
B — Branch
BLX — Branch with Link and Exchange
PC-Based Load — Load from memory with a PC-based offset

Control-Flow Integrity for Smartphones

Lucas Davi1, Alexandra Dmitrienko2, Manuel Egele3, Thomas Fischer4, Thorsten Holz4, Ralf Hund4, Stefan

Nürnberger1, Ahmad-Reza Sadeghi1,2
1 CASED, Technische Universität Darmstadt, Germany 2 Fraunhofer SIT, Darmstadt, Germany
3 University of California, Santa Barbara, United States 4 Horst Görtz Institute for IT-Security, Ruhr-Universität Bochum, Germany

18th ACM Conference on Computer and Communications Security (CCS 2011)

OCT 17-21 2011. Chicago, IL, USA

POSTER: Control-Flow Integrity for Smartphones

Control-Flow Attacks: A Major Threat to Software Applications (on Desktop PCs and Smartphones)

Implementation Details of Our CFI Library Conclusion

Contact:

Lucas.Davi@trust.cased.de

Ralf.Hund@rub.de

App

entry
ins, ins, …
exit

entry
ins, ins, …
exit

entry
ins, ins, …
exit

entry
ins, ins, …
exit

entry
ins, ins, …
exit

Shellcode

Functions
Instruction Sequences

BBL 2

BBL 4 BBL 5

BBL 3

BBL 1

Malicious Code

Library Code

Abstract representation of the App by using a
Control-Flow Graph

The Problem of Control-Flow Attacks (Runtime Attacks)
 Control-flow attacks are possible because applications still suffer from a variety of (memory-

related) vulnerabilities allowing an adversary to compromise the application flow via diverse
techniques, e.g., stack overflows, heap overflows, integer overflows, pointer subterfuges or for-
mat strings.

 Recently these attacks have been applied to smartphones applications as well of which hun-
dreds and thousands are downloaded every day

 2010: Stealing the user’s SMS database on iOS *Iozzo et al., 2010+

 2010: Launching a remote reverse shell on Android *Keith, 2010+

 2011: Rooting an iOS device via a PDF-based jailbreak *comex, 2010 and 2011+

Return-Oriented Programming and
return-into-libc Attacks

Code Injection Attacks

Basic Principle of Control-Flow Attacks
The adversary exploits a vulnerability of a benign application at runtime (step 1) and afterwards
redirects the control-flow either to injected (malicious) code (step 2a) or to existing code pieces
residing in shared libraries (step 2b)

BBL: A basic block is a sequence of assembler instructions (ins) with a single entry and exit instruction

entry: Any instruction that is target of a branch (e.g., the first instruction of a function)

exit: Any branch instruction (e.g., indirect or direct jump/call, function return)

Adversary exploits a
vulnerability in BBL 3

X

Basic Principle of Control-Flow Integrity (CFI)
 CFI is a general countermeasure against control-flow attacks

 Originally proposed and implemented for Intel x86 by Microsoft *Abadi et al., CCS 2005+

 This technique asserts the basic safety property that the control-flow of an application fol-
lows only the legitimate paths determined in advance. If an adversary hijacks the control-
flow, CFI enforcement can detect this divagation and prevent the attack.

 However, there exists no CFI solution for smartphone platforms!

Problems of the Existing Intel x86 CFI Approach
 Requires a sophisticated binary instrumentation framework (Vulcan) that is not publicly avail-

able and only supports x86 and Windows operating systems

 Moreover, the binary rewriting approach requires debugging information that are typically
not included in third-party applications

Challenges for a CFI Solution on Smartphones

 ARM and Intel x86 differ substantially

 No dedicated return instruction

 The program counter is directly accessible

 Side-Effects: Control-Flow changes may involve the loading of several other registers

 ARM supports two instructions sets (32 Bit ARM and 16 Bit THUMB) and the processor can switch
among these at runtime

 More problems on iPhone:

 Applications are encrypted and signed

 iOS is closed-source and cannot be changed

Unprotected and encrypted

iOS Application

10011…

01100…

Unprotected and plain

iOS Application

ins, ins, ...

CALL Function A

Preprocessor

Decryption

Disassembling

Binary Analysis

Branch Detector

CFG Generator Control-Flow
Graph (CFG)

Patchfile

CFI Library

Load-Time Module

Binary Rewriting

Runtime Module

CFI Enforcement

CFI-Protected

iOS Application

ins, ins, ...

CALL CFI Library

Static Analysis Runtime Enforcement

A General Solution: Control-Flow Integrity Control-Flow Integrity Framework for Smartphones

 1

 2a

 2b

We present the design and implementation of the first CFI enforcement framework for iOS. Our
framework can be divided into two phases:

1. Static Analysis: We developed new tools and extended the PiOS framework *Egele et al., NDSS 2011+
to recognize all branch instructions and derive the CFG of an iOS application

2. Runtime Enforcement: We developed a new CFI library that consist of a load-time module which re-
writes the application on-the-fly, and a runtime module which performs the control-flow checks

Header

Code

Data

Instruction

Instruction, ...

CALL Function

Instruction

Instruction, ...

INDIRECT JUMP

Instruction

PC-Based Load

RETURN

Original iOS Binary

Header

Code

Data

Instruction

Instruction, ...

BLX Trampoline_1

Instruction

B Trampoline_2

Instruction

PC-Based Load

#ILLEGAL INS

Rewritten iOS Binary Trampoline_1
Save Registers

B Runtime Module

Reset Registers

JUMP Function

Trampoline_2

Save Registers

B Runtime Module

Reset Registers

INDIRECT JUMP

Previous Instruction

Runtime

Module

Exeption Handler

 The runtime module ensures that indirect

jumps and calls follow a valid path in the CFG

 We maintain shadow stacks to hold valid co-

pies of return addresses

 We handle Objective C peculiarities:

 Method calls to Objective-C objects are resol-

ved to a call to the generic message handling

function objc_msgSend

 Parameters of objc_msgSend are the method

name (selector) and the class instance. Both

parameters are checked at runtime by our run-

time module

First CFI Enforcement Framework for Smartphones
 Requires no access to source code

 Performs binary rewriting on-the-fly and is therefore compatible to application signing/
encryption and memory randomization (e.g., ASLR)

 We addressed unique challenges of smartphone platforms and operating systems

 Our CFI enforcement is efficient and induces acceptable performance overhead

