
Master Thesis

Detection of Software Vulnera-
bilities in Smart Contracts using
Deep Learning

Oliver Lutz
Department of Computer Science
Chair of Computer Science II (Secure Software Systems)

Prof. Dr.-Ing. Alexandra Dmitrienko
First Reviewer and Adviser

Prof. Dr.-Ing. Samuel Kounev
Second Reviewer

Submission
19. October 2020 www.uni-wuerzburg.de

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Wuerzburg, 19. October 2020

. .
(Oliver Lutz)

Abstract

The abuse of programming flaws in cryptocurrency platforms can lead to big economic
damage. Therefore, this work analyzes how deep-learning can be utilized to detect vul-
nerabilities in Ethereum smart contracts. As a result, a framework is developed to take
care of data retrieval, pre-classification, and model building. With this framework, deep-
learning models can be developed, trained, and evaluated to create an AI scanner. Even
with simple neural-network architectures, an AI scanner, capable of detecting eight differ-
ent vulnerability types, achieves an accuracy of 98%. This AI scanner can be deployed for
further usage. However, it can also be extended by new vulnerability types to create an
even more powerful scanner.

v

Zusammenfassung

Der Missbrauch von Programmierfehlern in Kryptowährungsplattformen kann zu großen
wirtschaftlichen Schäden führen. Deshalb wird in dieser Arbeit analysiert, wie Deep-
Learning genutzt werden kann, um Schwachstellen in Ethereum Smart Contracts auf-
zudecken. Als Ergebnis ist ein Framework entwickelt worden, das sich um die Datenge-
winnung, Vorklassifizierung und Modellbildung kümmert. Mit diesem Framework können
Deep-Learning-Modelle entwickelt, trainiert und evaluiert werden, um einen KI-Scanner
zu erstellen. Selbst bei einfachen neuronalen Netz-Architekturen erreicht der KI-Scanner,
der acht verschiedene Arten von Schwachstellen erkennen kann, eine Genauigkeit von 98%.
Dieser KI-Scanner kann zur weiteren Verwendung eingesetzt werden. Er kann jedoch auch
um Schwachstellentypen erweitert werden, um ein noch mächtigeres Tool zu bilden.

vii

Contents

1 Introduction 1

2 Background 3
2.1 Ethereum Platform . 3

2.1.1 Smart Contracts . 4

2.1.2 Vulnerabilities of Smart Contracts 5

2.2 Deep-Learning . 6

2.2.1 Introduction into Machine-Learning 6

2.2.2 Neural Networks . 7

2.2.3 Natural Language Processing . 8

2.2.4 Text Representation . 8

2.2.5 Recurrent Neural Network based Text Classification 9

3 Related Work 11
3.1 Static Vulnerability Detection Methods . 11

3.2 Dynamic Vulnerability Detection Methods 12

3.3 Machine-Learning for Vulnerability Detection 13

4 Approach 15
4.1 Data collection . 16

4.2 Deep-Learning . 18

4.3 Evaluation . 19

5 Implementation 21
5.1 Applied Technologies . 21

5.1.1 Python . 21

5.1.2 Docker . 22

5.1.3 MySQL Database . 22

5.1.4 Tensorflow . 23

5.2 Smart Contract Bytecode Aquisition . 24

5.2.1 Architectural Overview . 24

5.2.2 Ethereum ETL . 25

5.2.3 Smart Contract Loader . 27

5.2.4 Bytecode Loader Infura . 28

5.2.5 Bytecode Loader Dedaub . 29

5.3 Pre-Classification of Smart Contracts . 31

5.3.1 Architectural Overview . 31

5.3.2 Dedaub Smart Contract Classification 32

5.3.3 Oyente Smart Contract Classification 34

5.3.4 Mythril Smart Contract Classification 36

5.4 Deep-Learning Classification . 40

5.4.1 Architectural Overview . 40

ix

x Contents

5.4.2 Bytecode Preprocessing . 41
5.4.3 Dataset Preparation . 45
5.4.4 Deep-Learning . 48

5.4.4.1 Requirements to the Deep-Learning framework 48
5.4.4.2 Module architecture . 49
5.4.4.3 Deep-Learning workflow . 51
5.4.4.4 Deep-Learning models . 54

5.4.5 Model serving API . 56

6 Evaluation 59
6.1 Definition of the Metrics . 59
6.2 Evaluation Results . 62
6.3 Comparison with other machine-learning approaches 67

7 Conclusion 69

List of Figures 70

List of Tables 72

Acronyms 75

Bibliography 77

x

1. Introduction

Since the Bitcoin [1] has been introduced in 2009, the interest and the attention to us-
ing electronic currencies are rising. By using an innovative underlying technology, called
blockchain, Bitcoin is an entirely decentralized cryptocurrency and does not rely on trusted
third parties, such as banks [1]. Furthermore, the technology around blockchain becomes
more and more popular, which led to other variants of cryptocurrency platforms, such as
Ethereum. In Ethereum, the focus also lies on creating fully automated contracts on top
of the blockchain technology, the so-called smart contracts. With smart contracts, plenty
of new behavior can be built on top of the blockchain. Since this technology is available
to everyone, it is also easy to create and deploy own smart contract. In the process of
developing a smart contract, it is crucial to pay attention to that the smart contracts do
not open up any exploitability. Caused by the impossibility to revert certain actions, it is
key that users can trust the reliability of smart contracts.

As indicated, this technology can lead to economic consequences caused by software vul-
nerabilities in smart contracts. Ethereum operates on open networks where everyone can
join without trusted third parties. Therefore, the lack of code quality can lead to unfore-
seen security problems. The abuse of programming flaws, like the reentrancy bug, has been
exploited to steal 60 million US dollars [2, 3]. This is just one of many attack possibilities,
which have occurred due to several security vulnerabilities.

Consequently, mitigation strategies have to be researched, which will be the focus of this
work. However, flaws of smart contracts are hard to mitigate if those are already de-
ployed on the blockchain. In addition to that, the automation of finding vulnerabilities
can be intricate, which is why experts often offer audits to increase security. Nevertheless,
automated tools for scanning smart contracts are developed for the detection of program-
ming flaws in smart contracts to support programmers during the development or in the
pre-deployment phase. As a result, the flaws of programs can be detected and, hence, mit-
igated [4]. For that purpose, different approaches are already realized, such as symbolic
execution, SMT solving, taint analysis, runtime monitoring, and fuzzing, which all have
advantages and disadvantages.

A relatively new approach will be investigated, which is detecting vulnerabilities of smart
contracts by utilizing the power of deep-learning. Since machine-learning gained popularity
and turned out to be effective in vulnerability detection in other software, such as C and
C++ [5], this approach is promising in solving the problem of vulnerability detection in
smart contracts as well. With this work, an artificial intelligence (AI) scanner is developed

1

2 1. Introduction

capable of classifying smart contracts assigning the vulnerability type. It includes multiple
vulnerability types combined with multiple tools. The only requirement for this approach
is data. This data is retrieved from the publicly available blockchain. This way, a huge
dataset is available, which can be used to learn the warnings for possible attacking points.
Since only bytecode is publicly available, it will be used as a base for the deep-learning
approach. This might also improve the accuracy since these bytes will not be processed to
a low-level-language. This AI Scanner can be easily extended. This way, the AI scanner
can develop into a powerful tool. In the end, a framework is developed which can be used
for the retrieval of smart contracts’ bytecode and extended by every imaginable neural-
network architecture. This way, the existing models can be easily improved for future
challenges.

This work is structured as follows. Firstly, background information about Ethereum, the
smart contracts, will be introduced. It will be examined how simple code flaws can cause a
financial crisis. Afterward, the basic concepts of deep-learning are introduced, which have
been required for this work’s realization. In the next section, existing tools and approaches
are presented before we dive into the concepts and approaches of this work. Thereafter,
the realization and implementation details are described. The models developed in this
project are then evaluated against standard deep-learning metrics and compared with
existing tools. In the end, this work will be concluded.

2

2. Background

Before we dive deeper into the details of this work, multiple background information is
required. Therefore, this chapter will introduce the basic concepts of several domains.
First of all, cryptocurrency platforms will be introduced, especially the Ethereum plat-
form. In that context, smart contracts and the potential to exploit their vulnerabilities
will be examined. Since this work is based only on Ethereum’s smart contracts, the focus
will lie on that cryptocurrency technology. Afterward, the base concepts and terminologies
of machine-learning, especially deep-learning, will be presented. The standard approach
of developing a deep-learning model, including its key factors, will be explored. Under-
standing these concepts is fundamental to move forward in this project.

2.1 Ethereum Platform

Before introducing smart contracts, we should take a brief look at cryptocurrency plat-
forms using blockchain technology. These systems for cryptocurrencies, such as Bitcoin or
Ethereum, can be described by the following key characteristics:

Decentralized Nature:

In contrast to conventional currencies, virtual money is not administered by a central
authority but by a distributed peer-to-peer network. Therefore, a network of nodes, the
so-called miners, takes care of performing money transactions, data storage, and updates.
They are running the software to communicate with the network. All code, data, and
transactions are shared and available for inspection on every single node. Everyone is
allowed to submit actions on the blockchain since there is no single administrator. All
actions performed inside of this network have to be confirmed by the majority of all
participating nodes [6, 7, 8].

Mathematical Algorithm as a Basis of Cryptocurrency Value:

Money, in the Ethereum context called Ether, can be initially earned by solving a complex
mathematical problem that can be accepted by the other nodes, the so-called mining.
Once a transaction is triggered, a state value for the new block is calculated and stored for
confirmation. By mathematical calculations, this transaction’s validity is also verified by
the nodes participating in the network. It is also ensured that there is a limited amount of
money available inside the network. This way, the amount of money, including its owner,
can be tracked at all times [6, 7].

3

4 2. Background

Resilience to Data Manipulations from Outside:

The information of mined money is stored in a public data structure, the blockchain.
Without going deeper into the blockchain technology, modifications and transactions are
stored in blocks added to the chronologically ordered chain. This order represents the
state transitions, such as an update of money ownership. Before a block is accepted in
the blockchain, it is ensured the state is valid according to the existing chain. Therefore,
the reference to the previous block is validated as well as the mathematically calculated
results. Once the majority of the network accepts a new block, it is appended at the end
of the blockchain. Afterward, it is impossible to rewrite or modify any information on the
blockchain. The network will reject any attempts to modify blockchain entries. The data
is, therefore, immutable and irreversible [6, 7, 8].

Pseudonymous Nature:

In general, there is no special registration necessary to use cryptocurrencies. Users per-
forming actions inside the network are identified by a public key and a private key. All
transactions are related to addresses instead of explicit users. Therefore, it can be hard to
determine a user, although all transactions are stored publicly on the blockchain [6, 7].

Since the base concepts of the Ethereum platform are clear at this point, the smart con-
tracts and their vulnerabilities are examined in the next section.

2.1.1 Smart Contracts

After introducing these essential concepts, we take a more in-depth look into the Ethereum
network. The focus of Ethereum lies in providing a Turing-complete programming lan-
guage. This language is used to write smart contracts. These smart contracts define
custom rules for money ownership, transactions, or state updates on the blockchain. More
detailed, a smart contract is a program that can be called by its address to run operations
on the blockchain. Its code is defined by high-level programming languages such as Solid-
ity [9]. Once compiled, a bytecode is generated. This bytecode will be executed inside of
so-called Ethereum virtual machines. Since every byte of the smart contract represents a
defined operation, the program flow can be reconstructed into an assembly-like code. This
way, it is possible to analyze smart contracts even in the form of bytecode.

When triggered, the execution is autonomous and enforceable for all participating parties
of smart contracts. Therefore, no person can influence the performance of an agreement.
The execution of a transaction costs a price, the so-called gas. Smart contracts are stored
on the blockchain and can not be removed or modified, as explained in the previous section.
However, they are transparent to all users, and there is no party to trust but the algorithms
of a computer. ”Code is law” applies in that context in the sense that if all conditions are
fulfilled, the execution of the smart contracts is guaranteed [6, 10, 7, 8, 11, 12].

Before we move on to an illustration of potential vulnerabilities of smart contracts, we
have a more in-depth technical look at smart contracts and their storage. Internally, state
transitions are represented by a certain type of object, the so-called accounts. These
accounts hold information about the nounce, the ether balance, and the storage. The
nounce is a counter variable used to validate transactions. In parallel to that, smart
contracts are accounts as well. In that case, the account stores the information of the
bytecode. This account cannot be manipulated or controlled by a user. Therefore, instead
of running a transaction calling a regular user account address, a transaction is triggered,
calling the smart contract’s account address. This way, a smart contract is integrated into
the blockchain [6, 10]. Information and results of a transaction are stored in so-called
receipts and are bound to the transaction objects. Transactions, on the other hand, are

4

2.1. Ethereum Platform 5

stored in the blocks. This way, it is possible to collect information about smart contracts
and find the bytecode. This approach is implemented by the tool ethereum-etl, which will
be used in this project [13]. Detailed behavior and workflow are examined in Section 5.2.2.
In the next section, we will look into vulnerabilities of smart contracts.

2.1.2 Vulnerabilities of Smart Contracts

As introduced in the previous section, smart contracts are stored on the blockchain. So
if the code of smart contracts opens up any vulnerabilities, it is hard to mitigate these
flaws. It can end up quite costly if an attacker successfully exploits any bugs when the
network confirms the operations on the blockchain. That is why there are many tools and
approaches to identify vulnerabilities before deploying smart contracts onto the blockchain.

In the following, one representative vulnerability type will be explained. Let us take a look
at two contracts written in Solidity, shown in Figure 2.1. The Victim contract contains
a withdraw() function that transfers Ether, Ethereum’s currency, from the callee to the
caller. When this function is executed, the caller’s fallback function is invoked. Conse-
quently, by recursively calling the withdraw() function again inside the fallback function,
more money will be transferred [11, 14]. This way, 60 million US dollars have been stolen
from the DAO contract [15, 16].

1 cont rac t Victim {
2 bool f l a g = f a l s e ;
3 f unc t i on withdraw () {
4 i f (f l a g | | ! msg . sender . c a l l . va lue (1 wei) ()) throw ;
5 f l a g = true ;
6 }
7 }
8 cont rac t Attacker {
9 uint count = 0 ;

10 f unc t i on () payable {
11 i f (++count < 10) Victim (msg . sender) . withdraw () ;
12 }
13 }

Figure 2.1: A simplified version of an attack and victim contract which exploits the reen-
trancy bug written in Solidity [14].

This vulnerability type is just one of many existing program flaws, leading to critical dam-
age to the whole system. In the further progress of this work, plenty of other vulnerability
types will be investigated. In the end, an AI Scanner is developed capable of detecting a
specific set of vulnerability types in smart contracts as well. Before we can start inves-
tigating this project’s approach, we first take a look at the concepts of deep-learning in
general.

5

6 2. Background

2.2 Deep-Learning

In many areas, deep-learning has become a buzzword. In current days, data is collected
everywhere to be utilized for complex tasks. Deep-learning can be found in many different
areas, such as image or speech recognition, text classification, and many more. In this
section, the main concepts of deep-learning will be introduced. The chapter starts with an
introduction to machine-learning before moving to neural networks and natural language
processing.

2.2.1 Introduction into Machine-Learning

Machine-learning is used in many ways based on the important key factor, the data. This
approach automates problem solutions, such as classification, where objects are labeled in
different categories, such as spam mail or regular mail. Nevertheless, it can also be set
up as a prediction tool for stock prices using regression. Those are two scenarios where
machine-learning turned out to be an effective solution. There are many more use cases
where machine-learning can solve problems. However, since this work is about detecting
smart contracts’ vulnerability types, our focus lies on classification. In general, the most
common machine-learning approaches can be divided into supervised and unsupervised
learning.

Supervised Learning:

In the case of supervised learning, a model is trained by a set of labeled data. This data
represents a mapping of an input and its expected classification output. The algorithm’s
task is to detect patterns, the so-called features, indicating which label should be selected.
The features are characteristics that are used to distinguish data objects. Data objects
are transformed into a feature-vector-based representation so that the algorithm can learn
which feature correspond to the respective classification label. During this process, metrics
are adjusted to the model. This way, it can be trained to adjust internal adjustable
parameters to minimize the error and maximize the score. In the context of deep-learning,
these parameters are called weights. Thus, the quality of a machine-learning performance
relies on feature engineering, including feature generation, selection, analysis, evaluation,
and many more, to provide as meaningful features as possible [17, 18, 19].

Unsupervised Learning:

In contrast to supervised learning, an unlabeled data set is provided to the algorithm
in unsupervised learning. With this approach, the model learns to identify similarities
and differences so that the input is grouped. Since there is no measurable accuracy, the
resulting groups’ quality depends on the data and the algorithm’s structure. This strategy
is often used to solve clustering problems [17, 18, 19].

Since it is more promising to use supervised learning, this work focuses on that approach.
The machine-learning workflow can be divided into several phases, which are illustrated in
Figure 2.2. At first, a dataset must be available, which might be labeled dependent on the
strategy and the learning algorithm’s purpose. It is useful to divide the data into training
and test set. Afterward, the data must be cleaned to remove unnecessary parts that are
not relevant for the classification to improve the algorithm’s efficiency. After that, the data
must be transformed into vectors, which can be processed for the equations used to learn
the data patterns. Thereafter, a model is built, which is trained and adjusted using the
training data set [17, 18, 19]. The test set is used to evaluate the model’s accuracy, which
often shows an overfitting problem. Overfitting means that the model is too specialized in
predicting the training data set; however, it performs poorly on unknown data. Therefore,

6

2.2. Deep-Learning 7

Figure 2.2: This is a basic overview of the workflow during the machine-learning develop-
ment [17].

the model’s parameters need to be adjusted, or the data input needs to be optimized [20].
When the accuracy meets its requirements, the model can be finally deployed into an
application. In the context of classification, models can be distinguished into different
classes. The first one is a multiclass classification, which means that the model’s output
is not binary. In detail, a model can predict more than two different classification classes.
On the other hand, in multilabel classification use cases, multiple label classes can be
assigned to a sample. In the case of multiclass-multilabel classifications, multiple non-
binary labels can be assigned to a label [21]. The type of multilabel model applies to our
project. Since this project will use neural networks for learning an AI Scanner, the classic
machine-learning variants and implementations will not be introduced. However, neural
networks will be examined in the next sections.

2.2.2 Neural Networks

One machine learning method is deep learning, which is based on neural networks. These
networks are designed in a way so that they can learn and solve various problems. The
architecture is a composition of multiple layers of different modules. A certain number
of layers form a neural network. The first layer is called the input layer and is used for
passing data to a neural network. In contrast to that, the last layer is called the output
layer. The input layer and the output layer are connected with so-called hidden layers.
Each layer contains a certain amount of nodes called neurons. One neuron calculates an
output value, which will be passed to the next layer. Depending on the complexity of a
problem, the number of layers, including the number of neurons, may be increased. A
simple neural network is shown in Figure 2.3 [19].

The algorithm’s task is to detect patterns, so-called features. The features are charac-
teristics that are used to distinguish data objects. Data objects are transformed into a
feature-vector-based representation so that the algorithm can learn which feature corre-
spond to the respective output. With weighted connections between the neurons, the
dataflow is influenced. A sample dataflow is shown in Figure 2.3, including an indication
of its weights. By applying a function, the incoming value is transformed and passed to
all subsequent connected layers. This function is called the activation function [22]. The
learning process’s challenge is modifying the weights so that a data input leads to the
expected output. There are different strategies for modifying weights. An efficient way to
adjust the weights inside a neural network is supervised training. In supervised learning,
a model is trained by a set of labeled data. One sample represents a mapping of input
and their expected label outputs. Therefore, error and success can be calculated directly
since the expected result is available. During the training phase, functions are derived,
increasing or decreasing the weights accordingly for each passed sample. By repeating

7

8 2. Background

Figure 2.3: Simple neural network containing one input layer, two hidden layers and one
output layer [19].

these adjustments with a large dataset of samples, the accuracy can be increased, and the
error minimized [19]. The function which tracks the error of the model learning is called
the loss function. The goal of the training is the minimization of that function to achieve
a reasonable result [22].

2.2.3 Natural Language Processing

After investigating the basic machine-learning concepts focusing on deep-learning, we ex-
plore common strategies in natural language processing (NLP). By that, all kinds of use
cases are included where languages should be processed by artificial intelligence. In our
case, the model needs to learn the logic or language behind the smart contract’s bytecode.
It is required that the model can interpret the passed bytecode so that the classifications
can be predicted accordingly. With that being said, we focus on the use case of text
classifications since we expect that our model creates vulnerability classifications.

2.2.4 Text Representation

There are multiple ways of realizing a text classifier. Either way, the text needs to be
first transformed into vectors with fixed-length. This transformation can be implemented
in different ways. This section gives a short overview of some commonly-used techniques
without going deeper into details. One technique is the so-called bag of words (BOW). In
that case, a text’s words are passed according to the number of occurrences [22]. Since
the context is not represented in the vector, it might not be that suitable for all use cases.
Another approach is using n-grams to represent text. A sequence of n words is stored
in a vector. Therefore, the order of words inside a text is passed to the model learning
algorithm. Since the dependency on the previous word is tracked, predictions of the next
words in sentences can be created. Depending on the length of the n-gram, the context of
words in a text is represented efficiently [22]. Especially in the context of deep learning,
word embedding layers can be added to a neural network. These word embeddings train a
mapping where words are placed into a high-dimensional space. By learning the semantic
and syntactic information about words in the language, words with similar meanings are
placed in similar vector regions. This layer can be pre-trained or trained on the fly [23, 22].

8

2.2. Deep-Learning 9

2.2.5 Recurrent Neural Network based Text Classification

In this section, we investigate Recurrent Neural Networks (RNN) suitable for classifying
text based on a particular context. In most cases, these networks perform well for sequen-
tial inputs, such as languages. These models’ special characteristic is storing information
about previous runs and features, the so-called recurrent hidden state. This way, the tex-
tural structure, the word dependencies, and contexts can be interpreted by the model. As
illustrated in Figure 2.4, the previous run’s value influences the calculations made in the
next run since it tracks previous data information. It shows that each neuron receives
inputs from previous time steps. This way, sequences can be mapped together [19].

Figure 2.4: A recurrent neural network and the unfolding in time of the computation in-
volved in its forward computation [19].

One of the most popular layers in that context is the Long Short-Term Memory (LSTM)
layer, which does not simply store the previous state; however, it also captures long-term
dependencies [19, 24, 25, 23, 26]. The lightweight version of an LSTM layer is the Gated
Recurrent Unit (GRU) layer [26].

After introducing recurrent neural network layers used for deep-learning, we will now look
at a whole model that can be used for text classification. Figure 2.5 shows a LSTM based
model. In this case, even a bidirectional LSTM layer is added. This way, the structure
is learned from both sides of a text. In this case, plenty of other hidden layers, such as
Multilayer Perceptrons (MLP), are added as well. By increasing the number of layers, the
performance of a model might be increased.

Figure 2.5: Model based on bidirectional LSTM [23].

9

3. Related Work

Given the tremendous economic impact of bugs in smart contracts and the impossibility to
fix them after the deployment onto the blockchain, many smart contract pre-deployment
scanning tools have been developed. In this section, strategies, how different tools approach
the smart contract vulnerability detection problem are examined. Those can be divided
into different categories. On the one hand, plenty of tools are static classifiers, other tools
are dynamic classifiers, and on the other hand, machine-learning is used to classify smart
contracts. Plenty of tools mix up certain approaches.

3.1 Static Vulnerability Detection Methods

Many tools perform analysis in a static, non-runtime environment. They examine the
smart contract’s source code or bytecode to detect vulnerabilities. Various tools create
a custom model or structure to find weaknesses. In the following, static approaches are
examined, which are used by several smart contract vulnerability detectors:

Slither:

Slither is a tool that uses taint analysis as a strategy to detect Solidity bugs dependent
on user-controlled variables. In general, using taint analysis, the information flow can
be tracked from the source to its sinks. For instance, all data derived by a taint source,
such as user-controlled variables, may potentially change the program’s behavior and is
tainted. All the following values which are dependent on that data are tainted as well.
Policies are applied to the program to introduce, propagate, and check the taint. When
executing a statement, the taint analysis module checks if it is tainted or not and can
raise an alert. An advantage of this approach is that the analysis can find nearly all
vulnerabilities related to user input validation or other critical data flows. However, alerts
may be too late. Overtainting, undertainting, and missing sanitization can also be a
problem. Slither only accepts Solidity source-code, which will be used to create an internal
representation [27, 28, 29, 30].

Oyente:

When using symbolic execution, the behavior of the program is represented by a built
formula. Instead of actual input values, symbolic values determine if a program’s particular
path can be reached. Oyente works based on symbolic execution. In contrast to several

11

12 3. Related Work

other tools, it can detect vulnerabilities in both Solidity code and bytecode. It constructs
a control flow graph of a contract, which is then used as a base to create input for the
symbolic execution. With this approach, the environment is simulated in order to detect
the vulnerabilities more efficiently. The main advantage of symbolic execution is that the
program is examined for all execution paths instead of actual input values. This approach
leads to good coverage in software testing. However, the performance depends on the
number of explored paths and, thereby, the complexity of the contract [11, 31, 27, 28].
Since Oyente can work on the bytecode-level, it will be used for pre-labeling in this work.
Further information will be given in Section 5.3.3.

Manticore:

Manticore is another symbolic execution tool which can work on bytecode. Symbolic values
are passed to the bytecode tracking the discovered states. By verifying several invariants, a
contract is analyzed. By running the symbolic execution in an emulated environment, the
contract’s state can be tracked as well as the Ethereum network state. With the analysis
of the symbolic executed environment, certain vulnerabilities can be detected [32, 33].

Mythril:

Mythril combines multiple vulnerability detection approaches: symbolic execution, taint
analysis, and Satisfiability Modulo Theories (SMT)solving. In SMT solving, the code of a
smart contract is translated into SMT constraints for formal verification. These constraints
are checked by performing queries to the SMT solver to ensure that the verification goals
are satisfied. This way, bugs such as underflow or overflow, division by zero, unreachable
code, and assertion fails can be detected. SMT solvers’ advantage is that it can be used
during the compilation time to give feedback about certain flaws before runtime. However,
the generation of constraints can lead to complex formulas that need to be solved. Mythril
can also work on both the bytecode-level as well as on Solidity source-code-level [34, 35].

Dedaub’s Contract-Library:

The contract library by Dedaub [36, 37] provides multiple different features via online API.
On the one hand, it collects the bytecode of smart contracts; however, on the other hand,
it provides vulnerability classifications. These classifications are based on the bytecode of
the blockchain since the source code is only available for 0.34% of the smart contracts.
Bytecode analysis is performed on custom created decompilation techniques. Using that
output, the tool, called MadMax, runs flow and loop analyses to detect gas-focused vulner-
abilities. More detailed, the decompiler will return a specific schema. These schemas can
be analyzed by applying certain rules which are defined to detect vulnerability types. All
the resulting artifacts are published on the contract-library available for everyone [38, 39].

Securify:

Securify is a scalable, fully automated security analyzer for Ethereum smart contracts.
It runs two detection methods. It firstly symbolically analyzes the dependency graph to
receive semantic information. Afterward, several patterns are checked to identify whether
a smart contract contains certain vulnerabilities. According to detected patterns, a smart
contract is, therefore, classified as safe or can trigger violation patterns.This way, the smart
contract is then classified [40, 41].

3.2 Dynamic Vulnerability Detection Methods

In contrast to previously presented strategies, we will have a look at smart contract vulner-
ability detection methods in the running state. For this purpose, the following approaches
have been realized in a dynamic way to discover vulnerabilities:

12

3.3. Machine-Learning for Vulnerability Detection 13

MythX:

MythX [42] is built on top of Mythril and is a tool that combines the advantages of static
code, symbolic, and taint analysis with code fuzzing to detect vulnerability. Fuzzing is used
to execute the program providing invalid, unexpected, or random inputs. Afterward, states
of a program can be produced, which might bring up some vulnerabilities. The efficiency
might also be increased by considering inputs based on some information gathered from
the smart contract. In general, fuzzing is simple and can often show up some unhandled
exceptions, crashes, which may be overlooked by developers and tests. However, since this
is a brute force approach, it comes with significant performance time and might have poor
code coverage due to its dependency on the input [42, 28]. MythX, in general, is intended
to support developers during their development. It provides a cloud-based online service
that can be integrated into development lifecycles via API. Once a developer submits
his source code, multiple analyzers start working in parallel, returning the classification
result [43].

ReGuard:

Another fuzzing tool is ReGuard, which is specialized in the Reentrancy bug. It internally
creates intermediate representations (IR), in detail, an abstract syntax tree (AST). Based
on the generated IR, a C++ smart contract is constructed, keeping the original program
execution behavior. Once the smart contract is fully transformed, a fuzzing engine creates
a random byte input. By the analysis of the traces, reentrancy bugs are detected and
reported [14].

ContractLarva:

Another approach, realized by ContractLarva, can be runtime verification where a violation
of defined properties can lead to various handling strategies, such as a system stop. These
properties can include undesired event traces of control- or data-flow. The main advantage
of this strategy is that it is possible to prevent unexpected behavior at runtime. Therefore,
bugs can survive various attacking attempts. A disadvantage is that the performance
depends on the additional monitoring code’s complexity, which also consumes gas. If
properties are complex, it is more challenging to develop a proper monitoring [44, 45].

Maian:

The Maian tool is build based on the smart contract’s bytecode. It executes the bytecode
in custom EVMs with symbolic variables. By passing symbolic input to the contract,
specific analyses detect the execution trace to identify related vulnerabilities, such as
suicidal contracts. It combines the symbolic analysis and concrete validation. In concrete
validation, the smart contract is executed on a fork of Ethereum. This way, the execution
can be traced and validated. This way vulnerabilities are detected [46, 47].

3.3 Machine-Learning for Vulnerability Detection

A relatively new approach which is detecting vulnerabilities of smart contracts by utilizing
the power of machine-learning is used by the following tools:

ContractWard:

The ContractWard tool utilizes the power of machine-learning to classify smart contracts
into vulnerable and invulnerable. Therefore, the data set contains 49502 smart contracts,
publicly available as source code. The model will be trained in a supervised way. For

13

14 3. Related Work

pre-labeling, the previously introduced Oyente tool will be used. It is assumed that those
labels are reliable for their setup. Internally, the bytecode is transformed into bigrams,
which will be used for feature extraction. A bigram is an n-gram where two words are
stored together. Afterward, the bytecode will be substituted into logical groups, such as
logical operations. This is performed to reduce the complexity and dimensions of input
vectors. The oversampling technique is applied to overcome the imbalances of the dataset.
In this step, samples for minority classes are created. Six binary classifiers are trained to
realize the multi-label classification. In the end, the results of all classifiers are gathered to
create the final output [48]. The following algorithms are employed to realize the machine-
learning: eXtreme Gradient Boosting (XGBoost) [49], Adaptive Boosting (AdaBoost) [50],
Random Forest (RF) [51], Support Vector Machine (SVM) [52], and k-Nearest Neighbor
(KNN) [53].

LSTM approach:

Another machine-learning approach has been developed using LSTM neural networks to
classify smart contracts. As data set, the previously introduced tool Maian is used for
pre-labeling, detecting three different vulnerability classes. In contrast to the previous
approach, a binary classifier is trained to only distinguish between vulnerable and in-
vulnerable. In order to create a balanced dataset, the minority classes are oversampled,
and the majority classes are undersampled. The data input is bytecode, which has been
processed to receive the separate opcode. An embedding layer is used to create vector
representations from the bytecode files. The length of the smart contracts is shrunk to
1600. The model is trained with two LSTM layers of 128 and 64 hidden layers [54].

Since we have seen all smart contract vulnerability scanner approaches, it is time to intro-
duce this work’s approach in the next section. We have decided to explore the deep-learning
approach more deeply. Therefore, with this project, an AI Scanner is developed, which
can distinguish eight vulnerability types of different three different tools.

14

4. Approach

In this section, the general approach of this work is examined, including several deci-
sion and assumptions which have been made in this process. As presented in Section 3,
the work with machine-learning for smart contracts’ vulnerability detection has already
started. However, on the one hand, binary classifiers are used as expert models using
classical machine-learning algorithms. And on the other hand, a deep-learning algorithm
is developed with the scope of classifying smart contracts as vulnerable and invulnerable.
With this work, it will be investigated if deep-learning can be utilized to classify smart
contracts by its classification labels.

Figure 4.1: High-level overview of this work’s approach [55].

15

16 4. Approach

The general overview can be obtained in Figure 4.1. In short terms, the smart contracts are
downloaded from the Ethereum network. Using a pre-classification generated by several
tools, the typical deep-learning approach will be followed to create the AI scanner. Further
details are explained in the following sections.

4.1 Data collection

As already partly introduced in Section 2.2, various challenges need to be mastered to
successfully create an efficient deep-learning model. Since we are at the beginning without
having any data or pre-labeled classifications, this is the first challenge that needs to be
tackled. Collecting data is crucial so that a deep-learning model can be trained. At this
point, we decide to detect vulnerabilities of smart contracts based on bytecode. Since byte-
code cannot be easily decompiled and only a limited amount of source code is available, the
publicly available bytecode will be used. It might also make sense to detect vulnerabilities
based on a low-level language. Since EVM bytecode is executed in a stack context, the
control flow of a program might be more meaningful at this level. Furthermore, bytecode
is available on all participating Ethereum nodes on the blockchain. Therefore, it is pos-
sible to crawl through all blocks searching for available bytecode. When crawling for the
bytecode directly from the blockchain itself, it is also guaranteed that all samples will have
the same format at the beginning. Given that the smart contract might be actively used
over the years, common vulnerability types should be present on the blockchain. Since it
is crucial to have enough data samples available for the learning process, it helps to have
the full access to all deployed smart contracts. This way, a meaningful dataset can be
constructed used as a base for the deep-learning. With this approach, it should also be
simpler to create a balanced dataset for each class to further improve the expected perfor-
mance. This smart contract crawling step can be either realized within this project or an
existing tool that can be used and will be investigated in the implementation Section 5.

With the bytecode available several tools, introduced in Section 3, might be candidates
to classify the retrieved smart contracts. Since all tools work differently, it is required
that the tools can perform smart contract vulnerability scans based on the bytecode.
The alternative can also be that classifier can process the smart contracts’ address so
that the required files are loaded internally. Based on the output, it needs to be decided
whether enough representatives are available to perform deep-learning. Since enough smart
contracts are available, it is initially not planned to artificially manipulate the dataset to
create a classification for minority classes. In this step, multiple classification tools will
be used to create a pre-labeling. This way, it is also tested if vulnerability types detected
by different tools with different internal techniques can be mixed up. It also opens up the
possibility that models based on this approach can be continuously extended. This might
lead to various model changes; however, it is beneficial to mix up different vulnerability
scans to create a more powerful and meaningful AI scanner.

When the pre-classification is finished, the retrieved data needs to be investigated whether
additional adjustments need to be performed. First of all, the bytecode needs to be
analyzed. Since the bytecode is a long hexadecimal number, it needs to be ensured that a
deep-learning algorithm can interpret it. In typical text classification use cases, a sequence
of words is passed to the algorithm. By training based on these sequences, the classifier
can be trained. The sample length can also lead to a challenge. There are different
strategies regarding this problem. All smart contracts that cross a certain threshold value
will be ignored. This way, the deep-learning model would lose its attractiveness since
these smart contracts are most likely not a candidate for training but also for predictions.
Furthermore, with increased complexity, the probability of having program flaws increases.
Alternatively, the smart contract can be chunked and then passed in parts to the algorithm.

16

4.1. Data collection 17

Since the pre-labeling is based on the smart contract as a whole, it is not guaranteed that
the vulnerability occurs in every chunk of that smart contract. In the end, we decided to
chunk the dataset to relax memory usage during the deep-learning process. The detailed
realization is described in the implementation Section 5.

In this step, during the data exploration phase, it needs to be decided on how many
vulnerability types should be learned. This also includes the question of how many samples
per class should be added into a dataset that will be passed to the deep-learning algorithm.
When analyzing the number of representatives, a certain threshold should be defined, which
is used to add or remove samples to the dataset. In the end, the target is to create balanced
data to work on a straight-forward deep-learning model since this gives us the best chance
to verify that the vulnerability classes can be learned by a deep-learning algorithm.

According to the described workflow, a lot of data needs to be processed. Figure 4.2
shows the expected dataflow, which will be realized for each smart contract. To sum
it up, the bytecode is downloaded from the Ethereum network, pre-classified, and pre-
processed. Thereafter, a dataset is constructed, which is directly passed to the deep-
learning algorithm. Since a lot of data needs to be tracked, a database will be used
for the realization of this project. In the end, pre-processed bytecode is passed as a
data sample, including its labels. For each selected vulnerability type, a separate label is
created. Therefore, we opted for a multilabel since one smart contract can be classified
with more than one vulnerability. In the case of multiclass learning, each combination of
the vulnerability types would need their own representation.

Figure 4.2: Expected dataflow of the smart contracts.

17

18 4. Approach

4.2 Deep-Learning

When the dataset is defined, the data needs to be prepared so that it can be directly
passed to the deep-learning algorithm. An advantage of using the bytecode, the opcode
vocabulary is very limited. When cutting off the opcode parameters, all invariants are
removed from the bytecode. In this phase, we have consciously decided to work with
embedding layers, given that the ContractWard tool uses n-grams. It is also the typical
layer in text classification scenarios in the deep-learning context. Either way, the bytecode
still needs to be parsed into a vector representation. Given that embeddings learn how to
place words into the dimensions, numerical vectors are required. As indicated previously,
the bytecode needs to be separated so that it can be interpreted as a text sequence of words.
In this step, further simplification might also boost or limit the potential of efficient deep-
learning classifiers. Either way, the resulting sequence of words needs to be tokenized so
that the embedding layer can then process the smart contract. Since we chunk the dataset,
the vector length can be relatively high in contrast to common test classification scenarios.
In some cases, it even increases the efficiency of the input length is limited to a certain
number.

The deep-learning process can only be triggered when a model architecture is defined. Since
the performance of certain architectures needs to be tested, it makes sense to develop a
small framework. The framework takes care of the correct training execution but provides a
simple way of introducing a new kind of model architectures. This way, it is also preserved
that the work on this approach can be continued easily. Besides the training execution, it
also makes sense to manage all common parts of a deep-learning process, such as metric
calculations or logging. It is also responsible for managing the incoming dataset. Therefore,
the framework takes care that the dataset chunks are created and passed to the correct
functions. Several chunks will act as the test set so that the performance of the trained
model can be evaluated. Although working based on a framework taking care of plenty
of stuff, a neural network still needs to be defined. We chose to go with typical recurrent
neural network architectures commonly used in text classification. This also includes the
selection of the activation and loss function.

After the model is built, trained, validated, and tested, the metrics will be analyzed so that
further improvements can be implemented. Depending on the success, certain parameters
can be adjusted to improve the overall results. One typical parameter is the number of
layers in a model since it can lead to under- or overfitting. By increasing the architecture’s
complexity, it should be mentioned that the time for deep-learning increases heavily. Al-
ternatively, the number of neurons for each layer can be modified. Since the bytecode has
an arbitrary opcode length, the embedding dimensions may also be adjusted [55]. If all
adjustments do not lead to success, the bytecode representation or the dataset in general
needs to be changed.

In that phase, some different kinds of models will be trained and examined with different
inputs. This way, the behavior on certain changes are analyzed. This information can be
used for evaluation with other models created within this framework, however, also with
the models developed by other tools.

Once an AI scanner is fully trained, it can be deployed for certain use cases. In the scope
of this project, a small application is developed to showcase the intended workflow. An
end-user passes a smart contract’s bytecode file and therefore receives the probabilities if
any vulnerability classes are detected in the smart contract. This way, a developer could
scan his smart contract before deploying it onto the blockchain.

Figure 4.3 perfectly describes the workflow when developing a deep-learning model. The
raw data is collected from certain providers. Afterward, the data is pre-processed until the

18

4.3. Evaluation 19

data can be processed by the deep-learning algorithm. Several existing architectures and
algorithms are tested until the best candidate has been found. This candidate can then
be used to deploy it into a certain use case.

Figure 4.3: Workflow for the development of deep-learning models [56].

4.3 Evaluation

When the model developed with this approach is successfully created, we analyze if it can
keep up with existing tools. In the worst-case scenario, a new model needs to be trained.
Since the deep-learning approach is that reliant on meaningful data input, it can happen
that several phases need to be repeated to achieve useful results.

Furthermore, this work opens up the door for new opportunities, which can be improved.
Since this work focuses on the breakthrough of detecting vulnerability types based on
neural networks, the model can be extended to support a greater variety of vulnerability
types. In addition to that, the dataset can be maximized to find more representatives for
minor label classes. Obviously, certain techniques, such as oversampling, can be applied
to also train small vulnerability classes.

Furthermore, it can be investigated if smart contracts can not only be classified. Similar to
image classifications, it might be possible to localize the critical parts of a smart contract
so that it can be mitigated, even when detected on the bytecode level.

Since we now have a clear picture of this work’s approach, the next section will dive
deeper into the realization. It will explain the implementation, internal architecture, and
components that are required to realize this project.

19

5. Implementation

Before going deeper into implementation details, the technologies applied to this solution
are presented. This section will also show up the advantages of those technologies. After-
ward, the realization of all phases defined in the previous section will be examined. These
sections include applied methods, tools, architectural details, and implementation details.

5.1 Applied Technologies

In this section, some essential technologies will be introduced which have been applied
in this project. It will be defined which programming language, data management tools,
deep-learning framework, and packaging tools will be used in this work. The exact details
will be presented in the corresponding component section. However, many components
are developed with similar patterns sharing the same technologies.

5.1.1 Python

Since Python is commonly used for data processing, all modules developed in this project
are written in Python. Tensorflow, one of the most prominent deep-learning Python
frameworks developed by Google, will be used in this project. Therefore, we decided to keep
all algorithms in Python. Supported by multiple available libraries, such as Pandas [57]
and Numpy [58], data processing in Python can be easily realized. Python projects can
also be simply placed into Docker containers to enable straightforward deployment and
scalability.

Since the work packages to realize a deep-learning vulnerability scanner are often separated,
we chose to develop the different functionalities in a modular fashion. Therefore, each mod-
ule can be executed separately, sharing a defined amount of self-developed packages. Some
of these packages are used in every algorithm, such as the logging package or the config
validation package. Input is passed via CLI arguments. The package argparse [59] pro-
vides easy configuration options for CLI documentation. A sample architectural overview
of newly created Python modules can be found in Figure 5.1. Modules, realizing a simple
feature, contain a main file, a configuration validator, and a class implementing the core
functionality. Except for the deep-learning module, nearly all modules are structured this
way. For certain quality assurance, the pytest [60] library is utilized running tests on these
modules. It is also possible to test the Docker image build and Docker container execution.

21

22 5. Implementation

Figure 5.1: Architectural overview of developed modules in this project.

5.1.2 Docker

The open-source project Docker[61, 62, 63] delivers a solution to virtualize services in a
simple fashion. Applications and its dependencies are wrapped up in isolated containers.
Although containers remain isolated, they can be stacked and linked so that multiple
containers work together. These containers are running instances of Docker images that
can be built locally and uploaded to the cloud using a registry. Images are packages
containing everything to run the software component, including the code, the runtime,
libraries, environment variables, and configuration files. Since all application specifications
are defined in a Docker image, it can be executed on all systems running the Docker engine.
Virtualization is realized in a lightweight way, given that Docker containers share the host
kernel so that no hardware needs to be virtualized. By scaling container replicas, it is
possible to adapt to the demands of a service. This way, applications can be developed,
deployed, and run independently of the system environment.

Since working with a massive amount of data, it is crucial creating ways to parallelize the
execution of the developed applications. Because of its simplicity in software deployment
and scalability, most developed components can be executed inside a Docker container.
These containers can also be deployed on multiple machines to optimize and scale the data
processing, which is necessary to realize the deep-learning approach.

5.1.3 MySQL Database

For the project scope, it is helpful to use a commonly known database that can be used
to keep track of all data, which will be required for supervised deep-learning. It should
be capable of storing large amounts of data with fast access times. In order to keep this
approach scalable, it is crucial that millions of entries can be processed in a simple fashion.
For this purpose, a MySQL [64] database will be used. Its querying options using the well-
known SQL data language makes it a powerful tool for data processing. It is also possible

22

5.1. Applied Technologies 23

to run the MySQL database inside a Docker container. On top of that, a phpMyAdmin [65]
Docker container is deployed so that the database can optionally be managed via UI.

For our Python modules, a MySQL connector package is also available, which can be
directly used to perform operations on the database. This connector will be utilized in
this project.

5.1.4 Tensorflow

Tensorflow [66] is an open-source framework that can be utilized to create deep-learning
models. Tensorflow utilizes the GPU to train deep-learning models. The name is derived by
the main data representation in deep-learning, the tensor. These tensors can be interpreted
as n-dimensional arrays. Calculations are realized with dataflow graphs where each node
represents a certain mathematical operation.

Internally, Tensorflow is written in C++ [67]. It provides two APIs. Keras [68] can be
used as a high-level front-end API, and for low-level adjustments, a C++ API is available
as well. The Keras API comes with plenty of high-level features, which makes working
with deep-learning algorithms straightforward. Besides that, TensorFlow provides a suite
of properties and tools to make its usage very attractive [69].

Because of its straightforward approach with a low barrier of developing deep-learning
models, Tensorflow will be used in this project. It makes it easy to define network archi-
tectures so that it can be perfectly utilized as a playground to create an AI scanner that
should be capable of classifying smart contracts by its bytecode.

23

24 5. Implementation

5.2 Smart Contract Bytecode Aquisition

Before we come to the challenge of creating deep-learning models to classify smart con-
tracts, a data set of smart contracts’ bytecode is required. In this section, all required
components will be examined, necessary to receive information about the smart contracts
from the blockchain, and to download them finally. In addition to that, some information
about smart contracts will be transferred into a MySQL[64] database. The management
of the smart contracts in a database will simplify tasks, which are explained in the next
sections. For the realization of the described steps, a composition of multiple components
is required. These components will be introduced in the next section of the architectural
overview. After that, we will dive deep into the component details.

5.2.1 Architectural Overview

To receive the smart contracts’ addresses, we use the open-source tool Ethereum ETL [13,
70]. The tool connects to the Ethereum network and exports blockchain content into CSV
files. The content of these CSV files is used to extract relevant information, especially the
contract addresses, into a MySQL database. There are multiple Web APIs available that
can be used to download the bytecode by its addresses. The addresses on the blockchain
have been received in the previous steps. For this project, we use a combination of the
APIs, provided by Infura[71] and Dedaub’s Contract-Libray[72], to download and store
the bytecode when available. The relationship between each component is illustrated in
Figure 5.2.

Figure 5.2: Architectural overview of components which deliver the smart contract byte-
codes in the end.

24

5.2. Smart Contract Bytecode Aquisition 25

As introduced in the previous chapter, all components are executed inside Docker con-
tainers to parallelize the data-intensive tasks. The additional self-developed components
are all written in Python. The component smartcontract loader is developed to extract
the information about smart contracts into the MySQL database. As explained before,
this information is available in CSV files generated by the Ethereum ETL tools. With
the addresses available in the database, the Python modules bytecode loader infura and
bytecode loader dedaub can request the bytecodes from the APIs. Therefore, all tasks re-
garding communication with the APIs, file management, and database synchronization are
implemented in this part. The exact results and processes are described in the upcoming
sections.

5.2.2 Ethereum ETL

Before vulnerability analysis can get started, the smart contract bytecode files must be
retrieved from the Ethereum blockchain. The tool Ethereum ETL provides this exact
possibility to extract blocks and transactions from the blockchain into CSV files. These
CSV files contain all the necessary information actually to download the bytecode files.
The tool can be executed inside a Docker container so that it can be started right away.

1 ver s i on : "3.7"

2

3 s e r v i c e s :
4 ethereum−e t l :
5 bu i ld :
6 context : .
7 d o c k e r f i l e : D o c k e r f i l e
8 image: ethereum−e t l : l a t e s t
9 container name : ethereum−e t l

10 command: e x p o r t a l l −s 0 −e 4999999 −b 100000 −p https ://
↪→ mainnet . i n f u r a . i o

11 volumes:
12 - $HOME/ethereum−data :/ ethereum−e t l / output

Figure 5.3: Docker-Compose File to run Ethereum ETL algorithm.

As displayed in Figure 5.3 in line 10, the command is configured for each container. The
options used in this command are:

• -s to set the start block number

• -e to configure the end block number

• -b to setup the batch size (the number of blocks to export at a time)

• -p to choose the URI of the provider which will be used

By setting different number ranges, the boundaries of blockchain blocks are defined, which
will be included in the discovery. The CSV output files need to be mounted to the host
system for further usage. For the scope of this project, the first 5 million blocks of the
blockchain will be discovered and used to find smart contracts. Internally, the Ethereum
ETL uses the Ethereum JSON RPC API to communicate with the Ethereum network and
transfers the data into the CSV files. For this project, Ethereum’s mainnet is used. For
the smart contract retrieval, it utilizes the following endpoints of the API in this process:

25

26 5. Implementation

• eth getBlockByNumber: This request returns information about a block on the
blockchain by its number. The response then includes information about the block,
such as hash, parent hash, nonce, and, most importantly, an array of transaction
hashes. These hashes will then be used as input for the next API call.

• eth getTransactionReceipt: As the name indicates, the transaction receipt will be
loaded in this step. These receipts provide information about the result of a transac-
tion, such as status, used gas, logs, and the contract address. This contract address
is the most important information retrieved by this tool for this project’s further
progress.

To sum things up, the Ethereum ETL communicates with an Ethereum node via the
JSON RPC interface to get the transactions of a specified block range. The hashes of the
transaction will be used to find out the contract address. All information gathered in this
process is then stored in CSV files, which act as the first base for the next step. In the
end, the following resources are stored in CSV files:

• blocks

• transactions

• token-transfers

• receipts

• logs

• contracts

• tokens

• traces

Since we are only interested in the contract address, we focus on those files. Figure 5.1
demonstrates the information gathered by Ethereum ETL. In the first column, the address
for the smart contract is stored. Afterward, the bytecode of some contracts is available.
As we can see, the first entries seem to be incomplete. Therefore, we decide to download
the bytecode files on our own, only based on all addresses available in the retrieved CSV
files. The other columns contain all function signature hashes and information about some
interface conformity, such as ERC20 [73].

address bytecode function sighashes is erc20 is erc721 block number

0xfef1f3... 0x6060... 0x0dbe671f False False

0x25df0f... 0x6060... 0x28d3ad3f... False False

0x23bf9a... 0x False False

0xf9530b... 0x False False

0xa1efc5... 0x False False

0x034faa... 0x False False

0xcf3487... 0x False False

0x313fe4... 0x False False

0xf013ad... 0x6060... 0x04289bec... False False

Table 5.1: Part of the Ethereum-ETL contract.csv file.

Before we continue with the actual download process, all addresses are loaded from the
gathered CSV files into a MySQL database, shortly described in the next section.

26

5.2. Smart Contract Bytecode Aquisition 27

5.2.3 Smart Contract Loader

This section introduces the first of many Python modules required to create a deep-learning
model. The task of this module is to load all addresses of smart contracts into a MySQL
database. By this operation, the process of managing the data is initiated. The Ethereum
ETL tool’s output, presented in the previous chapter, serves as input for this module.
When running this script, it is assumed that a database is set up and running. The
process is triggered by executing the module with arguments about the MySQL database,
such as endpoint and credentials, and the local path to the CSV files retrieved by the
Ethereum ETL tool. Internally, the program can be separated into three main phases:

• Input validation:: First of all, all arguments passed to the algorithm are verified
before the actual code execution. This verification includes checks if the specified
directory containing the CSV files is present and if a connection to the MySQL
database can be established. If the program is not appropriately configured, the
execution stops immediately informing the user.

• Initial database setup: Before loading the files into the database, the initial database
is created, containing the following columns: id, address, and bytecode path. For
each contract, an identifier is generated as well as a bytecode path file name. By
this, contract tracking is simplified and managed. The id will be automatically
generated when data is inserted. It will also generate leading zeros, which will sim-
plify the file name generation. The bytecode attribute is set to UNIQUE to prevent
the duplication of entries. The following columns are also added for future mod-
ules: op length, self-destruct, download status, dedaub classified, oyente classified,
mythril classified. The meaning of these attributes will be examined in upcoming
chapters. By default, all these entries are initiated with NULL. The schema of this
database is illustrated in Table 5.2.

Column name Column type Additional constraints

id (PRIMARY) int(7) NOT NULL AUTO INCREMENT

address varchar(100) UNIQUE

bytecode path varchar(120) DEFAULT NULL

self destruct tinyint(1) DEFAULT NULL

download status tinyint(1) DEFAULT NULL

dedaub classified tinyint(1) DEFAULT NULL

oyente classified tinyint(1) DEFAULT NULL

mythril classified tinyint(1) DEFAULT NULL

Table 5.2: Schema of the database created by module smartcontract loader.

All the above steps are realized with a shared python package, which serves as an
interface between a python module and the actual database. It acts as a connector
so that any Python module can perform Create, Read, Update, and Delete (CRUD)
operations on the database.

• Data transfer of the addresses into the database: When all preparation has been
finished, the actual import process is started. The program goes through all CSV
files available in the specified directory filtering out all addresses. It internally reads
in addresses with a batch size of 1000 and inserts them into the database.

27

28 5. Implementation

id address bytecode path op length download status ...

0000001 0x94c81a... NULL NULL NULL ...

0000002 0x61c5e2... NULL NULL NULL ...

0000003 0x432a20... NULL NULL NULL ...

0000004 0xa50156... NULL NULL NULL ...

0000005 0xe28e72... NULL NULL NULL ...

0000006 0x412c79... NULL NULL NULL ...

0000007 0xf66759... NULL NULL NULL ...

0000008 0x137706... NULL NULL NULL ...

0000009 0xf4a44a... NULL NULL NULL ...

0000010 0xcdd1f5... NULL NULL NULL ...

Table 5.3: State of the database after executing the smartcontract loader module.

After importing the smart contracts’ addresses of the first 5 million blocks of the blockchain
into the database, the database contains 1.208.173 entries. Each entry represents a smart
contract detected by the Ethereum ETL tool. Table 5.3 shows the state of the database
after executing this module, as explained before. It is also possible to run this module
inside a Docker container, which simplifies the deployment process and enables parallelism.

5.2.4 Bytecode Loader Infura

After retrieving the smart contracts’ addresses from the blockchain, the bytecode needs
to be downloaded. The bytecode serves as a base for the pre-classification and the input
for the deep-learning algorithm. As described in the previous section, we have gathered
1.208.173 addresses. The module presented in this module utilizes the API provided by
Infura to download the bytecode. Infura provides a simple way to connect to the Ethereum
network without setting up an own Ethereum node. Infura provides an API on top of the
JSON RPC API, which is used to communicate with their Ethereum clients. For this
purpose, a free account needs to be created to generate a project-id used for all download
requests.

The Infura URL containing the project id needs to be passed to the algorithm, downloading
the bytecode. Besides that URL, the target path where the files should be stored and the
MySQL access information needs to be configured. It is recommended to parallelize the
download processes to increase the speed of this process. By specifying an id-range, the
module looks up the ids from the database and downloads the corresponding bytecodes
from the Ethereum network. Since this module can be executed inside a Docker container,
it can even be executed on multiple machines. After the initial input validation, including
the database, Infura endpoint, and target directory check, the bytecode paths will be
defined. These bytecode paths are generated by concatenating the id and the address of
the smart contract entry in the database.

If all input prerequisites are fulfilled, the main process is executed. Inside of the specified
id range, the algorithm processes batches of size 1000. Therefore, it loads the gathered
addresses from the database, which have not been downloaded yet. The received addresses
are passed to a web3 client [74]. This client can be used for connecting to Http and Https
based JSON-RPC servers, which is, in our case, the Infura servers. It provides functionality
specialized for Ethereum interaction. For the bytecode downloading the web3.eth.getCode
functionality will be used. When the address of a smart contract is passed to this function,
the bytecode will be downloaded. This bytecode will then be stored in the files defined in
the database. For keeping track of downloaded files, the download status in the database
is updated accordingly.

28

5.2. Smart Contract Bytecode Aquisition 29

id address bytecode path download status self destruct ...

0000001 0x94c... 0000001 0x94c....bin 1 0 ...

0000002 0x61c... 0000002 0x61c....bin 1 0 ...

0000003 0x432... 0000003 0x432....bin 1 0 ...

0000004 0xa50... 0000004 0xa50....bin 1 0 ...

0000005 0xe28... 0000005 0xe28....bin 0 1 ...

0000006 0x412... 0000006 0x412....bin 1 0 ...

0000007 0xf66... 0000007 0xf66....bin 1 0 ...

0000008 0x137... 0000008 0x137....bin 1 0 ...

0000009 0xf4a... 0000009 0xf4a....bin 1 0 ...

0000010 0xcdd... 0000010 0xcdd....bin 0 1 ...

0000011 0x2bb... 0000011 0x2bb....bin 1 0 ...

Table 5.4: State of the database after executing the bytecode loader infura module.

After running the bytecode loader infura module, 1.155.085 bytecodes have been down-
loaded. This means that for almost 96% of the smart contracts, the bytecode is successfully
loaded. As indicated in Section 5.2.2, in many cases, an empty bytecode 0x is downloaded.
There are some scenarios why this might happen. It can be the case that the Ethereum
node is not fully synced with the network so that the bytecode is not available. Alterna-
tively, an empty contract might be deployed. Another reason might also be that the smart
contract is self-destructed. These smart contracts are flagged by updating the self destruct
and the download status column in the database. Table 5.4, containing a snippet of the
database, illustrates the result according to the described behavior.

Another bytecode acquisition method will be introduced in the next section, which will
partly solve the unavailable bytecode situation.

5.2.5 Bytecode Loader Dedaub

As discussed in the previous section, plenty of smart contract bytecode could not be down-
loaded. With the module introduced in this chapter, the gaps shall be filled. Therefore,
we utilize the API provided by Dedaub, the Ethereum Contract Library. In addition to
bytecode, this API provides multiple other smart contracts’ information. For instance,
disassembled or even decompiled smart contracts are available. Furthermore, as we will
see in Section 5.3.2, vulnerability warnings are added to the response body. An example
request can look as follows in Figure 5.4. The only relevant data is bytecode, which will
be loaded by the module bytecode loader dedaub.

Similar to the previous module, a so-called package-range can be passed to the algorithm.
This package-range represents the number of smart contracts where the bytecode could be
downloaded with the bytecode loader infura. By configuring a specific range, this process
can be parallelized as well to increase the download speed. In this case, the parallelization
is a little limited since the API limits the number of requests. Since this process’s outcome
should be synced with the database, the connection information needs to be provided to
this Python module. Moreover, the target storage location and the API endpoint can be
configured.

After the initial input validation, including the database and target directory check, the
main process will be triggered. With a batch size of 1000, the leftover addresses from
the smart contract loader infura module will be queried. Therefore, the flags self destruct
and the download status of the database, as shown in Figure 5.4, will be used. All entries
with download status value 0 and the self destruct value 1 are candidates to be processed

29

30 5. Implementation

1 {

2 "network": "Ethereum",

3 "address": "0x94c81a1dbc5c41a5e9962a2d6da5aa5ff684259f",

4 "block_number": 86800,

5 "date_scanned": "2019 -03 -20 T00 :00:00+0000" ,

6 "ether": 0,

7 "has_source": false ,

8 "has_bytecode": true ,

9 "has_disassembled": true ,

10 "has_decompiled": true ,

11 "has_warning": false ,

12 "source": null ,

13 "bytecode": "60606040526000357 c0100000000000 ...",

14 "disassembled": "...",

15 "decompiled": "...",

16 "json_abi": "[...]" ,

17 "warnings": {},

18 "bytecode_md5": "3a46ee2fec930058d63f5ea3bf7b1392"

19 }

Figure 5.4: Sample response body of a Dedaub Contract-library API request.

by this module. These queried addresses will be used as input for the API provided by
Dedaub to retrieve the bytecode. This bytecode will be stored at the specified target
location according to the name convention defined in the database. If an error occurs or
the bytecode is not available, the addresses are skipped. Otherwise, the download status
flag of the database is updated to the value 1. After running this module, the process
terminates with a state shown in Figure 5.5.

id address bytecode path download status self destruct ...

0000001 0x94c... 0000001 0x94c....bin 1 0 ...

0000002 0x61c... 0000002 0x61c....bin 1 0 ...

0000010 0xcdd... 0000010 0xcdd....bin 1 1 ...

0000018 0x128... 0000018 0x128....bin 1 1 ...

0000029 0xa1a... 0000029 0xa1a....bin 0 1 ...

0000033 0x581... 0000033 0x581....bin 1 1 ...

0000034 0x08f... 0000034 0x08f....bin 1 0 ...

0000036 0x86c... 0000036 0x86c....bin 1 1 ...

0000041 0x7ae... 0000041 0x7ae....bin 1 0 ...

Table 5.5: State of the database after executing the bytecode loader dedaub module.

In the end, only an additional 1.526 bytecode file could be retrieved. Since the number
of smart contracts is sufficient for this project, the leftover 51.562 addresses of the first
5 million blocks will be ignored. In total, 1.156.611 smart contract bytecode files will be
available for the upcoming vulnerability analysis. They will be firstly required as an input
for existing smart contract classifiers for pre-labeling. With this pre-labeling, patterns in
bytecode files can be learned by a deep-learning model. These steps will be examined in
the following chapters.

30

5.3. Pre-Classification of Smart Contracts 31

5.3 Pre-Classification of Smart Contracts

Before we start working on this project’s deep-learning part, a pre-classification of the
samples is required for supervised-learning. Since we have the smart contracts available in
the form of bytecode, only tools that work based on bytecode will be used for this project.
In this case, three tools will be used for the pre-labeling. To achieve the first decent
results, a reasonable size of representatives needs to be gathered, which can be used for
the deep-learning. The developed deep-learning model will unite the results of multiple
tools and provide a more meaningful output for end-users. This section will present how
smart contracts have been pre-classified and loaded into the database for further analysis.

5.3.1 Architectural Overview

For this work’s scope, we have decided to gather the results created by the tools Oyente,
Mythril, and Dedaub’s Contract Library. These tools have been selected since they provide
analysis based on bytecode or the smart contract addresses. Since decompiled bytecode
may lose plenty of information, tools that scan smart contracts based on the source code
level are not that feasible. In general, we need to differentiate between the API of Dedaub
and the other two tools. In contrast to the API where vulnerability scans have been
already executed, Oyente and Mythril classifications need to be executed by ourselves.

Figure 5.5: Architectural overview of components which pre-classify smart contracts.

As illustrated in Figure 5.5, a workflow is defined to achieve the overall goal of gathering
vulnerability classifications into the database. As indicated in Section 5.2.5, the vulnera-
bility types can be directly retrieved from the API. Therefore, a new Python module takes
care of loading the classification types into the database. For the other two tools, a Docker
container is provided so that the gathered bytecode only needs to be mounted into the
container to be processed. In both cases, classification files will be generated. The content
of these files will then be loaded into the database using new Python modules.

In the end, we will have an overview of the number of representatives of a certain number
of vulnerability classes. Since there are no dependencies between the classification tools,
the set of vulnerability types can be easily extended with other available tools.

31

32 5. Implementation

In the following sections, the detailed process of how the pre-labeling of smart contracts
has been realized is examined. Thereby, the focus lies on the usage of these tools and not
on its internal implementation. Further details have been examined in Section 3.

5.3.2 Dedaub Smart Contract Classification

Since the API usage has been presented for module bytecode loader dedaub of Section 5.2.5,
there is no need for further introduction. As illustrated in the sample response of Fig-
ure 5.6, the vulnerability types are available. For persistency purposes, these classifications
will also be stored in files as well as in the database. Similar to the previous modules, an
id-range can be configured for the classification loading process. The ids are defined inside
of the database for the smart contract management. For each database entry, the address
will be used to generate the API call. This way, the classifications can be loaded. By
configuring an id-range, this process can be parallelized as well to increase the download
speed. Although, in this case, the parallelization is a little limited since the API limits the
number of requests.

1 {

2 "network": "Ethereum",

3 "address": "0xa50156cf80fa9ec2e16899e4fb7e072300787417",

4 "block_number": 88069,

5 "date_scanned": "2019 -03 -20 T00 :00:00+0000" ,

6 "..."

7 "has_bytecode": true ,

8 "..."

9 "has_warning": true ,

10 "source": null ,

11 "bytecode": "606060405236156100615760 e060020a6000 ...",

12 "..."

13 "warnings": {

14 "Accessible selfdestruct": "{\" functions \": [\"0

↪→ x960edffb(uint256 varg0 , uint256 varg1 , uint256

↪→ varg2)\"], \" description \": [\" Selfdestruct at 0

↪→ x960edffb(uint256 varg0 , uint256 varg1 , uint256

↪→ varg2) potentially accessible \\n\"]}" ,

15 "DoS (Unbounded Operation)": "{\" functions \": [\"

↪→ joinGame ()\"], \" description \": [\" Array iterator

↪→ at joinGame () may be susceptible to DoS by

↪→ increasing storage requirements at joinGame ()\\n

↪→ \"]}",

16 "Tainted selfdestruct": "{\" functions \": [\"0 x960edffb

↪→ (uint256 varg0 , uint256 varg1 , uint256 varg2)\"],

↪→ \" description \": [\" Smart contract user could

↪→ potentially override safedestruct address at 0

↪→ x960edffb(uint256 varg0 , uint256 varg1 , uint256

↪→ varg2)\\n\"]}"

17 },

18 "bytecode_md5": "c0bab5bc1994e3aa4035584976c1dc37"

19 }

Figure 5.6: Sample response body of a Dedaub Contract-library API request.

32

5.3. Pre-Classification of Smart Contracts 33

The newly created Python module requires information about the database endpoint as
well as the target storage path. After the input validation, a new table is created according
to the schema illustrated in Table 5.6. It contains the id and address of the smart contract.
It also stores the name of the created classification files. For each vulnerability class
provided by the API, a column is created. The vulnerability class’s value is set to value
1 when the API detects a flaw of that vulnerability type. Otherwise, the value is set to
value 0.

Column name Column type Additional constraints

id (PRIMARY) int(7) NOT NULL UNIQUE

address varchar(100) UNIQUE

classification path varchar(120) DEFAULT NULL

Accessible selfdestruct tinyint(1) DEFAULT NULL

Bad Randomness tinyint(1) DEFAULT NULL

DoS (Induction Variable Overflow) tinyint(1) DEFAULT NULL

DoS (Unbounded Operation) tinyint(1) DEFAULT NULL

DoS (Wallet Griefing) tinyint(1) DEFAULT NULL

ERC20 Underflow tinyint(1) DEFAULT NULL

FALLBACK MAY FAIL tinyint(1) DEFAULT NULL

FALLBACK WILL FAIL tinyint(1) DEFAULT NULL

FALLBACK WILL FAIL (cheap LOG) tinyint(1) DEFAULT NULL

Reentrancy tinyint(1) DEFAULT NULL

Reentrancy (Constantinople) tinyint(1) DEFAULT NULL

Reentrancy (low confidence) tinyint(1) DEFAULT NULL

Reentrancy (Low Severity) tinyint(1) DEFAULT NULL

Tainted delegatecall tinyint(1) DEFAULT NULL

Tainted Ether Value tinyint(1) DEFAULT NULL

Tainted Owner Variable tinyint(1) DEFAULT NULL

Tainted selfdestruct tinyint(1) DEFAULT NULL

Tainted Storage Index tinyint(1) DEFAULT NULL

TwinCalls tinyint(1) DEFAULT NULL

Unchecked Tainted staticcall tinyint(1) DEFAULT NULL

Table 5.6: Schema of the database created by module dedaub classification.

When the database is set up, the algorithm starts working on the defined id-range. The
addresses, which are in the defined id-range and the bytecode is available, will be queried
in batches of size 1000. The bytecode must be available since it should be the base for the
deep-learning model. An API request will be triggered using the address as a parameter.
When the classification has been successfully loaded, a file will be created to persist the
acquired information. It creates a JSON file storing the warnings retained by the API.
The file which persists the warnings object of the above example request is illustrated in
Figure 5.6.

In addition to that, the classifications are gathered in the database according to the
previously described behavior. Finally, the flag of the primary smart contract table
with Schema 5.2 introduced in Section 5.2.3 is updated. When an error occurred, the
dedaub classified flag is set to value 0. On success, the value of the flag will be updated
to the value 1.

In the end, 1.156.610 smart contracts have been pre-classified. 48.578 of these smart
contracts have been labeled with at least one vulnerability type. In Figure 5.7, the distri-
bution of the vulnerability classes can be examined. As we can see, tainted selfdestruct,

33

34 5. Implementation

dos unbounded operation, and accessible selfdestruct are the dominating vulnerability classes.
These are reasonable candidates for the deep-learning algorithm.

Figure 5.7: Distribution of the Dedaub contract-library’s classification labels.

5.3.3 Oyente Smart Contract Classification

In contrast to the Dedaub API approach, the Oyente vulnerability scan has to be executed
by ourselves. Therefore, the pre-labeling process is divided into two separate steps. Firstly,
Oyente scanning is triggered, which produces classification output files. Secondly, a newly
created Python module loads the information stored in the files into the database. This
way, the Oyente classification for each available smart contract can be gathered to be used
for the deep-learning process.

1 #!/ bin / bash
2

3 # For each by tecode f i l e mounted i n t o the co nt a in er
4 f o r bytecode in / oyente / oyente / bytecodes /∗/∗ . bin ;
5 do
6 # Skip a l r e a d y c l a s s i f i e d smart c o n t r a c t s
7 i f [−f ”$bytecode . j son ”] ; then
8 echo ”$bytecode a l r eady c l a s s i f i e d . ”
9 # Run the Oyente c l a s s i f i c a t i o n

10 e l s e
11 python oyente . py −−source ”$bytecode ” −−bytecode −−j s on
12 f i
13 done ;

Figure 5.8: Script file to trigger Oyente vulnerability scan of mounted bytecode files.

Since Oyente can be deployed via a Docker container, this process can be parallelized to
increase the runtime execution speed. Inside of the Docker container, the Python project

34

5.3. Pre-Classification of Smart Contracts 35

is integrated. Since it is designed to run the vulnerability scan for one smart contract, a
short bash script must be developed to perform a mass-scan-operation. It iterates over
all bytecode files and triggers the Oyente scan. As parameters, Oyente will be configured
to process the bytecode file and create an output JSON file. This JSON file contains the
classification made by Oyente. The script, illustrated in Figure 5.8, is mounted inside the
Docker container and triggered at the beginning of the execution. It is also required to
configure the mount points properly for the input bytecode files and the JSON output
files. This way, Oyente vulnerability scanning can be easily started and scaled.

When the scanning process has been finished, the JSON files are ready to be loaded into
the database. One JSON file contains the classification of one smart contract, which is
shown in Figure 5.9. The integer overflow and interger underflow classification are not
available on the bytecode level. Therefore, they will not be loaded into the database.

1 {

2 "vulnerabilities": {

3 "callstack": true ,

4 "reentrancy": false ,

5 "time_dependency": true ,

6 "integer_overflow": [],

7 "integer_underflow": [],

8 "money_concurrency": false

9 },

10 "evm_code_coverage": "81.9"

11 }

Figure 5.9: Sample classification of the Oyente tool.

Since the classification is now available on the filesystem, it needs to be loaded into the
database. This step is realized with the Python module oyente classification. Similar
to the module’s procedure presented in Section 5.3.2, a new table is created according
to a schema, as illustrated in Table 5.7. The database table contains the id, address of
the smart contract, and the Oyente classification files’ name. For each vulnerability class
provided by the Oyente tool, a column is created. The vulnerability class’s value is set to
value 1 when a flaw of a vulnerability type has been detected. Otherwise, the value is set
to value 0.

Column name Column type Additional constraints

id (PRIMARY) int(7) NOT NULL UNIQUE

address varchar(100) UNIQUE

classification path varchar(120) DEFAULT NULL

callstack tinyint(1) DEFAULT NULL

reentrancy tinyint(1) DEFAULT NULL

time dependency tinyint(1) DEFAULT NULL

money concurrency tinyint(1) DEFAULT NULL

Table 5.7: Schema of the database created by module oyente classification.

After finishing the input validation and database table creation, the classifications will be
read from the file and loaded into the database. Eventually, the oyente classified flag of

35

36 5. Implementation

the primary smart contract table with Schema 5.2 introduced in Section 5.2.3 is updated
to the value 1 on success. When an error occurred, the flag is set to value 0.

As we can see in Figure 5.10, approximately 27,5% of all smart contracts are classified with
the flag money concurrency. In general, plenty of representatives have been found for each
classification class, except the time dependency flag. Therefore, some new candidates have
been found which can be passed to a deep-learning algorithm.

Figure 5.10: Distribution of the Oyente’s classification labels.

5.3.4 Mythril Smart Contract Classification

Similar to the Oyente tool, examined in the previous section, the Mythril vulnerability scan
has to be executed by ourselves. Therefore, it is also divided into the Mythril scanning
process and the database update. In detail, we firstly produce classification output files
via the Mythril tool inside of a Docker container. Secondly, a newly created Python
module loads the classifications stored in the files into the database. This way, the Mythril
classifications are stored centrally and can be managed for deep-learning dataset creation.

Mythril can also be deployed via a Docker container to increase the runtime execution
speed. Inside of the Docker container, the tool is ready to be used right away. Like the
Oyente vulnerability scan, a short bash script must be developed to perform the mass-
scan-operation. It iterates over all bytecode files and triggers the Mythril scan. Since
Mythril combines symbolic execution, SMT solving, and taint analysis; some parameters
need to be configured. For performance issues, it is required to set various timeouts so that
all smart contract files’ processing does not go beyond the limits. The tool also gets the
bytecode path as input and is told to produce a JSON file containing the scan results. The
script, shown in Figure 5.11, and bytecode files are mounted inside the Docker container.
The expected environment is partly configured in the script, so the mount points must be
appropriately configured. This way, it is possible to scale and run the Mythril vulnerability
scanning easily.

36

5.3. Pre-Classification of Smart Contracts 37

1 #!/ bin / bash
2

3 # For each by tecode f i l e mounted i n t o the co nt a in er
4 f o r bytecode in /home/ mythr i l / bytecodes /∗/∗ . bin ;
5 do
6 # Skip a l r e a d y c l a s s i f i e d smart c o n t r a c t s
7 i f [−f ”$bytecode . j son ”] && [−s ”$bytecode . j son ”] ;

↪→ then
8 echo ”$bytecode a l r eady c l a s s i f i e d . ”
9 # Run the Mythr i l c l a s s i f i c a t i o n

10 e l s e
11 echo ”Star t with $bytecode . ”
12 myth analyze −o j son −−execut ion−t imeout 60 −−create−

↪→ t imeout 30 −−so lve r−t imeout 1000 −f ”$bytecode ”
↪→ > ”$bytecode . j son ”

13 echo ”Fin i shed with $bytecode . ”
14 f i
15 done ;

Figure 5.11: Script file to trigger Mythril vulnerability scan of mounted bytecode files.

When all available smart contracts have been scanned by the Mythril tool, the JSON files
are ready to be loaded into the database. For each bytecode file, an output file has been
generated. A sample classification file is illustrated in Figure 5.12.

1 {

2 "error": null ,

3 "issues": [{

4 "description": "The contract executes an external

↪→ message call ...",

5 "function": "constructor",

6 "swc -id": "107",

7 "title": "External Call To Fixed Address",

8 ...

9 },

10 {

11 "description": "The return value of a message call

↪→ is not checked ...",

12 "function": "constructor",

13 "swc -id": "104",

14 "title": "Unchecked Call Return Value",

15 ...

16 }

17],

18 "success": true

19 }

Figure 5.12: Sample classification of the Mythril tool.

37

38 5. Implementation

All classifications can now be loaded from the files into the database. This procedure is
realized with the Python module mythril classification. For this third classification tool, a
database table is created according to the schema of Table 5.8. The database table contains
the id, address of the smart contract, and the Mythril classification files’ name. For each
vulnerability class provided by the Mythril tool, a column is created. The entry will be
set to value 1 when the vulnerability has been detected in a smart contract. Otherwise,
the value is set to value 0.

Column name Column type Additional constraints

id (PRIMARY) int(7) NOT NULL UNIQUE

address varchar(100) UNIQUE

classification path varchar(120) DEFAULT NULL

success tinyint(1) DEFAULT NULL

DEFAULT FUNCTION VISIBILITY tinyint(1) DEFAULT NULL

INTEGER OVERFLOW AND UNDERFLOW tinyint(1) DEFAULT NULL

OUTDATED COMPILER VERSION tinyint(1) DEFAULT NULL

FLOATING PRAGMA tinyint(1) DEFAULT NULL

UNCHECKED RET VAL tinyint(1) DEFAULT NULL

UNPROTECTED ETHER WITHDRAWAL tinyint(1) DEFAULT NULL

UNPROTECTED SELFDESTRUCT tinyint(1) DEFAULT NULL

REENTRANCY tinyint(1) DEFAULT NULL

DEFAULT STATE VARIABLE VISIBILITY tinyint(1) DEFAULT NULL

UNINITIALIZED STORAGE POINTER tinyint(1) DEFAULT NULL

ASSERT VIOLATION tinyint(1) DEFAULT NULL

DEPRECATED FUNCTIONS USAGE tinyint(1) DEFAULT NULL

DELEGATECALL TO UNTRUSTED CONTRACT tinyint(1) DEFAULT NULL

MULTIPLE SENDS tinyint(1) DEFAULT NULL

TX ORDER DEPENDENCE tinyint(1) DEFAULT NULL

TX ORIGIN USAGE tinyint(1) DEFAULT NULL

TIMESTAMP DEPENDENCE tinyint(1) DEFAULT NULL

SIGNATURE MALLEABILITY tinyint(1) DEFAULT NULL

INCORRECT CONSTRUCTOR NAME tinyint(1) DEFAULT NULL

SHADOWING STATE VARIABLES tinyint(1) DEFAULT NULL

WEAK RANDOMNESS tinyint(1) DEFAULT NULL

SIGNATURE REPLAY tinyint(1) DEFAULT NULL

IMPROPER VERIFICATION BASED ON MSG SENDER tinyint(1) DEFAULT NULL

REQUIREMENT VIOLATION tinyint(1) DEFAULT NULL

WRITE TO ARBITRARY STORAGE tinyint(1) DEFAULT NULL

INCORRECT INHERITANCE ORDER tinyint(1) DEFAULT NULL

ARBITRARY JUMP tinyint(1) DEFAULT NULL

DOS WITH BLOCK GAS LIMIT tinyint(1) DEFAULT NULL

TYPOGRAPHICAL ERROR tinyint(1) DEFAULT NULL

Table 5.8: Schema of the database created by module mythril classification.

After finishing the input validation and database table creation, the Mythril scanning
results will be read from the file and loaded into the database. Finally, the mythril classified
flag of the primary smart contract table with Schema 5.2 introduced in Section 5.2.3 is
updated to the value 1 on success. When an error occurred, the flag is set to value 0.

As Figure 5.13 shows up, many assert violations have been detected. Besides that, only a
small number of vulnerability types have been detected on our set of bytecodes in a way
that a deep-learning algorithm can quickly learn patterns. How the gathered labels can
create a reasonable dataset for deep-learning will be covert in Section 5.4.3.

38

5.3. Pre-Classification of Smart Contracts 39

Figure 5.13: Distribution of the Mythril’s classification labels.

39

40 5. Implementation

5.4 Deep-Learning Classification

Since a bytecode file collection and its pre-labeling has been built up, the base for the deep-
learning vulnerability scanning approach has been made. This data needs to be processed
in a way that can be directly passed for the model training. In this section, all related
algorithms will be introduced, leading to a model serving API, which can classify smart
contract files by their plain bytecode files. First of all, the overall relationships between
the components will be explained before each module is examined.

5.4.1 Architectural Overview

As illustrated in the architectural overview Figure 5.14, the plain bytecode files need to
be pre-processed.

Figure 5.14: Architectural overview of components which lead to model-based classifica-
tion.

The pre-processing is helpful to simplify the input for the deep-learning training. Thereby,
it is essential to reduce complexity without losing meaningful data. Since common text

40

5.4. Deep-Learning Classification 41

classification methods should be applied, it is also necessary to separate the bytecode op-
erations to increase the learning’s information value. Therefore, the bytecode preprocessing
module will take care of it, producing output files containing the pre-processed bytecode.
This module can also be executed inside a Docker container, as well as the next mod-
ule. The next step, before actually training deep-learning models, is the preparation of
a dataset. For this step, the pre-classification of previous chapters’ tools stored in the
database will be utilized. As a result, CSV files will be created, which can then be passed
as input for the deep-learning algorithm. One file will be created containing the bytecode
samples and another one storing the corresponding labels.

This leads us to the most challenging part of this project, the deep learning module.
For deep-learning, the tf.keras package will be used to realize a model training. Since
Tensorflow should utilize the GPU’s full power, this module will be executed on bare metal.
In this step, a model capable of detecting vulnerability types will be trained. Based on the
calculated metrics, it can be determined how performant the deep-learning model works.
Finally, a model serving API is developed to see the trained model in action. It provides
an endpoint where a plain bytecode file can be passed, resulting in a model prediction.
This way, end-users are able to run vulnerability scanning with the newly created model.

5.4.2 Bytecode Preprocessing

The milestone has been reached with the collection of the pre-labeling of all available smart
contracts. Similar to existing vulnerability scanning methods using artificial intelligence,
the usual text classification methods will be applied to our context. Therefore, the bytecode
needs to get some text-like properties to be applied with common text-classification deep-
learning models. Currently, the bytecode is one long hexadecimal number that represents
a particular operation sequence. This sequence needs to be pre-processed into a sequence
of operations divided by a unique separator. It also makes sense to remove unnecessary
bytecode in this step so that the alphabet used in the deep-learning process is as compact
as possible. By this, the dimensions of the tensors created in the deep-learning process
will be simplified.

In order to transform these bytecodes into meaningful data, all the bytecode files need to
be pre-processed. However, it is crucial to keep them meaningful data to detect reliable
patterns. Therefore, we have to take a more in-depth look into the smart contract bytecode
file to find reasonable simplification rules.

1 606060405236156100615760 e060020a6000350463146008e38114610063
↪→ 578063667 d5d22146100a25780638b299903146100ab578063960e
↪→ dffb146100b7578063d4f77b1c146101c5578063f71d96cb146102
↪→ 20578063 f7c1f50a14610253575b005b6103296004356024356002
↪→ 826003811015610002575082018160038110156100025750506020
↪→ 808204909201600201549190066101000 a900460f f1681565b6103
↪→ 3660055481565 b61032960015460f f16 . . .

Figure 5.15: Untouched sample bytecode file which needs to be pre-processed.

In Figure 5.15, an untouched bytecode file of a smart contract is shown. A look in the
Ethereum whitepaper is required to understand how the bytes represent the EVM oper-
ations. In this paper, the rules of how to create disassembler code from the bytecode are
listed. The following properties apply to the bytecode of a smart contract:

41

42 5. Implementation

• First of all, one byte represents one operation. Therefore, two hexadecimal digits can
be decoded into one disassembler operation. This fact means that there can be only
256 different operations at most. In fact, 135 disassembler operations are defined for
the Ethereum bytecode.

• Secondly, only one operation type expects a dynamic parameter with dynamic input
length, the PUSH operation. The input length can be at most 32 bytes large.

• Since all operations work based on a stack, multiple operations have the same func-
tionality. However, the number of dimensions, such as the number of stack items,
can vary.

Since we know how to interpret the bytecode, we can think of different pre-processing
rules. The focus should always be the performance of the deep-learning. Therefore, it is
essential to simplify the text without losing meaningful data:

• First, the parameter needs to be removed since the varying input would drastically
increase the alphabet complexity.

• All bytes where a disassembler operation is not defined should be explicitly substi-
tuted with a common representation. This way, the deep-learning algorithm should
understand it the easiest way.

• All operations with the same functionality working in different dimensions can be
merged into one common operation representation.

• A standard separator should be added to the sequence of disassembler operations.
This separator can be whitespace so that the bytecode can be read kind of like a
human-readable text.

• The bytecode representation of the operation can be kept. In terms of text classifi-
cation, the two hexadecimal digits are interpreted as words. Therefore, all entries of
the alphabet remain unique.

Since these basic rules are defined, they need to be applied to the bytecode files. There-
fore, a new Python module has been developed, which creates pre-processed bytecode files.
These bytecode files will then directly be passed into the deep-learning algorithm to learn
the patterns and finally find vulnerabilities. The module will be structured so that dif-
ferent rules can be easily attached and applied to bytecode files. In this case, two sets of
rules are defined. The first one removes all parameters from the PUSH command, keeping
the operation representation untouched. Since every PUSH command defines the input
length, these parameters can be removed systematically. The separator will be added as
well as a common representation of unknown commands. In the module, this ruleset is de-
fined as default normalization. The second rule set works almost the same. It additionally
packages common functionalities to one unified operation representation. For instance,
the PUSH1 - PUSH32 commands are represented by the bytes 0x60 - 0x7f. After pro-
cessing the bytecode files, all PUSH operations will be represented by 0x60. This way,
the alphabet dimensions are reduced by 31. This simple substitution will be applied to all
functions which work in different dimensions. Since this ruleset reduces the complexity of
the bytecode, we call it reduction normalization.

42

5.4. Deep-Learning Classification 43

1 INVALID INSTRUCTION = ”XX”
2

3 INSTRUCTION RULES = {
4 ”00 ” : {
5 ”mnemonic ” : ”STOP” ,
6 ”paramete r s i z e ” : 0 ,
7 ”r e p l a c e ” : ”00 ”
8 } ,
9 ”01 ” : {

10 ”mnemonic ” : ”ADD” ,
11 ”paramete r s i z e ” : 0 ,
12 ”r e p l a c e ” : ”01 ”
13 } ,
14 #. . .
15 ”60 ” : {
16 ”mnemonic ” : ”PUSH1” ,
17 ”paramete r s i z e ” : 1 ,
18 ”r e p l a c e ” : ”60 ”
19 } ,
20 ”61 ” : {
21 ”mnemonic ” : ”PUSH2” ,
22 ”paramete r s i z e ” : 2 ,
23 ”r e p l a c e ” : ”60 ”
24 } ,
25 ”62 ” : {
26 ”mnemonic ” : ”PUSH3” ,
27 ”paramete r s i z e ” : 3 ,
28 ”r e p l a c e ” : ”60 ”
29 } ,
30 #. . .
31 }

Figure 5.16: Sample rule definition for bytecode subsitution.

Figure 5.16 shows how the rules are defined in the Python module. For each operation, the
parameter size, the replacement, and the mnemonic are defined. This way, the incoming
bytecode can be processed byte for byte and substituted accordingly.

Since this module’s concept should be clear at this point, we take a brief look at the
implementation details. The algorithm is executed by passing the normalization method,
the path to the location where the source bytecode files are located, and the pre-processed
bytecode files should be stored. Additionally, the op length will be tracked in the main
smart contract database, defined in Table 5.2, to keep track of each smart contract’s
sequence length. After validating the configuration, all bytecode files available at the
specified location will be processed by the algorithm. Byte for byte, the rules defined the
way as illustrated in Figure 5.16, are applied to the bytecode and stored into a new file.
Parameters will be skipped. In the end, the resulting output of the default normalization
is shown in Figure 5.17, and the pre-processed bytecode of the reduction method is shown
in Figure 5.18.

43

44 5. Implementation

1 60 60 52 36 15 61 57 60 60 0a 60 35 04 63 81 14 61 57 80 63
↪→ 14 61 57 80 63 14 61 57 80 63 14 61 57 80 63 14 61 57
↪→ 80 63 14 61 57 80 63 14 61 57 5b 00 5b 61

2 . . .
3 90 91 16 31 04 90 82 81 81 81 85 88 83 f1 50 50 50 50 50 56

↪→ 00 XX XX XX XX 54 8b 62 45 XX 88 38 6 f 63

Figure 5.17: Pre-processed bytecode according to the default normalization rules.

As we can see in both pre-processed bytecode files, the bytecode is transformed into 2-digit
hexadecimal numbers with dividing whitespaces. Invalid operations have been substituted
with the value XX. If we have a closer look, we can see that Figure 5.18 does not contain
any numbers between 0x61 and 0x7f. These values have received the common value 0x60.
This behavior can be observed for the other operations as well, such as the values between
0x80 and 0x8f in line 3 of both figures.

1 60 60 52 36 15 60 57 60 60 0a 60 35 04 60 80 14 60 57 80 60
↪→ 14 60 57 80 60 14 60 57 80 60 14 60 57 80 60 14 60 57
↪→ 80 60 14 60 57 80 60 14 60 57 5b 00 5b 60

2 . . .
3 90 90 16 31 04 90 80 80 80 80 80 80 80 f1 50 50 50 50 50 56

↪→ 00 XX XX XX XX 54 80 60 45 XX 80 38 60 60

Figure 5.18: Pre-processed bytecode according to the reduction normalization rules.

As a result of this module, we retrieved pre-processed bytecode files, which can then be
passed to the deep-learning algorithm without further adjustments. The rulesets developed
in this module are also packaged in a separate Python package so that other modules can
also pre-process bytecode. These rulesets will be required by the model serving API where
the plain bytecode is passed to the algorithm returning the model prediction to the end-
user. The detailed behavior is presented in Section 5.4.5.

44

5.4. Deep-Learning Classification 45

5.4.3 Dataset Preparation

For supervised deep-learning, it is required to prepare a designated dataset. This dataset
contains the raw samples, pre-processed bytecode files in our case, and the associated
labels. After executing the module presented in the previous section, the pre-processed
bytecode is available for all smart contracts. Therefore, we need to define a meaningful
dataset. For this work, a dataset will be selected with a certain amount of representatives
and a nearly equal distribution. This way, we reduce the chance of overfitting. As we have
seen in Section 5.3, vulnerability classes’ distribution varies between 0 to approximately
320.000. The most represented vulnerability classes are:

• Callstack detected by Oyente: Due to the fact that the call-stack’s depth limit is
1024, all transactions fail, and an attacker can take advantage of that [11].

• Reentrancy detected by Oyente: As explained in Section 2.1.2, the reentrancy bug
leads to recursive calls that can be caused by the manipulation of the fallback func-
tion.

• Money concurrency detected by Oyente: A smart contract that can be executed
concurrently requires shared resources. This way, this resource might be accessed by
concurrent processes [11].

• Accessible self-destruct detected by Dedaub’s Contract-Library: A smart contract
provides a selfdestruct function publicly callable [36].

• DoS (Unbounded Operation) detected by Dedaub’s Contract-Library: The smart
contract contains a loop that operates on a scalable data structure. By continuously
increasing the size, it can result in a public call or the denial-of-service [36].

• Tainted selfdestruct detected by Dedaub’s Contract-Library: A smart contract for-
wards a balance to a recipient when calling its selfdestruct function. However, the
recipient can be externally changed [36].

• Assert violation detected by Mythril: A code segment in a smart contract is always
incorrect. With external manipulation, unexpected behavior can be triggered [75].

• Multiple Sends detected by Mythril: The smart contract does not handle exceptional
conditions, which can lead to unexpected behavior [75].

These classes will be used for the deep learning algorithm. A maximum of 15.000 repre-
sentatives of each vulnerability class will be added to create an equally sized distribution.
The dataset will also be completed with 15.000 completely clean smart contracts where
no vulnerabilities have been detected by the tools used in this project. Since all data is
managed in a MySQL database, a dataset can be easily queried. The Python module
dataset preparation takes care of creating the dataset and loading it into CSV files, which
can be passed directly to the deep-learning algorithm. This module requires the path to
the pre-processed bytecode files, the database connection information, and the target file
location. After the input validation, a new database table is created with a script collecting
smart contracts by a query. This query is shown in Figure 5.19.

45

46 5. Implementation

1 CREATE TABLE datase t AS
2 SELECT ∗
3 FROM (
4 /∗ Unf lagged smart c o n t r a c t s
5 ∗/
6 (SELECT
7 sc . id , sc . address , sc . bytecode path , oyente .

↪→ c a l l s t a c k , oyente . reentrancy , oyente .
↪→ money concurrency , . . .

8 FROM smar t cont rac t s sc
9 JOIN o y e n t e c l a s s i f i c a t i o n oyente ON sc . id = oyente .

↪→ id
10 JOIN d e d a u b c l a s s i f i c a t i o n dedaub ON sc . id = dedaub .

↪→ id
11 JOIN m y t h r i l c l a s s i f i c a t i o n mythr i l ON sc . id =

↪→ mythr i l . id
12 WHERE oyente . c a l l s t a c k = 0 AND oyente . reentrancy = 0

↪→ AND oyente . money concurrency = 0 AND . . .
13 ORDER BY sc . id ASC
14 LIMIT 15000)
15

16 UNION
17

18 /∗ Smart c o n t r a c t s wi th oyente c a l l b a c k f l a g
19 ∗/
20 (SELECT
21 sc . id , sc . address , sc . bytecode path , oyente .

↪→ c a l l s t a c k , oyente . reentrancy , oyente .
↪→ money concurrency , . . .

22 FROM smar t cont rac t s sc
23 JOIN o y e n t e c l a s s i f i c a t i o n oyente ON sc . id = oyente .

↪→ id
24 JOIN d e d a u b c l a s s i f i c a t i o n dedaub ON sc . id = dedaub .

↪→ id
25 JOIN m y t h r i l c l a s s i f i c a t i o n mythr i l ON sc . id =

↪→ mythr i l . id
26 WHERE oyente . c a l l s t a c k = 1
27 ORDER BY sc . id ASC
28 LIMIT 15000)
29

30 UNION . . .
31) AS tmp
32 ORDER BY tmp . id ASC ;

Figure 5.19: SQL script to create a dataset for the deep-learning process.

It realizes the demands defined at the beginning of this section. Once the table has been
created, the only job left for this module is storing the database entries into CSV files,
which can be directly passed to the deep-learning algorithm. A snapshot of the CSV files
is illustrated in Figures 5.20 and 5.21.

46

5.4. Deep-Learning Classification 47

1 ”id ” , ”bytecode ”
2 ”1 ” , ”60 60 52 60 35 60 90 04 80 60 14 60 . . . ”
3 ”2 ” , ”60 60 52 60 35 60 90 04 80 60 14 60 . . . ”
4 ”3 ” , ”60 60 52 60 35 60 90 04 80 60 14 60 . . . ”

Figure 5.20: Output samples.csv which will be directly passed to the deep-learning model.

1 ”id ” , ” c a l l s t a c k ” , ”reentrancy ” , ”money concurrency ” , ”A c c e s s i b l e
↪→ s e l f d e s t r u c t ” , ”DoS (Unbounded Operation) ” , ”Tainted
↪→ s e l f d e s t r u c t ” , ”ASSERT VIOLATION” , ”MULTIPLE SENDS”

2 1 ,1 , 0 , 0 , 0 , 0 , 0 , 0 , 0
3 2 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
4 3 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

Figure 5.21: Output labels.csv which will be directly passed to the deep-learning model.

In the end, a dataset is defined with the following distribution, which is shown in Fig-
ure 5.22. It contains 93.497 smart contracts. Since a smart contract can also be classified
multiple times, there are some small outliers. However, the distribution is relatively bal-
anced throughout the dataset.

Figure 5.22: Distribution of all labels in the dataset.

47

48 5. Implementation

5.4.4 Deep-Learning

After retrieving, pre-classifying, and pre-processing the bytecode files, we can start work-
ing on the deep-learning process. This section presents the heart of this work, which
is developing a deep-learning model capable of detecting vulnerabilities by its bytecode.
Therefore, we first take a look at certain challenges and requirements for this framework.
Afterward, the module’s architecture is introduced before looking at the workflow inside
this module.

5.4.4.1 Requirements to the Deep-Learning framework

In general, the approach is similar to common text classification scenarios. Therefore,
common model architectures can be used for our approach as well. In typical NLP prob-
lems, it is typical to use supervised word embeddings. These embeddings are often used on
the sentence level for typical NLP problems. Since we do not have sentences in our smart
contracts, the whole bytecode is passed to the Embedding layer. Although the bytecode is
pre-processed, the length of smart contracts is varying a lot. This problem can be observed
in Figure 5.23.

Figure 5.23: Distribution of all the sequence length in the dataset.

By defining a high dimension for the first layer, the memory usage and the learning time is
inefficient. On the one hand, we could think of chunking the bytecode files and chunking
the dataset to resolve this problem on the other hand. Since our labeling is based on the
smart contract as a whole, the first option is not feasible. This approach would require
a pre-labeling on the bytecode chunk level. Therefore, the dataset will be chunked to
overcome this problem. The detailed process of running the deep-learning on dataset
chunks is explained later in this chapter.

48

5.4. Deep-Learning Classification 49

Another challenge, while creating a decent deep-learning framework, is the difference in
model types. Different output dimensions require different ways of measuring deep-learning
metrics. As indicated in Figure 5.24, a multi-output-layer (MOL) model requires a multi-
dimensional input vector. It produces metrics for each output layer at runtime. These
produced statistics can not be merged at runtime. In contrast, metrics on single labels
can not be calculated at runtime for single-output-layer (SOL) models. However, after
finishing learning one chunk, the metrics provided by both model types will be calculated
to get comparable results. Therefore, the output vectors are split in the case of SOL
models and merged in the case of MOL models to calculate the metrics defined for the
other model type.

Figure 5.24: Comparison of input and output vectors in single-output-layer and multi-
output-layers models.

Therefore, the framework should work in a generic way so that all models, regardless
of single-output-layer or multiple-output-layers model, can be defined and used for the
learning process. We should be able to easily adjust and add model architectures without
causing additional development effort. Since we introduced the deep-learning framework’s
demands, we can look at the newly created Python module deep learning.

5.4.4.2 Module architecture

Before we start covering this module’s workflow, we first look into the module’s architecture
shown in Figure 5.25. This image shows the relationship between all components. First
of all, components can be separated into the following four different component types:

• Abstract classes: These classes define shared functionality that is required in multiple
deep-learning processes. The exact implementation can differ in different scopes
depending on the inheritance structure.

• Shared components: These components are shared for each model type and are
executed independently of the algorithm configuration or the model architecture.

• Single-Output-Layer (SOL) and Multi-Output-Layer (MOL) model related compo-
nents: Since the model architecture might require different implementations, various
components are specialized for that model type. The main difference is the output
vector dimension. Since all metric calculation is based on the output vector, some
functionality is separated in SOL and MOL components.

49

50 5. Implementation

Figure 5.25: Component view of deep-learning related modules.

The central Deep-Learning class is the starting point of the algorithm. It can also be
seen as the overall manager of the model learning execution. After the input is validated,
the vectorizer is initialized. In this case, a simple text tokenizer is used, which is used to
transform text sequences into integer vectors. In this step, the text in the form of a vector
is converted to a unified sequence length of 4000. Therefore, the vector is either truncated
or padded. The deep-learning algorithm can then process these vectors. Afterward, a
specified model, such as a GRU SOL, will be initialized. Each model inherits the func-
tionality of the Abstract Super Model. Since the training and evaluation process runs the
same way for both models, the routine is defined here. It internally calls abstract methods
implemented in either the Abstract SOL model or the Abstract MOL model. Since there is
a difference in the input dimension, the sample loading requires different implementations.
The same thing needs to be realized for the chunk evaluation. A Abstract Logger will be
attached to the deep-learning process so that the metrics can be traced at runtime. This
Abstract Logger traces the learning time for each chunk and provides functionality to log
all metrics after one chunk learning has been finished. The SOL Logger and MOL Logger
simply trace the metrics calculated at runtime.

Table 5.9 shows the metrics which can be calculated at runtime by its model type. As we
can see, only the subset accuracy, the subset true and false prediction cannot be calculated
by the MOL models at runtime. However, the internal calculations run in a completely
different way. In a scenario with five label types and a batch size of 64, the SOL metrics
are calculated on a 64x5 tensor. In contrast, the MOL metrics are calculated once for
each of the five output layers on a 64x1 tensor. The metrical result is, in either case, the
averaged value of the whole batch. The opposite metric method is calculated manually

50

5.4. Deep-Learning Classification 51

Metrics function SOL model MOL model

accuracy X X

precision X X

recall X X

f1 X X

auc X X

subset accuracy X

hamming loss X X

jaccard similarity X X

true positive X X

true negative X X

false positive X X

false negative X X

subset true prediction X

subset false prediction X

Table 5.9: Usage of metric functions by model type.

after a chunk has been trained for the specified number of epochs. This way, SOL models
create label-class-specific metrics, and MOL models calculate subset-specific metrics. It
increases transparency if a model performs efficiently for each label class. This presented
chunk evaluation is triggered inside the Abstract SOL Model and the Abstract MOL Model.

As seen in Table 5.9, many metric functions can be defined for both model types. These
calculations are defined in the Abstract Metrics component. The subset-specific metrics
are defined in SOL Metrics. This component also takes care of manipulating the matrix
to create vectors for label-specific metric calculations. Similar to that, the MOL Metrics
provides the functionality to merge all output vectors to create subset-specific metrics.
With that knowledge about the Abstract Super Model, we come back to the functionality
of the main Deep-Learning component. When the model is initialized, this component
is responsible for triggering the deep-learning process’s training and evaluation phase. In
the end, the history and plots which will be saved for further analysis. The artifacts are
stored as well to enable the possibility to create a model serving program. These artifacts
include an information file as well as the actual model and the used tokenizer.

5.4.4.3 Deep-Learning workflow

With the knowledge of the module’s architecture presented in the previous section, we will
now have a more in-depth look into the workflow. It receives specific arguments to realize
a proper configuration:

• the location of the dataset files (samples.csv, labels.csv)

• the desired target location

• the type of model which should be used for the deep-learning

• the number of dataset iterations

• the number of chunk epochs

As always, the input is validated before the main process is started. After configuring the
number of iterations and epochs, multiple resources get initialized. At first, the Tensorflow
session is initialized. Afterward, the vectorizer is initialized and passed to the model
creation in the next step. As mentioned in Section 5.4.4.1, the dataset needs to be chunked

51

52 5. Implementation

since the bytecode files contain too large sequences. The dataset chunking works as follows:
The samples and corresponding labels are read from the CSV files. Since the id column
is not required for smart contract tracking anymore, it will be removed. The samples and
labels will be merged into one DataFrame to keep the correlation between samples and
labels. Afterward, the dataset is shuffled and temporarily stored in a new sample and label
file. Finally, the chunks will be created from the temporary file and stored into chunk files
according to a defined chunk size. The default chunk size is set to 1.024. Since the chunk
datasets are small enough, they can be passed to the deep learning algorithm without
running into memory issues. In the next step, training and test datasets will be defined.
Therefore, 80% of the chunks will be used for training, and 20% for the final model testing.
With these preparation steps, we are ready to start training the model.

Figure 5.26: Illustration of the chunked-based deep-learning approach.

As illustrated in Figure 5.26, for each created dataset chunk, the model will be trained
according to the configured number of epochs and the number of iterations. The number of
epochs defines how often the chunk will be used for training before switching to the next
chunk. In contrast, the number of iteration defines how often all the chunked training
sets should be passed for training. Before the chunked data samples can be passed to
the model’s input layer, the bytecode sequence needs to be vectorized. In this case, a
simple tokenizer is used, which creates numeric vectors. In addition to that, a fixed
MAX SEQUENCE LENGTH is applied to the vectors. Sequences shorter than the length
are padded in the beginning, and sequences longer are truncated.

When the tokenized samples are passed to the model fitting function, 10% of a chunk will
be used as a validation set to prevent overfitting. When one chunk training step has been
finished, the same chunk will be used for evaluation purposes. This way, all defined metric
functions for SOL and MOL models will be calculated here. The pseudo-code of explained
behavior is shown in Figure 5.27. The results will be stored in a metric history object
to keep track of the progress. When the training has been finished, the train scores are
calculated and tracked as well. In the testing phase, the remaining chunks will be passed
to the model to calculate the overall performance. All metrics are tracked and stored in the
form of plots and JSON files. Inside the JSON file, every measurement is stored in arrays.
For potential applications, all required artifacts to run the model for any predictions are
stored as well.

52

5.4. Deep-Learning Classification 53

1 f o r i in range (ITERATION) :
2

3 f o r id in t r a in IDs :
4 #. . .
5 # Import data
6 data samples , l a b e l s = load data (s am p l e f i l e pa th ,

↪→ l a b e l f i l e p a t h)
7

8 # V e c t o r i z e samples
9 samples = v e c t o r i z e r . v e c t o r i z e t e x t (data samples)

10

11 # Create v a l i d a t i o n s e t s
12 samples t ra in , samples va l , l a b e l s t r a i n , l a b e l s v a l

↪→ = s p l i t c h u n k (
13 samples converted , l a b e l s c o n v e r t e d)
14

15 # Train the model
16 h i s t o r y = model . f i t (sample s t ra in ,
17 l a b e l s t r a i n ,
18 b a t c h s i z e=BATCH SIZE,
19 epochs=EPOCHS,
20 verbose =1,
21 v a l i d a t i o n d a t a =(samples va l ,

↪→ l a b e l s v a l) ,
22 c a l l b a c k s =[mode l logger])
23

24 # Get score o f t r a i n chunk
25 eva luate chunk (model , sample s t ra in , l a b e l s t r a i n ,
26 t r a i n s c o r e s)

Figure 5.27: Pseudo code of running deep-learning based on dataset chunks.

53

54 5. Implementation

5.4.4.4 Deep-Learning models

Since the architecture and the workflow of the deep-learning process should be clear at this
stage, we will look at the different model architectures used in this work. As mentioned
in the previous sections, different models have been defined to realize the deep-learning
vulnerability scanning approach. Therefore, simple Recurrent Neural Networks (RNN)
have been designed, commonly used for text classification scenarios. The three models,
illustrated in Figure 5.28, will be trained and compared.

(a) Architecture of the single-output-layer GRU
model.

(b) Architecture of the single-output-layer LSTM
model.

(c) Architecture of the multi-output-layers GRU model.

Figure 5.28: Architecture of neural networks used in this project.

Figure 5.29 shows a code snippet of the multi-output-layer GRU model creation. For this
model, an embedding is defined with fixed dimension size. The input length determines the
other dimension. A dropout is configured to prevent overfitting, which means that certain
neurons will not be used in the learning process. Afterward, all layers are connected. For
each vulnerability class, an output layer is created, also defining the activation function.
For the whole model, the loss function is set to binary crossentropy.

54

5.4. Deep-Learning Classification 55

1 def create mode l (s e l f , num features : int , i nput l eng th : i n t)
↪→ −> Model :

2 ””” Creates an i n s t a n c e o f a GRU model w i thou t p r e t r a i n e d
↪→ Embedding . ”””

3

4 i n p u t l a y e r = Input (shape=(input l ength ,))
5 embedding layer = Embedding (input dim=num features ,
6 output dim=s e l f .

↪→ EMBEDDING DIMENSION,
7 i nput l eng th=input l eng th) (

↪→ i n p u t l a y e r)
8 g r u l a y e r = GRU(64 , dropout =0.2 ,
9 r e cur r ent dropout =0.2) (embedding layer)

10

11 outputs = []
12 f o r i in range (s e l f . n u m l a b e l c l a s s e s) :
13 output = Dense (1 , a c t i v a t i o n=’ s igmoid ’) (g r u l a y e r)
14 outputs . append (output)
15

16 model = Model (inputs=input l aye r , outputs=outputs)
17

18 model . compile (l o s s=’ b ina ry c ro s s en t ropy ’ ,
19 opt imize r=’adam ’ ,
20 metr i c s=MOL METRICS)

Figure 5.29: Code definition of the multi-output-layer GRU model in Python.

The performance of these models will be evaluated in Section 6. However, since the
LSTM and GRU are both RNN, the difference is pretty small. With the GRU layer, a
very lightweight layer has been used, which reduces the training time. If the vulnerability
types’ complexity is increased, it might be helpful to switch onto layers with more trainable
parameters.

55

56 5. Implementation

5.4.5 Model serving API

The deep learning module of the previous section creates models that can classify smart
contracts. To see a model in action, a new Python module providing a REST API endpoint
that can be used to produce model predictions on bytecode files. Since an end-user does
not want to take care of the bytecode transformation, the API takes care by itself. The
produced artifacts during the deep-learning process will be passed to run the API. These
artifacts include the stored model and the vectorizer used for this model. Some additional
configuration is passed so that the API can internally map the labels to actual vulnerability
class names. A sample configuration file is shown in Figure 5.30.

1 {

2 "label_classes": [

3 "callstack",

4 "reentrancy",

5 "money_concurrency",

6 "Accessible selfdestruct",

7 "DoS (Unbounded Operation)",

8 "Tainted selfdestruct",

9 "ASSERT_VIOLATION",

10 "MULTIPLE_SENDS"

11],

12 "model_path": "MOL_GRU_model.h5",

13 "model_type": "MOL_GRU_model",

14 "vectorizer_max_seq_length": 4000,

15 "vectorizer_path": "simple_tokenizer.json",

16 "vectorizer_type": "simple_tokenizer"

17 }

Figure 5.30: Sample configuration file which is passed to the model serving API and can
be retrieved via endpoint.

After the input validation, a Tensorflow session is created for the API to run predictions
on the model. It is ensured that all required resources defined by the configuration are
loaded correctly. Therefore, the vectorizer used for the model is initialized as well as the
model. It is also required to load the metrics used during the deep-learning process since
it will be used for the prediction. For the API itself, a Flask API [76] will be used. This
Python package provides a simple way to create API endpoints. In our case, we will open
up two different endpoints. The first one shows the config passed to this Python module,
as illustrated in Figure 5.30. The second endpoint will trigger the model prediction. The
endpoint is available at /model-predict, where plain bytecode of smart contracts can be
passed in the request body. The expected body should look, as shown in Figure 5.31.

1 {

2 "smart_contract": "606060405236156100

↪→ f8576000357c010000000000 ..."

3 }

Figure 5.31: Sample request body when calling the /prediction endpoint.

56

5.4. Deep-Learning Classification 57

Internally, the smart contract’s bytecode needs to be pre-processed before it can be passed
to the model. Therefore, it is firstly transformed according to the substitution rules defined
in Section 5.4.2. Afterward, the resulting pre-processed bytecode will be vectorized using
the same tokenizer used for the learning process with its initialized values. It is crucial to
store and load the previously used vectorizer since the bytecode operations will otherwise
be mapped to other values than expected by the model. When the bytecode is vectorized,
it can be passed to the model, predicting if certain smart contracts’ vulnerability flaws
can be detected. In addition to that, the prediction time is tracked and shown to the user.
The response from this endpoint is shown in Figure 5.32.

1 {

2 "model_prediction_time": "0:00:00.743833" ,

3 "prediction": {

4 "ASSERT_VIOLATION": 0.00010630795441102237,

5 "Accessible selfdestruct": 0.9998799562454224,

6 "DoS (Unbounded Operation)": 0.9996991157531738,

7 "MULTIPLE_SENDS": 0.0012760674580931664,

8 "Tainted selfdestruct": 0.9998599290847778,

9 "callstack": 0.9995280504226685,

10 "money_concurrency": 0.0013179528759792447,

11 "reentrancy": 0.0009357615490444005

12 },

13 "prediction_time": "0:00:00.784721"

14 }

Figure 5.32: Sample request response containing the model prediction when calling the
/prediction endpoint.

As we can see, the probabilities for each vulnerability class are returned to the end-user.
For the smart contract passed to the API in this example, the model predicts that the smart
contract contains the vulnerability types Accesible selfdestruct, DoS (Unbound Operation),
and callstack. We can also see the measured prediction time until the model finished the
classification. The total prediction time, including the contract transformation, is returned
as well. This way, a smart contract can now be classified by the deep-learning model from
the end-user perspective.

57

6. Evaluation

In this section, the metrics calculated during training in Section 5.4.4 are examined and
compared. We executed the deep-learning process for three different models, as shown in
Section 5.4.4.4. These three models are, on the one hand, a single-output-layer GRU and
LSTM model and, on the other hand, a multi-output-layer GRU model. In addition to
that, the number of iterations and the number of epochs have been mixed up to investigate
how these changes influence the overall performance.

Before diving deeper into the results, we have a look at the metric functions calculated
during the whole process.

6.1 Definition of the Metrics

As already listed in Table 5.9, plenty of statistics have been registered. For single-output-
layer models, metrics are calculated on the whole output subset. However, in contrast to
that, the metrics are measured by each class in multi-output-layer cases. In the case of our
AI Scanner, we only receive binary output for multiple classes. Therefore, the predicted
value can only be true or false. In the following, these metrics are defined.

Loss function

The loss function is a crucial part of the training. The goal of the whole training process is
to optimize the loss function and therefore minimize the error. The loss gives an indication
of the model’s prediction quality. The calculated values are higher when the prediction is
far away from the expected result. In our case, the binary cross-entropy function is used
for all three models. This function is used since we have multiple binary output labels. It
is defined as follows with the expected value y and the predicted value ŷ:

LBCE(y, ŷ) = −(ylog(ŷ) + (1− y)log(1− ŷ)) (6.1)

Since we have a relatively equal data distribution among the class types, this function
should work well in our case [77].

59

60 6. Evaluation

True Positives, True Negatives, False Negatives, False Positives

The results of true positives (TP), true negatives (TN), false negatives (FN), and false
positives (FP) are the base value for various other metric functions. The true values
represent the number of correct predicted values, which can be either true positive or
true negative. In contrast to that, the false values indicate that the model calculated the
wrong value [22]. Since these values indicate the error of a deep-learning model, plenty
of assumptions can be derived by these values. During the runtime, Tensorflow uses the
predicted tensor values and the pre-classified tensor values to calculate the metrics. The
calculation can be realized, as shown in Figure 6.1. With tensor multiplication, the number
of true positives can be measured. Similar to that code snippet, the other values can be
calculated.

1 def t r u e p o s i t i v e (s e l f , y t rue : t f . Tensor , y pred : t f . Tensor)
↪→ −> t f . Tensor :

2 ””” C a l c u l a t e s the number o f t r u e p o s i t i v e s .
3

4 Args :
5 y t r u e (t f . Tensor) : Correct l a b e l s which are passed

↪→ f o r t r a i n i n g / t e s t i n g .
6 y pred (t f . Tensor) : Pred ic ted l a b e l s which are

↪→ re turned by a c l a s s i f i e r .
7

8 Returns :
9 t f . Tensor : The number o f t r u e p o s i t i v e s between

↪→ element o f y t r u e
10 and y pred .
11 ”””
12

13 y pred rounded = t f . math . round (y pred)
14

15 return t f . math . count nonzero (y pred rounded ∗ y true ,
16 a x i s=None ,
17 dtype=t f . f l o a t 6 4)

Figure 6.1: Calculation of true positives in Tensorflow.

In the upcoming metric functions, these base values will be processed.

Accuracy

The accuracy represents the ratio of correctly predicted values to all predicted samples.
This can be either calculated for a certain class or for a subset set, which will be defined
below in this section [22]. This value can be calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(6.2)

Precision

The precision shows the ratio of true positive predicted values to all positive predicted
values. This incicates the reliability of the positive predicted values [78]. The precision
formula is defined as:

60

6.1. Definition of the Metrics 61

Precision =
TP

TP + FP
(6.3)

Recall or Sensitivity

The recall or sensitivity shows the ratio of true positive predicted values to all values
that should be predicted as positive. This indicates the reliability of all positive predicted
values [78]. The recall can be measured by this calculation:

Recall =
TP

TP + FN
(6.4)

F1 Score

The F1 score calculates the harmonic mean of precision and recall [66].

F1 score =
2 ∗ precission ∗ recall
precission + recall

(6.5)

Specificity

The specificity shows the ratio of true negative predicted values to all values that should
be predicted as negative. This indicates the reliability of all predicted negative values [78].
The equation for specificity is defined as follows:

Specificity =
TN

TN + FP
(6.6)

Area under the Curve (AUC)

The area under the curve (AUC) calculates the probability that the model predicts the
correct value for a random sample. If this is the case, the AUC value is close to 100% [78].
In detail, this value can be calculated using this formula:

AUC =
sensitivity + specificity

2
(6.7)

Hamming Loss

The hamming loss is the probability of false predicted values in ratio to all predicted
samples [66].

Hamming Loss =
FP + FN

TP + TN + FP + FN
(6.8)

Jaccard Similarity

The jaccard similarity ignores the correctly predicted false positives focussing on the relia-
bility of positive predicted values [78]. The jaccard similarity can be measured as follows:

JaccardSimilarity =
TP

TP + FP + FN
(6.9)

Subset Accuracy

The subset accuracy calculates the accuracy of the whole output in the case of multi-label
models [66]. Therefore, it is defined as:

Subset Accuracy =
subset true prediction

subset true prediction + subset false prediction
(6.10)

61

62 6. Evaluation

6.2 Evaluation Results

Since the metrics have been defined in the previous section, we can now check how the de-
veloped AI scanner performs. Before we look at actual statistics, the system specifications
are listed in Table 6.1.

System component Component version

Operating system Windows 10

CPU Intel Core i7-9700K

Memory 16GB

GPU NVIDIA GeForce RTX 2070 SUPER

GPU memory 8192 MB GDDR6

CUDA v10.1.105

CUDA cores 2560

Python v3.7.7

Tensorflow v2.1.0

Table 6.1: System environment specification used to run the deep learning process.

All learning processes are triggered the same way, passing the dataset in the exact same
order. The only parameters changed for each learning process are, on the one hand, the
model architecture and, on the other hand, the configuration of iterations and epochs.

If we take a look at Table 6.2, we see that all three approaches end quite promising.
During the test, each model is capable of detecting the smart contracts’ vulnerability
types with at least 97.2% accuracy. However, it is interesting to see that the LSTM model
is outperformed by the simpler GRU model. This might be the case since the calculatable
parameters could not be adjusted in time. Besides that, the difference between the single-
output-layer model and the multi-output-layer model is almost non-existent. This might
change if the number of vulnerability classes is increased.

After comparing the different models, we investigate if the performance can be boosted
even more by increasing the number of iterations and epochs. For this purpose, the same
model will always be used; in this case, the MOL GRU model. The resulting metrics can
be investigated in Table 6.3. As we can see, the metrics can slightly be improved by simply
iterating over the dataset again. It makes sense that the train averages improve since the
model learns more details of the dataset with repeated training. However, the test metrics
on the unknown data are improved as well. For instance, the accuracy is improved by
0.7% and the subset accuracy even by 3% when comparing the first and the last column.
It can also be investigated that the experiment with one iteration and repeated epochs is
slightly more effective when compared with the run of repeated iterations and one epoch.

62

6.2. Evaluation Results 63

Metric SOL GRU SOL LSTM MOL GRU

Average train loss 0.189 0.230 0.189

Average train accuracy 0.933 0.913 0.934

Average train precision 0.819 0.753 0.819

Average train recall 0.700 0.635 0.702

Average train F1 0.745 0.676 0.746

Average train AUC 0.844 0.806 0.845

Average train subset-accuracy 0.672 0.582 0.676

Average train hamming-loss 0.066 0.086 0.065

Average train jaccard-similarity 0.663 0.582 0.666

Average test loss 0.090 0.106 0.090

Average test accuracy 0.974 0.972 0.974

Average test precision 0.956 0.941 0.964

Average test recall 0.905 0.907 0.900

Average test F1 0.930 0.924 0.931

Average test AUC 0.948 0.947 0.946

Average test subset-accuracy 0.878 0.875 0.875

Average test hamming-loss 0.025 0.027 0.025

Average test jaccard-similarity 0.870 0.859 0.871

Training time in hours 1:38:09 1:34:34 1:38:13

Total learning in hours 2:04:37 2:04:05 2:02:11

Average prediction time in minutes 00:00.682 00:00.752 00:00.800

Table 6.2: Comparison of different model architecture after learning one iteration and one
epoch.

Metric 1 it. 1 ep. 1 it. 3 ep. 3 it. 1 ep. 3 it. 3 ep.

Average train loss 0.189 0.103 0.107 0.067

Average train accuracy 0.934 0.965 0.964 0.976

Average train precision 0.819 0.929 0.927 0.963

Average train recall 0.702 0.845 0.846 0.898

Average train F1 0.746 0.881 0.881 0.926

Average train AUC 0.845 0.919 0.919 0.946

Average train subset-accuracy 0.676 0.826 0.825 0.879

Average train hamming-loss 0.065 0.0344 0.035 0.023

Average train jaccard-similarity 0.666 0.823 0.821 0.877

Average test loss 0.090 0.058 0.067 0.050

Average test accuracy 0.974 0.980 0.978 0.981

Average test precision 0.964 0.975 0.972 0.970

Average test recall 0.900 0.919 0.912 0.928

Average test F1 0.931 0.946 0.941 0.949

Average test AUC 0.946 0.957 0.953 0.961

Average test subset-accuracy 0.875 0.899 0.892 0.905

Average test hamming-loss 0.025 0.019 0.021 0.018

Average test jaccard-similarity 0.871 0.898 0.889 0.903

Training time in hours 1:38:13 4:55:44 5:04:09 14:46:18

Total learning in hours 2:02:11 5:21:03 6:10:06 15:53:01

Average prediction time in minutes 00:00.682 00:00.762 00:00.771 00:00.863

Table 6.3: Comparison of the MOL-GRU model performance with different iteration and
epoch configuration.

63

64 6. Evaluation

So far, we only investigated the model metrics according to the overall result. It would
be interesting if all vulnerability classes perform the same way. Table 6.4 shows the class-
specific metrics retrieved by the MOL-GRU model. As a reminder, these eight classification
types are as follows:

1. Callstack

2. Reentrancy

3. Money concurrency

4. Accessible self-destruct

5. DoS (Unbounded Operation)

6. Tainted self-destruct

7. Assert violation

8. Multiple sends

The model predicts the correct values in at least 97% of the test samples independent of the
vulnerability class. The reentrancy bug and Tainted self-destruct are even detected with
the probability of 99%. In the case of the Callstack and the Multiple sends bug, the recall
is relatively low. This indicates that this vulnerability is more often wrongly detected. It
is also remarkable that the DoS (Unbounded Operation) might be often predicted wrongly
since the Jaccard-similarity value with 84% is noticeably low. All other values are in a
relatively similar range.

Metric cl. 1 cl. 2 cl. 3 cl. 4 cl. 5 cl. 6 cl. 7 cl. 8

Average test loss 0.053 0.034 0.076 0.052 0.063 0.010 0.047 0.065

Average test accuracy 0.979 0.991 0.970 0.981 0.970 0.997 0.977 0.980

Average test precision 0.983 0.990 0.967 0.973 0.925 0.994 0.949 0.995

Average test recall 0.886 0.953 0.940 0.925 0.902 0.991 0.934 0.886

Average test F1 0.932 0.971 0.953 0.948 0.913 0.993 0.941 0.937

Average test AUC 0.941 0.975 0.962 0.959 0.943 0.995 0.961 0.942

Average test hamming-loss 0.020 0.008 0.029 0.018 0.029 0.002 0.022 0.019

Average test jaccard-similarity 0.873 0.944 0.912 0.902 0.841 0.986 0.890 0.882

Table 6.4: Class-specific metrics retrieved by the MOL-GRU model training.

After having a look at the averaged numbers of the model metrics, it is also useful to
check the progress of each statistic. In Figures 6.2 and 6.3 all the metrics’ progress can be
observed. These metrics show the progress of the MOL-GRU model, which was trained
for three iterations and three epochs per chunk. It can be found out that the validation
metrics vary a lot, which indicates that it performs a good job of preventing overfitting.
Besides that, it can be observed that different metrics converge earlier than others. Some
values, such as the loss, converge approximately in interval 50, whereas most other values
converge in interval 20. This explains why all the models work very efficiently, even with
much shorter training time.

64

6.2. Evaluation Results 65

(a) Training and validation loss (b) Training and validation accuracy

(c) Training and validation precision (d) Training and validation recall

(e) Training and validation F1 score (f) Training and validation AUC

Figure 6.2: Metric progress during model training - part 1.

65

66 6. Evaluation

(a) Training and validation subset-accuracy (b) Training and validation hamming-loss

(c) Training and validation jaccard similarity

Figure 6.3: Metric progress during model training - part 2.

66

6.3. Comparison with other machine-learning approaches 67

6.3 Comparison with other machine-learning approaches

After developing our own AI scanner, it is time to compare the achieved result with the
machine-learning approaches examined in Section 3. First of all, it needs first to be noted
that the approaches cannot be compared exactly since each classifier work with other
techniques and other complexities.

The ContractWard tool receives source-code as input, which needs to be compiled and
translated to be processed by the classifier. With this classifier, six vulnerability types
can be detected. They utilize the power of parallel binary classifiers in order to create
expert models. The prediction time, including the preprocessing, takes approximately
four seconds. As indicated in Tables 6.2 and 6.3, the average prediction time stays under
one second. With the expert classifiers, the ContractWard could achieve slightly better
performance results [48]. However, the approach with neural networks might be a lot easier
to scale so that it is possible to detect even more smart contracts’ vulnerability types.

The LSTM approach can be compared a lot easier since both approaches use kind of the
same technique. In contrast to the LSTM binary approach, only classifying contracts into
vulnerable and invulnerable, our AI Scanner is capable of detecting exact vulnerability
types. In addition to that, eight instead of three vulnerability classes are learned by our
model. With this work, it is also shown that it is possible to mix up the result with
different tools. Although the accuracy of the LSTM approach is nearly perfect, the other
metrics are topped by our approach. This includes the recall, precision, F1, and AUC
score [54].

67

7. Conclusion

The threat of smart contract exploitation requires mitigation strategies because this tech-
nology comes with some flaws and bugs. It is a significant task to detect vulnerabilities of
smart contracts before deploying them to the public blockchain because of the difficulty
of removing buggy code. With this work, a framework is developed, which can be used to
develop an AI scanner capable of detecting eight different vulnerability classes. Further-
more, it takes care of data retrieval, pre-classification, and model building. On the basis
of publicly available bytecode of smart contracts in combination with publicly available
tools, this project has been realized. This way, the accuracy of 98% could be achieved
with common text classification technologies. In a deployed state, developers can now
classify bytecode of smart contracts. Furthermore, this approach looks promising that it
can be extended by more classification types. This way, this tool could turn out to be very
powerful.

Since multiple classification tools have already been mixed, this work can be extended by
the addition of new vulnerability types. These new types can either be the less repre-
sented ones from this project or others provided by new classifiers that can work based
on bytecode. The increased number of classification types may also lead to deeper neural
network architectures, improving the overall result. Data augmentation might also be a
promising technique to support less represented classification classes. Since this project
is based on the 1.2 million smart contracts derived from the first five million blocks, the
dataset can also be increased to improve and fine-tune the model performance. Another
interesting topic in that area is the localization of vulnerabilities in smart contracts. Since
the deep-learning algorithm learns specific patterns that are the base for decision making,
it could be possible to create a mechanism to highlight suspicious areas.

ACKNOWLEDGMENTS

I would like to say thank you to my supervisor, Prof. Dr.-Ing. Alexandra Dmitrienko,
for her support and guidance throughout this project. Furthermore, I would also like
to thank Huili Chen and Hossein Fereidooni for supporting me, especially in the area of
deep-learning.

69

List of Figures

2.1 A simplified version of an attack and victim contract which exploits the
reentrancy bug written in Solidity [14]. 5

2.2 This is a basic overview of the workflow during the machine-learning devel-
opment [17]. 7

2.3 Simple neural network containing one input layer, two hidden layers and
one output layer [19]. 8

2.4 A recurrent neural network and the unfolding in time of the computation
involved in its forward computation [19]. 9

2.5 Model based on bidirectional LSTM [23]. 9

4.1 High-level overview of this work’s approach [55]. 15

4.2 Expected dataflow of the smart contracts. 17

4.3 Workflow for the development of deep-learning models [56]. 19

5.1 Architectural overview of developed modules in this project. 22

5.2 Architectural overview of components which deliver the smart contract byte-
codes in the end. 24

5.3 Docker-Compose File to run Ethereum ETL algorithm. 25

5.4 Sample response body of a Dedaub Contract-library API request. 30

5.5 Architectural overview of components which pre-classify smart contracts. . 31

5.6 Sample response body of a Dedaub Contract-library API request. 32

5.7 Distribution of the Dedaub contract-library’s classification labels. 34

5.8 Script file to trigger Oyente vulnerability scan of mounted bytecode files. . . 34

5.9 Sample classification of the Oyente tool. 35

5.10 Distribution of the Oyente’s classification labels. 36

5.11 Script file to trigger Mythril vulnerability scan of mounted bytecode files. . 37

5.12 Sample classification of the Mythril tool. 37

5.13 Distribution of the Mythril’s classification labels. 39

5.14 Architectural overview of components which lead to model-based classifica-
tion. 40

5.15 Untouched sample bytecode file which needs to be pre-processed. 41

5.16 Sample rule definition for bytecode subsitution. 43

5.17 Pre-processed bytecode according to the default normalization rules. 44

5.18 Pre-processed bytecode according to the reduction normalization rules. . . . 44

5.19 SQL script to create a dataset for the deep-learning process. 46

5.20 Output samples.csv which will be directly passed to the deep-learning model. 47

5.21 Output labels.csv which will be directly passed to the deep-learning model. 47

5.22 Distribution of all labels in the dataset. 47

5.23 Distribution of all the sequence length in the dataset. 48

5.24 Comparison of input and output vectors in single-output-layer and multi-
output-layers models. 49

5.25 Component view of deep-learning related modules. 50

71

72 List of Figures

5.26 Illustration of the chunked-based deep-learning approach. 52
5.27 Pseudo code of running deep-learning based on dataset chunks. 53
5.28 Architecture of neural networks used in this project. 54
5.29 Code definition of the multi-output-layer GRU model in Python. 55
5.30 Sample configuration file which is passed to the model serving API and can

be retrieved via endpoint. 56
5.31 Sample request body when calling the /prediction endpoint. 56
5.32 Sample request response containing the model prediction when calling the

/prediction endpoint. 57

6.1 Calculation of true positives in Tensorflow. 60
6.2 Metric progress during model training - part 1. 65
6.3 Metric progress during model training - part 2. 66

72

List of Tables

5.1 Part of the Ethereum-ETL contract.csv file. 26
5.2 Schema of the database created by module smartcontract loader. 27
5.3 State of the database after executing the smartcontract loader module. . . . 28
5.4 State of the database after executing the bytecode loader infura module. . . 29
5.5 State of the database after executing the bytecode loader dedaub module. . . 30
5.6 Schema of the database created by module dedaub classification. 33
5.7 Schema of the database created by module oyente classification. 35
5.8 Schema of the database created by module mythril classification. 38
5.9 Usage of metric functions by model type. 51

6.1 System environment specification used to run the deep learning process. . . 62
6.2 Comparison of different model architecture after learning one iteration and

one epoch. 63
6.3 Comparison of the MOL-GRU model performance with different iteration

and epoch configuration. 63
6.4 Class-specific metrics retrieved by the MOL-GRU model training. 64

73

Acronyms

AI Artificial Intelligence

AST Abstract Syntax Tree

AUC Area under the Curve

API Application Programming Interface

BOW Bag of Words

CPU Central Processing Unit

CRUD Create, Read, Update and Delete

CSV Comma-Separated Values (file format)

EVM Ethereum Virtual Machine

FN False Negative

FP False Positive

GPU Graphics Processing Unit

GRU Gated Recurrent Units

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IR Intermediate Representations

JSON JavaScript Object Notation (file format)

KNN k-Nearest Neighbor

LSTM Long Short-Term Memory

MLP Multilayer Perceptrons

MOL Multiple-Output-Layer

NLP Natural Language Processing

RF Random Forest

RNN Recurrent Neural Networks

RPC Remote procedure call

SMT Satisfiability Modulo Theories

SOL Single-Output-Layer

SVM Support Vector Machine

75

76 List of Tables

TN True Negative

TP True Positive

UI User Interface

URI Uniform Resource Identifier

76

Bibliography

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.” [Online]. Available:
http://bitcoin.org/bitcoin.pdf

[2] D. Siegel, “Understanding the dao attack,” Jun 2016. [Online]. Available:
https://www.coindesk.com/understanding-dao-hack-journalists

[3] M. d. Castillo, “The dao attacked: Code issue leads to $60 mil-
lion ether theft,” Jun 2016. [Online]. Available: https://www.coindesk.com/
dao-attacked-code-issue-leads-60-million-ether-theft

[4] A. Dika and M. Nowostawski, “Security vulnerabilities in ethereum smart contracts,”
in 2018 IEEE International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData), July 2018, pp.
955–962.

[5] C. D. Clack, V. A. Bakshi, and L. Braine, “Smart contract templates: foundations,
design landscape and research directions,” CoRR, vol. abs/1608.00771, 2016. [Online].
Available: http://arxiv.org/abs/1608.00771

[6] “Ethereum Whitepaper.” [Online]. Available: https://ethereum.org

[7] A. Savelyev, “Contract law 2.0: ‘smart’ contracts as the beginning of the end of classic
contract law,” Information & Communications Technology Law, vol. 26, no. 2, pp.
116–134, 2017. [Online]. Available: https://doi.org/10.1080/13600834.2017.1301036

[8] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, “Step by step towards
creating a safe smart contract: Lessons and insights from a cryptocurrency lab,”
in Financial Cryptography and Data Security, J. Clark, S. Meiklejohn, P. Y. Ryan,
D. Wallach, M. Brenner, and K. Rohloff, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2016, pp. 79–94.

[9] “ethereum/solidity,” Oct. 2020, original-date: 2015-08-17T12:27:26Z. [Online].
Available: https://github.com/ethereum/solidity

[10] “Introduction to smart contracts.” [Online]. Available: https://ethereum.org

[11] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart contracts
smarter,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’16. New York, NY, USA: ACM, 2016, pp.
254–269. [Online]. Available: http://doi.acm.org/10.1145/2976749.2978309

[12] C. D. Clack, V. A. Bakshi, and L. Braine, “Smart contract templates: foundations,
design landscape and research directions,” CoRR, vol. abs/1608.00771, 2016. [Online].
Available: http://arxiv.org/abs/1608.00771

[13] “Ethereum in BigQuery: How we built this dataset.” [Online]. Available:
https://cloud.google.com/blog/

77

http://bitcoin.org/bitcoin.pdf
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft
https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft
http://arxiv.org/abs/1608.00771
https://ethereum.org
https://doi.org/10.1080/13600834.2017.1301036
https://github.com/ethereum/solidity
https://ethereum.org
http://doi.acm.org/10.1145/2976749.2978309
http://arxiv.org/abs/1608.00771
https://cloud.google.com/blog/

78 Bibliography

[14] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard:
Finding reentrancy bugs in smart contracts,” in Proceedings of the 40th
International Conference on Software Engineering: Companion Proceeedings, ser.
ICSE ’18. New York, NY, USA: ACM, 2018, pp. 65–68. [Online]. Available:
http://doi.acm.org/10.1145/3183440.3183495

[15] D. Siegel, “Understanding the dao attack,” Jun 2016. [Online]. Available:
https://www.coindesk.com/understanding-dao-hack-journalists

[16] M. d. Castillo, “The dao attacked: Code issue leads to $60 mil-
lion ether theft,” Jun 2016. [Online]. Available: https://www.coindesk.com/
dao-attacked-code-issue-leads-60-million-ether-theft

[17] P. Sodhi, N. Awasthi, and V. Sharma, “Introduction to machine learning and
its basic application in python,” in Proceedings of 10th International Conference
on Digital Strategies for Organizational Success, January 2019. [Online]. Available:
http://dx.doi.org/10.2139/ssrn.3323796

[18] G. Dong and H. Liu, Feature engineering for machine learning and data analytics.
CRC Press, 2018.

[19] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015. [Online]. Available: https://doi.org/10.1038/nature14539

[20] T. Dietterich, “Overfitting and undercomputing in machine learning,” ACM
Comput. Surv., vol. 27, no. 3, p. 326–327, Sep. 1995. [Online]. Available:
https://doi.org/10.1145/212094.212114

[21] O. Dekel and O. Shamir, “Multiclass-multilabel classification with more classes than
examples,” in Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 2010, pp. 137–144.

[22] “Machine Learning Glossary.” [Online]. Available: https://developers.google.com/
machine-learning/glossary

[23] O. Dekel and O. Shamir, “Multiclass-multilabel classification with more classes than
examples,” Journal of Machine Learning Research - Proceedings Track, vol. 9, pp.
137–144, 01 2010.

[24] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural networks for text
classification,” in Twenty-ninth AAAI conference on artificial intelligence, 2015.

[25] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and J. Gao,
“Deep learning based text classification: A comprehensive review,” 2020.

[26] R. Dey and F. M. Salem, “Gate-variants of gated recurrent unit (gru) neural net-
works,” in 2017 IEEE 60th International Midwest Symposium on Circuits and Systems
(MWSCAS), 2017, pp. 1597–1600.

[27] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask),” in 2010 IEEE Symposium on Security and Privacy, May 2010, pp. 317–331.

[28] J. Cai, S. Yang, J. Men, and J. He, “Automatic software vulnerability detection based
on guided deep fuzzing,” in 2014 IEEE 5th International Conference on Software
Engineering and Service Science, June 2014, pp. 231–234.

[29] J. Feist, G. Grieco, and A. Groce, “Slither: A Static Analysis Framework For Smart
Contracts,” arXiv e-prints, p. arXiv:1908.09878, Aug 2019.

78

http://doi.acm.org/10.1145/3183440.3183495
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft
https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft
http://dx.doi.org/10.2139/ssrn.3323796
https://doi.org/10.1038/nature14539
https://doi.org/10.1145/212094.212114
https://developers.google.com/machine-learning/glossary
https://developers.google.com/machine-learning/glossary

Bibliography 79

[30] “crytic/slither,” Oct. 2020, original-date: 2018-09-05T21:56:35Z. [Online]. Available:
https://github.com/crytic/slither

[31] “melonproject/oyente,” Oct. 2020, original-date: 2017-03-17T14:42:38Z. [Online].
Available: https://github.com/melonproject/oyente

[32] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist, T. Brun-
son, and A. Dinaburg, “Manticore: A user-friendly symbolic execution framework for
binaries and smart contracts,” 2019.

[33] “trailofbits/manticore,” Oct. 2020, original-date: 2017-02-10T22:28:34Z. [Online].
Available: https://github.com/trailofbits/manticore

[34] “ConsenSys/mythril,” Oct. 2020, original-date: 2017-09-18T04:14:20Z. [Online].
Available: https://github.com/ConsenSys/mythril

[35] L. Alt and C. Reitwiessner, “Smt-based verification of solidity smart contracts,” in
Leveraging Applications of Formal Methods, Verification and Validation. Industrial
Practice, T. Margaria and B. Steffen, Eds. Cham: Springer International Publishing,
2018, pp. 376–388.

[36] “Ethereum Contract Library by Dedaub.” [Online]. Available: https:
//contract-library.com/

[37] “Smart Contract Audits.” [Online]. Available: https://www.dedaub.com/

[38] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smaragdakis,
“Madmax: Surviving out-of-gas conditions in ethereum smart contracts,” Proc.
ACM Program. Lang., vol. 2, no. OOPSLA, Oct. 2018. [Online]. Available:
https://doi.org/10.1145/3276486

[39] N. Grech, “nevillegrech/MadMax,” Oct. 2020, original-date: 2018-09-01T13:25:32Z.
[Online]. Available: https://github.com/nevillegrech/MadMax

[40] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and M. Vechev,
“Securify: Practical security analysis of smart contracts,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, ser. CCS
’18. New York, NY, USA: Association for Computing Machinery, 2018, p. 67–82.
[Online]. Available: https://doi.org/10.1145/3243734.3243780

[41] “eth-sri/securify,”Sep. 2020, original-date: 2018-09-13T10:33:15Z. [Online]. Available:
https://github.com/eth-sri/securify

[42] “MythX: Smart contract security service for Ethereum.” [Online]. Available:
https://mythx.io/

[43] B. M. M. i. t. co founder and C. H. O. o. MythX, “MythX Tech: Behind the
Scenes of Smart Contract Security Analysis,” Dec. 2019. [Online]. Available: https:
//blog.mythx.io/features/mythx-tech-behind-the-scenes-of-smart-contract-analysis/

[44] G. Pace and J. Ellul, “Runtime verification of ethereum smart contracts,” 09 2018.

[45] gordonpace, “gordonpace/contractLarva,” May 2020, original-date: 2017-12-
14T19:27:41Z. [Online]. Available: https://github.com/gordonpace/contractLarva

[46] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the greedy, prodi-
gal, and suicidal contracts at scale,” 2018.

[47] I. Nikolic, “ivicanikolicsg/MAIAN,” Oct. 2020, original-date: 2018-03-12T07:58:25Z.
[Online]. Available: https://github.com/ivicanikolicsg/MAIAN

79

https://github.com/crytic/slither
https://github.com/melonproject/oyente
https://github.com/trailofbits/manticore
https://github.com/ConsenSys/mythril
https://contract-library.com/
https://contract-library.com/
https://www.dedaub.com/
https://doi.org/10.1145/3276486
https://github.com/nevillegrech/MadMax
https://doi.org/10.1145/3243734.3243780
https://github.com/eth-sri/securify
https://mythx.io/
https://blog.mythx.io/features/mythx-tech-behind-the-scenes-of-smart-contract-analysis/
https://blog.mythx.io/features/mythx-tech-behind-the-scenes-of-smart-contract-analysis/
https://github.com/gordonpace/contractLarva
https://github.com/ivicanikolicsg/MAIAN

80 Bibliography

[48] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “Contractward: Automated
vulnerability detection models for ethereum smart contracts,” IEEE Transactions on
Network Science and Engineering, pp. 1–1, 2020.

[49] T. Chen and C. Guestrin, “Xgboost,” Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Aug 2016.
[Online]. Available: http://dx.doi.org/10.1145/2939672.2939785

[50] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” Journal of Computer and
System Sciences, vol. 55, no. 1, pp. 119 – 139, 1997. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S002200009791504X

[51] L. Breiman, “Machine learning, volume 45, number 1 - springerlink,” Machine Learn-
ing, vol. 45, pp. 5–32, 10 2001.

[52] J. A. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,”
Neural processing letters, vol. 9, no. 3, pp. 293–300, 1999.

[53] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Inf.
Theory, vol. 13, pp. 21–27, 1967.

[54] W. J.-W. Tann, X. J. Han, S. S. Gupta, and Y.-S. Ong, “Towards safer smart con-
tracts: A sequence learning approach to detecting security threats,” 2019.

[55] “Introduction | ML Universal Guides.” [Online]. Available: https://developers.google.
com/machine-learning/guides/text-classification

[56] “Machine Learning Process And Scenarios,” May 2017. [Online]. Available:
https://elearningindustry.com/machine-learning-process-and-scenarios

[57] “pandas - Python Data Analysis Library.” [Online]. Available: https://pandas.
pydata.org/

[58] “NumPy.” [Online]. Available: https://numpy.org/

[59] “argparse — Parser for command-line options, arguments and sub-commands
— Python 3.9.0 documentation.” [Online]. Available: https://docs.python.org/3/
library/argparse.html

[60] “pytest: helps you write better programs — pytest documentation.” [Online].
Available: https://docs.pytest.org/en/stable/

[61] Docker, “Empowering app development for developers.” [Online]. Available:
https://www.docker.com/

[62] C. Boettiger, “An introduction to docker for reproducible research,” SIGOPS
Oper. Syst. Rev., vol. 49, no. 1, pp. 71–79, Jan. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2723872.2723882

[63] D. Merkel, “Docker: Lightweight linux containers for consistent development and
deployment,” Linux Journal, vol. 2014, 03 2014.

[64] “MySQL.” [Online]. Available: https://www.mysql.com/

[65] p. contributors, “phpMyAdmin.” [Online]. Available: https://www.phpmyadmin.net/

[66] “TensorFlow.” [Online]. Available: https://www.tensorflow.org/

[67] “tensorflow/tensorflow,” Oct. 2020, original-date: 2015-11-07T01:19:20Z. [Online].
Available: https://github.com/tensorflow/tensorflow

80

http://dx.doi.org/10.1145/2939672.2939785
http://www.sciencedirect.com/science/article/pii/S002200009791504X
https://developers.google.com/machine-learning/guides/text-classification
https://developers.google.com/machine-learning/guides/text-classification
https://elearningindustry.com/machine-learning-process-and-scenarios
https://pandas.pydata.org/
https://pandas.pydata.org/
https://numpy.org/
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.pytest.org/en/stable/
https://www.docker.com/
http://doi.acm.org/10.1145/2723872.2723882
https://www.mysql.com/
https://www.phpmyadmin.net/
https://www.tensorflow.org/
https://github.com/tensorflow/tensorflow

Bibliography 81

[68] “Keras: the Python deep learning API.” [Online]. Available: https://keras.io/

[69] I. L. Tom Hope, Yehezkel S. Resheff, in Learning TensorFlow. O’Reilly Media, Inc.,
August 2017.

[70] “blockchain-etl/ethereum-etl,” Aug. 2020. [Online]. Available: https://github.com/
blockchain-etl/ethereum-etl

[71] “Ethereum API | IPFS API Gateway | ETH Nodes as a Service.” [Online]. Available:
https://infura.io/

[72] “Ethereum Contract Library by Dedaub.” [Online]. Available: https:
//contract-library.com/

[73] Ethereum, “ethereum/eips,” Mar 2019. [Online]. Available: https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-20.md

[74] “Introduction — Web3.py 5.12.1 documentation.” [Online]. Available: https:
//web3py.readthedocs.io/en/stable/

[75] “Overview · Smart Contract Weakness Classification and Test Cases.” [Online].
Available: http://swcregistry.io/

[76] “Flask API.” [Online]. Available: https://www.flaskapi.org/

[77] S. Jadon, “A survey of loss functions for semantic segmentation,” 06 2020.

[78] D. Powers, “Evaluation: From precision, recall and f-factor to roc, informedness,
markedness & correlation,” 2008.

81

https://keras.io/
https://github.com/blockchain-etl/ethereum-etl
https://github.com/blockchain-etl/ethereum-etl
https://infura.io/
https://contract-library.com/
https://contract-library.com/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://web3py.readthedocs.io/en/stable/
https://web3py.readthedocs.io/en/stable/
http://swcregistry.io/
https://www.flaskapi.org/

	Contents
	1 Introduction
	2 Background
	2.1 Ethereum Platform
	2.1.1 Smart Contracts
	2.1.2 Vulnerabilities of Smart Contracts

	2.2 Deep-Learning
	2.2.1 Introduction into Machine-Learning
	2.2.2 Neural Networks
	2.2.3 Natural Language Processing
	2.2.4 Text Representation
	2.2.5 Recurrent Neural Network based Text Classification

	3 Related Work
	3.1 Static Vulnerability Detection Methods
	3.2 Dynamic Vulnerability Detection Methods
	3.3 Machine-Learning for Vulnerability Detection

	4 Approach
	4.1 Data collection
	4.2 Deep-Learning
	4.3 Evaluation

	5 Implementation
	5.1 Applied Technologies
	5.1.1 Python
	5.1.2 Docker
	5.1.3 MySQL Database
	5.1.4 Tensorflow

	5.2 Smart Contract Bytecode Aquisition
	5.2.1 Architectural Overview
	5.2.2 Ethereum ETL
	5.2.3 Smart Contract Loader
	5.2.4 Bytecode Loader Infura
	5.2.5 Bytecode Loader Dedaub

	5.3 Pre-Classification of Smart Contracts
	5.3.1 Architectural Overview
	5.3.2 Dedaub Smart Contract Classification
	5.3.3 Oyente Smart Contract Classification
	5.3.4 Mythril Smart Contract Classification

	5.4 Deep-Learning Classification
	5.4.1 Architectural Overview
	5.4.2 Bytecode Preprocessing
	5.4.3 Dataset Preparation
	5.4.4 Deep-Learning
	5.4.4.1 Requirements to the Deep-Learning framework
	5.4.4.2 Module architecture
	5.4.4.3 Deep-Learning workflow
	5.4.4.4 Deep-Learning models

	5.4.5 Model serving API

	6 Evaluation
	6.1 Definition of the Metrics
	6.2 Evaluation Results
	6.3 Comparison with other machine-learning approaches

	7 Conclusion
	List of Figures
	List of Tables
	Acronyms
	Bibliography

