
HET-NETs 2010
ISBN XXX–XXX

pp. xx–xx

Simulation environment for delivering quality of service in systems based on
service-oriented architecture paradigm

ADAM GRZECH a PIOTR RYGIELSKI a PAWEŁ ŚWIĄTEK a

aInstitute of Computer Science
Wroclaw University of Technology, Poland
{adam.grzech, piotr.rygielski}@pwr.wroc.pl

Abstract: In this paper a model of complex service in service-oriented architecture (SOA) system is pre-
sented. A complex service is composed with a set of atomic services. Each atomic service is characterized with
its own non-functional parameters what allows to formulate quality of servie optimization tasks. A simulation en-
vironment has been developed to allow experiments execution to determine quality of service (QoS) of composed
service.

Keywords: : quality of service, service-oriented architecture, simulation

1. Introduction

Recent popularity of system based on service-oriented architecture (SOA) paradigm has
lead to growth of interest concerning quality of service level provisioning in such systems.
Efficient management of system resources can lead to delay decrease, cost optimization and
security level increase [6].

In this paper a model of serially connected atomic services is considered. Atomic ser-
vices are organized into layers where each atomic service in one layer has equal functionality
and differs in non-functional parameters values such as processing speed, security level, cost
of execution etc. Incoming requests should be distributed in such way that user require-
ments concerning quality of service are satisfied and are profitable for service provider. For
testing purposes for such service distribution algorithms a simulation environment has been
developed.

The paper is organised as follows. In section 2 a serial-parallel complex service model is
presented. Problem of resource distribution for incoming service request has been formulated
in section 3. In section 4 a simulation environment proposed as a testbed for quality of service
provisioning algorithms is described. Usage of developed simulation software is presented
by example in section 5. Section 6 is dedicated for final remarks and future work outline.



2

2. Complex service model

It is assumed that new incoming i-th complex service request is characterized by proper
Service Level Agreement description denoted by SLA(i). The SLA(i) is composed of
two parts describing functional and nonfunctional requirements, respectively SLAf (i) and
SLAnf (i). The first part characterizes functionalities that have to be performed, while the
second contains values of parameters representing various quality of service aspects. The
SLAf (i) is a set of functionalities subsets:

SLAf (i) = {Γi1,Γi2, . . . ,Γij , . . . ,Γini} (1)

where:

• Γi1 ≺ Γi2 ≺ . . . ≺ Γij ≺ . . . ≺ Γini ordered subset of distinguished functionalities
subsets required by i-th complex service request; Γij ≺ Γij+1 (for j = 1, 2, . . . , ni −
1) denotes that delivery of functionalities from the subset Γij+1 cannot start before
completing functionalities from the Γij subset.

• Γij = {ϕij1, ϕij2, . . . , ϕijmj} (for i = 1, 2, . . . , ni) is a subset of functionalities ϕijk

(k = 1, 2, . . . ,mj) that may be delivered in parallel manner (within Γij subset); the
formerly mentioned feature of particular functionalities are denoted by ϕijk ‖ ϕijl

(ϕijk, ϕijl ∈ Γij for k, l = 1, 2, . . . ,m+ j and k 6= l).

The proposed scheme covers all possible cases; ni = 1 means that all required function-
alities may be delivered in parallel manner, while mj = 1 (for j = 1, 2, . . . , ni) means that
all required functionalities have to be delivered in sequence.

It is also assumed that the ϕijk (j = 1, 2, . . . , ni and k = 1, 2, . . . ,mj) functionalities
are delivered by atomic services available at the computer system in several versions.

The nonfunctional requirements may be decomposed in a similar manner, i.e.:

SLAnf(i) = {Hi1, Hi2, . . . ,Hij , . . . ,Hini} (2)

where Hij = {γij1, γij2, . . . , γijmj} is a subset of nonfunctional requirements related re-
spectively to the Γij = {ϕij1, ϕij2, . . . , ϕijmj} subset of functionalities.

According to the above assumption the SLAf (i) of the i-th complex service request
may be translated into ordered subsets of atomic services:

SLAf (i) = {Γi1,Γi2, . . . ,Γij , . . . ,Γini} ⇒ {ASi1, ASi2, . . . , ASij , . . . , ASini}, (3)

where {ASi1, ASi2, . . . , ASij , . . . ASini} is a sequence of atomic services subsets satisfying
an order (ASi1 ≺ ASi2 ≺ . . . ≺ ASij ≺ . . . ≺ ASini) predefined by order in the func-
tionalities subsets. The order in sequence of atomic services is interpreted as the order in
functionalities subsets: ASij ≺ ASi,j+1 (for j = 1, 2, . . . , ni − 1) states that atomic ser-
vices from subsets ASi,j+1 cannot be started before all services from the ASij subset are
completed.



3

Each subset of atomic services ASij (for j = 1, 2, . . . , ni) contains aijk atomic ser-
vices (for k = 1, 2, . . . ,mj) available at the computer system in several versions aijkl

(l = 1, 2, . . . ,mk). Moreover, it is assumed that any version aijkl (l = 1, 2, . . . ,mk) of
the particular aijk atomic services (for k = 1, 2, . . . ,mj) assures the same required function-
ality ϕijk and satisfies nonfunctional requirements at various levels.

The above assumption means that – if fun(aijkl) and nfun(aijkl) denote, respectively,
functionality and level of nonfunctional requirements satisfaction delivered by l-th version
of k-th atomic service (aijkl ∈ ASij) – the following conditions are satisfied:

• fun(aijkl) = ϕijk for l = 1, 2, . . . ,mk,

• nfun(aijkl) 6= nfun(aijkr) for l, r = 1, 2, . . . ,mk and l 6= r.

The ordered functionalities subsets SLAf (i) determines possible level of parallelism at
the i-th requested complex service performance (in the particular environment). The par-
allelism level lp(i) for i-th requested complex service is uniquely defined by the maximal
number of atomic services that may be performed in parallel manner at distinguished subsets
of functionalities (SLAf (i)), i.e.,

lp(i) = max{m1,m2, . . . ,mj , . . . ,mni}. (4)

The possible level of parallelism may be utilized or not in processing of the i-th requested
complex service. Based on the above notations and definitions two extreme compositions
exist. The first one utilizes possible parallelism (available due to computation resources
parallelism), while the second extreme composition means that the requested functionalities
are delivered one-by-one (no computation and communication resources parallelism).

The above presented discussion may be summarized as follows. The known functional
requirements SLAf (i) may be presented as a sequence of subsets of functionalities, where
the size of the mentioned latter subsets depends on possible level of parallelism. The available
level of parallelism defines a set of possible performance scenarios according to which the
requested complex service may be delivered. The space of possible solutions is limited –
from one side – by the highest possible level parallelism and – from the another side – by
natural scenario, where all requested atomic services are performed in sequence.

The mentioned above extreme compositions determines some set of possible i-th re-
quested complex service delivery scenarios. The possible scenario can be represented by
a set of graphs G(i) – nodes of graph represent particular atomic services assuring i-th re-
quested complex service functionalities, while graph edges represent an order according to
which atomic services functionalities have to be delivered.

The set of all possible graphs G(i)
(
G(i) = {Gi1, Gi2, . . . , Gis}

)
assures the requested

functionality, but offers various level of nonfunctional requirement satisfaction. The latter
may be obtained (and optimized) assuming that at least one node of the particular graph
contains at least two versions of the requested atomic service.



4

3. Problem formulation

In general, the optimization task of maximizing delivered quality may be formulated as fol-
lows:

For given:

• Subsets of atomic services aijkl ∈ aijk ∈ ASij

• Set of all possible graphs G(i) for i-th requested complex service

• Subsets of nonfunctional requirements Hij

• Processing scheme given by order ASi1 ≺ ASi2 ≺ . . . ≺ ASij ≺ . . . ≺ ASini

Find: such subset of atomic services versions aijkl that executed with respect to processing
scheme maximizes quality of service SLA∗nf (i).

SLA∗nf (i)← max
Gi1,Gi2,...,Gis

{
max

aijkl∈aijk∈ASij

{Hi1, Hi2, . . . ,Hini}
}
. (5)

The latter task may be reduced where the particular i-th requested complex service com-
position (i.e., an graph equivalent to particular i-th requested complex service processing
scheme) is assumed. In such a case the optimization task can be formulated as:

SLA∗nf (i, Gi)← max
aijkl∈aijk∈ASij

{Hi1, Hi2, . . . ,Hini}. (6)

The above formulated task means that the optimal versions of atomic services, deter-
mined by the selected i-th requested complex service performance scenario, should be se-
lected.

4. Simulation environment

Testing new methods and approaches for improving system quality on real system is
time-consuming and can be difficult, expensive and cause damage to system [1]. Therefore
there is a need to develop a testbed for testing such mechanisms. There are several simulation
environments dedicated for communication networks and in this work OMNeT++ was used.
OMNeT++ is an open source, component-based, modular and open-architecture simulation
framework written in C++ with good documentation and on-line support. As an IDE (Inte-
grated Development Environment) Eclipse CDT is used, so OMNeT++ can be launched at
the most popular operation systems – Linux, Mac OS X and Windows.

Developed environment contains four distinguishable modules: generator module, re-
quest distribution unit (RDU), set of layers with atomic services and a sink module where
global statistics are collected and requests are removed from system. Generator module is
a complex module and consists of sub-generators each generating requests from different



5

classes. Each class of requests is characterized with parameters describing e.g. service
method (based on Integrated services (IntServ) model, Differentiated services (DiffServ)
model or best effort [5]), request data size, requests interarrival time, non-functional require-
ments and others. The last developed component was an adapter which allows to connect
simulation environment to a real network [4]. Generated requests are sent to request dis-
tribution unit which is responsible for choosing an execution path in system. There is also
implemented a request flow shaping mechanism like token bucket and admission control
algorithm. Structure of considered system is presented on figure 1.

1ijk
a

k
ijkm

a

2ijk
a

...

12 ki
a

k
kmi

a
2

22 ki
a

...
11 ki

a

k
kmi

a
1

21 ki
a

...

Gen. RDU Sink

1i
AS

2i
AS

ij
AS

...

ki
a

1 ki
a

2 ijk
a

Fig. 1: Structure of considered system with distinguished modules: generator module (Gen.), request distribution unit (RDU),
atomic services structure and sink module.

Assignment of resources is performed to a system which structure is composed by an
outer mechanism of composition [2]. One can consider a situation when some atomic ser-
vices subsets ASij are executed in parallel or in loop, so different layers can be interpreted
as presented on figure 2.

1ijk
a

k
ijkm

a

2ijk
a

...

12 ki
a

k
kmi

a
2

22 ki
a

...

11 ki
a

k
kmi

a
1

21 ki
a

...

Gen. RDU Sink

1i
AS

2i
AS

ij
AS

...

ki
a

1 ki
a

2 ijk
a

12 ki
a

k
kmi

a
2

22 ki
a

...

11 ki
a

k
kmi

a
1

21 ki
a

...

1i
AS

...

ki
a

1 ki
a

2

2i
AS

11 ki
a

k
kmi

a
1

21 ki
a

...

1i
AS

ki
a

1
11 ki

a

k
kmi

a
1

...

1i
AS

2i
AS

12 ki
a

k
kmi

a
2

...

a) b)

Fig. 2. Exemplary interpretation of atomic services structure: a) parallel, b) single loop

Each atomic service version aijkl is modelled as a single-queue single processor node



6

but in general it can be multi-queue single processor. Distinction of more than one queue can
differentiate requests e.g. coming from different classes or being serviced in different way.
Noteworthy is also a fact that communication channels can be modelled in flexible way, user
can tune such parameters as transfer delay, channel capacity or packet loss ratio.

Last module of presented environment is responsible for removing serviced request from
the system and collecting data about the progress of service. Collected data is useful for
determination of quality of service level. Configuration of data being collected is easy and
one is able to collect additional data if needed.

Simulation environment was designed as a testbed for system resource allocation algo-
rithms (choosing best subset of atomic service versions) so possibility of algorithm replace-
ment without changing simulator structure is a strong advantage.

5. Simulation environment usage example

In order to evaluate the quality of service delivered by the considered service-oriented
system there were following algorithms of service requests distribution implemented: IS
Greedy, BE Greedy, BE DAG-SP, BE random and BE round-robin. Prefix BE in algorithms
names means that algorithm deliver quality of service based on best effort approach (without
any warranty) and IS algorithm was based on integrated services model. IS algorithm uses
reservation mechanism of computational and communication resources so the quality of ser-
vice can be guaranteed. Repository of reference algorithms based on Best-effort approach in-
cludes: BE Greedy which checks every possibility to choose atomic services versions subset
to optimize quality; BE DAG-SP (directed acyclic graph – shortest path) which finds short-
est path in weighted graph taking into consideration communication delays between atomic
services; BE random and BE round-robin which chooses respectively random and sequential
atomic service versions.

To present potential of described tool a comparison of reference algorithms was per-
formed. One can formulate problem as follows: for given current atomic services queue
lengths, processing speeds, communication channel delay and request size, find such subset
of atomic services that minimizes complex service execution delay.

To examine presented algorithm efficiency the simulation environment was configured
as follows. There were three subsets of atomic services each delivering same functionality
ni = 3 and each containing three versions of atomic services ∀aijkl, j = 1, 2, 3: k = 1, l = 3.
Communication delay of traffic channels was proportional to the request size which was
random with exponential distribution with mean 200 bytes. Atomic services processing speed
was also random value with uniform distribution from range 3 to 10 kbytes/s. Average
complex service execution delays for each considered algorithm are presented on figure 3.

The IS algorithm delivered lowest delay because of resource reservation and higher ser-
vice priority of requests coming from that class than from best-effort one. During resource
reservation period no best-effort service request can be serviced except of situation, when
request with resource availability guarantee will leave atomic service earlier than end of



7

Arkusz2

0

0,05

0,1

0,15

0,2

0,25

0,3

0 100 200 300 400 500

C
o

m
p

le
x
 s

e
rv

ic
e

 e
x
e

cu
ti

o
n

 d
e

la
y

 [
s]

Simulation time [s]

Complex service execution delay 

under control of various algorithms

IS BE greedy BE DAG-SP BE random BE round robin

Strona 1

Fig. 3: Results of exemplary simulation run. Comparison of complex service execution delay under control of various al-
gorithms. Requests served with IS algorithm were present in system simultaneously with requests serviced by reference BE
algorithms.

reservation period. The best from best-effort algorithms group was greedy version of that
algorithm. In situation when requests serviced by IS algorithms do not share resources with
those being serviced by BE algorithm both delivers the same delay [3]. Delay delivered by
BE DAG-SP algorithm was a little higher and quality for BE round-robin and BE random was
much worse than other reference algorithms.

6. Final remarks

In this paper model of complex service processing scheme was presented. Distinction
of functional and nonfunctional requirements of SLA request was introduced and problem
of delivering quality of service was formulated. For the evaluation of performance of the
presented system a simulation environment in OMNeT++ was implemented. The simulation
environment enables to implement various algorithms of request distribution in the presented
system. Moreover the environment allows to use any source of request stream; presented
generator can be substituted by component translating real web service server logs or even
use stream of requests from real network.

Future plans for development of simulation environment include implementation of new
requests distribution algorithms to enlarge algorithms repository and reorganize structure
of modelled system to general graph structure with more possible inputs and outputs of a
simulated system.



8

Acknowledgements

The research presented in this paper has been partially supported by the European Union
within the European Regional Development Fund program no. POIG.01.03.01-00-008/08.

References

[1] L. Borzemski , A. Zatwarnicka, K. Zatwarnicki, The framework for distributed web sys-
tems simulation, Proc. of ISAT 2007, in: Information Technology and Web Engineering:
Models, Concepts, and Challenges, ed. L. Borzemski, Wrocław, 2007, pp. 17–24

[2] K. J. Brzostowski, J. P. Drapała, P. R. Świątek, J. M. Tomczak: Tools for automatic
processing of users requirements in soa architecture, Information Systems Architecture
and Technology (ISAT’2009) "Service oriented distributed systems: concepts and in-
frastructure", Szklarska Poręba, Poland, September 2009, pp. 137-146

[3] A. Grzech, P. Świątek: Modeling and optimization of complex services in service-based
systems, Cybernetics and Systems , 40(08), pp. 706–723, 2009.

[4] M. Tüxen, I. Rüngeler, E. P. Rathgeb: Interface connecting the INET simulation frame-
work with the real world, Simutools ’08: Proceedings of the 1st international confer-
ence on Simulation tools and techniques for communications, networks and systems &
workshops ICST, Brussels, Belgium, 2008, pp. 1–6.

[5] Z. Wang: Internet QoS: architecture and mechanisms for Quality of Service, Academic
Press, 2001.

[6] Wang, G.; Chen, A.; Wang, C.; Fung, C.; Uczekaj, S.: Integrated quality of service
(QoS) management in service-oriented enterprise architectures Enterprise Distributed
Object Computing Conference, 2004. EDOC 2004. Proceedings. Eighth IEEE Interna-
tional Volume , Issue , 20-24 Sept. 2004 pp. 21 - 32


