
B — Branch 
BLX — Branch with Link and Exchange 
PC-Based Load — Load from memory with a PC-based offset 
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The Problem of Control-Flow Attacks (Runtime Attacks) 
 Control-flow attacks are possible because applications still suffer from a variety of (memory-

related) vulnerabilities allowing an adversary to compromise the application flow via diverse 
techniques, e.g., stack overflows, heap overflows, integer overflows, pointer subterfuges or for-
mat strings. 

 Recently these attacks have been applied to smartphones applications as well of which hun-
dreds and thousands are downloaded every day 

 2010: Stealing the user’s SMS database on iOS *Iozzo et al., 2010+ 

 2010: Launching a remote reverse shell on Android *Keith, 2010+ 

 2011: Rooting an iOS device via a PDF-based jailbreak *comex, 2010 and 2011+ 

Return-Oriented Programming and 
return-into-libc Attacks 

Code Injection Attacks 

Basic Principle of Control-Flow Attacks 
The adversary exploits a vulnerability of a benign application at runtime (step 1) and afterwards 
redirects the control-flow either to injected (malicious) code (step 2a) or to existing code pieces 
residing in shared libraries (step 2b) 

BBL: A basic block is a sequence of assembler instructions (ins) with a single entry and exit instruction 

entry: Any instruction that is target of a branch (e.g., the first instruction of a function) 

exit: Any branch instruction (e.g., indirect or direct jump/call, function return) 
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Basic Principle of Control-Flow Integrity (CFI) 
 CFI is a general countermeasure against control-flow attacks 

 Originally proposed and implemented for Intel x86 by Microsoft *Abadi et al., CCS 2005+ 

 This technique asserts the basic safety property that the control-flow of an application fol-
lows only the legitimate paths determined in advance. If an adversary hijacks the control-
flow, CFI enforcement can detect this divagation and prevent the attack. 

 However, there exists no CFI solution for smartphone platforms! 

Problems of the Existing Intel x86 CFI Approach 
 Requires a sophisticated binary instrumentation framework (Vulcan) that is not publicly avail-

able and only supports x86 and Windows operating systems 

 Moreover, the binary rewriting approach requires debugging information that are typically 
not included in third-party applications 

Challenges for a CFI Solution on Smartphones 

 ARM and Intel x86 differ substantially 

 No dedicated return instruction 

 The program counter is directly accessible 

 Side-Effects: Control-Flow changes may involve the loading of several other registers 

 ARM supports two instructions sets (32 Bit ARM and 16 Bit THUMB) and the processor can switch 
among these at runtime 

 More problems on iPhone: 

 Applications are encrypted and signed 

 iOS is closed-source and cannot be changed 
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A General Solution: Control-Flow Integrity Control-Flow Integrity Framework for Smartphones 
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We present the design and implementation of the first CFI enforcement framework for iOS. Our 
framework can be divided into two phases: 

1. Static Analysis: We developed new tools and extended the PiOS framework *Egele et al., NDSS 2011+ 
to recognize all branch instructions and derive the CFG of an iOS application 

2. Runtime Enforcement: We developed a new CFI library that consist of a load-time module which re-
writes the application on-the-fly, and a runtime module which performs the control-flow checks 
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 The runtime module ensures that indirect 

jumps and calls follow a valid path in the CFG 

 We maintain shadow stacks to hold valid co-

pies of return addresses 

 We handle Objective C peculiarities: 

 Method calls to Objective-C objects are resol-

ved to a call to the generic message handling 

function objc_msgSend 

 Parameters of objc_msgSend are the method 

name (selector) and the class instance. Both 

parameters are checked at runtime by our run-

time module 

First CFI Enforcement Framework for Smartphones 
 Requires no access to source code 

 Performs binary rewriting on-the-fly and is therefore compatible to application signing/
encryption and memory randomization (e.g., ASLR) 

 We addressed unique challenges of smartphone platforms and operating systems 

 Our CFI enforcement is efficient and induces acceptable performance overhead 


