes. Furthermore, datasets are collected and processed by humans, who may
bring their stereotypical and prejudicial bias in data. Additionally, bias can be introduced
through poorly designed data collection surveys that could lead participants to answer ques-
tions wrongly (e.g., when they lack the knowledge to answer correctly or do not want to
provide the correct answer). Moreover, bias may be caused by incorrect selection of samples
for training from a large population, which may result in a dataset that does not adequately
represent the world the model will operate on.

The challenge of bias in training data is tackled by the area of research for fair machine
learning. Numerous methods were developed for solving problems of fairness in different
domains of machine learning, such as classification [66, 75, 95, 102, 131], clustering [15, 42],
and adversarial learning [107, 188].

38

learning. Numerous methods were devel-
oped for solving problems of fairness in
different domains of machine learning,
such as classification [66, 75, 95, 102, 131],
clustering [15, 42], and adversarial learning
[107, 188].

The challenge of bias in training data
will likely get more significance in the
future, especially because more and more
people without deep technical knowledge
are involved in building machine learning
models and deploying them in a large
variety of applications. This trend increases
the risk of biased models penetrating criti-
cal areas of our society, such as medicine,
law, and security applications.

5.3.4 Concept Drift

Concept drift is a phenomena that affects
scenarios where the probability distribu-
tions of a popoulation from which the data
set was sampled from change over time.
The conventional approach to deal with this
problem is to retrain the model once it expe-
riences significant performance degrada-
tion. This strategy is, however, not agile
enough for security applications, which
have to deal with adversaries who change
their attack strategies rapidly to evade
detection by ML-based systems.

To deal with the concept drift in
adversarial settings, Thomas et al. [177]
propose to retrain the model continuously
during operation. Kantchelian et al. [96]
suggest keeping human operators in the
loop to deal with model aging. Maggi et al.
[122] and Jordaney et al. [92] develop meth-
ods for detection of concept drift in
deployed models, which enables re-training
before the model significantly degrades.
Almeida et al. [155] propose to tackle the
concept drift challenge by using dynamic
classifier selection for testing each instance.
They show that selecting the most promis-
ing classifier/ensemble can deal with drifts
regardless of how the selected classifier was
trained. While proposed solutions were
shown effective in targeted application
scenarios (e.g., malware detection [92] or
identification of malicious URLs in the web
[177]), the question if they generalize to
other use cases still remain open.

39

5.4 Open Source
Fromeworks and Tooling

To enable wide use of our research results, it is important to
provide prototypes and then mature selected prototypes into
software that is sufficiently mature for wider use. Since each
research covers different aspects of the PrivateAl landscape,
this can lead to piece-meal prototyping. To overcome this risk,
we plan to also invest into open source frameworks and tooling.
This answers the following research question:

I How can software components be optimally packaged
and integrated to enable efficient and usable deployment in
practice?

An ideal research library for federated optimization research
should support various platforms for realistic evaluation,
obtaining realistic system performances like training time, com-
munication cost, and computational cost.

(1) It should keep pace with advances in academia, supporting
various newly published federated optimization algorithms.

(2) Write once, run everywhere. It is better to support seamless
cross-platform migration with one time code writing. Research-
ers in optimization theory can focus on the innovations of algo-
rithms, and let the library do the implementation.

(3) The programming interface should be flexible to enable
diverse network topologies, flexible information exchange
among workers/clients, and various training procedures.

(4) Supporting diverse datasets and models to fairly evaluate
federated optimization algorithms is also a plus.

The diagram in Figure 4 illustrates this design goal. A
representative research library aiming at these goal is FedML
[78]. If researchers can first finish their algorithmic conceptin a
standalone simulation supported by FedML. They can then
easily try their algorithms in a larger scale datasets and models
in distributed computing platforms. Afterwards, for loT plat-
form, there is no need to reimplement the code in another
programming language like Java and C++. Simply reusing the
code at the distributed computing, FedML can support the loT
on-device training. With such a pipeline, theory-oriented opti-
mization researchers can also obtain system-wise performance
evaluation.

40

Distributed Computing

Standalone
Simulaton = | i ek g

On-Device Training
Mobile, loT (TmyML)

B <&
G [P RRR %/\”'
! 2 i FedML TTP/TCP
* m ‘mmm Serer TP
/T
Man;gzr;\ent ’Emn CP\B ﬁ
« Single process Multiple-processes in parallel Multiple-processes explicit
« Runs on any server « Can be seamlessly distributed message passing
« Good for small models across nodes « Great for resource constrained
(LR, 2CNN, Bi-LSTM) « Train big models (ResNet, edg
« And small datasets MobileNet, Efficient Net, Trans- devices (Smartphone and loT)-low

(FMNIST, Shakespeare) former-based)

memory, low computational

+ And large datasets (CIFAR10/100, power, limited communication
Google Landmark, COCO, ImageN- hand width

et

« Python-centric simplicity

Figure 4: Anideal research library for federated optimization
research [64]

There are also serveral other federated
learning libraries in the recent years.
Distributed training libraries in PyTorch
Distributed [150], TensorFlow [5],
MXNet [40], and distributed train-
ing-specialized libraries such as Horo-
vod [166] and BytePS [151] are
designed for distributed training in
data centers. Although simulation-ori-
ented federated learning libraries such
as TensorFlow-Federated (TFF)[85],
PySyft [156], and LEAF [30] are devel-
oped, they only support centralized
topology-based federated learning
algorithms like FedAvg [128] or FedProx
[157]. Furthermore, they only provide
low-level communication APIs (e.g.,
TTF) or simulate a federation of nodes
using a single machine, making them
unsuitable or difficult to develop feder-
ated learning algorithms that require
the exchange of auxiliary information
and customized training procedures.
Production-oriented libraries such as
FATE [190] and PaddleFL [121] are

released by industry. However, they are
not designed as flexible frameworks
that allow topology changes or allow
drop-in replacement of different kinds
of averaging algorithms.These features
are necessary to support algorithmic
innovation for open federated learning
problems.

A further step to close the gap
between research and production engi-
neering is to support system deploy-
ment and on-device training runtime
engine. In practice, frequent and large
scale deployment of updates, monitor-
ing, and debugging is challenging;
running ML work-loads on end user
device is hampered by the lack of a
portable, fast, small footprint, and flexi-
ble runtime engine for on-device train-
ing. Research libraries like FedML defi-
nitely should support these two core
modules. For more detailed challenges
and practice in these topics, we refer to
the guidance provided by [94, Section
7].

REFERENCES

[1] Protecting VM Register State with
SEV-ES. https://www.amd.com/system/-
files/TechDocs/Protect-
ing%20VM%20Register%20State%20with%
20SEV-ES.pdf, 2017.[Online; accessed
28-October-2020].

[2] AMD SEV-SNP: Strengthening VM lIsola-
tion with Integrity Protection and More.
https://www.amd.com/system/files/Tech-
Docs/SEV-SNP-strengthen-
ing-vm-isolation-with-integrity-protection-
and-more.pdf, 2020. [Online; accessed
28-October-2020].

[3] Arm Architecture Reference Manual Sup-
plement, The Realm Management Exten-
sion (RME), for Armv9-A. https://develop-
er.arm.com/documentation/ddi0615/lat-
est/, 2021. [Online; accessed 27-July-2021].

[4] Intel Trust Domain CPU Architectural
Extensions. https://software.intel. com/-
content/dam/develop/external/us/en/doc-
uments-tps/ in -
tel-tdx-cpu-architectural-specification.pdf,
2021. [Online; accessed 27-July-2021].

[5] Martin Abadi, Paul Barham, Jianmin
Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat,
Geoffrey Irving, Michael Isard, et al. Tensor-
flow: A system for large-scale machine
learning. In 12th {USENIX} Symposium on
Operating Systems Design and Implemen-
tation ({OSDI} 16), pages 265-283, 2016.

[6] Martin Abadi, Andy Chu, lan Goodfellow,
H. Brendan McMahan, Ilya Mironov, Kunal
Talwar, and Li Zhang. Deep learning with
differential privacy. In Proceedings of the
2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS 16,
page 308-318, New York, NY, USA, 2016.
Association for Computing Machinery.

[7] Yossi Adi, Carsten Baum, Moustapha
Cisse, Benny Pinkas, and Joseph Keshet.
Turning your weakness into a strength:
Watermarking deep neural networks by
backdooring. In 27th {USENIX} Security
Symposium ({USENIX} Security 18), pages
1615-1631, 2018.

[8] Alekh Agarwal, John Langford, and
Chen-Yu Wei. Federated residual learning.
arXiv preprint arXiv:2003.12880, 2020.

[9] Hojjat Aghakhani, Fabio Gritti, Francesco
Mecca, Martina Lindorfer, Stefano Ortolani,
Davide Balzarotti, Giovanni Vigna, and
Christopher Kruegel. When malware is
packin’ heat; limits of machine learning
classifiers based on static analysis features.
In 27th Annual Network and Distributed
System Security Symposium, NDSS 2020,
San Diego, California, USA, February 23-26,
2020. The Internet Society, 2020.

[10] Nitin Agrawal, Reuben Binns, Max Van
Kleek, Kim Laine, and Nigel Shadbolt.
Exploring design and governance challeng-
es in the development of privacy-preserv-
ing computation. CoRR, abs/2101.08048,
2021.

[11] Dan Alistarh, Demjan Grubic, Jerry Li,
Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient
quantization and encoding. in Neural Infor-
mation Processing Systems NIPS, 2017.

[12] Ittai Anati, Shay Gueron, Simon P.
Johnson, and Vincent R. Scarlata. Innova-
tive Technology for CPU Based Attestation
and Sealing. In Workshop on Hardware and
Architectural Support for Security and
Privacy (HASP), 2013.

[13] ARM Limited. Security technology:
building a secure system using TrustZone

42

technology.http://infocen-
ter.arm.com/help/topic/com.arm.doc.prd2
9-genc-009492c/PRD29-GENC-009492C_tru
stzone_security_whitepaper.pdf, 2008.

[14] Buse Gul Atli, Yuxi Xia, Samuel Marchal,
and N. Asokan. Waffle: Watermarking in
federated learning. 2021.

[15] Arturs Backurs, Piotr Indyk, Krzysztof
Onak, Baruch Schieber, Ali Vakilian, and Tal
Wagner. Scalable fair clustering. In
Proceedings of the 36th International Con-
ference on Machine Learning (Proceedings
of MachineLearning Research), page
405-413, 2019.

[16] Eugene Bagdasaryan, Andreas Veit,
Yiging Hua, Deborah Estrin, and Vitaly
Shmatikov. How to backdoor federated
learning. In Silvia Chiappa and Roberto
Calandra, editors, Proceedings of the
Twenty Third International Conference on
Artificial Intelligence and Statistics, volume
108 of Proceedings of Machine Learning
Research, pages 2938-2948. PMLR, 26-28
Aug 2020.

[17] Roberto Baldoni, Emilio Coppa, Dan-
iele Cono D’Elia, and Camil Demetrescu.
Assisting malware analysis with symbolic
execution: A case study. In Shlomi Dolev
and Sachin Lodha, editors, Cyber Security
Cryptography and Machine Learning - First
International Conference, CSCML 2017,
Beer-Sheva, Israel, June29-30, 2017,
Proceedings, volume 10332 of Lecture
Notes in Computer Science, pages 171-188.
Springer, 2017.

[18] Tal Ben-Nun and Torsten Hoefler.
Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis.
ACM Computing Surveys, 2019.

[19] Battista Biggio, Igino Corona, Davide
Maiorca, Blaine Nelson, Nedim Srndi¢,
Pavel Laskov, Giorgio Giacinto, and Fabio
Roli. Evasion attacks against machine learn-

ing at test time. In Hendrik Blockeel, Kris-
tian Kersting, Siegfried Nijssen, and Filip
Zelezny, editors, Machine Learning and
Knowledge Discovery in Databases, pages
387-402, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[20] A. Binder, S. Bach, G. Montavon, K.-R.
Muller, and W. Samek. Layer-wise relevance
propagation for deep neural network archi-
tectures. In Information Science and Appli-
cations (ICISA), 2016.

[21] Fabrizio Biondi, Thomas Given-Wilson,
Axel Legay, Cassius Puodzius, and Jean
Quilbeuf. Tutorial: An overview of malware
detection and evasion techniques. In
Tiziana Margaria and Bernhard Steffen,
editors, Leveraging Applications of Formal
Methods, Verification and Validation. Mod-
eling - 8th International Symposium, ISoLA
2018, Limassol, Cyprus, November 5-9,
2018, Proceedings, Part |, volume 11244 of
Lecture Notes in Computer Science, pages
565-586. Springer, 2018.

[22] Peva Blanchard, El Mahdi El Mhamdi,
Rachid Guerraoui, and Julien Stainer.
Machine learning with adversaries: Byzan-
tine tolerant gradient descent. In Proceed-
ings of the 31st International Conference on
Neural Information Processing Systems,
pages 118-128, 2017.

[23] Fabian Boemer, Rosario Cammarota,
Daniel Demmler, Thomas Schneider, and
Hossein Yalame. MP2ML: a mixed-protocol
machine learning framework for private
inference. In Melanie Volkamer and Chris-
tian Wressnegger, editors, ARES 2020: The
15th International Conference on Availabili-
ty, Reliability and Security, Virtual Event,
Ireland, August 25-28, 2020, pages
14:1-14:10. ACM, 2020.

[24] Fabian Boemer, Yixing Lao, Rosario
Cammarota, and Casimir Wierzynski.
Ngraph-he: A graph compiler for deep
learning on homomorphically encrypted

43

data. In Proceedings of the 16th ACM Inter-
national Conference on Computing
Fron-tiers, CF ’19, page 3-13, New York, NY,
USA, 2019. Association for Computing
Machinery.

[25] Keith Bonawitz, Hubert Eichner, Wolf-
gang Grieskamp, Dzmitry Huba, Alex Inger-
man, Vladimir lvanov, Chloe Kiddon, Jakub
Konecn'y, Stefano Mazzocchi, H Brendan
McMahan, et al. Towards federated learning
at scale: System design. arXiv preprint
arXiv:1902.01046, 2019.

[26] Keith Bonawitz, Vladimir Ivanov, Ben
Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage,
Aaron Segal, and Karn Seth. Practical
secure aggregation for privacy-preserving
machine learning. In proceedings of the
2017 ACM SIGSAC Conference on Computer
and Communications Security, pages
1175-1191,2017.

[27] Ferdinand Brasser, Patrick Koeberl,
Brahim El Mahjoub, Ahmad-Reza Sadeghi,
and Christian Wachsmann. TyTAN: Tiny
Trust Anchor for Tiny Devices. In IEEE/ACM

Design Automation Conference (DAC), 2015.

[28] Ferdinand Brasser, Urs Miiller, Alexan-
dra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. Soft-
ware Grand Exposure: SGX Cache Attacks
Are Practical. In USENIX Workshop on
Offensive Technologies (WOOT), 2017.

[29] Miles Brundage, Shahar Avin, Jasmine
Wang, Haydn Belfield, Gretchen Krueger,
Gillian Hadfield, Heidy Khlaaf, Jingying
Yang, Helen Toner, Ruth Fong, Tegan
Maharaj, Pang Wei Koh, Sara Hooker, Jade
Leung, Andrew Trask, Emma Bluemke,
Jonathan Lebensold, Cullen O’Keefe, Mark
Koren, Théo Ryffel, JB Ru-binovitz, Tamay
Besiroglu, Federica Carugati, Jack Clark,
Peter Eckersley, Sarah de Haas, Maritza
Johnson, Ben Laurie, Alex Ingerman, Igor

Krawczuk, Amanda Askell, Rosario Camma-
rota, Andrew Lohn, David Krueger, Char-
lotte Stix, Peter Henderson, Logan Graham,
Carina Prunkl, Bianca Martin, Elizabeth
Seger, Noa Zilberman, Sean O hEigeartaigh,
Frens Kroeger, Girish Sastry, Rebecca
Kagan, Adrian Weller, Brian Tse, Elizabeth
Barnes, Allan Dafoe, Paul Scharre, Ariel
Herbert-Voss, Martijn Rasser, Shagun
Sodhani, Carrick Flynn, Thomas Krendl
Gilbert, Lisa Dyer, Saif Khan, Yoshua
Bengio, and Markus Anderljung. Toward
trustworthy ai development: Mechanisms
for supporting verifiable claims, 2020.

[30] Sebastian Caldas, Peter Wu, Tian Li,
Jakub Koneén'y, H Brendan McMahan,
Virginia Smith, and Ameet Talwalkar. Leaf: A
benchmark for federated settings. arXiv
preprint arXiv:1812.01097, 2018.

[31] Rosario Cammarota, Matthias Schunt-
er, Anand Rajan, Fabian Boemer, Agnes
Kiss, Amos Treiber, Christian Weinert,
Thomas Schneider, Emmanuel Stapf,
Ahmad-Reza Sadeghi, Daniel Demmler,
Huili Chen, Siam Umar Hussain, Sadegh
Riazi, Farinaz Koushanfar, Saransh Gupta,
Tajan Simunic Rosing, Kamalika Chaudhuri,
Hamid Nejatollahi, Nikil Dutt, Mohsen
Imani, Kim Laine, Anuj Dubey, Aydin Aysu,
Fateme Sadat Hosseini, Chengmo Yang, Eric
Wallace, and Pamela Norton. Trustworthy
ai inference systems: An industry research
view, 2020.

[32] Shicong Cen, Huishuai Zhang, Yuejie
Chi, Wei Chen, and Tie-Yan Liu. Con-
ver-gence of distributed stochastic variance
reduced methods without sampling extra
data. IEEE Transactions on Signal Process-
ing, 68:3976-3989, 2020.

[33] Hongyan Chang, Virat Shejwalkar, Reza
Shokri, and Amir Houmansadr. Cronus:
Robust and heterogeneous collaborative
learning with black-box knowledge trans-
fer. arXiv preprint arXiv:1912.11279, 2019.

44

[34] Cheng Chen, Ziyi Chen, Yi Zhou, and
Bhavya Kailkhura. Fedcluster: Boost-ing the
convergence of federated learning via clus-
ter-cycling. arXiv preprint arXiv:2009.10748,
2020.

[35] Fei Chen, Mi Luo, Zhenhua Dong, Zhen-
guo Li, and Xiugiang He. Federated
meta-learning with fast convergence and
efficient communication. arXiv preprint
arXiv:1802.07876, 2018.

[36] Guoxing Chen, Sanchuan Chen, Yuan
Xiao, Yingian Zhang, Zhigiang Lin, and Ten
H. Lai. SgxPectre: Stealing Intel Secrets
from SGX Enclaves Via Speculative Execu-
tion. In IEEE European Symposium on Secu-
rity and Privacy (EuroS&P), 2019.

[37] Huili Chen, Cheng Fu, Bita Darvish Rou-
hani, Jishen Zhao, and Farinaz Koushan-far.
Deepattest: an end-to-end attestation
framework for deep neural networks. In
2019 ACM/IEEE 46th Annual International
Symposium on Computer Architec-ture
(ISCA), pages 487-498. IEEE, 2019.

[38] Huili Chen, Cheng Fu, Jishen Zhao, and
Farinaz Koushanfar. Deepinspect: A
black-box trojan detection and mitigation
framework for deep neural networks. In
[JCAI, pages 4658-4664, 2019.

[39] Huili Chen, Bita Darvish Rouhani,
Cheng Fu, Jishen Zhao, and Farinaz
Koushan-far. Deepmarks: A secure finger-
printing framework for digital rights man-
age-ment of deep learning models. In
Proceedings of the 2019 on International
Conference on Multimedia Retrieval, pages
105-113,2019.

[40] Tiangi Chen, Mu Li, Yutian Li, Min Lin,
Naiyan Wang, Minjie Wang, Tianjun Xiao,
Bing Xu, Chiyuan Zhang, and Zheng Zhang.
Mxnet: A flexible and efficient machine
learning library for heterogeneous distrib-
uted systems. arXiv preprint

uted systems. arXiv preprint
arXiv:1512.01274, 2015.

[41] Xiangyi Chen, Tiancong Chen, Haoran
Sun, Zhiwei Steven Wu, and Mingyi Hong.
Distributed training with heterogeneous
data: Bridging median and mean based
algorithms. arXiv preprint
arXiv:1906.01736, 2019.

[42] Xingyu Chen, Brandon Fain, Liang Lyu,
and Kamesh Munagala. Proportionally fair
clustering. In International Conference on
Machine Learning, page 1032-1041, 2019.

[43] Yudong Chen, Lili Su, and Jiaming Xu.
Distributed statistical machine learning in
adversarial settings: Byzantine gradient
descent. Proceedings of the ACM on Mea-
surement and Analysis of Computing
Systems, 1(2):1-25, 2017.

[44] Jung Hee Cheon, Andrey Kim, Miran
Kim, and Yongsoo Song. Homomorphic
encryption for arithmetic of approximate
numbers. In International Conference on
the Theory and Application of Cryptology
and Information Security, pages 409-437.
Springer, 2017.

[45] Christopher A Choquette-Choo, Natalie
Dullerud, Adam Dziedzic, Yunxiang Zhang,
Somesh Jha, Nicolas Papernot, and Xiao
Wang. Capc learning: Confidential and
private collaborative learning. 2021.

[46] Jeremy Cohen, Elan Rosenfeld, and
Zico Kolter. Certified adversarial robustness
via randomized smoothing. In Proceedings
of the 36th International Conference on
Machine Learning, 2019.

[47] Fergus Dall, Gabrielle De Micheli,
Thomas Eisenbarth, Daniel Genkin, Nadia
Heninger, Ahmad Moghimi, and Yuval
Yarom. CacheQuote: Efficiently Re-covering
Long-term Secrets of SGX EPID via Cache
Attacks. Transactions on Cryptographic

45

Hardware and Embedded Systems, 2018.

[48] Bita Darvish Rouhani, Huili Chen, and
Farinaz Koushanfar. Deepsigns: An
end-to-end watermarking framework for
ownership protection of deep neural
networks. In Proceedings of the Twen-
ty-Fourth International Conference on
Architectural Support for Programming
Languages and Operating Systems, pages
485-497, 2019.

[49] Tom Woller David Kaplan, Jeremy
Powell. AMD Memory Encryp-tion.
https://developer.amd.com/wordpress/-
media/2013/12/AMD_Memory_ Encryp-
tion_Whitepaper_v7-Public.pdf, 2016.
[Online; accessed 28-October-2020].

[50] Daniel Demmler, T. Schneider, and
Michael Zohner. Aby - a framework for
efficient mixed-protocol secure two-party
computation. In NDSS, 2015.

[51] Canh T Dinh, Nguyen H Tran, and Tuan
Dung Nguyen. Personalized federated
learning with moreau envelopes. In
Advances in Neural Information Processing
Systems, 2020.

[52] Alexey Dosovitskiy, Lucas Beyer, Alex-
ander Kolesnikov, Dirk Weissenborn, Xiao-
hua Zhai, Thomas Unterthiner, Mostafa
Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16
words: Transformers for image recognition
at scale. In International Conference on
Learning Representations, 2021.

[53] Nathan Dowlin, Ran Gilad-Bachrach,
Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. Cryptonets: Applying
neural networks to en-crypted data with
high throughput and accuracy. In Proceed-
ings of the 33rd International Conference
on International Conference on Machine

Learning, vol-ume 48 of ICML'16, page
201-210, 2016.

[54] Ahmed Roushdy Elkordy and A. Salman
Avestimehr. Secure aggregation with
heterogeneous quantization in federated
learning. preprint arXiv:2009.14388, 2020.

[55] Theodoros Evgeniou and Massimiliano
Pontil. Regularized multi-task learning. In
International Conference on Knowledge
Discovery and Data Mining, 2004.

[56] Dmitry Evtyushkin, Jesse Elwell,
Meltem Ozsoy, Dmitry V. Ponomarev, Nael
B. Abu-Ghazaleh, and Ryan Riley. Iso-X: A
Flexible Architecture for Hardware-Man-
aged Isolated Execution. In IEEE/ACM Inter-
national Symposium on Microar-chitecture
(MICRO), 2014.

[57] Dmitry Evtyushkin, Ryan Riley, Nael
CSE Abu-Ghazaleh, ECE, and Dmitry
Ponomarev. BranchScope: A New
Side-Channel Attack on Directional Branch
Predictor. In International Conference on
Architectural Support for Programming
Languages and Operating Systems
(ASPLOS), 2018.

[58] Alireza Fallah, Aryan Mokhtari, and
Asuman Ozdaglar. Personalized feder-ated
learning: A meta-learning approach. In
Advances in Neural Information Processing
Systems, 2020.

[59] Matt Fredrikson, Somesh Jha, and
Thomas Ristenpart. Model inversion
attacks that exploit confidence information
and basic countermeasures. In Proceedings
of the 22nd ACM SIGSAC Conference on
Computer and Communications Security,
pages 1322-1333, 2015

[60] Clement Fung, Chris JM Yoon, and lvan
Beschastnikh. Mitigating sybils in federated
learning poisoning. arXiv preprint

46

arXiv:1808.04866, 2018.

[61] Rafa Galvez, Veelasha Moonsamy, and
Claudia Diaz. Less is more: A privacy-re-
specting android malware classifier using
federated learning. CoRR, abs/2007.08319,
2020.

[62] Aryya Gangopadhyay, lyanuoluwa Ode-
bode, and Yelena Yesha. A domain adapta-
tion technique for deep learning in cyberse-
curity. In OTM Confederated International
Conferences "On the Move to Meaningful
Internet Systems", pages 221-228, 2019.

[63] Jonas Geiping, Hartmut Bauermeister,
Hannah Droge, and Michael Moeller. Invert-
ing gradients-how easy is it to break priva-
cy in federated learning? arXiv preprint
arXiv:2003.14053, 2020.

[64] Zahra Ghodsi, Akshaj Kumar Veldanda,
Brandon Reagen, and Siddharth Garg.
CryptoNAS: Private inference on a relu
budget. In Advances in Neural Informa-tion
Processing Systems, volume 33, pages
16961-16971, 2020.

[65] Avishek Ghosh, Jichan Chung, Dong
Yin, and Kannan Ramchandran. An efficient
framework for clustered federated learning.
In Advances in Neural Information Process-
ing Systems, 2020.

[66] Naman Goel, Mohammad Yaghini, and
Boi Faltings. The cost of fairness in binary
classification. In Thirty-Second AAAI Con-
ference on Artificial Intelligence, 2018.

[67] O. Goldreich, S. Micali, and A. Wigder-
son. How to play any mental game. STOC
‘87, page 218-229, New York, NY, USA, 1987.
Association for Computing Machinery.

[68] lan Goodfellow and Nicolas Papernot.
The challenge of verification and testing of
machine learning. http://www.clever-
hans.io/security/privacy/ml/2017/06/

14/verification.html, 2017. [Online
accessed on March 31st, 2021].

[69] lan J Goodfellow, Jonathon Shlens,
and Christian Szegedy. Explaining and
harnessing adversarial examples. arXiv
preprint arXiv:1412.6572,2014.

[70] Ben Gras, Kaveh Razavi, Herbert Bos,
and Cristiano Giuffrida. Translation
Leak-aside Buffer: Defeating Cache
Side-channel Protections with TLB Attacks.
In USENIX Security Symposium, 2018.

[71] Fabio Gritti, Lorenzo Fontana, Eric Gus-
tafson, Fabio Pagani, Andrea Continella,
Christopher Kruegel, and Giovanni Vigna.
SYMBION: interleaving symbolic with
concrete execution. In 8th IEEE Conference
on Communications and Network Security,
CNS 2020, Avignon, France, June 29 - July 1,
2020, pages 1-10. IEEE, 2020.

[72] Rachid Guerraoui, Sébastien Rouault,
et al. The hidden vulnerability of dis-tribut-
ed learning in Byzantium. In International
Conference on Machine Learning, pages
3521-3530. PMLR, 2018.

[73] Farzin Haddadpour, Mohammad Mahdi
Kamani, Mehrdad Mahdavi, and Viveck R
Cadambe. Local sgd with periodic averag-
ing: Tighter analysis and adaptive synchro-
nization. arXiv preprint arXiv:1910.13598,
2019.

[74] Filip Hanzely and Peter Richtarik.
Federated learning of a mixture of global
and local models. arXiv:2002.05516, 2020.

[75] Moritz Hardt, Eric Price, and Nati
Srebro. Equality of opportunity in super-
vised learning. In Proceedings of the 30th
International Conference on Neural Infor-
mation Processing Systems (NIPS), page
3315-3323, 2016.

47

[76] Chaoyang He, Murali Annavaram, and
Salman Avestimehr. Fednas: Federated
deep learning via neural architecture
search. arXiv preprint arXiv:2004.08546,
2020.

[77] Chaoyang He, Murali Annavaram, and
Salman Avestimehr. Group knowledge
transfer: Federated learning of large cnns at
the edge. 2020.

[78] Chaoyang He, Songze Li, Jinhyun So,
Xiao Zeng, Mi Zhang, Hongyi Wang, Xi-aoy-
ang Wang, Praneeth Vepakomma, Abhishek
Singh, Hang Qiu, Xinghua Zhu, Jianzong
Wang, Li Shen, Peilin Zhao, Yan Kang, Yang
Liu, Ramesh Raskar, Qiang Yang, Murali
Annavaram, and Salman Avestimehr.
Fedml: A research library and benchmark
for federated machine learning. arXiv
preprint arXiv:2007.13518, 2020

[79] Chaoyang He, Haishan Ye, Li Shen, and
Tong Zhang. Milenas: Efficient neural archi-
tecture search via mixed-level reformula-
tion. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern
Recognition, pages 11993-12002, 2020.

[80] Lie He, Sai Praneeth Karimireddy, and
Martin Jaggi. Byzantine-robust learning on
heterogeneous datasets via resampling.
arXiv preprint arXiv:2006.09365, 2020.

[81] Matthew Hoekstra, Reshma Lal,
Pradeep Pappachan, Vinay Phegade, and
Juan Del Cuvillo. Using Innovative Instruc-
tions to Create Trustworthy Software Solu-
tions. In Workshop on Hardware and Archi-
tectural Support for Security and Privacy
(HASP), 2013.

[82] TonTon Hsien-De Huang. Hunting the
ethereum smart contract: Color-inspired
inspection of potential attacks. arXiv
preprint arXiv:1807.01868, 2018.

[83] Tyler Hunt, Congzheng Song, Reza
Shokri, Vitaly Shmatikov, and Emmett
Witchel. Chiron: Privacy-preserving

[84] Siam U Hussain, Mohammad Samragh,
Xingiao Zhang, and Farinaz Koushanfar. On
the Application of Binary Neural Networks
in Oblivious Inference. In Conference on
Computer Vision and Pattern Recognition
(CVPR), 2021.

[85] Alex Ingerman and Krzys Ostrowski.
TensorFlow Federated, 2019.

[86] Intel Corporation. Intel Software Guard
Extensions Programming Refer-ence.
https://software.intel.com/sites/default/-
files/managed/48/88/329298-002. pdf,
2014,

[87] Mojan Javaheripi, Mohammad Samra-
gh, Gregory Fields, Tara Javidi, and Farinaz
Koushanfar. Cleann: Accelerated trojan
shield for embedded neural networks. In
2020 |IEEE/ACM International Conference
On Computer Aided Design (ICCAD), pages
1-9. IEEE, 2020.

[88] Malhar S. Jere, Tyler Farnan, and
Farinaz Koushanfar. A taxonomy of attacks
on federated learning. IEEE Security Priva-
cy, 19(2):20-28, 2021.

[89] Nandan Kumar Jha, Zahra Ghodsi,
Siddharth Garg, and Brandon Reagen.
Deepreduce: Relu reduction for fast private
inference. In International Confer-ence on
Machine Learning, 2021.

[90] Hengrui Jia, Christopher A Cho-
quette-Choo, and Nicolas Papernot. En-tan-
gled watermarks as a defense against
model extraction. arXiv preprint
arXiv:2002.12200, 2020.

[91] Yihan Jiang, Jakub Konecn'y, Keith
Rush, and Sreeram Kannan. Improving
federated learning personalization via
model agnostic meta learning. arXiv
preprint arXiv:1909.12488, 2019.

[92] Roberto Jordaney, Kumar Sharad, San-
tanu K. Dash, Zhi Wang, Davide Papini, Ilia
Nouretdinov, and Lorenzo Cavallaro. Tran-

48

scend: Detecting concept drift in malware
classification models. In USENIX Security
Symposium, 2017.

[93] Chiraag Juvekar, Vinod Vaikuntana-
than, and Anantha Chandrakasan. Gazelle:
A low latency framework for secure neural
network inference. In 27th USENIX Security
Symposium (USENIX Security 18), pages
1651-1669, 2018.

[94] Peter Kairouz, H. Brendan McMahan,
Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Keith Bonawitz,
Zachary Charles, Graham Cor-mode, Rachel
Cummings, Rafael G. L. D’Oliveira, Salim El
Rouayheb, David Evans, Josh Gardner,
Zachary Garrett, Adria Gascon, Badih Ghazi,
Phillip B. Gib-bons, Marco Gruteser, Zaid
Harchaoui, Chaoyang He, Lie He, Zhouyuan
Huo, Ben Hutchinson, Justin Hsu, Martin
Jaggi, Tara Javidi, Gauri Joshi, Mikhail
Khodak, Jakub Konecny, Aleksandra
Korolova, Farinaz Koushanfar, Sanmi
Koyejo, Tancrede Lepoint, Yang Liu, Prateek
Mittal, Mehryar Mohri, Richard Nock, Ayfer
Ozgiir, Rasmus Pagh, Mariana Raykova,
Hang Qi, Daniel Ramage, Ramesh Raskar,
Dawn Song, Weikang Song, Sebastian U.
Stich, Ziteng Sun, Ananda Theertha Suresh,
Florian Trameér, Praneeth Vepakomma,
Jianyu Wang, Li Xiong, Zheng Xu, Qiang
Yang, Felix X. Yu, Han Yu, and Sen Zhao.
Advances and open problems in federated
learning, 2019.

[95] Toshihiro Kamishima, Shotaro Akaho,
Hideki Asoh, and Jun Sakuma.
Fairness-aware classifier with prejudicere-
mover regularizer. In Joint European Con-
ference on Machine Learning and Knowl-
edge Discovery in Databases, pages 35-50,
2012.

[96] Alex Kantchelian, Sadia Afroz, Ling
Huang, Aylin Caliskan Islam, Brad Miller
Michael Carl Tschantz, Rachel Greenstadt,
Anthony D. Joseph, and J. D. Tygar.
Approaches to adversarial drift. In Proceed-
ings of the 2013 ACM Workshop on Artificial

Intelligence and Security (AlSec), page
99-110, 2013.

[97] Mikhail Khodak, Maria-Florina F
Balcan, and Ameet S Talwalkar. Adaptive
gradient-based meta-learning methods. In
Advances in Neural Information Processing
Systems, 2019.

[98] Jin Kyu Kim, Qirong Ho, Seunghak Lee,
Xun Zheng, Wei Dai, Garth A. Gibson, and
Eric P. Xing. Strads: a distributed framework
for scheduled model parallel machine
learning. In Proceedings of the European
Conference on Computer Systems
(EuroSys), pages 1-17, 2016.

[99] Paul Kocher, Jann Horn, Anders Fogh, ,
Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Man-
gard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In 40th IEEE
Symposium on Security and Privacy
(S&P’19), 2019.

[100] Patrick Koeberl, Steffen Schulz,
Ahmad-Reza Sadeghi, and Vijay Varadhara-
jan. TrustLite: A Security Architecture for
Tiny Embedded Devices. In European Con-
ference on Computer Systems (EuroSys),
2014.

[101] Jakub Konecny, H. Brendan McMah-
an, Felix X. Yu, Peter Richtarik, Ananda
Theertha Suresh, and Dave Bacon. Federat-
ed learning: Strategies for improving com-
munication efficiency. NIPS Workshop on
Private Multi-Party Machine Learning
(2016).

[102] Emmanouil Krasanakis, Eleftherios
Spyromitros-Xioufis, Symeon Papadopou-
los, and Yiannis Kompatsiaris. The cost of
fairness in binary classification. In Proceed-
ings of the 2018 WorldWide Web Confer-
ence (WWW), page 853-862,2018.

[103] Kalpesh Krishna, Gaurav Singh Tomar,
Ankur P Parikh, Nicolas Papernot, and

49

Mohit lyyer. Thieves on sesame street!
model extraction of bert-based apis. arXiv
preprint arXiv:1910.12366, 2019.

[104] Mathias Lecuyer, Vaggelis Atlidakis,
Roxana Geambasu, Daniel Hsu, and Suman
Jana. Certified Robustness to Adversarial
Examples with Differential Privacy. arXiv
preprint arXiv:1802.03471, 2018.

[105] Sangho Lee, Ming-Wei Shih, Prasun
Gera, Taesoo Kim, Hyesoon Kim, and
Marcus Peinado. Inferring Fine-grained
Control Flow Inside SGX Enclaves with
Branch Shadowing. In USENIX Security
Symposium, 2017.

[106] Axel Legay, Anna Lukina, Louis-Marie
Traonouez, Junxing Yang, Scott A. Smolka,
and Radu Grosu. Statistical model check-
ing. In Bernhard Steffen and Gerhard J.
Woeginger, editors, Computing and Soft-
ware Science - State of the Art and Perspec-
tives, volume 10000 of Lecture Notes in
Computer Science, pages 478-504. Spring-
er,2019.

[107] Blake Lemoine, Brian Zhang, and M.
Mitchell. Mitigating unwanted biases with
adversarial learning. In Proceedings of the
2018 AAAI/ACM Conference on Al, Ethics,
and Society (AIES), 2018.

[108] Bai Li, Changyou Chen, Wenlin Wang,
and Lawrence Carin. Second-order adver-
sarial attack and certifiable robustness.
arXiv preprint arXiv:1809.03113, 2018.

[109] Jeffrey Li, Mikhail Khodak, Sebastian
Caldas, and Ameet Talwalkar. Differen-tially
private meta-learning. In International Con-
ference on Learning Represen-tations,
2020.

[110] Liping Li, Wei Xu, Tianyi Chen, Geor-
gios B Giannakis, and Qing Ling. RSA:
Byzantine-robust stochastic aggregation
methods for distributed learning from
heterogeneous datasets. In Proceedings of

the AAAI Conference on Artificial Intelli-
gence, volume 33, pages 1544-1551, 2019.

[111] Ping Li, Jin Li, Zhengan Huang, Tong
Li, Chong-Zhi Gao, Siu-Ming Yiu, and Kai
Chen. Multi-key privacy-preserving deep
learning in cloud computing. Future Gener-
ation Computer Systems, 74:76-85, 2017.

[112] Shenghui Li, Edith C. H. Ngai, Fanghua
Ye, and Thiemo Voigt. Auto-weighted
robust federated learning with corrupted
data sources. CoRR, abs/2101.05880, 2021.

[113] Tian Li, Anit Kumar Sahu, Manzil
Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. Federated optimization
in heterogeneous networks. arXiv preprint
arXiv:1812.06127,2018.

[114] Xiang Li, Kaixuan Huang, Wenhao
Yang, Shusen Wang, and Zhihua Zhang. On
the convergence of fedavg on non-iid data.
arXiv preprint arXiv:1907.02189, 2019.

[115] Moritz Lipp, Michael Schwarz, Daniel
Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard,
Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading
kernel memory from user space. In 27th
USENIX Security Symposium (USENIX Secu-
rity 18), 2018.

[116] Jian Liu, Mika Juuti, Yao Lu, and N
Asokan. Oblivious neural network
predic-tions via minionn transformations.
In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communica-
tions Security, pages 619-631, 2017.

[117] Shigang Liu, Guanjun Lin, Lizhen Qu,
Jun Zhang, Olivier DeVel, Paul Montague,
and Yang Xiang. CD-VuID: Cross-domain
vulnerability discovery based on deep
domain adaptation. In IEEE Transactions on
Dependable and Secure Computing, 2020.

[118] Qian Lou, Yilin Shen, Hongxia Jin, and

50

Lei Jiang. {SAFEN}et: A secure, accurate and
fast neural network inference. In Interna-
tional Conference on Learning Representa-
tions, 2021.

[119] Nils Lukas, Yuxuan Zhang, and Florian
Kerschbaum. Deep neural network finger-
printing by conferrable adversarial exam-
ples. arXiv preprint arXiv:1912.00888, 2019.

[120] Oliver Lutz, Huili Chen, Hossein Ferei-
dooni, Christoph Sendner, Alexandra Dmi-
trienko, Ahmad Reza Sadeghi, and Farinaz
Koushanfar. ESCORT: Ethereum Smart COn-
tRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning.
ArXiv | arXiv:2103.12607v1, mar 2021.

[121] Yanjun Ma, Dianhai Yu, Tian Wu, and
Haifeng ~ Wang. Paddlepaddle: An
open-source deep learning platform from
industrial practice. Frontiers of Data and
Domputing, 1(1):105-115, 2019.

[122] Federico Maggi, William Robertson,
Christopher Kruegel, and Giovanni Vigna.
Protecting a moving target: Addressing web
application concept drift. In International
Symposium on Recent Advances in Intru-
sion Detection (RAID), page 21-40, 2009.

[123] Pratyush Maini, Mohammad Yaghini,
and Nicolas Papernot. Dataset inference:
Ownership resolution in machine learning.
arXiv preprint arXiv:2104.10706, 2021.

[124] Amirhossein Malekijoo, Mohammad
Javad Fadaeieslam, Hanieh Malekijou, Mor-
teza Homayounfar, Farshid Alizadeh-Shab-
diz, and Reza Rawassizadeh. Fedzip: A com-
pression framework for communication-ef-
ficient federated learn-ing. arXiv preprint
arXiv:2102.01593, 2021.

[125] Yishay Mansour, Mehryar Mohri, Jae
Ro, and Ananda Theertha Suresh. Three
approaches for personalization with appli-
cations to federated learning. arXiv preprint
arXiv:2002.10619, 2020.

[126] Frank McKeen, Ilya Alexandrovich,
Alex Berenzon, Carlos V. Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R.
Savagaonkar. Innovative Instructions and
Software Model for Isolated Execution. In
Workshop on Hardware and Architectural
Support for Security and Privacy (HASP),
2013.

[127] Brendan McMahan, Eider Moore,
Daniel Ramage, Seth Hampson, and Blaise
Agliera y Arcas. Communication-Efficient
Learning of Deep Networks from Decentral-
ized Data. 2017.

[128] Brendan McMahan, Eider Moore,
Daniel Ramage, Seth Hampson, and Blaise
Aguera y Arcas. Communication-efficient
learning of deep networks from decentral-
ized data. In Artificial Intelligence and
Statistics, pages 1273-1282, 2017.

[129] Ninareh Mehrabi, Fred Morstatter,
Nripsuta Saxena, Kristina Lerman, and
Aram Galstyan. A survey on bias and
fairness in machine learning, 2019.

[130] Luca Melis, Congzheng Song, Emilia-
no De Cristofaro, and Vitaly Shmatikov.
Exploiting unintended feature leakage in
collaborative learning. In 2019 IEEE Sympo-
sium on Security and Privacy (SP), pages
691-706. IEEE, 2019.

[131] Aditya Krishna Menon and Robert C.
Williamson. The cost of fairness in binary
classification. In Proceedings of the 1st
Conference on Fairness, Accountability and
Transparency (Proceedings of Machine
Learning Research), 2018.

[132] Pratyush Mishra, Ryan Lehmkuhl,
Akshayaram Srinivasan, Wenting Zheng,
and Raluca Ada Popa. Delphi: A cryp-
tographic inference service for neural
networks. In 29th USENIX Security Sympo-
sium (USENIX Security 20), pages
2505-2522. USENIX Association, August
2020.

51

[134] Ahmad Moghimi, Gorka Irazoqui, and
Thomas Eisenbarth. CacheZoom: How SGX
Amplifies The Power of Cache Attacks. In
Conference on Cryptographic Hardware
and Embedded Systems (CHES), 2017.

[135] Payman Mohassel and Peter Rindal.
ABY 3: A mixed protocol framework for
machine learning. In ACM SIGSAC Confer-
ence on Computer and Communications
Security, pages 35-52, 2018.

[136] Payman Mohassel and Yupeng Zhang.
SecureML: A system for scalable priva-
cy-preserving machine learning. In 38th
IEEE Symposium on Security and Privacy,
pages 19-38. IEEE, 2017.

[137] Mathias Morbitzer, Manuel Huber,
Julian Horsch, and Sascha Wessel. SEVered:
Subverting AMD’s virtual machine encryp-
tion. In Proceedings of the 11th European
Workshop on Systems Security, 2018.

[138] Sasi Kumar Murakonda and Reza
Shokri. Ml privacy meter: Aiding regulatory
compliance by quantifying the privacy risks
of machine learning. arXiv preprint
arXiv:2007.09339, 2020.

[139] Milad Nasr, Reza Shokri, and Amir
Houmansadr. Comprehensive privacy anal-
ysis of deep learning: Passive and active
white-box inference attacks against central-
ized and federated learning. In 2019 IEEE
symposium on security and privacy (SP),
pages 739-753. IEEE, 2019.

[140] National Institute of Standards and
Technology (NIST). Guide to cyber threat
information sharing. 2016.

[141] Thien Duc Nguyen, Phillip Rieger, Hos-
sein Yalame, Helen Mollering, Hossein
Fereidooni, Samuel Marchal, Markus Mietti-
nen, Azalia Mirhoseini, Ahmad-Reza Sade-
ghi, Thomas Schneider, et al. Flguard:
Secure and private federated learning. arXiv

preprint arXiv:2101.02281, 2021.

[142] Van Nguyen, Trung Le, Tue Le, Khanh
Nguyen, Olivier DeVel, Paul Montague,
Lizhen Qu, and Dinh Phung. Deep domain
adaptation for vulnerable code function
identification. In International Joint Confer-
ence on Neural Networks (IJCNN), pages
1-8,2019.

[143] NIST. Trojai leaderboard. https://pag-
es.nist.gov/trojai/, 01 2021.

[144] Job Noorman, Pieter Agten, Wilfried
Daniels, Raoul Strackx, Anthony Van Her-re-
wege, Christophe Huygens, Bart Preneel,
Ingrid Verbauwhede, and Frank Piessens.
Sancus: Low-cost Trustworthy Extensible
Networked Devices with a Zero-software
Trusted Computing Base. 2013.

[145] Olga Ohrimenko, Felix Schuster,
Cédric Fournet, Aastha Mehta, Sebastian
Nowozin, Kapil Vaswani, and Manuel Costa.
Oblivious multi-party machine learning on
trusted processors. In 25th {USENIX} Securi-
ty Symposium ({USENIX} Security 16),
pages 619-636, 2016.

[146] Mathilde Ollivier, Sébastien Bardin,
Richard Bonichon, and Jean-Yves Marion.
How to kill symbolic deobfuscation for free
(or:unleashing the potential of path-orient-
ed protections). In David Balenson, editor,
Proceedings of the 35th Annual Computer
Security Applications Conference, ACSAC
2019, San Juan, PR, USA, December 09-13,
2019, pages 177-189. ACM, 2019.

[147] Kosuke Oshima, Takeshi Matsumoto,
and Masahiro Fujita. Hardware imple-
men-tation of BLTL property checkers for
acceleration of statistical model checking.
In Jorg Henkel, editor, The IEEE/ACM Inter-
national Conference on Computer-Aided
Design, ICCAD’13, San Jose, CA, USA,
November 18-21, 2013, pages 670-676.
IEEE, 2013.

52

[148] Nicolas Papernot, Martin Abadi, Ulfar
Erlingsson, lan J. Goodfellow, and Kunal
Talwar. Semi-supervised knowledge trans-
fer for deep learning from private training
data. In 5th International Conference on
Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Confer-
ence Track Proceedings, 2017.

[149] Nicolas Papernot, Shuang Song, llya
Mironov, Ananth Raghunathan, Kunal
Talwar, and Ulfar Erlingsson. Scalable
private learning with PATE. In 6th Interna-
tional Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track
Proceedings, 2018.

[150] Adam Paszke, Sam Gross, Francisco
Massa, Adam Lerer, James Bradbury,
Gre-gory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-perfor-
mance deep learning library. In Advances in
Neural Information Processing Systems,
pages 8024-8035, 2019.

[151] Yanghua Peng, Yibo Zhu, Yangrui
Chen, Yixin Bao, Bairen Yi, Chang Lan,
Chuan Wu, and Chuanxiong Guo. A generic
communication scheduler for distributed
dnn training acceleration. In Proceedings of
the 27th ACM Symposium on Operating
Systems Principles, pages 16-29, 2019.

[152] Ponemon Institute LLC. The value of
threat intelligence: Annual study of north
american & united kingdom companies,
20109.

[153] Saurav Prakash and Amir Salman
Avestimehr. Mitigating byzantine attacks in
federated learning. arXiv preprint
arXiv:2010.07541, 2020.

[154] M. T. Ribeiro, S. Singh, and C. Guestrin.
"why should i trust you?": Explaining the
predictions of any classifier. In ACM SIGKDD

International Conference on Knowledge
Discovery and Data Mining (KDD), pages
1135-1144,2016.

[155] Paulo R.L.Almeida, Luiz S.Oliveira,
Alceu S.Britto Jr.,, and Robert Sabourin.
Adapting dynamic classifier selection for
concept drift. Expert Systems with Applica-
tions, 104:67-85, 2018.

[156] Theo Ryffel, Andrew Trask, Morten
Dahl, Bobby Wagner, Jason Mancuso,
Daniel Rueckert, and Jonathan Passer-
at-Palmbach. A generic framework for
privacy preserving deep learning. arXiv
preprint arXiv:1811.04017, 2018.

[157] Anit Kumar Sahu, Tian Li, Maziar San-
jabi, Manzil Zaheer, Ameet Talwalkar, and
Virginia Smith. On the convergence of
federated optimization in heterogeneous
networks. ArXiv, abs/1812.06127, 2018.

[158] Najah Ben Said, Fabrizio Biondi,
Vesselin Bontchev, Olivier Decourbe,
Thomas Given-Wilson, Axel Legay, and Jean
Quilbeuf. Detection of mirai by syntac-tic
and behavioral analysis. In Sudipto Ghosh,
Roberto Natella, Bojan Cukic, Robin S.
Poston, and Nuno Laranjeiro, editors, 29th
IEEE International Sympo-sium on Soft-
ware Reliability Engineering, ISSRE 2018,
Memphis, TN, USA, October

15-18, 2018, pages 224-235. IEEE Computer
Society, 2018.

[159] Jonathan Salwan, Sébastien Bardin,
and Marie-Laure Potet. Symbolic deobfus-
ca-tion: From virtualized code back to the
original. In Cristiano Giuffrida, Sébastien
Bardin, and Gregory Blanc, editors, Detec-
tion of Intrusions and Malware, and Vulner-
ability Assessment - 15th International Con-
ference, DIMVA 2018, Saclay, France, June
28-29, 2018, Proceedings, volume 10885 of
Lecture Notes in Computer Science, pages
372-392. Springer, 2018.

53

[160] Felix Sattler, Klaus-Robert Miiller, and
Wojciech Samek. Clustered federated learn-
ing: Model-agnostic distributed multitask
optimization under privacy constraints.
IEEE Transactions on Neural Networks and
Learning Systems, 2020.

[161] Felix Sattler, Simon Wiedemann,
Klaus-Robert Miiller, and Wojciech Samek.
Robust and communication-efficient feder-
ated learning from non-iid data. IEEE trans-
actions on neural networks and learning
systems, 31(9):3400-3413, 2019.

[162] Michael Schwarz, Samuel Weiser,
Daniel Gruss, Clémentine Maurice, and
Stefan Mangard. Malware Guard Extension:
Using SGX to Conceal Cache Attacks. In
Conference on Detection of Intrusions and
Malware and Vulnerability Assessment
(DIMVA), 2017.

[163] Stefano Sebastio, Eduard Baranov,
Fabrizio Biondi, Olivier Decourbe, Thomas
Given-Wilson, Axel Legay, Cassius Puodzius,
and Jean Quilbeuf. Optimizing symbolic
execution for malware behavior classifica-
tion. Comput. Secur., 93:101775, 2020.

[164] F. Seide, H. Fu, Jasha Droppo, G. Li,
and D. Yu. 1-bit stochastic gradient descent
and its application to data-parallel distrib-
uted training of speech dnns. in Inter
speech, 2014,

[165] Koushik Sen. Concolic testing: a
decade later (keynote). In Harry Xu and
Walter Binder, editors, Proceedings of the
13th International Workshop on Dynamic
Analysis, WODA@SPLASH 2015, Pittsburgh,
PA, USA, October 26, 2015, page 1. ACM,
2015.

[166] Alexander Sergeev and Mike Del
Balso. Horovod: fast and easy distributed
deep learning in tensorflow. arXiv preprint
arXiv:1802.05799, 2018.

[167] Reza Shokri and Vitaly Shmatikov.
Privacy-preserving deep learning. In
Proceedings of the 22nd ACM SIGSAC
conference on computer and communica-
tions security, pages 1310-1321, 2015.

[168] Reza Shokri, Marco Stronati, Cong-
zheng Song, and Vitaly Shmatikov. Mem-
bership inference attacks against machine
learning models. In 2017 IEEE Symposium
on Security and Privacy (SP), pages 3-18.
IEEE, 2017.

[169] Avanti Shrikumar, Peyton Greenside,
and Anshul Kundaje. Learning impor-tant
features through propagating activation
differences. In 34th International Confer-
ence on Machine Learning (ICML), pages
3145-3153, 2017.

[170] Virginia Smith, Chao-Kai Chiang,
Maziar Sanjabi, and Ameet S Talwalkar.
Federated multi-task learning. In Advances
in Neural Information Processing Systems,
2017.

[171] Sebastian U Stich. Local sgd converg-
es fast and communicates little. arXiv
preprint arXiv:1805.09767, 2018.

[172] Raoul Strackx, Job Noorman, Ingrid
Verbauwhede, Bart Preneel, and Frank
Piessens. Protected Software Module Archi-
tectures. In ISSE Securing Electronic Busi-
ness Processes. 2013.

[173] Lili Su and Jiaming Xu. Securing
distributed machine learning in high
dimen-sions. arXiv preprint
arXiv:1804.10140, 2018.

[174] Haijian Sun, Xiang Ma, and Rose Qing-
yang Hu. Adaptive federated learning with
gradient compression in uplink noma. IEEE
Transactions on Vehicular Technology,
2020.

[175] Ananda Theertha Suresh, Felix X. Yu,

54

Sanjiv Kumar, and H. Brendan McMahan.
Distributed mean estimation with limited
communication. In Proceedings of the 34th
International Conference on Machine
Learning, volume 70 of Proceedings of
Machine Learning Research, pages
3329-3337. PMLR, 06-11 Aug 2017.

[176] Christian Szegedy, Wojciech Zaremba,
Ilya Sutskever, Joan Bruna, Dumitru Erhan,
lan Goodfellow, and Rob Fergus. Intriguing
properties of neural networks. In Interna-
tional Conference on Learning Representa-
tions, 2014.

[177] Kurt Thomas, Chris Grier, Justin Ma,
Vern Paxson, and Dawn Song. Design and
evaluation of a real-time URL spam filtering
service. In IEEE Symposium on Security and
Privacy, page 447-462,2011.

[178] Florian Tramer, Jens Behrmann, Nich-
olas Carlini, Nicolas Papernot, and
Joern-Henrik Jacobsen. Fundamental
tradeoffs between invariance and sensitivi-
ty to adversarial perturbations. In Proceed-
ings of the 37th International Conference
on Machine Learning, 2020.

[179] Florian Tramer and Dan Boneh.
Slalom: Fast, verifiable and private execu-
tion of neural networks in trusted hard-

ware. arXiv preprint arXiv:1806.03287, 2018.

[180] Florian Tramer and Dan Boneh. Adver-
sarial training and robustness for multiple
perturbations. In Advances in Neural Infor-
mation Processing Systems, 2019.

[181] Florian Tramér, Fan Zhang, Ari Juels,
Michael K Reiter, and Thomas Ristenpart.
Stealing machine learning models via
prediction apis. In 25th {USENIX} Security
Symposium ({USENIX} Security 16), pages
601-618, 2016.

[182] Jo Van Bulck, Marina Minkin, Ofir
Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F.

Piessens, Mark Silberstein, Thomas F.
Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order
Execution. In USENIX Security Symposium,
2018.

[183] Stephan van Schaik, Cristiano Giuffri-
da, Herbert Bos, and Kaveh Razavi. Mali-ci-
ous Management Unit: Why Stopping Cache
Attacks in Software is Harder Than You
Think. In USENIX Security Symposium,
2018.

[184] Ly Vu, Quang Uy Nguyen, Diep N
Nguyen, Dinh Thai Hoang, and Eryk
Dutkiewicz. Deep transfer learning for loT
attack detection. IEEE Access,
8:107335-107344, 2020.

[185] Sameer Wagh, Divya Gupta, and
Nishanth Chandran. Securenn: 3-party
secure computation for neural network
training. Proceedings on Privacy Enhancing
Technologies, 2019(3):26-49, 2019.

[186] Bolun Wang, Yuanshun Yao, Shawn
Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y Zhao. Neural cleanse:
Identifying and mitigating backdoor
attacks in neural networks. In 2019 IEEE
Symposium on Security and Privacy (SP),
pages 707-723. IEEE, 2019.

[187] Wei Wen, Cong Xu, Feng Yan, Chun-
peng Wu, Yandan Wang, Yiran Chen, and Hai
Li. Terngrad: Ternary gradients to reduce
communication in distributed deep learn-
ing. in Neural Information Processing
Systems NIPS, 2017,.

[188] Depeng Xu, Shuhan Yuan, Lu Zhang,
and Xintao Wu. Fairgan: Fairness-aware
generative adversarial network. In 2018
IEEE International Conference on Big Data
(Big Data), page 570-575, 2018.

[189] Xifeng Yan and Jiawei Han. gspan:
Graph based substructure pattern mining.

55

In Proceedings of the 2002 IEEE Internation-
al Conference on Data Mining (ICDM 2002),
9-12 December 2002, Maebashi City, Japan,
pages 721-724. IEEE Computer Society,
2002.

[190] Qiang Yang, Yang Liu, Yong Cheng, Yan
Kang, Tianjian Chen, and Han Yu. Federated
learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning,
13(3):1-207, 2019.

[191] Andrew Chi-Chih Yao. How to generate
and exchange secrets (extended)? In FOCS,
pages 162-167, 1986.

[192] Dong Yin, Yudong Chen, Kannan Ram-
chandran, and Peter Bartlett. Byzantine-ro-
bust distributed learning: Towards optimal
statistical rates. ICML, 2018.

[193] Hao Yu, Sen Yang, and Shenghuo Zhu.
Parallel restarted sgd with faster conver-
gence and less communication: Demystify-
ing why model averaging works for deep
learning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33,
pages 5693-5700, 2019.

[194] Tao Yu, Eugene Bagdasaryan, and
Vitaly Shmatikov. Salvaging federated
learn-ing by local adaptation. arXiv preprint
arXiv:2002.04758, 2020.

[195] Jingfeng Zhang, Jianing Zhu, Gang
Niu, Bo Han, Masashi Sugiyama, and Mohan
Kankanhalli. Geometry-aware instance-re-
weighted adversarial training. In Interna-
tional Conference on Learning Representa-
tions, 2021.

[196] Qiao Zhang, Chunsheng Xin, and
Hongyi Wu. Privacy preserving deep learn-
ing based on multi-party secure computa-
tion: A survey. IEEE Internet of Things Jour-
nal, 2021.

[197] Xingiao Zhang, Huili Chen, and

Farinaz Koushanfar. TAD: trigger approxi-
ma-tion based black-box trojan detection
for Al. CoRR, abs/2102.01815, 2021.

[198] Xinwei Zhang, Mingyi Hong, Sairaj
Dhople, Wotao Yin, and Yang Liu. Fedpd: A
federated learning framework with optimal
rates and adaptivity to non-iid data. arXiv
preprint arXiv:2005.11418, 2020.

[199] Yue Zhao, Meng Li, Liangzhen Lai,
Naveen Suda, Damon Civin, and Vikas
Chandra. Federated learning with non-iid
data. arXiv preprint arXiv:1806.00582, 2018.

[200] Ligeng Zhu and Song Han. Deep leak-
age from gradients. In Federated Learning,
pages 17-31. Springer, 2020.

[201] Yuan Zhuang, Zhenguang Liu, Peng
Qian, Qi Liu, Xiang Wang, and Qinming He.
Smart contract vulnerability detection
using graph neural networks. 2020.

56

IMAGES REFERENCES

Circuit board Image by Gerd Altmann from Pixabay

CPU and computer chip concept from iStock

Monitor binary Image by Gerd Altmann from Pixabay

Binary code Image by Gerd Altmann from Pixabay

CPU with Binary Numbers and Blueprint from iStock

Camera Image by Gerd Altmann from Pixabay

Board Circuit Image by Gerd Altmann from Pixabay

Artificial Intelligence Image by Gerd Altmann from Pixabay
Web Network by Image by Gerd Altmann from Pixabay
Conductor Circuit board Image by Gerd Altmann from Pixabay
Artificial Intelligence by Vecteezy

Artificial Intelligence brain Image by Gerd Altmann from Pixabay
Technological Face Image by Gerd Altmann from Pixabay

Eye Biometric Image by Gerd Altmann from Pixabay

Block chain network Image by Pete Linforth from Pixabay

~N o 01 b
N R O T TS S

N

L B e B e B e B e B e B ot B e B s B s B s B e B e B e W s |
e e e — —

= = = = == O

ul

57

