
ClearStamp: A Human-Visible and Robust Model-Ownership Proof based on
Transposed Model Training

Torsten Krauß
University of Würzburg

Jasper Stang
University of Würzburg

Alexandra Dmitrienko
University of Würzburg

Abstract
Due to costly efforts during data acquisition and model train-
ing, Deep Neural Networks (DNNs) belong to the intellectual
property of the model creator. Hence, unauthorized use, theft,
or modification may lead to legal repercussions. Existing
DNN watermarking methods for ownership proof are often
non-intuitive, embed human-invisible marks, require trust in
algorithmic assessment that lacks human-understandable at-
tributes, and rely on rigid thresholds, making it susceptible to
failure in cases of partial watermark erasure.

This paper introduces ClearStamp, the first DNN water-
marking method designed for intuitive human assessment.
ClearStamp embeds visible watermarks, enabling human
decision-making without rigid value thresholds while allow-
ing technology-assisted evaluations. ClearStamp defines a
transposed model architecture allowing to use of the model in
a backward fashion to interwove the watermark with the main
task within all model parameters. Compared to existing water-
marking methods, ClearStamp produces visual watermarks
that are easy for humans to understand without requiring com-
plex verification algorithms or strict thresholds. The water-
mark is embedded within all model parameters and entangled
with the main task, exhibiting superior robustness. It shows
an 8,544-bit watermark capacity comparable to the strongest
existing work. Crucially, ClearStamp’s effectiveness is model
and dataset-agnostic, and resilient against adversarial model
manipulations, as demonstrated in a comprehensive study
performed with four datasets and seven architectures.

1 Introduction

In the realm of rapidly advancing technologies, machine
learning stands out for many advantages, primarily revolving
around automation, informed decision-making, and insightful
recommendations drawn from historical data. This transfor-
mative technology finds extensive application in diverse real-
world scenarios, ranging from critical tasks such as medical
image classification [5] to facilitating processes like natural

language processing [12], and extends further into domains
like autonomous driving [7] and translation services [50]. At
its core, a machine learning system consists of a model, often
a Deep Neural Network (DNN), and data. Acquiring this data,
especially in large quantities necessary for robust machine
learning, can be both challenging and costly. Furthermore, the
data can be inherently sensitive, such as in the case of medical
images, warranting strict protection under the umbrella of
intellectual property (IP) rights belonging to its owner. Once
data becomes available, significant computational resources
are utilized for model training, which entails substantial effort
and, consequently, costs. The resulting model, infused with
knowledge distilled from underlying training algorithms and
exhaustive data, represents a culmination of innovation and
expertise in the field DNNs and embodies the IP of its creator.

However, in case a model is made available to the public
or sold to third parties, the matter of safeguarding IP rights
becomes a challenge. In the face of potential adversarial enti-
ties, these models are vulnerable to theft, unauthorized resale,
unwarranted modification, or illicit utilization. Such circum-
stances, recognized as copyright infringements, have the po-
tential to escalate into legal proceedings, underscoring the sig-
nificance of robust and comprehensive protective measures.

The state-of-the-art approach to safeguarding the IP of
trained models is model watermarking [3, 35]. Existing DNN
watermarking methods commonly require a key as input to
an algorithm for watermark extraction. This process gener-
ates an output that is subsequently verified against the se-
cret ground truth of the watermark. Watermarking methods
can be categorized based on two main properties: whether
they operate by accessing the model’s internals (white-box)
[15,15,34,54,57,61,63], such as the weights, or by analyzing
only prediction outputs (black-box) [1, 21, 28, 36, 40, 70, 71].
Moreover, a watermark is either 1-bit [28, 40, 54] or multi-
bit [1, 15, 15, 21, 28, 34, 36, 57, 61, 63, 70, 71]. A 1-bit water-
mark merely indicates the presence or absence of a watermark,
whereas a multi-bit watermark incorporates details like the
name of the copyright holder.
Problem Statement. However, the watermarking techniques

proposed so far can be considered non-intuitive, as they em-
bed human-invisible watermarks. Consequently, for water-
mark veri�cation, the evaluator must place trust in the algo-
rithm, which typically extracts data from the DNN that lack
human-understandable attributes. This data is then distilled
into a single value, and then compared to a rigid threshold,
where values above it con�rm watermark's existence and val-
ues below it deem the watermark invalid. In cases of partial
watermark erasure algorithmic assessment might fall short,
while humans with a clear understanding of its prior presence
might be able to easily verify a copyright infringement. In
the context of an image, for instance, it is imaginable that a
watermark, depicted as a stamp, could be erased, for instance,
up to 70%; nevertheless, even with this level of reduction, it
may still remain conspicuously apparent that the watermark
was once embedded into the image.

This paper addresses these challenges and introduces
ClearStamp, the �rst multi-bit, white-box DNN watermark-
ing method that follows an intuitive approach.ClearStamp
embeds a visible watermark that can be assessed through hu-
man inspection, empowering humans to make decisions based
on common sense and reasoning while retaining the option
for technology-assisted evaluations. In addition, the method
is generic and can be applied to various datasets and model
architectures, and is robust against a wide range of watermark
erasure techniques, including manipulation attempts by adap-
tive attackers who know the details of the protection method
and even of underlying keys.

Contributions. This paper makes the following contributions:

• We proposeClearStamp, the �rst DNN watermarking
mechanism that yields human-visible and understand-
able outputs, bypassing the need for rigid value thresh-
olds and enabling more coherent and defensible juris-
diction, especially in cases where portions of the water-
mark remain obviously discernible. As a consequence,
ClearStampprovides more security for the model cre-
ators' intellectual property.

• We have pioneered the utilization of transposed model
training inspired by deconvolutions [18,20,26,48,67,69]
as a novel approach for integrating a visible and human-
comprehensible watermark into a DNN. In this method,
we de�ne a transposed model architecture speci�cally
tailored to the existing model's structure, which shares
weights with the original model. This enables model
training in a reverse fashion, focusing on embedding the
watermark, while the effects on conventional forward
training for the model's primary task are negligible.

• We entangle the watermark and the main task within
all model layers to create a robust watermark that can
withstand adversarial model manipulations, such as �ne-
tuning on third-party datasets, pruning of model pa-
rameters, or adaptive adversaries attempting to remove

or overwrite the watermark. Inspired by Siamese Net-
works [30], we achieve this by sharing weights between
the model's primary task and the watermark and by en-
forcing that the watermark does not cause abnormal
model parameters. Any malicious modi�cation neces-
sitates sacri�ces in the model's main task performance,
rendering the model less useful.

• We conduct a systematic large-scale study to analyze
factors in�uencingClearStamp, demonstrating its inde-
pendence from application-speci�c factors by leverag-
ing different datasets (MNIST [16],CIFAR-10[32], GT-
SRB [51], andCIFAR-100 [32]) and model architec-
tures (CNNs,ResNet-18, ResNet-34[25], ViT [17], and
VGG11 [46]) during evaluation. Additionally, we test the
watermark's robustness under various �ne-tuning and
pruning scenarios and showcase a substantial watermark
capacity of 8,544 bits that can be embedded with a low
error rate of 4.45%, which is comparable to the strongest
existing work in terms of capacity with 8,400 bits [34].

In summary, this work introduces a highly intuitive and
easy-to-understand white-box multi-bit DNN watermarking
method, offering a robust defense against various attack sce-
narios. The embedded watermark is human-understandable,
addressing the limitations of existing solutions, which of-
ten lack intuitive design and human-friendliness in the �nal
decision-making process, a task that can be seamlessly under-
taken by a human evaluator when employing ClearStamp.

2 Background

Watermarking Watermarking [14, 19, 24, 29, 39, 43, 59] is
a technique to embed a digital mark or identi�er into digital
media, e.g., images or audio, without signi�cantly altering
the content's appearance or functionality, with the purpose
of embedding a discernible sign of ownership, authenticity,
or other relevant information. Those signs can then be used
for various scenarios, e.g., copyright protection, authenticity
veri�cation, ownership attribution, digital rights management,
tamper detection, or metadata embedding. Watermarks come
in various forms, with visible and concealed watermarks be-
ing notable categories. 1-bit watermarks make explicit own-
ership claims through their mere presence, while multi-bit
watermarks convey additional information. The choice of wa-
termarking method depends on the speci�c use case and the
desired level of security. Extracting the watermark, which is
asecret value, relies on knowing theextraction methodand
is often accompanied by a speci�csecret key.

In DNNs the watermark is embedded typically within the
model's parameters [3,35]. This can transpire either directly,
necessitating white-box access to the parameters for extrac-
tion and veri�cation, or indirectly through a learning process
that con�gures the parameters to produce outputs containing
the watermark when subjected to speci�c inputs. In such a

case, black-box access is necessary for watermark veri�ca-
tion. Both methods are achieved by introducing an additional
regularization term to the loss function during model training.
This regularization term orchestrates parameter adjustments
in alignment with the intended watermarking objectives.

For watermark extraction and veri�cation, the DNN and the
watermark's secret key are fed into an extraction algorithm
which yields some data. Those data are then veri�ed against
the watermarks ground truth secret by an algorithm that relies
on a rigid threshold.

Transposed Model FunctionalityThe transposed functional-
ity of a machine-learning model is the reverse of the original
model's task. We leverage the concept of transposed models
to embed a watermark into the model. For instance, consider
a model that classi�es image inputs into a feature vector indi-
cating detected objects within the image. The transposed func-
tionality would involve inputting such a feature vector into the
model to generate an image that embodies the characteristics
encoded within that feature vector. This concept extends to
the more granular level of model layers, where transposed
layers reverse the functionality of their corresponding original
layers. A transposed model consists of multiple transposed
layers in the reverse order of the original model's architec-
ture. Below, we discuss common model layers and existing
or straightforward methods for transposing their functionality.
However, certain layers may not be capable of precisely re-
covering the original input, especially when input data have
undergone compression, resulting in information loss.

Linear Layer.A linear layer performs a calculation such as
y = x� wT + b, wherew andb denote weights and bias ma-
trices, andx andy represent input and output, respectively.
Here,T denotes the transposed operation such that the matrix
is �ipped over its diagonal, e.g.,Ai j becomesA ji . Linear lay-
ers can be accurately reversed by computingx = (y� b) � w,
effectively retrieving the original input from the output.

Batch Normalization.Batch normalization layers [27] are
used to keep the data �owing through a model in a spe-
ci�c range. Such layers perform a computation akin to
y = x� E(x)p

Var(x)+ e
� g+ b, whereE(x) andVar(x) are the feature-

wise mean and variance of the input data,eis a small constant,
andgandb are learnable parameters. As mean and variance
are dependent onx, the operation cannot be reversed straight-
forwardly when only provided withy. To address this, one
can set default values forE(x) = 0 andVar(x) = 1, resulting

in x = (y� b)�
p

1+ e
g , which provides a good approximation.

Pooling Layer.Pooling layers [68] reduce the dimensionality
of data by selecting representative values among multiple
data points based on speci�c rules, such as computing the
average or selecting the maximum value. As this process
fundamentally involves downsampling, the transposed func-
tionality is centered around upsampling. Consequently, the
exact transposition of such downsampling computations can

only be approximated, as new data points must be inferred.
One common approach to upsample data is through interpola-
tion, with several interpolation methods available, such as the
nearest-neighbor algorithm [44] or the bilinear algorithm [45].

Convolutional Layer.A convolution [33] transforms the input
to extract relevant features. This transformation applies a �lter
or kernel to the input to produce output data points. Multiple
input data points are convolved with the �lter to generate a
single output data point. Hence, similar to downsampling, the
computation cannot be exactly reversed. However, a method
proposed in [69] offers a reasonably effective approximation1.
Dropout Layer.Dropout layers [49] are designed to distribute
knowledge across various parameters. They implement a reg-
ularization technique that simulates training numerous neural
networks with varied architectures concurrently. During train-
ing, random layer outputs are ignored, altering the layer's
appearance and connectivity. Each training update re�ects a
distinct "view" of the layer. They exert in�uence during train-
ing, have no learnable parameters, and remain inconsequential
during inference. Therefore, dropout layers are utilized iden-
tically to the forward pass during transposed training.
Activation Functions.Activation functions, e.g., ReLU [2],
introduce non-linearity in a model and play a signi�cant role
in the model's ability to generalize learned knowledge. Some
activation functions introduce lossiness, like ReLU, which
maps all negative input values to zero while the positive input
values remain the same. Naturally, such operations are irre-
versible, and thus, activation functions can not be transposed.
Transformer Blocks.Transformer models, like Vision Tran-
former [17], deviate from convolution-based models and are
constructed by so-called transformer blocks, which consist
of an encoder and an attention module, both featuring lin-
ear layers, dropout layers, and activation functions. Vision
Transformer divides the image into patches and embeddings
are generated for each patch. The transposed functionality of
these linear layers, dropout layers and activation functions
was already elaborated in the previous paragraphs, indicating
that transposing a Vision Transformer is straightforward.

In summary, the transposition of model functionalities can be
applied to a variety of common machine learning architec-
tures. While some layers allow for a straightforward reversal,
others necessitate approximation methods due to inherent
complexities and information loss.

Image Similarity Human discernment of whether two images
share identical content is typically straightforward. Never-
theless, conventional machine-based methods for quantifying
errors, such as the computation of Mean Squared Error (MSE)
across all pixels in an image, can yield substantial error val-
ues, particularly when the images possess matching structural
elements but differ in aspects like color. Human visual percep-
tion excels at extracting structural information from images,

1The method of [69] is also used in PyTorch as transposed convolution
modules and can be seen as the gradient of the respective convolution.

and in this context, Wanget al. [64] introduced the Structural
Similarity Index (SSIM). Within this paper, we employ SSIM
as part of a loss function to embed a watermark into a DNN,
as well as for post-extraction veri�cation of the watermark's
presence and integrity. The SSIM has a value range of[� 1;1],
where 1 indicates perfect similarity, 0 indicates no similarity,
and -1 indicates perfect anti-correlation.

SSIM addresses the limitations of other metrics by provid-
ing a quanti�able measure of image dissimilarity considering
luminance, contrast, and structure, aligning more closely with
human perception. As exempli�ed in Tab. 1, MSE calculations
often highlight substantial disparities from the original im-
age, whereas SSIM reliably identi�es high levels of structural
similarity of the content. As visualized in the �fth column of
Tab. 1, even SSIM values of, e.g., 0.18, are suf�cient, such
that a human can claim similarity between two images.

3 Problem Setting

Considered Scenario.We consider a classical watermarking
scenario: The model owner trains a Deep Neural Network
(DNN) by utilizing a proprietary dataset and costly resources
making it critical to protect the resulting model, which is the
intellectual property of the owner. Thereby, a maximally ef-
fective watermark should be embedded that allows ownership
claim. The produced model is then legally or illegally dis-
tributed, e.g., sold or stolen, and placed into production. If the
owner suspects a copyright infringement of their model, an in-
spection of the suspected model can be conducted. Precisely,
it should be possible to extract and verify the watermark, even
if benign or adversarial modi�cations have been performed on
the copy of the original model. In the following, we �rst de�ne
the objectives (Sect. 3.1) and the threat model (Sect. 3.2).

3.1 Watermark Objectives

Inspired by related works [6,9,10,15,21,36,65,66], we de-
�ne several objectives, that should be ful�lled by an effective
watermark: 1)Understandability: The evaluation of the wa-
termark should be easily possible by human inspection. We
add this objective to the commonly used ones, as the �nal
decision in common DNN watermarking methods typically
relies on a rigid threshold that may not detect leftovers after
watermark erasure attempts, but those could be obvious to
detect for human observers. Such situations occur for example
for partly erased watermarks, that are interpreted as removed
by a machine but are still recognizable by human inspection.
We visualize a respective toy example in App. 7.1. Further,
decisions that can be made by humans are more intuitive and
easily comprehensible than empirically determined thresh-
olds. 2)Fidelity: Watermark embedding should preserve the
model performance on the primary task. 3)Reliability: It
must be reliably possible to extract the watermark from previ-

Image

SSIM 1 -1 0 -0.02 0.18 0.75
MSE 0 64,322 31,642 32,856 19,764 5,909

Table 1: A reference image (�rst column) compared to images
(�rst to sixth column) regarding SSIM and MSE values.

ously watermarked models2. 4) Robustness: The embedded
watermark must withstand model modi�cations, which we
describe in Sect. 3.2. 5)Integrity: The watermark method
should uniquely identify the watermark's secret value respec-
tive to the watermark's key and should not extract a valid
watermark from unwatermarked models. 6)Capacity: The
amount of information embedded into the watermark should
be maximized to strengthen ownership claims. 7)Ef�ciency:
Embedding the watermark should introduce negligible com-
putational overhead. 8)Security: The watermark should not
introduce obvious footprints allowing for easy detection and
removal. 9)Generalizability: The approach should be inde-
pendent of the dataset or model architecture.

3.2 Threat Model

Our threat model speci�es DNN model modi�cation scenarios
the attacker can undertake with the goal of removing the
watermark from the trained and watermarked model.

Fine-Tuning. In �ne-tuning [47,53], the adversary continues
training with a dataset akin to the original training dataset in
the hope of removing watermarks that are added on top of the
main task. Here we assume, that the adversary is aware of the
training procedure including hyperparameters, and hence can
adopt the settings for model modi�cations. Speci�cally, the
learning rate is either kept at parity with the original training
or, alternatively, can be decreased from the original value. In
most benign �ne-tuning scenarios, such a reduction of the
learning rate is a typical approach to preserve the already
trained meaningful features and only provoke small changes
caused by the new dataset. Alternatively, the adversary can
�ne-tune the model on a different dataset, which may necessi-
tate the substitution of the last model layer with an untrained
counterpart due to a different number of label classes.

Pruning. Pruning [23] is normally used to reduce the DNN
size to facilitate deployment in smaller setups like embed-
ded devices. As the adversary can arbitrarily modify model
weights, parameters can be pruned in the hope of removing
the watermark while keeping a reasonable main task perfor-
mance. This entails the elimination of a speci�c proportion of
parameters, called pruning level, characterized by the lowest
absolute values within the model, as those parameters are
deemed to have the most marginal in�uence on the model's

2Note that watermarks from models that have been signi�cantly manipu-
lated to the extent that the original main task is severely compromised do not
require detection, as the model no longer retains the creator's IP rights.

overall performance. Such pruning methods can be combined
with �ne-tuning, which is called �ne-pruning [37,56].

Adaptive Adversary. An informed adversary, possessing
knowledge of the watermarking methodology, may attempt
to manipulate the existing watermark [29,57] leveraging the
same embedding technique. Thereby, the adversary can in-
vent a new watermark that can either contain meaningful or
random data and embed the watermark in the hope of remov-
ing or replacing the original one. Removing the watermark
would prevent ownership claims by the model creator. A re-
placement would transfer the possibility of claiming model
ownership to the adversary. Usually, the watermark is kept
secret and the adversary is not aware of the watermark's data.

4 Approach

In this section, we present our general concept in Sect. 4.1,
followed by details about the generation of transposed models
in Sect. 4.2, the composition of the watermark in Sect. 4.3,
and details on the training procedure in Sect. 4.4.

4.1 Overview

We proposeClearStamp, a white-box and multi-bit DNN wa-
termarking method, that embeds a watermark secret matching
to a speci�c watermark key within the complete set of model
parameters. The watermark key has the form of a regular out-
put vector of the DNN and the watermark secret is represented
by an input-like sample of the DNN, that can contain arbitrary
information, e.g., random text superimposed on an image,
without necessitating visual or context-wise similarity to ac-
tual dataset samples. After legal or illegal model distribution
of the trained and watermarked model,ClearStamp's veri�ca-
tion process can use the key to extract the embedded secret
from the DNN and, thus, claim ownership and potentially
copyright infringement. Below, we describeClearStamp's
principle and outline the successive steps ofClearStampdur-
ing the model life-cycle.

Principle of ClearStamp. In the process of embedding a
watermark into the model,ClearStampemploys transposed
model training, as visualized in Fig. 1. Therefore, we construct
a transposed model architecture that is constructed using the
method presented in Sect. 4.2 and establish weight sharing
(similar to Siamese Networks [30]) between the standard
model and transposed model by assigning the parameters of
each layer to the respective transposed layer. Consequently,
these shared weights can be subject to regular training for the
main task via conventional (forward) training with respect
to the forward loss, e.g., cross-entropy, as illustrated in the
upper portion of Fig. 1. Simultaneously, we perform the trans-
posed training with the prede�ned watermark key and secret
visualized as key and lock in Fig. 1, representing the training
data. The key, a prediction-like vector, is fed into the trans-

Figure 1: Visualization of main task forward training and
watermark (key & lock) embedding in transposed training.

posed model, generating an output akin to the input data of
the regular DNN, e.g., an image, as visualized in the lower
part of Fig. 1. During transposed training, the shared model
weights are optimized with respect to a transposed loss, that is
calculated by comparing the output of the transposed model
with the watermark's secret. By applying both, forward and
backward training,ClearStampcan entangle the main task
and the watermark within all model layers of the DNN.

ClearStamp Life Cycle. During a model's life-cycle,
ClearStampfollows the four steps visualized in Fig. 2. The
untrained model is initialized with random parameters, that
neither performs well on the main task for forward model in-
ference nor on the watermark for transposed inference. 1) In
the watermark hardening phase, we initialize the parameters
of the model by transposed training on the watermark until a
self-de�ned suf�cient enough watermark quality is reached,
which essentially means, that the model is over�tted on the
watermark3. Thereby, the watermark builds the basis for the
main task in the consecutive forward training within the model
parameters. 2) During the constraint training phase, normal
forward model training is equipped such that the already em-
bedded watermark from step 1 persists. Thereby, we alternate
between optimizing the two tasks, which is described in detail
in Sect. 4.4. The training can mainly focus on optimizing the
main task, as the effect of the watermark task during optimiza-
tion is minimal, due to the foregone watermark hardening
step. The parameters are prepared during step 1 such that
the watermarking task yields a negligible loss compared to
the main task and essentially functions as a constraint during
normal model training. 3) After model distribution, the model
is manipulated by a third party, e.g., �ne-tuned4. As long as
the main task performance is preserved, the watermark should
remain embedded. 4) Finally, a transposed inference on the

3We suggest an SSIM value above 0.95 as watermark quality threshold,
as such values can be achieved fast in transposed-only training since the
watermark consists of a limited small amount of key-value pairs. In our
experiments, we combine this threshold with a maximum of 10,000 epochs.

4Step 3 can differ depending on the scenario/attack. We describe various
scenarios in Sect. 3.2 and provide evaluations in Sect. 5.2 and Sect. 5.4.

Figure 2: Overview of ClearStamp's life cycle steps.

watermark key is conducted to extract the watermark data,
which is veri�ed against the ground truth watermark secret
by human-only inspection or machines. Since the main task
relies on the forti�ed parameters established in step 1, creat-
ing an inherent interconnection between the tasks, substantial
modi�cations made to the watermark in step 3 directly in�u-
ence the main task. This direct impact enhances the overall
robustness of the watermark.

To enableClearStamp, we must de�ne several components:
First, in Sect. 4.2, we de�ne rules for the creation of a trans-
posed model from a given model architecture. Second, we
specify how the key and the secret of the watermark are com-
posed in Sect. 4.3. Third, in Sect. 4.4, we determine how to
train while maintaining the watermark.

4.2 Transposed Model Generation

To ensure ful�llment of the generalizability requirement from
Sect. 3.1, we establish guidelines for the generation of trans-
posed models. Thereby, we de�ne how model layers and
connections are translated to the transposed version5. Linear
layers and batch normalization layers [27] are straightforward
mathematical operations and easy to transpose, as discussed
in Sect. 2. For pooling layers [68], we leverage interpolation
based on the nearest-neighbor algorithm [44]. Convolutional
layers [33] are transposed with deconvolutions6 as in [69].
Dropout layers [49] and activation functions, e.g., ReLU [2],
are used likewise to their untransposed functionality.

Skip Connections.Skip connections fork the data processing

5Please note that the transposed model can be generated solely from the
weights of the original model and does not require any additional parameters.

6We adapt the settings, e.g., kernel size and stride, from the convolution
with potential adjustments to padding to ensure the output of the deconvolu-
tion matches the original input.

within the model architecture and merge the data from both
branches at a later stage, alleviating the vanishing gradient
problem and improving the accuracy of DNNs. Skip con-
nections effectively perform an operation akin toa+ b = c
during the merging process within the forward path. Hence,
they are dif�cult or impossible to reverse as only the output
c is provided during transposed training, renderinga andb
indistinct. To transpose the skip connection, we freeze one
part of the connection, such asb, during transposed training.
Thus, by the inverse of the mathematical operation betweena
andb the skip connection can be transposed utilizingc and the
frozenb. This effectively addsb to the watermark's key. To
get a reasonable estimation of a realistic value forb, we start
training an unwatermarked model for a few initial epochs.

Additional Dropout Layers. To ensure the robustness re-
quirement from Sect. 3.1,ClearStampstrives for a robust en-
tanglement between the watermark and the main task. There-
fore, the watermark needs to be embedded within all model
layers during the watermark hardening step. To facilitate
the entanglement between the watermark and the main task,
spreading the watermark across multiple parameters must
be enforced. Such a behavior can be achieved within model
architectures by utilizing dropout layers [49]. For model ar-
chitectures that lack inherent dropout layers, we arti�cially
add such layers into the transposed architecture. Speci�cally,
dropout layers are incorporated after each convolutional and
linear layer, with the exception of the �nal layer responsible
for producing the ultimate output of the transposed model.
The dropout rate is an insensitive parameter, that must be set
to some reasonable value, which can be quickly identi�ed by
analyzing the �rst few update steps during watermark harden-
ing. Higher dropout rates extend the duration of the hardening
process but do not compromise ClearStamp's functionality.

4.3 Watermark Composition

Watermark Key. The key's structure must align with the
dimensions of a regular output vector of the (forward) model.
Generally, there are no constraints on the values within this
vector, allowing for arbitrary and extreme values, that are usu-
ally not encountered in forward prediction vectors. However,
we need to enforce an overlap of the model's forward output
value range and the watermark key's value range. Otherwise,
e.g., if the key only consists of positive values, the model will
most likely group the outputs of the main tasks to different
value ranges, e.g., negative values. Such a separation prevents
tight entanglement of the two tasks and encourages the model
to handle the tasks in a multi-task instead of a constraint-task
manner. As a result of separated value ranges, the watermark
can be removed from the model with minimal effects on the
main task, contrary to scenarios where the value ranges over-
lap. To address this, we generate random key vectors with
values between a prede�ned range from -10 to 10, as visu-
alized in Fig. 1, given that most random initialized models

predominantly generate values around zero.

Watermark Secret. The watermark's secret, adaptable to reg-
ular input sample dimensions like images, can be 1-bit using
a random image or multi-bit with additional content like text.
Similar to the watermark key values, the values of the water-
mark secret should fall within the range of typical input data.
This ensures an intertwined relationship between the water-
mark and the main task parameters, ultimately enhancing the
robustness of the watermark. When employing a loss function
solely based on structural similarity between images, there
might be challenges in producing outputs within the desired
range. To address output range challenges, we employ a dual-
loss strategy in transposed training. SSIM ensures structural
similarity with the watermark secret, while MSE maintains
exact secret values in the output.

Multi-Key. Employing not just one, but multiple unique key-
secret pairs within a single watermark signi�cantly increases
the capacity of the multi-bit watermark addressing the ca-
pacity requirement from Sect. 3.1. This approach allows for
the embedding of a greater volume of information. Further-
more, it enhances the robustness of the watermark as multiple
keys in�uence a larger portion of the model's parameters,
complicating erasure attempts by third parties. These distinct
key-secret pairs are inputted into the transposed model as a
uni�ed batch. This method compels the model to grasp the
underlying structure of the secrets and integrate the water-
mark throughout all layers. Additionally, this approach offers
the advantage of preventing the parameters in the transposed
model from memorizing speci�c key-secret pairs. Instead,
the model generalizes the functionality underlying the sam-
ples, reinforcing learned capabilities across various layers.
To optimize this approach, it is advisable to ensure that the
different key-secret pairs share a consistent structure, such as
all containing textual information within images. This unifor-
mity enhances the model's ability to learn and embed diverse
information effectively.

4.4 Constraint Training

Watermarking the model in the proposed way (cf. Fig. 1) es-
sentially corresponds to simultaneously learning two separate
tasks within one model, resulting in a multi-objective opti-
mization problem consisting of the model's general function-
ality as task one and the watermark in the transposed model as
the second task. After over�tting the transposed model to the
watermark in the watermark hardening phase (step 1 of Fig. 2),
the watermarking task can be considered as a constraint to the
main task in step 2 in Fig. 2. This entails, that we optimize
the main task while keeping the watermark functionality. To
execute this optimization, we leverage sequential optimiza-
tion, essentially alternating between optimizing the model
parameters for the main task and the watermark. Alternatives
to this optimization approach are discussed in App. 7.4.

5 Evaluation

Hardware & Experimental Setup. Experiments are imple-
mented in PyTorch, a prominent Python-based machine learn-
ing library [55], on a server featuring an AMD EPYC 7413 24-
Core Processor (64-bit) with 96 processing units and 128GB
main memory. An NVIDIA A16 GPU with 4 virtual GPUs
(each 16GB GDDR6 memory), is used via CUDA [42].

Datasets & Model Architectures.We use common datasets
mainly focusing on image classi�cation with MNIST [16],
CIFAR-10[32], GTSRB [51], andCIFAR-100[32] trained on
models of different types and sizes, namely CNNs (with and
without batch normalization),ResNet-18, ResNet-34[25],
ViT [17], and VGG11 [46].7

Default Scenario.Throughout our experiments, we systemat-
ically vary model architecture, dataset, and hyperparameters
to illustrate the versatility of our approach. Unless otherwise
speci�ed, our default scenario uses MNIST [16] trained on a
CNN consisting of two convolution layers both followed by a
ReLU and a 2D max pooling layer and followed by three fully
connected layers of decreasing output sizes (512, 256, 10).
For training purposes, we employ separate Adam optimizers
with a learning rate of 0.0001, both for the primary task and
transposed training. We trained the model for �ve epochs.

5.1 General Functionality

Watermark De�nition. A watermark forClearStampcon-
sists of one or multiple watermark keys and secrets, which
are kept con�dential. In our experiments, the keys are vectors
consisting of ten randomly chosen values between -10 and
108. The chosen secrets are images containing four letters like
“ABCD”, as visualized in Fig. 3a and App. Fig. 11a.

Baseline - No Watermark.First, we trained a model without
a watermark, which serves as a baseline for model perfor-
mance. As can be seen in (1) in Tab. 2, we reached a model
accuracy of 89.88%. When trying to extract a watermark be-
fore and after training, we get images as in Fig. 3b and Fig. 3c,
respectively. The images clearly show no relation or similarity
to Fig. 3a, indicating the absence of the watermark essentially
ful�lling the integrity requirement from Sect. 3.1. Addition-
ally, the two pictures yield an SSIM of 0.00 and -0.06 when
being compared to Fig. 3a, con�rming that watermarked and
unwatermarked models are clearly distinguishable. However,
human perception instead of a low SSIM should be the main
criterion for the decision, as even for small SSIMs close to
zero human observers can still recognize similarities between
images (cf. Tab. 1 in Sect. 2).

Watermark Hardening. Next, in step 1 ofClearStamp

7We use PyTorch model instances for prede�ned model architectures.
8The precise random key vector for the experiments with one key is

provided in App. 7.3. There, we also provide experiments with key ranges -5
to 5 and -50 to 50 to show that the range is an insensitive parameter.

Table 2: In these experiments MNIST [16] was trained on a CNN with a learning rate of 0.001 for �ve epochs.

Number
of keys

Untrained Watermark Training
Extracted

Watermark
Figure

Watermark
Considered

Valid

4 epochs �ne-tuning with
Model Hardening 1/10 of training learning rate

Accuracy SSIM Steps Accuracy SSIM Constraint Accuracy SSIM Accuracy SSIM

(1) - 10.22% 0.00 - - - x 89.88% -0.06 Fig. 3c x - -
(2) 1 10.22% 0.00 7,000 8.57% 0.95 - - - Fig. 3d X - -
(3) 1 10.22% 0.00 7,000 8.57% 0.95 X 88.37% 0.95 Fig. 3e X 92.73% 0.95
(4) 10 10.22% 0.00 10,000 8.92% 0.93 X 87.69% 0.91 Fig. 3f X 89.73% 0.93
(5) 11 10.22% 0.00 10,000 8.88% 0.92 X 89.10% 0.91 Fig. 3g X 89.86% 0.93

(a) (b) (c) (d) (e) (f) (g)

Figure 3: Visualization of (a) the watermark secret and (b-g)
extracted watermarks for the experiments listed in Tab. 2.

(cf. Fig. 2) we perform transposed training as described in
Sect. 4.1 to embedded a watermark consisting of one key-
secret pair into an untrained model. As transposed loss, we
combine SSIM and MSE between the transposed model out-
put and the watermarks ground truth secret. We name each
adjustment of the transposed model parameters by the opti-
mizer as a hardening step. As presented in (2) in Tab. 2 we
reached an SSIM of 0.95 after 7,000 hardening steps. The
resulting image after watermark extraction depicted in Fig. 3d
clearly shows the content of the ground truth secret Fig. 3a
and an existing watermark can be attested. As expected, the
accuracy on the main task remained naïve with 10.22% and
8.57% accuracy before and after training, respectively.

Constraint Training. In ClearStamp's second step, we train
the model's main task while keeping the watermark embed-
ded as described in Sect. 4.4. As reported in (3) in Tab. 2, the
watermark remains embedded, while the main task accuracy
of 88.37% is achieved, ful�lling the reliability requirement
from Sect. 3.1. Hence, we observe a negligible accuracy drop
compared to the unwatermarked model ((2) in Tab. 2) satisfy-
ing the �delity requirement from Sect. 3.1. To emphasize this
important fact, we visualize the main task loss for unwater-
marked and watermarked training in App. Fig. 13c showing
minimal differences. These results could be reproduced inde-
pendently of the optimizer used for the different tasks, which
we elaborate on in App. 7.3.

Multi-Key. Next, we investigate multiple watermark key-
secret pairs, as explained in Sect. 4.3. We employed ten and
eleven keys to show the independence from the number of
classes in the dataset, ten for MNIST [16].9 The secrets are dis-
tinct four-character images10, as visualized in App. Fig. 11a.
The results for ten and eleven keys are shown in (4) and (5)
in Tab. 2, respectively, and show thatClearStampembeds the

9We provide results for another experiment leveraging 20 keys in App. 7.3,
which yields similar results as for eleven keys.

10During visualizations, we stick to the �rst image containing “ABCD”.

watermark successfully. Thus, we can increase the watermark
capacity without a signi�cant negative impact on the water-
mark's or the model's performance11. Notably, we stopped
hardening after 10,000 hardening steps but it would be possi-
ble to continue training until a 0.99 SSIM is reached12. While
it is possible to increase the number of keys and thus the ca-
pacity, which we discuss in Sect. 5.5, we proceed with eleven
keys to showcase the functionality ofClearStamp. To show
the independence from the concrete secret images, we con-
ducted the same experiments with other images, visualized in
App. Fig. 12a and App. Fig. 12b, yielding similar results.

5.2 Model Manipulations

Next, we evaluate illegal and legal third-party model manipu-
lations, that are applied in step 3 of Fig. 2.

Fine-Tuning. To evaluateClearStamp's robustness against
�ne-tuning, as described in Sect. 3.2, we continued training on
the MNIST train set after executing our default scenario for
another two epochs (half of the original �ve epochs rounded
down) with the same learning rate, as well as with1/10 of the
original learning rate (similar to [1,9,34,40,57,65]). After �ne-
tuning for two epochs, we continued for another two epochs
with identical settings to showcaseClearStamp's behavior
under excessive �ne-tuning conditions. To evaluate the water-
mark robustness against unseen data, we executed the same
�ne-tuning process but employed the MNIST [16] test set. As
Tab. 3 shows,ClearStampshows strong robustness against
�ne-tuning as the watermark remained embedded yielding
high SSIM values and clear images (Fig. 4a to Fig. 4c)13.
Later, in Sect. 5.3, we also evaluate cross-dataset �ne-tuning.
In scenario (2) in Tab. 3 we can observe a slight increase in
SSIM after 4 epochs compared to 2 epochs, which is counter-
intuitive. We believe that caused by the overlapping value
ranges of our watermark and the entanglement of parameters,
weight changes for the forward path can have small positive
effects on the watermark's similarity score.

11We observe a slight increase in main-task accuracy for (5) in Tab. 2,
indicating, that the watermarking is tightly enmeshed with the main task and
serves as regularization in this experiment. However, the general observation
is a minimal drop in accuracy due to watermark embedding.

12We report the mean SSIM values for multiple keys. If not speci�cally
mentioned, the means do not contain extreme outliers.

13The accuracies show, that �ne-tuning with1/10 of the original learning
rate is a better setting if an adversary wants to increase the model accuracy
on a third-party dataset.

Table 3: Fine-tuning experiments for a CNN trained using
MNIST [16] test set with a learning rate of 0.001 for �ve
epochs with eleven watermark keys.

Fine-Tuning
Scenario

2 Epochs 4 Epochs Wateermark
ACC SSIM ACC SSIM Figure Valid

(1) 88.64% 0.90 87.42% 0.88 Fig. 4a X
(2) 88.56% 0.92 89.86% 0.93 Fig. 4b X
(3) 96.31% 0.92 97.02% 0.92 Fig. 4c X

(1) Same as training learning rate (0.001) & same data
(2) 1/10 of training learning rate (0.0001) & same data
(2) 1/10 of training learning rate (0.0001) & unseen data

(a) (b) (c) (d) (e) (f) (g)

Figure 4: Visualization of extracted watermarks for the �ne-
tuning experiments listed in Tab. 3 in (a-c). Figures (d-f)
visualize pruning with 60%, 80%, and 90% respectively, while
(g) shows �ne-pruning with 40%.

Pruning. Besides �ne-tuning, we investigate model pruning
(cf. Sect. 3.2) similar to [9,15,34,40,57,65]. As depicted in
Fig. 5, the watermarking withstands pruning and is coupled
to the main task accuracy, as for low pruning levels, which
maintain the accuracy, the SSIM remains high. For exam-
ple, for 60% pruning with an accuracy drop from 89.1% to
78.56%, the SSIM is still 0.69, yielding Fig. 4d. Even for 80%
pruning, which already suffers in accuracy with 50.1% we
obtain an SSIM of 0.47 resulting in Fig. 4e, which is still suf-
�cient for a human observer to identify the watermark when
being aware of the ground truth secret Fig. 3a. Starting from
90% pruning (cf. Fig. 4f), the watermark cannot be clearly
identi�ed, but the model already decreased to 26.76% accu-
racy essentially being useless. Fig. 4g shows the result with
an SSIM of 0.62 and an accuracy of 89.79% after two �ne-
tuning epochs followed by pruning with 40%, typically called
�ne-pruning [28,56]. As the images prior to 90% pruning in
Fig. 4f are clearly distinguishable from Fig. 3c while Fig. 4f
suffers low accuracy, we can conclude thatClearStampis ro-
bust against model pruning essentially addressing the security
requirement from Sect. 3.1.

5.3 Generalizability

Below, we explore different scenarios showing that
ClearStampcan ful�ll the generalizability requirement from
Sect. 3.1. Essentially we demonstrate the independence from
datasets and model architectures. During these experiments,
we use �ne-tuning with1/10 of the original learning rate as the
default model modi�cation approach.

Dataset.First, we changed the dataset toCIFAR-10 [32],
essentially changing the input layer to match the three color
channels of theCIFAR-10input samples. Then, we conducted

Figure 5: Model accuracy on the main task and correspond-
ing watermark SSIM for different pruning levels between 0
(unpruned) and 90%.

the same experiment for GTSRB [51], which has 43 label
classes. The results reported in (1) and (2) in Tab. 4 show,
that the watermark was successfully embedded and survived
�ne-tuning yielding Fig. 6a and Fig. 6b. As the images clearly
show the expected letters, we observe the dataset indepen-
dence of ClearStamp.

Small Model Architectures. Next, to show thatClearStamp
is also applicable to very simple model architectures, we
trained MNIST [16] on a CNN with only three fully connected
layers each of size 1024 and report the result in (3) in Tab. 4.
Further, to showClearStamp's independence of added batch
normalization layers when embedding the watermark, we
enhanced our default setting by adding such a layer after each
convolutional layer and report the results in (4) in Tab. 4.
The extracted images Fig. 6c and Fig. 6d, as well as the high
SSIM values above 0.85 after raining and �ne-tuning reported
in Tab. 4 con�rmClearStamp's good performance for small
models. However, even if the images yield clear watermark
evidence, the presence of batch normalization layers seems to
diminish the robustness of the watermark resulting in a lower
SSIM of 0.85 after �ne-tuning. This effect might be caused
by the circumstance, that for batch normalization layers, the
mean and variance of the input data are unknown during
transposed training and �xated toE(x) = 0 andVar(x) = 1,
essentially causing information loss.

Medium-Size Model Architectures. To address bigger
model architectures, we evaluateCIFAR-10 [32] and GT-
SRB [51] on aResNet-18[25] model trained for ten epochs14,
whereas both datasets yielded similar results reported in (5)
and (6) in Tab. 4. As retractable in Fig. 6e and Fig. 6f, the
watermark is still clearly visible after ten epochs.

Further, we evaluateCIFAR-10 [32] on ResNet-34[25]
and use the same setup as in theResNet-18experiment. The
results in (7) in Tab. 4 yield a bigger drop in SSIM to 0.55 after
�ne-tuning, probably introduced by the size of the model and
the amount of transposed convolution layers, which introduce
uncertainty due to their upsampling nature. Nevertheless, the
resulting image Fig. 6g leaves no doubt that the watermark is
still strongly embedded.

Inspired by [1, 57], we also evaluate cross-model �ne-
tuning scenarios. We used our medium-size model setups and

14As ResNet-18[25] contains skip connections, we �rst trained for three
epochs, to get valid values for skip connections �xating (cf. Sect. 4.2).

	Introduction
	Background
	Problem Setting
	Watermark Objectives
	Threat Model

	Approach
	Overview
	Transposed Model Generation
	Watermark Composition
	Constraint Training

	Evaluation
	General Functionality
	Model Manipulations
	Generalizability
	Adaptive Adversary
	Capacity
	Runtime

	Related Work
	Conclusion
	Additional Visualizations
	Additional Experimental Details
	Additional Experiments
	Further Considerations

