
B — Branch
BLX — Branch with Link and Exchange
PC-Based Load — Load from memory with a PC-based offset

Control-Flow Integrity for Smartphones

Lucas Davi1, Alexandra Dmitrienko2, Manuel Egele3, Thomas Fischer4, Thorsten Holz4, Ralf Hund4, Stefan

Nürnberger1, Ahmad-Reza Sadeghi1,2
1 CASED, Technische Universität Darmstadt, Germany 2 Fraunhofer SIT, Darmstadt, Germany
3 University of California, Santa Barbara, United States 4 Horst Görtz Institute for IT-Security, Ruhr-Universität Bochum, Germany

18th ACM Conference on Computer and Communications Security (CCS 2011)

OCT 17-21 2011. Chicago, IL, USA

POSTER: Control-Flow Integrity for Smartphones

Control-Flow Attacks: A Major Threat to Software Applications (on Desktop PCs and Smartphones)

Implementation Details of Our CFI Library Conclusion

Contact:

Lucas.Davi@trust.cased.de

Ralf.Hund@rub.de

App

entry
ins, ins, …
exit

entry
ins, ins, …
exit

entry
ins, ins, …
exit

entry
ins, ins, …
exit

entry
ins, ins, …
exit

Shellcode

Functions
Instruction Sequences

BBL 2

BBL 4 BBL 5

BBL 3

BBL 1

Malicious Code

Library Code

Abstract representation of the App by using a
Control-Flow Graph

The Problem of Control-Flow Attacks (Runtime Attacks)
 Control-flow attacks are possible because applications still suffer from a variety of (memory-

related) vulnerabilities allowing an adversary to compromise the application flow via diverse
techniques, e.g., stack overflows, heap overflows, integer overflows, pointer subterfuges or for-
mat strings.

 Recently these attacks have been applied to smartphones applications as well of which hun-
dreds and thousands are downloaded every day

 2010: Stealing the user’s SMS database on iOS *Iozzo et al., 2010+

 2010: Launching a remote reverse shell on Android *Keith, 2010+

 2011: Rooting an iOS device via a PDF-based jailbreak *comex, 2010 and 2011+

Return-Oriented Programming and
return-into-libc Attacks

Code Injection Attacks

Basic Principle of Control-Flow Attacks
The adversary exploits a vulnerability of a benign application at runtime (step 1) and afterwards
redirects the control-flow either to injected (malicious) code (step 2a) or to existing code pieces
residing in shared libraries (step 2b)

BBL: A basic block is a sequence of assembler instructions (ins) with a single entry and exit instruction

entry: Any instruction that is target of a branch (e.g., the first instruction of a function)

exit: Any branch instruction (e.g., indirect or direct jump/call, function return)

Adversary exploits a
vulnerability in BBL 3

X

Basic Principle of Control-Flow Integrity (CFI)
 CFI is a general countermeasure against control-flow attacks

 Originally proposed and implemented for Intel x86 by Microsoft *Abadi et al., CCS 2005+

 This technique asserts the basic safety property that the control-flow of an application fol-
lows only the legitimate paths determined in advance. If an adversary hijacks the control-
flow, CFI enforcement can detect this divagation and prevent the attack.

 However, there exists no CFI solution for smartphone platforms!

Problems of the Existing Intel x86 CFI Approach
 Requires a sophisticated binary instrumentation framework (Vulcan) that is not publicly avail-

able and only supports x86 and Windows operating systems

 Moreover, the binary rewriting approach requires debugging information that are typically
not included in third-party applications

Challenges for a CFI Solution on Smartphones

 ARM and Intel x86 differ substantially

 No dedicated return instruction

 The program counter is directly accessible

 Side-Effects: Control-Flow changes may involve the loading of several other registers

 ARM supports two instructions sets (32 Bit ARM and 16 Bit THUMB) and the processor can switch
among these at runtime

 More problems on iPhone:

 Applications are encrypted and signed

 iOS is closed-source and cannot be changed

Unprotected and encrypted

iOS Application

10011…

01100…

Unprotected and plain

iOS Application

ins, ins, ...

CALL Function A

Preprocessor

Decryption

Disassembling

Binary Analysis

Branch Detector

CFG Generator Control-Flow
Graph (CFG)

Patchfile

CFI Library

Load-Time Module

Binary Rewriting

Runtime Module

CFI Enforcement

CFI-Protected

iOS Application

ins, ins, ...

CALL CFI Library

Static Analysis Runtime Enforcement

A General Solution: Control-Flow Integrity Control-Flow Integrity Framework for Smartphones

 1

 2a

 2b

We present the design and implementation of the first CFI enforcement framework for iOS. Our
framework can be divided into two phases:

1. Static Analysis: We developed new tools and extended the PiOS framework *Egele et al., NDSS 2011+
to recognize all branch instructions and derive the CFG of an iOS application

2. Runtime Enforcement: We developed a new CFI library that consist of a load-time module which re-
writes the application on-the-fly, and a runtime module which performs the control-flow checks

Header

Code

Data

Instruction

Instruction, ...

CALL Function

Instruction

Instruction, ...

INDIRECT JUMP

Instruction

PC-Based Load

RETURN

Original iOS Binary

Header

Code

Data

Instruction

Instruction, ...

BLX Trampoline_1

Instruction

B Trampoline_2

Instruction

PC-Based Load

#ILLEGAL INS

Rewritten iOS Binary Trampoline_1
Save Registers

B Runtime Module

Reset Registers

JUMP Function

Trampoline_2

Save Registers

B Runtime Module

Reset Registers

INDIRECT JUMP

Previous Instruction

Runtime

Module

Exeption Handler

 The runtime module ensures that indirect

jumps and calls follow a valid path in the CFG

 We maintain shadow stacks to hold valid co-

pies of return addresses

 We handle Objective C peculiarities:

 Method calls to Objective-C objects are resol-

ved to a call to the generic message handling

function objc_msgSend

 Parameters of objc_msgSend are the method

name (selector) and the class instance. Both

parameters are checked at runtime by our run-

time module

First CFI Enforcement Framework for Smartphones
 Requires no access to source code

 Performs binary rewriting on-the-fly and is therefore compatible to application signing/
encryption and memory randomization (e.g., ASLR)

 We addressed unique challenges of smartphone platforms and operating systems

 Our CFI enforcement is efficient and induces acceptable performance overhead

