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ABSTRACT
Container orchestration frameworks play a critical role in mod-
ern cloud computing paradigms such as cloud-native or serverless
computing. They significantly impact the quality and cost of ser-
vice deployment as they manage many performance-critical tasks
such as container provisioning, scheduling, scaling, and network-
ing. Consequently, a comprehensive performance assessment of
container orchestration frameworks is essential. However, until
now, there is no benchmarking approach that covers the many dif-
ferent tasks implemented in such platforms and supports evaluating
different technology stacks. In this paper, we present a systematic
approach that enables benchmarking of container orchestrators.
Based on a definition of container orchestration, we define the core
requirements and benchmarking scope for such platforms. Each re-
quirement is then linked to metrics and measurement methods, and
a benchmark architecture is proposed. With COFFEE, we introduce
a benchmarking tool supporting the definition of complex test cam-
paigns for container orchestration frameworks. We demonstrate
the potential of our approach with case studies of the frameworks
Kubernetes and Nomad in a self-hosted environment and on the
Google Cloud Platform. The presented case studies focus on con-
tainer startup times, crash recovery, rolling updates, and more.

CCS CONCEPTS
• Software and its engineering → Software performance; •
Computer systems organization→ Cloud computing; • Net-
works→ Network performance analysis.
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1 INTRODUCTION
Container orchestration (CO) frameworks are the engines of mod-
ern cloud environments. According to the CNCF Annual Survey
2021 [9], 96% of surveyed organizations and 5.6 million developers
are using or evaluating Kubernetes, the most popular container
orchestration framework. CO frameworks act as an abstraction
layer for access to a computing cluster and can have different roles.
In cloud-native computing, developers interact directly with CO
frameworks and use them for container deployment, maintenance,
storage, and more. In serverless computing, they are the backbone
of serverless platforms, responsible for critical tasks such as con-
tainer provisioning, placement, and scaling. In either use case, CO
frameworks fulfill multiple performance-critical tasks. From a per-
formance engineering perspective, it is therefore essential to evalu-
ate frameworks like Kubernetes because they significantly impact
the performance of cloud applications, as shown in several stud-
ies [24, 26, 33, 34].

Both conceptual and technical challenges arise for comprehen-
sive performance evaluation and benchmarking of container or-
chestration frameworks. Conceptually, a clear benchmarking scope
has to be established, which is not trivial as the term container
orchestration is not used uniformly. However, a wide range of tasks
is usually associated with CO frameworks, for example, load balanc-
ing, networking, scaling, scheduling, and availability. All these tasks
influence each other and come with different metrics for which
measurement methods have to be defined. Another challenge is the
interference between the application and orchestrator performance.
On the one hand, we want to look at the performance of CO frame-
works as isolated as possible. On the other hand, we do not want to
lose sight of the application, which, in practice, strongly influences
end-to-end metrics like response times that are crucial for users.
From a technical point of view, one problem is that different frame-
works have very different technology stacks and interfaces. Existing
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benchmarking approaches are limited to analyzing single orches-
tration tasks or only considering one specific CO framework and
technology stack. To the best of our knowledge, there is currently
no approach that supports benchmarking multiple orchestration
frameworks and covers the plurality of container orchestration
tasks.

In this paper, we take a systematic approach to benchmarking
of container orchestration frameworks. Based on a review of differ-
ent definitions of container orchestration, we derive a meaningful
benchmarking scope and use cases. Next, we define generic core
requirements for CO frameworks and associate them with spe-
cific performance metrics. We then design an orchestrator-agnostic
benchmark architecture for evaluating these metrics. Our bench-
marking framework COFFEE implements the designed architecture
and allows the definition of complex benchmarking campaigns
through a user-friendly script-like language. We use COFFEE to
analyze and compare the performance of the CO frameworks Ku-
bernetes and Nomad in a self-hosted environment as well as on the
Google Cloud Platform.

The goal of this paper is to bring the topic of benchmarking con-
tainer orchestration frameworks into the public eye and enable com-
prehensive performance evaluation through orchestrator-agnostic
benchmarking methodology and framework. The proposed met-
rics and the framework developed in this work can help users to
decide which orchestration framework to use depending on their
use case and compare different configuration options. In summary,
the contributions of this paper are:

• We define a benchmarking scope for container orchestra-
tion frameworks, including core requirements, performance
metrics, workloads, and methodology;

• We present a benchmark architecture and COFFEE, a flexible
and extensible tool for benchmarking of CO frameworks, as
an implementation of our approach;

• We provide empirical evidence for the usability of our ap-
proach by conducting case studies in two different environ-
ments with Kubernetes and Nomad as frameworks under
test.

The remainder of this paper is structured as follows: In Section 2,
we give some background on the term container orchestration and
the two frameworks evaluated in this work. In Section 3, we derive
requirements for container orchestration frameworks and asso-
ciate metrics with every requirement. Furthermore, we present a
benchmark architecture for container orchestration frameworks.
Section 4 presents our benchmarking framework COFFEE, which
implements the proposed architecture. Section 5 then features sev-
eral case studies, including Kubernetes and Nomad as frameworks
under test. We discuss the limitations of our work and open chal-
lenges in Section 6. Section 7 summarizes related work and outlines
shortcomings. Finally, Section 8 concludes the paper.

2 BACKGROUND
This section focuses on the term container orchestration and intro-
duces Kubernetes and Nomad, two state-of-the-art CO frameworks
investigated in this work. There is not one commonly accepted
and highly cited definition of the term container orchestration.
Casalicchio [6] states that container orchestration is concerned
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Figure 1: Components of a container cluster with container
orchestration (green).

with managing containers at runtime and supporting deployment,
execution, and maintenance. Common features are resource limit
control, scheduling, load balancing, health check, fault tolerance,
and autoscaling. Khan [18] names seven capabilities of container
orchestration platforms: cluster state management and scheduling,
high availability and fault tolerance, security, networking, service
discovery, continuous deployment, monitoring, and governance. Ro-
driguez and Buyya [28] propose a container orchestration reference
architecture with the key tasks of container provisioning, monitor-
ing, scheduling, as well as accounting and admission control. As
over the past years, CO frameworks experienced massive growth
in usage and community development, none of these definitions
covers the full feature bandwidth of modern platforms.

Looking at non-scientific sources and analyzing the definitions
from technology leaders like IBM [14], VMware [10], and others, we
found the definition of Red Hat [15] especially helpful, as it matches
the features of modern frameworks well. It states that container
orchestration automates the deployment, management, scaling, and
networking of containers. The following typical tasks are named:
provisioning and deployment, configuration and scheduling, re-
source allocation, container availability, scaling, load balancing
and traffic routing, health monitoring, application configuration,
and securing container interaction. This definition overlaps with
the ones from the scientific literature but has two advantages in
particular. It introduces container orchestration as a generic and
broad term but also names concrete responsibilities of modern CO
frameworks. We use this definition as a basis for deriving the scope
of benchmarking we target in this work.

From a technical point of view, CO frameworks represent an
abstraction layer for accessing a cluster capable of running con-
tainerized applications. Figure 1 schematically shows the main
components of a container cluster. Usually, a control plane (e.g.,
a set of master nodes) interacts with several other nodes (worker
nodes) via a node agent. The worker nodes run a container engine
(e.g., containerd1). The container engine uses kernel functions or
low-level software like cgroups to allocate resources.

1https://containerd.io/
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We use two container orchestration frameworks in our case stud-
ies. Our �rst framework under test is Kubernetes,2 which is the
current market leader [9]. Initially developed by Google, Kuber-
netes nowadays has a large community. Containers in Kubernetes
are organized in so-called pods, and each pod is assigned an IP
for networking. Kubernetes uses a declarative interaction concept
where desired states (like the number of running service instances)
are constantly compared to observed states. Our second frame-
work under test is Nomad,3 a container orchestration platform
developed by HashiCorp. Nomad supports both containerized and
non-containerized applications. It uses Consul4 to enable service
networking. The equivalents to pods in Kubernetes are so-called
tasks. Compared to Kubernetes, Nomad claims more simplicity and
high scalability, supporting clusters of over 10,000 managed nodes.
The Nomad website [25] lists companies that use the framework in
production.

3 BENCHMARKING APPROACH
In this section, we explain our approach to enable benchmarking of
CO frameworks. First, we de�ne the use cases and the benchmark-
ing scope. We then formulate core requirements for CO frameworks
and link performance metrics to each requirement. The section ends
with our proposed benchmark architecture, which allows one to
measure and evaluate the performance of CO frameworks.

3.1 Benchmarking Use Cases and Scope
Various implications and use cases for benchmarking are created
from the technical scheme of container orchestration frameworks
presented in Figure 1. When we evaluate the performance of a CO
framework, we automatically examine the entire technology stack;
that is, the software and hardware of the nodes also play a role.
This has to be considered when interpreting benchmarking results.
In general, we identify three use cases for the benchmarking of
container clusters:

1. Comparing di�erent CO frameworks: In this case, a �xed re-
source landscape is given, and di�erent CO frameworks are eval-
uated in this context. The use case in practice is to choose a CO
framework for a speci�c environment.

2. Comparing con�guration options of one CO framework: Similar
to the �rst use case, the environment is not changed. Instead, a
di�erent con�guration of the CO framework is used (e.g., a di�erent
scheduling algorithm or networking solution). The use case in prac-
tice is �ne-tuning a speci�c framework (e.g., comparing di�erent
networking plugins for Kubernetes).

3. Comparing di�erent cluster environments: In this case, the focus
is not on the CO framework but on the nodes. There can be di�erent
con�gurations of the nodes (e.g., container engines, operating sys-
tems, or hardware resources). One use case in practice is selecting
the size of VM instances in public clouds.

We focus on use cases 1 and 3 and present respective case stud-
ies in Section 5. To enable benchmarking of CO frameworks, we
have to de�ne a benchmarking scope, that is, the (performance-
relevant) tasks a CO framework is assumed to ful�ll that are subject

2https://kubernetes.io/
3https://www.nomadproject.io/
4https://www.consul.io/

to evaluation through benchmarking. In Section 2, we discussed
that the term container orchestration is not clearly de�ned. How-
ever, we also discovered overlaps between di�erent de�nitions and
associated tasks of CO frameworks. In this paper, we assume the
following performance-critical tasks of CO frameworks:

� T1: Container provisioning and deployment
� T2: Container scheduling
� T3: Resource allocation
� T4: Container availability
� T5: Health monitoring
� T6: Scaling
� T7: Load balancing and tra�c routing
� T8: Inter-container networking

This list correlates strongly with the de�nition by Red Hat [15].
However, we omit the security properties of CO frameworks, as they
are hard to generalize across di�erent frameworks. Given this list of
assumed tasks of CO frameworks and the environment setting from
Figure 1, three necessary properties for our benchmarking approach
emerge. First, it must provide a level playing �eld for evaluating
di�erent CO frameworks. This is implied from use case 1 and goes
along with the best practice of designing a fair benchmark that is
not tailored to a speci�c system under test [20]. Second, since we are
dealing with di�erent nodes and technology stacks, the measured
performance metrics must be generic, with minimal assumptions
on the orchestrator and cluster nodes. Third, the variety of tasks
of a CO framework necessitates broad coverage and metrics for
every task. One should also consider that all of these tasks are
concurrently executed, and therefore interdependencies between
individual tasks exist. A benchmarking approach should therefore
target as many tasks as possible in parallel instead of evaluating
them one after the other.

3.2 Core Requirements and Metrics
Now that we have de�ned the scope of our benchmarking e�ort
and the tasks to be tested, we need to decompose the abstract list
of tasks into concrete �ne-granular requirements, which can then
be evaluated and quanti�ed by speci�c metrics. Table 1 shows an
overview of seven core requirements for CO frameworks and which
tasks are addressed by these requirements. In the following, we
detail these requirements and give metrics that can quantify how
well a CO framework ful�lls each requirement. The metrics should
be easily measurable and not impose any assumptions on the nodes
or the orchestration framework.

R1.One of the core requirements of any CO framework is the
ability to start containers. If a new container has to be launched,
the scheduling algorithm decides �rst on which node the container
should be placed. Then, node resources are reserved, and if neces-
sary, the image is downloaded from a registry before the container
is started. The main metric to quantify the start performance is
the readiness time, that is, the time it takes from issuing the start
command until the container context is initialized and the container
is running. The readiness time consists of di�erent phases: schedul-
ing, image pull, and start time. The start time is the time it takes
for the container engine to process the image manifest and set up
the controller environment (e.g., control groups and namespaces).

https://kubernetes.io/
https://www.nomadproject.io/
https://www.consul.io/
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Requirement T1 T2 T3 T4 T5 T6 T7 T8
R1: Containers can be started. X X X X
R2: Containers can be removed. X
R3: Containers can be restarted manually or in case of failures. X X X X X X
R4: Containers can be updated to a new version. X X X X X
R5: Provisioned resources can be varied depending on workload. X X X X X
R6: Requests from external sources are balanced across running containers. X
R7: Containers are able to communicate with other containers in the same cluster. X

Table 1: Core requirements for container orchestration frameworks and related tasks from Section 3.1.

R2.Every container that was started should also be terminated
and removed. The associated performance metric is the removal
time. It is to be expected that the removal time is signi�cantly
lower than the readiness time since no placement and image pull
take place. However, depending on the container, there may also
be pre-destroy statements that allow a graceful exit (e.g., a clean
disconnect from a database).

R3.Automated restarts are usually out of scope for container
engines but a core task of CO frameworks. The reasons for restarts
can be various: developers can manually trigger restarts, or unex-
pected errors in the container process might cause them. Another
reason could be that the container runs out of resources (e.g., if it is
overloaded). In the latter case, health monitoring should track the
state of the container. One performance metric for this requirement
is the restart time. It comprises the removal time of the old container
and the readiness time of the new one. In case of an error-induced
restart, the failure discovery time can be considered, that is, the time
di�erence between the occurrence of an error and the time when
the restart is initiated. If the container receives external requests,
the load balancing algorithm must also react and not allocate any
additional load to the container. In this case, the number of failed
requests can also be considered a performance metric.

R4.In continuous deployment, it is essential to be able to perform
a rolling update, that is, to update a set of containers to a new
version. One common use case is to change the container image.
The task of the CO framework is to perform and coordinate this
update as fast as possible but also to maintain availability and avoid
violating service-level agreements. Consequently, we use the total
update time alongside the response time and the number of failed
user requests as performance metrics.

R5.As mentioned in Section 3.1, scaling is one of the main tasks of
CO frameworks. Dynamic resources can be the number of container
instances (horizontal scaling), the computing resources allocated
to a container (vertical scaling), or the number of nodes in the
cluster (cluster scaling). Typically, autoscalers are evaluated using
a mixture of cost and QoS metrics such as response times [13, 31].

R6.In the context of microservice applications, usually multiple
application instances are deployed. When a user requests a service,
the request must be assigned to a chosen instance. Load balancing is
used to avoid overloading and performance degradation. Metrics for
the evaluation of load balancers are the end-to-end response times
of user requests and the load balancer's generated overhead [39].
In this paper, we also consider the distribution of requests over
service instances to determine how the load balancer distributes
requests over a set of instances.

Figure 2: Benchmark architecture and components (blue).

R7.Communication between containers is essential for multi-
service applications. However, also for containers of the same kind,
container-to-container communication can be essential (e.g., when
states have to be synchronized). Usually, this kind of networking
is realized using overlay networks. Classical network metrics like
throughput, round-trip time, and latency can be used to evaluate
in-cluster networking.

3.3 Benchmark Architecture
In this section, we propose an architecture that can quantify a CO
framework's performance based on the requirements and associated
metrics de�ned above. As mentioned in Section 3.1, the architecture
should be as generic as possible and not depend on the speci�cs of
individual orchestration frameworks and underlying technology
stacks.

Figure 2 shows our proposed architecture. The core component
is the benchmark controller, which receives the benchmark speci-
�cation from the user. Furthermore, test containers are deployed
in the cluster. Individual instructions within the benchmark spec-
i�cation can either generate requests to the cluster control plane
(e.g., for container starts) or selected test containers (e.g., for failure
injection). In the latter case, a proxy is needed. This is because indi-
vidual containers are usually not directly addressable from outside
as a network barrier between cluster and external users exists. A
load generator is used to imitate user requests. The benchmark con-
troller and load generator should be deployed outside the cluster to
avoid interferences. Several test container instances communicate
with each other via in-cluster networking.

This architecture satis�es all the properties we de�ned earlier.
The only assumptions made about the CO framework are that a
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proxy can be deployed, the controller has access to the control plane,
and a load generator can send requests to the cluster. Modern CO
frameworks ful�ll all these requirements. Furthermore, the pro-
posed architecture allows us to measure many of the performance
metrics from Section 3.2. The controller generates a timestamp
when the command is sent for the measurements of readiness, re-
moval, update, and outage times. The created, removed, or updated
test container instance also reports a timestamp, and the controller
can calculate the time di�erence between the two events. Using
a load generator enables measuring metrics like response times,
the number of failed user requests, and more. Further �ne-granular
metrics might be requested via the cluster control plane. The built-
in user-level metrics might be complemented with system-level
metrics, like CPU utilization of the nodes. However, note that no
extended monitoring capabilities are necessary to use the proposed
benchmark architecture.

4 BENCHMARKING FRAMEWORK
This section introduces COFFEE, a benchmarking framework for
container orchestrators. Our benchmarking concept and reference
architecture served as a basis for the design of COFFEE. Accordingly,
it consists of 3 main components: controller, test container, and
proxy. All components use Java and Spring as implementation
technologies. The source code of COFFEE and all examples used in
this paper can be found on GitHub5 and Zenodo.6

The controller is the most complex component of COFFEE, as
Figure 3 shows. The controller requires two inputs. First, the test
campaign must be speci�ed. The textual input is translated into a
set of operations. All currently supported operations can be found
in Table 2. In general, there are three types of operations. The
�rst group interacts with the load generator (LOAD, ENDLOAD).
COFFEE provides an interface for the HTTP Load Generator,7 but
other load generators can be integrated with low e�ort. The second
group consists of orchestrator-agnostic operations forwarded to
the test containers via the proxy (CRASH, HEALTH, NETWORK).
These are processed by the test containers and therefore do not need
to be re-implemented for di�erent orchestrators. The third group
of operations is orchestrator-speci�c and needs to be implemented
for each framework. It includes container starts (START), removals
(REMOVE), updates (UPDATE), and manual restarts (RESTART).

Furthermore, auxiliary commands enable the de�nition of com-
plex test campaigns. By default, all commands are executed asyn-
chronously and in parallel; by specifying an OFFSET, the user can
specify when a command should be sent. If a sequential execution
of a series of commands is desired, one can wrap this sequence
by SEQ/ENDSEQ or LOOP/ENDLOOP for repeated executions. A
command is considered completed if all expected responses/metrics
of the command have been reported to the controller. For exam-
ple, if �ve containers need to be started, the controller waits to
continue a sequence until �ve start times have been reported. The
keyword DELAY can be used within a sequence to set a pause
between operations.

5https://github.com/DescartesResearch/COFFEE
6https://doi.org/10.5281/zenodo.7603961
7https://github.com/joakimkistowski/HTTP-Load-Generator

Figure 3: COFFEE controller in detail.

Command Description
START <n> Startsn test container instances
RESTART <n> Restartsn instances
HEALTH <n> Sets unhealthy �ag inn instances
CRASH <n> Causes crash ofn instances
UPDATE <n> Updatesn instances (changes image)
NETWORK Measures round-trip time between

running instances
REMOVE <n> Shuts downn instances
LOAD / ENDLOAD Starts/Ends load generation
SEQ / ENDSEQ Starts/Ends a sequence
LOOP <n> / ENDLOOP Starts/Ends a loop withn iterations
OFFSET <t> Invokes next command aftert sec.
DELAY <t> Pauses a sequence/loop fort sec.

Table 2: Commands for test campaign de�nition.

Listing 1 shows an example test campaign, which is also used in
Section 5.3. Here, we use LOOP 100 to indicate that this experiment
should be repeated 100 times. First, we start ten test containers.
Afterward, we wait 20 seconds until the load generator is started.
The con�guration of the load generator contains many parameters,
e.g., request rates over time and target IPs, and is done not within
the test campaign but dynamically at runtime. After starting the
load generation, the test script is paused for 2 minutes. This is
the warmup phase for the test containers, as the load generator
sends requests in parallel. In the next step, a CRASH command
is issued, which terminates all ten running containers. We again
wait 2 minutes while the load generator continues to record the
response times during that recovery phase. The load generator is
shut down, and all ten containers are removed at the end of one
experiment run. The 30 seconds delay at the end provides a short
pause before the next loop iteration.

The speci�ed test script can be reused for di�erent frameworks.
However, the controller also needs an orchestrator-speci�c con�g-
uration containing at least the cluster control plane address, the
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