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ABSTRACT
Modern data centers are subject to an increasing demand for
flexibility. Increased flexibility and dynamics, however, also
result in a higher system complexity. This complexity carries
on to run-time resource management for Quality-of-Service
(QoS) enforcement, rendering design-time approaches for
QoS assurance inadequate. In this paper, we present a set of
novel meta-models that can be used to describe the resource
landscape, the architecture and resource layers of dynamic
virtualized data center infrastructures, as well as their run-
time adaptation and resource management aspects. With
these meta-models we introduce new modeling concepts to
improve model-based run-time QoS assurance. We evalu-
ate our meta-models by modeling a representative virtual-
ized service infrastructure and using these model instances
for run-time resource allocation. The results demonstrate
the benefits of the new meta-models and show how they
can be used to improve model-based system adaptation and
run-time resource management in dynamic virtualized data
centers.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques; I.6.5
[Simulation and Modeling]: Model Development

Keywords
Meta-model, Resources, Virtualization

1. INTRODUCTION
In today’s IT systems, the demand for distributed and

more dynamic and flexible data center infrastructures is con-
tinuously increasing. This applies particularly to the trend
of Cloud Computing which provides a basis for provision-
ing data center resources on demand in an elastic manner
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and on a pay-per-use basis. Hence, abstraction layers like
virtualization and middleware technologies are implemented
to increase the ability of IT systems to react on changes of
service workloads and resource demands, i.e., to provision
and allocate resources as they are needed, or to consolidate
services in order to increase the resource efficiency.

However, introducing new abstraction layers to increase
flexibility comes at the cost of increased system complexity.
The new abstraction layers provide new reconfiguration pos-
sibilities and enlarge the configuration space. However, they
also raise new challenges and questions for run-time system
adaptation and resource management to ensure Quality-of-
Service (QoS). Imagine a simple example with two virtual
machines (VMs) of different customers sharing resources and
assume the workload of one customer increases, leading to a
QoS violation. Questions such as the following arise: Should
resources be added or a VM be migrated to solve the prob-
lem? Which server is the best target for a VM migration?
What impact has virtualization on the applications’ QoS?

Instead of costly and possibly imperfect implementation
and testing approaches, model-based resource management
and capacity planning techniques like [3, 13] can help to an-
swer such questions. However, they are targeted at design-
time QoS analyses. In general, such approaches are not
applicable at run-time because they abstract the complex
infrastructure architecture or do not consider the dynamic
aspects important for run-time system adaptation and re-
source management.

To fill this gap, we present a set of modeling abstrac-
tions which are an integral part of the Descartes Meta-
Model (DMM) [14], a new meta-model for run-time QoS
and resource management in virtualized service infrastruc-
tures. These meta-models and their information about the
resource landscape and its dynamic aspects form a basis for
automated run-time system adaptation and resource man-
agement: First, the resource landscape meta-model focuses
on describing both physical and virtual resources and the
different layers of resources that exist in dynamic data cen-
ters. Second, the adaptation points meta-model describes
the dynamic parts, i.e., the aspects of the resource landscape
which configurable at run-time and their variation range.
This avoids modeling each of the various configurations the
system might have at run-time. We evaluate these meta-
models and concepts by applying them in a case study on
automated resource allocation. The results show that the
meta-models increase the expressiveness to model resource
landscapes and that they improve automated run-time sys-
tem adaptation and resource management.



The contributions presented in this paper are: i) a re-
source landscape meta-model capturing properties relevant
for run-time performance analysis and resource management
of distributed dynamic data centers, ii) an adaptation points
meta-model for annotating resource landscape models with
information about the dynamic aspects of the system that
can be adapted at run-time. We evaluate these contributions
in a realistic environment by applying them to a represen-
tative virtualized service infrastructure and in experiments
on run-time deployment of VMs and dynamic resource allo-
cation.

In Section 2, we discuss related approaches. In Section 3,
we present our resource landscape meta-model, the static
view of the system. Section 4 introduces the adaptation
points model which can be used to describe the dynamic
parts of the resource landscape model. Finally, we apply
these meta-models in experiments presented in Section 5,
before Section 6 concludes this paper.

2. RELATED WORK
The foundations and influences for this work are mainly

from two different areas. First, the field of (architecture-
level) performance models forms the basis for this work.
Second, an important addition to this topic are approaches
to describe dynamic systems aspects or dynamic elements of
performance (meta-)models.

Over the past decade, a number of architecture-level per-
formance meta-models for describing performance-relevant
aspects of software architectures and execution environments
have been developed by the performance engineering com-
munity [1, 16]. Most prominent examples are the UML SPT
profile [17] and its successor the UML MARTE profile [18],
both of which are extensions of UML as the de facto stan-
dard modeling language for software architectures. Other
proposed meta-models include CSM [19], PCM [3], SPE-
MM [21], and KLAPER [10]. The common goal of these
efforts is to predict the system performance by transforming
architecture-level performance models into predictive perfor-
mance models (e.g. Layered Queuing Networks or (Queuing)
Petri Nets) in an automatic or semi-automatic manner. In
general, these approaches abstract from the details of the ex-
ecution environment, modeling hardware as single entities
therefore losing important information about the resource
landscape and the configuration possibilities.

There exist different approaches on modeling resources
and the environment in which they are contained, focussing
on different levels of abstraction. A generic approach for
modeling the logical and physical resources of a system with
UML is [20]. In this work resources are described as entities
offering services characterized by Quality-of-Service (QoS)
attributes. In addition, this work describes a layered re-
lationship between the client and the resources the client
consumes. The concepts presented in this contain interest-
ing ideas but are a too general abstraction for complex re-
source landscapes. On the other hand, in architecture-level
performance models, e.g. the PCM [3], the resources and
their environment are described in a coarse-grained fash-
ion. In PCM, the resource landscape consists of containers
which provide resources like CPU, HDD or memory. [11]
presents an extension of PCM to describe the execution en-
vironment of a resource container in more detail. These con-
cepts are very specific, introducing layers like virtualization,
JVM and application server using controllers to model the

performance relevant parameters of these layers. Because
these concepts focus on a single resource container, they are
not suitable to describe the whole resource landscape as in
modern data centers, e.g., with different VMs contained in
a hypervisor.

In general, architecture-level performance models are built
during system development and are used at design and de-
ployment time to evaluate alternative system designs and/or
predict the system performance for capacity planning pur-
poses. Usually, design alternatives are modeled manually
because the models do not support modeling variability. The
reason is that these models are generally not designed to be
used at system runtime and are not able to completely re-
flect the variability occurring during runtime of a system.
An approach trying to model such dynamic reconfiguration
at runtime is SOFA 2.0 [6]. SOFA 2.0 allows component re-
placement and other reconfigurations but they are restricted
to the application level. A more generic approach for the for-
mulation of design alternatives in architecture-level perfor-
mance models is [15]. The target is to describe the degrees
of freedom in a system to automatically find an optimal ar-
chitecture. Although this approach is limited to design-time
optimization, it presents useful concepts and ideas on how to
model variability in architecture-level performance models.
An approach to describe variants of software product lines
is the Variation Point Model [9]. Its concepts to describe
variants of variation points is also interesting, but both [15]
and [9] describe how variants, i.e., different instances of the
same core concept might look like, whereas the meta-models
presented in this work focus on the configuration range of a
single model instance.

With the use of formal ways to specify system and soft-
ware architectures it is possible to use this level of abstrac-
tion to describe the dynamic aspects of the architecture and
also how the system architecture and/or its configuration
can adapt to changes in the environment. One can find
many different approaches in this area and a survey of such
formal specification approaches is given by Agnew et al. [4].
Although these approaches are suitable to describe adapta-
tion at the architecture level, they usually do not provide
means to describe how to react on changes. More specif-
ically, it is difficult to describe, how adaptation should be
executed. As influential examples for approaches also de-
scribing the actual system adaptation process are Service
Activity Schemas (SAS) [8] and software architecture-based
adaptation [7].

In summary, each of the presented existing approaches on
architecture-level performance models, resource landscapes
and dynamic system reconfiguration and adaptation con-
tains valuable aspects to consider in our approach. However,
no single exhausting approach covering all aspects exists.

3. RESOURCE LANDSCAPE (STATIC VIEW)
In the following section we present a meta-model to model

the resource landscape of distributed dynamic data centers.
Instances of the resource landscape model reflect the static
view of the distributed data center, i.e., they describe i) the
computing infrastructure and its physical resources, and ii)
the different layers within the system which also provide log-
ical resources, e.g., virtual CPUs. The presented modeling
approach is generic covering all types of resources. However,
in this paper we focus on the computational infrastructure.
Modeling other aspects like storage or network infrastruc-



ture with switches or storage services are briefly considered
in this paper, but they are part of future work. In Section 4,
we introduce the meta-model to annotate this static view of
the resource landscape with the dynamic aspects, i.e., the
adaptable parts of the system.

DistributedDataCenter

DataCenter

CompositeHardwareInfrastucture

belongsTo

consistsOf

0..1

1..*

Container

RuntimeEnvironment

ofClass : RuntimeEnvironmentClasses

ComputingInfrastructure

ContainerTemplateConfigurationSpecification

* 0..1templateconfigSpec

1

*

contains

containedIn
AbstractHardwareInfrastucture
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1..*
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Figure 1: Resource landscape meta-model.

Figure 1 depicts an high-level view and the overall struc-
ture of the resource landscape meta-model as an UML class
diagram. The root entity comprising all other model ele-
ments is the DistributedDataCenter. A DistributedDat-

aCenter consists of one or more DataCenters. DataCen-

ters contain AbstractHardwareInfrastructures, i.e. Com-

positeHardwareInfrastructures or the three types Com-

putingInfrastructure, NetworkInfrastructure, and Stor-

ageInfrastrucutre. A CompositeHardwareInfrastructure

is a structuring element to group AbstractHardwareInfras-

tructures, e.g., in server racks or clusters. Current architecture-
level performance models usually abstract from these de-
tails and do not reflect the hierarchy of resource containers.
However, for resource management at run-time, the resource
landscape and hierarchy of resources is crucial to make bet-
ter decisions, e.g., to decide if a VM can be migrated and
where it should be migrated to. The ComputingInfras-

tructure models the actual physical (computational) ma-
chines containing and executing different layers of software
elements. The relationship of these contained elements is ex-
plained in the following Section 3.1. Meta-modeling Stor-

ageInfrastructure and NetworkInfrastructure in more
detail is out of this paper’s scope and part of future work.

3.1 Containers and Containment Relationships
A reoccurring pattern in distributed dynamic data centers

is the nested containment of system entities. For example,
imagine data centers containing servers, which might con-
tain a virtualization platform and VMs, again containing
an operating system, containing a middleware layer and so
on. This leads to a tree of nested entities which can change
during runtime (e.g., when a VM is migrated). Because
of this flexibility one single execution environment consist-
ing of similar, reoccurring elements can have multiple dif-
ferent configuration states at run-time. However, current
architecture-level performance models do not cover these hi-
erarchy of resources and its configurations which we want to
model.

The central entity of the resource landscape meta-model
depicted in Figure 1 is the abstract entity Container. The
Container has a property configSpec to specify its config-
uration (which will be explained in Section 3.3) and a prop-
erty template referring to a ContainerTemplate (which will

context RuntimeEnvironment
inv runtimeEnvironmentLevelCompliance :

s e l f . conta inedIn . conta in s
−>f o rA l l ( r : RuntimeEnvironment |

r . o fC la s s = s e l f . o fC l a s s ) ;

be explained in Section 3.4). Most important is that a Con-

tainer has an explicit reference to the entity RuntimeEn-

vironment to model that it can contain further containers.
i.e., to model the tree-like structure of entities explained
above. In our meta-model, we distinguish between two ma-
jor types of containers, the ComputingInfrastructure and
the RuntimeEnvironment. The ComputingInfrastructure

forms the root element in our tree of containers and corre-
sponds to the physical machines of data centers. It cannot
be contained by another container but it can have nested
containers. The RuntimeEnvironment is a generic model el-
ement to build nested system layers, i.e., it can be contained
within a container and it might contain further contain-
ers. Each RuntimeEnvironment has the property ofClass to
specify the class of the RuntimeEnvironment. These classes
are introduced in the following Section 3.2.

3.2 Classes of Runtime Environments
We distinguish six general classes of runtime environments

which are listed in Figure 2. These are HYPERVISOR for the
different hypervisors of virtualization platforms, OS for op-
erating systems, OS_VM for virtual machines emulating stan-
dard hardware, PROCESS_VM for virtual machines like the
Java VM, MIDDLEWARE for middleware environments, and
OTHER for any other type. By setting the ofClass prop-
erty of the RuntimeEnvironment to one of these values, it
is possible to enforce consistency within the modeled lay-
ers, e.g., by using OCL constraints in the meta-model. The
constraint we implemented prohibits the instantiation of dif-
ferent RuntimeEnvironment classes within one container:

«enumeration»
RuntimeEnvironmentClasses

HYPERVISOR
OS
OS_VM
PROCESS_VM
MIDDLEWARE
OTHER

Figure 2: Different runtime environment classes.

As a result, a RuntimeEnvironment can only contain con-
tainers of the same class, e.g., a hypervisor can only contain
virtual machines.

We could have introduced the different types of runtime
environments as explicit model entities but we focused on
designing a model supporting extendability. Modeling all
classes of runtime environments as explicit model entities
would have required to also model their relations (e.g., OS_VM
can only be contained in HYPERVISOR etc.) which renders
the model much more complex and difficult to maintain. By
using the ofClass attribute and the RuntimeEnvironment-

Classes, new classes can be introduced by extending the
enumeration, which has less impact on the meta-model’s
structure making it easier to reuse and extend the model
instances at run-time. Of course, not modeling the relations



between the classes has the disadvantage of building model
instances which are wrong. However, we assume that mod-
els instances can be built automatically and the tool support
is aware of such constraints (e.g., by OCL constraints as the
previous one).

3.3 Resource Configuration
Each Container can have its own specific resource con-

figuration. We distinguish between three different types
of configuration specifications: ActiveResourceSpecifica-

tion, PassiveResourceSpecification, and CustomConfig-

urationSpecification (see Figure 3(a)).
The purpose of the ActiveResourceSpecification is to

specify the active resources a Container provides. An ex-
ample is the CPU as the ActiveResourceSpecification of
a physical or virtual machine. One can use the Process-

ingResourceSpecification and/or LinkingResourceSpec-
ification to specify what ProcessingResourceTypes and
CommunicationLinkResourceTypes the modeled entity of-
fers. The currently supported ProcessingResourceTypes

are CPU and HDD, and LAN for the CommunicationLinkRe-

sourceType, which are stored in a resource type reposi-
tory. The ProcessingResourceSpecification is further de-
fined by its properties schedulingPolicy and processin-

gRate. For example, a CPU would be specified with PROCES-

SOR_SHARING as schedulingPolicy and a processingRate

of 2.4 GHz. If a ProcessingResourceSpecification has
more than one processing units (e.g. a CPU has four cores),
the attribute number of NumberOfParallelProcessingUnits
would be set to 4, whereas two CPUs can be modeled as two
separate ProcessingResourceSpecifications. The Link-

ingResourceSpecification specifies a bandwith and can be
used to model a network interface card.

The PassiveResourceSpecification can be used to spec-
ify properties of passive resources. Passive resources can be,
e.g., the main memory size, database connections, the heap
size of a JVM, or resources in software, e.g., thread pools.
Passive resources refer to a PassiveResourceCapacity, the
parameter to specify, e.g., the number of threads or memory
size.

In case a Container has a very individual configuration
which cannot be modeled with the previously introduced
elements, one can use the CustomConfigurationSpecifi-

cation. This configuration refers to the EMF element EOb-
ject, i.e., one can refer to any custom EMF model reflecting
the relevant configuration of this container. For example,
imagine the configuration of a hypervisor with all its prop-
erties that influence the performance of virtual machines.

3.4 Container Types
With the meta-model concepts presented so far, it is neces-

sary to model each container and its configuration explicitly.
This can be very cumbersome, especially when modeling
clusters of hundreds of identical machines. The intuitive idea
would be to have a meta-model concept like the multiplicity
to specify the amount of instances in the model. However,
this prohibits to have individual configurations for each in-
stance. The desired concept would support a differentiation
between container types and instances of these types. The
type would specify the general performance properties rele-
vant for all instances of these types and the instance would
store the performance properties of this container instance.

Our solution is to use a ContainerRepository (see Fig-

ure 3(b)). One can specify ContainerTemplates and col-
lect them in the ContainerRepository. The ContainerTem-
plate is similar to a Container because it also includes a
ConfigurationSpecification which specifies the configu-
ration of the ContainerTemplate. A Container in the re-
source landscape model might have a reference to a Con-

tainerTemplate (see Figure 1). The advantage of this tem-
plate mechanism is that the general properties relevant for
all instances of one container type can be stored in the con-
tainer template and the relevant configuration specific for
an individual container instance can differ. This way, only
deltas to the container template must be modeled and not
all configurations for all containers. Container templates
are also beneficial later when describing the dynamic parts
of the system. With container templates, the configurable
dynamic parts must be specified only one, namely for the
container template and not for each container. When ana-
lyzing the model, the specific individual properties override
the settings of the template. For example, assume that a
container instance has no individual properties and only a
reference to a template. Then, only the configuration spec-
ification of the template would be considered. However, if
the container instance has an individual configuration spec-
ification, then these settings would override the properties
of the template.

Another solution would have been to develop a second
meta-model for the general properties of a container, i.e., to
model the container types. This meta-model would act as
a “decorator model”, i.e., it would extend a resource land-
scape model instance. In the next step, one could then in-
stantiate the types created in this decorator model. The
drawback of this solution is that this would introduce a fur-
ther level of meta-modeling, i.e., an additional meta-model
for container types to create instances of container types.
However, this would require that a provider of a container
(e.g. a virtualization platform vendor) must be familiar with
meta-modeling.

3.5 Deployment Model
After describing the resource landscape, one must spec-

ify which services are executed on which part of the re-
source landscape. We refer to this specification as deploy-
ment captured in the deployment model depicted in Fig-
ure 4. The deployment model is based on the Palladio Com-
ponent Model (PCM) which also models the allocation of
software components to resource containers in a separate al-
location model [2]. However, because of the resource layers
and the different classes of runtime environments, the inter-
pretation of the deployment of services on resource contain-
ers is different from PCM.

Our deployment model associates an the service assembled
to a system (here named AssemblyContext) with a container
instance of the resource landscape model. The meta-model
for modeling services is also developed as part of the DMM.
However, the details would go beyond the scope of this work
and are given in [14]. A Deployment has a reference to a Dis-

tributedDataCenter, i.e., a resource landscape model in-
stance. More importantly, the Deployment contains several
DeploymentContexts. The DeploymentContext is the map-
ping of an AssemblyContext to a Container. An Assembly-

Context stores the information how instances of services are
assembled. For example, an AssemblyContext of ServiceA
keeps the information to which other services ServiceA is
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Figure 3: Types of resource configurations (a) and the container repository (b)

connected. Furthermore, the AssemblyContext enables to
distinguish between instances of a service, i.e., different in-
stances of the same service can then be deployed on differ-
ent containers. Thereby it is possible to model redundant
deployment of services on different machines or to create in-
stances of the same service but with different QoS, because
they are deployed on different containers. The Deployment

has a reference to the System because AssemblyContexts are
stored in the System. Because the description of services and
the service architecture is not in the scope of this paper, we
refer to [14] for more technical details.

Deployment

DeploymentContext DistributedDataCenterSystem

AssemblyContext Container

targetResourceLandscapesystem

deployment

deploymentContexts

1

0..*

assemblyContext
1

resourceContainer

1

1 1

Figure 4: The deployment model.

Services require different types of resources to fulfill their
purpose. Hence, a constraint when deploying services to
containers is that the resource types required to execute the
service are actually provided by the container the service is
deployed on. For example, for performance prediction, the
resource demands of a service would be mapped to the re-
source provided by the container executing the service. In
case this container is a nested container and the parent con-
tainer provides a resource of the same type, the resource de-
mand is always mapped to the subjacent resources. In each
mapping step the resource demand might be adjusted ac-
cording to the modeled properties of that layer or it is iden-
tically mapped in case no relevant properties are given. For
example, when mapping the resource demand in a virtual
machine to the hardware, the virtualization overhead can
be added according to the hypervisor’s performance model.

An alternative to this direct mapping of resource demands

to the resources provided by the layer below is to use the
more complex concept of introducing resource interfaces and
controllers [11]. In this approach the resource demands can
be mapped to interfaces provided by the resources. Con-
trollers in the layers providing these interfaces take care of
mapping the resource demands, e.g., adding overheads oc-
curring in this layer.

4. ADAPTATION POINTS (DYNAMIC VIEW)
So far, the model was focused on the static aspects of

the system. However, today’s distributed data centers are
increasingly dynamic and offer high flexibility for adapting
systems at run-time. This has to be reflected in the models
of such systems to analyze the impact of system adaptation
and find good adaptation actions at run-time. Therefore,
we introduce an additional meta-model which addresses this
flexibility and variability.

The Adaptation Points meta-model is an addition to the
static sub-models of DMM. In the following, we use the
adaptation points meta-model to describe which parts of the
resource landscape model are variable and can be adapted
during operation, i.e., it provides possibilities to specify the
configuration range of the dynamic system. However, it is
not intended to specify how to change the model instance or
even the system, i.e., the actual change itself is implemented
in the adaptation process using the adaptation points model.
Figure 5 depicts the overview of the adaptation points meta-
model.

AdaptationPointDescriptions AdaptationPoint AdaptableEntity

VariationType ModelEntityConfigurationRange

minValueConstraint : OclConstraint
maxValueConstraint : OclConstraint

PropertyRange

possibleValues : OclConstraint

SetOfConfigurations

EObject

minValue : EDouble
maxValue : EDouble

ModelVariableConfigurationRange

0..*

adaptationPoints

1adaptableEntity
variationPossibility

1

1
entity

0..*

variants

Figure 5: Adaptation points meta-model.



The specifications, i.e., the annotations of the variable el-
ements of a resource landscape model instance are collected
in the AdaptationPointDescriptions. We distinguish be-
tween two types of elements which may vary at run-time:
a) model variables like PassiveResourceCapacity and b)
other model entities, e.g., the number of instances of a model
entity. Note that in the DMM model variables are meta-
model classes with an attribute that is variable, i.e., it may
change during run-time (e.g., workload) or it can be changed
(e.g., number of virtual CPUs, NumberOfParallelProces-

singUnits, see Fig. 3).
These two types of AdaptationPoints are modeled as

ModelVariableConfigurationRange (a) and ModelEntity-

ConfigurationRange (b), respectively, specifying the range
in which the resource landscape model instance can be var-
ied. One can now annotate the static model using these
two adaptation points. The ModelVariableConfiguration-

Range refers to a AdaptableEntity and specifies the range in
which the model variable can be changed at run-time using
the attributes minValue and maxValue. AdaptableEntity is
a class in our meta-model. All meta-model entities which are
adaptable at run-time inherit from this type. Hence, at the
meta-model level, all entities of type AdaptableEntity are
considered as adaptable elements. However, on the model
instance level, they are only considered to be adaptable if
they are actually annotated by a AdaptationPoint. The
reason is that even if a system has adaptation points there
might be an instance of this system where it is prohibited
to change these configuration. For example, a virtualized
environment might prohibit changing the number of virtual
CPUs for reliability reasons.

The meta-model entity ModelEntityConfigurationRange

is used to annotate other resource landscape model instance
entities that cannot inherit from AdaptableEntity, e.g., the
instances of one specific container type. To this end, the
ModelEntityConfigurationRange refers to an EObject and
to a VariationType. The EObject can be any entity of the
resource landscape model instance, e.g., a Container. The
VariationType specifies in more detail how this model en-
tity can vary. Currently, we distinguish two variation types:
the PropertyRange or the SetOfConfigurations. The idea
of the PropertyRange is to specify a variability range using
two OCL constraints (minValueConstraint and maxValue-

Constraint). They are also used to check whether the vari-
ation is within the valid value range or not. An example
would be to set a minimum and maximum amount of VM in-
stances on a server. The SetOfConfigurations can be used
to model any other kind of variability that has no order or
range, e.g., the deployment of a container on other contain-
ers. In this case, possible variants are references to other
model instance elements and are collected in the SetOfCon-

figurations. For example, this set collects the references
to the different runtime environment instances a VM can be
deployed on.

In summary, this meta-model concentrates on the descrip-
tion of all possible configurations one single instance of a
dynamic system might have. It is not intended to describe
all possible instance variants a dynamic system might take
(see Section 2 for more details).

5. EVALUATION
In this section we present example instances of the previ-

ously introduced meta-models which describe the resource

landscape and adaptation points of a realistic data cen-
ter. In experiments, we analyze the models using simula-
tion and leverage their encapsulated information to improve
run-time system adaptation and resource management to
demonstrate the advantage of the resource landscape model
compared to other architecture-level performance models.

First, we will present the resource landscape and its model
instance of a realistic data center (Section 5.2) and explain
the corresponding adaptation points (Section 5.3) before we
show experimental results and discuss our approach.

5.1 Experiment Environment
The data center we will now model consists of six compute

nodes from our local cluster environment (see Fig. 6). Each
compute node is equipped with two Intel Xeon E5430 4-core
CPUs running at 2.66 GHz and 32 GB of main memory. The
machines are connected by a 1 GBit LAN. On five of these
compute nodes we run XenServer 5.5 as the virtualization
layer. The VMs are initially equipped with eight virtual
CPUs (a VCPU corresponds to a core). The sixth compute
node is not virtualized because it hosts the database.

XenServer 5.5 Virtual Machines

GBit LAN

Weblogic Application Server hosting the 

SPECjEnterpise 2011 benchmark

SPECjEnterprise

2010

Figure 6: Experiment environment consisting of
six virtualized cluster nodes and a native database
server.

On top of this infrastructure and inside VMs we exe-
cute the SPECjEnterprise2010 benchmark1, a representa-
tive, state-of-the art application we have successfully mod-
eled and used in the context of automated model extrac-
tion [5] and dynamic resource allocation [12]. We think of
the VMs as SPECjEnterprise2010 instances that belong to
different customers and each customer has its own perfor-
mance requirements, stipulated as Service Level Agreement
(SLA). To maintain SLAs, the platform must scale and pro-
vide enough resources in situations where, e.g., the work-
load varies. Simultaneously, the resources of the data center
should be used as efficient as possible.

5.2 Modeling Dynamic Data Centers with the
Resource Landscape Model

1SPECjEnterprise2010 is a trademark of the Standard Per-
formance Evaluation Corp. (SPEC). The SPECjEnter-
prise2010 results or findings in this publication have not been
reviewed or accepted by SPEC, therefore no comparison nor
performance inference can be made against any published
SPEC result. The official web site for SPECjEnterprise2010
is located at http://www.spec.org/jEnterprise2010.



Figure 7 shows the resource landscape model instance of
our data center and the configuration of the resource con-
tainers. It reflects the hierarchy of the resource containers
as well as their performance-relevant configuration. Note
that the depicted model instance in Figure 7 is incomplete,
showing only three of the six compute nodes due to space
constraints. The other compute nodes not shown are mod-
eled the same way. Note that Cn6 contains no hypervisor
runtime environment, i.e., it is a native system.

The root element is the DistributedDataCenter DDC
which contains the LocalDC. Within the LocalDC we model
our local cluster environment called AcamarCluster as Com-
positeHardwareInfrastructure to group all contained com-
pute nodes. Such information is useful for, e.g., VM migra-
tion because migrating a VM might be limited for technical
reasonsn, e.g., the NFS share is only accessible for all com-
pute nodes within the cluster. Each compute node refers to
the CnTemplate which specifies the resource configuration
of the respective compute node. Similarly, the nested Xen
and VM RuntimeEnvironments refer to their type-specific
templates.

This example shows the advantages of our meta-model.
With the template mechanism it is possible to have multi-
ple instances of the same type in the model instance. If one
changes the configuration of the template, all instances in
the model referring to the changed template are affected by
the change. However, with the override mechanism as de-
scribed in Section 3.4, it is also possible to have individual
specifications for each instance of, e.g., a VM. To undo the
individual specification of a container, one can simply delete
this specific property to fall back to the template configu-
ration. Furthermore, one can model performance-influences
on each layer of the resource stack (the virtualization layer
in this example). Further layers like the operating system
have been omitted to keep the example more clear. The
performance properties of the application layer, i.e., the ser-
vices deployed on these containers are be modeled with a
separate meta-model but are not depicted here.

5.3 Modeling Dynamics with the Adaptation
Point Model

We now show how to use the adaptation points meta-
model to specify the variable dynamic parts of the resource
landscape. To this end, we create a adaptation points model
instance that annotates the resource landscape model in-
stance. The variable resources and entities we consider here
are i) the number of virtual CPUs of a VM and ii) the num-
ber of application server instances, i.e., VMs.

Corresponding to these variable elements, the adaptation
points model instance contains two different adaptation points,
one ModelVariableConfigurationRange and one ModelEn-

tityConfigurationRange. VariableVcpu describes that the
number of virtual CPUs of the VM is variable between two
and eight. Furthermore, VariableVcpu refers to the Adapt-

ableEntity instance Cores, the actual model parameter to
vary. It is important to note that the referenced model entity
is actually the entity contained in the configuration specifi-
cation of the VM container template. This way the model
instance describes that all VCPUs of all VMs referring to
this template can be varied. This is a major advantage of
the template mechanism of the resource landscape model.

The other adaptation point of the resource landscape is
VariableAppServerInstances. It refers to the computing in-

Variability : AdaptationPointDescriptions

minValue = 2
maxValue = 8
discrete = TRUE

VariableVcpu : ModelVariableConfigurationRange

number = 8

Cores : NumberOfParallelProcessingUnits

adaptableEntity

of entity
VCPU:ProcessingResourceSpecification

ComputeNode : ComputingInfrastructure

entity

variationPossibility

adaptationPoints

VariableAppServerInstances : ModelEntityConfigurationRange

minValueConstraint = "minAppServerInstances"
maxValueConstraint = "maxAppServerInstances"

AppServerInstanceRange : PropertyRange

Figure 8: Adaptation points meta-model instance
annotating the resource landscape model.

context ModelEntityConfigurationRange
inv minAppServerInstances :
Container . a l l I n s t a n c e s ( )

−>s e l e c t ( c | c . template = s e l f . e n t i t y )
−>s i z e ()>1 and

Container . a l l I n s t a n c e s ( )
−> s e l e c t ( c | c . template = s e l f . e n t i t y )
−> f o rA l l ( c | c . conta in s . conta ins

−>s i z e ( ) = 1 ) ;

context ModelEntityConfigurationRange
inv maxAppServerInstances :
Container . a l l I n s t a n c e s ( )

−>s e l e c t ( c | c . template = s e l f . e n t i t y )
−>s i z e ()<=3 and

Container . a l l I n s t a n c e s ( )
−> s e l e c t ( c | c . template = s e l f . e n t i t y )
−> f o rA l l ( c | c . conta in s . conta ins

−>s i z e ( ) = 1 ) ;

frastructure template ComputeNode and has two attributes
that specify OCL constraints:

The OCL constraints ensure that there is at least one ap-
plication server (i.e. one VM running an application server)
and three at most (as an example constraint). The OCL con-
straints query for all Container instances and select those
which refer to the same template as the ModelEntityCon-

figurationRange. The resulting number must be above the
minimum and below the maximum. Note that for the cor-
rect evaluation of the OCL constraints the scope of the OCL
engine must be set to the ModelEntityConfigurationRange

instance which actually refers to the model instance entity
to be evaluated. This is important because with the scope
the modeled adaptation variability can be restricted.

5.4 Experiment Results
To evaluate our resource landscape model and demon-

strate its advantages we conduct an experiment showing how
the model and its analysis results can improve system adap-
tation and resource management. To this end, we use the
models in two scenarios concerning run-time (re)deployment
of virtual machines and dynamic resource (re)allocation. To
analyze the model, we transformed our model instances to
the Palladio Component Model [3] and then simulate these
models with the Palladio Simulator2 to obtain resource us-
age and service response time predictions. The Palladio
Simulator provides simulation results for detailed analyses
or analytical solving techniques based on layered queuing
networks in case time of time constraints at run-time. The

2http://www.palladio-simulator.org
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Figure 7: Resource landscape meta-model instance of data center used in the experiments.
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Figure 9: Initial deployment of the SPECjEnter-
prise2010 benchmark customer instances (Depl_0).

model’s structure and parameters are based on the model
we obtained with measurements in [12].

5.4.1 (Re)deployment of Virtual Machines
We start with a scenario consisting of nine independent

instances of the SPECjEnterprise2010 benchmark, each in-
stance for a separate customer. The initial deployment (ref-
fered to as Depl_0) of these benchmark instances in the data
center is depicted in Figure 9. Besides this resource land-
scape model, we also modeled the services of the SPECjEn-
terprise2010 benchmark in more detail as well as the use
profile of the customers. We omitted a detailed descrip-
tion of these meta-models because they are not in the focus
of this work and more details are given in [14]. Assume
that Cust2, Cust6 and Cust9 are gold customers and an
SLA guarantees a response time below 20ms for the default
workload whereas Cust1, Cust3, Cust4, Cust5 and Cust8

are a silver customers with guaranteed response times be-
low 40ms. Another constraint is that all compute node uti-
lizations must be below 90% to avoid heavy response time
fluctuations at high system load. In this initial deployment
Depl_0 depicted in Figure 9 and with the default workload
(Default), the requirements are fulfilled, i.e., the system is
in a valid state (see column Depl_0 (Default) in Table 1).

Now assume that the workload of Cust1 doubles. The

simulation results shown in column Depl_0 (High) of Ta-
ble 1 for the increased workload show that the utilization
of the compute node Cn1 would be above the limit of 90%,
requiring a new deployment of the VMs such that require-
ments are maintained. Intuitively, one would at first try
to migrate the VM with the higher load to the part of the
system with the least utilized resources (e.g., Cn6 or Cn2).
However, we will see that querying the model and using its
architectural information leads to different results.

The model and its analysis results show that Cn6 has
plenty of resources. However, migrating any of the VMs to
Cn6 is not an option because Cn6 is not virtualized, i.e., it
has no runtime environment HYPERVISOR which could con-
tain an OS_VM. Migrating VM4 to Cn5 is impossible because
this would again lead to a violation of the utilization thresh-
old (67.5% + 25.7% > 90%) as would migrating VM1 to
any other compute node. Hence, three options remain, mi-
grating VM4 to either Cn2 (Depl_1), Cn3 (Depl_2) or Cn4
(Depl_3). We simulated these scenarios and the predicted
utilization for these cases are below the threshold, i.e., re-
garding the resource usage we have three possible adaptation
options. But which one is better? Further constraints for
the adaptation options are the SLAs stipulated in the con-
tracts with the customers. Since the workload of these two
customers did not change, system adaptation should have no
implications on their SLAs. However, the predicted response
times (see Table 2) show that migrating VM4 has a signif-
icant impact on the response time of the customer whose
VM has to share its resources. The results show that adap-
tation option Depl_1 violates the SLA of the gold customer
whereas SLAs are fine for Depl_2. Depl_3 has no effect on
the response times of the gold customers but the SLA of the
silver customer Cust8 is violated. Therefore, the only option
to reconfigure the system without using additional resources
is to migrate VM4 to Cn3 (Depl_2).

5.4.2 Dynamic Resource (Re)allocation
In this scenario we apply the adaptation points model in a

resource allocation algorithm for virtualized environments.
We used this resource allocation algorithm [12] in an eval-



Table 1: Simulated utilization results for different workload situations and adaptation options.

Depl_0 (Default) Depl_0 (High) Depl_1 (High) Depl_2 (High) Depl_3 (High)

Cn1 = VM1(+VM4) 59.5=33.6(+25.9) 92.9=67.2(+25.7) 67.4 66.9 67.4

Cn2 = VM2+VM5+VM6(+VM4) 45.6=25.5+9.6+9.9 45.0=25.5+9.6+9.9 70.9=25.8+9.9+9.6(+25.6) 45.2=25.6+9.9+9.7 45.3=25.6+10.0+9.7

Cn3 = VM3+VM7(+VM4) 62.5=39.8+22.7 61.8=39.2+22.6 62.1=40.0+22.1 88.0=38.5+22.6(+25.9) 61.8=39.4+22.4

Cn4 = VM8(+VM4) 58.2 58.6 58.3 59.0 83.9=58.3(+25.6)

Cn5 = VM9 67.3 67.5 67.8 68.3 67.8

Cn6 = DB 10.5 12.2 12.3 12.3 12.2

Compute Node (VM) 

Utilization [in %]

Scenario (Workload)

Table 2: Simulated response times for the service
purchase for the two deployment options.

Scenario (Workload) Response Time [ms]
Cust2 Cust3 Cust8

Depl_0 (High) 17.10 19.84 26.55
Depl_1 (High) 23.70 19.99 26.65
Depl_2 (High) 17.02 31.88 26.43
Depl_3 (High) 16.95 19.68 62.00

uation consisting of four scenarios with different workloads
to trigger and evaluate the resource allocation algorithm.
Previously, this algorithm was purely written in Java and
directly manipulating the model instance, i.e., the knowl-
edge which parts of the model can be varied and how to
vary them was captured within Java code. Now we can use
the adaptation points model and interpret it to change the
resource landscape model.

The results depicted in Figure 10 illustrate how the re-
source landscape model instance of the data center changes
in the four scenarios as a reaction on the changing work-
loads. The adaptation effect is reflected by the number
of instances of AppServer and VCPU, the two adaptation
points of the resource landscape model. As one can see,
the AppServers and VCPUs increase as the workload in-
creases, i.e., the model instance is adapted to the change in
the environment. For example, with six times the standard
workload, three AppServer instances with eleven VCPUs in
total are necessary to handle the load.

1 1 
2 

3 
2 

3 

7 

11 

Workload x1 Workload x2 Workload x4 Workload x6

AppServer Instances VCPUs

Figure 10: Adaptation impact on the model instance
in the four different scenarios from [12].

5.5 Summary and Discussion
Our experiments show that the meta-models are suitable

to describe distributed dynamic data centers and that the
information captured by the resource landscape model is im-
portant for run-time system adaptation to guide the adap-
tation process for several reasons.

The resource landscape model reflects the various layers of

resources and the landscape of modern data centers that im-
pact performance analysis and resource management. Other
architecture-level performance models do usually not cap-
ture information about the layers of the resources. Gen-
erally, they assume a flat hierarchy of resource containers
because the hierarchy is not relevant at design-time or for
offline use. However, at run-time and especially for auto-
nomic and self-aware system adaptation and resource man-
agement, such information is crucial. The results show that
modeling the resource landscape with its hierarchy contains
valuable information to, e.g., exclude migration targets or
find the most suitable target. Furthermore, with the hier-
archy of nested resource containers we can reflect the effect
of resource sharing (the main benefit of virtualization and
a core aspect in dynamic data centers) and detect perfor-
mance bottlenecks or resource inefficiencies on the hardware
level instead of just inside VMs. Finally, with the different
layers of resources we can integrate the performance-relevant
properties of the different layers in the QoS analyses.

The example meta-model instance of the adaptation points
shows that it is necessary to know the details of the anno-
tated resource landscape model instance to specify the adap-
tation points. However, the reason why we did not consider
adaptation on the resource landscape meta-model level is
that we want to describe the adaptation variability for spe-
cific meta-model instances because the model instances exist
at run-time and must be changed online. This is a differ-
ence to the approach in [15] which focuses on the meta-
model level to describe which variants of model instances
can be created at design time. By using the adaptation
points model for system adaptation, the resource allocation
algorithm’s actions can refer to the dynamic elements of the
model instead of working on the model directly. This sep-
arates the knowledge about what can be reconfigured from
how to execute the adaptation. For example, one must not
know where and how to change a resource landscape model
instance. This information is encapsulated in the adapta-
tion points model. Another benefit of this separation is that
the information about adaptation points can be re-used in
different resource allocation algorithms.

A further strength of the meta-models presented in this
paper is that the static and dynamic elements can be man-
aged independently. By providing the template repository,
it is also possible to specify adaptation points descriptions
for templates. Considering this when creating the adapta-
tion point descriptions, it is possible to reuse these descrip-
tions together with the templates in different meta-model
instances. This eases also model evolution and maintain-
ability.

In summary, the advantage of the presented models com-
pared to other design-time architecture-level performance
models is the focus on the dynamic and resource layers of dis-
tributed dynamic data centers. These aspects are captured



in two separate meta-models to separate them for maintain-
ability and usability reasons. The example demonstrates
how this information can be successfully used to improve
performance and resource management at run-time.

6. CONCLUSIONS
With technologies like virtualization and Cloud Comput-

ing, modern data centers are becoming increasingly dynamic
and complex. Novel resource landscape meta-models reflect-
ing this variability and complexity are required to enable
model-based run-time system adaptation and resource man-
agement.

In this paper, we presented a meta-model to describe the
resource landscape and its different layers of abstractions in
distributed dynamic data centers (static view). Second, we
introduced a meta-model for annotating resource landscape
model instances to describe the aspects adaptable at run-
time (dynamic view). Finally, we applied our concepts to
experiments on run-time deployment of VMs and dynamic
resource allocation.

The high-level rationale of these comparably detailed meta-
models and the reason why we chose this level of granularity
was that we experienced limitations of current architecture-
level performance models when applied at run-time (see Sec-
tion 2). For example, at run-time it is necessary to model
the dynamic aspects and the hierarchy of the resource land-
scape and its various layers which is difficult with design-
time models.

The results of our evaluation demonstrate that our meta-
models are suitable to describe the details of the static and
dynamic aspects with increased expressiveness. We showed
that it is important to capture all details at the suggested
level of granularity to achieve improved analysis accuracy
and thereby obtain better decisions in model-based run-time
system adaptation and resource management techniques.

As part of our ongoing work, we are integrating the pro-
posed meta-model with meta-models for managing resource
landscapes of distributed virtualized data centers. We plan
to evaluate the applicability of the Descartes Meta-Model in
an extensive case study. Further targets are also to integrate
storage and network infrastructure models as well as other
non-functional properties.
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