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Abstract

Currently deployed contact discovery of mobile messengers is based on the transmission
of phone numbers to the service provider. This information is private and anonymized by
hashing them. In this work, we show, that this anonymization is pseudo-anonymous and
can easily be broken by an attacker.

For that, we develop two hash reversal techniques: one using brute-force approach and
another one using look-up databases. We provide generic architectures for each of the ap-
proaches. Additionally, we provide and compare two instantiations for each. Furthermore,
we evaluate and compare them to the third approach based on rainbow tables.

The evaluation shows near instant lookup-times of under 0.1 ms using in-memory lookup
databases, this approach is however costly in terms of memory – it would require over
10 TB RAM, which would be difficult to obtain. Our brute-force approach shows an
astonishing performance, being able to reverse any mobile number in under 100 seconds
using consumer-level hardware. The rainbow tables produce lookup-times of 4.5 minutes
with a success rate of over 99.99%.

The results of our evaluation demonstrate, that hash reversals of mobile phone numbers
are practical and near instant. Thus, an attacker can easily reverse hash digests of mobile
phone numbers and de-anonymize personally identifiable information – like phone numbers
transmitted to the service provider of mobile messenger apps.
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Zusammenfassung

Die derzeit angewandte Contact Discovery Methode in Mobile Messengern basiert auf einer
Übertragung aller Telefonnummern des Nutzers an den jeweiligen Anbieter. Die Telefon-
nummern gelten als privat und werden durch Hashing anonymisiert. In der vorliegenden
Arbeit zeigen wir, dass diese Anonymisierung nur pseudo-anonym ist und von einem An-
greifer leicht umgekehrt werden kann.

Zu diesem Zweck entwickeln wir zwei Hash-Umkehrtechniken: Eine verwendet Brute-Force
und die andere Datenbanken. Wir stellen generische Architekturen für beide Herangehens-
weisen bereit. Zusätzlich erstellen und vergleichen wir jeweils zwei Instanziierungen der
besagten Architekturen. Darüber hinaus evaluieren und vergleichen wir beide Ansätze mit
einem dritten Ansatz basierend auf Rainbow Tables.

Die Evaluierung zeigt ein nahezu sofortiges Brechen von Hashes innerhalb von unter 0,1 ms
unter Verwendung von In-Memory-Datenbanken. Dieser Ansatz geht jedoch sehr zulasten
des Arbeitsspeichers – eine Datenbank würde über 10 TB RAM erfordern, was schwierig zu
bewerkstelligen ist. Unser Brute-Force-Ansatz jedoch zeigt eine erstaunliche Leistungsfä-
higkeit, da dieser jede Mobilfunknummer mithilfe von handelsüblicher Hardware in weniger
als 100 Sekunden wiederherstellen kann. Die Rainbow Tables ergeben Suchzeiten von 4,5
Minuten mit einer Erfolgsrate von über 99,99%.

Die Ergebnisse unserer Evaluierung zeigen, dass Hash-Umkehrungen von Mobiltelefon-
nummern praktisch sind und nahezu sofort verlaufen. Auf diese Weise kann ein Angreifer
leicht Hash-Digests von Mobiltelefonnummern rückgängig machen und persönlich identifi-
zierbare Informationen de-anonymisieren – wie zum Beispiel Telefonnummern, die an den
Anbieter einer Mobile Messenger-App übertragen werden.
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1. Introduction

Mobile phones have become a very common technology nowadays. Their usage and spread
is on a rise since the first cellphones were built. Their utilization became ubiquitous with
the inception of smartphones, that allowed users to not just make a call, but opened the
door for a wide range of various applications.

One of those new applications are so-called messenger apps – such as WhatsApp [1]. First
adapted as a more cost-effective alternative to SMS, they became the de-facto way of
commutation on smartphones. They extended their initial text-based channels with voice
and video calls.

Messenger apps require contact information about other users, such that it is possible to
make calls or send messages. Contact lists of users might be pretty large and difficult to
establish manually, hence the apps provide a mechanism to simplify contact bootstrapping
through the so-called Contact Discovery method. In this method, users allow an app to
get access to their contact lists established by other apps, for instance, to e-mails stored
by an e-mail client or to the contact list with phone numbers.

In this work, we concentrate on mobile messenger apps, that use user’s mobile phone
numbers as contact information. In such apps, the users share their contact lists in form
of phone books with the service provider. Those contacts are then intersected with all
users registered for the same service, and the overlap is added to the user as newly dis-
covered contacts. However, this approach has two inherent privacy problems: Possibility
of enumeration attacks and leaking personally identifiable information.

Enumeration attacks. Enumeration is a method, where a malicious external user can abuse
the Contact Discovery process to get all registered users. In the case of phone books, a
malicious user can just define a fake phone book with mobile numbers, query the provider
and get a list of registered users back. By repeating this process, an attacker could query
all possible phone numbers and by that get all registered users. This attack vector was
explored in depth by the authors of [2].

Leaking private information. In the Contact Discovery process, entire contact lists of phone
numbers are shared with the provider. This includes already registered users as well as
not registered users. Since a phone number is defined as an identifiable information under
the General Data Protection Regulation (GDPR) [3] and non-registered users didn’t give
their consent to share their phone numbers with the provider, their numbers need to be
anonymized.
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2 1. Introduction

Therefore providers, such as WhatsApp or Signal [4], hash all phone numbers of a contact
list before transmitting them to their servers. Hash functions are used, because of their
one-way property – once a number is hashed, there is no easy way to reverse the hash, or
digest, back to the phone number. The only way to reverse a secure hash is brute-forcing.
This attack is supposed to be difficult, because the search space of phone numbers spans
trillions of numbers. One would need to calculate the hash of every number to reverse a
digest with certainty.

However, we’re still operating within the predictions of Moore’s law [5] and increase our
computational power rapidly. What seemed infeasible to compute in the past, becomes
within reach of today’s computers. So, it might be feasible for modern attackers to crack
hashes and reveal identifiable information about users.

The problem of leaking private information through the Contact Discovery was pointed
out in previous research [6], where authors suggested to apply Private Set Intersection
(PSI) methods [7] to make it possible to intersect the contact lists of the server provider
and of the user in a privacy-preserving manner without the need to transfer entire user
contact lists to provider’s servers. While PSI protocols generally solve the problem of
leaking personal identifiable information in the Contact Discovery process, they currently
fail to scale with the demand and user-base of mobile messengers.

In this thesis, we aim to explore the problem of leaking private information in Contact
Discovery process in mobile messengers. In particular, we analyze Contact Discovery
methods used by mobile apps such as WhatsApp, Signal and others and evaluate several
techniques for hash reversal. In particular, we develop two new methods: Hash reversal
through brute-forcing and building a lookup database, and compare these two methods
and one additional method developed in [2] based on rainbow tables to evaluate their
performance and feasibility to efficiently revert hashes. Results of this thesis show, that
difficulty of hash reversal of hashes computed from mobile phone numbers is low and
any phone number can be reversed as fast as in less than 100 seconds using consumer-
grade hardware. This implies that the difficulty of hash reversal of mobile phone numbers
is largely overestimated and current anonymization methods are almost as good as no
protection.

Our contributions. In particular, we make the following contributions:

(a) We analyze the following mobile messenger apps: Telegram [8], WhatsApp, Snapchat
[9], Threema [10], WeChat [11], Viber [12], Wire [13] and Signal. We find out
that neither Telegram, Snapchat, Wechat nor Viber apply any anonymization to
the contact discovery process. Messenger apps like WhatsApp, Threema, Wire and
Signal, offer anonymization through hashing of the phone number using a SHA-
algorithm.

(b) We explore hash reversal using brute-force technique. For that, we propose an archi-
tecture and instantiate it using the cracking tools Hashcat [14] and John the Ripper
(JTR) [15]. We show that JTR outperforms Hashcat in execution time by nearly
a 85-fold performance gain and can achieve near ideal hash rate possible on our
consumer-grade hardware with JTR.

(c) We explore hash reversal using a lookup database. Here, we create the database that
includes key-value pairs for mobile phone numbers and their respective hashes. We
developed a generic architecture and instantiated it with two database technologies:
Redis [16] and Lightning Memory-Mapped Database (LMDB) [17]. Our comparison
of both instantiations shows that LMDB outperforms Redis in terms of memory
consumption and lookup-times. While this technique is memory-consuming, it allows
us to achieve near instant lookup times.
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(d) We evaluate and compare three hash reversal techniques: Brute-forcing and lookup
database – both developed in this thesis – and another technique [18] that is based on
rainbow tables [19]. Our results show that brute-forcing shows the most promising
results, with traversing the entire space in 93.2 seconds, while searching for 106 di-
gests using consumer-grade hardware. The database approach requires more than 10
TB of memory to hold the entire database of mobile phone numbers and their digests
– something which could be feasible for state-level attacker and service provider, but
it provides near instant lookup-times of 5.5 ms with our architecture. Further, we
achieve lookup-times of 4.4 minutes with a success-rate of over 99.99% using rainbow
tables.

Outline. We first describe in Chapter 2 the background on phone numbers, hashes, Rain-
bow Tables and utilized tools. Next, in Chapter 3, we state the problem, compare different
mobile messenger apps and outline our attacker model. In Chapter 4 we present related
work on PSI, enumeration attacks and hash reversal. We then present our solutions for
brute-force approach in Chapter 5 and lookup database in Chapter 6. Last, we present
our evaluation in Chapter 7 and conclude this thesis in Chapter 8.
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2. Background

In this chapter we clarify the theoretical basis of phone numbers, hashes, two databases
and rainbow tables. We first discuss the international standard of phone numbers and
detail the inner workings of assigning phone numbers to users in Section 2.1. We discuss
the basis of hashes and detail specifically the SHA1 algorithm in Section 2.2. Next, in
Section 2.3, we describe the inner workings of the database Redis. In Section 2.4 we detail
another database with LMDB. Last, in Sections 2.5 and 2.6 we introduce the concept of
rainbow tables with an implementation called RainbowCrack.

2.1. Phone Numbers

In this section we limit the amount of possible phone numbers by testing for their validity.
This part is central to our work, because the phone numbers are used as an input to SHA1.
So, by limiting the amount of numbers as input, we can then optimize the search for the
inverse of hashes.

Telephone numbers were first introduced in 1879 to ease the work of telephone operators.
Since then the format and definition changed frequently and also differed between coun-
tries. Until the ITU-T introduced the international public telecommunication numbering
plan E.164 [20] in 1997.

E.164 defines (as seen in Figure 2.1), that phone numbers are internationally limited to
15 digits. This results in an input space of 1015 numbers and therefore hashes to be
searched/saved. The first obvious limitation to this vast space is, that the first three
digits are reserved for country codes. Another limitation is done by specific countries. For
example, the North American Numbering Plan (NANP) doesn’t set aside specific prefixes
for mobile numbers. In contrast, most other countries offer prefixes specific to carriers.
For example, Germany uses prefixes for specific mobile carriers [21]. This fragmentation
allows us to limit our search space to a fraction of 1015.

5



6 2. Background

Figure 2.1.: Phone number setup [22]

In order to do so, numerous online services exist to test the validity of phone numbers.
As seen in our work [2], we were able to leverage Google’s libphonenumber [23] to filter
out invalid numbers. This service is most prominently use by Signal [24]. By querying
all prefixes with Google’s service, the search space was reduced to around 353 billion
numbers/hashes. Further, using WhatsApp’s online validation system, we reduced our
search space to roughly 118 billion possibilities.

So to summarize, in our work [2] we were able to first generate a — country code based
— prefix database. This was further branched into country’s specific prefixes. For exam-
ple only valid mobile providers were considered for Germany, such as T-Mobile (+49151),
Vodafone (+49152), etc. Then we tested the accepted length of those prefixes with lib-
phonenumber for a maximum and minimum. For example, the number space of +49160
can have seven to eight additional digits after the prefix. To further reduce the number
of possibilities we tested them against WhatsApp’s registration/login API. As a result we
reduced our search space by a factor of 104, allowing us to reverse hashes back into phone
numbers within a realistic period.

2.2. Hashes

Secure Hash Algorithms (SHA) are cryptographic hash functions provided by National
Institute of Standards and Technology (NIST). These algorithms are in our use-case used
by services like WhatsApp and Signal to obfuscate phone numbers of users from their own
servers. To be able to evaluate the privacy implications of using SHA as obfuscation, we
need to understand their inner workings. We therefor provide a detailed description of
SHA1 and a comparison to other algorithms of the SHA-family in this section.

Hash functions first and foremost map a variable sized input to a fixed sized output. This
implies the possibility of collisions, as the input space is normally bigger than the fixed
output space. The central point of defining a hash function is to minimize the possibility
of collisions to a negligible amount. If the probability of collisions is negligible for a given
function, this function is then called collision resistant.

As for our scenario, we not only need a collision resistant function, but also a one-way
function. For that, a function needs to be practically nearly impossible to inverse. These
are then called cryptographic hash functions, which we refer to in this work simply as hash
functions or hashes. Cryptographic hash functions normally have more properties than
mentioned (for example pre-image resistance), but are further not discussed as they are
not relevant for our scenario.

As mentioned before, we are focusing on the SHA-family, more specifically on SHA1. This
algorithm was first defined by NIST in FIPS 180-1 [25] and then extended with an open C
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2.3. Redis 7

implementation as RFC 3174 [26]. SHA1 itself is a Merkle-Damg̊ard construction [27], so
it is based on a one-way compression function (maps two same-sized inputs to same-sized
output as in Figure 2.2) and a preceding padding procedure. The padding is needed to
extend the input to a multiple of the input for the compression function.

Figure 2.2.: One-way compression function [22]

In the case of SHA1, the message is padded to a multiple of 512 bits. First the bit ’1’
is appended to the message, then the message is appended by ’0’s leaving enough room
for a 64 bit long integer, which represents the size of the original message. The result is
then broken into 512 bit chunks, feeding SHA1’s compression function. This function is
based on a fixed initialization vector (IV) and reiterated 80 times, using four distinct and
altering functions to generate and updated IV. This updated IV is then used for the next
chunk. Once every chunk of the message is processed, the last IV becomes the message
digest.

While using a very similar algorithm to SHA1, SHA2 mainly introduces specific constants
for every round in the compression function. The chunk size is either 512 or 1024 bits
and has either 64 rounds or 80 rounds - depending on the SHA2 variation at hand. Most
notable the output size is increased and offers therefore a bigger range.

In contrast to SHA0, SHA1 and SHA2, which are based on a Merkle-Damg̊ard construction,
the newly introduced family of SHA3 (also called KECCAK) algorithms utilizes a so-called
sponge construction [28]. Sponge constructions avoid several security flaws of Merkle-
Damg̊ard construction – like multi-collisions [29], length extension [30] or herding attacks
[31].

2.3. Redis

Redis [16] is a key-value database, which resides in-memory. The basic idea behind this
database is to save key-value pairs in the computer’s Random Access Memory (RAM).
This setup allows for very fast look-up times, meaning searching for a specific value by
its key is done in constant time. In Redis’ case the time is O(1) in Bachmann–Landau
notation [32]. But in return Redis’ data is volatile, meaning all data is lost after a reboot.

Redis achieves those fast look-ups by implementing so-called memory hash tables [33].
Those hash tables utilize the RAM, as instead the sequential nature of disks by MySQL
[34]. In principal hash tables are based on hash functions, which map a key to a so-called
bucket in which the value is put. To exemplify this process we can look at Figure 2.3,
where the names of contacts are keys and the values in the buckets are phone numbers.

7



8 2. Background

Figure 2.3.: Hash table example as phone book [35]

Hash tables don’t initially map their inputs/value to every possible key of their hash
function. For example, Redis uses the djb2 algorithm as a hash function. This function
maps a string to a 32-bit digest. In theory, one can generate 232 buckets with that function.
But in practice one needs only a portion of buckets. In that case, we use the modulo
operator to leverage remainders.

digest = djb2(key)
index = digest mod table size

(2.1)

If we use Equation 2.1 as a reference, we can see, that a total of table size buckets are in
the hash table. While the number of buckets can be sized as desired, by choosing the size
as a power of two, we can leverage the faster bitmasks instead.

As we have mentioned before, Redis uses the djb2 hash function. This function is not a
cryptographic hash function. In the particular use-case of hash tables, we need a hash
function, that has a uniform distribution instead of high randomness. In other words, we
need a hash function, that fills every bucket first before a collision occurs.

As the matter of collision arises, this is an expected circumstance in hash tables. As the
birthday problem [36] indicates, there are going to be two keys assigned to one bucket.
Several techniques exist to mitigate this problem. We focus on the one, Redis employs –
as it is the most relevant for us to consider. Redis uses separate chaining with linked lists.
So instead of just saving one value to every bucket, Redis saves colliding keys and their
values as linked lists in their respective buckets. This results in lower lookup times, if the
number of values per bucket is too high. Again, this worst-case scenario heavily depends
on the chosen hash-function.

In Equation 2.1 we defined the size of the hash table as a constant. This would mean,
that we need to know the size of the database beforehand. Normally this is not the case.
Hash tables can therefore be resized. Redis uses so-called incremental resizing. The idea
behind this technique is to first allocate a new (bigger) table. Then inserting every new
entry into the new table, while also moving a small amount of keys from the old table to
the new one piggybacking every new insertion. After all old entries are moved to the new
table, the old one can then be deallocated.

8



2.4. LMDB 9

This is obviously a big computational effort, especially in our case of inserting a large
amount of entries. As we are looking for look-up times of inverting hashes, we don’t
emphasize this part of our setup.

The complexity of look-ups with Redis is O(1 + n
k ), where n is the number of values and

k the number of buckets. This fraction is being kept as low as possible by Redis. With
resizing their table size according to the number of entries, Redis achieves an amortized
complexity of O(1) with many entries.

As mentioned in Section 2.1, we need to store roughly 118 billion phone numbers and their
hashes. But the hash function djb2 allows ”only” 232 keys – roughly 4.3 billion entries
to Redis. Luckily Redis offers an internal cluster functionality. This allows us to scale
Redis to much more entries. The clustering offers 16384 different slots to make use of
more instances of Redis. The process is rather simple. Redis takes the CRC16 of the key
modulo 16384 and assigns the key to the corresponding slot. This slot then references to a
predefined Redis instance (on the same server or remote) and is saved there. In return, if
we search for a key, we just take the CRC16 of the key and ”find” the corresponding server
in constant time.

To mitigate volatility of data, Redis saves the data continuously on the disk. This obviously
costs resources, such as disk space and computation time. In addition to saving data
constantly on the disk, this procedure bottlenecks insertion time of data into the database.

But in our setup we can assume, that a continuous save on disk is not needed. We argue,
that the database should be measured in a fixed state. So once every entry is written into
the database, an attacker doesn’t need to extend the database constantly. In other words,
once the database is filled, Redis won’t write data back to disk, as no data is saved any
more. Therefore we reduce our setup-time, but don’t skew with our read measurements.
So we disabled this feature to re-insert our data in several stages of the evaluation.

2.4. LMDB

LMDB is key-value database designed as a library and written in C. In contrast to Redis,
the LMDB stores its entries on disk rather than in volatile RAM. As a result the basic
design is very different to the concepts discussed in the previous section. Instead of using
hash tables as a data structure, LMDB relies on so-called B+-trees. In addition to this
structure, LMDB maps its storage file into the virtual address space, which yields faster
lookups as I/O operations are reduced.

We don’t want to offer a detailed introspection of LMDB in this section, but rather a
basic overview of the fundamental design choices of this database. We discuss B+-trees,
memory-mapped files, append-only design, Multiversion Concurrency Control (MVCC)
and copy-on-write.

B+-tree. A B+-tree is tree-like sorted and searchable structure, which holds values, that
can be searched using search-keys – similar to Redis. In this context keys are not yet
clearly defined. The keys can be variable length and type. One can think of a phone book
as a key-value store, with names as keys and numbers as values. Names in a phone book
can be variable length and can consume a different amount of space. In our case we define
keys as SHA1-digests.

The tree consists of three types of nodes: one root node, internal nodes and so-called leaf
nodes. The root node is normally considered an internal node, but can initially be a leaf
node – if no other nodes are present. Internal nodes consist of a predefined amount of
placeholders for keys and references to leaf nodes, but no values (nor pointers to them)

9



10 2. Background

are saved here. A leaf node contains also keys, but holds pointers to the values on the
disk and a pointer to their neighboring leaf node. All leafs are on the same level/depth of
the tree.

The view of a B+-tree is defined by its order b. This number defines the number of children
each node can have. For each of the three node types (root, internal and leaf) presenting
the tree, there is a specific maximum and minimum number of children present. Children
in this context refer to either records stored in the nodes (leaf or root node) or the amount
of keys/pointers to nodes below the current node (internal node). Please be aware, that
pointers are also counted as children. So every node, which can have b children, only
contains b− 1 keys (more in the example below). This can also be true for leaf nodes, as
the pointer to the neighboring leaf node is also counted – depending on the implementation
and visualization.

By design a root node as a leaf can have at the minimum 1 child and maximum b − 1
children. If a root node is considered an internal node, then the node can hold the minimum
of 2 children and at maximum b children. For every other node, the amount of children is
uniform. Every node must have at least d b2e and at the most b children.

A B+-tree is balanced, meaning the distance from root to leaf is the same for every node.
This is achieved by ”rebalancing” the tree on an input depending on the current keys inside
a node. We explore this in more detail with our example below.

We now look at an example of a growing B+-tree. More precise, we look at the process of
inserting values into a B+-tree. Other processes are not the focus. For example, deleting
an item is not important to our use-case, as we want to have potentially every mobile
phone number in our database.

Let us consider the following ordered input of our example: {20, 9, 8, 3, 4, 5, 6, 33, 30, 44}.
The B+-tree has the order of 4. We see in Figure 2.4 the initial state of the tree containing
the first inputs {20, 9, 8}. Please notice the ordered structure of the node.

8 9 20

Figure 2.4.: Initial B+-tree

If we then include the next input {3} into our node, the node is overfull and needs to split
into two nodes. For even numbers, the split is done exactly in the middle - like in our
example. If the order is odd, then the split depends on the implementation – if the key in
the middle is assigned to the left (existing) or right (new) node. We can see the result of
our split in Figure 2.5. We can also see, that the parenting node holds the first key of the
right node. This is done, so the new key can be compared to the current keys of the node.
If the new key is smaller, then the internal cursor moves to the left node, otherwise to the
right.

9

3 8 9 20

Figure 2.5.: In between step B+-tree

10



2.4. LMDB 11

We now include the rest of the inputs {4, 5, 6, 33, 30, 44} in Figure 2.6. We can first see,
that the root node has now 4 children. If we search a key now in this node, we need to look,
in between which of the current key-values our key fits and then go to the corresponding
child node.

5 9 30

3 4 5 6 8 9 20 30 33 44

Figure 2.6.: Final B+-tree

The previous example figures omit the pointer to actual data in the leaf nodes.

LMDB B+-trees are obviously flattened, as the structure is held by atomic arrays. An
interesting point to mention is, that LMDB doesn’t save the pointers to neighboring leafs,
but instead traverses back to the parent and just takes the pointer of the next key in the
node.

In LMDB the user also doesn’t define the order of the tree. The tree adopts dynamically
to the inputs. One can consider, that in a generic database input values and keys are not
uniform. Due to this generic nature of databases, the order (i.e. how many keys/values per
node) is depended on the atomic block size – in our case page sizes of the operating system.
In fact, LMDB’s documentation urges users of the database to align entries according to
page sizes and have the database size a multiple of the page size.

Memory-mapped files. Normally when opening a file within a program, we use so-called
file descriptors to access files on disk. In C, this is done with the function fopen. This a
wrapper provided by some libraries to actually call the system call open, handing further
computation over to the Operating System (OS) until the file descriptor is passed to the
running program.

In contrast to this approach, OSs also offer so-called memory-mapped files. Instead of
handling file descriptors, the OS maps the entire file into the virtual memory space.

This used to be a rather limiting factor, as for 32 bit architectures, the maximum size
of those files is limited to 4 GiB. In recent years, 64-bit architectures have become the
dominating architectures. Nonetheless, most of those Instruction Set Architecture (ISA)s
implement only a 48 bit wide address space, this still allows memory-mapped files to hold
enough space for most database use-cases – around 128 TB [37].

The most beneficial factor of using memory-mapped files is the lack of system calls usage.
While system calls are a crucial construct in OS to userland relation, system calls are
costly in terms of computation time. By limiting the use of such functions like open,
memory-mapped files achieve faster read and writes on large files.

Some drawbacks are, that memory is handled in page-sized chunks. So if the file is not
aligned to OS’s page size, some space is wasted. Also page faults can occur, in which
case the OS needs to write the file to memory, resulting in further I/O penalty. Memory-
mapped files also require the presence of a memory management unit (MMU), which is
not given on every piece of hardware.

Some of those drawbacks are handled internally by LMDB. For instance, LMDB tries to
align the database and data entries to the page size of the OS. Also LMDB inserts new
data without overwriting or moving existing data on the disk. Hashes Append-only design.

11



12 2. Background

As the name indicates, this database design dictates to only append new data – in fact
generating an immutable data structure. This design allows to keep record of a stream of
input events, without the need to implement explicitly more complex principals (i.e. data
integrity).

While this is used in some applications (blockchain, sensor data, some databases), LMDB
doesn’t follow this design entirely. By using the append-only design, the database would
necessarily balloon over time.

In order to keep the size of the database in check, LMDB actually deletes entries from its
database. At first, this would lead to a fragmentation of data. One solution adapted by
other implementations is to move data into the emptied space and recalculate the entire
tree, which is very costly. Instead, LMDB implements a second B+-tree to keep track of
those deleted data pages. If – and when – new records are added, LMDB uses those free
pages to save the new records.

We see in Figure 2.7, how the old root with its updated entries F and G still exists. In
an append-only design, this will eventually fill up the space. We can see LMDB’s solution
in Figure 2.8, where one tree is keeping track of unused pages, while the other reflects the
current tree.

New

B A C D

Old

E F G H

Figure 2.7.: Appended version of B+-tree

Current

B A C D

Keep Track

E F G H

Figure 2.8.: Update version of B+-tree

Copy-on-write (COW). COW is a technique to manage resources, in our specific case the
memory-mapped file. While other resource management techniques rely on some complex
structure like multiple mutexes, COW only copies data segments once a write occurred.

For example, LMDB allows concurrent reads on the database. The amount of readers is
not limited by the design of LMDB (i.e. locks), but other factor (bottlenecks like RAM,
number of processes, etc.). While readers can create a transaction to read data, only one
writer is allowed.

Even during a write transaction, readers’ transactions are completed on a valid database
before the write occurs due to the writer’s COW. This guarantees data integrity and allows
simultaneous transactions by readers.

Once the write is done, the readers shared memory is updated to the new tree – if no
transaction is currently open. This is done by the underlying OS, as memory-mapped files
are handled by it. The consistency is guaranteed by the append-only design – no actual
data is overwritten.

12



2.5. Rainbow Tables 13

LMDB’s COW design has one major drawback. Once multiple readers have opened several
pending transactions without closing them, the database is in an only-append frenzy. The
older pending transactions need to have an old view of the tree, so LMDB can’t overwrite
newly deleted data. As a result, the space is eaten up, until transactions are closed and
unused pages can be reused by LMDB’s double tree design.

Multiversion concurrency control (MVCC). As mentioned above, LMDB allows users of
the database to scale the number of readers linear, while the write-transactions are seri-
alized. This means, that multiple programs can read the database concurrently, but only
one write is done at a specific point in time.

In general, MVCC allows the database to hold multiple versions of a database. LMDB
keeps therefore track, what data needs to be kept for every open transaction. This is done
in LMDB by the concepts discussed before.

In LMDB the structure is kept in memory using a memory-mapped file. This type of
shared memory is handled by the OS. While multiple transactions are open, the append-
only design and COW allow to write to the database without changing the updated memory
pages. Therefore keeping multiple versions of a database ”alive”.

2.5. Rainbow Tables

The idea of rainbow tables was published in 2003 as an optimization of previous work [19].
The basic concept of rainbow tables relies on the fact, that hash functions normally don’t
change. As an example, one can look at the handling of passwords in legacy operating
systems like Windows 95, where passwords on every machine are hashed in the same
manner. In other words, if two different users have the same password, the calculated
hashes are identical on both machines. With that knowledge an attacker can precompute
hashes with various password candidates as inputs and share those tables with others to
facilitate inversion of stolen hashes. The resulting database can be very large though, and
rainbow tables is a technique to reduce the storage requirements at the cost of additional
computations.

Rainbow tables try to minimize the needed space by chaining hashes together. This is
done by using the concept of hash chains [38] with further optimizations. The hash chain
is a sequence of hash values produced by alternately applying two functions. One is the
hash-function, that is being attacked. The other one is a so-called reduction function, that
is designed to map a hash back to the character space of potential passwords.

Now let H be a hash function, which produces a 32-bit digest. Let R be a reduction
function, which maps hex-values to 8 digits. As input for the hash function, we use the
same charset as the R’s output. We can then build a chain that looks like the Figure 2.2.

00000000 −→
H

000FF1CE −→
R

12345678 −→
H

CAFED00D −→
R

13141516 (2.2)

We only save the starting value 00000000 and the end 13141516. So, if we are trying to
reverse the hash CAFED00D, we first reduce it and look it up. If we find a match, we can
just recompute the chain and find out, that 12345678 was the input to generate CAFED00D

with H. If we don’t find a match, we start traversing the chain back, by applying again
first R, then H, then R again. If there is still no match, we add another cycle of reducing
and hashing, depending on the length of each chain. This is done until a match is found
or the table of hash chains is exhausted.

13



14 2. Background

There are some pitfalls to look out for. Naturally we can’t alter the chosen hash function,
but the reduction function(s) need to be carefully crafted. If we look at our example in
Figure 2.2, we can extend this table further with the Figure 2.3.

12121212 −→
H

DABBAD00 −→
R

12344321 −→
H

BADDCAFE −→
R

13141516 (2.3)

We can see in Figure 2.3, that the last value is the same as in Figure 2.2. In other words,
R produces the same output with the inputs BADDCAFE and CAFED00D. So if we search
for CAFED00D like before, we would hit a match in the chain in Figure 2.3. But we can’t
reverse the hash, as CAFED00D is not represented in this chain. This is called a false alarm
and is just skipped over.

Another problem arises with false alarms. While the attacker might not find the inverse
of the hash in a row that matches, the inverse can still exist in other rows. But if we look
at Figure 2.4, we can see that the chains may collide and merge.

. . . 00000000 −→
H

000FF1CE −→
R

12345678 −→
H

CAFED00D

. . . 12121212 −→
H

DABBAD00 −→
R

12344321 −→
H

BADDCAFE

 −→R 13141516 −→
H

. . . (2.4)

Those collisions are very problematic, as they cost an attacker computational time, space
and lookup-time. In our example the collision seems to happen at the same position of
the chain, but that is ordinarily not the case. Most likely the beginnings and endings (the
only things saved) of overlapping chains will be different, because the collision of the two
chains is most likely on different positions in their respective chain – as the chains have
different starts. Thus the collision can’t be easily identified by looking through the table.

Mitigating those collisions is, what Rainbow Tables [19] improved over the hash chains.
The difference to simple hash chains is the introduction of different reductions functions
per ”column”. In fact, by defining the length of each chain as k ∈ N, we also need to have
k reduction functions, i.e. R1 → Rk. This change doesn’t stop reduction functions to map
to the same output. We can consider the following two cases. First, the collision happens
in the same column, so Ri = Ri where i := 1 . . . k in both colliding chains. In that case
the last reduction with Rk constructs the same output, which is saved in the table. We
can just scan the rainbow table for double entries and generate new chains. Second, if the
collision is at the position Ri 6= Ri where i := 1 . . . k, the following reduction functions are
also not identical and produce eventually different outputs. As stated before, collisions
still happen, but are greatly reduced and lead to overlaps not entire merges.

While the basic construction of Rainbow Tables is similar to hash chains, we need to be
careful doing the lookup. Instead of just altering R and H, we need to follow the order of
different Rs. Let’s look at the similar Figure 2.5 as before, but with different Rs.

00000000 −→
H

000FF1CE −−→
R1

12345678 −→
H

CAFED00D −−→
R2

13141516 (2.5)

Let’s search for 000FF1CE. We start by applying R2 to our hash. This for example results
in 12341234, which is not in the ”table”. After that we use R1, then H and last R2. As
a result, we have a match with the last value, which is saved in the table. From then we
start recomputing the chain, until we have the inverse to 000FF1CE.

To put this into more formal terms. We start searching by applying the last reduction
function Rk. If we don’t have a hit, we start with the previous reduction Rk−1, then
applying H and Rk. We retrace the chain, until we have a hit, or the length k is exhausted.

14



2.6. Rainbow Crack 15

As mentioned before, this kind of attack is based on the notion, that the hash function
doesn’t change. In other use cases, like passwords, this attack vector is made infeasible by
applying a so-called salt with the hashing algorithm. With salt inclusion in the hashing
process, even if two passwords are the same, the calculated hashes are different due to the
salt. So, an attacker would need to calculate a Rainbow Table for every possible salt. In
reality, salting hashes made using Rainbow Tables impractical for real-world attacks on
hashes.

However, salted hashes are ill-suitable for the use case of Contact Discovery. If two users
with the same phone number of a mutual friend try to find this friend, the service can’t
match them by using different digests of that phone number. Hence, it becomes possible
to apply Rainbow Tables as an attacking technique in this case.

2.6. Rainbow Crack

In this section, we describe the usage of a modified RainbowCrack-NG tool [39]. The orig-
inal tool is an implementation of Phillipe Oeschlein’s Rainbow Tables [19] and is modified
from version 1.2. for the hash reversal of phone numbers.

The implementation of the modified Rainbow Crack was done by Daniel Schindler in his
practicum [18]. He programmed a novel reduction function specifically targeting mobile
phone number reversal as part of [2]. The reduction function was designed in such a
way, that calculated hash digests are reduced back to a valid phone number. With this
optimization they were able to speed up the performance and lower the size of the table
by a magnitude – compared to a straight forward use of Rainbow Crack.

Generation of Rainbow Table. Rainbow Crack is designed in such a way, that this process
is separated into two distinct tools. One is called rtgen, which generates the rainbow table.
The tool is called with six arguments:

1. Hash Algorithm (i.e. SHA1)

2. Index of Rainbow Table

3. Chain length

4. Chain count

5. Number prefix

6. Output file

./rtgen sha1 1 1000 1000000 DE_mobile out

1. 2. 3. 4. 5. 6.

Listing 2.1: Example rtgen call

The hashing algorithm depends on the targeted application. In the case of Contact Discov-
ery, we focus on the SHA-family, more specifically SHA1. The index of the rainbow talbe
is used, in order to generate multiple tables targeting the same input space. This means,
we can and need to generate multiple tables targeting the same input. The chain length
defines the amount of alterations between hash function and reduction function. The chain
count allows us to control the number of entries per table. With the number prefix, we can
target specific phone numbers of countries, or generate tables against world-wide mobile
phone numbers. The output file just defines the name of our output directory.

While we define the initial name of our output, Rainbow Crack adds all the information
into the file name. An example is shown in the Listing 2.2. Here, all the arguments from
Listing 2.1 are directly displayed.
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16 2. Background

./out/sha1_1_1000x1000000_DE_mobile.rt

Listing 2.2: Example file name

The other tool introduced by Rainbow Crack is called rtsort. To sort the Rainbow Table
with this tool, we only need to hand over the file-name of our generated rainbow tables.
This is simply done with the command in Listing 2.3.

./ rtsort ./out/sha1_1_1000x1000000_DE_mobile.rt

Listing 2.3: Example rtsort call

Rainbow Table. In the case of Rainbow Crack, this component of the cracking process is
just a file. The interesting part here is, that only the index of the clear-text is saved, but
not the clear-text itself. The index has the size of a 64 bit integer, so Rainbow Crack saves
only 128 bits per chain.

However, we not only use one file, but generate multiple tables with different indexes over
the same input-space. This is done to accommodate for collisions. So, by generating
multiple tables, the probability increases, that we cover the entire included phone number
space.

Cracking. To crack hash digests we simply use the tool rcrack. This allows us to specify
a table and the Search Request. The request can be interpreted in three different ways by
Rainbow Crack:

• -h

• -l hash list file

• -f pwdump file

The first flag h allows the attacker to search for one raw hash. This can be useful for us,
but generally we need a way to search in bulk. This is facilitated by the flag l, where an
attacker can specify a hash digest list. In this list, all digests are just separated by a new
line. The last flag f is specifically to a tool called Lanmanager. Here, an attacker can
directly include a password-dump file from that software.

All in all, we mostly use the l flag to search bulk requests. As mentioned before, in the
context of Contact Discovery an attacker or malicious provider gains access to multiple
hash digests of a victim/user. It’s generally only processed as a bulk.

We see in Listing 2.4 an example call of rcrack. Here we search our previously generated
rainbow table for the digests in the referred file. All other definitions are read directly
from the file name of the table. In our case rcrack parses the name and gets the hash
algorithm, the index, chain length, chain count and the used prefixes. Especially the last
part is important, as the reduction function is based on the predefined prefixes used to
generate the table.

./ rcrack ./out/sha1_1_1000x1000000_DE_mobile.rt -l ./ digests

Listing 2.4: Example rcrack call

For the random generation of a Search Request, we use the provided tool called hashgen.
It uses the number prefixes to calculate specific digests based on phone number country
codes. We can see in Listing 2.5 an example call. The first argument is the number of
digests. The second is the number space based on the number prefix. The last part only
saves the digests into a file called hashes DE mobile.

./ hashgen 10000 DE_mobile > hashes_DE_mobile

Listing 2.5: Example hashgen call
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Contact Discovery is an essential part of mobile messengers. It allows users to discover,
who among user’s contacts are already registered with those services, or to invite those who
aren’t. In order for a service to distinguish registered and non-registered users, the service
needs to compare the contact list of the user with an entire database of all registered users.
This implies, that either user needs to send all the contacts to the messenger service, or
vise versa. Usually, the former approach is used since it is more efficient (users have fewer
contacts) and since in this way the service provider does not reveal information about all
the registered users. Once all contacts are uploaded the service compares the two lists and
sends back the user an intersection between registered users and contact’s users.

This basic idea for Contact Discovery is used by virtually every major mobile messenger
app, including WhatsApp, Signal and Telegram. At first glance, the solution is pretty
straight forward, but implies a major privacy concern: The service providers get the
knowledge about all the users’ contacts – including those who aren’t registered with the
service. This fact enables the providers to generate a social graphs of users, including
people, who are not registered.

While those graphs are intrinsic to all types of social networks, there is a general push by
mobile messengers to provide a more privacy oriented design. In the following, we discuss
privacy-preserving measures employed by eight mobile messengers: Telegram, WhatsApp,
Snapchat, Threema, WeChat, Viber, Wire and Signal.

3.1. Telegram

Telegram was released in 2014 and aims to provide a cloud-based messenger service. As
of April 2020 Telegram has over 400 million users worldwide [40]. Telegram uses phone
numbers as the primary source of registration of an account, while allowing the use of
multiple devices with one account.

Phone numbers are seen as personally identifiable information in most countries, so Tele-
gram can’t be considered anonymous due to their need for registration by phone number.
Most users try to gain already anonymous phone numbers (i.e. burners) to facilitate
anonymity within Telegram.

Telegram uses its own cryptographic protocol called MTProto. This decision is widely
criticized as it is an unvetted protocol, which could potentially include undiscovered flaws.
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MTProto uses AES as symmetric encryption and a Diffie–Hellman key exchange to enable
encryption between Telegram’s servers and clients.

Open Source. Telegram offers a public API to access their service, so most of the official
client-side apps are open-source and can be reviewed for malicious behavior. While Tele-
gram promised to eventually release the source-code of their server-side architecture, up
to date there is no official source of information to identify, what is running and stored on
their servers.

Anonymization. We have to concentrate on the third-party clients and Telegram’s official
API to evaluate their privacy methods in Contact Discovery. As defined in Telegram’s
official documentation of their API [41], a list of contacts is sent to the server without any
obfuscation of phone numbers, names or other data.

We can also see a direct transfer of contact data to Telegram’s server in third-party clients
[42]. This is a privacy concern of every user and even worse, those contact data are sent
to Telegram’s server without their permission.

Identification. As mentioned before, Telegram uses solely phone numbers for the identifica-
tion of accounts. So most Contact Discovery is also done via phone numbers. Nonetheless,
Telegram allows user to define a username, which allows other users to search by user-
names.

3.2. WhatsApp

WhatsApp is a popular messenger app and was initially released in 2009. By end of 2013,
WhatsApp reached over 400 million monthly users [43]. In February of 2014 Facebook
acquired WhatsApp and continued its services [44]. As of February 2020, WhatsApp now
has over two billion users world-wide [45] and over five billion installs from Google Play
Store [46] – making the service the most popular messenger world-wide.

Open Source. Unlike Telegram, WhatsApp offers no source code neither for its client nor
servers. This makes it generally unclear, what measures are taken by WhatsApp to ensure
the privacy and security of its users.

There are some efforts to reverse engineer WhatApp to build open clients [47] or to ma-
nipulate chats [48]. While those efforts exclusively focus on the client-side of things, they
provide insight to the actual data sent to WhatsApp – thereby validating some of their
claims.

Anonymization. In contrast to Telegram, WhatsApp mitigates the privacy problem of
Contact Discovery by hashing all phone numbers before sending them to their servers [49].
While storing hashed phone numbers seems at first sufficient, it doesn’t provide much more
privacy for the user.

In an anecdotal story [50], WhatsApp allegedly shared social graph information with its
parent company Facebook. This resulted in Facebook recommending patients of a psychi-
atrist to other patients of hers. This story can even be true, if phone numbers are stored
in a hashed form. One can still infer social contacts by comparing mutual hashes. Those
mutual contacts allow then to link two persons, without them actively using this service.

So the last apparent privacy gain of hashing phone numbers is, that WhatsApp doesn’t
store the actual numbers, but only has a non-identifiable hash. As we will further discuss
in this thesis, even this gain is negligible, since we show it is possible to efficiently reverse
hashes based on mobile phone numbers.

Identification. WhatsApp bases its identification mechanism solely on mobile phone num-
bers. They even omit devices, that are not attached to a mobile phone number, such as
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iPads or iPods [51]. Nonetheless, they offer a web presence, which can be used by scanning
a QR-Code from the WhatsApp app [1] – indirectly still relying on phone numbers.

3.3. Snapchat

Identical to WhatsApp, Snapchat’s parent company is Facebook, but uses usernames to
identify different users. Snapchat is a social media platform for sharing short-lived photos,
reaching over 229 million users [52] in 2020. The service also allows to exchange messages
with other users – making it a mobile messenger.

Open Source. Snapchat hasn’t publicized their source-code like WhatsApp. Similar to
other closed-source services in this chapter, Snapchat offers an API [53]. While APIs
generally allow users to extend the functionality of the app, they don’t offer much insight
into Snapchat.

Anonymization. As part of their Contact Discovery Snapchat offers users the possibility to
upload their contact lists to find their friends on the platform. In their privacy policy [54]
they clearly state to use contact lists of other users to infer more information about those
users. Unfortunately Snapchat doesn’t spell out, how the contact lists are transmitted or
in what capacity these lists are stored and shared with other Facebook companies.

Identification. Snapchat identifies their users by usernames. The registration steps only
require to sate a username and password. To regain access to an account, Snapchat offers
to also register an email address or a mobile phone number [55].

3.4. Threema

Threema [10], another messenger app, shows, that one can take a vastly different approach.
This app removes the necessity to share personal information and relies on eight digit IDs
to have an unique identifier for every user. Threema is proprietary, so similar to WhatsApp
we can’t validate their source code.

While most other apps on this list are freeware, Threema costs 3.99e and has over one
million downloads in the Google Play Store [56]. According to their press release, Threema
has over eight million users as of January 2020 [57]. One major jump in user numbers
was seen after Facebook took over WhatsApp – indicating a valid user-base in demand for
private mobile messengers.

Open Source. Threema doesn’t share its source code, neither for clients nor servers. The
authors instead offer a whitepaper explaining their high-level architecture [58]. In this
document the authors describe different deployed techniques to ensure the users safety
and privacy. Clearly, this doesn’t replace an open-source approach, but offers some more
insight how the service is build.

In addition, some researchers reverse engineered Threema’s API [59] and publicized an
open-source implementation of the Threema protocol in Go [60]. The author gave also a
talk [61], allowing the public to have some minimal overview of the actual implementation
of Threema.

Anonymization. Threema falls here victim to usablity, despite their alternative approach.
The application offers an opt-in for users to register their contact data (i.e. phone number
or email address). Using this discovery model, Threema also relies on hashing those values
and sending them for comparison to their servers [62]. Otherwise, the users would need to
share their Threema IDs with other users using an out-of-band communication channel.

Identification. As mentioned before, Threema allows users to only use their eight digits ID.
Otherwise the application allows users to discover contacts by their email address and/or
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phone number. This form of discovery depends solely on the permission of the users.
Nonetheless, Threema also processes hashed phone numbers of non-registered users, which
inherently depends on trusting Threema due to their closed-source code.

3.5. WeChat

In 2011 WeChat was released by Tencent Holdings Ltd. By May 2018 the app gained
over a billion active users [63] and is mostly popular in China. WeChat and its parent
company Tencent operate under Chinese law [64], which implies by itself some privacy
related concerns [65].

Open Source. WeChat is generally not open-source. However, the messenger offers a
public API [66], which can be used to build third party tools [67]. Still – similarly to other
closed-source messenger in this chapter – we can only speculate how the vast amount of
data is further used to build wide-reaching social graphs.

Anonymization. Further WeChat collects the users contact list automatically [68] and ap-
parently saves everything without anonymizing third-parties in those lists [69]. Therefore
accessing personally identifiable information such as phone numbers of people, who are
not using their services in cleartext.

Identification. WeChat handles identification similar to WhatsApp. The main focus is on
mobile phone numbers, only allowing registration and identification with a valid number.
They also provide a web-client, which can be accessed by scanning a QR-Code from their
phone app [11] – thereby guaranteeing a valid verification per mobile phone number took
place.

3.6. Viber

Another popular mobile messenger app Viber [12] was initially released in 2010. The
messenger was acquired by the Japanese company Rakuten [70] [71]. Viber is mostly
popular in Eastern Europe, reaching over 100 million users in Russia by 2018 and becoming
the most downloaded messaging app in Ukraine by 2016 [72]. The service registered over
a billion users world-wide in 2018 [73].

After some security concerns Viber copied Signal’s encryption protocol, to boost their
own privacy and security policies [74]. But the service applied no new privacy protocols
in regard to their Contact Discovery via contact lists.

Open Source. Viber is not open-source. Similar to others in this chapter, the messenger
offers an REST API for developers [75] – for example to create bots.

Anonymization. Viber automatically uploads the entire contact list of theirs users [76].
Even worse, it appears those data is not in any way anonymized and saved without any
time limit [77]. This includes data of person, who are not registered nor using this services.

Identification. Identical to previously mentioned messengers, Viber uses phone numbers as
the sole identifier. Though the service offers desktop clients, the users need to unlock them
with the mobile app [78] – consequently still relying on personally identifiable information.

3.7. Wire

The privacy-focused messenger app Wire [13] was first released in end of 2014. A part
of the initial team were previously involved with Skype [79] [80] – another messenger
app. This expertise allowed the authors to focus on a security-by-design approach. In
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this context they released two whitepapers, discussing the security [81] and privacy [82]
of their application. In both papers, the authors discuss the high-level architecture of
their application. For example, the authors detail their protocol for Contact Discovery or
end-to-end encryption of clients.

While the current focus of Wire is to be a collaboration tool for businesses, they offer
Wire as a personal messenger app. Their app has currently over a million downloads in
the Google Play Store [83] – omitting Open Source builds and iOS versions of the client.

Open Source. Wire released their client source code under GPLv3 in 2016 [84]. A year
later the server source code was also published on GitHub in 2017 [85]. They offer different
target platforms for their client. Most prominently, they offer source code to iOS, Android,
Desktop (based on Electron [86]) and Web clients – allowing users to inspect, alter and
compile their code.

Anonymization. Similarly to other mobile messenger apps, Wire allows users to share
their contact list with the service. After the user grants Wire access, the app hashes
each phone number and then shares only the hashes with Wire’s servers according to
their privacy whitepaper [82]. Wire uses SHA-256 as the hashing algorithm to anonymize
phone numbers. This approach is similar to Threema and relies on either exchanging
app-id out-of-band or sending the entire contact list.

Identification. Wire allows the user to register an account, either by using an email address
or a phone number. Both methods are only used to force a personal identification. Once
the registration is complete, users can mostly be found via username or Contact Discovery
based on the contact list.

3.8. Signal

In a sharp contrast to the previously mentioned messenger apps, Signal actively focuses
on the issue of private Contact Discovery and pushes for new solutions in this field. Signal
itself is a merger of two other systems called TextSecure and RedPhone and was initially
released under this name in 2014.

As a step to ensure trust in the app, the source code for Signal’s servers and clients was
released, allowing the community to ensure the validity of their privacy and security claims.
Another important part of Signal, is its open source end-to-end encryption scheme called
Signal Protocol. This protocol is based on several well-known cryptographic primitives
and algorithms and was formally proven sound in 2016 [87].

Open Source. Signal’s predecessors TextSecure and RedPhone were released as open-
source in 2011 and 2012 respectively. Signal itself was conceptualized as open-source from
its beginnings. Another important release is the Signal Protocol, which is also publicly
available and implemented by several other messengers, like WhatsApp, Skype and Face-
book Messenger.

Anonymization. Signal initially aimed to provide privacy of thrid-party contacts by hash-
ing all phone numbers with a truncated SHA1 (to save space) [88]. But this is not sufficient
to guarantee privacy of those contacts, as we show in this thesis. Since then the service
has published a private Contact Discovery based on Intel SGX [89] to guarantee private
processing of contacts.

Identification. The main criticism of Signal is focused on the lack of diverse identification.
Signal allows only to use the mobile phone number to register and identify to their service.
As we described with the other messengers, a mobile phone number is considered personal
identifiable information. Using such information is seen problematic by privacy advocates.
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3.9. Attacker Model

In our case we focus on an attacker, who has access to the hashes of a service provider.
We discuss potential attack vectors, i.e. how this access can be gained. The goals of the
attacker can also be manifold. We describe several goals, but not all in this section.

Attacked data. The attacked data are hashed phone numbers. We focus on not just the
user database, but also all data given to the service within the Contact Discovery process.
This means, the attacker has the data of all users plus their phone books.

Attack vectors. An attacker can gain access through different methods. For one the actual
service provider can snoop this information, even though they provide open source access.
For another, the attacker can be an insider, who has some kind of access to the data – i.e.
an administrator or developer. And last, an attacker can gain through compromise. This
attacker can be a state-actor, ISP or a criminal organization.

Attack goals. The fundamental goal of all potential attackers is to reverse hash digests of
phone numbers. The gained phone numbers can then be used in different scenarios. One
can be to build extensive social graphs of users and using their phone numbers to identify
parts of their social graph. This can be done by looking up phone numbers through
different online services, like Facebook or phone books. Another scenario to sell phone
numbers to telemarketers, or to use them in part of an identify theft.

3.10. Discussion

All in all every messenger app listed in this chapter uses at least partly mobile phone
numbers to pair its users. We acknowledge that this form of Contact Discovery is a
fundamental premise of these services, but – except for Signal, WhatsApp, Wire and
Threema – no other service is even trying to mitigate this problem or to potentially solve
it.

Another aspect is, that most services don’t provide an open environment. Closed-source
software can only offer limited privacy guarantees. A proprietary services can focus on
the privacy aspects of their applications, but a user can’t ensure, that those aspects are
implemented in the closed-source software.

More crucially, only a few services allow to register and be identified without a mobile
phone number. This is mostly done to provide a convenient way to find contacts on the
service. While this is a user friendly feature, a privacy focused app like Signal forces its
users to be identified by the mobile phone number.

By providing another identification method, a service can mitigate the privacy issues of
Contact Discovery based on phone numbers. One could also define specific contacts to be
discovered by the service. This would limit the exposure of user not registered with the
service.

Millions, if not billions, of contacts are shared with those services, most crucially of people,
who are not using those apps or agreeing with the company’s processing of their personal
data. We provide an overview of the different aspects summarized in Table 3.1.
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Table 3.1.: App comparison

Logo Name Open source Anonymizes Other identification

Telegram [90]
Server 7

Clients 3
7 7

WhatsApp [91] 7 3 7

Snapchat [92] 7 7 3

Threema [93] 7 3 3

WeChat [94] 7 7 7

Viber [95] 7 7 7

Wire [96] 3 3 3

Signal [97] 3 3 7
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4. Related Work

In this thesis we have to consider multiple kinds of related work. For one, we look at the
fundamental goal of Contact Discovery. In that, users try to find their friends by sharing
their contact list with a provider like WhatsApp. This can be seen as an intersection of two
sets – contacts of users and database of providers. Current research solves this problem
by so-called PSI. We discuss related work of PSI in Section 4.1 and offer an overview.

For the other, we offer an overview of different techniques of hash reversal. In contrast to
PSI, hash reversal centers around techniques against currently employed solutions men-
tioned in Chapter 3. In this context we discuss related work to brute-forcing hashes,
rainbow tables and cryptoanalysis of SHA-Family.

Another approach to get the user-base of a service are so-called enumeration attacks.
These attacks target publicly available information like APIs or username tests in order
to enumerate lists by issuing multiple queries.

4.1. Private Set Intersection

PSI focuses on the problem of exchanging information. Imagine we have two parties, which
want to compare their sets of items with each other without revealing all items of those
sets. The only information given to the other party should be the result of the intersection
to guarantee privacy. One can employ different techniques of cryptography to build a
protocol to solve this privacy problem.

Generally PSI can be achieved in a naive way. If both parties just hash their items of the
sets and compare the digests, both mutually only reveal the items of the intersection and
preserve their privacy. Obviously the security of hashes heavily depends on the entropy
of the input. As discussed in this thesis, the entropy of phone numbers is insufficient to
guarantee privacy with this naive approach.

More complex PSI protocols are based on public keys (Diffie-Hellman, [98]), circuits ([99]),
Oblivious Transfer (OT) ([100],[101]) or by introducing a trusted third party ([102]). Most
of them make some kind of trade-off between computational and networking overhead or
underpin trusted parts. Those limitations make them difficult to deploy in heavy-duty
scenarios like WhatsApp or Signal.

There are multiple PSI protocols defined and suggested for different scenarios. Like the
example above, both parties can hold a similarly sized set each, which we will categorize as
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balanced PSI. If those sets are different sizes, we categorize those protocols into unbalanced
PSI. After discussing those different approaches, we discuss a state-of-the-art technique
solving our problem of Contact Discovery with some caveats.

Balanced PSI. In [103] the authors focus on OT-based PSI. While they achieve better
performance than previous work, they limit the benchmark for sets lower than a million
items. Also the authors only consider items of set with the size of four ASCII characters –
a phone number can consist of maximal 15. Both limitations are exceeded by WhatsApp
and Signal, with both having more than ten million users.

While more recent research like [104] offer better performance results, their test-set sizes
are only around one million entries (220). Another limiting factor is the required traffic
volume between the two parties. For bigger sets, the two parties need to communicate
more often and generating.

Another factor to consider is, that balanced PSI aims to solve set intersection on two
similarly sized sets. In our scenario we work with a user and a provider (i.e. Signal). The
provider has clearly a more extensive set than the user. Balanced protocols therefore will
offer poor performance with the problem of Contact Discovery.

Unbalanced PSI. In contrast to balanced PSI, unbalanced protocols aim to optimize for
Contact Discovery on mobile applications. For example the authors of [7] define the size of
item in the sets with 128 bits. This reflects an input of 16 ASCII-Characters, which fits the
size of phone numbers. Also the authors generally assume a large set of the provider with
up to 230 items. However, the protocol needs a considerable amount of communication,
which was optimized by later work.

In [105] and [106] the authors base their PSI protocol on homomorphic encryption. The
principal idea is similar to our naive approach of hashing the items of the sets – but instead
of hashes the authors encrypt the items. The protocol allows for a sufficient size of items,
while also having a low communication overhead. Nonetheless, by encrypting the items
this protocol has a substantial computational overhead.

State-of-the-art. The currently best PSI protocol for our scenario is the so-called ECC-
NR-PSI [6] – also based on OT. This approach allows for a secure intersection of sets,
without resulting in unreasonable computational performance on current smart phones.
The authors implemented ECC-NR-PSI and ran tests with up to 228 items in the set
from the provider (i.e. WhatsApp). This is roughly the magnitude of users of Telegram.
However, the protocol needs to transmit 1.07 GiB to every user requesting a new Contact
Discovery. Obviously this limitation hinders an adaption of the protocol by current mobile
messengers.

Summary. In conclusion, PSI protocols provide promising features, but are not yet ap-
plicable to large-scaled messengers like WhatsApp or Signal. While different protocols
provide different trade-offs in respect to performance, none of the mentioned protocols can
currently handle a real-world application like WhatsApp or Signal.

4.2. Enumeration Attacks

Enumeration attack is a technique to gain information by accessing specific interfaces. A
well-known example of this attack are IP scanners. An attacker can try to access every
possible IP address. Using only this access an attacker can infer which IPs are up, which
ports are open and even a corresponding domain with name and address of the owner.

These kinds of attacks can also be transferred to mobile messenger apps and social net-
works. In contrast to the work in this thesis, enumeration attacks don’t rely on another
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breach or access to more data – like hashes. This technique uses only the Contact Discovery
mechanism of providers.

Like every legitimate user, the attacker can request a Contact Discovery with their current
contact list. Once the service sends back the intersection, the attacker can change her
contact list and repeat the process. If there are no mitigations in place, the attacker can
so retrieve all users of that service.

For example the authors in [107] were able to enumerate contacts of KakaoTalk. They
used KakaoTalk’s Contact Discovery to retrieve around 50.000 users by testing for 100.000
phone numbers. The service didn’t use any noticeable mitigation like rate limits of requests,
anomaly detection or a more restrictive model.

In another attack, researchers were able to enumerate around 25.000 facebook profiles from
phone numbers [108]. The authors leveraged the fact, that anybody can search a profile by
its number. While some countermeasures like anomaly detection were taken by facebook,
the authors were able to bypass those by simply using multiple accounts.

There was also an enumeration attack on WhatsApp [109]. The authors were able to go
through over three million phone numbers, without any noticeable limitation. Similarly to
the previous attack on KakaoTalk, the attackers just changed their contact list and kicked
off the Contact Discovery.

Some tools to enumerate contacts on WhatsApp are publicly available [110] [111]. While
those tools may need to adapt to certain changes done by WhatsApp from time to time,
they are still viable information gathering tools.

We also used an enumeration attack against WhatsApp [2]. Because WhatsApp imple-
mented new mitigation techniques, we needed to first test for limitations and then secondly
enumerate within those limitations. We were able to crawl 10% of all US phone numbers
during 34 days and 25 accounts.

In general, enumeration attacks seem always in some way feasible. They repeatably misuse
benign functions, which are central to the service. For some social networks the attack
vector could be a simple search, which allows some information retrieval. Mostly those
services block enumeration attempts by employing so-called CAPTCHAS or anomaly de-
tection.

In the context of mobile messengers, the services use anomaly detection, but also hard
limits on possible Contact Discovery requests. In some cases (i.e. Telegram) those limits
are set so low, that an enumeration isn’t leaking substantial amounts of numbers.

4.3. Hash Reversal

Hash reversal techniques are different approaches to find the preimage of a given hash
digest. This is cryptographically only possible with a neglectable probability. To make
those attacks more feasible, the attacker assumes, which input space was used to calculate
the hash digest.

Those attacks were mainly created to gain plaintext passwords from a database, where
the passwords were hashed. There are three main methods for hash reversal: Brute-force,
rainbow tables and lookup databases.

Brute-force. This approach defines an input space for the hash function based on intuition.
Then the attacker calculates every hash for this predefined space on-the-fly [15] [14]. After
that, the attack-tool compares the generated hash with the provided database of given
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hashes. If the calculated hash digest is found, the hash and its input will be saved.
Otherwise the current hash is discarded and the next hash is calculated.

Rainbow Tables. Of course the previous method takes a lot of time and resources. In
order to mitigate these drawbacks, Rainbow Tables make use of so-called hash-chains
[112]. Here the attacker precalculates hash digests based on an input space. This digest
is then reduced with a reduction function to the input space. Then the reduced input is
hashed again. This process is repeated multiple times – generating a chain of hashes. In
contrast to brute-force, the attacker saves the starting input and the last reduced hash.

This method allows the attacker to make a trade-off between the size of saved chains and
the overhead of retracing the chain. In the context of passwords/databases rainbow tables
are made obsolete with the use of salts. However, in the context of hash-based Contact
Discovery rainbow tables are still applicable, because salts can’t be utilized.

Databases. Using this approach, the attacker saves every calculated hash into a database
with its input. Similar to before, the attacker first defines an input-space. Then every
possible input is generated, hashed and saved. One can then simply query this database,
once a new hash digest needs to be reversed.

In summary, all techniques mentioned above limit their input-space to make hash reversal
feasible – which is already done in our case of mobile Contact Discovery. By limiting the
input-space to only numbers, all attacks from above are useful and therefore discussed
further in this thesis.
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5. Brute-force Hashes

In this chapter we discuss our brute-force framework for the hash reversal of mobile phone
numbers. We discuss first our general architecture in order to facilitate such an attack in
Section 5.1. Then, we apply this architecture to specifically chosen tools in Sections 5.2
and 5.3.

The focus of this thesis is on reverting SHA1 hash digests in the context Contact Discovery.
This means we want to compute the input to a given hash digest. For this task, an attacker
can deploy a technique called brute-force. With this technique, the attacker calculates the
hash digests on-the-fly.

In contrast to other techniques discussed in this thesis, here the attacker only saves the
input to provided digests, not to every possible input. So, brute-forcing is a volatile
approach to reverse hashes, which needs to be redone for every other run.

The most notable two tools to brute-force different hash algorithms are: Hashcat [14] and
JTR [15]. Further, we deploy our brute-force framework on different setups for both tools,
most notably on our High Performance Cluster (HPC) of the University of Würzburg.

5.1. Architecture

In this section we discuss our general approach in order to brute-force hash digests. We
show our work-flow and architecture surrounding current software, which so-called cracks
a hash digest. Cracking in this context means, that we revert a hash digest back to its
input. This is exactly our problem of hash reversal.

We provide our general architecture in Figure 5.1. The central part of hash reversal is
done by a Cracking Unit. We need to provide two parts for that unit. One is the basic
space on which to operate. This is provided by our Mask Generation Unit. The other is
to include an actual request to reverse hash digests. Here, we provide an Hash Reversal
Unit.

Cracking Unit. Generally, such cracking software is used to brute-force different hash al-
gorithms. As brute-forcing a hash function is considered a rather computational expensive
task, cracking software depends on its user to limit the computational overhead. This is
normally done by limiting the to-be-searched input space.

The input space in this context is called charset. Charsets are defined space of specific
characters. One prominent charset is for example all lower-case letters with a length of
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Figure 5.1.: Architecture

maximum six letters. Those charsets can be defined by basically all available characters in
ASCII or Unicode – depending on the targeted software. In our application, the charset
is defined by the definition of phone numbers. So, we have at maximum 15 digits with a
leading plus sign – according to Section 2.1.

To generate those charsets, the cracking software enables the user to input some concrete
knowledge of the targeted hash digest. Either the user has some information about the
input space of the digest or the user is just guessing some limiting factors on the charset. In
those cases the cracking software allows the user to define for example complete word-lists,
masked inputs or letting the software generate some charset.

In our scenario word-lists don’t make sense, because they would entail all 118 billion
numbers. This would be limited by space again. For the other generation methods, most
of them are based on the notion of real-world passwords. In those scenarios, the attacker
tries to crack an entire password dump. The attacker would iterate through the entire
dump multiple times, thereby using already cracked passwords to infer information about
the other digests. Similar approach is not possible with the hash reversal of phone numbers.
We already know the entire possible input space. Therefore, we don’t need to infer more
information about the dump by analyzing the already cracked digests. This leaves us with
an option of using so-called masked attacks and hybrid attacks.

Masked Attacks. With masked attacks on hash algorithms the user can define prefixes
and suffixes and append them with wildcards for other specific charsets. In our case this
charset are all digits. Here, we can provide our number prefixes with the plus sign and
append them according to our findings in Section 2.1.

Hybrid Attacks. Another attack form we consider with brute-force attacks, are so-called
hybrid attacks. The hybrid attacks fuse masked attack and word-lists. The number prefixes
are classified by their variable length and then put into a corresponding word-list. So, each
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mask length has its own word-list. We execute every mask length with their corresponding
word-list in a single command.

In contrast to other hash reversal methods like databases in Chapter 6 and rainbow tables
in Section 2.5, brute-forcing software generally does not save results of its calculations.
For example, if we calculate a digest, which is not being searched, that result is discarded.
So, if we re-run the cracking software and now search for this digest, we need to traverse
the entire character space again to reverse this specific digest.

Further, the underlying cracking software doesn’t explicitly save the results. The software
outputs the reversed digests, however, its internal state only keeps track of results to some
extent. For example, when a user tries to reverse a hash, that was already done, the
cracking software can directly reverse the hash using an internal database. While this is a
convenient feature, we do not rely on this and perform fresh searches.

Another important factor of the cracking software is the support of the targeted hash
function – and to what extent. We focus on the SHA-family, more specifically SHA1,
because mobile messenger are basing their anonymization on SHA1. As SHA1 is an older
algorithm and is also frequently used to hash passwords, this specific algorithm is broadly
supported. Nonetheless, to achieve the optimum reversal rate, we also require the cracking
software to utilize the GPU to crack SHA1 hash digests.

Mask Generation Unit. This unit preprocesses our mobile phone number data-set. The
set contains all possible prefixes of phone numbers spanning all countries. Nonetheless, we
need to process the set in order to be able to include them into our Cracking Unit. The
applied restrictions on the phone number set are described in Section 2.1.

While the set includes the prefixes and their possible length range, we need to map this to
the concept of mask attacks. We generally don’t define masks as a range, but as prefixes
with a specific number of wildcards. So we divide the ranges into a set of possible number
length. All numbers with the same amount of wildcards are then merged into a cumulative
list – each as a new line.

Once the lists are created, the corresponding number of wildcards are added to the end of
each line. Thereby creating our mask-lists, which we can use for the Cracking Unit. Those
files are purely text-based.

This is similarly to our hybrid attack. There we put prefixes with the same mask-length
into separated files. Those files are then used in combination with its specific mask.
The specific mask and corresponding file are then used together in a single command.
In contrast to masked attacks, we need to run the Cracking Unit for each mask-length
individually.

This process needs to be done only once. The results can be used generally for every hash
reversal process using the architecture depicted in Figure 5.1. However, these lists define
our search space inside the Cracking Unit. They are also responsible for the duration of
the hash reversal and the eventual success rate.

Hash Reversal Unit. In order to reverse the hash digests back to phone numbers, we also
need to process possible Search Requests. The requests contain multiple hash digests, that
need to be reversed.

For the Cracking Unit we need to put all digests into a text-file, split by a line break. This
text-file can then be directly used as an input for the Cracking Unit.

The Search Requests themselves are generated by us. They contain values randomly chosen
from all possible mobile phone numbers eligible for messenger services, such as WhatsApp.
The random algorithm we use hinges on the supposition, that all mobile phone numbers
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are equally distributed. It is not clear – and probably not true –, that providers distribute
the numbers equally on their prefix-spectrum. Nonetheless, we evaluate the viability of
this hash reversal approach. For that, an uniformly distributed number spectrum suffices.
However, the hash reversal could be improved, if the accurate distribution is known.

Flow. We depict the general flow of a possible search request depicted in Figure 5.2. We
suppose, that a breach of some kind already has happened – according to our attacker
model in Section 3.9.

So, with the hash digest at her disposal, an attacker can query our architecture to reverse
those digests. First the attacker processes the dump to accommodate the Cracking Unit.
Once the text-file is finished, the attacker can launch the Cracking Unit and wait for the
results.

As we already mentioned above, the underlying number space needs only to be processed
once and can just be reused for every Search Request.

5.2. Instantiation of Architecture using Hashcat

In this section we detail our application of Hashcat using the architecture depicted pre-
viously in Figure 5.1. For that we adapt the different units to our needs. For the Mask
Generation Unit we discuss the implementations for mask attack and hybrid attack.

Cracking Unit. We instantiate the cracking unit of the architecture using Hashcat. The
reasons we use Hashcat are due to its current development, Graphics Processing Unit
(GPU) acceleration and apparent widespread use.

To use Hashcat we need to introduce some initial settings. First, we must define our
hash function to be cracked. In our case this is SHA1 according to the use of it in Signal.
Hashcat offers several variations applying SHA1. Mostly those variations circle around the
notion of including salts and boxing different functions. However, we focus on the simple
version of SHA1. Hashcat codes this in a Hash-Mode with the number 100 [118]. Those
modes are included using the flag m using Hashcat’s Command Line Interface (CLI).

Another part of using Hashcat is to choose the form of attack. Hashcat offers nine different
attack modes. The basic ones are word-lists, combination attack and brute-force attack.
The modes that interest us are the brute-force attack and a combination attack. We choose
them, because we want to test on-the-fly hash reversal applying Hashcat. In Hashcat brute-
force attacks are called and defined as mask attacks. The combination attack is called a
hybrid attack and fuses mask attacks with word-lists.

As Hashcat makes heavy use of the GPU, it offers the option to define its load on the
underlying system. The different load profiles are called workload profiles. Hashcat defines
four different types:
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Number Performance Desktop Impact

1 Low Minimal

2 Default Noticeable

3 High Unresponsive

4 Nightmare Headless

Table 5.1.: Hashcat Workload Profiles

Our setups normally run in headless environments. As such, we make use of the fourth
option called ”nightmare”. This allows us to use our GPUs to their maximum. We can
define this option with the flag w using Hashcat’s CLI.

Mask Generation Unit with Mask Attack. This unit prepares the use of so-called mask
attack. We here adapt this concept concretely to Hashcat. Mask attacks are ”but more
specific” than classic brute-force attacks, because we can define per position a specific
charset. As such, mask attacks let the attacker define the input space more detailed.
As described before, our input space is generally composed from numbers, except for the
leading plus sign.

In Section 2.1 we describe specific prefixes for phone numbers. Those prefixes are sorted
by length of the variable task. Hashcat allows us to map this variable part with the
placeholder ?d per position in the phone number.

Now, Hashcat doesn’t just use masks, but allows us to define a file containing different
masks – separated by a new line. Those files have the file extension called .hcmask. We
call our file in the following command examples mask.hcmask.

We show an excerpt of an example file in Listing 5.1. We can see, that while candidates
have the same prefix, we define every possible length as its own entry. For example, the
prefixes +49169 and +49168 are represented with three, four and five positions of digit
variation.

In order to show the process of the ?d wildcard, we exemplified the procedure in 5.2 based
on +49169?d?d?d. This placeholder results in 1000 different numbers, from which a hash
digest is calculated. Most notable, this procedure of mask variation is done directly on the
GPU.

...

+49169?d?d?d

+49168?d?d?d

+49164?d?d?d

...

+49169?d?d?d?d

+49168?d?d?d?d

+49164?d?d?d?d

...

+49169?d?d?d?d?d

+49168?d?d?d?d?d

...

Listing 5.1: Hcmask-File

+49169000

+49169001

+49169002
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Figure 5.3.: Number of entries per mask length

+49169003

+49169004

...

Listing 5.2: Hcmask example results

As the mask length has a performance impact, we want to show the general distribution
of the different mask lengths in Figure 5.3. Here we can see, that the distribution centers
around a mask length of four. In fact, this mask length represents around 84.76% of the
included prefixes. The accumulation of the different mask lengths results in a .hcmask -file
with 187483 entries.

Mask Generation Unit with Hybrid Attack. In contrast to the previous mask attack, we
generate here multiple files. The files contain only the prefixes of a specific mask length.
Because we have only ten different mask length through the Number Prefixes, we generate
ten files containing all mobile phone number prefixes.

The mask itself is used in the Hashcat command. As we use here ten different files with
different masks, we also need to execute the Cracking Unit ten times on the same Search
Request. We generally don’t execute those ten commands concurrently, because the GPU
is already on high load with a single execution.

Hash Reversal Unit. The task of this unit is relatively simple – we need to put a given
Search Request into a format understood by Hashcat. The request is comprised of hash
digests computed from phone numbers. We put all digests into one file. The different
values are separated by a new-line. This file is inserted via Hashcat’s CLI.

More important to our tests is the way we generate the example search requests. We apply
a uniform distribution over all possible phone numbers. For that, we index all possible
numbers and map each prefix to its respective span of indexes. For randomness, we use
the system-provided random number generator.
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5.3. Instantiation of Architecture using JTR

In this section we apply the generic architecture with JTR. We describe here the details
of the different Units of the Figure 5.1. So, we first describe our Cracking Unit, Mask
Generation Unit and Hash Reversal Unit.

Cracking Unit. The Cracking Unit centers around the hash cracking software JTR. We
choose this software, because its commonly referred to as an alternative to Hashcat. It
offers also GPU acceleration, SHA1 computation and is designed to use brute-force.

With this instantiation we only focus on the hybrid attack. Mostly because there is no
equivalent to the .hcmask files with JTR. For this attack, we define four arguments for
JTR. The first one is our word-list. For the second argument we provide the corresponding
mask. The next input is our format to-be-cracked. The fourth input is a list of to-be-
cracked hash digests of mobile phone numbers.

We put this all together in one execution of JTR for each mask length. The generic
command is shown in Listing 5.3. The command john is used to execute JTR. This
command depends on the method of your installation. Further, the w flag includes the
prefixes with prefixes 10.txt. The mask here targets a ten digit variation of the phone
number prefixes. The ?d defines the digit range from 0 to 9. The ?w denominates, where
the word (i.e. phone number prefix) is included. For the format we choose the fastest one
for SHA1 digests. The last argument with 10k digests.txt includes our Search Request.

john -w=./ prefixes_10.txt -mask=’?w?d?d?d?d?d?d?d?d?d?d’ \

--format=raw -sha1 -opencl ./10 k_digests.txt

Listing 5.3: JTR exectuion example

Mask Generation Unit. For this unit, we split all phone number prefixes into mask-
length and include them each in a simple txt file. In the Listing 5.3 this is done with
the prefixes 10.txt file. We also provide the other nine prefixes with the corresponding
mask-lengths.

Hash Reversal Unit. This unit is similar to our instantiation with Hashcat. We put
the Search Request into a single line-separated txt-file. In the Listing 5.3 we use the
file 10k digests.txt for this purpose. This file doesn’t change for all ten executions of jtr,
because the file includes all the digests, that need to be reversed.
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6. Hash Database

In this chapter, we present our approach for inverting hash digests of phone numbers using
databases. We first discuss our general architecture in Section 6.1. This architecture is
then instantiated in Section 6.2 using Redis and in Section 6.3 using LMDB – in those
sections, we fully detail our implementation.

6.1. Architecture

In this section, we discuss a general approach on how to generate and how to store number
and digest pairs. Inverting hash functions can be done for a specific charset by saving every
possible input within that defined space with its hash digest in a database. In our case
the charset would be a phone number and a 160-bit SHA1 digest. Naturally, a multitude
of types of databases exist, most notably relational databases such as MySQL [34].

Every type of database engine could eventually be used in our use case, but if we look
closely most databases are not designed for this. MySQL (or any Structured Query Lan-
guage (SQL)-based database), for instance, is a relational database. Their main focus lies
on putting tables into relations with each other and allowing the user to navigate and join
them.

But for inverting hashes we just need to store two values. As a so-called key we store the
resulting hash digest. The key is to be stored in such a way, that we can do a look-up
by the hash digests. We also need to save a so-called value, this is the phone number
generating the key digest.

We split our approach into two sides. One side is tasked with generating the look-up table
we use as our database. The other side is used to handle search requests for the database.
We provide an architectural overview of our hash reversal approach based on databases in
Figure 6.1.

6.1.1. Components

The architecture in Figure 6.1 includes following components: Number Prefixes, look-up
Table Generation Unit, Phone Number Database, Hash Reversal Unit and Search Request.
We discuss and explain their details in this section.

Number Prefixes. As we already discussed in Section 2.1, phone numbers consist of a
prefix and a variable part provided by the specific provider of the prefix. We also narrow
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these prefixes down to those, which are accepted by common service providers, such as
Google, Facebook or WhatsApp. We call this compressed list of prefixes our Number
Prefixes. This list is used as an input and basis for our Generation Unit.

Look-Up Table Generation Unit. This unit handles several tasks itself, but the main goal
is to generate the Phone Number Database. The unit has the Number Prefixes as an input
and filters those entries based on the targeted number prefix range of the hash reversal.

The unit then processes the prefixes and generates phone numbers from this input. The
numbers are then hashed and further processed as pairs of phone numbers and their hash
digests.

We parse pairs into a form, which can be inserted into the database using its Application
Programming Interface (API). We then insert all calculated key/value pairs. Once the
database is populated, this unit’s task is finished and we can use our Phone Number
Database.

Phone Number Database. The database component is based on a regular key-value
database and stores key-values generated by the Look-Up Table Generation Unit. We
don’t alter the database engines in any other way than to tune the provided configura-
tion options. The database is accessed via their officially supported API and provides our
architecture with a central place to store the computed pairs.

In our case the database is like a bridge in this hash reversal process, as depicted in Figure
6.1. It enables us to connect the two different components for generating the input and
searching the data with a real-world tested access protocol. In fact, the enhancements
provided by the database are directly linked to the performance of our approach. So, the
usage of different databases will result in different performance, which is exactly what we
evaluate in this chapter.

Hash Reversal Unit. This unit’s task is to provide an interface to bulk-search for hash
digest based on phone numbers. To achieve this task, we provide two elements inside the
component. For one, we allow a search request in a text-based form to be inserted via a
Text-based User Interface (TUI). For the other, we preprocess the included hash digests
in order to search their reversed values in the Phone Number Database.

Search Request. In most of our tests, the Search Request is an ordered list of hash digests
provided by an user. The digests are searched in the database and thereby reversed back
to a phone number. Please note, that we are the user in this thesis and provide the request
ourselves.

Flow. In addition to the architecture, we divide the flow of our process into three steps.
First, we need to create the key/value pairs according to a phone number and its digest.
Second, we need to save the resulting data in some form. In our case we choose two
different Databases with different features. And third, we need to create an interface to
lookup those values in a fast and concise manner.

In order to give an overview, we provide Figure 6.1. Here one can see the flow from the
initial number prefixes, which are predefined, to an intermediate step as key/value pairs.
Those values are then stored in our database. Once the database is filled, a user can issue
a query to reverse a given hash digest back to a phone number.

Two of the more popular key-value databases are Redis database and LMDB. We choose
these two, as both are currently developed, while one uses RAM for speed-up and the
other is designed to be persistent data storage. We discuss both their instantiations in
following sections.
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Figure 6.1.: Architecture

6.2. Instantiation with Redis

Redis is considered one of the most performant databases currently in existence. Its uses
range from disk cache (i.e. like memcached [120]) to production databases. Even in
trendy application like BigBlueButton [121], Redis acts as a center piece to facilitate high
performance.

Our decision to use Redis is based on its key-value nature, praised performance and open-
sourced code base. Most central are the following features Redis provides. It is designed
to only exist in RAM and therefore can implement a specific data structure called hash
tables. This promises solid performance for our application. We explain the inner workings
of Redis more detailed in Section 2.3.

For our use case of reversing hash digests Redis offers sufficient aspects to implement our
general architecture. For instance, the key-value nature is perfect for storing the hash and
its preimage. The promised constant lookup-times should also allow for an instant reversal
in an on-the-fly setting.

In this section, we further discuss the instantiation and implementation of the generic
architecture of Section 6.1. We describe our implementation of all components depicted
in Figure 6.1 in the following sections for Redis.

6.2.1. Implementation of Look-Up Table Generation Unit

In this section, we describe our implementation of the Look-Up Table Generation Unit.
The authors of [2] provided a Comma Separated Values (CSV) conforming to their findings
of valid phone numbers. We use those values as a basis for our testing samples. The phone
numbers are filtered by a Python script to include the formatted data into a header file –
as a hard-coded part of our tool-chain. We depict an overview of the unit in Figure 6.2.
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We first describe our handling of phone numbers with their representation, filtering and
finally inclusion for our program. Then, we detail the generation of numbers and the
consequent hash digest calculation. Last, we describe the API used for insertion.

Representation of phone numbers. Due to the extra characters like + as discussed in
Section 2.1, phone numbers are normally saved as a string. As such, we are also using a
string representations for phone numbers.

This is not an optimal solution in terms of space. For example the number 9 needs to be
saved as an ASCII form 0x39 instead of just 0x9 in hexadecimal. This results in a generally
doubled storage overhead. Hence, it might seem reasonable, to build a transformation tool
from string representation to a decimal representation for internal storage to save space.
This can be further researched in future works.

The string representation of phone numbers is obviously important for the calculation
of the hash digest. The binary form of both the string and decimal representation are
different and as such result in different hashes. Thus, we represent phone numbers as
string in our tests for all steps.

Filter. We generally try to use the entire number prefix space to populate the database in
our tests, but one can filter the input based on country codes.

Once the filter is set, we preprocess the prefixes in such a way, that the program can further
process the input. The Number Prefixes only contain the prefixes and their supposed
length. We unify these two characteristics by appending the prefixes with the variable
length as X s. For example, a prefix like 4993100 with one variable digit is formed into
4993100X. Each X then stands for the digit-range 0-9.

Data structure in Header. The data is held by a multi-dimensional char-array. Typically,
char-arrays are defined by the maximum length of each string – in our case 18 chars –
and the total number of entries. The number of entries is dependent on the country which
numbers are to be reversed. In a world-wide deployment, this would mean all possible
phone numbers.

Generation and Calculation of Key/Value pairs. We then deploy a multi-threaded gener-
ation tool to get the hash values and phone numbers. This tool is written in C and uses
the libraries glibc, OpenSSL and pthread. It includes the previously mentioned header file
with all to-be-processed phone number prefixes.

We choose glibc, because it is the standard library for C in gcc. OpenSSL and pthread are
chosen, because of their convenience. Both tools provide easy and direct interface with
their functionalities. For instance, one possible alternative to pthread is threads library.
However, for our case, POSIX threads suffice and are per default supported by our setup.

The unit first iterates through our char-array containing the prefixes. For every number in
the char-array a thread is created. As Linux systems have a maximum number on threads,
we implement a maximum number of concurrent threads allowed in the program.

Within each thread, a recursive function traverses the phone string and replaces every X
with a zero. Once the function is deep enough – i.e. all X s are replaced – the hash digest
is calculated and added to an output file.

After that, each position is iterated from zero to nine and hashed by our tool. The results
are saved for each thread separately into a simple text file. We first encountered some
problems with this approach, as there is also a limit on open file descriptors in Linux.
This problem was solved by limiting the concurrent thread count.

Insertion of Key/Value pairs. We deploy Redis with volatile memory, therefore we loose
all added data once the database resets. This introduces an unnecessary bottleneck for our
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testing. So, we initially calculate a sample of phone number digests according to Section
2.1 and save them intermediately onto a Hard Disk Drive (HDD). This intermediate step
limits amounts of hash calculation and therefore allows a faster testing cycle.

We can insert the text files containing key/value pairs with redis-cli. This command-line
interface for Redis allows us to pipe the calculated pairs from the HDD into our database.
We perform a so-called mass insertion in accordance to Redis’ best practices [123].

In later iterations of the insertion process, we directly insert the pairs into Redis with the
C -library HIREDIS-VIP [124]. Without the intermediate storage of key-value pairs on
the HDD, we achieve faster insertion times. We depict the process in Figure 6.3.

6.2.2. Implementation of Phone Number Database

We show in this section our configuration of the Redis database engine. In our first setup,
we run a single instance of Redis. Our initial optimizations revolve around disabling
the persistence schemes of Redis. Per default, Redis creates so-called snapshots of the
database. As we discussed in Section 2.3, we don’t need this feature and therefore disable
it to avoid a bottleneck.

RAM allocation. Redis generally allocates as much memory as the underlying system
offers. This creates some problems. Once the database reaches the maximum amount
of available space, the system could worsen performance due to swapping or block other
services on the server to run smoothly. In a worst case scenario, the system hangs itself.

To avoid these problems, we simply set a maximum amount of memory for the entire
instance according to our setup. For instance, one setup allows us to manage 612 GB of
RAM. To guarantee the correct execution of the rest of the system, the maximum amount
of memory Redis can allocate is capped to 600 GB of RAM.
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Eviction Strategies. With only a maximum memory available to store data, Redis offers
eight different eviction strategies once the memory is exhausted and new pairs need to be
inserted. The strategies revolve around three possible options:

• Expiration date of the data

• Timestamp of last-used data

• Frequency of usage

In our use-case, none of those features are important. For one, we don’t need to set an
expiration date for the data. Once a phone number and hash digest pair is generated, the
pair needs to be available for the lifetime of the database.

For the other, neither frequency nor last-used attribute are essential for our task. When
and how often the data is accessed, is not important, because we want to reverse all possible
numbers.

Thus, we use a no-eviction strategy. If we recap our goal here, we want to show the
feasibility of such a database and its rough resource consumption. So, there is no need to
evict one pair for another, as there is no difference in those pairs for our use-case.

In other words, once data is included in the database, it remains for the duration of the
database. Another side-effect of choosing this eviction strategy is its improved perfor-
mance, as we don’t need to delete evicted data and insert new data.

Cluster Choice. Theoretically Redis should be able to handle 232 keys. The Redis FAQ
[126] even states, that a single instance can handle around 250 million keys. Unfortunately,
we can’t reproduce this in our use-case. In the first test-runs our Redis instance crashed
multiple times with roughly over ten million entries.

At first, this is an unexpected behavior. After some investigating, we traced down the
issue to segmentation faults. This circumstance prompted us to make use of the cluster
functionality of Redis.

Redis Cluster. A Redis cluster running on the same host has a rather simple architecture.
The basis are concurrently run Redis instances, each with its own configuration – we just
start the program a lot of times.

To combine the cluster, Redis offers an interface, in which the instances are treated as
buckets. As discussed in Section 2.3, Redis uses a CRC16 error-correcting code on the
keys and divides the results into 16384 slots with a modulo operation.
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Each running Redis instance is then linked to one or more of those slots. So, once the
cluster-CLI receives a request, this request is redirected to the corresponding instance
based on the key.

We use the provided script for cluster creation from Redis GitHub page [127] and change it
for our needs. The script itself allows us to define the number of instances, their respective
configurations and takes care of log- and lock-files [128]. We included our exact parameters
in Appendix A.

Cluster Configuration. In our case, we use 120 instances to handle our tests. In order
to have a functioning system, we split the available RAM equally for the instances. For
instance, with a setup with 600 GB RAM each instance has a maximum memory of 5 GB.
With this configuration, we are able to fill the entire RAM of our test setups.

Cluster API. We use the C client HIREDIS-VIP [124], which supports clusters. First,
we create a standalone program, in order to input the raw data of a file provided by our
Generation Unit. In later iterations – now with a stable Redis – we merge the two tools into
a test-suite to create and insert phone number and digest pairs directly into the running
Redis cluster.

One note on the implementation with HIREDIS-VIP. The library is compiled and installed
based on their GitHub instructions. Nonetheless, the project is a little bit outdated –
with its last current entry around 3 years ago. Per default, the examples provided by
HIREDIS-VIP are not functioning with current versions of Redis. This issue was solved
by using the function redisClusterSetOptionRouteUseSlots() in accordance to [129], which
sets HIREDIS-VIP to use Redis’ cluster slots.

6.2.3. Implementation of Hash Reversal Unit

In this section we describe our implementation of the Hash Reversal Unit. We implement
this component as a Python script, which uses Redis’s cluster API called redis-py-cluster
from Python’s internal package manager pip. The library enables us to discover every
single instance of Redis without the need to provide a direct link to every instance. We
then use a simple loop and the provided get function to access and reverse the hashes.

The Search Request is provided in a text file, which lists all digests separated by a newline.
We then transform the provided digests into an API-conform form. The search itself is
done sequentially in the order of the digests.

In our test, we are able to fill the entire 600 GB RAM of our Redis cluster with 3.8 billion
entries. This is around 3.2% of the entire search space of 118 billion entries. In fact with
our current optimizations, an attacker would need around 19 TB of RAM to fit in all
entries.

While this amount of investment is currently only possible for an attacker with a larger
wallet, the gain is substantial. Our test indicates a constant lookup time for multiple
batch-sizes of 0.1 ms, allowing an attacker to reverse hash digests of phone numbers in
real time.

Even with the need to scale up the environment, Redis makes this easy due to their
concepts of clusters. An attacker can simply deploy 30 times more instances on different
machines to have instant look-up times. However, communication overhead needs to be
investigated in future work.

6.3. Instantiation with LMDB

In this section, we present our instantiation of the general architecture as described in
Section 6.1 with LMDB database. Additional background information on LMDB database
and B+-trees is provided in Section 2.4.
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The LMDB is a widespread database, that is most prominently used within SQLightning
[130], Postfix [131] and even Monero [132]. It is generally shown to have great performance
in comparison to other databases. There are three key properties of LMDB database that
make it well suitable for the targeted application:

• Key/Value database

• B+-tree

• Memory-mapped file

Key-value approach. One reason is its key/value approach. We focus on the reversal of
hashes, so we only need to store two values per entry. Some more complex approaches like
relational databases are too bloated and would generate unnecessary overhead for our use
case.

B+-tree data structure. The B+-tree data structure is interesting to have as a contrast to
Redis. In comparison, Redis is designed to be in memory exclusively, which allows them
to implement other data structures, such as hash tables. Instead LMDB is designed to be
also persistent on a hard disk. In fact, the performance of a database is slowed down by
access times of the underlying hardware. Redis’ data is only residing in RAM, that has
constant random access times. However, LMDB is targeting HDD as the location for the
data. This should mean worse access times for random instead of sequential access.

Memory-mapped file. The other reason to choose LMDB is its memory-mapped file. As
we show with Redis, an in-memory database has some advantages, such as lookup-times.
LMDB allows its users to have the advantages of persistent storage and an in-memory
database during its run-time. This allows us to have a better comparison to Redis as both
are in-memory databases – if the data completely fits into the RAM.

6.3.1. Implementation of Look-Up Table Generation Unit

In this section, we describe our implementation of the Look-Up Table Generation Unit
centering around LMDB. The unit is written in C. It takes the phone numbers – filtered
by a python script – as an input in form of a string array. This array is within its header-
file and is generated from the initial phone number prefixes. We detail this unit in Figure
6.4.

Filter. The python script filter the Number Prefixes, as the entire database is considered
too big for our test environments. We enable the filter-selection by different country codes
– i.e. ”US”for the USA or ”DE”for Germany. The amount of different numbers is currently
limited by our test-bed.

Data structure in Header. The header is identical to header file in the instantiation of
Redis in Section 6.2.1.

Generation and Calculation of Key/Value pairs. The unit makes use of the OpenSSL
library – similarly to instantiation with Redis – in order to calculate the hash-digest of
the generated phone numbers. Obviously, OpenSSL is not the only library that can be
used to achieve this task. However, OpenSSL is the default library of our underlying OS
Debian and as such is chosen by us for simplicity reasons. The unit obviously also uses
the development library for LMDB. The library is provided by the APT package manager
with liblmdb-dev. To use the library we set the flag llmdb in gcc.

Initiate LMDB. Once the key/value pairs are calculated, the unit makes use of the system-
provided LMDB library to initiate and access the database. In order to initiate the
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database, we need to provide some initial settings. This step is not needed in the in-
stantiation with Redis, because Redis already runs in the background.

For one, we define a preliminary size of the database, as the resizing of a B+-tree is resource
costly. This is done with the function mdb env set mapsize(). We set the maximum size
of the database to 500 GB for all our test. We considered only the maximum size of RAM
for this value. One can also create larger databases, but this will result in performance
penalties, once the data needs to be loaded into the RAM.

For the other we can define the maximum number of readers of the database. In our
instance, we define only one reader, as we only access this database from one client. We
use the library-provided function mdb env set maxreaders() for this.

The user can also set some additional environment flags, such as no file sync after a commit
or making the database read only. While those flags can be used to affect the behavior of
the database, we use none of the possible flags. In our initial search for some performance
gains, no flag stood out to us to achieve better performance.

Insertion of Key/Value pairs. After the initial setup is completed, we can commit our
request by opening a so-called transaction. Within one transaction, we can provide several
inserts into the database. However, those inserts are only committed to the database,
once the transaction itself is committed. Another aspect to keep in mind is, that dangling
transactions can result in performance degradation. This is due to the immutability of the
database within every open transaction, forcing the system to keep track of the different
versions.

For the insert command mdb put, one can also pass flags to change some nuances of its
behavior. Our unit inserts key/value pairs of digests and phone numbers. Thus, we insert
the hash digest as the key for an entry. By providing the flag MDB NOOVERWRITE,
we make sure to not insert the same values twice. The scenario in which the key of two
different values is the same is be negligible, because this would be a collision inside the
hash function.

When the unit is finished with the generation of the database, the database and environ-
ment access are closed. The resulting file is our Phone Number Database.

6.3.2. Implementation of Phone Number Database

In contrast to Redis, LMDB has no background service or daemon to actually serve the
data. With LMDB the phone number database is represented by a single file, which can
be accessed like any other file. This also means, the database is fundamentally handled
by the OS.

Clearly, most other databases also rely on the OS to handle basic hardware interactions.
While a file can be accessed via a file descriptor, LMDB makes use of so-called memory-
mapped files. In this case, the OS maps the file directly into the virtual memory of the
running program. Consequently, the program has faster access times than handling the
descriptor with read/write system-calls, but relies more on the OS with the write-backs to
disk.

The database can be opened by multiple programs concurrently. In fact, once the database
is generated, it could be shared and copied to multiple other instances as a B+-Tree on disk.
This is opposite to the volatile configuration of Redis, which just can save transactions,
but not the internal state of its hash tables.
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6.3.3. Implementation of Hash Reversal Unit

Similarly to Redis, the queries to LMDB-based hash reversal database are also managed
by a C program. We use the same API of the Look-Up Table Generation Unit in Section
6.3.1. We just make some adjustments, since we only want to read the database, instead
of filling and writing to it.

We see in Figure 6.5 the work-flow of our Hash Reversal Unit. Once the attacker has a
dump of hash digests, she can formulate a Search Request. The request is then compiled
into our search program using a generated header. The search program then contacts the
database. If the digest is found, the attacker gets the reverse of the hash digest – back to
phone numbers – as a result.

Initiate LMDB. One of those adjustments is setting the database as a read-only memory-
mapped file. We can do this by setting the flag MDB RDONLY, once we start the database
environment. We further set MDB NOTLS. This flag allows us to handle locks on the
database. As such, we can have multiple concurrent read transactions in our thread
without possible performance penalties.

Search program. After the environment is set, the database file is read into the memory
by the OS. As soon as the file is mapped, we can access the database with the function
mdb get(). This function allows us to get a single value with a key. As a side note: We
can only access a single value of one key. In some other use cases – where multiple values
are associated with a single key – we would need to use LMDB’s cursors.

As the ”get”-function allows us to only retrieve data with one key, we need to consider
some alternatives to access data in bulk. For one, we could access one key per transaction.
Obviously this would result in unnecessary overhead by opening and closing a transaction
every time. Instead, we use a single transaction to access all requested data in bulk. The
values for the keys are then printed by the printf() function for testing purposes.
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Search Request and Reversed Hashes. The search values are included via a header file.
We then iterate through them within our single transaction. As explained above, we use
the get-function mdb get() next, in order to actually search the database. If the function
can’t find a key, the search aborts. We want to measure the lookup-times and size of the
database for hash digests. Thus, we don’t want to reverse a realistic data dump and to
calculate false-positive rates and therefore implement an abort.
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7. Evaluation

In this chapter we provide rigorous evaluation of three different hash reversal techniques in
the context of Contact Discovery. We first describe five different test-beds we used in our
evaluation, in Section 7.1. Then, we detail our findings of brute-forcing hashes in Section
7.2. Next, the evaluation results for the reversal technique using databases are described
in Section 7.3. The third technique, rainbow tables, is evaluated in Section 7.4.

7.1. Test Setups

We describe here several setups that were used in evaluation. All setups are chosen to
fulfill the specific needs of our different hash reversal techniques. For instance, hash reversal
based on brute-force relies on GPUs and in-memory databases depend on sufficient amount
of RAM present.

7.1.1. Test Setup – OpenStack

We name our first setup OpenStack and it is intended for Redis’ evaluation. We choose
this setup, because Redis needs a substantial amount of RAM to store our hash database.

Hardware. The system runs on a Virtual Machine (VM) provisioned by the High Perfor-
mance Computing Cluster of the University of Würzburg [133].

The cluster is based on OpenStack. Users can provision their VM according to so-called
Flavors – predefined settings for the VM. In our case, we use 48 vCPUs of Intel Skylake
cores at 2.3 GHz with 630 GB of RAM and 1 TB of disk storage.

Software. We choose for our setup the OS Debian 9 with the packaged version of Redis.
Generally, the VM is running the standard kernel and has no other optimizations other
than discussed in this chapter or done by the HPC. The server is run without any desktop
environment and is only accessed via Secure Shell (SSH).

7.1.2. Test Setup – SLURM

Our second setup is named SLURM and it is intended for Hashcat’s evaluation. The
evaluation is detailed in Section 7.2.2 and focuses on the reversal of the entire mobile
phone number space.

Hardware. We use the university’s HPC. The cluster offers two dedicated NVIDIA Tesla
P100 per node. Further, GPU nodes also consist of two Intel® Xeon Gold 6134 Processor
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and 384 GB of RAM. However, we don’t utilize the entire node, but share the resources
with other deployed tasks.

Software. The HPC is based on Debian 9. In contrast to the other setups, we use here
specifically Hashcat in version 5.1.0 and not the version provided by the OS.

The HPC uses the Slurm workload manager [134] to schedule different jobs/tasks. We
dispatch our jobs via the scheduler using a bash script.

7.1.3. Test Setup – 1080TI

Our third setup is named 1080TI and it is intended for GPU-heavy tasks. Those tasks
are related to our brute-force approach in this thesis. So, this setup is exclusively used for
evaluation in Section 7.2.

Hardware. We test our brute-force approach on a Zotac Nvidia 1080 TI. The system is also
comprised of an AMD Ryzen 3 3200G and 16 GB DDR4 RAM. However, we specifically
only use the 1080 TI in our tests.

Software. We use an at-the-time current Arch installation with the up-to-date version of
JTR and Hashcat from the packet manager pacman. Cuda with 11.0 and Nvidia driver
with 450.57 are the most current versions.

7.1.4. Test Setup – Fujitsu

Here, we describe our setup, named Fujitsu, used for the evaluation of LMDB in Section
7.3.2 and of Redis in Section 7.3.1. We choose this setup for our database evaluation,
because it offers a sizable amount of RAM.

Hardware. In this setup we use a Fujitsu Primergy TX 300 S8 with 512 GB RAM, two
Samsung 850 PRO 250 GB Solid-state Drive (SSD) and four Crucial MX500 500GB SSD.
The two Samsung SSDs are operated in RAID0. The four Crucial SSDs are used in a
RAID10 ZFS [135]. We build the RAID10 with ZFS by stripping the content across two
mirrors containing each two disks. The system also provides 40 vCPUs based on two Intel
Xeon E5-2690 v2 at 3.00GHz.

Software. The system runs on Debian 10 ”Buster” and is installed on the Samsung SSDs.
The tests are executed from the ZFS partition. We make no other modification to the
system. This system runs also without any desktop environment and is exclusively accessed
via SSH. There are no other optimizations made, neither to the kernel nor to the system.

The LMDB development library is from the official Debian repository. The package is
called liblmdb-dev and included with gcc using the flag -llmdb. The version of the LMDB
library is 0.9.22 and gcc’s version is 8.3.0.

7.1.5. Test Setup – Manjaro VM

The last setup is named Manjaro VM and it used for the hash reversal using RainbowCrack-
NG described in Section 2.6. The software mostly depends on a high Central Processing
Unit (CPU) count to achieve the best performance. Thus, we evaluate RainbowCrack-NG
with this setup using all available resources. The tool also has a better performance with
current software versions, that we use in our evaluations.

Hardware. The underlying hardware is identical to our setup Fujitsu described in Section
7.1.4.

Virtualization. We use a virtualized environment with KVM. The VM is assigned all 40
vCPUs and is given 32 GB RAM. The image file is on our ZFS partition, in order to have
the best available performance.
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Software. As our OS, we use Manjaro – an Arch-Linux based derivative. This OS applies
a rolling-release update schedule. Thus, we can use the most current version of software –
besides compiling it ourselves.

For the hash reversal we use the modified RainbowCrack-NG. The software depends on
two system-provided libraries OpenSSL and OpenMP. Manjaro distributes OpenSSL with
the version 1.1.1g. However, OpenMP is a standard included in the gcc. The current
standard for OpenMP is 5.0 with gcc 10.1.0.

Important note. While the above setup is our setting for the evaluation, we want to
stress the importance of a current version of OpenMP, i.e. gcc-toolchain. We initially
tried to generate rainbow tables with gcc 8.3.0. The compilation and execution worked as
expected. However, we manually aborted the generation of one table similar to Section
7.4.2 after 10 hours.

7.2. Evaluation of Brute-Force

In this section we present our findings regarding hash reversal with brute-force attacks.
In Section 7.2.1, we compare JTR and Hashcat to show performance differences of both
tools. Next, in Section 7.2.2, we use our brute-forcing techniques with Hashcat to reverse
phone number digests based on all mobile phone numbers. We repeat the experiment with
JTR in Section 7.2.3. Finally we compare our findings in Section 7.2.4.

7.2.1. Comparison JTR and Hashcat

In this section we compare two brute-force tools in the context of reverting SHA1 digests.
The hashing algorithm is central, as it needs to be supported by the underlying tools. Gen-
erally Hashcat offers a variety of different hashing algorithms, mostly deployable onto the
GPU. While JTR also includes numerous algorithms, the tool differentiates the algorithms
between CPU and GPU versions.

We benchmark both tools with the target hash algorithm SHA1, since the algorithm is used
by messenger apps like Signal. Hashcat doesn’t provide a default option to run only on a
CPU. So, for Hashcat we can only benchmark a GPU deployment. However, we provide a
comparison of CPU and GPU performance with JTR. We additionally benchmark the mask
attack on GPU version of JTR, since JTR is the only tool that supports benchmarking for
mask attacks. More implementation details and attack modes are explained in Chapter 5.

Notations and Test-bed. Hashcat shows its results in H/s, i.e. Hashes per second. In
contrast, JTR uses c/s, which means candidates per second. However, both notations
denote the same value.

We use our 1080TI test setup described in Section 7.1.3. This setup enables us to deploy
our cracking software on a current consumer GPU.

Preliminary Tests. We first performed preliminary benchmarks to identify the tool with
better perspectives. For that, we use Hashcat’s internal benchmark flag -b for SHA1 using
the command in the Listing 7.1. We then show the benchmark for JTR for one using a
CPU in Listing 7.2 and for the other using a GPU in Listing 7.3. Further, JTR offers a
specific benchmark for mask attacks, which we measure using the command from Listing
7.4.

hashcat -b -m 100

Speed .*.........: 12960.5 MH/s

Listing 7.1: Hashcat SHA1 benchmark
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john --format=raw -sha1 --test

Raw: 21636K c/s real , 21636K c/s virtual

Listing 7.2: JTR SHA1 CPU benchmark

john --format=raw -sha1 -opencl --test

Raw: 64527K c/s real , 64527K c/s virtual , Dev1 util: 15%

Listing 7.3: JTR SHA1 GPU benchmark

john --format=raw -sha1 -opencl --test --mask

Raw: 3166M c/s real , 3150M c/s virtual , Dev1 util: 100%

Listing 7.4: JTR SHA1 GPU mask benchmark

Comparing SHA1 performance of JTR on CPU with the GPU accelerated version, the
GPU version has around 3x improved performance. However, Hashcat offers a four times
better performance than JTR with the mask attack benchmark (cf. Listing 7.4). Using
these preliminary benchmarks and a better familiarity with Hashcat, we initially decided
to use Hashcat with our HPC of the Rechenzentrum to reverse hashes.

7.2.2. Reversing Entire Mobile Phone Number Space with Hashcat

In this section we present our results on hash reversal of the entire mobile phone number
space using Hashcat. We present two attack versions included in Hashcat: Mask Attack
and Hybrid Attack.

Mask Attack. We use our prefix database to generate a .hcmask file. This file then
generates all possible mobile phone numbers. So, with every single run of Hashcat, we
need to calculate all possible digests for mobile phone numbers in order to reverse one
request.

For the Hybrid attack, we split the prefix database into ten files containing each a specific
mask-length prefix.

The mask attack is tested with the SLURM setup. The central command in Slurm is
shown in Listing 7.6. With that command, we issue the use of a GPU and define our
script. In this script, we then use the command srun in combination with the Hashcat
command shown in Listing 7.5. After we issued a task, we need to wait for a free spot to
execute our command. After execution Slurm provides a log-file. We use this file to get
execution time and hash-rate of our attack.

hashcat -m 100 -a 3 -w 4 question.txt mask.hcmask

Listing 7.5: Hashcat command

sbatch --gres=gpu:1 -p gpu script.sh

Listing 7.6: Slurm command

We firstly define three batches of hashes to be cracked. One batch includes 10k hashes,
the second has 100k hashes and the third contains 1000k hashes. We choose those batch
sizes to infer performance prediction on a lager scale. We can see the results in Table 7.1.

As seen in Table 7.1, while growing the batch size by a factor of ten, the execution time
only marginally increases. This prompted us to evaluate the performance differences of
the different charsets in our hcmask file. We ran our test for maximum of 30 minutes on
every appended mask length from 1 to 10.
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Table 7.1.: Batch comparison

Batch size hashes per second duration

10k 0.18 15h 18m 28s

100k 1.78 15h 35m 24s

1000k 17.45 15h 55m 2s

Table 7.2.: Mask length comparison

Mask length kH/s duration Group size

1 110 36s 1.2 · 102

2 999 52s 104

3 4242 MAX ∼ 12 · 106

4 42319 MAX ∼ 1.5 · 109

5 100000 MAX ∼ 1.2 · 109

6 104000 18m 2s ∼ 3.5 · 109

7 104000 3m 57s ∼ 5.9 · 109

8 105000 2m 12s 10.1 · 109

9 106000 2m 33s 15 · 109

10 110000 10m 42s 8 · 109

With the results of Table 7.2 and the magnitude of numbers in each mask group we can
deduct, that our computational time is mostly used on the mask lengths 3-5. Those groups
only represent 2.8·109 numbers. We attribute this phenomenon to the context-switch in the
GPU. Hashcat pushes each mask to the GPU and iterates through all possible variations
of a mask. Once as mask is finished, Hashcat pushes the next mask onto the GPU, This
accumulates to a substantial performance loss, as every mask has a constant overhead to
be deployed on the GPU.

As a potential improvement to be explored in future work, one can move these groups into
a database for a faster lookup, while simultaneously using Hashcat to crack the bigger
number spaces, thus creating a hybrid between brute-force and database approach of hash
reversal.

Figure 7.1 shows dependency of the hash rate from the mask length. The x-axis shows
the length of the inserted mask and the y-axis depicts the corresponding hash rate. If
we consider the plateau of the hash rate around 110 MHashes/s, we are still around 100x
times slower than the initial benchmark for Hashcat on SHA1 with our SLURM setup.

In Figure 7.2 we plotted the batch size on the x-axis and the execution time of Hashcat
using the entire phone number space on the y-axis. We can see, that the total execution
time of Hashcat barely depends on the batch size, but rather on the to-be-crawled space.

In Figure 7.3 we show again the batch size on the x-axis, but this time on the y-axis we plot
the normalized time in regard to batch size. Here we can clearly see, that the execution
time per single hash digest shrinks with the grow of the batch size. In fact, if we search
for 100k phone digests in one batch, we achieve a reversal time of 0.05s.

Hybrid Attack. We use again three batches of different size to be cracked with this attack
mode. The sizes of the batches are 10k, 100k, 1M. For our setup, we use the 1080TI
platform (cf. Section 7.1.3).

We run the same experiment as with the mask attack. So, we focus on the general execution
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Figure 7.1.: Hashcat Mask Length Mask Attack
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Figure 7.2.: Hashcat Execution Time with Mask Attack
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Figure 7.3.: Hashcat Execution Time per Hash Digest with Mask Attack

time, the batch sizes and their cracking rate. However, inspired by the good reversal times
with JTR we use a hybrid attack instead of mask attack.

In Figure 7.4 we plot the cracking rate in reference to the mask size. The figure resembles
roughly the distribution of number prefixes from Figure 5.3. We further observe a higher
cracking rate than previously observed with the mask attack. For instance, the mask
length of four produces roughly a ten times faster hash reversal rate than with the mask
attack.

Next, we plot the entire execution time of the reversal process in Figure 7.5. With this
attack mode, we are able to reduce the execution time of our hash reversal process from
roughly 15 hours to 2 hours. In other words, we have an performance increase of roughly
7.5x in contrast to mask attacks.

Finally, we show in Figure 7.6 the normalized hash reversal time per hash digest of the
Search Request. We see the best performance with the largest batch size. In fact, we can
reverse hashes in 8ms per digest with the hybrid attack mode and a reasonably large batch.

7.2.3. Reversing Entire Mobile Phone Number Space with JTR

In this section we discuss hash reversal of all mobile phone numbers with JTR. We use
the so-called hybrid attack, which combines mask attacks and word-lists. The procedure
is very similar to hybrid attacks with Hashcat. Thus, we focus here on the specifics of
JTR, rather than describe general approach. We use the same setup with 1080TI as in
the hybrid attack with Hashcat.

Hybrid Attack. For this attack mode, we plan the identical scenario as the experiment
with Hashcat. We first define three batch sizes – namely 10k, 100k and 1M hash digests
each. We then use the specific architecture from Section 5.3 with JTR.

Figure 7.7 depicts the hash rate per mask length. We see a similar performance increase
to Hashcat with a larger mask length. However, in contrast to Hashcat’s hybrid attack,
we achieve a constant hash rate around eight GH/s with JTR.
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Figure 7.4.: Hashcat Mask Length Hybrid Attack
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Figure 7.5.: Hashcat Execution Time Hybrid Attack
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Figure 7.6.: Hashcat Execution Time Hybrid Attack

The total execution time for different batch sizes is depicted in Figure 7.8. Here, we see a
vast increase in performance in comparison to Hashcat. While Hashcat’s execution times
are depicted in hours, JTR achieves execution times under 100s.

We break those time again down, in order to show the performance per hash digest. The
Figure 7.9 shows our normalized execution times. For instance, using a batch size of 1M,
we achieve a lookup-time from under 0.1ms for a single digest.

7.2.4. Discussion

In this section we discuss our evaluation of the brute-force approach for reversing hash
digests. To recap, we first run a mask attack with Hashcat. After that, we used a hybrid
attack with Hashcat, which uses word-lists and mask attacks. Finally we run this experi-
ment with JTR against the entire phone number space again. This last experiment shows
the most promising results in order to reverse SHA1 hash digests.

We are somewhat surprised to see, that JTR is magnitudes faster than both attacks with
Hashcat. It is obviously due to the fact, that JTR utilizes the GPU better than Hashcat.
The initial benchmarks showed performance for Hashcat around 12 GH/s and for JTR
only 3 GH/s. However, in the real-world tests we have a peak performance of Hashcat
with 4 GH/s and JTR with an astonishing 10 GH/s.

Furthermore, the hash rate stays roughly constant with JTR. With Hashcat’s hybrid attack
we can see a decline in performance with growing mask length. We are not sure, why
Hashcat doesn’t utilize the hardware the same way JTR does. While one can explore this
in future work, we see that the hash reversal times with JTR are already near benchmarking
performance. So, even by fine tuning our tools any further, we would see only a marginal
gain due to the limitation by our setup.

Now, the performance per hash correlates with the batch sizes of the Search Request. We
achieved with JTR’s hybrid attack a peak hash reversal of under 0.1 ms per hash digest.
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Figure 7.7.: JTR Mask Length
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Figure 7.8.: JTR Execution Time
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Figure 7.9.: JTR Normalized Execution Time

This is a performance gain of 57000% in comparison to our initial test results reported in
[2].

In summary, we can see, that JTR achieves nearly the peak performance provided by
the underlying hardware. The hybrid attack allows us to reverse the entire mobile phone
number space in less than 100 seconds. As we use in parts consumer grade hardware, we
show, that an attacker with a budget of under 1000e can easily reverse captured SHA1
digests back to mobile phone numbers in a very efficient manner. This also means, that a
malicious provider or a states-actor can view a SHA1 digest breakable on-the-fly with our
brute-force approach.

7.3. Evaluation of Database

In this section, we report evaluation results the architecture presented in Section 6.1. In
particular, Section 7.3.1 is devoted to evaluation of Redis-based system and Section 7.3.2
concerns LMDB-based instantiation. Finally, we compare both approaches in Section
7.3.3.

We consider three features in our tests to compare both databases. The first feature is
the growth of the databases. We look at the growth to project how much space is needed
to hold the entire phone number space. The second feature is the look-up times of both
database engines. The result should be helpful to decide which database to choose, if a
fast lookup-time is essential for an on-the-fly reversal of hashes. The third feature is our
observed insertion time of data. This one-time aspect is not central to hash reversal, but
can factor into the choice between those two.

7.3.1. Evaluation of Redis

In this section we evaluate performance of Redis with two setups. In our first test, we
perform measurements with an exhausted memory space (cf. Section 7.3.1.1). The second
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test shows Redis’ baseline performance (cf. Section 7.3.1.2). For both tests, we use the
components defined in our architecture (cf. Figure 6.1). We generate sufficient key/value
pairs with our Look-Up Table Generation Unit to fill the entire RAM of our test system.

Look-Up Table Generation Unit. We use all number prefixes defined in Section 2.1 as an
input for our Generation Unit. Then we start all instances of Redis in our Redis cluster.
We test their general availability with the provided command-line tools.

Once the cluster is up and running, we start our program. First, the number prefixes are
taken to generate all potential numbers. Sequentially parts of this number space is used
to calculate their hash digests. After the key/value pairs are ready, we use the API to fill
the Redis database with them.

Phone Number Database. We use common command-line tools to monitor our cluster.
For example, a combination of the tools free and htop help us to keep track of the system
resources, especially regarding the utilization of the system’s memory. Once the maximum
amount of pairs are inserted and the cluster is running, the database allocates all available
memory space. However, Redis generates no other substantial overhead such as CPU usage
or I/O disk.

Hash Reversal Unit. We use part of the inserted data as an input for our terminal. The
data is processed to be then inserted into our Redis cluster. We use the CLI command
time to measure the lapsed time per search request. Every measurement is repeated ten
times and averaged out.

7.3.1.1. Test 1 with Redis

In this section we test Redis at maximum capacity of the OpenStack setup. We generally
want to test the three features: Growth, lookup times and insertion time on our databases.
However, this test doesn’t measure the growth of Redis, because we only measure Redis
at maximum capacity.

Insertion Time and Growth. The process of filling the database took around 13 hours and
was aborted once all the RAM was used. We are able to fit around 3.8 billion pairs into
our cluster using up all 600 GB of RAM.

Lookup Times. We provide an overview of our findings in the Figure 7.10 and Figure 7.11.
We measure the lookup-times for 1, 10, 100, 1000 and 10000 keys. The data is plotted
on a logarithmic graph to the basis of ten. This is done, because our batch-size grows
exponentially instead of linear and this needs to be reflected in the plot of the resulting
data.

In Figure 7.10 we depict the batch-size for x-axis and the entire lookup-time for y-axis.
We can see here a linear growth in relation of number of search keys and their lookup-
time. The data plotted here seem rather smooth, but in fact has some variants due to
some background noises generated by the OS and network. The overhead introduced by
background noises, however, is negligible compared to lookup time, hence it is not clearly
visible on the plot.

The Figure 7.11 shows the normalized lookup-times divided by the batch-sizes. Again,
the x-axis reflects the batch-size, but the y-axis now shows lookup-times per one record
(and not per bulk). This gives us better insight of Redis’ performance regarding single
lookup-times. We measure a constant lookup time of 0.1ms per key.

We see smaller variations on the data points. The results show a linear growth of lookup-
times in regard to searched keys. This reflects Redis’ internal data structure and their
guarantee of a constant lookup-time per searched key. We can therefore match the theo-
retical numbers with our practical evaluation.
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Figure 7.10.: Redis lookup time on maximum Capacity

Summary. Redis seems to be a good choice to guarantee constant lookup-times for an on-
the-fly hash reversal setup. The only substantial hindrance is the amount of RAM needed
to setup such a database. Renting or buying around 19 TB of needed RAM is manageable
and not out-of-the-question, but requires significant costs.

The question arises, if an attacker can rent this amount of memory. One example could
be the high memory instances of Amazon EC2, which allows users to rent up to 24 TB of
RAM [136]. For instance Those instances are designed to provide a sufficient infrastructure
for in-memory database such as Redis or SAP HANA. The costs for an 12 TB instance is
30.54$ per hour for three years [137]. If we look also at the pricing for the 6 TB and 9
TB versions, we assume the cost of 24 TB to be around 60$ per hour. This also entails a
3 year contract, which results in a total cost of around 1.6 million dollars.

7.3.1.2. Test 2 with Redis

This test is based on the Fujitsu setup. The Redis version on this test is the rolling release
directly from GitHub’s master branch. Our API is based on HIREDIS-VIP and is also
retrieved as its current GitHub version. The goal of this test is not to run Redis at max-
imum capacity, but instead offer some baseline results in order to provide measurements
that can be compared with measurements of LMDB (cf. Section 7.3.3).

Size growth. In Figure 7.12 we see the results of Redis’ growth with different amounts of
inserted keys. We use the following steps for the pairs included in the database: 1k, 10k,
100k, 1M, 10M and 100M. After the pairs are inserted, we measure the memory usage
with Redis’ internal variable used memory provided the command redis-cli info memory.
We make sure, that all keys are inserted by checking the current size of the database with
the internal command dbsize.

The Figure 7.12 is on both axis on a logarithmic scale. We can see a high initial memory
usage of our Redis cluster. This makes sense, because we run multiple instances of Redis.
Therefore we generate a high initial overhead, as we essentially run Redis 120 times.
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Figure 7.11.: Redis lookup time normalized

Eventually, the size growth approaches a linear growth with more entries inserted – analog
with the theoretical complexity of hash tables.

We normalize the growth in regards to the number of inserted values in Figure 7.13. Once
the normalization is done, we can see more clearly the growth of memory consumption
in regards to inputted values. In fact, we see a decline of per pair memory allocation
with growing number of input pairs, because of the high initial overhead. However, the
data shown in Figure 7.13 seems to converge to a constant memory growth of 0.2 kB per
inserted key.

Lookup times. In this test we further examine lookup times with a fixed amount of inserted
records. In particular, we fix the size of the database to 100M entries in Redis cluster in
order to see the impact of the Search Request batch-size on Redis. The search requests
vary in the batch sizes: 1, 10, 100, 1k, 10k, 100k and 1M. We again take ten measurements
and report averaged values.

We see in Figure 7.14 a linear growth of look-up times with growing batch sizes. Thus, we
can again confirm a constant lookup-time per single search request query. This implies,
an attacker can achieve constant lookup-time no matter how many numbers are included
in a search request. Our observations are supported by results plotted in Figure 7.15,
where we show normalized lookup-times with the amount of searched keys – resulting in
a lookup-time of 0.03 ms per key.

7.3.2. Evaluation of LMDB

In this section we measure the performance of LMDB to reverse hash digests. Here, we
use the implementation of our architecture as described in Section 6.3. We first discuss
the utilization of the different components in our tests. We run the tests on our Fujitsu
setup, so we have sufficient RAM for this in-memory database.

Look-Up Table Generation Unit. In contrast to the first test with Redis (cf. Section
7.3.1.1), here we fill the database with a predefined amount of key/value pairs. We use
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Figure 7.12.: Redis Size Growth
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Figure 7.13.: Redis Size Growth Normalized
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Figure 7.14.: Redis lookup times for different Search Requests
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Figure 7.15.: Redis lookup times for different Search Requests normalized
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an exponential growth for this amount and use the steps 100k, 1M and 10M. The pairs
themselves are randomly chosen, but in an ordered list.

The unit handles this input accordingly to procedure described in Section 6.3.1. We use a
one-size-fits-all approach with the size of the database. The size needs to be predefined by
us for our tests. We choose the same size of 500 GB for all iterations with 100k, 1M and
10M entries. Please note, that this will not define the size of the resulting database file.

Phone Number Database. The database file is located on the disk. There is no need to
monitor the database itself, as this is literally just a file – contrary to the Redis cluster.
We show the growth of the finished file in Figure 7.16. We generally use the provided CLI
tools to access the database. More specifically, the tools mdb dump are used to see the
inserted data and mdb stat to access the size and numbers of the B+-Tree.

Hash Reversal Unit. In accordance to Section 6.3.3, this unit needs to be provided with
values to search the database. We use randomly chosen key/value pairs from the database.
We assume here, that the database should be complete and therefore every key should be
represented in the database. If the database is incomplete, other assumptions need to
be reevaluated. For instance, the list of initial phone number prefixes would be then
incomplete and needs to be extended with the missing prefixes.

We measure every bulk-search with the glibc-function clock(). The measurement is re-
peated ten times and averaged out. As also mentioned in Section 6.3.3, we use one trans-
action to retrieve all values to the search keys, which commits for each search.

7.3.2.1. Tests with LMDB

In this section we present results of tests of multiple aspects of the utilization of LMDB in
context of hash reversal. For one, we examine the growth of the database. For the other,
we examine the lookup-time for different amounts of search-request and different sizes of
the database. For that, we provide an overview with the raw data in Figures 7.16 and
7.18, in which we use the logarithmic scale.

Size growth. We first look into the size growth of LMDB depending on the amount of
inserted values. For that, we fill the Phone Number Database with sufficient key/value
pairs. The Generation Unit filters the phone number prefixes according to our predefined
number of needed entries. Those are then inserted using the using the approach described
in Section 6.3.1. In our case, we create multiple databases with 1k, 10k, 100k, 1M, 10M
and 100M entries inserted respectively.

Once the database files are generated, we retrieve their size in kilobytes with the tool ls. We
can see in the Figure 7.16 a linear growth of database size. The scale is again logarithmic
to reconcile the exponential steps in our tests. We also normalize the data by dividing the
overall size by the number of inserted entries and show the corresponding results in Figure
7.17. We can see here a constant growth of the database per entry. The beginning of the
figure depicts an initial overhead of the database itself. Overall, experiments show, that
the usage of LMDB will result in linear growth in regard to the amount of inserted pairs.

This is a positive result, as the overhead of the database structure itself is not substantially
bloating the actual size of the inserted pairs. So we can assume, that the added space to
the key-value pairs is also at least linear. Thus we can project the size of the database for
more inserted pairs.

Lookup times. We then also test the Search Request timings using our Hash Reversal
Unit. We use for our tests a search request with 1k entries. The entries are randomly
chosen from the inserted data. We run this search on databases with the amount of 1k,
10k, 100k, 1M, 10M and 100M inserted pairs respectively.
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Figure 7.16.: LMDB Size Growth
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Figure 7.17.: LMDB Size Growth normalized
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For this test, we use the C-function clock() and the struct clock t from the library time.h.
We included the measurement of time directly into our Hash Reversal Unit, to have the
most direct values. In our preliminary runs, we see, that the printout of the searched-input
has a massive performance impact. For example, in the search of the 1k-database and the
use of printf we see a measurement of around 7ms. However, without this output, the
results are around 1ms. Nonetheless, running test without some kind of processing of the
data is not typical. Yet, we want here to measure the performance of the database not the
implementation of printf or the processing time of the results. We therefore measure the
lookup times without any output of our unit.

We make sure, that all values are found in our tests, by aborting the test-run if otherwise.
As usual, we run every test ten times and average out the results. The tests are measured
in milliseconds and depicted in Figure 7.18. Similarly to previous tests, the x-axis is drawn
on a logarithmic scale, because our x-values are in exponential steps. The x-axis shows
the size of the database in number of entries and the y-axis shows the look-up time in
milliseconds.

We see in Figure 7.18 a linear growth in regards to the size of the database. However, we
see at the beginning again an initial discrepancy. As we keep the search-size constant on
every run, we nonetheless see a growth in look-up times. Most likely this stems from the
different depth of the internal tree. Those measurements reflect the fact, that traversing
a tree with different depths will result in different times. Furthermore, we observe in our
first run of each test bundle initial RAM misses – the first measurement is always the
worst. Those misses are obviously due to the first loading of the file into the RAM. The
resulting initial overhead is not considered in our numbers, as we want to measure an
already running database.

For Figure 7.19 we test a fixed sized database – 100M entries – against differently sized
Search Requests. We use the sizes of the requests in steps of 1k, 10k, 100k and 1M
values. We see here, that LMDB has linear growth in regards of the inserted pairs. We
also normalize the look-up times by dividing with the size of the search request. This is
visualized in Figure 7.20. We see here a declining look-up time per searched key. Our
empirical measurements confirm the theoretical logarithmic search complexity of the B+-
Tree.

All values searched in our previous experiments are sorted. This has some positive effects
on LMDB, as the internal cursor can just traverse linearly through the tree. In another
experiment, we want to examine this effect. For that, we took 1M random values and
search those in a 100M database. We find 2631.5957 ms lookup-time for all searched
values. This is around 0.002631 ms per key/value pair.

In our sorted test, we measure 0.001886 ms per key/value pair. So, searching for random
pairs increased our times by around 140%. This overhead can be eliminated by preliminary
sorting the search request, or the lower performance can just be accepted.

Initiation Time. We observe in our tests, that the initiation time for LMDB degrades
exponentially. The Figure 7.21 shows the results the initiation time for different amount
of inserted keys. The measured times for 1k, 10k and 100k inserted keys roughly grow
linear with around 0.038 ms per key. However, with 1M inserted keys, the insertion time
rises to 0.049 ms per key. This trend continues, with 10M having a normalized insertion
time of 0.068 ms per key and with 100M keys an insertion time of 0.288 ms per key.

Especially in the test with 100M entries, we see a faster insertion time for the first 50M
entries in contrast to the last 50M entries. This may be a problem stemming from its
architecture and needs more investigation in future work. As a possible workaround, we
could deploy the same clustering mechanism as Redis. The keys could be arranged into
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Figure 7.18.: LMDB lookup times
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Figure 7.19.: LMDB lookup times for different Search Requests
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Figure 7.20.: LMDB lookup times for different Search Requests normalized.

specific buckets with for example CRC16. Each bucket is represented with a single database
file, holding the values. With this solution, we could build a small cluster of LMDB files.
This would allow us to improve insertion times and most likely reduce lookup-times using
concurrency.

7.3.3. Comparison of Databases

In this section we want to compare our two evaluated database engines. We evaluated
previously Redis in Section 7.3.1 and LMDB in Section 7.3.2. Both databases generally
work in our scenario to reverse hash digests of phone numbers – as shown in the two
Sections 7.3.1 and 7.3.2.

Here, we compare performance of both databases. While they both reside in RAM, they
are built upon vastly different underlying structures. For instance, LMDB is based on B+-
Trees (cf. Appendix B) and Redis uses hash tables to store its data. Nonetheless residing
in RAM makes both databases viable choices, because RAM is currently the fastest storage
excluding registers and cache. In our tests, however, we find different performance for both
database engines.

We use our three features to compare both database engines. First, we compare their size
growth per inserted records. Then, we compare the lookup times of both tools. Last, we
contrast their initiation times for different amount of records.

Size growth. LMDB in this instance handles the included data effectively. It stores the
more values in less RAM space. This results in a smaller database, especially in instances
with a lower amount of keys inserted. We confirm that LMDB grows linear with more pairs
inserted. If we extrapolate our findings, LMDB would need around 9 TB of RAM-space
to store 118 billion entries of hash digest and phone number pairs.

In contrast to LMDB, Redis has a higher initial overhead due to the cluster structure. Here
the multiple instances of Redis also multiply its overhead. Yet, the size as shown in our
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Figure 7.21.: LMDB Initiation time for different amount of keys.

tests also grows linear with expanding number of inserted pairs. By extrapolating those
numbers, we would need 19 TB to store the entire number space of 118 billion entries.

We compare their numbers directly in Figure 7.22. The x-axis shows the amount of pairs
inserted in the respective database on logarithmic scale. The y-axis shows the normalized
size of the database also on a logarithmic scale – meaning the space in kilobyte is used
per entry of the database. First thing we see is, that Redis has roughly a 400x factor
improvement in comparison to LMDB with 10k inserted records. The factor diminishes
once the size of the database grows. In our last measurement with 100M entries, Redis
has around double the size of LMDB.

We can see, that LMDB is more space efficient with regards to memory requirements. This
is mostly due to 120 nodes deployed in our Redis cluster. We see, that LMDB’s initial
size overhead doesn’t factor much into the size of database. However, Redis’ initial size
overhead isn’t a considerable factor only for a lager number of pairs. Nonetheless, doubled
size is still a substantial factor, especially in the context of billions of entries. This would
also mean double the cost for a complete deployment of Redis compared to LMDB holding
118 billion entries.

Lookup times. LMDB shows better than constant lookup times (cf. Section 7.3.2.1). In
fact, we see for larger search batches even better look-up times. With LMDB we are able
to achieve lookup-times below 0.01 ms per key, even getting results of 0.002 ms per key.

With our two tests on Redis (cf. Section 7.3.1.1), we are also able to get constant lookup
times. In the first test (max RAM capacity occupied) we achieve around 0.1 ms per
searched key. With the second test we are able to get better results. Here, the test shows
around 0.03 ms per key.

We directly compare the look-up times for both database engines in Figure 7.23. The
graph shows the number of searched keys on the logarithmic x-axis and the normalized
lookup-time on the logarithmic y-axis. We also plotted the differences of both databases
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Figure 7.22.: Comparison normalized Size Growth

per number of searched keys. We clearly see, that LMDB is faster than Redis. Redis’s
and LMDB’s constant time for finding values in RAM is true even for a very large amount
of pairs inserted. We also see, that LMDB is roughly ten times faster than the results of
Redis in [2].

In the Figure 7.23 we also included the difference between the look-up times of Redis and
LMDB. We observe here an increasing difference between both database engines. In fact,
LMDB has around 20 times faster lookup-times per key for searching 1M keys. This can
be attributed to the underlying data structure and minimalistic approach of LMDB.

Initiation time. However, Redis is faster than LMDB in regard of initial creation for
larger database sizes. We include in Figure 7.24 the difference in creation time of Redis
and LMDB. We can see, that Redis’ creation time – including calculation and generating
the number/digest pairs – is linear. In contrast to that, LMDB seems to be exponential.

While this is an important observation, a faster creation time is of minor importance, since
it is an initial one time cost and not running costs – like look-up times or disk/RAM space.
Nonetheless, this is a factor that needs to be further examined, as there could be some
additional potential for improvement.

Summary. In conclusion, LMDB shows in our evaluation to have a clear advantage com-
pared to Redis. With half the size and vastly faster lookup-times, LMDB seems to be the
better choice for the task of reversing phone number hashes.

However, LMDB shows less efficient behavior than Redis at the database creation time.
Furthermore, in our tests we use the cluster feature of Redis. So, we have multiple Redis’
instances handling our writes. In contrast, LMDB allows only one writer for one database,
which is obviously the bottleneck in addition to the underlying data structure.

For future work, it would be interesting to look into parallelizing LMDB. It would be inter-
esting to see, if the same concept of Redis’ CRC16-buckets would make LMDB generally
faster – especially for writing the data – and would reduce the initial setup time.
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Figure 7.23.: Comparison normalized look-up times
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7.4. Evaluation of Rainbow Crack

In this section we evaluate hash reversal using rainbow tables. We use our Rainbow Crack
test setup called Manjaro VM from Section 7.1.5. We explain Rainbow Crack in more
detail in Section 2.6. We focus on three aspects in our analysis. First, in Section 7.4.1
we evaluate the hit-rate with different chain lengths and counts. Second, in Section 7.4.2
we reevaluate the analysis of all possible mobile phone numbers. Third, we look into the
relation between original number space and needed number of hash calculations to achieve
a specific hit-rate in Section 7.4.3.

We focus here on different performance aspects of rainbow tables. As we discuss in Section
2.5, rainbow tables are a trade-off between lookup-times and size of the table. In particular,
rainbow tables with longer chains should impose longer lookup times – because one need
to retrace the entire chain. With shorter chains, however, one would need to have a higher
chain count, which, in turn, would result in a larger table. In this section, we evaluate
exactly the impact of these aspects on performance of rainbow tables.

7.4.1. Evaluation Chain Length and Count

We evaluate here the impact of the ratio between chain length and chain count. We
assume, that a sum of chain length and chain count is constant and equals ten billion. We
then split these 10 billion between length and count in different places to evaluate different
size/lookup time performance trade-offs.

First, we create four different tables with the following divisions:

1. 100x100000000

2. 1000x10000000

3. 10000x1000000

4. 100000x100000

We use the corresponding number for the version in our figures. Our first version generates
100000000 chains with the length of 100 reductions. The next three entries just shift the
factor ten from number of chains to length of the chains.

The number space of all versions are German mobile phone numbers. We generate all four
versions using the command in Listing 2.1.

We can see in Figure 7.25 the generation time of each version. All of them have a similar
execution time with minor variation. Nonetheless, we can’t observe any meaningful impact
on the generation time by varying chain length and count.

After the generation of the rainbow tables, we need to sort them with rtsort. We can see
on the logarithmic scale in Figure 7.26, that the sorting times of different versions behave
according the their respective file-size. In particular, if we save more chains per file, we
therefore need longer to sort them.

Now, we generate 10k random hash digests based on our input space. Those hashes are to
be reversed with the tool rcrack. We visualized our results in Figure 7.27. The success-rate
of all versions was above 99%. We see a growth of the lookup-time by a factor of 100.
This means, by reducing the size of a table by the factor ten, the lookup times will grow
by a factor of 100.

However, we are not able to run the test for version four. If our current data points are a
correct indication, the lookup-time for the fourth version would be increased by factor 100
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Figure 7.25.: Generation time of different chain lengths and counts.
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Figure 7.26.: Sorting time of different chain lengths and counts.
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Figure 7.27.: Lookup Time of different chain lengths and counts.

in contrast to version three. So, the lookup would take over 37 days and is not feasible for
our purpose of practical hash reversal.

Finally we compare the size impact of the different versions. We plotted our results in
Figure 7.28. Here, we can see a predictable behavior of RainbowCrack-NG. As discussed
before, each chain is saved with 128 bits (cf. Section 2.6). So, for instance, for our first
version, we just multiply the number of chains with their size: 128 · 100000000 = 1.6 · 109

– which is identical to our findings of 1.5 GB for the first version.

7.4.2. Evaluation Reversing All Mobile Phone Number

In this section we evaluate performance of rainbow table for reversing hashes of all mobile
phone numbers. We use our test Manjaro VM setup from Section 7.1.5 to generate 20
rainbow tables with a chain length of 1k and 100M chains per table. All of those tables
target digests from all mobile phone numbers. We need to generate multiple tables to
achieve a higher success rate with this approach.

To generate different rainbow tables, we just increment the index number using rtgen
presented in Section 2.6. The file sizes are constant with 1.5 GB for each index. The index
can be seen as a seed for each rainbow table, so we don’t generate the exact same table.

We first show the characteristics of our tables and then analyze their behavior by reversing
10k random hash digests. However, some aspects of this test are not new, as they are
similar to our previous evaluations. Here, we want to show, that an attacker can easily
and feasibly reverse hash digests based on world-wide mobile phone numbers.

In Figure 7.29 we visualize the generation time for each rainbow table and the lookup-time
of 10k random digests. We can see, that those times vary only marginally between different
indexes.

We further examine the hit-rate for 10k random digests in every single Rainbow Table.
The Figure 7.30 depicts the success-rate for each index of reversing the same hash digests.
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Figure 7.30.: Percentage of found Numbers.

We can observe, that each table itself can reverse around 50% of the searched hashes. We
can also observe, that the index has no major effect on the success rate.

We know already, that each generated table has roughly the same success-rate. Now, we
also want to look into the actual differences between the tables. For that, we generate
10k random hash digests and reverse the digests with each table independently. We then
compare two tables to each other using their solved digests. In other words, we count
every successfully reversed digest in both tables. The results are visualized in Table 7.3.
We can see in the table, that on average 2585 solved digests are identical within two
different rainbow tables. While this indicates a collisions of chains, the collisions are
equally distributed. So, while the reduction function creates collisions, there seems no
clustering is prevalent.

Equ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 5,077
2 2,572 5,092
3 2,546 2,598 5,104
4 2,628 2,596 2,614 5,116
5 2,539 2,562 2,527 2,563 5,029
6 2,621 2,556 2,557 2,575 2,501 5,053
7 2,572 2,591 2,576 2,589 2,559 2,599 5,092
8 2,551 2,521 2,549 2,583 2,495 2,508 2,552 4,980
9 2,571 2,645 2,598 2,601 2,591 2,555 2,603 2,546 5,117
10 2,610 2,619 2,658 2,636 2,571 2,591 2,618 2,563 2,613 5,120
11 2,604 2,550 2,605 2,631 2,535 2,561 2,580 2,521 2,628 2,577 5,097
12 2,581 2,581 2,632 2,622 2,609 2,591 2,672 2,564 2,638 2,620 2,671 5,131
13 2,567 2,549 2,573 2,611 2,580 2,561 2,560 2,542 2,558 2,562 2,534 2,566 5,029
14 2,568 2,630 2,615 2,653 2,557 2,570 2,575 2,555 2,584 2,663 2,650 2,627 2,626 5,114
15 2,570 2,566 2,575 2,601 2,573 2,569 2,566 2,569 2,568 2,623 2,619 2,603 2,556 2,549 5,049
16 2,636 2,606 2,573 2,618 2,594 2,591 2,631 2,562 2,583 2,650 2,590 2,598 2,611 2,648 2,581 5,144
17 2,629 2,646 2,655 2,596 2,544 2,572 2,616 2,548 2,626 2,613 2,564 2,606 2,597 2,588 2,572 2,605 5,105
18 2,537 2,587 2,560 2,547 2,540 2,582 2,551 2,507 2,580 2,593 2,551 2,666 2,548 2,605 2,572 2,626 2,568 5,057
19 2,555 2,577 2,630 2,613 2,588 2,554 2,580 2,550 2,623 2,599 2,622 2,593 2,523 2,578 2,522 2,610 2,572 2,537 5,074
20 2,552 2,578 2,572 2,612 2,512 2,565 2,605 2,569 2,628 2,616 2,606 2,597 2,553 2,582 2,537 2,612 2,600 2,568 2,603 5,093

Table 7.3.: Heatmap of same hashes in different Tables

Another point we can take from Table 7.3 is, that the order of rainbow tables used with
rcrack doesn’t affect the collective success-rate. We use this observation to include all
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Figure 7.31.: Percentage of found Digests using different amount of Rainbow Tables.

generated rainbow tables to reverse hashes. The different tables are iteratively added to
rcrack. We want to show with this process the success-rate for different amounts of rainbow
tables used in a single lookup.

We first use only one table, then added another one, until we use all 20 generated rainbow
tables. We depict our findings in Figure 7.31. Here, we plotted the success-rate using a
specific amount of tables. The Figure 7.32 gives an overview of the different look-up times.
We can see, that the times only marginally increase and then stagnate with more used
tables. We attribute this observation to rcrack, where only unsolved digests are searched
in the subsequent table.

7.4.3. Evaluation of Size/Performance Trade-off

In this section we look into the relation between number of calculations and the size of the
underlying phone number space. In other words, we want to find an estimation of number
of calculations needed in order to achieve a certain amount of certainty.

For that, we generate rainbow tables for four different phone number spaces. We use TF all
(all France overseas phone numbers), GN mobile (all Guinea mobile phone numbers),
DE mobile (all German mobile phone numbers) and US all (all USA phone numbers).
We use for all four spaces the chain length of 1000, so we have comparable lookup-times.
Nonetheless, the amount of chains varies substantially.

We put together the Table 7.4. Here we can see the assigned number of the space, the
prefixes used to generate the space and the size of the resulting number space. We also
assume in order to achieve over 99.9% accuracy, we need to generate ten times the number
of calculations based on previous tests.

We look first into TF all. Here, we just generate a table with a chain length of 1000 and
100 chains. This is already ten times the targeted number space. Further, we obviously
cannot generate randomly distinct 10k hash digests to search. Thus, we only search for
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Figure 7.32.: Lookup Times of different amounts of Rainbow Tables.

Table 7.4.: Size of Space

Number Number Prefix Cardinality of space

1 TF all 10000

2 GN mobile 11000000

3 DE mobile 538333000

4 US all 5000000000

fewer digests. Our lookup for 6323 different digests resulted in 6206 numbers found –
which is a 98.15% success rate. This result is not our initial goal of a success-rate of
99.9%, however the used search space is fundamentally too small.

Next, we use the space of GN mobile for our next test. We create eleven tables – again
with a chain length of 1000, but with 10k chains per table. This results in 110 million
computations to generate all tables, which is ten times the initial number space. We can
see in Figure 7.33, that we achieve over 99.90% success-rate with just nine tables. Thus,
we can validate our initial assumption with this experiment.

We further look into the phone number spaces of DE mobile and US all. Both have a
chain length of 1000 and have 5 tables generated. For DE mobile we include one million
chains per table and for US all 10 million chains. We see in Figure 7.34, that we achieve
99.9% by generating tables with ten times the calculations in comparison to the initial
space.

7.5. Discussion

In this section we want to discuss and compare our evaluations of the different hash reversal
approaches. Although we tested the different approaches on hardware designed for best
performance, we are able to distinguish some key differences of the presented techniques.
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Figure 7.33.: Percentage of found Digests with GN mobile.
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7.5. Discussion 81

Our evaluation of hash databases shows clearly the feasibility of such an attack. While we
achieved a better performance with LMDB, we still need around 10 TB of RAM to store
all 118 billion mobile phone numbers and their digests. Obviously, this is currently only
feasible for a states-actor or a service provider. However, the price tag of 30$ per hour
for 12 TB of RAM with a commitment of 3 years makes this approach not economical in
comparison to the other approaches.

The use of rainbow tables offers also a viable approach to reverse hashes. We were able
to reverse all possible mobile phone numbers with 20 tables achieving a success rate of
100%. While the engineering time of the reduction function and creation time of all tables
are only once needed, we still have running costs of a mean lookup time of around 4.5
minutes. Further, this technique shows the feasibility of reversing hashes for an attacker
using consumer hardware.

In our opinion, the easiest approach to reverse hashes is brute-force. We were able to
reverse all mobile phone numbers in under 100 seconds for different batch sizes using
JTR. The tests were done using consumer-grade hardware. With the fast lookup times for
larger batch-sizes and a straight-forward engineering approach, our brute-force approach
to reverse hash digests shows clearly, that hashing phone numbers only provides a false
sense of privacy. Both states-actors/providers and single attackers can reverse the hashes
of mobile phone numbers with ease.
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8. Conclusion and Future Work

In this thesis, we investigated the privacy problems of contact discovery methods commonly
used in mobile messenger apps. We first analyzed and compared contact discovery methods
of multiple mobile messenger apps. We discovered, that half of the apps don’t provide any
anonymization for its users. The other half of messenger apps hash the phone numbers
with a simple SHA-algorithm.

We further explored two different hash reversal techniques: Brute-forcing and lookup
databases. We proposed for each techniques a generic hash reversal architecture – specific
for phone number hashes. We successfully instantiated our brute-force approach with
the tools Hashcat and JTR. For the lookup database we also instantiated the generic
architecture with two in-memory key-value databases – Redis and LMDB.

In the evaluation we measured three hash reversal techniques. First, we used our brute-
force approach to reverse hash digest. We achieved hash reversal times of 93.2 seconds
for a million hash digests – accumulating a lookup time of under 0.0932 ms per hash
digests. Furthermore, we were able to get near instant lookup times with lookup databases.
However, we were limited by our test setups and couldn’t include the entire mobile phone
number space due to limited RAM available in our test-bed. Last, we evaluated rainbow
tables with a specifically crafted reduction function. With this approach we are able to
reverse hashes within 4.4 minutes.

In summary of the evaluation, the brute-force approach clearly stands out. The perfor-
mance of brute-force is twice as fast as rainbow tables, without the overhead of table
generation. Further, brute-force doesn’t need to be set up like databases – holding so
many records in a database is not easily done. In fact, brute-forcing is a straight forward
approach, which can be easily adapted for other hashing algorithms or limited to target
specific phone number spaces.

In conclusion, we showed, that an attacker can practically reverse hashes based on mobile
phone numbers. As a result, the use of hash algorithms for anonymization in mobile
messengers only provides marginal privacy improvement.

For future work, we can further improve the rainbow tables. In the current implementation,
this technique only uses the CPU to calculate the hashes. We think, that this part can
achieve lower generation times and lower lookup times, if a GPU is used instead of a CPU.

The size of the databases can also be further reduced – especially in regards of representa-
tion of phone numbers in the database. We currently save the phone numbers as strings.
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If we implement a transformation of phone number strings to a phone number integers,
we could reduce the needed size substantially. Another factor to consider is, that the
numbers are saved in memory. So, we save them in chunks of 4k memory pages. Here, we
can further tune the settings of the databases to minimize the empty spaces in allocated
pages.

Another idea is to build a cluster with LMDB. There, one can achieve instant lookup
times, without experiencing the limitation of a single LMDB-file.

The brute-force approach already operates close to maximum hash-rate of our GPU. How-
ever, this approach could theoretically reverse the entire world-wide phone number space
in around 13 hours. In future works, we want to setup JTR with this input space.

All three hash reversal techniques should be adapted to other hashing algorithms, such as
SHA3 or bcrypt [138]. While the fundamental problem of a limited input space remains, it
is not clear what performance impact other hashing functions with larger digests or lower
performance have on the three hash reversal techniques.
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Appendix

A. Config for Cluster-Creation Redis

We use the create-cluster script [127] with the input config.sh from Listing 8.1 to create
our Redis cluster.

BIN_PATH="../../ src/"

CLUSTER_HOST =127.0.0.1

PORT =30000

TIMEOUT =2000

NODES =120

REPLICAS =0

PROTECTED_MODE=yes

ADDITIONAL_OPTIONS="--save 0 --maxmemory 4294967296\

--maxmemory -policy noeviction"

Listing 8.1: Redis Cluster Configuration config.sh
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96 8. Appendix

B. B+-Tree Data of LMDB Evaluation

We give here a short overview of the internal structure of the databases’ B+-Trees in Table
B.1. This part is unique to LMDB, because the database is based on a tree structure –
whereas Redis uses hash tables. We provide this data for an interested reader and to give
the best insight of the tests.

The data is collected with the tool mdb stat. Here one can see the growth of the depth
and number of leaves of the internal B+-Tree. The table conforms our previous indication,
that the growth of the database is also linear with internal tree values.

Table B.1.: Detailed Growth of LMDB

Number of Entries Depth Branch Pages Leaf Pages Overflow Pages

1k 2 1 22 0

10k 3 5 215 0

100k 3 35 2133 0

1m 4 399 21342 0

10m 4 4206 214007 0

100m 5 35630 2138976 0
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