
Engineering of Self-Aware IT Systems and
Services: State-of-the-Art and Research

Challenges

Samuel Kounev

Institute for Program Structures and Data Organization
Karlsruhe Institute of Technology (KIT)

76131 Karlsruhe, Germany
skounev@acm.org

Modern IT systems have highly distributed and dynamic architectures com-
posed of loosely-coupled services typically deployed on virtualized infrastruc-
tures. Managing system resources in such environments to ensure acceptable end-
to-end application Quality-of-Service (QoS) while at the same time optimizing
resource utilization and energy efficiency is a challenge. The adoption of Cloud
Computing technologies, including Software-as-a-Service (SaaS), Platform-as-
a-Service (PaaS) and Infrastructure-as-a-Service (IaaS), comes at the cost of
increased system complexity and dynamicity. This makes it hard to provide
QoS guarantees in terms of performance and availability, as well as resilience
to attacks and operational failures [8]. Moreover, the consolidation of workloads
translates into higher utilization of physical resources which makes the system
much more vulnerable to threats resulting from unforeseen load fluctuations,
hardware failures and network attacks.

We present an overview of our work-in-progress and long-term research agenda
focusing on the development of novel methods, techniques and tools for the en-
gineering of so-called self-aware IT systems and services1 [6, 4, 7]. The latter are
designed with built-in online QoS prediction and self-adaptation capabilities used
to enforce QoS requirements in a cost- and energy-efficient manner. The current
focus is on performance, availability and efficiency aspects, however, long-term
we are planning to consider further QoS properties such as reliability and fault-
tolerance. Self-awareness, in this context, is defined by the combination of three
properties that IT systems and services should possess:

1. Self-reflective: i) aware of their software architecture, execution environment
and the hardware infrastructure on which they are running, ii) aware of their
operational goals in terms of QoS requirements, service-level agreements
(SLAs) and cost- and energy-efficiency targets, iii) aware of dynamic changes
in the above during operation,

2. Self-predictive: able to predict the effect of dynamic changes (e.g., changing
service workloads or QoS requirements) as well as predict the effect of pos-
sible adaptation actions (e.g., changing service deployment and/or resource
allocations),

1 http://www.descartes-research.net



3. Self-adaptive: proactively adapting as the environment evolves in order to
ensure that their QoS requirements and respective SLAs are continuously
satisfied while at the same time operating costs and energy-efficiency are
optimized.

Our approach to the realization of the above vision is based on the use of
online service architecture models integrated into the system components and
capturing all service aspects relevant to managing QoS and resource efficiency
during operation [2, 10, 7]. In contrast to black-box models, the modeling tech-
niques we are working on are designed to explicitly capture all relevant aspects
of the underlying software architecture, execution environment, hardware in-
frastructure, and service usage profiles. In parallel to this, we are working on
self-aware service platforms designed to automatically maintain models during
operation to reflect the evolving system environment. The online models will
serve as a “mind” to the running systems controlling their behavior, i.e., deploy-
ment configurations, resource allocations and scheduling decisions. To facilitate
the initial model construction and continuous maintenance during operation, we
are working on techniques for automatic model extraction based on monitoring
data collected at run-time [1, 5, 3].

The online service architecture models are intended to be used during opera-
tion to answer QoS-related queries such as: What would be the effect on the QoS
of running applications and on the resource consumption of the infrastructure if
a new service is deployed in the virtualized environment or an existing service is
migrated from one server to another? How much resources need to be allocated
to a newly deployed service to ensure that SLAs are satisfied while maximizing
energy efficiency? What QoS would a service exhibit after a period of time if the
workload continues to develop according to the current trends? How should the
system configuration be adapted to avoid QoS problems or inefficient resource
usage arising from changing customer workloads? What operating costs does a
service hosted on the infrastructure incur and how does the service workload and
usage profile impact the costs? We refer to such queries as online QoS queries.

The ability to answer online QoS queries during operation provides the ba-
sis for implementing novel techniques for self-aware QoS and resource manage-
ment [7, 2, 10]. Such techniques are triggered automatically during operation in
response to observed or forecast changes in the environment (e.g., varying ser-
vice workloads). The goal is to proactively adapt the system to such changes in
order to avoid anticipated QoS problems, inefficient resource usage and/or high
system operating costs. The adaptation is performed in an autonomic fashion
by considering a set of possible system reconfiguration scenarios (e.g, chang-
ing VM placement and/or resource allocations) and exploiting the online QoS
query mechanism to predict the effect of such reconfigurations before making a
decision [2].

Each time an online QoS query is executed, it is processed by means of the
online service architecture models which are composed dynamically after deter-
mining which specific parts of the system are relevant to answering the query.
Given the wide range of possible contexts in which the online service mod-



els can be used, automatic model-to-model transformation techniques (e.g., [9])
are used to generate tailored prediction models on-the-fly depending on the
required accuracy and the time available for the analysis. Multiple prediction
model types (e.g., queueing networks, stochastic Petri nets, stochastic process
algebras and general-purpose simulation models) and model solution techniques
(e.g., exact analytical techniques, numerical approximation techniques, simula-
tion and bounding techniques) are employed here in order to provide flexibility
in trading-off between prediction accuracy and analysis overhead.

Self-Aware Service Engineering [4, 6] is a newly emerging research area at
the intersection of several computer science disciplines including Software and
Systems Engineering, Computer Systems Modeling, Autonomic Computing, Dis-
tributed Systems, Cluster and Grid Computing, and more recently, Cloud Com-
puting and Green IT (see Figure 1). The realization of the described vision calls
for an interdisciplinary approach considering not only technical but also business
and economical challenges. The resolution of these challenges promises to reduce
the costs of ICT and their environmental footprint while keeping a high growth
rate of IT services.

• Control theory
and self-
adaptation
techniques

• Dynamic 
virtualized
data center
infrastructures

• Stochastic
models for QoS
prediction

• Service-
oriented
architectures & 
modeling
techniques Software & 

Systems 
Engineering

Computer 
Systems 

Modeling

Distributed 
Systems & 
Autonomic
Computing

Cluster, Grid
and Cloud

Computing, 
Green IT

SELF-AWARE SYSTEMS & SERVICES

Fig. 1. Self-Aware Service Engineering

References

1. F. Brosig, N. Huber, and S. Kounev. Automated Extraction of Architecture-
Level Performance Models of Distributed Component-Based Systems. In 26th
IEEE/ACM International Conference On Automated Software Engineering (ASE
2011), November 6-11, Oread, Lawrence, Kansas, 2011.

2. N. Huber, F. Brosig, and S. Kounev. Model-based Self-Adaptive Resource Allo-
cation in Virtualized Environments. In SEAMS’11: 6th International Symposium



on Software Engineering for Adaptive and Self-Managing Systems, May 23-24,
Waikiki, Honolulu, Hawaii, USA. ACM Press, 2011.

3. N. Huber, M. von Quast, M. Hauck, and S. Kounev. Evaluating and Modeling
Virtualization Performance Overhead for Cloud Environments. In International
Conference on Cloud Computing and Service Science (CLOSER 2011), May 7-9,
Noordwijkerhout, The Netherlands, 2011.

4. S. Kounev. Self-Aware Software and Systems Engineering: A Vision and Research
Roadmap. In GI Softwaretechnik-Trends, ISSN 0720-8928. Proceedings of Software
Engineering 2011 (SE 2011), Nachwuchswissenschaftler-Symposium, February 21-
25, Karlsruhe, Germany, 2011.

5. S. Kounev, K. Bender, F. Brosig, N. Huber, and R. Okamoto. Automated
Simulation-Based Capacity Planning for Enterprise Data Fabrics. In 4th Inter-
national ICST Conference on Simulation Tools and Techniques, March 21-25,
Barcelona, Spain, 2011.

6. S. Kounev, F. Brosig, and N. Huber. Self-Aware QoS Management in Virtualized
Infrastructures (Poster Paper). In 8th International Conference on Autonomic
Computing (ICAC 2011), June 14-18, Karlsruhe, Germany, 2011.

7. S. Kounev, F. Brosig, N. Huber, and R. Reussner. Towards self-aware performance
and resource management in modern service-oriented systems. In Proceedings of
the 7th IEEE International Conference on Services Computing (SCC 2010), July
5-10, Miami, Florida, USA. IEEE Computer Society, 2010.

8. S. Kounev, P. Reinecke, K. Joshi, J. Bradley, F. Brosig, V. Babka, S. Gilmore, and
A. Stefanek. Providing Dependability and Resilience in the Cloud: Challenges and
Opportunities. In A. Avritzer, A. van Moorsel, K. Wolter, and M. Vieira, editors,
Resilience Assessment and Evaluation, Dagstuhl Seminar 10292. Springer Verlag,
2011.

9. P. Meier, S. Kounev, and H. Koziolek. Automated Transformation of Palladio
Component Models to Queueing Petri Nets. In 19th IEEE/ACM International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommu-
nication Systems (MASCOTS 2011), July 25-27, Singapore, 2011.

10. R. Nou, S. Kounev, F. Julia, and J. Torres. Autonomic QoS control in enter-
prise Grid environments using online simulation. Journal of Systems and Software,
82(3):486–502, Mar. 2009.


