
Performance Prediction,
Sizing and Capacity Planning for 
Distributed E-Commerce Applications

by Samuel D. Kounev (skounev@ito.tu-darmstadt.de)
Information Technology Transfer Office
 

Abstract

Modern e-commerce systems are becoming increasingly complex and dependent 
on  middleware  technologies  to  provide  the  scalability  and  performance  levels 
needed to survive in the competitive e-business landscape. Developing scalable 
middleware applications is a challenging task both in assuring that the required 
functionality  will  be  present  and in  guaranteeing that  the  functionality  will  be 
delivered with an acceptable performance. This document starts by discussing the 
issues of performance prediction, sizing and capacity planning for distributed e-
commerce applications. Then it goes on by describing the approaches to dealing 
with  these  issues  and  examines  the  difficulties  caused  by  the  complexity  of 
modern e-commerce application architectures. 

Contents:

1. Sizing and Capacity Planning Issues

2. Approaches to Performance Prediction and Capacity Planning

      (A). System Load Testing
      (B). System Performance Modeling

3. Technological Architectures of Modern E-Commerce Applications

4. Conclusion

1. Sizing and Capacity Planning Issues

Most of today’s e-commerce environments are based on distributed, multi-tiered, 
component-based  architectures.  The  inherent  complexity  of  such  architectures 
makes it extremely difficult for system deployers to estimate and plan the size and 

Samuel D. Kounev; Jan 12, 2001                                                                                                    Page 1 / 7

mailto:skounev@ito.tu-darmstadt.de


capacity needed to provide the desired service levels. System deployers are often 
faced with the following questions:

- What are the maximum load levels that the system can handle in its current 
state? For example - how many concurrent users / requests / transactions per 
second can be served?

- What is the average response time, throughput and processor utilization?

- How does performance change as workload increases?

- How much hardware (e.g. servers, CPUs) would be required to make sure that 
the system will be able to handle the expected workload while keeping certain 
performance levels?

- How much costs would be incurred in providing the needed resources?

- Which  components  of  the  system  affect  performance  the  most?  Are  they 
potential bottlenecks?

Since the issues of sizing and performance prediction are often considered “way 
too complex” to address formally, system deployers usually rely on their intuition, 
ad hoc procedures and general rules of thumb. In most cases the overall capacity 
of systems is unknown and capacity planning and procurement is done without a 
clearly  defined  methodology.  This  lack  of  proactive  and  continuous  capacity 
planning  procedure  may  lead  to  unexpected  unavailability  and  performance 
problems, caused by the inability of the system to handle increasing workloads.

2. Approaches to Performance Prediction and Capacity Planning

In order to avoid the above mentioned problems system designers need to address 
the issues of sizing and capacity planning in a more formal and systematic way. In 
general  there are  two most popular  approaches to  the  problem of performance 
prediction and capacity planning: 

A. System Load Testing 
B. System Performance Modeling 

Both of these approaches have their strong and weak sides. The former is more 
practical, the latter more mathematical. Both of them provide information that can 
be  used  as  a  basis  for  sizing  and  capacity  planning.  In  fact  they  should  be 
considered  as  complementing  each  other,  rather  than,  as  two  alternative 

Samuel D. Kounev; Jan 12, 2001                                                                                                    Page 2 / 7



approaches.  Experience  shows  that  best  results  are  obtained  only  when  both 
approaches are used together in the sizing and capacity planning process.

(A). System Load Testing

System load testing is a method used to measure the end-to-end performance and 
scalability characteristics of an application. System load testing uses load-testing 
tools that generate artificial workloads on the system and measure its performance. 
Sophisticated load testing tools can emulate hundreds of thousands of so-called 
‘virtual  users’  that  mimic  real  users  interacting  with  the  entire  system 
infrastructure.  While  tests  are  run,  system  components  are  monitored  and 
performance metrics (e.g. response time, latency, utilization and throughput) are 
measured. Results obtained in this way can be used to identify and isolate system 
bottlenecks,  fine-tune  the  application  components  and  predict  the  end-to-end 
system scalability. 

The main advantage of this approach is that it is quite practical and can provide 
some accurate performance data that can be used as a basis for performance tuning 
and optimization. The results from load testing can also be used to make some 
rough  estimates  of  the  adequate  sizing  and  capacity  of  the  production 
environment. On the downside, we can mention that load testing is usually quite 
expensive  and time-consuming.  Costs  come from the  purchase  of  load  testing 
tools, the setting up of the testing environment and the organization of the actual 
tests. 

Another disadvantage stems from the fact that,  as already alluded to, testing is 
usually carried out in a separate testing environment, which is much smaller and 
much less  scalable than the production environment where the system is to be 
deployed.  This  is  due  to  the  fact  that  it  would  be  too  expensive  to  set  up  a 
production-like  environment  for  the  testing  process.  Load  testing  therefore 
measures the scalability and performance of the system in the testing environment 
and does not directly address the issue of predicting performance in the production 
environment. 

While load testing can help system designers to identify bottlenecks and fine-tune 
systems prior to production, it does not in itself provide a comprehensive solution 
to the sizing and capacity planning issues discussed earlier. Nonetheless, as will be 
shown later, load testing results can be used as a basis for performance prediction 
and capacity planning. Load testing could therefore be considered the first step in 
the capacity planning process.

Samuel D. Kounev; Jan 12, 2001                                                                                                    Page 3 / 7



(B). System Performance Modeling

In  the  second  approach  performance  models  are  built  which  capture  the 
performance  and  scalability  characteristics  of  the  system under  study.  Models 
represent the way system resources are used by the workload and capture the main 
factors  determining system performance.  Basically  performance models  can be 
grouped into two most common categories: analytic and simulation models. 

Simulation models are computer programs that mimic the behavior of a system as 
transactions  flow  through  the  various  simulated  resources.  The  structure  of  a 
simulation program is based on the states of the simulated system and events that 
change the system state. Simulation programs measure performance by counting 
events and the duration of relevant conditions of the system. The main advantage 
of simulation models is their great generality and the fact that they can be made as 
accurate as desired. On the other hand simulation programs may be expensive to 
develop and to run. More detailed simulation models tend to require more detailed 
data and more time for execution, thus increasing the cost of using simulation. 

Analytic models are based on a set  of formulas and computational algorithms 
used to generate performance metrics from model parameters. Such models are 
normally based on the  theory of queueing networks and are used to predict the 
performance of a system as a function of the system’s description and workload 
parameters. Basically, analytic performance models require as input information 
such as workload intensity (e.g. arrival rate, number of clients) and the service 
demands placed by the load on each resource of the system. By applying some 
mathematical formulas and laws one can estimate performance measures of the 
system  such  as  average  response  time,  transaction  throughput  and  resource 
utilization.  The  results  could  be  used  to  plan  the  sizing  and  capacity  of  the 
production environment needed to guarantee that applications would be able to 
meet  future  workloads  while  keeping  performance  at  an  acceptable  level.  Of 
course any results obtained in this way would always be approximate and there 
would be no absolute guarantee that systems will behave exactly as indicated by 
the  preliminary  analysis.  The more detailed and representative  a  model  is,  the 
more  accurate  would  the  results  be.  Analytical  models  are,  in  general,  the 
technique of choice for capacity planning and scalability analysis of distributed e-
commerce systems. 

As already mentioned, in order to solve an analytical model, one needs to first 
measure  the  service  demands  placed  on  the  various  system  resources  by  the 
workload components. The service demand parameters specify the total amount of 
service time required by each basic workload component at each system resource. 
Examples include CPU time of  transactions  at  the application server,  the total 
transmission time of replies from the Web server back to the user, and the total I/O 

Samuel D. Kounev; Jan 12, 2001                                                                                                    Page 4 / 7



time per transaction at the database server. In order to obtain these parameters one 
needs to run some tests on the system and make some measurements. The most 
natural approach to do this is to use the load testing tools described earlier in order 
to simulate load on the system so that measurements can be made. Once load is 
generated one can use available system monitoring tools, accounting systems and 
program analyzers to get some performance data. This data can then be used to 
provide some estimate values for the service demand parameters. So, as we can 
see, load testing and performance modeling can be used as two complementary 
methods in the process of capacity planning.

3. Technological Architectures of Modern E-Commerce Applications

Unfortunately,  as  already  alluded  to,  the  complexity  of  modern  e-commerce 
applications  makes  the  task  of  performance  modeling  and  analysis  extremely 
difficult  and  challenging.  The  main  difficulty  comes  from  the  distribution  of 
application logic in multi-tiered component-based systems. Scaling such systems 
from  end-to-end  means  managing  the  performance  and  capacities  of  each 
individual component within each tier.

A typical distributed web-based e-commerce application would have the following 
logical application logic partitioning:

- Presentation Layer
Manages user interfaces and user interaction.

- Business Logic Layer
Performs business operations and models business processes.

- Data Layer
Used by the business logic layer to persist business data. 

These  layers  are  mapped  to  corresponding  physical  tiers  where  the  actual 
application  code  resides  and  is  executed.  Usually  we  can  expect  to  have  the 
following tiers:

- Presentation Tier 
Runs  within  a  Web  Server,  which  hosts  a  number  of  so-called  web 
components,  based on presentation-related technologies such as:  HTML, 
ASP, Servlets,  JSP, etc. In a clustered environment we can have several 
Web  servers  hosting  the  same  web  components  in  order  to  provide 
maximum scalability of the presentation tier. Web Routers can be used to 
distribute traffic among the available web servers.

Samuel D. Kounev; Jan 12, 2001                                                                                                    Page 5 / 7



- Business Logic Tier
Usually runs within an  Application Server, which provides a containment 
environment for  business logic components and a number of middleware 
services such as transaction management,  persistence, state management, 
security, resource pooling, cashing, etc. In a multi-node configuration this 
tier  consists  of  several  machines  each  running  an  instance  of  the 
Application  Server.  Modern  application  servers  provide  component 
clustering functionality, which handles the complexities of replication, load 
balancing and failover for business logic components (services typical to 
TP Monitors). More concretely, an intelligent active load balancer tracks 
information about the load of each application server and distributes client 
requests so that none of the servers is overloaded. Furthermore, the state of 
business components is replicated across servers. In this way, in case one of 
the  servers  fails,  requests  can  be  rerouted  to  another  server,  which  can 
automatically  restore  the  needed  components  and  provide  transparent 
failover.

- Data Tier 
Consists of one or more databases and a Database Server, which manages 
data persistence.  This  tier  may contain data-related logic in the form of 
stored procedures. As with web servers and application servers, database 
servers can also be clustered in order to provide maximum scalability, load 
balancing and fault tolerance in the database tier.

The above-described N-tiered component-based architecture is depicted in Fig. 1. 
As we can see the situation is further complicated by the addition of firewalls and 
the fact that often  legacy systems must be integrated into the overall application 
architecture. 

4. Conclusion

Performance of applications based on the described architecture seems to  be a 
function of too many variables whose behavior is  really  hard to predict.  Little 
work has been done to address the issues of performance prediction and sizing. 
There is some work under way, but as of this writing, there exists no standard 
procedure  or  methodology,  which  can  be  followed.  Solutions  are  usually 
proprietary and address particular situations. Moreover they usually target specific 
components of the system and rarely address the overall  system scalability and 
end-to-end performance. There remains the need to bridge the gap between the 
theoretical  and  practical  work  and combine different  techniques  in  a  way that 
would give cost-effective and practical results. 

Samuel D. Kounev; Jan 12, 2001                                                                                                    Page 6 / 7



Samuel D. Kounev; Jan 12, 2001                                                                                                    Page 7 / 7

INTERNET

Client 1    Client 2                                    Client n

CLIENT SIDE

        AS 1                                                               AS m

Load Balancers

Database Servers

Figure 1: Architecture of Distributed N-Tiered Component-Based Application

Presentation 
Tier

Web Servers 1..k
hosting web 
components

(e.g. HTML pages, 
JSPs, ASPs, servlets)

Business 
Logic Tier

Application 
Servers 1..m

hosting business 
logic components 

(e.g. EJBs)

Data Tier

Database Servers 1..p
and 

other data sources

Firewall

Legacy Systems

Web Routers

      WS 1                   WS 2                                          WS k        


	Performance Prediction,
	Sizing and Capacity Planning for 
	Distributed E-Commerce Applications
	2.Approaches to Performance Prediction and Capacity Planning


