
How is Performance Addressed in DevOps?
A Survey on Industrial Practices

Cor-Paul Bezemer1, Simon Eismann2, Vincenzo Ferme3, Johannes Grohmann2, Robert Heinrich4,
Pooyan Jamshidi5, Weiyi Shang6, André van Hoorn7, Monica Villavicencio8, Jürgen Walter2,

 Felix Willnecker9
1University of Alberta (Canada) 2University of Würzburg (Germany) 3Software Institute, USI-Lugano (Switzerland)
4Karlsruhe Institute of Technology (Germany) 5University of South Carolina (USA) 6Concordia University (Canada)

7University of Stuttgart (Germany) 8ESPOL (Ecuador) 9fortiss GmbH (Germany)
rgdevops@spec.org

ABSTRACT
DevOps is a modern software engineering paradigm that is gaining
widespread adoption in industry. The goal of DevOps is to bring
software changes into production with a high frequency and fast
feedback cycles. This conflicts with software quality assurance
activities, particularly with respect to performance. For instance,
performance evaluation activities — such as load testing— require a
considerable amount of time to get statistically significant results.

We conducted an industrial survey to get insights into how per-
formance is addressed in industrial DevOps settings. In particular,
we were interested in the frequency of executing performance
evaluations, the tools being used, the granularity of the obtained
performance data, and the use of model-based techniques. The sur-
vey responses, which come from a wide variety of participants from
different industry sectors, indicate that the complexity of perfor-
mance engineering approaches and tools is a barrier for wide-spread
adoption of performance analysis in DevOps. The implication of
our results is that performance analysis tools need to have a short
learning curve, and should be easy to integrate into the DevOps
pipeline in order to be adopted by practitioners.

ACM Reference Format:
Cor-Paul Bezemer1, Simon Eismann2, Vincenzo Ferme3, Johannes Grohmann2,
Robert Heinrich4, Pooyan Jamshidi5, Weiyi Shang6, André van Hoorn7,
Monica Villavicencio8, Jürgen Walter2, Felix Willnecker9. 2019. How is
Performance Addressed in DevOps? A Survey on Industrial Practices. In
Tenth ACM/SPEC International Conference on Performance Engineering (ICPE
’19), April 7–11, 2019, Mumbai, India. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3297663.3309672

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’19, April 7–11, 2019, Mumbai, India
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6239-9/19/04. . . $15.00
https://doi.org/10.1145/3297663.3309672

1 INTRODUCTION
DevOps is a modern software engineering paradigm that aims to
reduce the time between changing software and delivering these
changes into production with high quality [27]. This reduction in
delivery time is achieved through organizational changes that bring
together development and operations teams and processes with
a high degree of automation, e.g., via continuous delivery (CD)
pipelines and quality gates [16].

One of the most important quality aspects of a software system
is performance. The performance of a system can be described as
several system properties that concern the system’s timeliness and
use of resources [17]. Common performance metrics are response
time, throughput, and resource utilization. Performance require-
ments for software systems are typically defined by setting upper
and/or lower bounds for these and other metrics. In order to ensure
that such performance requirements can be met, several activi-
ties are required during the development and operation of these
systems [8]. A common distinction is made between model-based
activities, such as prediction using performance models [11], and
measurement-based activities, such as load testing [18] and moni-
toring [14]. Historically, performance-related activities in software
development and operations were tackled independently from each
other, but the newly emerging DevOps concepts require and enable
a tighter integration between both activity streams [9].

In our prior work [9], we discussed how existing solutions could
support this integration, as well as open research challenges in the
area of performance evaluation in DevOps. Despite the widespread
adoption of DevOps practices and technologies, there are still many
unanswered questions about DevOps. In particular, we focus on
the following questions:

(1) How often are performance evaluations of applications de-
veloped using DevOps conducted in industry?

(2) Which performance evaluation tools are being used in the
CD pipeline?

(3) What is the granularity of the analyzed performance data?
(4) Are performance models used in the CD pipeline?

To answer these questions, we performed a survey on the current
state-of-practice of addressing performance concerns in industrial
DevOps applications. Prior empirical studies show that the adoption
of DevOps correlates with positive software quality outcomes [26].
Also, in the open source community, the usage of DevOps and
continuous integration (CI) leads to more frequent releases [15].

Session 2: Cloud Computing ICPE ’19, April 7–11, 2019, Mumbai, India

45

https://doi.org/10.1145/3297663.3309672
https://doi.org/10.1145/3297663.3309672

Table 1: A summary of the implications of our findings

1. The complexity of performance engineering approaches is a barrier for wide-spread adoption by practitioners. Section 5.1
2. Performance engineering approaches must be lightweight. Section 5.2
3. Performance engineering approaches must smoothly integrate with existing tools in the DevOps pipeline. Section 5.3

However, these studies do not present the current practice of per-
formance engineering in DevOps applications. Our survey is the
first to focus on performance engineering practices in a DevOps
setting.

Our study reveals that automatic performance evaluations are
usually not integrated into automatic delivery pipelines and not
performed regularly. In addition, performance modeling is not ap-
plied in most companies. In this study, we observed that diagnosing
performance issues is typically performed based on “human in-
tuition” [19]: engineers investigate hypotheses about what might
have gone wrong in the system using data analytics to draw a
conclusion about the observed performance issue.

The remainder of this paper is structured as follows. Section 2
provides an overview of related work, focusing on surveys about
DevOps practices. Section 3 presents details about our methodology,
including the survey design. The main results of our survey are
discussed in Section 4. Section 5, discusses the main implications
(which are summarized in Table 1) of our study. In Section 6, we
discuss the threats to validity of our study. In Section 7, we conclude
the paper.

2 RELATEDWORK
Others have performed prior surveys to assess the state-of-practice
of DevOps in industry. Several of these surveys were conducted
by corporations that sell DevOps solutions to companies. While
some surveys touched briefly upon the topic of software perfor-
mance in DevOps, none of them focused on getting an in-depth
overview of how performance engineering is applied in DevOps.
Prior surveys on the organizational impact of applying DevOps
in industry [1, 2, 12], assessed the DevOps adoption over different
years [2] and the types of tools and techniques used in DevOps
pipelines [3]. These surveys concluded from practitioner responses
that DevOps has an increasingly large impact in industry. These
prior surveys focused on the used tools, and underline how these
tools are usable to optimize certain businesses and technology goals,
such as improving software performance. In particular, software
performance is discussed as one of the main drivers for using Dev-
Ops [3, 7].

Other drivers of the DevOps movement are: “more efficient time-
to-production for new software; a better collaboration between
IT and other lines of business; and more consistent and higher
quality software deployments” [4]. Overall, the surveys conclude
that the DevOps trend is substantial and long-term. Puppet [2]
collected responses from 3200 surveyed practitioners, and reported
that the percentage of teams that use DevOps (compared to other
IT-related teams) increased from 16% in 2014 to 27% in 2017. As
these percentages show, DevOps can still be considered relatively
new and far from being applied widely in industry, as also reported
by Logz.io [1] and Erich et al. [12]. CA Technologies [3] discusses
the findings from an audience of 1425 senior IT and line-of-business

executives and reports on the most critical DevOps demand drivers
and tools, along with DevOps benefits and the factors that are driv-
ing DevOps. It is interesting to notice that improving the quality
and performance of the applications is the top driver, with 42%
of the participants agreeing on this. Tool-wise, application perfor-
mance management and monitoring (APM) [14] tools are perceived
as the most important tools for DevOps by 38 % of the participants,
while 37 % of the participants consider performance testing tools
as critical. KMS Technology [4] surveyed 200 IT practitioners who
were involved in transitioning to DevOps, and reported that 51 %
had a very positive impression, and 79 % had achieved their desired
goals. They also reported that the most significant challenge during
the transition was the limited skill set and knowledge about Dev-
Ops among in-house IT staff (28 %). The second biggest challenge
was a lack of support from the executive staff (23 %), followed by
an inability to agree on and/or articulate the goals of the transi-
tion (18 %).

In addition, prior surveys of practitioners targeted the industrial
adoption of performance testing [6] and CI [15]. The report by
TechBeacon [6] is indirectly related to DevOps because the sur-
vey assessed performance engineering practices throughout the
software development life cycle, and reported that 62 % of the par-
ticipants agreed that performance engineering is important for
DevOps. Hilton et al. [15] studied the barriers that developers face
when using CI, and reported that the complexity of CI tools and
flaky tests are important barriers for effective DevOps integration.

3 METHODOLOGY
This section describes the design of the survey, the way in which it
was advertised, and the profile of the participants.

3.1 Survey Design
The survey design follows the guidelines for conducting surveys in
software engineering by Linåker et al. [21]. We designed our web
survey to answer how industry addresses performance in DevOps
processes.

Our survey contained 58 questions, divided into three parts: 1)
questions about the participants’ professional information (11 ques-
tions); 2) questions about development process models and team
organization (30 questions); and 3) questions about performance
assessment and evaluation (17 questions).

Based on the four aspects that are specified in Section 1, we
defined the target audience for the survey mainly as DevOps engi-
neers, software architects, software developers, software operation
engineers, software performance testers, and software consultants
with a focus on performance engineering at software vendors and
consultant companies worldwide.

We developed a set of initial hypotheses, such as on the frequency
of performance evaluations, the applied tools and the acceptance

Session 2: Cloud Computing ICPE ’19, April 7–11, 2019, Mumbai, India

46

of performance models. Based on the set of hypotheses, we derived
a questionnaire plan, consisting of survey goals, such as “Measure
capabilities of monitoring tools” or “Measure the completeness of
the continuous delivery pipeline”. Each goal is composed of a set of
concrete questions by which we want to answer the corresponding
goal. Additionally, the survey design aims not only at describing
“what” happens, but also at answering “why” it happens in order to
conduct an explanatory study as opposed to just being descriptive.

In order to enable comparison, we aimed at minimizing free
text questions and introduced single and multiple choice questions
as well as Likert scales as often as possible to order the choices.
Questions with ordered choices are less difficult to answer for
participants and easier to analyze for researchers than unordered
ones [10, 13, 24].

3.2 Survey Context and Advertisement
We advertised the link of the survey through industry-related mail-
ing lists such as the SPEC (Standard Performance Evaluation Cor-
poration)1 mailing list, social media, related events such as De-
vOpsDays2 and links in online computer magazines and blogs. In
addition, the request for participation in the survey was spread via
the authors’ network of industry contacts.

The data collection was conducted between May 2016 and March
2017. By the time this article was written, 26 full responses (all ques-
tions answered by participants) and 108 partial responses (a part of
the questions answered) were gathered. The following sections of
this paper are based on the 26 full responses only.

3.3 Survey Participants
The collected responses cover a wide range of education levels,
processes, roles, work experiences and company sizes.

Approximately 85% of the participants have a university de-
gree (i.e., a Bachelor’s degree (35 %), a Master’s degree (25 %), or a
Ph.D. (25 %)), while the other 15 % of the participants hold a high
school degree.

There is a variety of job positions represented in the sample;
however, more than a half of the participants describe themselves
as software developers, and less than 10% as DevOps engineer or
performance engineer.

Most (56 %) of the participants have 1 to 3 years of working
experience in their current position, while 22 % have 3 to 5 years of
experience, and 22 % have 5 or more years of experience.

The participants work in companies that have between 100 and
999 employees (42 %), between 10 and 99 employees (31 %), and be-
tween 1,000 and 9,999 employees (19 %). The remaining participants
work at companies that have less than 10 employees or more than
10,000 employees (8 %).

Most participants apply continuous integration (54 %) while con-
tinuous deployment (12 %) and continuous provisioning (4 %) are
applied less frequently. Continuous integration is often (38 %) ap-
plied in combination with agile processes, such as Scrum. Most
participants (54 %) use real-time data for process improvement.

1https://www.spec.org/
2https://www.devopsdays.org/

dedicated

depends on the
project

self-responsible

0% 10% 20% 30% 40%

26.9%

42.3%

30.8%

Figure 1: Responsibility for performance evaluation

4 THE MAIN RESULTS OF OUR SURVEY
In this section, we present the main results of our survey. The
complete questionnaire, raw response data, and a more detailed
analysis are publicly available online [5].

4.1 Performance evaluations are not regularly
conducted in most companies

Approximately one third of the participants conducts performance
evaluations on a regular basis (19 % continuously, 8 % daily, and 8 %
weekly). The other participants conduct performance evaluations
monthly (8 %), quarterly (27 %), yearly (12 %), less than yearly (8 %),
or never (12 %). In addition, 50 % of the participants spend less than
5 % of their time, and only 20 % spend more than 20 % of their time
on performance. 26 % of the participants report that performance
evaluations are assigned to dedicated persons or teams; 41 % report
to be in charge themselves (see Fig. 1).

4.2 Jenkins is by far the most widespread CI
solution

There exists a wide variety of tools that support the continuous in-
tegration pipeline. Not surprisingly, version control systems (VCSs)
are used by all surveyed practitioners. The vast majority uses
Git (77 %) and/or SVN (38%) as VCS. Jenkins is the most popular
“end-to-end” solution for CI. A majority of 77 % of the practitioners
use Jenkins for continuous builds and 65 % of the practitioners use
Jenkins to deploy their software. Surprisingly, 50 % of the practi-
tioners use SSH as a deployment system, beating Puppet (31 %) at
the third place. The relatively heavy use of SSH suggests that CI so-
lutions such as Jenkins cannot yet fulfill all wishes of practitioners,
e.g., because such solutions are not capable of working with legacy
code. To monitor performance, practitioners tend to rely on lower
level system tools (35 %), such as top, or Nagios (35 %). APM tools
(which are advertised as tools that support CI) are hardly used by
practitioners (see Fig. 2).

4.3 Application-level monitoring is mostly
done in an ad-hoc manner

Even though 70 % of the participants reported to have access to mon-
itoring data, the responses on how their systems aremonitoredwere
surprising (see Fig. 3). While monitoring system-level (and infras-
tructure) metrics is common, hardly any monitoring is conducted
at higher levels, in particular, at the application-level (e.g., using
application-internal metrics). The lack of application-level monitor-
ing is reflected by both the reported granularity of measurements

Session 2: Cloud Computing ICPE ’19, April 7–11, 2019, Mumbai, India

47

https://www.spec.org/
https://www.devopsdays.org/

System

0% 10% 20% 30%

21.4%

7.1%

7.1%

32.1%

32.1%

Nagios

Other

New Relic

Dynatrace

Figure 2: Employed performance evaluation tools

0% 10% 20% 30% 40% 50%

System level

Application Level

Operation Level

Instruction Level

42.3%

23.1%

3.8%

50.0%

Figure 3: Granularity of system monitoring

Have heard about
performance models

Would like to use
performance models

Do not use
performance models

Heard about
Queueing Petri Nets

0% 10% 20% 30% 40% 50% 90%60% 70% 80%

19.2%

76.9%

69.2%

88.5%

Figure 4: Adoption of and attitude towards performance
models

and the used tools. The granularity of monitoring is mentioned
with decreasing occurrence from system level (50 %), over applica-
tion level (42 %) and operation level (23 %), to instruction level (4 %).
Typical system-level monitoring tools such as Nagios and Munin,
or those provided by the (operating) system were mentioned (73 %).
As opposed to this, only 15 % of the participants reported that they
are using a (commercial) APM tool. Three participants reported
about self-developed tools, which seems to be a current trend to use
general-purpose data analytics and visualization components (e.g.,
logging and Graphite) to set up custom monitoring infrastructures.

4.4 Few practitioners use performance models,
despite widespread interest

The results of our survey reveal that performance models are cur-
rently not used in industry and there appears to be no trend towards
their adoption either (see Fig. 4). Our survey shows that 88 % of
the participants do not apply models for performance management,
even though 18 (almost 70 %) of them state that they would like to
use such models. While most participants are aware of performance
modeling formalisms, their knowledge seems to be shallow, since
our results show that only 5 (19 %) of the participants have (some)
knowledge about queuing networks, i.e., the most well-known per-
formance modeling formalism.

5 IMPLICATIONS OF OUR FINDINGS
As discussed in Section 4.1, most surveyed companies do not reg-
ularly conduct performance evaluations. In prior work, Leitner
and Bezemer [20] showed that in most open source projects per-
formance evaluations are not conducted on a regular basis either.
These findings suggest that there is a mismatch between what the
plethora of performance engineering research delivers, and what
practitioners are really looking for. Below, we discuss the most
important implications of our study for researchers.

5.1 The complexity of performance
engineering approaches is a barrier for
wide-spread adoption by practitioners

Software performance assurance activities are complex tasks by
nature that require much knowledge of various aspects of the en-
tire software life-cycle. As a result, performance engineering ap-
proaches, which are often highly complex, are not straightforward
for practitioners to adopt and understand. For example, perfor-
mance modeling is a widely leveraged technique in research that
can be particularly suitable in a DevOps context. As performance
tests can be conducted much faster on performance models than
on real applications, performance models could work well for appli-
cations that release many times per day. Unfortunately, Section 4.4
shows that the application of performance models is rare in indus-
try. The lack of participants’ knowledge is the most likely cause for
not having a clear opinion about the underlining science of such
models. Performance modeling techniques, being mostly research
prototypes, often lack documentation and require expert knowl-
edge to be leveraged, which makes their integration for non-experts
tedious. Hence, the valuable outcomes of the performance models
may be difficult for practitioners to interpret, digest, or even trust.

5.2 Performance engineering approaches must
be lightweight

Our findings highlight the need for more lightweight performance
engineering approaches, which still retain the necessary accuracy,
as most practitioners do not possess in-depth knowledge about
performance engineering techniques (see Section 4.4). A step to-
wards such approaches might be automating aspects of existing
approaches and hiding their associated complexity from the practi-
tioner. The high amount of required effort upfront to construct and
calibrate a performance engineering technique (e.g., performance

Session 2: Cloud Computing ICPE ’19, April 7–11, 2019, Mumbai, India

48

modeling) may be an extra barrier for industrial adoption. While
academic studies show the benefits of performance models for rea-
soning about design decisions and trade-offs [23], industry may
fear the high upfront cost.

In addition, automated and systematic performance engineering
approaches, e.g., creating and updating performance models, may
facilitate the adoption of such techniques in industry. While auto-
mated extraction approaches approaches already exist [9], there
is still no “one-click” solution, which would significantly reduce
the entry barrier. One important step is to enable more lightweight
performance engineering approaches. An example of tools that aim
at reducing the entry barrier are APM tools. Unfortunately we did
not observe wide-spread adoption of such tools by practitioners,
yet (Section 4.3).

5.3 Performance engineering approaches must
smoothly integrate with existing tools in
the DevOps pipeline

A possible explanation for the low adoption of performance engi-
neering practices in DevOps could be that performance engineering
approaches are typically not designedwith the consideration of Dev-
Ops as a general context. On the other hand, existing tools that are
used in many DevOps settings, such as Puppet and Docker, do not
integrate nicely with existing performance engineering processes
in industry. For example, Section 4.3 shows that many practition-
ers still rely on low-level tools, such as SSH and system tools, to
deploy their applications and monitor performance. In addition, we
observed that even though many participants conduct application
level monitoring, they do so without the use of specialized tools
(such as APM tools).

Our recommendation for performance engineering researchers
is to ensure that their tools integrate smoothly in existing DevOps
pipelines. For example, we observed in the survey responses that
Jenkins CI is by far the most popular CI tool (Section 4.2). Hence,
we recommend that researchers provide plugins that allow an easy
integration of their performance evaluation tools in Jenkins.

6 THREATS TO VALIDITY
In this section, we discuss the threats to validity of our study.

Internal validity. Threats to internal validity relate to the par-
ticipant bias and errors. A first internal validity threat concerns the
possible selection bias for survey participants. To avoid such bias,
we advertised the survey in a wide variety of channels (see Sec-
tion 3.2). However, some of these channels (e.g., the SPEC mailing
list) may target a specific audience. Hence, the results of our survey
may be biased. In addition, our survey targeted industrial projects,
which are mostly closed-source. Hence, our findings do not neces-
sarily extend to open source projects. Future studies are necessary
to further explore how performance is addressed in DevOps in
other companies and in open source projects.

Construct validity. A threat to the construct validity of this
study is that our survey consisted mostly of closed-ended questions.
As a result, the richness of the responses may be affected. However,
we felt that the advantages of closed-ended questions outweighed
the disadvantages: closed-ended questions are easier to answer

and analyze [10, 13, 22, 24]. Hence, we focused on closed-ended
questions.

7 CONCLUSION
In this paper, we highlight the results of an independent survey
that focused on performance engineering practices in DevOps. We
found that two third of participants do not conduct performance
evaluation on a regular basis, and among the ones that conduct
performance evaluations, 50 % of the participants spend less than
5 % of their time on them. For what concerns the applied practices in
DevOps, most participants perform continuous integration, while
continuous deployment and continuous provisioning is seldom
implemented. Tool-wise, Jenkins is the most used end-to-end tool
for implementing DevOps practices. We also found that the use of
performance models by practitioners is very low.

One explanation for the low adoption of performance engineer-
ing practices in DevOps could be that the DevOps movement is
still in its infancy, and developers are still getting used to the op-
portunities that this movement offers in terms of automation of
performance engineering processes.

Our survey shows that even though the adoption of DevOps is
relatively widespread in industry, performance engineering prac-
tices are lagging behind. Future research should focus on assisting
software developers and performance engineers to convert their ex-
isting performance engineering practices into the DevOps pipeline.

ACKNOWLEDGEMENTS
This research was conducted by the SPEC RG DevOps Performance
Working Group.3 We would like to thank all survey participants for
their responses. The authors have benefited from discussions with
various colleagues during community events such as the Dagstuhl
seminar on “Software Performance Engineering in the DevOps
World” [25].

This work is partly sponsored by the German Research Foun-
dation (DFG) in the Priority Programme “DFG-SPP 1593: Design
For Future—Managed Software Evolution” (HO 5721/1-1 and KO
3445/15-1), the German Federal Ministry of Education and Research
(grant no. 01IS17010, ContinuITy), and by the Swiss National Sci-
ence Foundation project (178653).

REFERENCES
[1] [n. d.]. The 2017 DevOps Pulse. https://logz.io/wp-content/uploads/2017/07/

devops_pulse_2017_final.pdf. ([n. d.]). Accessed: 2018-06-01.
[2] [n. d.]. 2017 State of DevOps Report. https://www.ipexpoeurope.com/content/

download/10069/143970/file/2017-state-of-devops-report.pdf. ([n. d.]). Accessed:
2018-06-01.

[3] [n. d.]. DevOps: The Worst-Kept Secret to Winning in the Applica-
tion Economy. https://www.ca.com/content/dam/ca/us/files/white-paper/
devops-winning-in-application-economy-2.pdf. ([n. d.]). Accessed: 2018-06-01.

[4] [n. d.]. KMS Technology Survey: DevOps Enjoying its Mo-
ment in the Sun. https://www.kms-technology.com/press/
kms-technology-survey-devops-enjoying-its-moment-in-the-sun. ([n.
d.]). Accessed: 2018-06-01.

[5] [n. d.]. SPEC RG DevOps Survey — Supplementary Material. https://
spec-rgdevops.github.io/specrg_devops_survey/. ([n. d.]). Accessed: 2018-06-01.

[6] [n. d.]. State of Performance Engineering. https://techbeacon.com/sites/default/
files/gated_asset/state-of-performance-engineering-2015-16_final2.pdf. ([n. d.]).
Accessed: 2018-06-01.

3https://research.spec.org/devopswg

Session 2: Cloud Computing ICPE ’19, April 7–11, 2019, Mumbai, India

49

https://logz.io/wp-content/uploads/2017/07/devops_pulse_2017_final.pdf
https://logz.io/wp-content/uploads/2017/07/devops_pulse_2017_final.pdf
https://www.ipexpoeurope.com/content/download/10069/143970/file/2017-state-of-devops-report.pdf
https://www.ipexpoeurope.com/content/download/10069/143970/file/2017-state-of-devops-report.pdf
https://www.ca.com/content/dam/ca/us/files/white-paper/devops-winning-in-application-economy-2.pdf
https://www.ca.com/content/dam/ca/us/files/white-paper/devops-winning-in-application-economy-2.pdf
https://www.kms-technology.com/press/kms-technology-survey-devops-enjoying-its-moment-in-the-sun
https://www.kms-technology.com/press/kms-technology-survey-devops-enjoying-its-moment-in-the-sun
https://spec-rgdevops.github.io/specrg_devops_survey/
https://spec-rgdevops.github.io/specrg_devops_survey/
https://techbeacon.com/sites/default/files/gated_asset/state-of-performance-engineering-2015-16_final2.pdf
https://techbeacon.com/sites/default/files/gated_asset/state-of-performance-engineering-2015-16_final2.pdf

[7] [n. d.]. xMatters Atlassian DevOps Maturity. http://info.xmatters.com/rs/
178-CPU-592/images/atlassian_devops_survey.pdf?_ga=2.20537722.378918857.
1526304278-746614242.1525703839. ([n. d.]). Accessed: 2018-06-01.

[8] André B. Bondi. 2014. Foundations of Software and System Performance Engineer-
ing: Process, Performance Modeling, Requirements, Testing, Scalability, and Practice.
Addison-Wesley Professional.

[9] Andreas Brunnert, Andre van Hoorn, Felix Willnecker, Alexandru Danciu, Wil-
helm Hasselbring, Christoph Heger, Nikolas Herbst, Pooyan Jamshidi, Reiner
Jung, Joakim von Kistowski, Anne Koziolek, Johannes Kroß, Simon Spinner,
Christian Vögele, Jürgen Walter, and Alexander Wert. 2015. Performance-oriented
DevOps: A Research Agenda. Technical Report SPEC-RG-2015-01. SPEC Research
Group—DevOps PerformanceWorking Group, Standard Performance Evaluation
Corporation (SPEC).

[10] Alvin C Burns, Ronald F Bush, and Judith Nash. 2008. Basic marketing research:
using Microsoft Excel data analysis. Pearson Prentice Hall.

[11] Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi. 2011. Model-
Based Software Performance Analysis (1st ed.). Springer Publishing Company,
Incorporated.

[12] F. M. A. Erich, C. Amrit, and M. Daneva. 2017. A Qualitative Study of DevOps
Usage in Practice. J. Softw. Evol. Process 29, 6 (June 2017), n/a–n/a.

[13] Arlene Fink. 2012. How to conduct surveys: A step-by-step guide: A step-by-step
guide. Sage Publications.

[14] Christoph Heger, André van Hoorn, Mario Mann, and Dušan Okanović. 2017.
Application Performance Management: State of the Art and Challenges for the
Future. In Proceedings of the 8th ACM/SPEC on International Conference on Perfor-
mance Engineering (ICPE ’17). ACM, 429–432.

[15] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, costs, and benefits of continuous integration in open-source projects.
In Proceedings of the 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2016). IEEE, 426–437.

[16] Jez Humble andDavid Farley. 2010. Continuous Delivery: Reliable Software Releases
Through Build, Test, and Deployment Automation. Addison-Wesley Professional.

[17] Raj Jain. 1991. The Art of Computer Systems Performance Analysis. John Wiley &
Sons.

[18] Z. M. Jiang and A. E. Hassan. 2015. A Survey on Load Testing of Large-Scale
Software Systems. IEEE Transactions on Software Engineering 41, 11 (2015), 1091–
1118.

[19] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor Kuropatwa,
Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan, Brendan Viscomi, et al.
2017. Canopy: An End-to-End Performance Tracing And Analysis System. In
Proceedings of the 26th Symposium on Operating Systems Principles (SOSP 2017).
ACM, 34–50.

[20] Philipp Leitner and Cor-Paul Bezemer. 2017. An Exploratory Study of the State of
Practice of Performance Testing in Java-Based Open Source Projects. In Proceed-
ings of the 8th ACM/SPEC on International Conference on Performance Engineering
(ICPE). ACM, 373–384.

[21] Johan Linåker, Sardar Muhammad Sulaman, Rafael Maiani de Mello, and Martin
Höst. 2015. Guidelines for Conducting Surveys in Software Engineering.

[22] Urša Reja, Katja Lozar Manfreda, Valentina Hlebec, and Vasja Vehovar. 2003.
Open-ended vs. close-ended questions in web questionnaires. Developments in
Applied Statistics (Metodološki zvezki) 19 (2003), 159–77.

[23] Ralf H Reussner, Steffen Becker, Jens Happe, Robert Heinrich, Anne Koziolek,
Heiko Koziolek,Max Kramer, and Klaus Krogmann. 2016.Modeling and simulating
software architectures: The Palladio approach. MIT Press.

[24] Priscilla Salant, I Dillman, and A Don. 1994. How to conduct your own survey.
Number 300.723 S3.

[25] Andre van Hoorn, Pooyan Jamshidi, Philipp Leitner, and Ingo Weber (Eds.). 2017.
Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the
DevOps World.

[26] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. 2015. Quality and productivity outcomes relating to continuous integra-
tion in GitHub. In Proceedings of the 10th Joint Meeting on Foundations of Software
Engineering (FSE 2015). ACM, 805–816.

[27] Liming Zhu, Len Bass, and George Champlin-Scharff. 2016. DevOps and its
practices. IEEE Software 33, 3 (2016), 32–34.

Session 2: Cloud Computing ICPE ’19, April 7–11, 2019, Mumbai, India

50

http://info.xmatters.com/rs/178-CPU-592/images/atlassian_devops_survey.pdf?_ga=2.20537722.378918857.1526304278-746614242.1525703839
http://info.xmatters.com/rs/178-CPU-592/images/atlassian_devops_survey.pdf?_ga=2.20537722.378918857.1526304278-746614242.1525703839
http://info.xmatters.com/rs/178-CPU-592/images/atlassian_devops_survey.pdf?_ga=2.20537722.378918857.1526304278-746614242.1525703839

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Survey Design
	3.2 Survey Context and Advertisement
	3.3 Survey Participants

	4 The Main Results of Our Survey
	4.1 Performance evaluations are not regularly conducted in most companies
	4.2 Jenkins is by far the most widespread CI solution
	4.3 Application-level monitoring is mostly done in an ad-hoc manner
	4.4 Few practitioners use performance models, despite widespread interest

	5 Implications of our findings
	5.1 The complexity of performance engineering approaches is a barrier for wide-spread adoption by practitioners
	5.2 Performance engineering approaches must be lightweight
	5.3 Performance engineering approaches must smoothly integrate with existing tools in the DevOps pipeline

	6 Threats to Validity
	7 Conclusion
	References

