
138 | Security Analysis of Mobile Two-Factor Authentication Schemes

Intel® Technology Journal | Volume 18, Issue 4, 2014

Contributors

Two-factor authentication (2FA) schemes aim at strengthening the security of
login-password–based authentication by deploying secondary authentication
tokens. In this context, mobile 2FA schemes require no additional hardware
(such as a smartcard) to store and handle the secondary authentication token,
and hence are considered as a reasonable tradeoff between security, usability,
and cost. They are widely used in online banking and increasingly deployed by
Internet service providers.

In this article, we investigate 2FA implementations of several well-known
Internet service providers such as Google, Dropbox, Twitter, and Facebook.
We identify various weaknesses that allow an attacker to easily bypass 2FA,
even when the secondary authentication token is not under the attacker’s
control. We then go a step further and present a more general attack against
mobile 2FA schemes. Our attack relies on a cross-platform infection that
subverts control over both end points (PC and a mobile device) involved in the
authentication protocol.

We apply this attack in practice and successfully circumvent diverse schemes:
SMS-based TAN solutions of four large banks, one instance of a visual TAN
scheme, 2FA login verification systems of Google, Dropbox, Twitter, and
Facebook accounts, and the Google Authenticator app currently used by 32 third-
party service providers. Finally, we cluster and analyze hundreds of real-world
malicious Android apps that target mobile 2FA schemes and show that banking
Trojans already deploy mobile counterparts that steal 2FA credentials like TANs.

Introduction
The security and privacy threats through malware are constantly growing
both in quantity and quality. In this context the traditional login/password
authentication is considered insufficiently secure for many security-critical
applications such as online banking or logins to personal accounts. Two-factor
authentication (2FA) schemes promise a higher protection level by extending
the single authentication factor, that is, what the user knows, with other
authentication factors such as what the user has (for example, a hardware token
or a smartphone), or what the user is (for example, biometrics).[29]

Even if one device/factor (such as a PC) is compromised—a typical scenario
nowadays—the chance of the malware to gain control over the second device/
factor (such as a mobile device) simultaneously is considered to be very low.

While biometric-based authentication is relatively expensive and raises privacy
concerns, one-time passwords (OTPs) offer a promising alternative for 2FA

“…the traditional login/password

authentication is considered

insufficiently secure for many

security-critical applications such as

online banking or logins to personal

accounts.”

Alexandra Dmitrienko
Fraunhofer SIT

Christopher Liebchen
Technische Universität Darmstadt

Christian Rossow
Vrije Universiteit Amsterdam

Ahmad-Reza Sadeghi
Intel Collaborative Research Institute
for Secure Computing

SeCURITy AnAlySIS oF MobIle Two-FACToR
AUThenTICATIon SCheMeS

Intel® Technology Journal | Volume 18, Issue 4, 2014

Security Analysis of Mobile Two-Factor Authentication Schemes | 139

systems. For instance, hardware-based tokens such as OTP generators[27] are
less costly but still generate additional expenses for users and are inconvenient,
particularly when the user needs to carry additional hardware tokens for
different organizations (for example, for accounts at several banks). On the
other hand, 2FA schemes that use mobile devices (such as smartphones) have
become popular recently and have been adopted by many banks and large
service providers. These mobile 2FA schemes are considered to provide an
appropriate tradeoff between security, usability, and cost, and are the focus of
this article.

A prominent example of mobile 2FAs are SMS-based TAN systems (known
as mTAN, smsTAN, or mobileTAN). Their goal is to mitigate account
abuse even if the banking login credentials have been compromised, for
example, by a PC-based banking Trojan. Here, the service provider (the
bank) generates a Transaction Authentication Number (TAN), which is
a transaction-dependent OTP, and sends it over SMS to the customer’s
phone. The user/customer needs to confirm a banking transaction by
entering this TAN into the other device (typically a PC). Alternatively,
visual TAN schemes encrypt and encode the TAN into a 2D barcode (visual
cryptogram), which is displayed on the customer’s PC from where it is
photographed and decrypted by the corresponding app on the smartphone.
SMS-based TAN schemes are widely deployed worldwide, also by the
world’s biggest banks such as Bank of America, Deutsche Bank, Santander
in UK, ING in the Netherlands, and ICBC in China. Further, some large
European banks have adopted visually based TAN systems recently.[7][14][15]
Moreover, mobile 2FA is increasingly used by the global service providers
such as Google, Twitter, and Facebook to mitigate the massive abuse of
their services. Users need their login credentials and an OTP to complete
the login process. The OTPs are sent to the smartphone via SMS messages
or over the Internet connection. In addition, some providers offer apps that
can generate OTPs on the client side, a convenient setup without the need
for out-of-band communication. For instance, such an approach is followed
by Google Authenticator, the popular 2FA app currently used by 32 third-
party service providers.

Goal, Contributions, and Outline
The main goal of our article is to investigate and evaluate the security of various
mobile 2FA schemes that are currently deployed in practice and are used by
millions of customers/users.

 • Single-infection attacks on mobile 2FA schemes. We investigate the deployed
mobile 2FA of Google, Twitter, Facebook, and Dropbox service providers
(see the next section, “Single-Infection Attacks on Mobile 2FA”). We point
out their conceptual and implementation-specific security weaknesses and
show how malware can bypass them, even when a single device, a PC, is
infected. For example, some providers allow the user to deactivate 2FA
without the need to verify this transaction with 2FA—an easy way for PC
malware to circumvent the scheme. Other providers offer master passwords,

“These mobile 2FA schemes are

considered to provide an appropriate

tradeoff between security, usability,

and cost…”

“…mobile 2FA is increasingly used

by the global service providers such

as Google, Twitter, and Facebook to

mitigate the massive abuse of their

services.”

Intel® Technology Journal | Volume 18, Issue 4, 2014

140 | Security Analysis of Mobile Two-Factor Authentication Schemes

which as we show, can be stolen and then be used to authenticate without
using an OTP. We further show how to exploit Google Authenticator, a
mobile 2FA login protection app used by dozens of service providers.

 • A more general 2FA attack based on dual infections. Then we turn our
attention to more sophisticated attacks of general nature, and show that
even if one of the devices (involved in a 2FA) is infected by malware, it can
infect the other device with a cross-platform infection in realistic adversary
settings (see the section “Dual-Infection Attacks on Mobile 2FA”). We
demonstrate the feasibility of such attacks by prototyping PC-to-mobile
cross-platform attacks. Our concept significantly enhances the well-known
banking Trojans ZeuS/ZitMo[23] or SpyEye/SpitMo.[6] In contrast to these
attacks that need to lure users by phishing, our technique does not require
any user interaction and is completely stealthy. Once both devices are
infected, the adversary can bypass various instantiations of mobile 2FA
schemes, which we show by prototyping attacks against SMS-based and
visual transaction authentication solutions of banks and login verification
schemes of various Internet providers.

 • 2FA malware in the wild. Finally, to underline the importance to redesign
mobile 2FA systems, we cluster and reverse engineer hundreds of real-world
malicious apps that target mobile 2FA schemes (see the section “Real-World
2FA Attacks”). Our analysis confirms, for example, that banking Trojans
already deploy mobile counterparts that allow attackers to steal 2FA
credentials like TANs.

Single-Infection Attacks on Mobile 2FA
In this section, we analyze the security of mobile 2FA systems in face of
compromised computers. We consider mobile 2FA schemes as secure if an
adversary who compromised only a user’s PC (but has no control over a mobile
device) cannot authenticate in the name of the user. Such an attacker model is
reasonable, as assuming a trustworthy PC would eliminate the need in utilizing
a separate device to handle the secondary authentication credential.

Low-Entropy OTPs
Here we analyze the strength of OTPs generated by the four service providers
under analysis. In general, low-entropy passwords are vulnerable to brute-
force attacks. We thus seek to understand if the generated OTPs exhibit full
basic randomness criteria. For this, we implemented a process to automatically
collect OTPs from Twitter, Dropbox, and Google. We had to exclude the
Facebook service from this particular test, because our test accounts were
blocked after collecting only a few OTPs—presumably to keep SMS-related
costs manageable.

To automate the collection process of OTPs, we implemented host software
that initiates the login verification and submits the login credentials, while a
mobile counterpart monitors incoming SMS messages on the mobile device
and extracts OTPs into a database. The intercepted OTP is then used to

“…if one of the devices (involved

in a 2FA) is infected by malware,

it can infect the other device with a

cross-platform infection in realistic

adversary settings…”

“…banking Trojans already deploy

mobile counterparts that allow

attackers to steal 2FA credentials like

TANs.”

Intel® Technology Journal | Volume 18, Issue 4, 2014

Security Analysis of Mobile Two-Factor Authentication Schemes | 141

complete the authentication process at the PC. We repeat this procedure
periodically. We used a collection time interval of 15 minutes for Dropbox and
Twitter, but had to increase it to 30 minutes for Google to avoid our account
from being blocked. In total, we collected 1564 (Dropbox), 659 (Google), and
775 (Twitter) OTPs. All investigated services create 6-digit OTPs represented
in decimal format. We provide graphical representation of the collected OTPs
in Figure 1.

(a) Dropbox (b) Google (c) Twitter

F igure 1: oTPs collected from three service providers. we plot a 6-digit
oTP by plotting its two halves on the x- and y-axis (1000 dots wide).
For example, the oTP “012763” is plotted at x = 12 and y = 763.
Symbols “+” and “×” represent one and two occurrences of the same
oTP, respectively.
(Source: Dmitrienko, liebchen, Rossow, and Sadeghi, 2014)

While the OTPs generated by Dropbox and Twitter passed standard
randomness tests, we observed that Google OTPs never start with a zero.
Leaving out one tenth of all possible OTP values reduces the entropy of
the generated passwords: the number of possible passwords is reduced by
10 percent from 106 to 106 – 105.

Lack of OTP Invalidation
We made another important observation concerning invalidation of OTPs.
We noticed that—if we do not complete the 2FA process—Google repeatedly
created the same OTP for consecutive authentication trials. Google only
invalidates OTPs (i) after an hour, or (ii) after a user successfully completed
2FA. We tested that the OTPs repeat even if the IP address, browser, and OS
version of the user who wants to log in changes. An attacker could exploit
this weakness to capture an OTP, while at the same time preventing the user
from submitting the OTP to the service provider. This way, the captured OTP
remains valid.

The adversary can then reuse the OTP in a separate login session, because
Google will still expect the same OTP—even for a different session.

Similar man-in-the-browser attacks are also possible if OTPs are invalidated,
but they add a higher practical burden to the attacker.

“…we observed that Google OTPs

never start with a zero.”

“We noticed that—if we do not

complete the 2FA process—Google

repeatedly created the same OTP for

consecutive authentication trials.”

Intel® Technology Journal | Volume 18, Issue 4, 2014

142 | Security Analysis of Mobile Two-Factor Authentication Schemes

2FA Deactivation
If 2FA is used for login verification, users can typically opt in for the 2FA
feature. In the following section, we investigate how users (or attackers) can opt
out from the 2FA feature. Ideally, disabling 2FA would require further security
checks. Otherwise we risk that PC malware might hijack existing sessions in
order to disable 2FA.

We therefore analyzed the deactivation process for the four service providers.
We created one account per provider, logged in to these accounts, enabled 2FA
and—to delete any session information—signed out and logged in again.

We observed that when logged in, users of Google and Facebook services can
disable 2FA without any additional authentication. Twitter and Dropbox
additionally require user name and password. None of the investigated service
providers requested an OTP to authorize this action. Our observations imply
that the 2FA schemes of the evaluated providers can be bypassed by PC
malware without the need to compromise the mobile device. PC malware can
wait until a user logs in, and then hijack the session and disable 2FA in the
user’s account settings. If additional login credentials are required to confirm
this operation (as required by Twitter and Dropbox), the PC malware can
reuse credentials that can be stolen, for example, by applying key logging or a
man-in-the-browser attack.

2FA Recovery Mechanisms
While 2FA schemes promise improved security, they require users to have
their mobile devices with them to authenticate. This issue may affect usability,
because users may lose control over their accounts if control over their
mobile device is lost (for example, if the device is lost, stolen, or temporarily
unavailable due to discharged battery). To address this issue, service providers
enable recovery mechanisms that allow users to retain control over their
account in the absence of their mobile device. On the downside, attackers may
misuse the recovery mechanism in order to gain control over user accounts
without compromising the mobile device.

Among the evaluated providers, Twitter does not provide any recovery
mechanism. Dropbox uses a so-called recovery password, a 16-symbol-wide
random string in a human-readable format, which appears in the account
settings and is created when the user enables 2FA. Facebook and Google use
another recovery mechanism. They offer users an option to generate a list
of ten recovery OTPs, which can be used when they have no access to their
mobile device. The list is stored in the account settings, similar to the recovery
passwords of Dropbox. Dropbox and Google do not require any additional
authentication before allowing access to this information, while Facebook
additionally asks for the login credentials.

As the account settings are available to users after they have logged in, these
recovery credentials (OTPs and passwords) can be accessed by malware that
hijacks user sessions. For example, PC-residing malware can access this data by
waiting until users sign in to their account. Hijacking the session, the malware

“PC malware can wait until a user

logs in, and then hijack the session

and disable 2FA in the user’s account

settings.”

“…attackers may misuse the

recovery mechanism in order to gain

control over user accounts without

compromising the mobile device.”

Intel® Technology Journal | Volume 18, Issue 4, 2014

Security Analysis of Mobile Two-Factor Authentication Schemes | 143

can then obtain the recovery passwords from the web page in the account
settings—bypassing the additional check for login credentials (as in the case
of Facebook).

OTP Generator Initialization Weaknesses
Schemes with client-side generated 2FA OTPs, such as Google Authenticator
(GA), rely on pre-shared secrets. The distribution process of pre-shared secrets
is a valuable attack vector. We analyzed the initialization process of the GA
app, which is used by dozens of services including Google Mail, Facebook,
and Outlook.com.

The GA initialization begins when the user enables GA-based authentication
in the user’s account settings. The service provider generates a QR code that
is displayed to the user (on the PC) and should be scanned by the user’s
smartphone. The QR code contains all information necessary to initialize
GA with user-specific account details and pre-shared secrets. We analyzed the
QR code sent by Facebook and Google during the initialization process and
identified the structure of the QR code. It includes such details as the type
of the scheme (counter-based vs. time-based), service and account identifier,
a counter (only for counter-based mode), the length of the generated OTP,
and the shared secret. All this data is presented in clear text. To check if any
alternative initialization scheme is supported by GA, we reverse engineered
the app with the JEB Decompiler and analyzed the app internals. We did
not identify any alternative initialization routines, which indicates that all 32
service providers using GA use this initialization procedure.

Unfortunately, PC-residing malware can intercept the initialization message
(clear text encoded as a QR code). The attacker can then initialize the attacker’s
own version of the GA and can generate valid OTPs for the target account.

Dual-Infection Attacks on Mobile 2FA
In this section, we present a more general attack against mobile 2FA schemes.
Particularly, we present the attack model that does not rely on implementation
weaknesses (as, for example, weaknesses reported in the previous section), but
rather conceptual. Particularly, we apply cross-platform infection attacks
(PC-to-mobile) in context of mobile 2FA schemes. Our attack model
undermines the security of a large class of 2FA schemes that are widely used in
security-critical applications such as online banking and login verification.

System Model
Our system model is depicted in Figure 2. It includes the following actors:
(i) a user U, (ii) a web server S, (iii) a computer C, (iv) a mobile device M, and
(v) a remote malicious server A. The user U is a customer who is subscribed for
the online service. The web server S is maintained by the service provider of
the online service. The computer C is either a desktop PC or a laptop used by
the user to access the web site hosted by S. The mobile device M is a handheld
computer or a smartphone of U, which is involved in authentication of U
against S.

“…PC-residing malware can intercept

the initialization message (clear text

encoded as a QR code). The attacker

can then initialize the attacker’s own

version of the GA and can generate

valid OTPs…”

“…we apply cross-platform infection

attacks (PC-to-mobile) in context of

mobile 2FA schemes.”

Intel® Technology Journal | Volume 18, Issue 4, 2014

144 | Security Analysis of Mobile Two-Factor Authentication Schemes

The legitimate communication between the entities is illustrated with dashed
arrows in Figure 2. To get access to the service, U has to prove to S possession
of both authentication tokens T1 and T2. The first authentication token
T1 is handled by C (typically represented by login credentials). The second
authentication token T2 is handled by the mobile device M. T2 is an OTP
which is either received from S via an out-of-band channel, or generated
locally on M.

Computer C

Primary infection

Steal T1

Authenticate

with T1, T2

Web-server SAdversary A
User U

Mobile device M

T2

T1

3b

2

3a

4

1

Steal T2

Cross-platform
infection

F igure 2: System model and attack steps
(Source: Dmitrienko, liebchen, Rossow, and Sadeghi, 2014)

A remote malicious server A represents an adversary who aims to gain control
over C and M and to steal authentication tokens T1 and T2 in order to be able
to successfully authenticate against S in the name of U.

Assumptions
We assume that C, the user’s PC, is compromised. This assumption is
reasonable, because nowadays many PCs are infected. We further assume that
the second device, either M or C, suffers from a (memory-related) vulnerability
that allows the attacker to subvert the control over the code execution. The
probability for such vulnerabilities is quite high for both mobile and desktop
operating systems. As a reference, the National Vulnerability Database[1]
lists more than 55,000 discovered information security vulnerabilities
and exposures for mainstream platforms. Despite decades of history, these
vulnerabilities are a prevalent attack vector and pose a significant threat to
modern systems.[31]

Attack Description
The general attack scenario has four phases, which are illustrated by solid lines
in Figure 2: (i) primary infection; (ii) cross-platform infection; (iii) stealing
authentication tokens, and (iv) authentication.

1. Primary infection. We do not specify the way the attacker achieves a primary
infection. Instead, we assume that C is already infected (see the previous
section, “Assumptions”).

“…nowadays many PCs are infected.”

“Despite decades of history, these

vulnerabilities are a prevalent attack

vector and pose a significant threat to

modern systems.”

Intel® Technology Journal | Volume 18, Issue 4, 2014

Security Analysis of Mobile Two-Factor Authentication Schemes | 145

2. Cross-platform infection. The infected C attempts to compromise M by
triggering a memory-related vulnerability. Exploitation is possible if, for
example, both devices are connected to a single network, as described
in the following section, “Cross-Platform Infection in LAN/WLAN
Networks.”

3. Stealing authentication tokens. As we will show, when controlling M and
C, an attacker A can obtain both authentication tokens T1 and T2 (steps
3a and 3b respectively). Static authentication tokens that do not change
from one to another authentication session (such as login credentials) are
immediately transmitted to and persistently stored at A.

4. Authentication. Authentication is performed by A, who controls both
authentication tokens. A has a local copy of static authentication tokens
(such as login credentials), and can obtain OTPs by forwarding them from
M to A. Note that A does not only hijack the session of U, but can even
establish the attacker’s own sessions at any time and independently from U.

Cross-Platform Infection in LAN/WLAN Networks
LAN/WLAN networks are often used at home, at work, or in public places,
such as hotels, cafes, or airports. Users often connect both their PCs and
mobile devices to the same network (for example, in home networks). To
perform cross-platform infections in the LAN/WLAN network, the malicious
PC becomes a man in the middle (MITM) between the mobile device and the
Internet gateway in order to infect it via malicious payloads. To become an
MITM, techniques such as ARP cache poisoning[5] or a rogue DHCP server[18]
can be used. Next, the MITM supplies an exploit to the victim, which results
in code injection and remote code execution.

For our implementation of cross-platform infection, we used a rogue
DHCP server attack to become an MITM. In particular, C advertises itself
as a network gateway and becomes an MITM when its malicious DHCP
configuration is accepted by M. As the MITM, C can manipulate Internet
traffic supplied to M. When M connects to the network and requests an IP
address, this request is served by our malicious DHCP server, which assigns
a valid configuration for this network, but substitutes the correct gateway
IP address with its own. The malware loads a driver that implements network
address translation (NAT) to dynamically forward any HTTP request to an
external or local HTTP server. This server answers every HTTP request with a
malicious web page.

When U opens the browser in M and navigates to any web page, the request
is forwarded to C due to the network configuration of M specifying C as a
gateway. The malicious C does not provide the requested page, but supplies
a malicious page containing an exploit triggering the vulnerability in the web
browser. In our prototype we used a use-after-free vulnerability CVE-2010-1759
in WebKit, the web engine of the Android browser. We further perform a
privilege escalation to root by triggering the vulnerability CVE-2011-1823 in
the privileged Android’s volume manager daemon process.

“Users often connect both their PCs

and mobile devices to the same

network…”

“The malicious C does not provide

the requested page, but supplies a

malicious page containing an exploit

triggering the vulnerability in the web

browser.”

Intel® Technology Journal | Volume 18, Issue 4, 2014

146 | Security Analysis of Mobile Two-Factor Authentication Schemes

Bypassing Different Instantiations of Mobile 2FA Schemes
Next we present instantiations of dual-infection attacks against a wide range
of mobile 2FA schemes. Particularly, we prototyped attacks against SMS-based
TAN schemes of several banks, bypassed 2FA login verification systems of
popular Internet service providers, defeated the visual TAN authentication
scheme of Cronto, and circumvented Google Authenticator. Overall, our
prototypes demonstrate successful attacks against mobile 2FA solutions of
different classes.

Bypassing SMS-based TAN Schemes and 2FA Login Verification Schemes
To bypass SMS-based TAN schemes used by banks and 2FA login
verification systems, we launched a man-in-the-browser attack on the PC
to steal the login credentials (that is, PIN or password) from the computer
before they are transferred to the web server of the bank or the service
provider. Further, we implemented mobile malware that obtains the
secondary credential, an OTP or TAN, by intercepting SMS messages on
the mobile device. It acts as a man-in-the-middle between the GSM modem
and the telephony stack of Android and intercepts all SMS messages of
interest (so that the user does not receive them), while it forwards all other
SMS messages for “normal” use.

We successfully evaluated our prototype on online banking deployments of
four large international banks (the names of the banks are kept undisclosed)
and evaluated it against the 2FA login verification systems of Dropbox,
Facebook, Google, and Twitter.

Bypassing Visual TAN Solutions
To demonstrate the effectiveness of dual-infection attacks against visual TAN
solutions, we successfully crafted such an attack against the demo version of
the Cronto visual transaction signing solution—the CrontoSign app (v. 5.0.3).
We reused the man-in-the-browser attack to leak login credentials from the PC
and used our mobile malware to steal key material stored by the CrontoSign
app. We then copied stolen files with key material onto another (adversarial)
phone with CrontoSign installed and then performed a login attempt with
stolen login credentials and the adversarial phone. The app on the adversarial
phone produced correct OTP, which was then used to successfully complete
authentication.

Bypassing Google Authenticator (GA) App
We selected Google Authenticator (GA) as our attack target due to its wide
deployment. As of October 2013, it was being used by 32 service providers,
among them Google, Microsoft, Facebook, Amazon, and Dropbox. The GA
app does not receive OTP from the server, but instead generates it on client
side. The generation algorithm is seeded with a secret that is shared between
the server and the mobile client and further requires a pseudo-random input
like a nonce to randomize the output value of each run. GA supports the
following nonce values: shared time (in a form of the time epoch) or a counter
with a shared state. In either case, it stores all security-sensitive parameters

“…we prototyped attacks against

SMS-based TAN schemes of several

banks, bypassed 2FA login verification

systems of popular Internet service

providers, defeated the visual TAN

authentication scheme of Cronto, and

circumvented Google Authenticator.”

“We successfully evaluated our

prototype on online banking

deployments of four large international

banks…”

Intel® Technology Journal | Volume 18, Issue 4, 2014

Security Analysis of Mobile Two-Factor Authentication Schemes | 147

(such as the seed and a nonce) for the OTP generation in an application-
specific database. Hence, to bypass the scheme, our PC-based malware steals
login authentication credentials, while our mobile malware leaks the database
file stored in the GA application directory. We copied the database on another
mobile device with an installed GA app and were able to generate the same
OTPs as the victim.

Real-World 2FA Attacks
Until now, we have drafted attacks that enable attackers to circumvent mobile
2FA systems in a completely automated way. In this section, we analyze real-
world malware in order to shed light onto how attackers already bypass 2FA
schemes in the wild.

Dataset
Our real-world malware analysis is based on a diverse set of Android malware
samples obtained from different sources.

We analyzed malware from the Malgenome[33] and Contagiodump[34]
projects. In addition, we obtained a random set of malicious Android
files from VirusTotal. Note that we aimed to analyze malware that attacks
2FA schemes. We thus filtered on malware that steals SMS messages, that
is, malware that has the permission to read incoming SMS messages. In
addition, we only analyzed apps that were labeled as malicious by at least
five antivirus vendors. Our resulting dataset consists of 207 unique malware
samples.

Malware Analysis Process
We used a multistep analysis of Android malware samples, as depicted in
Figure 3. First, we dynamically analyzed the malware in an emulated Android
environment. Dynamic analysis helped us to focus on the malware’s behavior
when an SMS message is received. Second, to speed up manual static analysis,
we clustered the analysis reports to group similar instances. Third, we manually
reverse engineered malware samples from each cluster to identify malicious
behavior.

“…we analyze real-world malware in

order to shed light onto how attackers

already bypass 2FA schemes in the

wild.”

(1) Dynamic Analysis (2) Clustering (3) Classification

SpitMo Obfake

RATZitMo

F igure 3: Multistep malware analysis procedure
(Source: Dmitrienko, liebchen, Rossow, and Sadeghi, 2014)

Intel® Technology Journal | Volume 18, Issue 4, 2014

148 | Security Analysis of Mobile Two-Factor Authentication Schemes

Dynamic Malware Analysis
We dynamically analyzed the malware samples by running each APK file in an
emulated Android environment. In particular, we modified the Dalvik Virtual
Machine of an Android 2.3.4 system to log method calls (including parameters
and return values) within an executed process.

We aimed to observe malicious behavior when SMS messages were received,
that is, we were not interested in the overall behavior of an app. We therefore
triggered this behavior by simulating incoming SMS messages while the
malware was executed. To filter on the relevant behavior, the analysis reports
contain only the method calls that followed the SMS injection. This way, we
highlight code that is responsible for sniffing and stealing SMS messages, while
we ignore irrelevant code parts (such as third-party libraries).

Likewise, in the case the malware bundles benign code (such as a repacked
benign app), our analysis report does not contain potentially benign code parts.
We stopped the dynamic analysis 60 seconds after we injected the SMS message.

The analysis reports consist of tuples with the format:

rline = <cls, method, (p[1], . . . , p[x]), rval>,

whereas cls represents the class name, method is the method name, rval is the
return type/value tuple, and p[i] is a list of parameter type/value tuples; rline is
one line in the report.

Report Clustering
We then used hierarchical clustering to group similar reports in order to speed
up the manual reverse engineering process. Intuitively, we wanted to group
samples into a cluster if they had a similar behavior when intercepting an
SMS message.

We defined the similarity between to samples as the normalized Jaccard
similarity between two reports A and B:

sim(A, B) = |A ∩ B| / |A ∪ B|,

whereas the reports A and B are interpreted as sets of (unordered) report lines.
Two report lines are considered equal if the class name, method name, number
and type of parameters and return types are equal.

We calculated the distances between all malware samples and grouped them to
one cluster if the distance d = 1 - sim (A, B) is lower than a cutoff threshold of
40 percent. In other words, two samples were clustered together if they shared
at least 40 percent of the method calls when receiving an SMS message.

Classification
Given the lack of ground truth for malware labels, we chose to manually assign
labels to the resulting clusters. We use off-the-shelf Java bytecode decompilers
such as JD-GUI or Androguard to manually reverse engineer each three
samples of the 10 largest clusters to classify the malware into families.

Intel® Technology Journal | Volume 18, Issue 4, 2014

Security Analysis of Mobile Two-Factor Authentication Schemes | 149

Analysis Results
This section shows the clustering results and gives a detailed analysis of one of
the analyzed ZitMo samples.

Clustering Results
Clustering of the 207 samples finished in 3 seconds and revealed 21 malware
clusters and 45 singletons.

We now describe the most prominent malware clusters. Table 1 details full
clustering and classification results.

Family Command & Control Leaked TAN via # Samples

AndroRAT TCP TCP 16
ZitMo.A SMS HTTP (GET) 13
SpitMo.A SMS SMS 13
Obfake.A n/a SMS 12
SpitMo.C HTTP HTTP (GET) 6
RusSteal n/a SMS 6
Koomer n/a SMS 5
Obfake.B n/a SMS 4
SpitMo.B n/a HTTP (POST) 3
CitMo.A n/a HTTP (GET) 3

Table 1: Real-world malware families targeting 2FA by stealing SMS
messages
(Source: Dmitrienko, liebchen, Rossow, and Sadeghi, 2014)

AndroRAT, a (formerly open-source) remote administration tool for Android
devices, forms the largest cluster in our analysis with 16 unique malware
samples. Attackers use the flexibility of AndroRAT to create custom SMS-
stealing apps, for example, in order to adapt the command and control (C&C)
network protocol or data leakage channels.

Next to AndroRAT, the app counterparts of the banking Trojans (ZitMo for
ZeuS, SpitMo for SpyEye, CitMo for Citadel) are also present in our dataset.
Except SpitMo.A, these samples leak the contents of SMS messages via HTTP
to the botmaster of the banking Trojans. Two SpitMo variants have a C&C
channel that allowed the configuration of the C&C server address or Dropzone
phone number, respectively.

We further identified four malicious families that forward SMS messages to
a hard-coded phone number. We labeled a cluster RusSteal, as the malware
samples specifically intercept TAN messages with Russian contents. Except
RusSteal, none of the families includes code that is related to specific
banking Trojans. Instead, the apps blindly steal all SMS messages, usually
without further filtering, and hide the messages from the smartphone
user. The apps could thus be coupled interchangeably with any PC-based
banking Trojan.

“Clustering of the 207 samples

finished in 3 seconds and revealed 21

malware clusters and 45 singletons.”

“…the apps blindly steal all SMS

messages, usually without further

filtering, and hide the messages from

the smartphone user.”

Intel® Technology Journal | Volume 18, Issue 4, 2014

150 | Security Analysis of Mobile Two-Factor Authentication Schemes

Our analysis shows that malware has already started to target mobile 2FA,
especially in the case of SMS-based TAN schemes for banks. We highlight
that we face a global problem, and next to the Russian-specific Trojans that we
found, incidents in many other countries worldwide have been reported.[11][12][19]
The emergence of toolkits such as AndroRAT will ease the development of
malware targeting specific 2FA schemes.

Until now, these families have largely relied on manual user installation, but
as we have shown, automated cross-platform infections are possible. This
motivates further research to foster more secure mobile 2FA schemes.

ZitMo Case Study
We now outline the reverse engineering results of one of the samples to show
the inner workings of real-world malware in more detail. Here we provide a
case study on the ZitMo malware samples (we analyzed the ZitMo sample
with a SHA256 value of ceb54cba2561f62259204c39a31dc204105d358a1a
10cee37de889332fe6aa27), which are the mobile counterparts of the ZeuS
banking Trojan.

In order to install ZitMo, the ZeuS Trojan manipulates an online banking
session such that ZeuS-infected users are asked to enter their mobile phone
number. Once they do so, the attackers send an SMS message with a link to
security software, which in fact is a camouflaged ZitMo Trojan. In contrast to
the attack that we have described, the infection of the mobile device is a largely
manual process and requires user interaction.

Once ZitMo is installed, it asks the user to enter a verification code, which the
attackers use to establish a unique mapping between the infected PC and the
mobile counterpart. From this point on, ZitMo operates in background. As
ZitMo has registered as a broadcast receiver for SMS messages, it can intercept,
manipulate, and read all incoming SMS messages.

Whenever an SMS message is received, ZitMo first checks if it contains a
hidden command that can be used to reconfigure ZitMo. Such messages
remain hidden to the user: they are not visible in the default messaging app.
ZitMo embeds the content of all other messages as HTTP request parameters
and sends the data (including the device ID) to the ZitMo dropzone server.
Before the data can be forwarded, ZitMo needs to reverse its obfuscation of the
dropzone URL. If the HTTP request fails, ZitMo stores the message in hidden
data storage and retries submission at a later stage.

Although using a simple scheme, ZitMo or similar mobile malware have been
observed to steal tens of millions of dollars from infected users.[19]

Countermeasures and Tradeoffs
Possible defense strategies against attacks on mobile 2FA schemes can be
divided into two classes: preventive and reactive countermeasures. Preventive
countermeasures, such as exploitation mitigation, OS-level security extensions,

“…malware has already started to

target mobile 2FA, especially in the

case of SMS-based TAN schemes for

banks.”

“…ZitMo or similar mobile malware

have been observed to steal tens of

millions of dollars from infected users.”

Intel® Technology Journal | Volume 18, Issue 4, 2014

Security Analysis of Mobile Two-Factor Authentication Schemes | 151

leveraging secure hardware, and using trusted VPN proxies, are applied in
order to reduce the attack surface, while reactive countermeasures aim to detect
ongoing attacks in order to mitigate further damage.

Exploitation Mitigation
Our cross-device infection attack relies on exploitation of memory-related
vulnerability (see the earlier section, “Assumptions”), hence, mitigation
techniques against runtime exploitations would be an effective countermeasure.
However, despite more than two decades of research, such flaws still undermine
security of modern computing platforms.[31] Particularly, while the Write-
XOR-Execute (W^X)[37] security model prevents code injection (enforced
on Android since 2.3 version), it can be bypassed by code reuse attacks, such
as ret2libc[38] or return-oriented programming (ROP).[39] Code reuse attacks
do not require code injection, but rather invoke execution of functions or
sequences of instructions that already reside in the memory. Because code
reuse attacks make use of memory addresses to locate instruction sequences to
be executed during the attack, the mitigation techniques were developed that
randomize program memory space, making it hard to predict exact addresses
prior to program execution. For instance, address space layout randomization
(ASLR)[40], which adds a random offset to loaded code at each program start, is
available on iOS starting from version 4.3 and was also recently introduced for
Android (in 4.0 version).

However, ASLR can be bypassed by brute-forcing the offset at runtime[41],
which generated a new line of research on fine-grained address space
randomization[42][43][44][45][46][47] (down to instruction level), which makes
brute-force attacks infeasible. Unfortunately, fine-grained address space
randomization techniques are ineffective in the presence of memory
disclosure bugs. Particularly, these bugs can be utilized to disclose memory
content and build a return-oriented programming (ROP) payload
dynamically at runtime.[48,49]

Hence, while the deployed memory mitigation techniques raise the bar for the
type of cross-device infection we demonstrated, such attacks are still possible,
even if all protections are enforced.

OS Level Security Extensions
OS security improves over time and can mitigate some attack classes. With
respect to the threat of mobile malware targeting 2FA, the first significant
changes appeared in version 4.2 of Android, where a new system API was
introduced allowing users to verify and to selectively grant or deny permissions
requested by applications during application installation. Ideally, the users can
choose during the installation process what privileges a (potentially malicious)
app should get, which could defeat some user-installed malware instances
(see the earlier section “Real-World 2FA Attacks”).

Moreover, Android introduced SELinux[50] in version 4.3—a security
framework that allows more fine-grained access control to system resources.
This countermeasure makes it more difficult to perform privilege escalation

“…while the deployed memory

mitigation techniques raise the bar

for the type of cross-device infection

we demonstrated, such attacks are still

possible…”

“OS security improves over time and

can mitigate some attack classes.”

Intel® Technology Journal | Volume 18, Issue 4, 2014

152 | Security Analysis of Mobile Two-Factor Authentication Schemes

(also used in our exploits). Further, version 4.3 also introduced authentication
for the Android Debug Bridge (adb), which can prevent cross-device infections
via USB connections.

The most recent Android version 4.4 provides an enhanced message
handling, which prevents third-party applications from silently receiving
or sending any SMS. While malware like ZitMo/SpitMo is still able to
relay received TAN messages, they will remain visible in the phone’s default
messaging application, giving the user the chance for an immediate reaction,
such as, for example, to call the bank and cancel the transaction. However,
this countermeasure will have no effect on our attacks, since we operate at
a lower level of the software stack, meaning that the application framework
itself will never receive a suppressed message. It is therefore likely that future
attacks will follow our concept.

Leveraging Secure Hardware on Mobile Platforms
A more flexible alternative to dedicated hardware tokens is utilizing general
purpose secure hardware available on mobile devices for OTP protection.
For instance, ARM processors feature the ARM TrustZone technology[51]
and Texas Instruments processors have the M-Shield security Extensions.[52]
Further, platforms may include embedded Secure Elements (SE) (available, for
example, on NFC-enabled devices) or support removable SEs (such as secure
memory cards[53] attached to a microSD slot). Finally, SIM cards available on
most mobile platforms include a secure element. Such secure hardware allows
establishment of a trusted execution environment (TEE) on the device, which
can be used to run security-sensitive code to handle authentication secrets
in isolation from the rest of the system. Developments in this direction are
solutions for mobile payments like Google Wallet[54] and PayPass.[55]

With the release of version 4.3, Android started to support hardware-supported
trusted key storage. This means that keys can now be saved in an SE or TEE.
However, this is not sufficient to prevent attacks on 2FA schemes, because the
keys can be retrieved from the trusted storage by the application that created
them. Hence, the adversary could compromise the target application, which
has the privileges to query the keys. Even if the OTP generation would take
place within the TEE, an attacker could still impersonate the target application
in one way or another.

We believe the only way to build a secure 2FA on top of TEE is to shift
the entire verification process into the TEE. We envision the following
workflow, which was also described by Rijswijk-Deij[37]: An OTP/TAN
application is securely deployed into the TEE. On the first start, this
application would establish a secure connection to the service provider/
bank (based on public key certificate of the service provider) and prove
that it is executed in a legitimate TEE via remote attestation. Next, the
application would generate a public/private key pair and send the public
key to the service provider/bank. To begin a transaction, the user would
start the application. It would then query the service provider/bank for any

“A more flexible alternative to

dedicated hardware tokens is utilizing

general purpose secure hardware

available on mobile devices for OTP

protection.”

“…the only way to build a secure 2FA

on top of TEE is to shift the entire

verification process into the TEE.”

Intel® Technology Journal | Volume 18, Issue 4, 2014

Security Analysis of Mobile Two-Factor Authentication Schemes | 153

transaction, which would need to be authorized. If such an action existed,
it would be authenticated using the public key of the service provider/
bank and displayed to the user, via a trusted user interface. The user would
then either allow or deny this action via trusted input. The user’s decision
would be signed using the generated private key and could be verified by the
service provider/bank.

A crucial requirement to underlying TEE in such a use case is trusted user
in-/output, which allows the user to enter security sensitive data (such as
transaction confirmation) directly into TEE. When such input is mediated by
the OS, it can be manipulated by malware so that a program executed within
TEE will confirm a transaction or login attempt without user consciousness.
However, although some TEEs such as TrustZone can provide trusted user
in-/output, in current implementations this feature is not supported. Hence,
solutions built on top of existing TEEs still rely on trusted OS components to
handle user input.

Moreover, most available TEEs are not open to third-party developers.
For instance, secure elements available on SIM cards are controlled by
network operators, while processor-based TEEs such as ARM TrustZone
and M-Shield are controlled by phone manufacturers. Typically, only larger
companies such as Google, Visa, and MasterCard can afford cooperation
with phone manufacturers, while smaller service providers remain with an
alternative to cooperate with network operators or use freely programmable
TEEs such as secure memory cards. However, the solution utilizing SIM-
based secure elements would be limited to customers of a particular network
operator, while secure memory cards can be used only with devices featuring
a microSD slot.

Trusted VPN Proxy
Cross-platform infection attacks as discussed earlier can be defeated by
deploying standard countermeasures against MITM attacks. For example,
one could enforce HTTPS for every web page request or tunnel HTTP
over a remote trusted virtual private network (VPN). However, the former
solution would require changes on all Internet servers currently providing
HTTP connections (which is infeasible), while the latter would impact
performance (as in the case where a single VPN proxy serves several
clients). Moreover, it is not clear which party is trustworthy to host
such a proxy.

Detection of Suspicious Mobile Apps
SMS-stealing apps exhibit suspicious characteristics or behavior that can
be detected by defenders. For example, using static analysis, it is possible
to classify suspicious sets of permissions or to identify receivers for events
of incoming SMS messages.[56] Similarly, taint tracking helps to detect
information leakage.[57] However, tainting requires kernel modifications that
are impractical on normal user smartphones and implicit flows can evade taint
analysis.[58] An alternative are user space security apps that detect suspicious

“…solutions built on top of existing

TEEs still rely on trusted OS

components to handle user input.”

“…most available TEEs are not open

to third-party developers.”

Intel® Technology Journal | Volume 18, Issue 4, 2014

154 | Security Analysis of Mobile Two-Factor Authentication Schemes

behavior of the malicious CitMo/SpitMo/ZitMo apps. Such a security app
could, for instance, identify SMS receivers that consume or forward TAN-
related SMS by observing the receivers’ behavior. Further, by knowing the
command and control (C&C) channels of mobile malware, one could identify
(and block) data leakage in network traffic.

However, these security measures require prior knowledge of the attacks and
C&C obfuscation evades such defenses. Further, our proposed attack cannot
be detected in user space, as we show that we can steal OTPs before any app
running in user space has noticed events such as an incoming SMS message.
Consequently, the aforementioned solutions are not suitable to counter our
attack, and instead can only detect the existing SMS-stealing Trojans.

Attack Detection in the Network
Our cross-platform infection attack scenario can be detected or even prevented
at the network layer.

Particularly, mitigation techniques exist against rogue DHCP attacks, such
as DHCP snooping.[59] For example, the router could stop routing Internet
traffic if it detects rogue DHCP servers. However, these mechanisms are
available on advanced multilayer switches only and require configuration
efforts by network administrators[60], while regular Wi-Fi routers for private
use remain unprotected. We did not encounter any home router that uses
such countermeasures. Further, these measures are specific to cross-platform
infection attacks that rely on rogue DHCP, while ineffective against other
scenarios, such as those, for example, based on tethering.

Related Work
In this section we survey previous research on mobile 2FA schemes, on attacks
against SMS-based TAN systems, and on cross-platform infections.

Mobile 2FA Schemes
Balfanz et al.[10] aim to prevent misuse of the smartcard plugged into the
computer by malware without user knowledge. They propose replacing the
smartcard with a trusted handheld device that asks the user for permission
before performing sensitive operations. Aloul et al.[8,9] utilize a trusted mobile
device as an OTP generator or as a means to establish OOB communication
channel to the bank (via SMS). Mannan et al.[20] propose an authentication
scheme that is tolerant against session hijacking, keylogging, and phishing.
Their scheme relies on a trusted mobile device to perform security-sensitive
computations. Starnberger et al.[28] propose an authentication technique
called QR-TAN that belongs to the class of visual TAN solutions. It requires
the user to confirm transactions with the trusted mobile device using visual
QR barcodes. Clarke et al.[13] propose to use a trusted mobile device with a
camera and OCR as a communication channel to the mobile. The Phoolproof
phishing prevention solution[24] utilizes a trusted user cell phone in order to
generate an additional token for online banking authentication.

“…our proposed attack cannot be

detected in user space, as we show

that we can steal OTPs before any

app running in user space has noticed

events such as an incoming SMS

message.”

“…regular Wi-Fi routers for private

use remain unprotected.”

Intel® Technology Journal | Volume 18, Issue 4, 2014

Security Analysis of Mobile Two-Factor Authentication Schemes | 155

All these solutions assume that the user’s personal mobile device is trustworthy.
However, as we showed in this article, an attacker controlling the user’s PC
can also infiltrate that user’s mobile device by mounting a cross-platform
infection attack, which undermines the assumption on trustworthiness
of the mobile phone.

Attacks on SMS-based TAN Authentication
Mulliner et al.[21] analyze attacks on OTPs sent via SMS and describe how
smartphone Trojans can intercept SMS-based TANs. They also describe
countermeasures against their attack, such as dedicated OTP channels that
cannot be easily intercepted by normal apps. Their attack and countermeasure
rely on the assumption that an attacker has no root privileges, which we argue
is not sufficiently secure in the adversary setting nowadays.

Schartner et al.[26] present an attack against SMS-based TAN solutions for the case
when a single device, the user’s mobile phone, is used for online banking. The
presented attack scenario is relatively straightforward as the assumption of using a
single device eliminates challenges such as cross-platform infection or a mapping
of devices to a single user. Many banks already acknowledge this vulnerability and
disable TAN-based authentication for customers who use banking apps.

Cross-Platform Infection
The first malware spreading from smartphone to PC was discovered in 2005
and targeted Symbian OS.[2] Infection occurred as soon as the phone’s memory
card was plugged into the computer. Another example of cross-platform
infection from PC to the mobile phone was proof-of-concept malware that
had been anonymously sent to the Mobile Antivirus Research Association in
2006.[17][25] The virus affected the Windows desktop and Windows Mobile
operating systems and spread as soon as it detected a connection using
Microsoft’s ActiveSync synchronization software. Another well-known
cross-platform infection attack is a sophisticated worm Stuxnet[22], which
spreads via USB keys and targets industrial software and equipment. Further,
Wang et al.[32] investigated phone-to-computer and computer-to-phone attacks
over USB targeting Android. They report that a sophisticated adversary is able
to exploit the unprotected physical USB connection between devices in both
directions. However, their attack relies on additional assumptions, such as
modifications in the kernel to enable non-default USB drivers on the device,
and non-default options to be set by the user.

Up to now, most cross-system attacks were observed in public networks, such
as malicious Wi-Fi access points[4] or ad-hoc peers advertising free public
Wi-Fi.[3] When a victim connects to such a network, it gets infected and may
start advertising itself as a free public Wi-Fi to spread. In contrast to our
scenario, this attack mostly affects Wi-Fi networks in public areas and targets
devices of other users rather than a second device of the same user. Moreover,
it requires user interaction to join the discovered Wi-Fi network. Finally, the
infection does not spread across platforms (from PC to mobile or vice versa),
but rather affects similar systems.

“…an attacker controlling the user’s

PC can also infiltrate that user’s

mobile device by mounting a cross-

platform infection attack,…”

“…most cross-system attacks were

observed in public networks, such as

malicious Wi-Fi access points or

ad-hoc peers advertising free public

Wi-Fi.”

Intel® Technology Journal | Volume 18, Issue 4, 2014

156 | Security Analysis of Mobile Two-Factor Authentication Schemes

Conclusion
In this article, we studied the security of mobile two-factor authentication
(2FA) schemes that have received much attention recently and are deployed in
security-sensitive applications such as online banking and login verification.

Our results show that current mobile 2FA schemes have conceptual
weaknesses, because adversaries can intercept OTPs or steal private key material
for OTP generation. We thus see a need for research on more secure mobile
2FA schemes that can withstand today’s sophisticated adversary models.

As follow-up research, we propose to explore authentication mechanisms
that use secure hardware on mobile platforms. Although current secure
hardware has its limitations (for example, no support for a secure user
interface, or not being freely programmable), novel approaches based
on secure hardware could eliminate the inherent weaknesses of existing
authentication schemes.

References
[1] National vulnerability database version 2.2. http://nvd.nist.gov/.

[2] Kawamoto, Dawn, “Cell phone virus tries leaping to PCs,”
CNET, http://news.cnet.com/Cell-phone-virus-tries-leaping-to-
PCs/2100-7349_3-5876664.html?tag=mncol;txt, 2005.

[3] Phifer, Lisa, “The security risks of ‘Free Public WiFi,’” TechTarget,
http://searchsecurity.techtarget.com.au/news/2240020802/The-
security-risks-of-Free-Public-WiFi, 2009.

[4] Tobadmin, “KARMA demo on the CBS early show,”
http://blog.trailofbits.com/2010/07/21/karma-demo-on-the-cbs-
early-show/, 2010.

[5] Nachreiner, Corey, “Anatomy of an ARP poisoning attack,”
WatchGuard, http://www.watchguard.com/infocenter/
editorial/135324.asp, 2011.

[6] Liebowitz, Matt, “New Spitmo banking Trojan attacks Android
users,” TechNews Daily, http://www.securitynewsdaily.com/
1048-spitmo-banking-trojan-attacks-android-users.html, 2011.

[7] Raiffeisen PhotoTAN. http://www.raiffeisen.ch/web/phototan, 2012.

[8] Aloul, F., S. Zahidi, and W. El-Hajj, “Two factor authentication
using mobile phones,” in IEEE/ACS Computer Systems and
Applications, May 2009.

[9] Aloul, F., S. Zahidi, and W. ElHajj, “Multifactor authentication
using mobile phones,” International Journal of Mathematics and
Computer Science, 4, 2009.

“We thus see a need for research on

more secure mobile 2FA schemes that

can withstand today’s sophisticated

adversary models.”

“As follow-up research, we propose to

explore authentication mechanisms

that use secure hardware on mobile

platforms.”

Intel® Technology Journal | Volume 18, Issue 4, 2014

Security Analysis of Mobile Two-Factor Authentication Schemes | 157

[10] Balfanz, D. and E. W. Felten, “Hand-held computers can be better
smart cards,” USENIX Security Symposium - Volume 8, USENIX
Association, 1999.

[11] Castillo, Carlos, McAfee blog entry: “Android banking Trojans
target Italy and Thailand,” http://blogs.mcafee.com/mcafee-labs/
android-banking-trojans-target-italy-and-thailand/, 2013.

[12] Castillo, Carlos, McAfee blog entry: “Phishing attack replaces
Android banking apps with malware,” http://blogs.mcafee.com/
mcafee-labs/phishing-attack-replaces-android-banking-apps-with-
malware, 2013.

[13] Clarke, D., B. Gassend, T. Kotwal, M. Burnside, M. v. Dijk,
S. Devadas, and R. Rivest, “The untrusted computer problem
and camera-based authentication,” in International Conference
on Pervasive Computing, Springer-Verlag, 2002.

[14] Cronto Limited, “Commerzbank and Cronto launch secure online
banking with photoTAN—World’s first deployment of visual
transaction signing mobile solution,” http://www.cronto.com/
download/Cronto_Commerzbank_photoTAN.pdf, 2008.

[15] Cronto Limited, “CorpBanca and Cronto secure online
banking transactions with CrontoSign, http://www.cronto.com/
corpbanca-cronto-secure-online-banking-transactions-crontosign.
htm, 2011.

[16] Malik, Amit, “DLL injection and hooking,” SecurityXploded,
http://securityxploded.com/dll-injection-and-hooking.php

[17] Evers, J., “Virus makes leap from PC to PDA,” CNET, http://
news.cnet.com/2100-1029_3-6044457.html, 2006.

[18] Jerschow, Y. I., C. Lochert, B. Scheuermann, and M. Mauve,
„CLL: A cryptographic link layer for local area networks,” in
International conference on Security and Cryptography for Networks,
Springer-Verlag, 2008.

[19] Kalige, E. and D. Burkey, “Eurograbber: How 36 million euros
was stolen via malware,” http://www.cs.stevens.edu/~spock/
Eurograbber_White_Paper.pdf.

[20] Mannan, M. and P. C. Van Oorschot, “Using a personal device to
strengthen password authentication from an untrusted computer,”
in FC’07/USEC’07, 2007.

[21] Mulliner, C., R. Borgaonkar, P. Stewin, and J.-P. Seifert, “SMS-
based one-time passwords: Attacks and defense” (short paper), in
DIMVA, July 2013.

Intel® Technology Journal | Volume 18, Issue 4, 2014

158 | Security Analysis of Mobile Two-Factor Authentication Schemes

[22] Falliere, N., “Exploring Stuxnet’s PLC infection process,”
Symantec blog entry, http://www.symantec.com/connect/blogs/
exploring-stuxnet-s-plc-infection-process, 2010.

[23] V. News, “Teamwork: How the ZitMo Trojan bypasses online
banking security,” Kaspersky Lab, http://www.kaspersky.com/
about/news/virus/2011/Teamwork_How_the_ZitMo_Trojan_
Bypasses_Online_Banking_Security, 2011.

[24] Parno, B., C. Kuo, and A. Perrig, “Phoolproof phishing prevention,
in Financial Cryptography and Data Security, Springer-Verlag, 2006.

[25] Peikari, C., “Analyzing the crossover virus: The first PC to
Windows handheld cross-infector,” InformIT, http://www.informit.
com/articles/article.aspx?p=458169, 2006.

[26] Schartner, P. and S. Bürger, “Attacking mTAN-applications like
e-banking and mobile signatures,” Technical report, University of
Klagenfurt, 2011.

[27] Sparkasse Pfullendorf-Meßkirch, “Online banking mit chipTAN,”
https://www.sparkasse-pm.de/privatkunden/banking/chiptan/
vorteile/index.php?n=/privatkunden/banking/chiptan/vorteile/.

[28] Starnberger, G., L. Froihofer, and K. Goeschka. “QR-TAN: Secure
mobile transaction authentication,” in International Conference on
Availability, Reliability and Security, IEEE, 2009.

[29] Tanenbaum, A., “Modern Operating Systems”, 3rd edition, Prentice
Hall Press, Upper Saddle River, NJ, USA, 2007.

[30] TrendLabs, “3Q 2012 security roundup. Android under siege:
Popularity comes at a price,” http://www.trendmicro.com/cloud-
content/us/pdfs/security-intelligence/reports/rpt-3q-2012-security-
roundup-android-under-siege-popularity-comes-at-a-price.pdf,
2012.

[31] van der Veen, V., N. dutt Sharma, L. Cavallaro, and H. Bos,
“Memory errors: The past, the present, and the future,” in Recent
Advances in Intrusion Detection Symposium, 2012.

[32] Wang, Z. and A. Stavrou, “Exploiting smart-phone USB
connectivity for fun and profit,” in 26th Annual Computer Security
Applications Conference, ACM, 2010.

[33] Zhou, Y. and X. Jiang, “Dissecting Android malware:
Characterization and evolution, in IEEE Symposium on Security
and Privacy, 2012.

[34] “Mobile Malware Mini Dump,” Contagio Mobile,
http://contagiominidump.blogspot.de/

Intel® Technology Journal | Volume 18, Issue 4, 2014

Security Analysis of Mobile Two-Factor Authentication Schemes | 159

[35] Lee, Byoungyoung, Long Lu, Tielei Wang, Taesoo Kim, and
Wenke Lee, “From Zygote to Morula: Fortifying Weakened ASLR
on Android,” in IEEE Symposium on Security and Privacy, 2014.

[36] Roland van Rijswijk-Deij, Roland and Erik Poll, “Using trusted
execution environments in two-factor authentication: comparing
approaches,” in Open Identity Summit 2013 (OID-2013), volume
223 of Lecture Notes in Informatics.

[37] PaX Team, http://pax.grsecurity.net/

[38] Shacham, Hovav, “The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86),” in 14th ACM
conference on Computer and Communications Security, CCS ’07.
ACM, 2007

[39] Buchanan, Erik, Ryan Roemer, Hovav Shacham, and Stefan Savage,
“When good instructions go bad: Generalizing return-oriented
programming to RISC,” in CCS’ 08: Proceedings of the 15th ACM
Conference on Computer and Communications Security, ACM, 2008

[40] PaX Team, PaX address space layout randomization (ASLR),
http://pax.grsecurity.net/docs/aslr.txt

[41] Shacham, Hovav, Eu Jin Goh, Nagendra Modadugu, Ben Pfaff,
and Dan Boneh, “On the effectiveness of address-space
randomization,” in CCS’ 04: Proceedings of the 11th ACM Conference
on Computer and Communications Security, ACM Press, 2004.

[42] Bhatkar, Sandeep, R. Sekar, and Daniel C. DuVarney, “Efficient
techniques for comprehensive protection from memory error
exploits,” in USENIX Security Symposium, 2005.

[43] Kil, Chongkyung, Jinsuk Jun, Christopher Bookholt, Jun Xu, and
Peng Ning, “Address space layout permutation (ASLP): Towards
fine-grained randomization of commodity software,” in Annual
Computer Security Applications Conference, 2006.

[44] Pappas, Vasilis, Michalis Polychronakis, and Angelos D.
Keromytis, “Smashing the gadgets: Hindering return-oriented
programming using in-place code randomization,” in IEEE
Symposium on Security and Privacy, 2012.

[45] Hiser, Jason D., Anh Nguyen-Tuong, Michele Co, Matthew Hall,
and Jack W. Davidson, “ILR: Where’d my gadgets go?” in IEEE
Symposium on Security and Privacy, 2012.

[46] Wartell, Richard, Vishwath Mohan, Kevin W. Hamlen, and
Zhiqiang Lin, “Binary stirring: Self-randomizing instruction
addresses of legacy x86 binary code,” in ACM Conference on
Computer and Communications Security, 2012.

Intel® Technology Journal | Volume 18, Issue 4, 2014

160 | Security Analysis of Mobile Two-Factor Authentication Schemes

[47] Giuffrida, Cristiano, Anton Kuijsten, and Andrew S. Tanenbaum,
“Enhanced operating system security through efficient and
fine-grained address space randomization,” in USENIX Security
Symposium, 2012.

[48] Snow, Kevin Z., Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, Fabian Monrose, and Ahmad-Reza Sadeghi, “Just-in-
time code reuse: On the effectiveness of fine-grained address space
layout randomization,” in 34th IEEE Symposium on Security and
Privacy, 2013.

[49] Bittau, Andrea, Adam Belay, Ali Mashtizadeh, David Mazieres,
and Dan Boneh, “Hacking blind,” in 35th IEEE Symposium on
Security and Privacy, 2014.

[50] National Security Agency, Security-Enhanced Linux, http://www.
nsa.gov/research/selinux.

[51] Alves, Tiago and Don Felton, “TrustZone: Integrated hardware
and software security,” Information Quarterly, 3(4), 2004.

[52] Azema, Jerome and Gilles Fayad, “M-Shield mobile security
technology: Making wireless secure,” Texas Instruments white
paper, 2008.

[53] Giesecke & Devrient Press Release, “G&D Makes Mobile
Terminal Devices Even More Secure with New Version of Smart
Card in MicroSD Format,” http://www.gi-de.com/en/about_g_d/
press/press_releases/G%26D-Makes-Mobile-Terminal-Devices-
Secure-with-New-MicroSD%E2%84%A2-Card-g3592.jsp.

[54] Google Wallet, http://www.google.com/wallet/how-it-works/index.
html.

[55] MasterCard Contactless, “Tap to pay,” http://www.mastercard.us/
paypass.html#/home/,2012.

[56] Zhou, Yajin, Zhi Wang, Wu Zhou, and Xuxian Jiang, “Hey,
you, get off of my market: Detecting malicious apps in official
and alternative Android markets,” in 19th Annual Network and
Distributed System Security Symposium, 2012.

[57] Enck, William, Peter Gilbert, Byung-Gon Chun, Landon P.
Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth,
“TaintDroid: an information-flow tracking system for realtime
privacy monitoring on smartphones,” in USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2010.

[58] King, Dave, Boniface Hicks, Michael Hicks, and Trent Jaeger,
“Implicit flows: Can’t live with Em, can’t live without Em,” on
Information Systems Security, Springer, 2008.

Intel® Technology Journal | Volume 18, Issue 4, 2014

Security Analysis of Mobile Two-Factor Authentication Schemes | 161

[59] Bhaiji, Yusuf, “Understanding, preventing, and defending against
layer 2 attacks,” Cisco, http://www.nanog.org/meetings/nanog42/
presentations/Bhaiji_Layer_2_Attacks.pdf.

[60] Cisco, “Configuring DHCP Snooping,” http://www.cisco.
com/c/en/us/td/docs/switches/datacenter/sw/4_1/nx-os/security/
configuration/guide/sec_nx-os-cfg/sec_dhcpsnoop.pdf.

Author Biographies
Alexandra Dmitrienko is a research assistant at Fraunhofer Institute for Secure
Information Technology in Darmstadt (Germany). She obtained her MSc in
IT-Security from the Saint Petersburg State Polytechnical University in Russia
in 2007. Her academic achievements were honored by the Intel Doctoral
Student Honor Award in 2013. Her research is focused on mobile operating
system security, runtime attacks, and secure mobile applications (online
banking, access control, mobile payments and ticketing). She can be contacted
at alexandra.dmitrienko@sit.fraunhofer.de.

Christopher Liebchen is a student at the Technical University of Darmstadt
and currently working on his master’s degree in IT-Security. His research
focuses on system/mobile security, reverse engineering, and runtime attacks.
Results of his work have been presented at scientific as well as at industrial
conferences. He can be contacted at christopher.liebchen@cased.de.

Christian Rossow is a postdoctoral researcher at the Vrije Universiteit
Amsterdam (The Netherlands) and at the Ruhr University Bochum (Germany).
Christian completed his PhD studies at the VU Amsterdam in April 2013, and
his PhD dissertation was awarded with the prestigious Symantec Research Labs
Fellowship award in 2013. His research interests are malware analysis, mobile
security, botnet tracking, and denial-of-service attacks. He can be reached
at c.rossow@vu.nl.

Ahmad-Reza Sadeghi is a professor of computer science at Technische
Universität Darmstadt, Germany and the head of the System Security Lab
at the Center for Advanced Security Research Darmstadt (CASED). Since
January 2012 he has been the Director of the Intel Collaborative Research
Institute for Secure Computing (ICRI-SC) at TU-Darmstadt. He holds a
PhD in computer science from the University of Saarland in Saarbrücken,
Germany. Prior to academia, he worked in research and development of
telecommunications enterprises, such as Ericsson Telecommunications. He is
on the Editorial Board of the ACM Transactions on Information and System
Security. He can be reached at ahmad.sadeghi@trust.cased.de.

