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Abstract—In the present era of ubiquitous digitization more
and more services are becoming available online which is
amplified by the Corona pandemic. The fast-growing mobile
service market opens up new attack surfaces to the mobile
service ecosystem. Hence, mobile service providers are faced with
various challenges to protect their services and in particular the
associated mobile apps. Defenses for apps are, however, often
limited to (lightweight) application-level protection such as app
hardening and monitoring and intrusion detection. Therefore,
effective risk management is crucial to limit the exposure of
mobile services to threats and potential damages caused by
attacks.

In this paper, we present FedCRI, a solution for sharing
Cyber-Risk Intelligence (CRI). At its core, FedCRI transforms
mobile cyber-risks into machine learning (ML) models and
leverages ML-based risk management to evaluate security risks
on mobile devices. FedCRI enables fast and autonomous sharing
of actionable ML-based CRI knowledge by utilizing Federated
Learning (FL). FL allows collaborative training of effective risk
detection models based on information contributed by different
mobile service providers while preserving the privacy of the train-
ing data of the individual organizations. We extensively evaluate
our approach on several real-world user databases representing
23.8 million users of security-critical mobile apps (since Android
4 and iOS 6) provided by nine different service providers in
different European countries. The datasets were collected over the
course of six years in the domains of financial services, payments,
and insurances. Our approach can successfully extract accurate
CRI models, allowing effective identification of cybersecurity risks
on mobile devices. Our evaluation shows that the federated risk
detection model can achieve better than 99% accuracy in terms of
F1-score in most risk classification tasks with a very low number
of false positives.

Keywords – Cyber-Risk Intelligence (CRI), Federated Learning
(FL), Cyber-Threat Intelligence (CTI), Mobile Platform

I. INTRODUCTION

Today, we are witnessing more and more mobile services
and apps launched in different application domains. This
trend is amplified by the Corona pandemic that forced many
organisations and even traditional businesses to move to online
space. Oftentimes these mobile services perform security-
critical operations, such as collecting user identifiable infor-
mation or conduct payments. Consequently, mobile devices
are exposed to a variety of attacks, for instance, through users
installing potentially malicious apps, or jailbreaking the device
to circumvent limitations imposed by the operating system,
thereby in effect disabling part of the OS security controls.
Hence, mobile service providers are not only concerned with
the security of their online services but also need to consider
the challenging operating environments of their apps, which
need to potentially co-exist with malware on the same device.

For protection, service providers often deploy application-
level defense strategies, such as app hardening and intrusion
detection in combination with risk management. Note that OS
vendors typically do not provide the possibility to integrate
kernel-level protection mechanisms (e.g., dynamic analysis)
in apps. Moreover, hardware-based security mechanisms are
either not available on all devices, or when available, they
are mainly used by platform vendors for their own purposes
and not accessible to third parties. Hence, application-level
protection (e.g., features relevant to static analysis) often
remains the only available option to service providers. While
such protection is limited and cannot, to a full extent, resist
advanced attack vectors on mobile platforms (such as kernel-
level exploits), the mobile service providers developed risk
management techniques that help to limit exposure of their
services on risky platforms. For instance, online banking apps
may monitor for risk factors, such as detecting jailbreaks,
and allow users to view their banking data, but disable other
types of transactions unless other out-of-band authorization
mechanisms are used.

While risk monitoring and management are common mea-
sures used by established service providers, it is often out
of reach for small and medium-size organisations due to
the lack of expertise, significant costs, and time-to-market
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constraints. One promising solution to this problem, which
we aim to explore in this paper, is to enable sharing of
risk information among providers of various sizes and levels
of security expertise. The idea of sharing threat intelligence
information has been already explored in the context of Cyber-
Threat Intelligence (CTI) systems, which were shown to be
helpful in understanding the security and privacy risks, limiting
the exposure to threats, and confining the potential damages
caused by attacks [7]. CTI sharing systems, however, exchange
knowledge about observed security and privacy breaches using
Indicators of Compromise (IoC) in form of IP addresses, email
logs, alerts, incident response reports, event logs, DNS logs,
and firewall logs, etc. In contrast, we aim to share knowledge
about risks that increase the probability of the attacks.

CTI sharing systems raise several challenges and concerns:
Firstly, they are difficult to manage due to the vast amount of
threat data and are too complex to provide actionable intelli-
gence [45]. Secondly, achieving interoperability and automa-
tion [40] is challenging. Thirdly, privacy and liability are other
concerns for participating entities [12]. Some organizations
may be hesitant to share data due to possible reputation damage
from disclosed attack incidents, while others might fear to
accidentally disclose data that must be kept private due to
liability obligations.

Our goal. Our aim is to design and develop a Cyber-Risk
Intelligence (CRI) sharing system for mobile platforms that
(i) concentrates on sharing risks, and (ii) tackles the above-
discussed challenges of the CTI systems. In particular, CRI
concentrates on sharing probabilistic indicators of potential
security risks that may or may not result in actual attacks,
in contrast to CTI, which focuses on sharing knowledge
about actually observed incidents. Sharing such knowledge
can improve the ability of the involved entities to encounter
security threats by mitigating the risk of exploitation by taking
additional measures on risky platforms. This has the advantage
that threats can be mitigated dynamically and even ahead of
time by alleviating potential damages, e.g., by adjusting the
maximum permissible value of mobile banking transactions,
or, by requiring additional out-of-band authentication or autho-
rization before executing sensitive transactions like changing
access credentials.

To solve the challenges of existing CTI sharing systems,
our core idea is to share the knowledge about security risks in
form of machine learning models. In particular, we apply the
concept of Federated Learning (FL) to enable participants of
the CRI system to collaboratively build global risk detection
model based on risks observed locally by participating entities.
This approach reduces the amount of information to share
and its complexity and facilitates actionable intelligence since
global model can directly be applied for risk detection without
additional complex processing. A reduced amount of infor-
mation for sharing is also likely to simplify interoperability
and automation. CRI also addresses the dilemma of security
benefits and associated privacy risks along with legal liability
concerns. Participating entities in the system can train their risk
detection models locally based on their own private training
data and aggregate these models to a global model without the
need of disclosing local datasets of individual clients to others.

Contributions. In particular, we make the following contribu-
tions:

• CRI Sharing. We present FedCRI, a CRI sharing
framework that leverages risk detection models trained
by individual service providers and uses FL to enable
collaborative learning based on models contributed by
clients participating in the system (cf. Section III). The
core novelty of our approach is sharing information
about risks in form of Machine Learning models,
instead of utilizing Indicators of Compromise (IoC)
directly, as done by Cyber-Threat Intelligence (CTI)
sharing systems. This difference allows us to tackle
challenges of CTI systems, such as high complexity,
an overwhelming amount of information for process-
ing, and liability and privacy concerns, thus facilitating
actionable intelligence.

• Risk Modeling. We develop risk models for mobile
platforms (Section IV). To do so, we utilize Deep
Neural Networks (DNNs) that process risk indicators
collected by real-world service providers and enable
efficient and meaningful risk assessment based on
complex risk combinations. Models are intended for
individual mobile service providers and allow them
to mitigate risks on client platforms, e.g., by limiting
maximum transaction amounts or adjusting require-
ments for additional authentication. Furthermore, such
risk models can be automatically processed by FedCRI
for sharing risks with other entities. This approach
enables service providers to unfold full potential of
their risk management systems, which were limited
so far due to complexity of risk information and
significant manual effort required for risk analysis.

• Risk Dataset. Together with our industry partner, we
collect a real-world large-scale risk dataset on which
we evaluate our approach. The dataset represents in
total 23.8 million users of security-critical mobile
apps (since Android 4 and iOS 6) provided by nine
different service providers (Section V). The datasets
were collected over the course of six years in the
sectors of financial services, payments, and insurance
in multiple countries on the European continent. Our
approach can successfully extract accurate risk mod-
els, allowing effective identification of cybersecurity
risks on mobile devices. Our evaluation shows that
the federated risk detection model can achieve better
than 99% accuracy in terms of F1-score in most risk
classification tasks with a remarkably small number of
false positives. To the best of our knowledge, this is
the first large-scale evaluation of risk detection models
utilizing Federated Learning.

Overall, our approach allows for effective detection and
modeling of cybersecurity risks on mobile platforms by indi-
vidual service providers and sharing risk information among
providers through collaborative learning. It enables the uti-
lization of security-as-a-service business models, where more
mature and experienced service providers can share their
security expertise with newcomers, thus helping them to fill
the gap of security experts’ shortage and reducing their time
to market.
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II. REQUIREMENTS AND CHALLENGES

In this section, we discuss the requirements posed on Fed-
CRI and elaborate on the challenges to be tackled.

Requirements. The requirements are motivated by the goal
to achieve real-world deployment for FedCRI system. In
particular, we identify two essential requirements that concern
heterogeneity of mobile platforms and the level of the software
stack at which the protection mechanism should reside on
mobile platforms.

• Device heterogeneity: We need to support heteroge-
neous mobile platforms in terms of hardware, OSes
(e.g., Android or iOS), and various OS versions.
This is an important requirement to be fulfilled since
mobile service providers in real-word deal with the
high diversity of mobile devices and not fulfilling this
requirement will likely impede deployability.

• App-level protection: The protection mechanism can-
not modify the operating system. This requirement is
essential for real-world deployment because service
providers do not have the possibility to integrate
kernel-level protection mechanisms in apps. Hence,
the protection module needs to be residing at the
application-level. Such protections are often based on
risk indicators that do not prove whether an attack
has actually taken place, but instead merely indicate a
suspicious system state, e.g., the existence of a process
with excessive privileges, or the presence of a system
library that normally does not exist on a certain device
type.

Challenges. We present the challenges posed on the develop-
ment of an efficient, and private risk sharing framework.

• Firstly, CTI systems rely on the processing of a vast
amount of data and are too complex to provide action-
able intelligence [45]. Consequently, they are not well
suitable for small organizations, since best practice
guidelines for such systems require dedicated security
teams to manage threat intelligence activities and
allocation of an adequate budget [45]. To overcome
this challenge, we apply the concept of FL to enable
participants of the CRI system to collaboratively build
global risk detection model based on risks observed
locally by participating entities. This approach re-
duces the amount of information to share and its
complexity and facilitates actionable intelligence since
global models can directly be applied for risk detection
without additional complex processing.

• Secondly, achieving interoperability and automa-
tion [40] is challenging. As pointed out in [55],
various standards (e.g., STIX [5], TAXII [6], Open
IOC [2], CybOX [1]) used by threat sharing platforms
hindered CTI providers and receivers to communicate
flawlessly to each other due to lack of support of these
standards by applications. Utilizing FL reduces the
amount of information for sharing which is likely to
simplify interoperability and automation.

• Thirdly, legal liability is another issue for organi-
zations participating in such sharing schemes [12].

When dealing with CTI, privacy and legal aspects
regarding governing and sharing data need to be taken
into account very carefully. Organizations may be
hesitant to share data to avoid reputation damage
caused by disclosing attack incidents [45]. Federated-
learning-based CRI addresses the dilemma of security
benefits and associated privacy risks and legal liability
concerns. Participating entities in the system can train
their risk detection models locally based on their own
private training data and aggregate these models to
a global model without the need of disclosing local
datasets of individual clients to others

III. FEDCRI DESIGN

In this section, we present the design of FedCRI – the Fed-
erated Cyber-Risk Intelligence system for mobile platforms. It
builds upon our concept of Cyber-Risk Intelligence (CRI) that,
similar to CTI, can improve the security of computing systems
through collaboration and sharing knowledge. In contrast to
CTI, CRI focuses on sharing knowledge about risk factors that
indicate that the platform is more likely to be compromised,
rather than information about actual attacks. To address limi-
tations of existing CTI sharing systems, FedCRI relies on the
concept of federated learning and shares risk knowledge as
machine learning models instead of sharing raw data.

In the following, we first provide the high-level overview
of FedCRI platform and then describe system components in
more detail.

A. High-level Overview

The high-level overview of FedCRI system is depicted in
Figure 1. The system model involves the following entities:
a CRI Provider, Service Providers, and End Users. Service
Providers provide various online services to their customers,
End Users, via mobile apps. They can range from online
shopping and banking applications offered by established
service providers with significant security expertise to services
provided by new businesses, such as restaurants and barber
shops, or public entities, such as universities and schools,
that, for instance, utilize apps to manage attendance lists that
became mandatory in many locations due to COVID pandemic.
End Users use mobile apps to access these services and
may perform security-sensitive operations such as login or
performing financial transactions, or entering their personally
identifiable information into attendance lists.

The risk management system is run on both Service
Providers and mobile platforms of End Users and monitors
the runtime environment of mobile devices concerning specific
risk indicators that correlate with certain threats. It communi-
cates the risk indicators over a dedicated secure channel to
the risk management backend server. The risk indicators are
grouped into separate categories, so-called Risk-IDs. Examples
of risks used in this work are jailbreak, code injection, ma-
licious application, or simulator usage1. Users may jailbreak
their phones to activate extra functionalities offered by the OS,
or they may intentionally or unintentionally install malicious

1Note that definition of risk indicators is not a contribution of this work.
We use risk indicators utilized by risk monitoring systems deployed in the
real world by established service providers.
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Fig. 1: High-level overview of FedCRI platform

apps, or use a simulator to modify underlying components of
the OS to circumvent OS-provided protection measures. An
adversary may inject malicious code to bypass a substantial
portion of the app’s protection features (cf. Appendix IV-A
for more details).

Service Providers conduct risk detection and build local
risk models (cf. Section IV) using local CRI datasets collected
from their End Users and upload them to the CRI Provider. In
turn, the CRI Provider is responsible for aggregating the local
risk detection models of Service Providers into a global risk
model and distributing the global model back to the Service
Providers. Once a trained global model is available, the Service
Provider can use it for risk detection.

Note that FedCRI platform can also be used by small size
Service Providers who do not have sufficient users for building
their own local risk models. Such entities can receive ready-
to-use global model and directly apply it for risk detection.
Global model can be provided by the FedCRI system on the
basis of subscription to the risk detection service.

B. Trust Model and Assumptions

In the following, we describe the assumptions we make
with regards to the attacker capabilities and trusted system
components:

• Mobile Platform: We assume that End Users may
install arbitrary malicious applications, however, the
system-level software is trusted. In practice, mobile
service providers also consider best-effort detection
of system-level risks, such as injection of malicious
system libraries. These measures are effective, for
example, against untargeted attacks that are not aware
of a risk monitoring system installed on a victim’s
platform.

• Communication: We assume that network communi-
cation is secured and cannot be affected by an attacker.

This assumption can be easily fulfilled through the use
of standard secure communication protocols such as
SSL/TLS.

• Data collection consent. Since there is a software
component integrated into the protected app that mon-
itors and collects potential risks, Service Providers are
required to obtain End Users’ consent for collecting
risk information (e.g., during the app installation).

• Adversarial ML and poisoning. We assume that all
Service Providers are registered in the CRI sharing
platform and are trusted by the CRI Provider. Thus,
adversarial machine learning attacks such as mem-
bership inference [51], generating adversarial exam-
ples [39], [48], and backdoor attacks [20] are out of
scope for this work, despite the fact that different
defense strategies against the above-mentioned attacks
have been proposed in the literature [16], [35]. We
note that defenses against backdoor attacks can be
integrated into our system [11], [43].

C. FedCRI Platform Operation

In the following, we shed light on operation of the FedCRI
platform. In particular, overall operational cycle can be divided
into three use cases: (i) data collection, (ii) federated model
training, and (iii) risk detection. We describe these use cases
using Figure 2, which depicts the FedCRI platform in more
detail.

Data Collection. Initially, FedCRI platform operates in mon-
itoring mode and passively collects risk indicator traces from
End Users. Upon session establishment with End Users (step
1a), the protected app provides risk indicators that it currently
has observed to the Risk Management component of Service
Provider. The risk indicators are then stored to a local CRI
dataset (step 1b). The monitoring phase continues as long as
the CRI dataset contains sufficient data for training a risk
detection model.

Federated Model Training. The federated training process is
locally initiated by Service Provider by downloading an initial
random model from the CRI Provider in Step A. Otherwise,
it has already been trained through several rounds of the
following process. In Step B, the initial model is trained locally
by Service Provider using the local CRI dataset as training data
(for more details about local model training, we refer the reader
to Section IV). Then, in Step C, local updates to the model
are uploaded to the CRI Provider, which aggregates them in
Step D to obtain an updated global model. Finally, the updated
global model is again downloaded by Service Provider for the
next training iteration (step A) and/or to be used locally for
risk detection (cf. Appendix C for more details on Federated
Learning).

Risk Detection. Once a trained global model is available, the
Service Provider can use it for risk detection. In particular,
upon user operation, for instance, login (step 1a), the risk
indicators associated with the login are communicated over
a dedicated secure channel to the risk management backend
server (step 1b) and evaluated against the global risk detection
model (step 2) to obtain a risk value associated with the user
login. When the app interacts with its Service Provider, the
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Fig. 2: Risk detection using FedCRI platform. We show execution flows with solid arrows and data flows with dashed ones

Mobile Service (server) will query the risk management for the
App’s risk level and consequently adapt the services provided
to the App accordingly. For example, if the risk level is deemed
to be beyond a specific threshold, security-critical functions
may be disabled or sensitive information made inaccessible to
the app.

IV. RISK MODELING

In this section, we first briefly describe the risk man-
agement and monitoring system and risk indicators used for
modeling risks. Then, we explain how we incorporate these
risk indicators into machine learning models to automatically
detect risks and deny suspicious actions (e.g., login attempts or
payment transactions). Next, we present the technical details
of our risk modeling. At the core of our approach, there is a
Machine Learning (ML) pipeline whose task is to model and
classify risks on mobile platforms. We build a classifier using
Deep Neural Networks (DNNs), a subset of ML algorithms that
naturally lend themselves to federation methods developed for
models based on Stochastic Gradient Descent (SGD) [34].

A. Risk Management

The risk management system is run on both Service
Provider and End Users’ mobile phones to monitor risk in-
dicators. As shown in Figure 3, the system consists of several
components. The protected App that includes a Mobile Service
connecting to its Service Provider over a service-specific
communication channel and a Risk Management component
that monitors the run-time environment of the smartphone
concerning specific risk indicators that correlate with certain
threats.

Fig. 3: Risk Management System.

The risk indicators monitored by protected Apps are
grouped into separate categories, so-called Risk-IDs. We can
easily extend Risk-IDs when new attacks or risk factors are
identified. We focus on the following Risk-IDs:

• JailBreak: Indicates the presence of Jailbreak soft-
ware or another indicator of a ’rooted’ device. These
may indicate a wider attack surface against the pro-
tected app and may allow attacks that are not possible
without root permissions. However, jailbreaks are also
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often utilized by power users merely to enable addi-
tional smartphone features. Thus, they cannot as such
be regarded as proof of an actual attack, but only as
a risk factor.

• MaliciousApp: Indicates the presence of an installed
app on the smartphone that may pose a potential
security risk. Some applications are targeting power-
users, who have access and control of filesystems,
and require a jailbreak to function properly. However,
since they can also be installed in a non-functional
state without jailbreaking the phone, they can serve as
a weaker additional jailbreak indicator. This risk can
also indicate the presence of relevant malware apps
similar to the way a virus scanner application would
do.

• CodeInjection: Indicates that the application code
of the app is not consistent with a known benign
baseline state. If the code is controlled by an attacker,
he/she may easily bypass a substantial portion of the
app’s protection features. Code modification is rarely
used by power users and should thus also not occur
otherwise.

• Simulator: Indicates that the app runs on a simulator
rather than a real device. Running the app on an
emulator would allow an attacker to easily modify
underlying components of the operating system, and
thus, circumvent OS-provided protection mechanisms.

B. Data Collection

We develop our approach based on datasets collected over
the course of six years from different Service Providers, most
of them with classical End Users, in the sectors of financial
services, payments, and insurance. Our datasets contain 23.8
million (more precisely 23.808.000) End Users (since Android
4 and iOS 6) from multiple countries in the European conti-
nent. Note that utilizing FL, the data do not leave Service
Providers’ premises to avoid the risk of disclosing sensitive
information of organizations, and the training processes are
launched locally by Service Providers. The CRI Provider
performs only the aggregation of local models into a global
one, which can be redistributed and used for risk detection, as
explained in Section III.

The risk data on End Users’ device is monitored and
collected using a software component integrated into the pro-
tected app (cf. Section IV-A). The collected risk information
(i.e., Risk-IDs and associated bitmasks) along with metadata,
as is explained in Section IV-C, are then transferred to a
server and stored in SQL databases. In order to ensure data
quality and mitigate the effects of noisy data, we clean the
data using Python scripts by identifying and removing errors
(e.g., typographical errors and inconsistencies) and duplicate
data. The data is also carefully labeled by security experts. We
elaborate more on data labeling process in Section IV-D.

C. Feature Selection

We select a set of informative and distinctive features for
the risk classification task. In addition to Risk-IDs provided by
the risk monitoring component of the protected app, we found

that application metadata characterizing the app itself and the
properties of the platform have a significant impact on the
quality of classification results. The resulting list of relevant
features is shown in Table I. Taking a look at the feature list,
it is worth mentioning that bitmask is an additional 3-byte
array providing additional condensed proprietary information
on Risk-ID properties. Its primary function is to help analysts
in problem analysis, in case, potential risks are identified.

TABLE I: List of Features
Feature Type

Platform Type Metadata
OS Version Metadata
Protected app Version Metadata
CPU Architecture Metadata
MaliciousApp[bitmask] Risk-ID + associated bitmask
JailBreak[bitmask] Risk-ID + associated bitmask
CodeInjection[bitmask] Risk-ID + associated bitmask
Simulator[bitmask] Risk-ID + associated bitmask

D. Ground Truth Labeling

To establish ground truth for ML model training and test-
ing, we label the identified risks (individual and combinations
thereof) into different risk-level categories (Low, Medium,
High, and False Positive). We note that false positives are
unexpected risks that might occur due to specific changes to
the OS (e.g., update). The false positives pose serious chal-
lenges for current risk management systems since it requires
significant manual processing efforts to identify them. Out
of 23.8 million available data entries 3.867.753 entries were
associated with risks and false positives. We labeled the data
manually using the support of the data experts of the industry
partner with many years of expertise in commercial application
security. The security team including 4 experts in several face-
to-face meetings went over (single/combined) risk entries and
discussed which label they should have. As an example, in
Android OS, JBreak Risk-ID is labelled as “Medium” while
the combination of CodeInjection, MaliciousApp, and JBreak
that indicates privacy and/or security breaches is labelled as
“High”.

E. Data Pre-processing

Before feeding the features to the DNN model, they need
to be transformed into a format the model can process. First,
we shuffled the data to ensure the model will not be affected by
the ordering of data, and then the input data was converted into
sequences of tokens and the tokens were mapped to numerical
indices ready to feed to Word Embedding layer [37] in the
DNN model to generate a dense vector of real values. The
data is split into three sets of 70%, 10%, and 20% for training,
validation, and testing, respectively. We note that the ratio of
dataset splitting completely depends on the dataset (its size,
distribution, and statistics), the application, and the type of
model being used. There is no general rule applicable and
one needs to start from a reasonable initial ratio and find
the optimal one with trial and error. Since our dataset size
is relatively large, the 7/1/2 ratio seems appropriate [4].

F. Model Building and Training

We utilize Recurrent Neural Networks (RNN) [25], a class
of supervised learning algorithms (cf. Appendix A) designed
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for the effective handling of sequential data but also useful
for non-sequential data. An RNN has a looping mechanism
that allows information to flow from one step (in sequence)
to the next. However, RNNs suffer from short-term memory,
meaning that they are not able to memorize data for a long
time and begin to forget previous inputs. We use a variant of
RNN so-called Gated Recurrent Unit (GRU) [30] that is used
to solve the problem of short-term memory using a mechanism
called gates (cf. Appendix B).

Fig. 4: DNN Classifier Architecture.

We build our deep learning model by assembling layers (in
this case, Embedding, GRU, and Fully Connected layers) as
shown in Figure 4. Since we do multi-class classification, our
model outputs per-class probability scores, and the activation
function of the last layer is softmax. We use categorical cross-
entropy as the objective (loss) function to train the model.

TABLE II: Model Hyperparameters.
Variable Setting

Layer Type [Embedding, Bi-GRU, FC]
Hidden Units [Bi-GRU:128 ,FC:4]
Optimizer Adam
Loss Function Cross-Entropy
Learning Rate 0.001
Dropout Values 0.5
Epochs 100
Batch Size 128

After constructing the model architecture, we take a grid-
search approach and loop through predefined hyperparameters
and fit the model on the training set. At the end, we select
the best performing parameters, as shown in Table II. The
training process involves making a prediction and calculating
how incorrect the prediction is, and then updating the model
parameters to minimize prediction error and to improve the
model prediction. We repeat this process until the ML model
has converged and can no longer learn from training data.
The training process finishes an epoch once the entire training
dataset has been exposed to the model. At the end of each
epoch, we use the validation dataset to evaluate model per-
formance and see how well the model is learning. The final

evaluation is done using unseen batches of test data, all at
once, in one round.

V. EVALUATION

To evaluate FedCRI, we apply it on nine real-world datasets
each of which originates from a different Service Provider
from diverse backgrounds such as financial, payments, and
insurance services. We also detail an appropriate set of metrics
to evaluate the performance of the trained ML models.

A. Datasets

We show detailed information about the number of End
Users in each Service Provider’s dataset in Table III. Each
Service Provider has different distribution in terms of the
number of End Users, Mobile OS, and devices that ensure
a diverse distribution of feature sets over different Service
Providers. This ensures that the local models do not learn
the same information from each other. The datasets include
data from nine Service Providers labeled A-L with altogether
23.8 million of End Users. Certainly, the non-anonymized user
datasets cannot be made publicly available due to obvious
ethical concerns and privacy regulations. Yet we share some
useful insights about data distributions. Figure 5 depicts the
distribution of unique risk entries (single/combined Risk-IDs
without duplicates) and Figure 6 shows the distribution of
unique false positives for all Service Providers.

Fig. 5: The distribution of unique risk entries across Service Providers

Fig. 6: The distribution of unique false positives across Service Providers
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TABLE III: Dataset Overview - Number of End Users by Service Provider
Service Providers

A B C D G H I K L
Android 134K 1.4M 450K 1.2M 9.3M 1.4M 2K 1.3M 135K
iOS 100K 1.6M 650K 743K 3.3M 910K 2K 1.1M 95K
Total 234K 3M 1.1M 1.94M 12.6M 2.3M 4K 2.4M 230K

Fig. 7: Label distributions across Service Providers

In addition, Figure 7 demonstrates the distributions of risk
labels for each Service Provider in log scale for better visibility.
These plots show how false positive (cf. Section IV-D) and risk
categories are distributed among different Service Providers.
As it is shown in the figure, some Service Providers such as
G, with a large number of End Users (See Table III), have a
high number of false positives. The reasons for this are likely
to be a high user quantity and OS version diversity in the
dataset. We cannot disclose more information (i.e., Risk-IDs
and Mobile platform/architecture) in the datasets due to the risk
of leaking information about Service Providers and potentially
causing reputation damage.

B. Evaluation Metrics

To evaluate the performance of the trained models we
use common performance metrics such as Precision, Recall,
and F1-score. We also utilize False Positive, True Positive,
and False negative rates which detail the performance of the
models per predicted risk labels. The selection of these metrics
is motivated by the fact that Service Providers’ datasets are
heavily imbalanced, i.e., the number of labels for each class
is very different (See Figure 7). Therefore, the commonly-
used measures of Accuracy and ROC Curve (AUC) are not
reliable performance metrics for evaluating the performance
of the learned model [8].

We define basic terminologies as shown in Table IV. They
are needed to understand performance evaluation metrics. We
define the performance metrics as follows.

TABLE IV: Basic terminologies definition.
Measures Definition
TN The actual value is False, and ML predicts False
FP The actual value is False, and ML predicts True
FN The actual value is True, and ML predicts False
TP The actual value is True, and ML predicts True

• False Positive Rate (FPR): The ratio between the
wrongly classified negative samples to the total num-
ber of negative samples.

FPR =
FP

TN + FP
(1)

• False Negative Rate (FNR): According to formula
2, it shows the ratio of positive samples that were
incorrectly classified.

FNR =
FN

TP + FN
(2)

• True Positive Rate (TPR): It defines the ratio of
positive samples that were correctly classified.

TPR =
TP

TP + FN
(3)

• Precision: Fraction of observations predicted to be
relevant that really are relevant, i.e., the relation of
the number of true positives (TP) to the sum of true
positives and false positives (FP):

Precision =
TP

TP + FP
(4)
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• Recall: Denotes the fraction of observations predicted
by the algorithm to be relevant out of the total set
of relevant observations, i.e., number of true positives
in relation to the sum of true positives and false
negatives:

Recall =
TP

TP + FN
(5)

• F1-score: Harmonic mean of Precision and Recall
calculated as:

F1-score = 2×
Precision×Recall
Precision +Recall

(6)

C. Experimental Setup

We implement the federated learning algorithm using the
PyTorch deep learning framework [3]. All experiments are
conducted on a Tensorbook (Ubuntu 18.04.5 LTS OS) having
Intel Core i7 processor, with 8 and 32 GB of RAM for GPU
and CPU, respectively.

D. Evaluation Results

We conduct a set of experiments to evaluate our approach
in different scenarios. Experiments are divided into two setups.
In the first, client-wise setup, we train separate risk detection
models for each Service Provider using their local dataset and
evaluate their performance against both the local dataset and on
datasets of other Service Providers. In the second, federated
setup, we utilize FL to train a global model that aggregates
the local models of individual Service Providers. We then
evaluate the performance of the global model on the datasets
of all Service Providers. We note that model evaluation is done
statically (in one round and with batches of unseen data) after
the training process is over.

1) Client-Wise Setup: We train risk detection models on
each Service Provider’s training dataset using hyperparameters
shown in Table II and evaluate them against a validation dataset
consisting of hold-out (unseen) data items in each Service
Provider’s local dataset. We take Service Provider G as an
example since its dataset is the largest with more than 12
million of End Users. Then, we plot the training and validation
learning curves for the trained model. A learning curve is a
plot of model learning performance over experience or time.
The model is evaluated on the training set and on a hold-
out validation set and plots of the measured performance are
created to show learning curves. The training learning curves,
plotted with blue lines in Figures 8 and 9, show us how well
the ML algorithm is learning while validation learning curves,
plotted with orange lines, provide an idea of how well the
model generalizes. The learning curves show that model G
reaches an accuracy of more than 99% in terms of F1-score for
both training and validation data while having an insignificant
amount of loss. This confirms that the model generalizes well
and is neither overfitted nor underfitted.

Figure 10 shows the Confusion Matrix (CM) of trained
model G on the hold-out test dataset. Based on the CM, we
calculate FPR, FNR, and TPR for each data label in hold-out
data. As can be seen in Table V, model G delivers a FPR of
almost 0%, while TPR is more than 99.7%.

This demonstrates that the model G can generalize well
on unseen data that has more or less the same distribution as

Fig. 8: Learning curve: training and validation loss

Fig. 9: Learning curve: training and validation F1-score

Fig. 10: Confusion matrix of model G on local test data

the training data. To see how well the model can generalize
on data having a different distribution, we test the model G
against data coming from other Service Providers, for instance,
Service Provider C.

Figure 11 shows a CM visualizing the performance of
the model G on the dataset of Service Provider C. The
corresponding performance measures are shown in Table VI.
As can be seen, the model G has a poor performance on the
dataset of Service Provider C. This naturally makes sense,
since during the training process the model G captures solely
the underlying distribution of its own training data (i.e., data of
Service Provider G). This confirms that utilizing the federated
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TABLE V: Model G - local test data
(%) High Low Medium FP
FPR 0 0 0 0.01
TPR 99.74 99.97 99.98 100
FNR 0.26 0.03 0.02 0

learning approach can indeed help in training a model that
performs well on all Service Providers’ datasets.

TABLE VI: Model G - Service Provider C test data
(%) High Low Medium FP
FPR 21.14 23.19 18.1 31,58
TPR 40.51 20.25 18.94 39.21
FNR 59.49 79.75 81.06 60.79

2) Federated Setup: In the second scenario, we perform
another set of experiments to evaluate the performance of a
federated model where all Service Providers contribute to the
training of the model. During a training round, each Service
Provider trains the model for one epoch (we specify the
number of training iterations between the Service Providers
and the CRI Provider to be 100). Therefore, the local models
are trained for a total of 100 epochs. We note that, as explained
in Section IV-B, the datasets were collected over six years in
different application domains in multiple European countries.
Each Service Provider has different distributions in terms of
End Users’ numbers and Mobile OS devices (Table III) that
ensure a diverse distribution of feature sets over different
Service Providers.

We demonstrate the performance of the aggregated FL
model for each Service Provider’s hold-out dataset in Table IX.
In addition, based on the experiments, we show that the FL
model can deliver comparable accuracy in terms of F1-score
to those of locally trained models. Taking Service Provider A
as an example, we can see in Fig. 12 that only the locally
trained model on the dataset of A and the FL model deliver
a very good F1-score, while other models trained on any
datasets except dataset A show poor performance. Using FL
each Service Provider can learn from other Service Providers’
data and boost its own performance in the detection and
classification task. On top of this, FL provides better privacy

Fig. 11: The CM of the model G on test data of Service Provider C

for Service Providers contributing to the training process as
they do not need to share their training data.

Fig. 12: The performance of the FL model on each Service Providers’
data.

Finally, we evaluate the performance of the FL model with
regard to the evaluation measures FPR, TPR, and FNR on
each Service Provider’ hold-out dataset. The major reason for
doing this is to compute the metrics per label and see how well
the FL model can classify data items into their corresponding
labels. Looking at Table XIX, it can be seen that the FL model
delivers negligible FPR and FNR while TPR exceeds 97% for
all labels in the datasets.

Generalization Check. We conduct further experiments to
check the generalization ability of the FL model. We consider
two different cases in the following.

Experiment 1. In the first experiment, we train the federated
model on 8 Service Providers out of 9 and leave one Service
Provider out in the training process. As soon as the training
process is finished we test the FL model against the left out
Service Providers’ data. We repeat this experiment for two
different Service Providers, as an example Service Providers
B and K with 3 and 2,4 million end-users respectively. As it
can be seen in Figure 13, the FL model does not perform
very well on Service Providers left out from the federated
training process (still better than the random guess of 25%).
The reason is that clearly each Service Provider’s data comes
from a different distribution and contains completely never-
before-seen patterns by other Service Providers. These results
give us an indication that federated learning plays an important
role to boost risk detection performance in situations in which
different Service Providers’s data have different distributions.
We remind that the FL model was tested against hold-out data
of all Service Providers.

Experiment 2. In the second case, we include all Service
Providers in the federated training, but in one experiment, we
leave out all data entries for Android OS version 10 and above
and train the FL model on historical data and use the left-
out data for testing the model. The same approach is repeated
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TABLE VI: Dataset A
Prec. Rec. F1 Support

High 91 100 96 75
Low 100 98 99 87

Medium 94 99 96 781
FP 100 100 100 20378

Avg. 100 100 100 21321

TABLE VI: Dataset B
Prec. Rec. F1 Support

High 100 100 100 989
Low 100 100 100 966

Medium 100 100 100 7358
FP 100 100 100 15838

Avg. 100 100 100 25151

TABLE VII: Dataset C
Prec. Rec. F1 Support

High 100 100 100 415
Low 100 100 100 227

Medium 100 100 100 2968
FP 100 100 100 7686

Avg. 100 100 100 11269

TABLE VII: Dataset D
Prec. Rec. F1 Support

High 100 100 100 902
Low 100 100 100 650

Medium 100 100 100 5774
FP 100 100 100 7347

Avg. 100 100 100 14673

TABLE VII: Dataset G
Prec. Rec. F1 Support

High 100 100 100 3553
Low 100 100 100 3577

Medium 100 100 100 74805
FP 100 100 100 527396

Avg. 100 100 100 609330

TABLE VII: Dataset H
Prec. Rec. F1 Support

High 100 100 100 445
Low 100 100 100 268

Medium 100 100 100 2022
FP 100 100 100 2859

Avg. 100 100 100 5594

TABLE VII: Dataset I
Prec. Rec. F1 Support

High 100 100 100 2
Low 100 100 100 1

Medium 100 100 100 23
FP 100 100 100 31

Avg. 100 100 100 57

TABLE VIII: Dataset K
Prec. Rec. F1 Support

High 97 100 98 568
Low 99 100 100 584

Medium 99 100 99 10562
FP 100 99 100 18667

Avg. 99 100 99 30381

TABLE VIII: Dataset L
Prec. Rec. F1 Support

High 95 100 97 52
Low 100 100 100 24

Medium 83 97 90 387
FP 100 99 99 15265

Avg. 99 99 99 15729

TABLE IX: Evaluation results in terms of precision, recall and F1-measure (in %) for examined datasets. The support column refers to the
number of occurrences of the given label in the dataset.

TABLE X: Dataset A
High Low Medium FP

FPR 0.03 0 0.25 0
TPR 100 97.7 99.1 99.8
FNR 0 2.3 0.9 0.2

TABLE XI: Dataset B
High Low Medium FP

FPR 0 0 0 0
TPR 100 100 100 100
FNR 0 0 0 0

TABLE XII: Dataset C
High Low Medium FP

FPR 0 0 0 0
TPR 100 100 100 100
FNR 0 0 0 0

TABLE XIII: Dataset D
High Low Medium FP

FPR 0.85 0.01 0.36 0.29
TPR 99.6 100 99.6 99.6
FNR 0.4 0 0.4 0.41

TABLE XIV: Dataset G
High Low Medium FP

FPR 0 0 0 0
TPR 100 100 100 100
FNR 0 0 0 0

TABLE XV: Dataset H
High Low Medium FP

FPR 0 0 0 0.04
TPR 100 100 99.95 100
FNR 0 0 0.05 0

TABLE XVI: Dataset I
High Low Medium FP

FPR 0 0 0 0
TPR 100 100 100 100
FNR 0 0 0 0

TABLE XVII: Dataset K
High Low Medium FP

FPR 0.07 0.01 0.54 0.04
TPR 100 99.7 99.8 99.4
FNR 0 0.3 0.2 0.6

TABLE XVIII: Dataset L
High Low Medium FP

FPR 0.02 0 0.5 1.73
TPR 100 100 97.16 99.5
FNR 0 0 2.84 0.05

TABLE XIX: Evaluation measures (in %) for examined datasets

for iOS 11 and above. According to Figure 14, the FL model
shows a good generalization ability on completely unseen data
entries. For instance, the FL model for iOS data was trained
on iOS 6 up to 11 (excluding iOS 11), and then tested against
iOS 11 and above. It is noteworthy to mention that datasets
of Service Providers A to D had no entries with Android OS
version above 9. Therefore, no results were available to plot
in the figure.

Besides, the FL model did not perform well on Service
Provider L. Taking a close look at its data, we found out that
out of 4818 data samples in the testing set there were 4654

unique samples with the false-positive label which are never-
before-seen labels for the model and most likely are wrongly
predicted by the FL model and due to the high number of
misclassified unique data samples the F1-score significantly
drops. Hence, the federated re-training process needs to be
scheduled between the CRI Provider and the Service Providers,
for instance, on a monthly basis or after a new OS version is
released.
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Fig. 13: Generalization check of the FL model: Service Providers B
and K are not involved in federated training process.

Fig. 14: Generalization check of the FL model. Android OS above 9
and iOS above 10 are not involved in federated training process.

VI. RELATED WORK

To the best of our knowledge, no work targeting the
autonomous evaluation of risk indicators exists yet. In this
section, we will, therefore, discuss existing work for the
individual parts of FedCRI, covering the detection of risks on
smartphones [29], [53], [23], [32], [44], [26], [56], coordina-
tion of different clients for threat intelligence [28], [9], [17],
[13] and leveraging ML for detecting risks and anomalies [49],
[42].

Risk Detection. FedCRI uses risk indicators as input
feature that describe whether malicious applications are in-
stalled on the device. Our approach is different from Intrusion
Detection Systems (IDS) for mobile platforms. IDS systems
typically detect attacks rather than risks and may suffer from
false positives and negatives that are problematic. In addition,
they do not share their knowledge with other parties in the form
of machine learning models. For the sake of completeness,
we discuss further existing approaches for determining risk
indicators.

Jailbreak Detection: Several strategies to detect rooted or
jailbroken devices have been developed [29], [53]. They focus

on hard-coded heuristic checks, e.g., to determine whether
certain parts of the file system [29] are writable (such as
”/system” [53]), or, whether certain program files are in-
dicative of privilege escalation (e.g., the su application on
android [53]), and typical applications on jailbroken devices
(like alternative app stores on iOS devices [29]), are present
on the device. In contrast to these, FedCRI performs holistic
risk evaluation based on several different risk factors simulta-
neously for more accurate detection results.

Static Malware Detection: Existing approaches for mal-
ware detection on mobile devices evaluate runtime features
such as CPU usage, network transmission [23] or system calls
for training ML classifiers to recognize malicious applications
[33]. Another strategy is to statically analyze metadata as
required permissions or information about the developer and
its certificate [32].

Dynamic Malware Detection: FedCRI utilizes risk indi-
cators denoting, to see whether malicious apps are installed
on a device. Here, different approaches exist to determine
the presence of malicious applications. As novel risks may
emerge dynamically, it is often not sufficient to rely merely
on risk detection rules that have been developed by domain
experts. Therefore, multiple approaches have been proposed
for recognizing malicious apps using ML [10], [31], [24]. The
work of Alzaylaee et al. [10] uses API calls and events as
input for a NN. Ma et al. [31] apply an RNN on the control
flow to detect malicious applications.

Anomaly Detection Systems: Andromaly, proposed by
Shabtai et al. [49], uses runtime features such as CPU usage,
network traffic, number of running processes, and battery
level to train a naı̈ve Bayes classifier for detecting anomalous
behavior. Another anomaly detection system leveraging FL is
DÏoT. However, DÏoT considers the devices as black boxes and
inspects only the network traffic to make predictions about the
state of the monitored device.

Emulator Detection: Similar to jailbreak detection, existing
approaches for determining whether the mobile device is
actually emulated rely on predefined checks. These approaches
check, e.g., if the International Mobile Station Equipment
Identity (IMEI) is 0 [44], the presence of certain emulator-
specific files [26], or API behavior that indicates the absence
of hardware features like vibration [26]. Jing et al. developed
an approach for automatically identifying suitable heuristics
by comparing existing artifacts for emulators and actual de-
vices [26].

In summary, the existing ML-based approaches are re-
stricted to detecting anomalies, showing that there is a risk.
In comparison, FedCRI is able to quantify the risk, indicated
by its input risk indicators, making it more suitable in real-
world applications than the discussed approaches.

Cyber-Threat Intelligence (CTI). Many Service Providers
need to deal with similar kinds of threats [28]. It is therefore
beneficial to share information about these threats to increase
awareness of individual service providers about them [28], [9],
[17]. One example for threat sharing is STIX, a formalized
language for exchanging Cyber-Threat Intelligence (CTI) in-
formation [13]. However, sharing this information also raises
privacy concerns, as it might contain sensitive or critical data
such as IP and email addresses as well as information about
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vulnerabilities [9]. Albakri et al. [9] analyzed CTI information
and provided guidelines for manually deciding about whether
or not to share these data.

Burkhart et al. [17] follow a different strategy by focusing
on statistical information, like network traffic statistics. They
utilize Secure Multi-Party-Computation (SMPC) to securely
accumulate CTI information from multiple IDSes, to prevent
other parties from learning the values of a single client. Our
approach relies on federated learning that avoids sharing raw
data about risks altogether and therefore effectively reduces the
associated privacy exposure. Further, SMPC is in general not
efficient. As the authors admit, for the biggest evaluated setup,
consisting of nine separated parties, their system can handle
less than 100 clients when correlating the input events. In com-
parison, using FL allows to distribute of the computational-
heavy tasks to the individual clients, s.t. the aggregation server
only needs to aggregate the individual models.

Note that our risk identification method targets the au-
tonomous evaluation of risk indicators and utilizes FL to
distribute the knowledge in the form of machine learning
models among different clients which is not done by other
existing works.

VII. DISCUSSION

We first discuss benefits of the federated learning more
specifically in our use-case scenario and then explain security
and privacy attacks that are relevant to federated learning.
Afterwards, we elaborate on privacy-enhancing techniques and
backdoor mitigation approaches that can be integrated into our
system to alleviate the effects of such privacy and security
vulnerabilities.

Apart from communication efficiency and reduced require-
ments to hardware, one major benefit of FL is to enable mis-
trusting organizations (i.e., Service Providers) to improve their
risk analysis without sharing privacy-sensitive data. Utilizing
FL, Service Providers boost their performance in risk detection
through learning risk patterns that are not seen locally. Note
that Service Providers with fewer data can hugely benefit from
those with more data. As we already showed in Figure 12, the
federated detection model can deliver comparable (equal or
very close with only 1% difference) performance to those of
locally trained models on Service Providers’ local data but
outperforms the local models clearly when evaluating against
data belonging to other Service Providers. This clearly shows
the power of the FL model in detection of non-local risk
patterns in comparison to locally trained models. We recall
that such a high detection capability would never have been
possible without federated learning.

Despite its benefits, federated learning has been shown
to be vulnerable to adversarial attacks (i.e., poisoning/back-
door [20], [41], [57] and inference attacks such as member-
ship inference [46], [51], [36], reconstruction [47], property
inference [22]). In backdoor attacks, the adversary stealthily
manipulates the global model so that attacker-chosen inputs
result in attacker-chosen outputs. A recent study [20] shows
how a single client can manipulate FL training process (i.e.,
adding regularization terms to the cost function) and inject
a backdoor into the model that causes green cars to be
misclassified as birds. In inference attacks, the adversary aims

at learning information about the clients’ training local data
by analyzing their model updates.

Several works aim at improving data privacy in FL by hin-
dering the aggregator from analyzing clients’ model updates.
These works typically prevent access to the local updates using
secure aggregation protocols that use either encryption [54]
or secret sharing [14], [52], [27], [21], or reduce information
leakage by applying noise to achieve differential privacy
(DP) [19]. Moreover, a number of backdoor defenses such
as Krum [15], FoolsGold [18], Auror [50], and AFA [38]
have been proposed aiming at separating benign and malicious
(backdoored) model updates. Generally, all existing protocols
for secure aggregation hinder the aggregators from deploying
defenses against backdoor attacks. However, approaches such
as FLGUARD [43] and BaFFLe [11] have been proposed that
combine secure aggregation with defenses against backdoor
injections. We recall that these defenses can be integrated into
FedCRI to mitigate these attack vectors.

VIII. CONCLUSION

In this paper, we present FedCRI, a Federated Cyber-Risk
Intelligence solution for mobile platforms that enables sharing
information about risks in form of actionable machine learning
models, instead of utilizing indicators of compromise directly,
as done by Cyber-Threat Intelligence (CTI) sharing systems.
FedCRI makes use of Federated Learning as an underlying
technique to train an effective risk detection model in an
efficient and privacy-preserving manner based on information
contributed by different mobile Service Providers. Compre-
hensive evaluation on real-world datasets of 23.8 million End
Users were conducted using two scenarios, with risk detection
performed by individual Service Providers and using FedCRI
platform. Results show that the federated detection model can
deliver comparable performance to those of locally trained
models on Service Providers’ local data but outperforms
the local models clearly when evaluating data belonging to
other Service Providers. According to the results, FedCRI can
achieve better than 99% accuracy in terms of F1-score in
most risk detection tasks with a remarkably small number of
false positives. Overall, FedCRI is the first solution for mobile
service providers that can bridge the gap of security expert’s
shortage through collaborative risk learning and sharing.
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Backdoor detection via feedback-based federated learning,” in ICDCS,
2021.

[12] N. Andrew, “Cybersecurity and information sharing: Legal challenges
and solutions (congressional research service,” CYCON, vol. 1-17, 2012.

[13] S. Barnum, “Standardizing cyber-threat intelligence information with
the structured threat information expression (stix),” White Paper, Mitre
Corporation, vol. 11, pp. 1–22, 2014.

[14] J. H. Bell, K. A. Bonawitz, A. Gascon, T. Lepoint, and M. Raykova,
“Secure single-server aggregation with (poly) logarithmic overhead,” in
CCS, 2020.

[15] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in NIPS,
2017.

[16] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, B. McMahan, S. Pa-
tel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in CCS, 2017.

[17] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos, “Sepia:
Privacy-preserving aggregation of multi-domain network events and
statistics,” USENIX Security, 2010.

[18] F. Clement, J. M. Y. Chris, and B. Ivan, “The limitations of federated
learning in sybil settings,” In Symposium on Research in Attacks,
Intrusion, and Defenses (RAID), 2020.

[19] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” in in Foundations and Trends in Theoretical Computer Science,
2014.

[20] B. Eugene, V. Andreas, H. Yiqing, E. Deborah, and S. Vitaly, “How to
backdoor federated learning,” PMLR, vol. 108:2938-2948, 2020.

[21] H. Fereidooni, S. Marchal, M. Miettinen, A. Mirhoseini, H. Möllering,
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S. Marchal, M. Miettinen, A. Mirhoseini, A.-R. Sadeghi, T. Schneider,
and S. Zeitouni, “Flguard: Secure and private federated learning.”
[Online]. Available: https://arxiv.org/abs/2101.02281

[44] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and
S. Ioannidis, “Rage against the virtual machine: hindering dynamic
analysis of android malware,” in Proceedings of the Seventh European
Workshop on System Security, 2014, pp. 1–6.

[45] Ponemon Institute LLC, “The value of threat intelligence: Annual
study of north american & united kingdom companies,” 2019.
[Online]. Available: https://stratejm.com/wp-content/uploads/2019/
08/2019 Ponemon Institute-Value of Threat Intelligence Research
Report from Anomali.pdf

[46] A. Pyrgelis, C. Troncoso, and E. D. Cristofaro, “Knock knock, who’s
there? membership inference on aggregate location data,” in NDSS,
2018.

[47] A. Salem, A. Bhattacharya, M. Backes, M. Fritz, and Y. Zhang,
“Updates-leak: Data set inference and reconstruction attacks in online
learning,” in USENIX Security, 2020.

[48] M.-D. Seyed-Mohsen, F. Alhussein, and F. Pascal, “Deepfool: a simple
and accurate method to fool deep neural networks,” CVPR, 2016.

[49] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, ““andro-
maly”: a behavioral malware detection framework for android devices,”
Journal of Intelligent Information Systems, vol. 38, pp. 161–190, 2012.

14

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/07185213/Kaspersky_Telecom_Threats_2016.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/07185213/Kaspersky_Telecom_Threats_2016.pdf
https://neptune.ai/blog/f1-score-accuracy-roc-auc-pr-auc
https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/abs/2101.02281
https://stratejm.com/wp-content/uploads/2019/08/2019_Ponemon_Institute-Value_of_Threat_Intelligence_Research_Report_from_Anomali.pdf
https://stratejm.com/wp-content/uploads/2019/08/2019_Ponemon_Institute-Value_of_Threat_Intelligence_Research_Report_from_Anomali.pdf
https://stratejm.com/wp-content/uploads/2019/08/2019_Ponemon_Institute-Value_of_Threat_Intelligence_Research_Report_from_Anomali.pdf


[50] S. Shen, S. Tople, and P. Saxena, “Auror: Defending against poisoning
attacks in collaborative deep learning systems,” in ACSAC, 2016.

[51] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” In IEEE Symposium
on Security and Privacy (S&P), vol. 3-18, 2017.

[52] J. So, B. Guler, and A. S. Avestimehr, “Turbo-aggregate: Breaking
the quadratic aggregation barrier in secure federated learning,” in
arXiv:2002.04156, 2020.

[53] S.-T. Sun, A. Cuadros, and K. Beznosov, “Android rooting: Methods,
detection, and evasion,” in Proceedings of the 5th Annual ACM CCS
Workshop on Security and Privacy in Smartphones and Mobile Devices,
2015, pp. 3–14.

[54] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, and Y. Zhou,
“A hybrid approach to privacy-preserving federated learning,” in AISec,
2019.

[55] D. Vazquez, O. Acosta, C. Spirito, S. Brown, and E. Reid, “Conceptual
framework for cyber defense information sharing within trust relation-
ships,” CYCON, vol. 1-17, 2012.

[56] T. Vidas and N. Christin, “Evading android runtime analysis via sandbox
detection,” in Proceedings of the 9th ACM symposium on Information,
computer and communications security, 2014, pp. 447–458.

[57] C. Xie, K. Huang, P.-Y. Chen, and B. Li, “Dba: Distributed backdoor
attacks against federated learning,” in ICLR, 2020.

APPENDIX

A. Machine Learning Algorithm

Machine learning models and algorithms for cybersecurity
risks detection can come in the following types:

• Supervised learning: is the most common way of
implementing machine learning. In a supervised learn-
ing model, all input information has to be labeled. A
supervised learning model is based on predictive data
analysis and is only as accurate as the training set
provided for it.

• Unsupervised learning: is meant to detect anoma-
lous behaviour in cases where there labeled data is
not available at all. An unsupervised learning model
continuously processes and analyzes new data and
updates its models based on the findings. It learns to
notice patterns and decide whether they are parts of
legitimate or malicious operations.

• Semi-supervised learning: is somewhere between
supervised and unsupervised learning and is able to
learn from partially labeled data sets (a small amount
of labeled data with a large amount of unlabelled data).

• Reinforcement learning: is an ML algorithm that al-
lows machines to automatically detect ideal behaviour
within a specified context. It constantly learns from the
environment to find actions that minimize risks and
maximize rewards. A reinforcement feedback signal
is required for the model to learn its behaviour.

B. RNN with Gated Recurrent Unit (GRU)

An RNN has a looping mechanism that allows information
to flow from one step (in sequence) to the next. This informa-
tion is the hidden state, which is a representation of previous
inputs. However, RNNs suffer from short-term memory. In
most real-world problems, a variant of RNN such as Gated
Recurrent Unit (GRU) is used to solve the problem of short-
term memory using a mechanism called gates. Gates are dif-
ferent tensor operations that learn what information to add or

remove to the hidden state, thus they enable learning long-term
dependencies. The GRU is the newer generation of RNNs and
has fewer gating signals and tensor operations in comparison
to an LSTM (Long Short-Term Memory). Therefore, a little
speedier to train. It also only has two gates, a reset gate, and
an update gate. The update gate (zt) decides what information
to throw away and what new information to add and the reset
gate (rt) determines how much past information to forget. The
GRU-RNN model is presented in the form:

ht = (1− zt)� ht−1 + zt � h̃t (7)

h̃t = g(Whxt + Uh(rt � ht−1) + bn) (8)

with the two gates presented as:

zt = σ(Wzxt + Uzht−1 + bz) (9)

rt = σ(Wrxt + Urht−1 + br) (10)

where xt is the N-dimensional input vector at time t, ht
the hidden state, g is the activation non-linearity, such as
sigmoid or Rectified Linear Unit (ReLU), W , U , and b are
trainable parameters (weights and bias) and � is element-wise
multiplication.

Fig. 15: GRU gating mechanism

C. Federated Learning

In this paper, the local risk models are trained at several
Service Providers using locally observed risk indicators ob-
tained from many End Users. We adopt a federated learning ap-
proach to aggregate the models from several Service Providers
to a global model that is distributed back to individual Ser-
vice Providers, as it is communication-efficient and privacy-
preserving and suited for distributed optimization of Deep
Neural Networks (DNN) [34]. FL suits our scenario well since
it can cope with settings where data are massively distributed
and contributions from participating entities are imbalanced.
Algorithm 1 illustrates the FL initialization process and a
typical round of learning consisting of the following sequence:
CRI Provider randomly initializes the weights of the global
model and selects a random subset of members of the fed-
eration (here, Service Providers) to receive the global model.
Then, each selected Service Provider splits its own training
data into several batches and launches a training process.
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Algorithm 1 Federated-Averaging. K Service Providers (SP)
are indexed by k, β is local batch size, E is number of training
epochs and η is learning rate. L indicates local loss function

1: procedure CRI EXECUTION . run by CRI Provider
2: Initialize w0

3: for each round t = 1, 2, ... do
4: m ← (determine number of SPs)
5: for each SPk ∈ m in parallel do
6: wk

t+1 ← SP_Update(k,wt)
7: end for
8: wt+1 ←

∑K
k=1

nk

n w
k
t+1

9: end for
10: end procedure
11:
12: procedure SP UPDATE(k,wt) . run on SPk

13: β ← split data into batches of size B
14: for each local epoch i from 1 to E do
15: for batch b ∈ β do
16: w ← w - η ∇L(w; b)
17: end for
18: end for
19: return w to CRI Provider
20: end procedure

During the training, the Stochastic Gradient Descent (SGD)
algorithm updates the current weights of the model using the
current gradient multiplied by learning rate and computes an
updated model which is later sent to the CRI Provider. At the
end of each communication round, CRI Provider aggregates
these model updates (typically by averaging) to construct
an improved global model. Bear in mind that to adapt to
possible newly-generated risks, the FL model retraining can
be scheduled between the CRI server and SPs on a monthly
basis or after releasing a new OS version.
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