
Predicting Server Power Consumption from Standard Rating
Results

Jóakim von Kistowski
University of Würzburg

Germany
joakim.kistowski@uni-wuerzburg.de

Johannes Grohmann
University of Würzburg

Germany
johannes.grohmann@uni-wuerzburg.de

Norbert Schmitt
University of Würzburg

Germany
norbert.schmitt@uni-wuerzburg.de

Samuel Kounev
University of Würzburg

Germany
samuel.kounev@uni-wuerzburg.de

ABSTRACT
Data center providers and server operators try to reduce the power
consumption of their servers. Finding an energy efficient server for
a specific target application is a first step in this regard. Estimating
the power consumption of an application on an unavailable server is
difficult, as nameplate power values are generally overestimations.
Offline powermodels are able to predict the consumption accurately,
but are usually intended for system design, requiring very specific
and detailed knowledge about the system under consideration.

In this paper, we introduce an offline power prediction method
that uses the results of standard power rating tools. The method
predicts the power consumption of a specific application for multi-
ple load levels on a target server that is otherwise unavailable for
testing. We evaluate our approach by predicting the power con-
sumption of three applications on different physical servers. Our
method is able to achieve an average prediction error of 9.49% for
three workloads running on real-world, physical servers.

CCS CONCEPTS
• Hardware→ Energy metering; Platform power issues; En-
terprise level and data centers power issues; • Software and
its engineering→ Software performance;

KEYWORDS
Power, Energy Efficiency, Performance, Prediction, Interpolation,
Regression, Benchmarking, Load Level

ACM Reference Format:
Jóakim von Kistowski, Johannes Grohmann, Norbert Schmitt, and Samuel
Kounev. 2019. Predicting Server Power Consumption from Standard Rating
Results. In Tenth ACM/SPEC International Conference on Performance Engi-
neering (ICPE ’19), April 7–11, 2019, Mumbai, India. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3297663.3310298

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’19, April 7–11, 2019, Mumbai, India
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6239-9/19/04. . . $15.00
https://doi.org/10.1145/3297663.3310298

1 INTRODUCTION
The energy efficiency of servers has become a significant issue as
data center energy consumption has risen dramatically over the
past decade. In 2010, the U.S. Environmental Protection Agency
(U.S. EPA) estimated 3% of all electricity consumed in the U.S. to
be used in running data centers [24]. According to a New York
Times study from 2012, data centers worldwide consume about
30 billion watts per hour [2]. This leads to high operational costs
for data center and server operators. Consequently, data center
provisioners would ideally attempt to purchase servers which are
energy efficient regarding their intended use.

When purchasing servers, their energy efficiency and power
consumption can be estimated using nameplate information and
standard benchmark results. However, nameplate values are usu-
ally overestimated and inaccurate and standard benchmarks do not
reflect the target application to be run on the servers in question.
Due to this, server providers rely on educated guesses and experi-
ence when trying to choose the most efficient and least consuming
servers for their specific application. The ability to accurately assess
the power consumption of the servers under consideration for their
intended application would enable planning and provisioning of
energy efficient server landscapes.

Existing power models are either very generic and do not con-
sider workload, or they are assumed to be trained at run-time.
Models that predict power for unavailable systems and compo-
nents, such as [9] and [22], are primarily intended for server and
hardware component design. They require very detailed knowledge
on system internals, which would be available to a system designer,
but not necessarily to someone intending to buy such a system.

This paper proposes a prediction method for power consump-
tion of servers based on standard rating tool results. The prediction
method uses publicly available rating data to predict the power
consumption of servers under consideration for a target applica-
tion. Specifically, the method uses data available from the SPEC
Server Efficiency Rating Tool (SERT), which is required to run for
U.S. Environmental Protection Agency (E.P.A.) Energy Star label-
ing. Using our method, a server provisioner can predict the power
consumption of a future server running a target application even
without access to it. Of course, this also implies that the server
provisioner does not have to perform any measurements on the
server under consideration.

https://doi.org/10.1145/3297663.3310298
https://doi.org/10.1145/3297663.3310298

Predicting the power consumption of servers using standard
rating tool results is difficult, as this result set is relatively small. To
address this issue, we consider multiple prediction formalisms and
introduce a parameter optimization method. We also investigate the
use of interpolation to generate additional data points for training
and prediction.

The goal of this paper is to provide accurate prediction of server
power consumption for a target workload at multiple application
load levels, based only on the SERT results of the target server. We
envision the result of this prediction, containing information on the
concrete workload under consideration and multiple load levels, to
be of use for planners and potential server customers when making
their decisions. In a nutshell, the core contributions of the paper
are:

(1) We introduce an offline prediction method for server power
consumption based on standard rating tool results.

(2) We present a parameter optimization method for automated
tuning of prediction formalisms.

(3) We investigate and show the use of interpolation methods to
create additional training and prediction data for the power
prediction domain.

We evaluate our offline prediction method by prediction the
power consumption of three target workloads on separate physical
servers. We evaluate the prediction accuracy the effects of parame-
ter optimization and interpolation. We show that our method can
predict the power consumption of applications for an unavailable
server using only standard rating tool results with a mean average
absolute error of 9.49%, measured using real-world, physical servers
and workloads. We also show that our combination of interpola-
tion and parameter optimization methods greatly aids in achieving
accurate predictions in a domain with little training and prediction
data.

The remainder of this paper is structured as follows: Section 2
describes the related power models and prediction mechanisms.
Section 3 introduces the SERT rating tool, and workloads, and their
relevance for our power prediction. We then describe our offline
power prediction approach in detail in Section 4. Next, we evaluate
our prediction accuracy in Section 5. Finally, the paper concludes
in Section 6.

2 RELATEDWORK
We group related work in three non-exclusive areas: We examine
power models in the two non-exclusive categories of general offline
power models, generic server power models (hardware-based and
workload-based), models for energy-aware power management. We
discuss the power benchmarks and workloads for our workload-
based model separately in Section 3.

Offline power models, such as [4], [22], and [18] are intended
for use at design time. Such models can be architecture-based, such
as [4] and [37], which expand upon software architecture models
for design time power comparisons. These models are intended
to compare software design alternatives for distributed systems
and focus on the relative power prediction results with reduced
absolute accuracy of single server predictions. In contrast, offline
power models for hardware designers focus on maximum accuracy
for single hardware components by requiring extremely detailed

modeling of their properties. These models, such as the CPU model
of [9] and [22], are usually intended for hardware system designers,
analyzing their potential device architectures. Modeling approaches
of such a granularity are also employed on a full server level in [18],
which allows for detailed modeling of full systems. In contrast to
these models, our model learns purely from standard benchmark
and application efficiency measurement, requiring no explicit mod-
eling by the user.

Generic server powermodels characterize or predict the power
consumption of a single physical server. They have some overlap
with offline power models (e.g., [18]), yet many are not specifi-
cally designed for offline prediction. [32] provides an overview of
generalized, generic full-system power models. These models can
utilize a variety of methods, such as interpolation [16, 42], regres-
sion [26, 27], or others [14]. They also vary regarding their purpose
and, especially, regarding the type of data that they use to model
the power consumption. For this work, we distinguish between
hardware-based and workload-based power models.

Hardware-based models, such as [26, 27] and [14] are based
on system-level data, such as architectural parameters, performance
counters [6, 11, 12, 20, 29, 34, 35, 39] and utilization metrics. This
data is often collected at run-time or during a calibration step from
the system under consideration. Hardware-based models also are
often highly specialized to the calibration hardware. Further compli-
cating hardware-based models is the necessary expert knowledge
to build them. The Intel®manual [19] lists over 300 performance
counters for the HaswellEP microarchitecture and a performance
counter available on one platform must not necessarily available on
another. Thus making hardware-based models often less portable
than an offline power model that can be constructed or trained
from less hardware specific data.

Workload-based models, such as [42] and [15], are usually
trained for specific workloads and use application-level parameters
such as request arrival rates. The model of this paper can also be
counted in this class. However, with the exception of [43], none
of the existing workload-based models use standard rating results
to enable a black-box power prediction for otherwise unavailable
servers. Only [43] is of special note in this regard, as it also predicts
power using the SPEC SERT. However, its use-case is quite different,
as it predicts the power overhead of VM hypervisors.

Energy-aware power management techniques may employ
generic power models or specific online power prediction mod-
els, such as [41], to predict the power consumption of the system
states that might result from management decisions. The typical
goal is to minimize power consumption within certain Quality-of-
Service (QoS) constraints [5], or to maximize overall efficiency [21].
The common technical mechanism by which management systems
achieve this is VMmigration [5, 21, 38, 40]. The impact of the power
management decisions is often estimated using established basic
power prediction methods. For example, [5] use a utilization-based
linear power model described by [32], whereas [40] use a quadratic
power model. Other works construct their own model of the un-
derlying systems, such as [38], which model a server farm using
stochastic Petri nets. Our proposed model differs from this class of
models, as it is primarily intended for offline prediction at a time
when the system under consideration is not yet available to the
person making the prediction.

3 SERT
The SPEC Server Efficiency Rating Tool (SERT) has been developed
by the SPEC OSG Power Committee as a tool for the analysis and
evaluation of the energy efficiency of server systems. Its design and
development goals and process have been introduced in [24]. In
contrast to energy-efficiency benchmarks, such as JouleSort [33],
SPECpower_ssj2008 [23], and the TPC-Energy benchmarks [31],
SERT does not execute an application from a specific domain. It
does not aim to emulate real world end user workloads, but instead
provides a set of focused synthetic micro-workloads called worklets
that exercise selected aspects of the Server (or System) Under Test
(SUT). The worklets have been developed to exercise the processor,
memory, and storage I/O subsystems.

For each of the server components to be stressed, SERT offers
a range of worklets designed to exercise the targeted component
in a different manner. This allows for thorough analysis of system
energy behavior under different workload types designed to target
the same component. As an example, the CryptoAES worklet profits
from both specialized instruction sets, as well as better CPU to
memory connectivity, whereas the SOR worklet primarily scales
with processor frequency.

According to [3], servers nowadays spend most of their time in a
CPU utilization range between 10% and 50%. As a result, SERT and
its worklets are designed for the measurement of system energy
efficiency at multiple load levels. This sets it further apart from
conventional performance benchmarks, such as SPEC CPU [10],
which targets maximum load and performance. To achieve work-
load execution at different load levels, SERT calibrates the load by
determining the maximum transaction rate for the given worklet
on the SUT. The maximum transaction rate is measured by running
as many of the worklet’s transactions as possible concurrently on
each client (i.e. utilizing all logical cores and not introducing arti-
ficial waiting delays). This calibrated rate is then set as the 100%
load level for all consecutive runs. For each target load level (e.g.,
100%, 75%, 50%, 25%), SERT calculates the target transaction rate
and derives the corresponding mean time from the start of one
transaction to the start of the next transaction. During the measure-
ment interval, these delays are randomized using an exponential
distribution that statistically converges to the desired transaction
rate. As a result, lower target loads consist of short bursts of activ-
ity separated by periods of inactivity. The separate load levels per
worklet are useful when using SERT results to train power models,
as it provides multiple independent measurement results for each
worklet that can be used for model training. Note, that the load
levels are throughput based and do not indicate CPU utilization
(this is a common misconception).

3.1 Worklets
In version 2.0, SERT features seven CPU worklets. Each worklet
is measured at four load levels (25%, 50%, 75%, 100%), with the
exception of SSJ:

(1) Compress: De-/compresses data using a modified Lempel-
Ziv-Welch (LZW) method [44]

(2) CryptoAES: Encrypts/decrypts data using the AES or DES
block cipher algorithms

(3) LU: Computes the LU factorization of a dense matrix using
partial pivoting

(4) SHA256: Performs SHA-256 hashing transformations on a
byte array

(5) SOR (Jacobi Successive Over-Relaxation): Exercises typical
access patterns in finite difference applications

(6) SORT Sorts a randomized 64-bit integer array during each
transaction

(7) Hybrid / SSJ: The hybrid SSJ worklet stresses both CPU
and memory, with either serving as the primary bottleneck,
depending on system configuration. SSJ Performs multiple
different simultaneous transactions, simulating an enterprise
application. SSJ is measured at eight load levels, instead of
the four levels of the other CPU worklets

The two storage worklets, described in [25] are run at two load
levels (50%, and 100%). The Random and Sequential worklets
perform random and sequential read/write operations on the SUT’s
internal storage.

In version 2.0, SERT features seven CPU worklets. Each worklet
is measured at four load levels (25%, 50%, 75%, 100%), with the
exception of SSJ: Compress, CryptoAES, LU, SHA256, SOR, SORT,
and SSJ. SSJ is measured at eight load levels, instead of the four
levels of the other CPU worklets. In addition to the CPU worklets,
the two storage worklets are run at two load levels (50%, and 100%).

Finally, SERT features two memory worklets: Flood and Capacity.
Flood tests the SUT’s memory bandwidth, whereas Capacity tests
its capacity. However, the memory worklets do not use the same
load level scaling mechanism as the other worklets. Each features
two load levels that differ in the amount of memory reserved for
the worklet, instead of scaling with the transaction rate. Because
of this, we expect these worklets not be as useful in training power
models as the storage and CPU worklets.

The major challenge in training models based on SERT results
is twofold: 1) The amount of data points per worklet is relatively
small and 2) it varies between the worklets. The load levels can
be configured in theory, but standard compliant runs use the load
levels described in this section. As we intend our model to be used
with publicly available results, we must deal with the small and
varying load level numbers.

4 OFFLINE POWER PREDICTION
The goal of our offline power prediction approach is the predic-
tion of the power consumed by a target application running on a
target server not yet available to the operator currently running
the application. The general idea behind the prediction approach is
as follows: The operator has a current server on which the target
application in question is being executed or upon which it can be
deployed for testing. The operator measures the performance and
power consumption of the target application for multiple through-
put load levels on this server. The prediction also requires a SERT
result for the current server, which can be measured or obtained
using a public database. Finally, it also requires a SERT result for
the target server, which can be obtained from the vendor or a public
database.

Predicting the power consumption of the target application for
multiple potential target devices can help decision makers when

Input and Variable Processing

Parameter Optimization

Select
Regressor
Variables

Current
Server SERT

Result

Current
Server App

Result

Target Server
SERT Result

Interpolate
Missing

Variables

Select
Response
Variables

Interpolate
Missing

Variables

Training
Regressors

Response
Variables

Prediction
Regressors

Determine Search
(Sub-)Space

Find Local
Minima

Modeling
Formalisms

Optimized
Formalisms

Formalism Selection

Compute Self-
Prediction Error

Modeling
Formalisms

Single Best
Formalism

repeat

Predict Power

Target Server
App Result

Figure 1: Outline of Power Prediction Approach

deciding with which device to provision their cluster or data center.
In addition, this approach could also be used in a to simulate general
software placement context. An outline of the overall approach is
illustrated in Figure 1. The approach is modular, allowing the use
of a regression method from a pool of methods. Specifically we
consider the following methods, where each method can be fine-
tuned using the parameters exposed by their implementation (we
use the Smile [28] library for Java):

• Regression Tree (CART): the maximum number of leaf nodes
in a tree (max nodes) and the number of instances in a node
before splitting (node size)

• Random Forest: the number of trees in the forest (num trees)
• Gradient Tree Boost: the number of trees in the forest (num
trees)

• Gaussian Process Regression: the shrinkage regularization
parameter of the gaussian processess’s kernel and the kernel
width

4.1 Regressor and Response Variables
In general, power prediction is a prediction problem on a continuous
scale and can thus be posed as a regression problem. These problem
statements can be solved by various regression and/or classification
algorithms. In general, regression problems have the following form
(Eq. 1):

Y ≈ f (X , β) (1)
where Y is the vector of response variables (also called dependent

variables), X the set of regressor variables (also called independent
variables), and β the set of regression parameters to be trained. In
this work, we map our domain specific measurement results to
generic regressor variables and and response variables, allowing

for a range of regression and classification models to be used, as
opposed to limiting ourselves to a single model, such as e.g., linear
regression. Note that not all of our models train a single regression
parameter vector β . However, they are all capable of proceesing our
set of regressor and response variables. For this reason, we make
no assumptions on how or if the prediction model models β .

4.1.1 Target Application Power Response Variable for Training.
We measure the power consumption of the target application at
multiple load levels on the current server. We then construct the
training response vector from these power consumption results.
As an example, the measurements at four load levels (100%, 75%,
50%, 25%), the training response vector y would be constructed as
shown in Equation 2:

y =

power (App100%)
power (App75%)
power (App50%)
power (App25%)

 . (2)

Note that the number of load levels may have great impact on
the prediction accuracy. Specifically, not all load levels measured
for the target application may have measurement counterparts for
all worklets in the SERT (and thus in our set X of independent
regressor variables). We tackle this issue using interpolation in Sec-
tion 4.3. As explained in Section 3, the load levels are derived from
the workload’s throughput. They describe the current throughput
in relation to the maximum throughput achievable on the SUT.
Consequently, this approach is applicable to any application with
a measurable throughput. For many applications, this would be a
request rate (e.g., HTTP requests per second for web applications),
where 100% load would be the maximum request rate the SUT could
handle.

4.1.2 SERT Results as Regressor Variables. The matrix X of inde-
pendent regressor variables is constructed from the per-load level
measurement results of the separate worklets. Specifically, we con-
struct a vector from a single measurement metric, such as power
or performance over the load levels of a worklet. We consider the
following metrics for construction of our vectors:

• Performance: The average throughput of the worklet at
the specified load level (in s−1).

• Power Consumption: The average power consumption of
the SUT when running the worklet at the specified load level
(inW).

We do not consider the measured temperature, as it is measured
as a control metric at the SUT inlet and thus independent from the
system state. Equation 3 shows an example regressor variablematrix
X that uses the load level percentages and power consumption of
several worklets with four load levels.

X =

1 0.75 0.5 0.25
pwr (Com.100%) pwr (Com.25%)
pwr (AES100%) pwr (AES25%)

...
...

...
...

pwr (SS J100%) pwr (SS J25%)

. (3)

Again, the number of measured load levels is important and
affects accuracy. In addition, theworklets within SERT aremeasured
with different load level counts. However, many regression methods
require training vectors of equal size. In our case, this would imply
measurements with the same load level counts for all worklets,
which is not the case based on the measurement data alone. To
generate this equal load level count and create training vectors of
equal size, our feature engineering must either remove load levels
or create new ones. Specifically, we address this issue threefold by 1)
discarding load levels, 2) discarding worklets, and 3) interpolation
(see Section 4.3). First, we optionally discard load levels that have
no equivalent load level in the prediction (e.g., SSJ is measured
with more load levels than any other worklet). Secondly, we discard
some worklets that do not fit into the load level schema (such as
Capacity) or feature too few load levels for accurate interpolation
(Flood and the storage worklets). Finally, we apply interpolation
for worklets with few load level measurements (see Section 4.3). In
addition, we can add the power consumption of the Idle worklet
as the power consumption of each worklet at 0% load. We expect
the success of each of those measures to vary depending on the
prediction method used.

4.1.3 System Power as Expected Output. The models predict sys-
tem power consumption for each of the load levels of the application
under consideration running on the target server. The number of
load levels is implicitly specified by the size of the training response
vector y.

4.2 Prediction Formalisms under
Consideration

We use four underlying prediction formalisms for evaulation of the
power prediction: three variations of regression trees and Gaussian
mixture models. These formalisms are embedded in the enclosing
power prediction framework. However, the framework is modular-
ized and therefore supports any generic regression algorithm.

As tree algorithms, we use Regression Trees (CART) [8], Gradient
Tree Boosting [17], and Random Forests [7]. Regression Trees are
built using binary recursive partitioning, i.e., repeated iterative
splitting of data into partitions or branches. Using CART, a tree is
grown from the whole training set. Therefore, a fully developed
tree may suffer from over-fitting. Both Gradient Tree Boosting and
Random Forest try to account for this potential drawback. They
use smaller subsets of the original data to train individual trees
which helps with preventing overfitting. Random Forest does this
by bagging (bootstrap aggregating), while Gradient Tree Boosting
achieves this by boosting.

More specifically, Random Forest [7] works as a large collection
of decision trees, each calculated by a random subset of inputs. The
most simple reduction method to obtain a single value result is a
modest incident ranking returning the most frequent solution or av-
eraging the output. On the other hand, Gradient Tree Boosting [17]
trains the different trees in a sequential order. Therefore, it can
analyze the performance and choose the training subset according
to minimize the error.

Additionally, we use Gaussian Mixture Models as fourth pre-
diction formalism. They are stochastic models based on a mix of
probability distributions. They capture a target distribution using

superposition of multiple Gaussian distributions, adjusting their
means and covariances. Mixture models are used as an approach
for situations when a single Gaussian distribution is unable to cap-
ture complex data, whereas a linear superposition of two or more
Gaussians gives a better characterization of the data set. By using a
sufficient number of Gaussian distributions and by adjusting their
means and covariances as well as the coefficients in the linear com-
bination, almost any continuous density can be approximated to
arbitrary accuracy.

The following function describes this effect:

p(x) =
K∑
k=1

πkN(x |µk , Σk)

N(x |µk , Σk) = Gaussian component
µk = component mean
Σk = covariance of a component
πk = mixing coefficient
k = number of components
Gaussian mixture models are a candidate for power prediction

in this work, as they have been used to model power consumption
of server environments in the past [14]. By using Gaussian Mixture
Vector Quantization (GMVQ) based training and classification with
vector quantization using the "nearest-neighbor" approach, the
previous trained data serves as classification information for power
prediction.

We use the implementation of the Smile [28] library for Java for
all of the considered formalisms.

4.3 Interpolating Measurement Results
We require the same amount of measurements for each worklet
used to construct the regressor matrix X . However, SERT’s default
settings measure different worklets with different load level counts,
as described in Section 3.1. We consider two options to tackle this
issue: zero padding and interpolation. Both methods are intended to
create artificial results at the missing load levels for the respective
worklets.

Zero padding simply fills the gaps in load levels for worklets
with too few levels with results containing the value 0. This method
is primarily useful if these results are needed for mathematical
correctness, but otherwise discarded later in the prediction pro-
cess (i.e., when the prediction method in question does not use
them). Otherwise, the expectation is that zero padding enables the
prediction to run, but with negative effects on prediction accuracy.

Interpolation creates missing results based on the neighboring
load levels’ results. In general, it is the reconstruction of a continu-
ous function f (x) from n different sample points:

{(x1, f1), (x2, f2), ..., (xn , fn)}.
We investigate the use of three interpolation methods:
• Nearest Neighbor Interpolation interpolates results by re-
turning the closest existing result: f (x) = f (xi) with xi ∈

{x1, ...,xn } being the nearest neighbor to x , meaning that
∀x j ∈ {x1, ...,xn } : |x − xi | ≤ |x − x j |.

• Linear Interpolation interpolates using a linear function f (x) =
f (xi) + (f (xi+1) − f (i)) x−xi

xi+1−xi given the two nearest neigh-
bors of x , xi and xi+1, with xi ≤ x and xi+1 > x .

• The cross-validation interpolation approach of [42], which
selects an interpolation method from a range of polyno-
mial and scattered interpolation methods (including nearest
neighbor, linear, and higher order polynomials) using cross
validation. Note that this approach requires a minimum of
three points of data in a set to be interpolated. This is an
issue in our use-case, as some SERT worklets only feature
two datapoints. We have to discard these worklets when us-
ing this interpolation, whereas nearest neighbor and linear
interpolation are capable of working on the smaller sets.

4.4 Self-Prediction Accuracy
Our power prediction model uses parameter optimization and cross-
validation of the different underlying modeling formalisms in order
to increase the prediction’s accuracy. During this optimization
phase, each potential optimization candidate is evaluated and either
discarded or adopted. We use the model’s self-prediction error
for this run-time evaluation. We then predict the training target
application power consumption values and compare the resulting
errors. We allow the use of several error metrics for this comparison
and consider two, specifically:

(1) Root Mean Squared Error :

eRMSE =

√∑n
i=1(y

′
i − yi)2

n
.

(2) Mean Absolute Percentage Error :

eMAPE =
100
n

n∑
i=1

∥y′i − yi ∥

yi
.

4.5 Parameter Modeling and Optimization
The prediction formalisms used by our offline prediction approach
feature several different formalism-specific parameter settings that
can affect the prediction’s accuracy. Specifically, we consider the
following parameters:

We optimize these parameters automatically using a method
inspired by [30]. We create a generic parameter model, which sets
the optimization exploration space for each paramter by assigning it
a minimum and maximum value and an initial exploration step size.

Figure 2: Example of Local Search Parameter Optimization

We then apply an iterative local search for each parameter. We split
the parameter’s search space between its minimum and maximum
values into k + 1 eqal parts, resulting from the parameter’s step size.
We then calculate the self-prediction error of the model with the
parameter under consideration for each of the potential values. We
then create local search spaces around each local minimum, and
iteratively explore those search spaces with a halved step size. This
process repeats until a maximum search depth d is achieved, at
which point the smallest local minimum is picked. Figure 2 shows
an example of the local search for the max nodes parameter in a
regression tree. The figure shows that the local search analyzes
potential parameter values around 20 in greater detail, trying to find
the minimum R sqare error. We perform the parameter value search
for each potential parameter. This is then repeated iteratively for
all parameters for n iterations, where n the number of parameters
per default.

4.6 Prediction Formalism Selection
Finally, we explore if it is possible to select the concrete predic-
tion formalism automatically. The power prediction approach uses
all prediction formalisms introduced in Section 4.2. The idea for
the automated selection is to not fix a modeling formalism, but
instead select it automatically at run-time. To to this, we first opti-
mize the parameters for all potential formalisms using our iterative
optimization method from Section 4.5. We then calculate the self-
prediction RMSE for all of the optimized formalisms and select the
one with the lowest error for prediction. The entire approach from
data processing to parameter optimization and formalism selection
approach is illustrated in Figure 1.

5 EVALUATION
We evaluate our offline prediction model using three target appli-
cations and three different real-world, physical servers. We run the
SPEC SERT on each of those servers to measure and characterize
its power consumption. We then predict the target applications’
power consumption when running on two of those servers using
the respective target server’s SERT and a training set consisting of
a SERT result and target application power measurements from one
of the servers. We compare measured application power consump-
tion with the predicted consumption for all measured load levels
and servers and calculate the aggregate prediction error using the
mean absolute percentage error (MAPE).

eMAPE =

∑
l ∈loadlevels

|pwrpredicted (l)−pwrmeasured (l) |
pwrmeasured (l)

|loadlevels |
. (4)

In addition to the server-specific MAPE of Eq. 4, we also consider
the aggregate MAPE over all servers for a specific configuration of
our offline power prediction for a certain application.

We consider the following three applications:
• Pi: A worklet that ships with the SPEC ChauffeurWDK [1]
and computes Pi by calculating up to 100000 iterations of
the Gregory-Leibniz series.

• Friendgraph: Friendgraph is supposed to emulate a simple
social network graph of “friends”, which store arbitrary nu-
meric properties within a matrix. A transaction calculates

Table 1: System under test specification including power
characteristics measured using SERT.

4 core 8 core 10 core
Model HP ProLiant HP ProLiant HP ProLiant

DL20 DL160 DL160
CPU 4 cores 8 cores 10 cores
Xeon Model E3-1230 v5 E5-2640 v3 E5-2650 v3

Clock 3.4 GHz 2.6 GHz 2.3 GHz
Generation Skylake Haswell Haswell
Memory 2 x 8 GB 2 x 16 GB 2 x 16 GB
Storage 1 x 460 GB 1 x 460 GB 1 x 460 GB
Idle Pwr 28.3 W 39.6 W 42.6 W
Max Pwr 106.1 W 139.7 W 151.8 W

“friend”-value by aggregating a friend’s matrix with all of its
first and second-order friends.

• Dell DVD Store [13]: The Dell DVD Store is a test web
application developed by Dell. We use its PHP implementa-
tion with a MariaDB database and deploy using Docker. We
generate load using users who browse the store in a cyclical
pattern. Users log in, search for items, add one item to the
cart, and then log out.

All servers in our experiment run Debian 9.4 (Kernel 4.9.82),
with Docker 18.03.0-ce, and Java HotSpot 64-Bit (build 25.161-b12).
Table 1 shows the hardware configuration of our three testing
devices, which we identify using the core-count.

5.1 Measuring Target Application Power and
Performance

We measure the target application power consumption and perfor-
mance using the SPEC Power and Performance Benchmark Method-
ology [36]. We do this by implementing our workloads within the
SPEC ChauffeurWDK [1] or by implementing a load driver in Chauf-
feur to drive the external workload in case of the DVD Store. Using
this methodology and implementation, we measure the target ap-
plications’ power and performance (throughput) at four target load
levels: 25%, 50%, 75%, and 100%. We connect an external power
measurement device to the AC power inlet of the SUT. An external
director machine controls the experiment using a network connec-
tion to the SUT. The SUT runs Chauffeur’s host-software, which
launches client processes that execute the workload or delegate it
to the DVD Store using HTTP. Figure 3 shows the device setup.

Analogue to how SERT operates, we perform a warmup run for
30 seconds and then calibrate the maximum load level of the target
application by running it on parallel on every available hardware
thread. We repeat this calibration two times, with each separate run
having a pre-measurement duration of 15 seconds, a measurement
duration of 120 seconds, and a post-measurement duration of 15
seconds.

After calibration, we measure performance and power consump-
tion for the target load levels in descending order. The load levels’
pre-measurement, post-measurement, and measurement times are
equal to the calibration. Our reported per-load-level power and per-
formance results are the average of the 120 second measurements.

Controller Director

System under Test (SUT)

Power Analyzer Power Supply

Network

Host

Client Client Client Client

starts

Figure 3: Device setup for power target application power
and performance measurements

Figure 4 shows the calibration and measurement intervals with
their respective duration. The maximum coefficient of variation
during our measurement runs is the performance variation of the
Dell DVD Store at full load on the 10 core machine. It features a CV
of 1.6%, which is well below the maximum boundary of 5%, defined
by SPEC.

5.2 Unoptimized Power Prediction
First, we analyze the accuracy of our prediction formalisms without
interpolation, optimization, and formalism selection. We compare
our following methods against this unoptimized variant to classify
their respective improvement. When not using interpolation, we
only use worklets with at least four load levels, meaning that the
memory and storage worklets are discarded. For the SSJ worklet,
we discard the four of the eight load levels that do not appear in
the other worklets.

Considering that parameter optimization is removed, we set each
of the regression formalism’s parameters to the minimum param-
eter within our parameter space. Specifically, Regression Tree’s
max nodes and node size are set to 2 and RandomForest and
GradientTreeBost both start with a single tree. Finally, Gaussian-
Regression has its shrinkage set between 0 and 1 and its kernel
width between 0.1 and 40. Table 2 shows the prediction errors of
this unoptimized method.

The results in Table 2 show differences in the prediction accu-
racies of the underlying formalisms. Yet, even the more accurate
methods suffer from poor accuracy when not optimized and with-
out any interpolation. In general, the regression mechanisms seem
to be able to capture the problem with some error. Gradient Tree
Boost and Random Forest both feature a mean absolute percentage
error of slightly more than 30%. Even though these two formalisms
achieve similar average results, they differ in terms of variance.
Gradiant Tree Boost’s MAPE has a standard deviation of 11.8%,

Table 2: Unoptimized prediction errors of base formalisms.

Formalism Avg. MAPE
Gradient Tree Boost 32.94%
Regression Tree 19.42%
Random Forest 31.03%
Gaussian Regression 99.99%

Time

Lo
ad

 In
te

n
si

ty

P
re

-M
e

a
su

re
m

e
n

t
1

5
 s

P
o

st
-M

e
a

su
re

m
e

n
t

1
5

 s
Calibration

120 s

10 s10 s 10 s 10 s 10 s

1
5

 s

1
5

 s100% Load
120 s 1

5
 s

1
5

 s75% Load
120 s

1
5

 s

1
5

 s25% Load
120 s

Scenario

Interval Interval Interval Interval

Scenario

Scenario

Scenario
P

re
-M

e
a

su
re

m
e

n
t

1
5

 s

P
o

st
-M

e
a

su
re

m
e

n
t

1
5

 s

Calibration
120 s

10 s

Scenario

Interval
10 s

…

Figure 4: Measurement intervals for target application power and performance measurements

whereas the Random Forest has a lower variation of 7.7%. Both
methods can not achieve the accuracy of the regular Regression
Tree, though. It has an average MAPE of 19.42% with a standard
deviation of only 2.6%.

We attribute this to the relatively little amount of training data
available. Four load levels per worklet do not provide sufficient data
for an accurate training of all formalisms. The Gaussian Regression
is most affected by this. Seven worklets with at least four load levels
plus idle seems to not provide sufficient data to derive multiple
Gaussian distributions. Consequently, we do not consider Gaussian
Mixture Models in the following tests.

5.3 Predicting Power using Interpolation and
Optimization

Our unoptimized tests indicate that the amount of data provided by
SERT results is too little for most prediction methods. Consequently,
we enable interpolation in conjunction with our prediction formal-
ism parameter optimization method. The interpolation mechanism
ensures that no measurement must be discarded in worklets with
high load level counts. Specifically, it creates artificial load levels
for all worklets with fewer levels than SSJ, which is the worklet
featuring the most load levels. As a result, all worklets are padded
to a total of nine load levels (eight SSJ load levels plus idle power).
We use all worklets with a minimum of four load levels, enabling
the use of adaptive interpolation. Parameter optimization is left
at default settings, meaning that it uses as many iterations as the

Table 3: Formalism prediction error with adaptive interpo-
lation and parameter optimization.

Formalism Avg. MAPE
Gradient Tree Boost 32.94%
Regression Tree 10.89%
Random Forest 32.05%

underlying method has parameters for optimization. Our regression
formalisms feature two parameters, each, resulting in an iteration
count of two.

The prediction accuracy of our three regression formalisms used
with adaptive load-level interpolation and parameter optimization
is shown in Table 3. Gradient Tree Boost’ accuracy improves, but
only by 0.004% percentage points, which is not significant. Ran-
dom Forest’s accuracy even decreases by 1.2% points. However,
Regression Tree improves significantly. With optimization and in-
terpolation enabled, it features an prediction error of 10.89%, which
is an improvement of 8.5 percentage points and relative improve-
ment of 43.9% compared to our unoptimized experiment. Figure 5
shows the measured and predicted power consumption of the Pi
worklet on the two target servers. It shows that the prediction is
generally accurate, except for the 100% load level on the 10 core

40
60

80
10

0
12

0

Load Level [%]

P
ow

er
 [W

]

25 50 75 100

Pi: 4 core (measured)
Pi: 10 core (measured)
Pi: 4 core (predicted)
Pi: 10 core (predicted)

Figure 5: Measurements and Regression Tree prediction of
Pi worklet power

Table 4: Formalism prediction error with parameter opti-
mization, but not using any interpolation.

Formalism Avg. MAPE
Gradient Tree Boost 32.94%
Regression Tree 19.42%
Random Forest 32.26%

server. The prediction expects a decline in power consumption
increase, which does not occur on the 10 core device.

The amount of data provided by interpolated results seems to
be sufficient for a tuned regression tree. In contrast, the other two
regression methods do not improve significantly, which leads to
conclude that the interpolated SERT results did still not produce
sufficient data for training of accurate models for these formalisms.

5.4 Parameter Optimization and no
Interpolation

The predictions using parameter optimization and interpolation
in Section 5.3, significantly improve the prediction accuracy of
the unoptimized formalisms. The part played by the parameter
optimization and interpolation, respectively, in this improvement
remains an open question. To investigate if parameter optimization
caused this improvement by itself, we test our prediction formalisms
using parameter optimization only. That means that we use four
load levels only, discarding excess SSJ load levels and worklets with
fewer load levels, similar to to unoptimized approach in Section 5.3.

Table 4 shows the prediction errors of using parameter optimiza-
tion without interpolation. In general, the differences to unopti-
mized prediction are very small. Gradient Tree Boost and Regres-
sion Tree do, in fact, see no change. Random Forest’s accuracy,
on the other hand, decreases. This would indicate that parameter
optimization is of no help for such a small dataset and the chosen
prediction formalisms. However, accuracy increased in the results
of Section 5.3, where optimization was used. We investigate this
further in the following tests.

5.5 Interpolation with Unoptimized
Parameters

Our tests using optimization without any interpolation in Sec-
tion 5.4 do not show any significant improvement in prediction
accuracy. Consequently, we investigate if interpolation achieves the
improvement of Section 5.3 by itself. To test this, we again apply
adaptive interpolation to all worklets with four load levels in order
to match the load level count of SSJ (eight plus idle). We also, again,
interpolate the reference workload to nine load levels.

Table 5: Formalism prediction error with interpolation, but
not using any parameter optimization.

Formalism Avg. MAPE
Gradient Tree Boost 32.91%
Regression Tree 20.40%
Random Forest 30.41%

Table 5 shows the prediction accuracy when using the unopti-
mized parameter set on interpolated training and prediction data.
Interestingly, these results do also not differ significantly from the
unoptimized prediction. Gradient Tree Boost and Random forest
improve marginally by less than 1 percentage point. Due to the lack
of optimization, Regression Tree’s accuracy decreases when using
interpolation without any parameter optimization.

These results indicate that neither parameter optimization nor in-
terpolation increase prediction accuracy by themselves. In addition,
they disprove the potential conclusion from the optimization-only
results in Section 5.4 that parameter optimization does not im-
prove prediction accuracy and improvements are instead due to
interpolation. Instead, the separate tests using interpolation and
parameter optimization only clearly indicate that the combination
of both is responsible for the improvements in prediction accu-
racy. Interpolation ensures that sufficient data is available to run
optimization against and parameter optimization configures the
prediction formalisms for the interpolated dataset.

5.6 Prediction Accuracy depending on
Interpolation Method

Our results in Section 5.3 show that interpolation helps in increas-
ing prediction accuracy, particularly when using the Regression
Tree prediction formalism. Those experiments used an adaptive
interpolation approach to generate additional data for training. We
investigate the choice of the specific interpolation method and its
impact on accuracy. We focus on the Regression Tree prediction
formalisms, as it shows the greatest sensitivity to interpolation and
parameter optimization in addition to usually providing the most
accurate predictions. Table 6 shows the prediction errors of using
Regression Tree with parameter optimization based on datasets
prepared with the different interpolation methods.

We investigate zero padding as an alternate approach to unop-
timized prediction and to interpolation. Zero padding of missing
results allows us to not discard excess SSJ load levels and still meet
the constraints of the prediction methods. As seen in Table 6, us-
ing zero padding results in a Regression Tree prediction error of
19.91%, which is slightly less accurate than simple, unoptimized
prediction. In contrast, the prediction errors when using the in-
terpolation methods are all significant improvements compared to
unoptimized prediction. Nearest Neighbor Interpolation features the
smallest improvement in accuracy, improving the average predic-
tion MAPE by only 3.92 percentage points. Adaptive Interpolation
improves the prediction by 8.5 percentage points, which is a relative
improvement of 43.9% compared to our unoptimized experiment.

Table 6: Regression Tree prediction error depending on in-
terpolation method.

Interpolation Method Avg. MAPE
Zero Padding 19.91%
Nearest Neighbor 15.49%
Linear Interpolation 9.49%
Adaptive Interpolation 10.89%

40
60

80
10

0
12

0
14

0

Load Level [%]

P
ow

er
 [W

]

25 50 75 100

Friendgraph: 4 core (measured)
Friendgraph: 10 core (measured)
Friendgraph: 4 core (predicted)
Friendgraph: 10 core (predicted)

Figure 6: Measurements and Regression Tree prediction (us-
ing linear interpolation) of Friendgraph worklet power

Interestingly, linear interpolation provides the most accurate
predictions with a MAPE of 9.49%. This is a relative improvement
of 51% compared to the unoptimized Regression Tree prediction
error. Again, we surmise that the small size of the dataset is a cause
for this, as the adaptive interpolation has too few datapoints (usually
four) to adapt itself. Instead, simply picking an interpolation option
that always delivers good results and is applicable to such small
sets, seems to lead to more accurate predictions. Figure 6 shows
the results of power prediction for the Friendgraph worklet using
linear interpolation. As a sidenote, including the storage worklets in
predictions using linear interpolation does not increase prediction
accuracy, leading to a prediction error of 14.09%.

5.7 Including the Storage Worklets
The adaptive interpolation requires aminimumnumber of four data-
points per function to interpolate. Consequently, it is not possible
to apply this interpolation method for the two storage worklets,
which feature only two load levels, each. However, when using
linear interpolation or nearest neighbor interpolation, we gain the
ability to include these two worklets for training and prediction.
Table 7 shows the prediction errors. Including the storage worklet
does not improve prediction accuracy and even decreases it for the
dataset with linear interpolation.

We attribute this to two factors: The number of data-points and
the power scaling of the storage worklets. The storage worklets
feature an almost constant power consumption over the load levels
with only a little increase that is poorly modeled due to only having
two points of measurement per worklet. This has as a consequence

Table 7: Regression Tree prediction error with storage
worklets included.

Interpolation Method Avg. MAPE
Nearest Neighbor 15.49%
Linear Interpolation 14.09%

Table 8: Formalism prediction error compared to interal
RMSE for formalism selection.

Formalism Self-Prediction RMSE Avg. MAPE
Gradient Tree Boost 24.405 32.94%
Regression Tree 5.849 10.89%
Random Forest 24.399 32.05%

that they offer no valuable information for the power prediction for-
malisms and thus their use does not offer an increase in prediction
accuracy.

5.8 Prediction Formalism Selection
Finally, we investigate if our prediction formalism selection method
is able to choose the correct formalism. To this end, we compare
the internal self-prediction RMSE that the selection method uses
to the MAPE of the actual predictions to assess the selection’s
accuracy. Again, we use our regression formalisms with adaptive
interpolation and parameter optimization.

Table 8 shows that the internal self-prediction RMSE results in
the same ranking as our external prediction MAPE. Regression Tree
is considered the by far best method using both metrics, whereas
Random Forest beats Gradient Tree Boost barely. However, the
entire evaluation also indicates that formalism selection is not nec-
essary, as Regression Tree seems to always offer the best prediction
accuracy.

5.9 Evaluation Conclusion
Our evaluation shows that our offline power prediction method can
accurately predict the power consumption of a target server using
SERT results. It also shows that the combination of parameter opti-
mization and interpolation can significantly increase the prediction
accuracy compared to unoptimized formalisms by as much as 51%,
even though both interpolation and parameter optimization do not
achieve significant improvements in accuracy on their own.

6 CONCLUSIONS
This paper presents an offline power prediction approach that is able
to predict the power consumption using data provided by the SERT
standard rating tool, which is employed by the U.S. EPA Energy
Star Program. The approach predicts the power consumption of an
application for multiple load levels on a target server, for which
only the SERT results need be provided with an average error of
9.49%, which is an improvement of 51% compared to unoptmized
methods.

The results in this paper help server operators choose the least
power consuming server for their applications. It can be combined
with performance models for a prediction of energy efficiency or
can be used as part of a server power and performance constraint
optimization.

6.1 Future Work
In this paper, we consider Gaussian Regression, Gradient Tree Boost,
Regression Tree, and Random Forest as concrete regression mech-
anisms to use in our prediction. Among these methods, Random
Forest seems to produce the best results. In the future, our prediction
method would be enhanced by adding and evaluating additional
regression mechanisms. These mechanisms might help to increase
prediction accuracy for some or all datasets.

In addition, our method could also be enhanced if it were able
to use other publically available results for the servers under con-
sideration. E.g., it might be extended to also use results provided
by SPECpower_ssj2008 [23]. This data could be combined wit hthe
data of the SPEC SERT to provide larger dataset, increasing predic-
tion accuracy and enabling the use of other regression mechanisms
that benefit from larger datasets. Use of other benchmark results
could also enable prediction of other workload types. E.g., the inclu-
sion of results from GPGPU benchmarks might enable prediction
of power consumption for GPGPU applications.

6.2 Threats to Validity
We hypothesize in Section 5.8 that formalism selection works well,
as the self-prediction RMSE results in the same ranking as the
Avg. MAPE of the actual predictions. Additionally, we observe that
Regression Tree is the best method in all evaluation scenarios and
that a formalism selection was therefore not required on our test set.
However, we do not claim that these results are transferable to other
case studies as our evaluation test size was not big enough to draw
such conclusion. Instead, our goal was to show the feasibility of the
proposed approach and to evaluate its effectiveness, rather than
to draw any further conclusions. Future research will hopefully
show if an automatic selection technique is actually required in
this domain.

Additionally, we show that parameter optimization (together
with interpolation) improves the prediction accuracy compared to
using the default parameters (see Section 5.3). However, one remain-
ing question is if the found parameters are similar across different
(sub-) data sets. One could investigate if there is a set of optimal
parameters in our domain, or if the parameter optimization process
has to be redone on every data set. One research question could be
to investigate the difference between the default parameters, our
optimized set and the optimum on a different evaluation set.

ACKNOWLEDGMENT
This work was funded by the German Research Foundation (DFG)
under grant No. (KO 3445/11-1) and was supported by the SPEC
Research Power Working Group.

REFERENCES
[1] Jeremy Arnold. 2013. Chauffeur: A framework for measuring Energy Efficiency of

Servers. Master Thesis. University of Minnesota.
[2] C. Babcock. 2012. NY Times data center indictment misses the big picture.

InformationWeek Cloud.
[3] L.A. Barroso and U. Holzle. 2007. The Case for Energy-Proportional Computing.

Computer 40, 12 (Dec 2007), 33–37. https://doi.org/10.1109/MC.2007.443
[4] Robert Basmadjian, Nasir Ali, Florian Niedermeier, Hermann de Meer, and Gio-

vanni Giuliani. 2011. A Methodology to Predict the Power Consumption of
Servers in Data Centres. In Proceedings of the 2nd International Conference on
Energy-Efficient Computing and Networking (e-Energy ’11). ACM, New York, NY,
USA, 1–10. https://doi.org/10.1145/2318716.2318718

[5] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. 2012. Energy-aware
Resource Allocation Heuristics for Efficient Management of Data Centers for
Cloud Computing. Future Gener. Comput. Syst. 28, 5 (May 2012), 755–768. https:
//doi.org/10.1016/j.future.2011.04.017

[6] W. L. Bircher and L. K. John. 2012. Complete System Power Estimation Using
Processor Performance Events. IEEE Trans. Comput. 61, 4 (April 2012), 563–577.
https://doi.org/10.1109/TC.2011.47

[7] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (01 Oct 2001), 5–32.
https://doi.org/10.1023/A:1010933404324

[8] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and
Regression Trees. Wadsworth and Brooks, Monterey, CA.

[9] David Brooks, Vivek Tiwari, andMargaretMartonosi. 2000. Wattch: A Framework
for Architectural-level Power Analysis and Optimizations. SIGARCH Comput.
Archit. News 28, 2 (May 2000), 83–94. https://doi.org/10.1145/342001.339657

[10] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. 2018. SPEC CPU2017:
Next-Generation Compute Benchmark. In Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering (ICPE ’18). ACM, New York,
NY, USA, 41–42. https://doi.org/10.1145/3185768.3185771

[11] Xi Chen, Chi Xu, Robert P. Dick, and Zhuoqing Morley Mao. 2010. Performance
and Power Modeling in a Multi-programmed Multi-core Environment. In Pro-
ceedings of the 47th Design Automation Conference (DAC ’10). ACM, New York,
NY, USA, 813–818. https://doi.org/10.1145/1837274.1837479

[12] G. Contreras and M. Martonosi. 2005. Power prediction for Intel XScale/spl reg/
processors using performance monitoring unit events. In ISLPED ’05. Proceedings
of the 2005 International Symposium on Low Power Electronics and Design, 2005.
221–226. https://doi.org/10.1109/LPE.2005.195518

[13] Dell, Inc. 2011. The DVD Store Version 2. (December 2011).
http://en.community.dell.com/techcenter/extras/w/wiki/dvd-store, last accessed
May 2018.

[14] G. Dhiman, K. Mihic, and T. Rosing. 2010. A system for online power prediction in
virtualized environments using gaussian mixture models. In Design Automation
Conference (DAC), 2010 47th ACM/IEEE. 807–812.

[15] Dimitris Economou, Suzanne Rivoire, and Christos Kozyrakis. 2006. Full-system
power analysis andmodeling for server environments. In InWorkshop onModeling
Benchmarking and Simulation (MOBS).

[16] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz AndrÃľ Barroso. 2007. Power Provi-
sioning for a Warehouse-sized Computer. In The 34th ACM International Sym-
posium on Computer Architecture. http://research.google.com/archive/power_
provisioning.pdf

[17] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

[18] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, and M. Kan-
demir. 2002. Using complete machine simulation for software power estimation:
the SoftWatt approach. In Proceedings Eighth International Symposium on High
Performance Computer Architecture. 141–150. https://doi.org/10.1109/HPCA.
2002.995705

[19] Intel® Corporation 2018. Intel® 64 and IA-32 Architectures Software Developer’s
Manual. Intel® Corporation.

[20] Canturk Isci and Margaret Martonosi. 2003. Runtime Power Monitoring in High-
End Processors: Methodology and Empirical Data. In Proceedings of the 36th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 36).
IEEE Computer Society, Washington, DC, USA, 93–. http://dl.acm.org/citation.
cfm?id=956417.956567

[21] Gueyoung Jung, M.A. Hiltunen, K.R. Joshi, R.D. Schlichting, and C. Pu. 2010.
Mistral: Dynamically Managing Power, Performance, and Adaptation Cost in
Cloud Infrastructures. In Distributed Computing Systems (ICDCS), 2010 IEEE 30th
International Conference on. 62–73. https://doi.org/10.1109/ICDCS.2010.88

[22] A. B. Kahng, Bin Li, L. S. Peh, and K. Samadi. 2009. ORION 2.0: A fast and
accurate NoC power and area model for early-stage design space exploration. In
2009 Design, Automation Test in Europe Conference Exhibition. 423–428. https:
//doi.org/10.1109/DATE.2009.5090700

[23] K.-D. Lange. 2009. Identifying Shades of Green: The SPECpower Benchmarks.
Computer 42, 3 (March 2009), 95–97. https://doi.org/10.1109/MC.2009.84

[24] K.-D. Lange and Michael G. Tricker. 2011. The Design and Development of
the Server Efficiency Rating Tool (SERT). In Proceedings of the 2nd ACM/SPEC
International Conference on Performance Engineering (ICPE ’11). ACM, New York,
NY, USA, 145–150. https://doi.org/10.1145/1958746.1958769

[25] Klaus-Dieter Lange, Mike G. Tricker, Jeremy A. Arnold, Hansfried Block, and
Christian Koopmann. 2012. The Implementation of the Server Efficiency Rating
Tool. In Proceedings of the 3rd ACM/SPEC International Conference on Performance
Engineering (ICPE ’12). ACM, New York, NY, USA, 133–144. https://doi.org/10.
1145/2188286.2188307

[26] Benjamin C. Lee and David M. Brooks. 2006. Accurate and Efficient Regression
Modeling for Microarchitectural Performance and Power Prediction. SIGPLAN
Not. 41, 11 (Oct. 2006), 185–194. https://doi.org/10.1145/1168918.1168881

[27] Adam Lewis, Soumik Ghosh, and N.-F. Tzeng. 2008. Run-time Energy Consump-
tion Estimation Based on Workload in Server Systems. In Proceedings of the
2008 Conference on Power Aware Computing and Systems (HotPower’08). USENIX

https://doi.org/10.1109/MC.2007.443
https://doi.org/10.1145/2318716.2318718
https://doi.org/10.1016/j.future.2011.04.017
https://doi.org/10.1016/j.future.2011.04.017
https://doi.org/10.1109/TC.2011.47
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/342001.339657
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/1837274.1837479
https://doi.org/10.1109/LPE.2005.195518
http://research.google.com/archive/power_provisioning.pdf
http://research.google.com/archive/power_provisioning.pdf
https://doi.org/10.1109/HPCA.2002.995705
https://doi.org/10.1109/HPCA.2002.995705
http://dl.acm.org/citation.cfm?id=956417.956567
http://dl.acm.org/citation.cfm?id=956417.956567
https://doi.org/10.1109/ICDCS.2010.88
https://doi.org/10.1109/DATE.2009.5090700
https://doi.org/10.1109/DATE.2009.5090700
https://doi.org/10.1109/MC.2009.84
https://doi.org/10.1145/1958746.1958769
https://doi.org/10.1145/2188286.2188307
https://doi.org/10.1145/2188286.2188307
https://doi.org/10.1145/1168918.1168881

Association, Berkeley, CA, USA, 4–4. http://dl.acm.org/citation.cfm?id=1855610.
1855614

[28] Haifeng Li. [n. d.]. Smile - Statistical Machine Intelligence and Learning Engine.
https://haifengl.github.io/smile/index.html. ([n. d.]). Last accessed: September
2019.

[29] Min Yeol Lim, Allan Porterfield, and Robert Fowler. 2010. SoftPower: Fine-grain
Power Estimations Using Performance Counters. In Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing (HPDC ’10).
ACM, New York, NY, USA, 308–311. https://doi.org/10.1145/1851476.1851517

[30] Qais Noorshams, Dominik Bruhn, Samuel Kounev, and Ralf Reussner. 2013. Pre-
dictive Performance Modeling of Virtualized Storage Systems using Optimized
Statistical Regression Techniques. In Proceedings of the ACM/SPEC International
Conference on Performance Engineering (ICPE 2013) (ICPE’13). ACM, New York,
NY, USA, 283–294. https://doi.org/10.1145/2479871.2479910

[31] Meikel Poess, Raghunath Othayoth Nambiar, Kushagra Vaid, John M Stephens Jr,
Karl Huppler, and Evan Haines. 2010. Energy benchmarks: a detailed analysis. In
Proceedings of the 1st International Conference on Energy-Efficient Computing and
Networking. ACM, 131–140.

[32] Suzanne Rivoire, Parthasarathy Ranganathan, and Christos Kozyrakis. 2008.
A Comparison of High-level Full-system Power Models. In Proceedings of the
2008 Conference on Power Aware Computing and Systems (HotPower’08). USENIX
Association, Berkeley, CA, USA, 3–3. http://dl.acm.org/citation.cfm?id=1855610.
1855613

[33] Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan, and Christos
Kozyrakis. 2007. JouleSort: A Balanced Energy-efficiency Benchmark. In Pro-
ceedings of the 2007 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’07). ACM, New York, NY, USA, 365–376. https://doi.org/10.1145/
1247480.1247522

[34] R. Rodrigues, A. Annamalai, I. Koren, and S. Kundu. 2013. A Study on the Use of
Performance Counters to Estimate Power in Microprocessors. IEEE Transactions
on Circuits and Systems II: Express Briefs 60, 12 (Dec 2013), 882–886. https:
//doi.org/10.1109/TCSII.2013.2285966

[35] Karan Singh, Major Bhadauria, and Sally A. McKee. 2009. Real Time Power
Estimation and Thread Scheduling via Performance Counters. SIGARCH Comput.
Archit. News 37, 2 (July 2009), 46–55. https://doi.org/10.1145/1577129.1577137

[36] Standard Performance Evaluation Corporation. [n. d.]. SPEC Power and Perfor-
mance Benchmark Methodology. http://spec.org/power/docs/SPEC-Power_and_
Performance_Methodology.pdf. ([n. d.]).

[37] Christian Stier, Anne Koziolek, Henning Groenda, and Ralf Reussner. 2015. Model-
Based Energy Efficiency Analysis of Software Architectures. In Proceedings of
the 9th European Conference on Software Architecture (ECSA ’15) (Lecture Notes in
Computer Science). Springer. https://doi.org/10.1007/978-3-319-23727-5_18

[38] Yuan Tian, Chuang Lin, and Min Yao. 2012. Modeling and analyzing power
management policies in server farms using Stochastic Petri Nets. In Future Energy
Systems: Where Energy, Computing and Communication Meet (e-Energy), 2012
Third International Conference on. 1–9.

[39] Ghislain Landry Tsafack Chetsa, Laurent Lefèvre, Jean-Marc Pierson, Patricia
Stolf, and Georges Da Costa. 2014. Exploiting performance counters to predict
and improve energy performance of HPC systems. Future Generation Computer
Systems vol. 36 (July 2014), pp. 287–298. https://doi.org/10.1016/j.future.2013.07.
010

[40] R. Urgaonkar, U.C. Kozat, K. Igarashi, and M.J. Neely. 2010. Dynamic re-
source allocation and power management in virtualized data centers. In Net-
work Operations and Management Symposium (NOMS), 2010 IEEE. 479–486.
https://doi.org/10.1109/NOMS.2010.5488484

[41] Jóakim von Kistowski, Maximilian Deffner, and Samuel Kounev. 2018. Run-time
Prediction of Power Consumption for Component Deployments. In Proceedings
of the 15th IEEE International Conference on Autonomic Computing (ICAC 2018).

[42] Jóakim von Kistowski and Samuel Kounev. 2015. Univariate Interpolation-based
Modeling of Power and Performance. In Proceedings of the 9th EAI International
Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS
2015). https://doi.org/10.4108/eai.14-12-2015.2262579

[43] Joakim von Kistowski, Marco Schreck, and Samuel Kounev. 2016. Predicting
Power Consumption in Virtualized Environments. In Computer Performance Engi-
neering: 13th European Workshop, EPEW 2016, Chios, Greece, October 5-7, 2016, Pro-
ceedings, Dieter Fiems, Marco Paolieri, and N. Agapios Platis (Eds.). Springer Inter-
national Publishing, Cham, 79–93. https://doi.org/10.1007/978-3-319-46433-6_6

[44] T.A Welch. 1984. A Technique for High-Performance Data Compression. Com-
puter 17, 6 (June 1984), 8–19. https://doi.org/10.1109/MC.1984.1659158

http://dl.acm.org/citation.cfm?id=1855610.1855614
http://dl.acm.org/citation.cfm?id=1855610.1855614
https://haifengl.github.io/smile/index.html
https://doi.org/10.1145/1851476.1851517
https://doi.org/10.1145/2479871.2479910
http://dl.acm.org/citation.cfm?id=1855610.1855613
http://dl.acm.org/citation.cfm?id=1855610.1855613
https://doi.org/10.1145/1247480.1247522
https://doi.org/10.1145/1247480.1247522
https://doi.org/10.1109/TCSII.2013.2285966
https://doi.org/10.1109/TCSII.2013.2285966
https://doi.org/10.1145/1577129.1577137
http://spec.org/power/docs/SPEC-Power_and_Performance_Methodology.pdf
http://spec.org/power/docs/SPEC-Power_and_Performance_Methodology.pdf
https://doi.org/10.1007/978-3-319-23727-5_18
https://doi.org/10.1016/j.future.2013.07.010
https://doi.org/10.1016/j.future.2013.07.010
https://doi.org/10.1109/NOMS.2010.5488484
https://doi.org/10.4108/eai.14-12-2015.2262579
https://doi.org/10.1007/978-3-319-46433-6_6
https://doi.org/10.1109/MC.1984.1659158

	Abstract
	1 Introduction
	2 Related Work
	3 SERT
	3.1 Worklets

	4 Offline Power Prediction
	4.1 Regressor and Response Variables
	4.2 Prediction Formalisms under Consideration
	4.3 Interpolating Measurement Results
	4.4 Self-Prediction Accuracy
	4.5 Parameter Modeling and Optimization
	4.6 Prediction Formalism Selection

	5 Evaluation
	5.1 Measuring Target Application Power and Performance
	5.2 Unoptimized Power Prediction
	5.3 Predicting Power using Interpolation and Optimization
	5.4 Parameter Optimization and no Interpolation
	5.5 Interpolation with Unoptimized Parameters
	5.6 Prediction Accuracy depending on Interpolation Method
	5.7 Including the Storage Worklets
	5.8 Prediction Formalism Selection
	5.9 Evaluation Conclusion

	6 Conclusions
	6.1 Future Work
	6.2 Threats to Validity

	References

