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ABSTRACT
Bitcoin seems to be the most successful cryptocurrency so
far given the growing real life deployment and popularity.
While Bitcoin requires clients to be online to perform trans-
actions and a certain amount of time to verify them, there
are many real life scenarios that demand for offline and im-
mediate payments (e.g., mobile ticketing, vending machines,
etc). However, offline payments in Bitcoin raise non-trivial
security challenges, as the payee has no means to verify the
received coins without having access to the Bitcoin network.
Moreover, even online immediate payments are shown to be
vulnerable to double-spending attacks.

In this paper, we propose the first solution for Bitcoin
payments, which enables secure payments with Bitcoin in
offline settings and in scenarios where payments need to be
immediately accepted. Our approach relies on an offline wal-
let and deploys several novel security mechanisms to prevent
double-spending and to verify the coin validity in offline set-
ting. These mechanisms achieve probabilistic security to
guarantee that the attack probability is lower than the de-
sired threshold. We provide a security and risk analysis as
well as model security parameters for various adversaries.
We further eliminate remaining risks by detection of misbe-
having wallets and their revocation.

We implemented our solution for mobile Android clients
and instantiated an offline wallet using a microSD security
card. Our implementation demonstrates that smooth inte-
gration over a very prevalent platform (Android) is possible,
and that offline and online payments can practically co-exist.
We also discuss alternative deployment approach for the of-
fline wallet which does not leverage secure hardware, but
instead relies on a deposit system managed by the Bitcoin
network.
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1 Introduction
Electronic payments and mobile banking have experienced
rapid development and deployment with hundred millions of
customers worldwide [12]. Mobile banking services have par-
ticularly been successful in developing countries and enable
financial services to the large part of the population that is
unbanked or cannot use solutions offered by banks [19].

Electronic cash has been an attractive subject of research
and investigation since the late 1980s, starting with the sem-
inal paper by David Chaum [26] followed by a large body
of subsequent works. Cryptographic techniques were intro-
duced to tackle security and privacy challenges such as pro-
tecting against forgery and double-spending and providing
anonymity. However, almost all the proposed solutions so far
involve trusted third parties such as banks to generate and
validate digital cash. Moreover, none of these cryptocurren-
cies have ever made it to be used for real-world payments.

In contrast, Bitcoin [49] relies neither on banks nor on any
other central authority for coin issuing or verifying transac-
tions and seems to be the most successful cryptocurrency
that is used for real world payments. There were at least
over 100,000 merchants worldwide that accepted bitcoins in
2015 [29], and large support by merchant tools and payment
processors [13, 23] is likely to increase this number to mil-
lions in 2016.

Indeed Bitcoin has initially celebrated enormous success
driven by the large interest from users as well as academia
and markets. Within a short time Bitcoin has been thor-
oughly analyzed with regards to security [42, 20, 35], privacy
issues [15, 51, 46] as well as economic aspects [16, 44]. More-
over, a number of alternative cryptocurrencies (altcoins)
were proposed that have made substantial changes to initial
Bitcoin design with different goals. For instance, Zerocoin
[47], Zerocash [21], CryptoNote [55] and PinnochioCoin[30]
aim at providing advanced anonymity, Litecoin [9] and Do-
gecoin [6] use ”memory-hard” puzzles which can be effec-
tively solved using commodity hardware, Primecoin [43] in-
troduced the useful puzzle which requires finding sequences
of large prime numbers, while Ethereum [24] extends Bit-
coin’s transaction semantics to enable advanced transaction
types. However, Bitcoin seems to still be the most popular
and promising cryptocurrency for deployment in practice
and believed to continue to co-exist with traditional finan-
cial systems.

The most challenging security requirements of digital cur-
rency, unforgeability and double-spending prevention, are
addressed in Bitcoin by means of asymmetric cryptography



and a distributed time-stamping service based on proof-of-
work (PoW). As a consequence, transactions cannot be con-
sidered definite as soon as they are received, because it takes
some time for the Bitcoin network to verify and integrate
them in a state that is very hard to change. Hence, a re-
ceiver of a Bitcoin transaction requires an online connection
to the Bitcoin network in order to determine validity of the
transaction, as well as a certain amount of time (10 min.
in average). This makes, however, offline payment with bit-
coins extremely challenging, although in many real world
scenarios (e.g., taxis, mobile ticketing, vending machines,
etc.) offline payments are highly desirable. Moreover, Bit-
coin payments are increasingly used at POS terminals for
immediate payments, where purchased items are released
within a few seconds after the payment and before the trans-
action confirmation have been generated by the network,
although it was already shown that such deployments are
vulnerable to double-spending attacks [42].

Goals and Contributions
We present an extension to Bitcoin protocol which enables

secure payments with Bitcoin in offline settings and in sce-
narios where payments need to be immediately accepted. In
particular, our contributions are as follows:

• Solution for immediate and offline payments. We an-
alyze non-trivial challenges of offline and immediate
payments with Bitcoin (Section 3) and, for the first
time, propose a solution which requires neither payer
nor payee to be online during the payment and in
which payments can be instantly accepted (Section 4).
The solution relies on an offline wallet of a payee and
incorporates probabilistic security mechanisms, which
provide guarantees that the attack probability is lower
than the desired threshold. Moreover, we eliminate
remaining risks by introducing safe yet usable trans-
action limits and revocation mechanisms for double
spending wallets in order to make attacks unprofitable
for an adversary. We provide a rigorous risk analysis
of our solution and suggest exemplary values for the
security parameters (Section 5).

• Implementation and Evaluation. We provide a proof-
of-concept implementation for mobile Android plat-
forms and instantiate an offline wallet using a microSD
security card (Section 6). Minor changes to Bitcion
miners for revocation support are integrated into bit-

coind client. We report performance measurements
of operations performed on resource constrained mi-
croSD card, which demonstrate the feasibility of our
approach for deployment in practice. We further dis-
cuss an alternative deployment option for the offline
wallet, which relies on Bitcoin-based deposit system
and does not require any secure hardware (Section 7).

Our scheme provides a valuable solution to a challenging
problem and enables the promising use of Bitcoin in rising
developing markets with the need for innovative and inde-
pendent payment solutions.

2 Bitcoin Basics
We begin with a brief description of Bitcoin ecosystem. For
a more detailed description we refer the reader to [36].

Involved Parties Generally, Bitcoin system assumes two
types of users: Regular users U and miners M. A regular
user X ∈ U can utilize the Bitcoin network for exchang-
ing bitcoins with another user Y ∈ U by means of trans-
actions, either spending or receiving them. Regular users
own (pseudonymous) accounts identified by addresses and
associated asymmetric key pairs. Generally, a single trans-
action can transfer funds between several accounts at once,
i.e., it can involve several sender and destination accounts,
however for simplicity and without loss of generality we will
assume throughout the paper that transactions involve one
sender and one destination account.

Miners M are the actual operators of Bitcoin network.
Each miner M ∈M works on verifying transactions and in-
cludes them into the public history of all transactions, called
the blockchain B. There are no special miner accounts in the
network, however miners typically own accounts of regular
users in order to receive rewards for transaction processing.

Blockchain operation The blockchain is simply a chain (or
sequence) of blocks, which can be extended by appending
a new valid block. Each block in the chain references the
previous block, which defines the unique order of blocks in
the sequence. Creation of a new valid block requires miners
to solve a cryptographic puzzle, which requires significant
computational effort. The puzzle used by Bitcoin network
requires to find an input to a hash function (randomized by
a nonce) which results in a hash value less than a specific
target value. Hence, miners usually have to compute a large
number of hashes until they solve the puzzle. The target
value is a security parameter which regulates difficulty of
the puzzle, which is adjusted to the computational power
available in the network.

As soon as the new block is created, all the transactions
included into the block are considered as being confirmed
by the network. The more subsequent blocks have been ap-
pended to the current block, the harder it gets to tamper
with included transactions, as this would require to recom-
pute all the subsequent blocks. Hence, one could say that
the transaction τ is confirmed by n-transaction confirma-
tion n -T = {Bi, ..., Bi+n}, if it is included into the block
Bi and there are n subsequent blocks appended to Bi. The
larger n is, the higher is the confidence in the validity of
τ . For simplicity, we will refer to blocks from n-transaction
confirmation as confirmation blocks throughout the paper.

Generally, transactions can be verified on different levels.
While miners and powerful nodes perform a full verification,
many (especially mobile) clients perform a more lightweight
processing, called simple payment verification (SPV). The
full verification includes checks of correctness of the transac-
tion syntax, verification of all preceding transactions, which
increased balance of the current account, as well as ensures
that the account balance has not been already spent (by
checking the entire blockchain). In contrast, SPV clients
verify only transaction syntax and rely on n-transaction con-
firmation issued by the network, which implies that all the
other verifications were successfully performed by full nodes.
Confirmation blocks are verified by SPV clients at the level
of blockheaders (i.e., without verifying transactions included
into blocks), which is sufficient to ensure that confirmation
blocks are the part of the entire blockchain and they were
generated using the appropriate difficulty.



3 Threat Analysis and Challenges
In this section we analyze threats of offline Bitcoin payments
and discuss associated challenges.

3.1 Coin forgery attacks
Coin forgery attacks do not impose threat to immediate
payments for full clients, as they have a local copy of the
blockchain and can verify validity of all preceding transac-
tions on their own, without relying on transaction confir-
mations issued by the network. However, in offline scenario
detection of forged coins is challenging even for full nodes, as
they may not have a part of the blockchain which is neces-
sary for verification of (one of) the preceding transaction(s).
This may happen if the node got offline before the preceding
transaction have been integrated into the blockchain.

To address this threat, we propose a new time-based trans-
action confirmation verification mechanism (cf. Section 4.2).
Additionally to regular checks performed by the standard
transaction confirmation verification of Bitcoin, it considers
a time window within which the transaction confirmation
was generated. As a result, it can provide a high confidence
even in offline settings that the transaction confirmation was
produced by the Bitcoin network rather than by an adver-
sary.

3.2 Double-Spending Attacks
The risk of double-spending arises from the fact that a payer
has always access to private keys of bitcoins he owns, and,
hence, can always reuse them.

While online Bitcoin clients can protect themselves from
double-spending attacks by observing the Bitcoin network
and verifying a transaction confirmation issued by the net-
work, offline clients do not have this option. Further, in
immediate payments, even connected clients are vulnerable
to double-spending, as they consider transactions being valid
as soon as they appear in the Bitcoin network, but before
their confirmations are generated.

Our approach to deal with double-spending attacks in of-
fline scenarios is to rely on an offline wallet, which either
behaves correctly, or its misbehavior is penalized. One way
to achieve this in practice is to realize such a wallet on top of
tamper-proof secure hardware, which can be compromised
only at significant costs [53]. Furthermore, even if compro-
mised, one can detect and revoke it, so that it can only
misbehave for a limited period of time.

While the idea of using secure hardware may seem con-
troversial in context of Bitcoin payments, as it would nor-
mally imply some trust assumptions on origin of this hard-
ware, we argue that (online) Bitcoin users already trust in
similar way to manufacturers of their computing platforms.
There are also other implicitly trusted parties in Bitcoin
ecosystem, such as developers of bitcoin wallets or large
mining pools [38]. Hence, we believe that it is reasonable
to trust manufacturers of secure hardware, such as ARM
TrustZone [14] or Intel SGX [45], as long as users already
use ARM and Intel processors to run their online bitcoin
wallets. Nevertheless, in Section 7 we discuss an alternative
deployment approach for offline wallets, which does not rely
on secure hardware.

State-of-the-art payment solutions, such as GoogleWal-
let [7] and ApplePay [2], already rely on tamper-proof wal-
let environments. However, they are inapplicable in case of

Bitcoin and cannot be used to achieve offline Bitcoin pay-
ments, as they commonly rely on a trusted authority, such
as a bank, to pre-load coins into the wallet – an entity which
does not exist in Bitcoin ecosystem. Moreover, as we elabo-
rate in the following, limitations and constrains of commod-
ity secure wallet environments make it challenging to verify
validity of bitcoins from within the wallet even for online
users.

3.3 Challenges
(1) The first challenge is related to resource constrains of
commodity wallet environments which are likely to render
full validation of the blockchain (and, hence, transaction
validation) within the wallet environment infeasible, and
even while being online. In fact, it takes days to down-
load and verify the whole blockhain even on resource-reach
platforms such as PCs [5], while wallet environments are
typically much more constrained. Especially mobile wallets
may not be able to perform even lightweight SPV verifica-
tion which is carried out at the level of blockheaders (cf.
Section 2 for more details), as they may not have enough
resources to store sufficient number of blockheaders. This
makes it challenging to ensure within the wallet environ-
ment that the transaction confirmation blocks are linked to
the blockchain. We approach this problem in the same way
as the problem of coin forgery attacks against offline clients
(cf. Section 3.1), and apply time-based transaction confirma-
tion verification to verify (online) transactions from within
wallet environments.

(2) The second challenge is imposed by the fact that typ-
ical wallet environments do not feature direct access to net-
working interfaces, but their network access is rather medi-
ated by hosting platforms to which they are connected to.
This is specifically a problem if a host platform is controlled
by an adversary, who can then mediate network access of the
wallet and manipulate its system view in the similar manner
as performed during Eclipse attacks [41]. For instance, the
wallet can be tricked to accept a fake transaction as valid
by providing an adversarial blockchain, generated with low
difficulty, in which this fake transaction is referenced. To
address this challenge, we propose to use delayed parame-
ters verification, which postpones the verification of critical
parameters to a later offline payment stage and involves the
payee to verify them.

(3) The third challenge is related to the estimation of time
window within which the transaction confirmation was pro-
duced by the Bitcoin network, which is a security-sensitive
verification parameter of our time-based transaction confir-
mation verification. This requires either a local time source
(e.g., a timer), or access to external time provider. How-
ever, a secure timer is not a standard feature of commodity
wallet environments. Further, although correct time can be
obtained from network-based time services and even in au-
thenticated manner [10], it is preferable to avoid relying on
third party services. To overcome this challenge, we pro-
pose a method to reliably estimate an upper bound for the
time window and compensate over-approximation by infer-
ring limits on transaction amounts, which should render re-
spective attacks unprofitable for an adversary.

(4) The fourth challenge arises from a threat of the of-
fline wallet being compromised. And, although it is known
to be difficult to compromise commodity secure wallet envi-
ronments in practice [53], advanced adversaries might invest
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Figure 1: System model for offline Bitcoin payments

significant amount of time and resources into an attack if in
return they can double-spend without any limit. Hence, in-
spired by previous works on digital cash [27], we propose to
detect misbehaving wallets and enforce their revocation and
present a new distributed wallet revocation scheme which
does not rely on any external third party, but utilizes Bit-
coin network to distribute revocation information.

4 Secure Offline Bitcoin Payments
In this section we present details of our solution. We begin
by specifying our system and adversary model, then intro-
duce new security mechanisms and, finally, present protocols
which illustrate integration of new building blocks into the
payment scheme.

4.1 System Model
Our system model is depicted in Figure 1. It includes the
Bitcoin infrastructure consisting of the blockchain B and the
miners M. Further, it includes two regular users X,Y ∈ U ,
where X is a payer who sends an offline transaction τo to
the payee Y . Both users have computing platforms PX and
PY , respectively. Each platform PX (resp. PY ) executes
the Bitcoin client software, which manages respective user
accounts x, y and corresponding key pairs (PKX , skX) and
(PKY , skY ). Additionally, the platform PX has an offline
wallet W which manages its own account w and correspond-
ing key pair (PKW , skW ). Furthermore, the wallet W has
a certified key pair (PKT , skT )1, and its certificate certT is
known to PX .

Because both, the payer X and the payee Y , have no on-
line connection during the payment, the offline transaction
τo is sent via local interfaces (e.g., Near Field Communica-
tion (NFC) or Bluetooth Low Energy (LTE)), in contrast to
regular (online) Bitcoin transactions which are transferred
via the Bitcoin peer-to-peer network. Nevertheless, both

1Such keys are typically available within hardware-based se-
cure environments and certified by secure hardware manu-
facturers.

parties occasionally go online, for instance, X to receive pre-
ceding transactions to their account, while Y to redeem the
received offline transaction after the payment2.

Payment scenario Our solution consists of 3 phases (cf.
Figure 1): (i) online coin preloading, (ii) offline payment,
and (iii) online coin redemption and double-spender revoca-
tion. In the first phase, the payer X generates pre-loading
transaction τl (step 1) that transfers some bitcoins from her
standard Bitcoin account x to the offline wallet’s account
w, so that the balance of w becomes positive. This is done
by means of standard online Bitcoin transaction, for which
the network generates n-transaction confirmation n -Tl. In
the second phase the payer X requests W to generate an
offline transaction τo with the desired amount destined to
the account y (step 3). In the third phase, the payee Y
redeems the bitcoins he received offline by broadcasting τo
into the Bitcoin network (step 4) and optionally obtaining
network confirmation n -To (step 5). The network confir-
mation will only be issued, if the network has not detected
a double-spending attack against τo. Otherwise, the payee
Y will trigger an optional double-spender revocation pro-
cedure, which includes sending a double-spender revocation
transaction τr (step 6) to the Bitcoin network and obtaining
corresponding confirmation n -Tr (step 7). We indicate op-
tional and conditional steps in Figure 1 using dashed arrows.

Adversary model and assumptions Our adversary model
is similar to that of Bitcoin, where an adversary A is a ma-
licious user X ∈ U , and, optionally, X ∈ M. In particular,
X aims to get financial benefit by paying with invalid bit-
coins such as forged or double-spent transactions and/or get
them included into the blockchain. The most fundamental
assumption is that even if X ∈M, she does not control more
than 50% of the computational power available to the Bit-
coin network. Moreover, it is assumed that the adversary
A has control over her own platform PY , but she cannot
compromise platforms of other users, i.e., she has no control
over the platform of the payee PY

3.

We also assume that the malicious payer X can compro-
mise her offline wallet W , however, the attack is associated
with significant costs. The latter assumption is beyond stan-
dard adversary model of Bitcoin, and, as we discussed al-
ready in Section 3.2, it can be fulfilled by utilizing tamper-
resistant wallet environments, which are widely available on
both, mobile and PC platforms (e.g., Intel SGX [45], ARM
TrustZone [14] and ASSD cards [39], to name some), and
already commonly used by payment solutions (e.g., Google-
Wallet [7] and ApplePay [2]).

In Section 7 we discuss an alternative deployment option
of the offline wallet which neither relies on secure hardware
nor on their manufacturers for certification.

4.2 Security Mechanisms
In the following we present our new security mechanisms
which are motivated by threats and challenges discussed in
Section 3.

2Note that even offline devices like vending machines may
have temporary connectivity (e.g., provided via hotspots of
personnel supplying items).
3Otherwise the adversary could trivially trick the payee Y
to accept any invalid translation by displaying the fake no-
tification that the transaction is valid.
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Time-based Transaction Confirmation Verification
This mechanism enables us to get a high confidence in va-
lidity of transaction confirmation even without the ability
to check that the transaction confirmation is linked to the
entire blockciain. In a nutshell, it is an enhancement of a
standard transaction confirmation of Bitcoin, which requires
Bitcoin network to produce n-transaction confirmation n -T
= {Bi, ..., Bi+n} with the specified difficulty. Beyond that,
our mechanism additionally requires n-transaction confirma-
tion to satisfy time constraints δn := ti− ti+n ≤ n · δ, where
ti and ti+n are time stamps extracted from blocks Bi and
Bi+n, respectively, and δ is a security parameter.

We analyze this mechanism and potential attacks as well
as provide estimations for reasonable values for δ and n in
Section 5.1.

Delayed Parameters Verification To deal with the chal-
lenge of untrusted and potentially manipulated inputs within
the wallet environment, we propose to split transaction con-
firmation verification process into two phases. In the first
phase the wallet W validates the pre-loading transaction
τl without getting assured that validation parameters (ob-
tained from untrusted input sources) are correct, but storing
them for future use. In the second phase, which takes place
during an offline payment, these parameters are compared
against reference values provided by PY , which are trustwor-
thy, as there is no incentive for PY to manipulate the values
(otherwise it would risk to accept an invalid transaction).

The values which can be verified using this method are the
security parameter δ, the number of confirmation blocks n,
and the target value tgt. However, obtaining the reference
values for ti and ti+n is more challenging, as there might be
no n -Tl available on PY (e.g., if the payee Y got offline be-
fore τl have been confirmed by the network). Furthermore,
the time stamps extracted from n-transaction confirmation
received by W during pre-loading phase are not trustwor-
thy, as they could be forged by an adversary controlling
less than 50% of the network power. In particular, an ad-
versary A could search for confirmation blocks over longer
time, while manipulating time stamps in such a way that

they look like the confirmation was generated faster. Even
more crucial, once generated, such a spoofed transaction
confirmation could be re-used to cheat multiple wallets.

As a countermeasure, we propose to estimate bounds for
δn := ti − ti+n by (i) creating a fresh bitcoin address for
every pre-loading transaction, which effectively bounds ti
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and also prevents an adversary from re-using the spoofed
confirmation with several wallets. Further, we suggest to
(ii) use time of offline payment tp as an upper bound of
ti+n.

Transaction Limits Depending on time passed in between
the transaction τl was loaded and until τo is spent, veri-
fication of a condition δn := tp − ti ≤ n · δ may fail for
reasonable δ values even for legitimate confirmations, which
may impact usability.

To mitigate this side effect of our over-approximation, we
suggest that it is safe for Y to relax δ parameter if transac-
tion amounts for offline payments are limited in such a way
that transaction confirmation spoofing attacks become un-
profitable. In Section 5.2 we provide cost analysis for trans-
action confirmation spoofing attacks and show that they are
sufficiently high to allow for safe yet usable transaction lim-
its.

Distributed Wallet Revocation Bitcoin transactions can
carry out some limited amount of data (up to 80 bytes per
record). Inclusion of data renders the actual amount trans-
ferred by such a transaction unspendable, but the transac-
tion gets still integrated into the blockchain. We leverage
this feature in order to instantiate Bitcoin-based distributed
revocation manager. In particular, we represent revocation
requests in the form of a special transaction, which is sent by
a cheated payee Y to the special revocation address which
is publicly known and for which there is no corresponding
signing key. The revocation transaction contains the public
key of the accused wallet in the data field, and, once it is
integrated into the blockchain, it serves as an entry in the

4This is because neither the network, nor an adversary could
produce correct n -Tl before such an address was generated.



revocation list and can be downloaded by Bitcoin clients.
Revocation updates can be received by all the clients by
monitoring all the transactions sent to the revocation ad-
dress. Offline clients receive these updates whenever they
go occasionally online, e.g., to redeem the offline transac-
tion after the payment5.

4.3 Protocol Design
In the following we present protocol design for each phase of
our solution: (i) coin-preloading, (ii) offline transaction, and
(iii) coin redemption and double-spending wallet revocation.

Notations In this section we use the following notations
and conventions. We denote an algorithm as out ← A(in),
where A is the name of the algorithm, in is the list of input
parameters and out is the list of output values, potentially a
boolean value. With σ ← sign(sk;m) we denote a signature
on message m under signing key sk which can be verified
by {true, false} ← verify(PK;m,σ). When checking for the
result of a function that outputs boolean values, we simply

write A(in) instead of A(in)
?
= true for brevity.

4.3.1 Coin Preloading
In the coin-preloading protocol, shown in Fig. 2, the payer
X first indicates the amount of bitcoins bl she would like
to preload into her wallet W (step 1). Next, PX requests
a new account w from the wallet (step 2), then creates the
pre-loading transaction τl transferring bl bitcoins from her
x account to w and commits it to the network (step 3).
As soon as τl is verified by the Bitcoin network and con-
firmation n -Tl is issued (step 4), X provides τl and n -Tl
to the wallet W (step 5), which in turn runs an algorithm
verifyTConf with the parameters τl and n -Tl to perform
time-based transaction confirmation verification (cf. Sec-
tion 4.2). If successful, W increases its balance by bl, ex-
tracts difficulty tgt from confirmation blocks and estimates
δn using time stamps ti and ti+n (extracted from n -Tl).
It then stores values τl, n -Tl, tgt, δn for future use. When
done, it replies to PX with status (step 6), which notifies the
user whether the transaction was accepted by the wallet.

4.3.2 Secure Offline Transaction
The secure offline transaction protocol is shown in Fig. 3.
It is initiated by Y , who indicates to his platform PY the
demanded amount bo (step 1). Next, PY sends the public
key PKY to the platform PX which immediately forwards it
to W 6 (step 2). PX replies to PY with certT , the certificate
issued to the wallet environment by its manufacturer (step
3). PY validates certT and, if correct, runs Diffie-Hellman
key exchange protocol with W to establish a session key
K (step 4), which is then used to protect all the subsequent
messages7. The next message from PY to W transfers bo and

5Even disconnected platforms like vending machines can be
provided regular updates through mobile hotspots brought,
e.g., by a personnel supplying snacks.
6Any communication with W is mediated by PX , which we
do not show in the figure for brevity.
7Note that messages between the offline wallet W and the
payee PY (including the offline transaction) must be ex-
changed via a secure channel to prevent their malicious ma-
nipulation. This is different for online Bitcoin payments
where transactions go through the decentralized Bitcoin
peer-to-peer network unencrypted, as the trust is put on
the validity of the blockchain.

payee’s reference values of verification parameters tgtY , nY
and δ (step 5). Meanwhile, W calculates Bitcoin address
y of Y by hashing PKY . As soon as W receives bo (along
with the security parameters), it displays to the payer X the
transaction destination y and amount to pay bo (step 6).
If acknowledged (step 7), W ensures that it has sufficient
funds, i.e., bo ≤ balance, and verifies if τl was confirmed
by a sufficient number of blocks by checking if n equals or
greater than nY . It also compares the target values tgt and
tgtY to ensure that n -Tl was calculated with a satisfying
difficulty. Finally it validates if the security condition δn ≤
nY · δ holds. If all checks pass, it generates a transaction τo,
which transfers bo amount of bitcoins from wallet’s address
w to payee’s address y. The transaction is signed with the
wallet’s Bitcoin key skW . Further, W generates a proof
that this transaction was created within the secure wallet
environment by signing τo with its certified key skT .

The resulting τo is sent to PY along with the signature
proof and the time stamp ti (extracted from the block Bi
of n -Tl) (step 8). Upon receive, the transaction is verified to
match the address y, to include amount bo and to be syntac-
tically correct (e.g., correctly signed). Furthermore, proof
is verified to be a valid signature made over the transaction
τo. Additional check is performed to verify if tp − ti (where
tp is a current time) equals or greater than nY · δ, and, if
failed, an additional condition is triggered to ensure that the
transaction amount bo does not exceed a safe limit bmax.

If successful, PY stores τo, certT and proof for future use.
Finally, it replies to W with the status (step 9), which, in
turn, decreases balance by bo and, in case there are no more
funds in the account w left, deletes its key skW .

4.3.3 Coin Redemption and Wallet Revocation
The coin-redemption and wallet revocation protocol is de-
picted in Figure 4. It involves a payee Y and the Bitcoin
network as communicating parties and relies neither on the
payer X nor on his or her offline wallet W . The protocol
begins by a payee Y , who redeems the coins received ear-
lier from X by broadcasting τo to the Bitcoin network (step
1). Next, the Bitcoin network either confirms τo by send-
ing transaction confirmation n -To (step 2), or, if it detects
double-spending transaction, no transaction confirmation is
issued8. In the latter case the payee Y initiates revocation
by creating a revocation transaction τr, which is sent from y
signed with skY . It is destined to the pre-defined revocation
address and includes a hash of the public key PKT of the
compromised offline wallet to be revoked. The revocation
transaction is then committed to the Bitcion network along
with τo, certT and proof (step 3). In turn, the Bitcoin net-
work verifies the proof that the double-spending transaction
was indeed signed by PKT (extracted from certT ), and if
correct, the revocation request is accepted and the revoca-
tion transaction τr is integrated into the blockchain.

5 Analysis of Security Parameters
In this section we elaborate on how the security parame-
ters n and δ should be determined. We recall that they
are used by our time-based transaction confirmation verifi-
cation mechanism (cf. Section 4.2) to decide whether an
n-transaction confirmation comes from the Bitcoin network

8We rely on standard mechanisms of Bitcoin network for
detection of double-spending transactions.
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Figure 3: Secure offline transaction protocol
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τr ← genRevTrans(y, PKY , skY , PKT )

integrate τr into B

verify τo
if τo is not double-spent

confirm with n -Tr

Figure 4: Coin redemption and double-spending wallet revocation protocol

or from an adversary. Therefore, we analyze the probability
for an adversary to successfully spoof a transaction confir-
mation and determine n and δ for bounding this probability.
We then analyze costs associated with transaction confirma-
tion spoofing attacks in order to identify transaction limits
which would render these attacks unprofitable.

Preliminaries Let parameters rnet and rA be the total
hashrate of the network and the hashrate of the adversary
A in hashes per second (H/s), respectively. We assume that
rA < rnet. The target value for block generation is denoted

by tgt, the number of blocks required to confirm a trans-
action by n and the upper bound for generation by δ in
seconds. For the following considerations we suppose tgt is
the correct current target value, which can be derived from
the blockchain. Consequently, since tgt is chosen such that
block generation takes 10 minutes (or 600 seconds) in aver-
age, it follows that

rnet =
2256

tgt
· 1

600
. (5.1)

Further, n -T = {Bi, ..., Bi+n} is a n-transaction confirma-



tion, δn is the time it took to generate n -T and let α ∈ [0, 1]
be an arbitrary, but fixed parameter, which we call security
level and which is denoting the upper bound for the attack
success probability of A.

5.1 Analysis of Attack Probability for Trans-
action Confirmation Spoofing

To produce a valid transaction confirmation within defined
time constraints, the adversary A needs to compute the re-
quired n confirmation blocks for this transaction. Without
tampering with any of the relevant inputs to the block gen-
eration procedure she is expected to take much longer than
the (honest) Bitcoin network and therefore n · δ can be used
as an upper bound to decide whether a sequence of n blocks
comes from the network or from A.

Eventually, we want to control the probability that an ad-
versary can find n confirmation blocks in this time. There-
fore, we will first analyze the probability of finding one block,
then of finding n blocks and finally show that these proba-
bilities can differ significantly for the network and the ad-
versary for different values of δ. From this we derive how
to determine δ and n such that A’s probability to find n -T
within δn ≤ n · δ is less than a required security level α,
which is used to bound this probability.

Let Xi be a geometrical distributed random variable with
parameter p, denoting the number of hashes that have to
be computed until a valid hash for block Bi is found, and
psuc being the success probability of finding a valid hash.
Recall that in order to find a valid block, a nonce has to be
discovered such that the hash of the block header is less or
equals the 256 bit long target value tgt. Consequently, since
Bitcoin uses SHA-256 there are exactly tgt out of 2256 possi-
ble valid hashes. Hence, the probability that any computed
hash is valid is

psuc =
tgt

2256
. (5.2)

The relationship between the number of hashes needed for
one block h1 and the time δ in which hashes are computed
at rate r is as follows:

h1 = r · δ. (5.3)

Hence, the probability of finding a valid hash in less then h1

attempts (i.e., within δ) is given by the cumulative distribu-
tion function (c.d.f.) of the geometrical distributed Xi:

Pr(Xi ≤ h1) = 1− (1− psuc)h1 (5.4)

Next, we extend it to the case of finding several confir-
mations in time as needed for n-confirmation transactions.
Let Yi be the random variable denoting the total number of
hashes that have to be computed until n valid confirmations
have been found. It follows that Yi =

∑i+n
j=i Xj is the sum of

n i.i.d. variables following the geometrical distribution with
parameter p = psuc . Hence Yi follows the negative binomial
distribution NB(r, p) with parameter r = n being the num-
ber of successes until the experiment is stopped and p = psuc
being the single success probability of one trial.

The number of hashes that can now be computed within
n · δ and with hashrate r is

hn = r · n · δ. (5.5)

Therefore, the probability of finding n valid hashes within
these hn attempts (i.e. the probability that it took less

time than n · δ to find them) is given by the c.d.f. of the
negative binomial distribution which can be calculated in
the following ways:

Pr(Yi ≤ hn) = 1− I1−p(hn + 1, n) (5.6)

= Ip(n, hn + 1) (5.7)

=

∫ p
0
tn−1(1− t)hndt∫ 1

0
tn−1(1− t)hndt

(5.8)

where Ix(a, b) is the regularized incomplete beta function.

When substituting hn according to equation (5.5), the
above probability depends on the hashrate r, the number of
required confirmations n and the allowed time δ for finding
these confirmations. Since the hashrate is a fixed parameter
either given by the current target value tgt for rnet or by
assumption for rA, the only remaining influential parameters
are δ and n. For better readability we define

P(r;n, δ) := Pr(Yi ≤ r · n · δ)

Hence, the following equation should be satisfied:

P(rA;n, δ) < α (5.9)

Note that for a given pair of (n, δ) that satisfies Eq. 5.9
there is always a probability β = P(rnet;n, δ) that the Bit-
coin network will not be able to produce the correct transac-
tion confirmation in the given time limits. Hence, it is also
important to choose δ in such a way that for increasing n the
probability P(rnet;n, δ) increases but P(rA;n, δ) decreases.

Furthermore, for best usability n should be as small as
possible in order to reduce overhead for the wallet, while δ
should be as large as possible to reduce the probability that
δn < n · δ. We model this as follows:

max
1

n
· P(rnet;n, δ)− P(rA;n, δ) (5.10)

s.t.

lim
n→∞

∫ p
0
tn−1(1− t)rnet·n·δdt∫ 1

0
tn−1(1− t)rnet·n·δdt

= 1

lim
n→∞

∫ p
0
tn−1(1− t)rA·n·δdt∫ 1

0
tn−1(1− t)rA·n·δdt

= 0

P(rA;n, δ) ≤ α

The resulting pair (n, δ) guarantees that any valid n -T
will be accepted and A’s probability of success is bound by
α.

Parameter examples We calculated several exemplary val-
ues for security parameters for the attack probability α =
0.1%. Particularly, Table 1 presents examples for param-
eters n and δ for different attackers’ hashrates. The so-
lutions have been numerically approximated according to
Eq. 5.10. For the network values we refer to block 287500
of the blockchain. Here the target value is 1.5E + 58, which
means a hashrate rnet of approximately 22 petahashes per
second (cf. Eq. (5.1)).

Fig. 5 shows how A’s probability of success differs from
the networks’ probability of success and how it diminishes
as more confirmations are required. Note especially that a



(a) Probability distributions for δ =800 (b) Probability distribtutions for δ =1600

Figure 5: Comparison of P(rnet;n, δ) and P(rA;n, δ) pairs for different adversary models (A’s hashrate is given as percentage
of the network hashrate). The red/lighter (lower) graphs denote A’s probability and the blue/darker ones the corresponding
probability of the network

rA 5% 10% 20% 30% 45%
δ 1400s 1100s 1000s 1000s 1200s
n 5 6 12 16 > 600

Table 1: Solutions for the confirmation generation time limit
(δ) for different assumptions on the hashrate of the adver-
sary (rA) and the number of confirmations (n) required in
each case in order to satisfy a security level α of 0.1%.

very strong attacker (rA = 40%)9 will still be capable to
succeed for δ = 1600s, but not any longer for δ = 800s.

5.2 Cost Estimations of Transaction Confir-
mation Spoofing

In the following, we calculate the costs for A to compute n
confirmations in order to determine the upper limit for the
amount which can be safely accepted by payees to render
timing attacks unprofitable. Our analysis considers costs
incurred by electricity consumed during required computa-
tions and excludes costs for hardware.

Let rA beA’s hashrate in H/s, c her power costs in ct/kWh
and w her power consumption in kWh. Then computing the
expected number of hashes per block (hE = E(Xi)) will take
her tE seconds in average and result in cE costs for electricity
for one block in average.

hE = E(Xi) =
2256

tgt
(5.11)

tE =
hE
rA

(5.12)

cE = w · c · tE
3600

(5.13)

Hence, A would need to load bitcoins at least worth cE into
her W . Note that A’s costs do not depend on her frac-
tion of the network hashrate, but only on the total network
hashrate. Increasing rA decreases the time in which A can
fake blocks, but at the same time increases her power con-
sumption to the same degree.

Note that this restriction can not be applied immediately,
since the possible profit is in BTC and the costs are in com-
mon fiat currency such as euros or dollars. Therefore, the

9Remarkably, it was shown [52] that such a strong adver-
sary has a non-negligible probability to succeed in double
spending even in online Bitcoin payments.

actual limit that needs to be applied depends on the ex-
change rate between BTC and the reference currency, e.g.,
USD.

cmax = cE ·
BTC

USD
(5.14)

Restricting the amount that a trusted wallet can be charged
with one transaction to cmax renders timing attacks unprof-
itable, given A’s rA, c and w.

Exemplary values For exemplary purposes, consider a sin-
gle adversary A that acquired a small number of recent
mining hardware worth of $60,000. Suppose A controls 10
TerraMiner IV, which is one of the most efficient hardware
as of today. With 2000 GH/s per rig A’s hashrate rA is
20000 GH/s, constituting about 0.09% of the total network
hashrate. With this hashrate she needs tE = 187 hours in
average for one block. Assuming c = 8 ct/kWh, an estimate
of electricity cost in China [3] (where large Bitcoin miners
are active), then for w = 1.2 kWh per rig and an exchange
rate of 600 USD/BTC this costs her cE = $300 for one block.
Suppose the offline wallet requires at least 6 confirmations
for a pre-loading transaction, then A is expected to take over
46 days for computation and faces power costs of $1800.

6 Implementation
Our implementation consists of three components: (i) Bit-
coin miner, (ii) Bitcoin client of the payee and (iii) offline
wallet of the payer.

Miners Changes required by miners were integrated into
bitcoind Bitcoin client. Modifications to the basic Bitcoin
protocol are minimal – we added functionality for miners to
verify the proof that the accused wallet indeed signed the
double-spending transaction before the revocation transac-
tion is further processed.

Payee’s client To implement functionality of a payee, we
extended the Android Bitcoin wallet [1]. Changes concern
offline payment and revocation phases, while redemption of
bitcoins is performed in the same way as in the standard
Bitcoin scheme. Further, we enabled a client to listen to
transactions sent to the revocation address.

Payer’s Offline Wallet The offline wallet was prototyped
using a cgCard [25], which runs JCOP 2.4.1 R3, supports



Figure 6: Timing results of 50 independent runs of the coin
preloading protocol (P1) and the offline transaction protocol
(P2). Confirmation size was n = 7.

JavaCard API of version 2.2.2 and the global platform stan-
dard in version 2.2.1. It has an NXP P5CD081 Chip based
on 8-bit CPU and about 81 kbyte of EEPROM. The Java
Card technology is an extremely stripped down Java derivate
designed to run on small memory footprint devices, such as
smart cards. While Java Card is a precise subset of Java, it
offers none of the common conveniences and approaches of
conventional Java programming. Yet we were able to real-
ize full support of our protocol. In particular we are able to
perform parsing and validation of transactions, blockheaders
and Merkle trees as well as key and transaction generation.

The memory footprint is about 2 kB for transient memory
(RAM) and 3 kB for persistent data excluding transactions,
keys and the applet bytecode itself.

Fig. 6 shows the performance of the card for coin preload-
ing and offline payment protocols. Measurements include
computations on the card and communication with the host.
The longest time (≈ 1100 ms in average) of the coin preload-
ing protocol was required for transaction confirmation verifi-
cation, while verification of a single blockheader took about
160 ms in average, which we consider as a good result10.
With a median of 548 ms the generation of offline transac-
tions should not notably interrupt any payment process.

7 Discussion
So far we described in details how to instantiate an offline
wallet by leveraging secure hardware. However, as we al-
ready mentioned in Section 4.1, our solution can be instan-
tiated using an alternative approach which neither relies on
secure hardware nor on their manufacturers for certification.

Our primary motivation for leveraging secure hardware
was to impose financial loss to misbehaving users, so that
an adversary would need to invest significant resources in
order to compromise the wallet environment, but could mis-
use it only for a limited period of time, until the wallet is
detected and revoked. This is likely to make wallet compro-
mise attacks unprofitable, especially given significant costs
of attacks against secure hardware and limited transaction
amounts.

An alternative way to achieve similar objective is to utilize
a deposit system. Such a deposit system can be managed
by the Bitcoin network itself and without relying on any
external parties. In particular, it could be instantiated us-
ing decentralized anonymous credentials system of Garman
et al. [37] which enables a Bitcoin-based distributed certi-
fication authority which can issue certificates to our offline
wallets. Such a certification authority can be extended to

10For comparison, Gura et al. [40] reported 0.81 sec for a
single 160-bit ECC multiplication on 8-bit CPU.

issue certificates only to wallets that can prove they have
sent certain amount of cryptocurrency to a special deposit
account.

Note that the näıve approach to return deposits to well-
behaving wallets is to establish a trusted party which would
have control over the signing key of the deposit account. In
a more elegant solution, however, one could rely on a deposit
account of special type for which there is no signing key ex-
ists. When currency is transferred to such an account, it gets
permanently destroyed. To enable withdrawal of deposits,
we suggest to introduce a transaction of special type, which
has no source address, but only destination. Similar trans-
actions already exist in Bitcoin network – coinbase trans-
actions which are used to reward miners for mining blocks.
In this way, the destroyed currency can be returned to the
system and be transferred back to users of well-behaving
wallets11.

Remarkably, solution which we described in details in this
paper relies on wallet revocation to merely punish double-
spenders, while coin forgery attacks are prevented by other
means (cf. Section 3.1 for details). This is due to the fact
that coin forgery attacks could be launched against non-
compromised wallets. Indeed, an attacker controlling user’s
platform, but not the offline wallet, could spoof transaction
confirmation of the pre-loading transaction (cf. Section 4.2).
Hence, the successful attacker would not bear the costs of
wallet compromise, but only costs of transaction confirma-
tion spoofing (cf. Section 5.2). In case of deposit-based
wallet deployment, however, it might be reasonable to use
wallet revocation to defeat both attack classes, which would
simplify transaction verification in offline phase.

We would like to investigate deposit-based approach in our
future work, and in particular to model important system
parameters, such as size of the deposit, transaction limits,
and the amount of time the payee stays offline.

Bitcoin limitations Recent research [28] has shown that
Bitcoin faces scalability problems, which limit transaction
throughput by a few transactions per second, hence, in a
long perspective Bitcoin might not be the best choice for
low amount payments. This, however, does not undermine
our results: While we have chosen Bitcoin due to its wide-
spread adoption, our solution can also be applied to other
blockchain-based cryptocurrency systems, including systems
with larger transaction throughput (e.g., Ethereum [24] which
has block generation time of 10 seconds).

8 Related Work
Bitcoin was originally presented in [49] and since then was
thoroughly analyzed with regards to security, privacy and
beyond. A technical survey on decentralized digital curren-
cies, including Bitcoin, is available in [54], and systematiza-
tion if knowledge in this domain is provided by [22].

Hashrate-based double-spending attacks initially discussed
in [49] were analyzed in more detail in [52]. The first com-
prehensive study on Bitcoin was presented in [20], which
considered such aspects as deflation due to capped amount
of bitcoins, forking the chain, malware attacks and scalabil-
ity. Further, the Bitcoin protocol was modeled in [48], and it
was shown that it reaches a Byzantine consensus. The core

11Withdrawal transactions should reference corresponding
deposit transactions to prevent illegitimate withdrawals.



of the Bitcoin protocol was analyzed in [36] and was proven
secure if the network is tightly synchronized and the adver-
sary’s hashing power is strictly less than 50%, but shown
that the adversarial bound decreases as the synchronization
gets looser.

Essential aspects of network synchronization and informa-
tion propagation were studied in [31, 33]. Eclipse attacks on
Bitcoin network were shown [41], which allow attackers to
perform n-confirmation double spending attacks, selfish min-
ing, and facilitate adversarial forks in the blockchain [41].

Closest to our interest are works [42, 17] which analyzed
double-spending attacks in the context of fast payments and
suggested countermeasures. However, they rely on online
detection of double-spending transactions appearing in the
Bitcoin network, and, hence, not applicable in offline pay-
ment scenarios. Further, OtherCoin [34], TREZOR [50] and
BlueWallet [18] similar to us use secure hardware to pro-
tect Bitcion signing keys. However, their main purpose is
to protect private keys from malware or other attempts to
extract them, while we aim to limit access of bitcoin owners
to corresponding signing keys to prevent double-spending.

CoinBlesk [11] is a mobile Bitcoin payment solution suit-
able for fast payments. Similarly to our solution, transac-
tions in CoinBlesk are performed directly from the payer
to the payee (over NFC). However, differently from us, at
least one party requires online connection during transac-
tion, and, hence, the solution does not solve the problem
which we aim to address. Moreover, an idea of duplex mi-
cropayment channels initially introduced in the context of
Bitcoin contracts [4] was adapted in [32] for off-blockchain
payments with a goal to minimize amount of transactions
to be confirmed by the network. The resulting solution can
be used for offline payments, however, only for cases when
the payer and payee know each other a priory the payment.
Finally, Green Addresses solution [8] solves ”confirmation
delay” problem by introducing a trusted third party, which
facilitates assured, zero-confirmation transactions. Gener-
ally, Green Addresses provide an evidence that trusted third
parties can be accepted in Bitcoin ecosystem, but does not
solve a problem of offline payments.

9 Conclusion
In this work we aimed to tackle a problem of secure pay-
ments with Bitcoins in scenarios where parties have no on-
line connection during the payment, or the connection is
available, but purchased items are released immediately af-
ter the payment, and before the transaction has been con-
firmed by the Bitcoin network. Our solution relies on an
offline wallet residing on the platform of the payer. Such a
wallet can be instantiated differently, e.g., using secure hard-
ware or by means of utilizing deposit system. In this paper,
we investigated in details the first approach. In particular,
we proposed new security mechanisms as building blocks,
provided their rigorous analysis and showed how they can
be integrated into payment processes. As a proof of con-
cept, we prototyped our solution for Android clients and
used a JavaCard to host an offline wallet. Our implemen-
tation shows that smooth integration over a very prevalent
platform (Android) is possible, and that offline and online
payments can practically co-exist. We further discussed sec-
ond deployment approach and outlined how the offline wallet
could be instantiated using a wallet deposit system, which

is managed by the Bitcoin network itself and does not rely
on any external third parties.
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