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Abstract. As Grid computing increasingly enters the commercial domain, per-
formance and Quality of Service (QoS) issues are becoming a major concern. To
guarantee that QoS requirements are continuously satisfied, the Grid middleware
must be capable of predicting the application performance on the fly when de-
ciding how to distribute the workload among the available resources. One way
to achieve this is by using online performance models that get generated and an-
alyzed on the fly. In this paper, we present a novel case study with the Globus
Toolkit in which we show how performance models can be generated dynam-
ically and used to provide online performance prediction capabilities. We have
augmented the Grid middleware with an online performance prediction compo-
nent that can be called at any time during operation to predict the Grid perfor-
mance for a given resource allocation and load-balancing strategy. We evaluate
the quality of our performance prediction mechanism and present some experi-
mental results that demonstrate its effectiveness and practicality. The framework
we propose can be used to design intelligent QoS-aware resource allocation and
admission control mechanisms.

1 Introduction

Having established itself as a major computing paradigm for advanced science and en-
gineering, Grid computing is now promising to become the future computing paradigm
for enterprise computing and distributed system integration [1,2]. By enabling flexible,
secure and coordinated sharing of resources and services among dynamic collections of
disparate organizations and parties, Grid computing provides a number of advantages
to businesses, for example faster response to changing business needs, better utiliza-
tion and service level performance, and lower IT operating costs [2]. However, as Grid
computing increasingly enters the commercial domain, performance and QoS (Quality
of Service) aspects, such as customer observed response times and throughput, are be-
coming a major concern. The inherent complexity, heterogeneity and dynamics of Grid
computing environments pose some challenges in managing their capacity to ensure
that QoS requirements are continuously met.
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Enterprise grids are typically composed of heterogeneous components deployed in
disjoint administrative domains, in highly distributed and dynamic environments. The
resource allocation and job scheduling mechanisms used at the global and local level
play a critical role for the performance and availability of Grid applications [3]. To
prevent resource congestion and unavailability, it is essential that admission control
mechanisms are employed by local resource managers. Furthermore, to achieve max-
imum performance, the Grid middleware must be smart enough to schedule tasks in
such a way that the workload is load-balanced among the available resources and they
are all roughly equally utilized. However, in order to guarantee that QoS requirements
are satisfied, the Grid middleware must be capable of predicting the application perfor-
mance when deciding how to distribute the workload among the available resources.
Prediction capabilities are prerequisite to implementing intelligent QoS-aware resource
allocation and admission control mechanisms.

Performance prediction in the context of traditional enterprise systems is typically
done by means of performance models that capture the major aspects of system behav-
ior under load [4]. Numerous performance prediction and capacity planning techniques
for conventional distributed systems, most of them based on analytic or simulation mod-
els, have been developed and used in the industry. However, these techniques generally
assume that the system is static and that dedicated resources are used. To address the
need for performance prediction in Grid environments, new techniques are needed that
use performance models generated on the fly to reflect changes in the environment. The
term online performance models was recently coined for this type of models [5]. The
online use of performance models defers from their traditional use in capacity plan-
ning in that configurations and workloads are analyzed that reflect the real system over
relatively short periods of time. Since performance analysis is carried out on the fly,
it is essential that the process of generating and analyzing the models is completely
automated.

In this paper, we present a case study with the Globus Toolkit [6], the world’s leading
open-source framework for building Grid infrastructures. We have augmented the Grid
middleware with an online performance prediction component that can be called at any
time during operation to predict the Grid performance for a given resource allocation
and load-balancing strategy. The case study shows how performance models can be
generated dynamically and used to provide online performance prediction capabilities.
We employ hierarchical queueing Petri net models that are dynamically composed to
reflect the system configuration and workload. Queueing Petri nets make it possible to
accurately model the behavior of our resource allocation and load balancing mechanism
which combines hardware and software aspects of system behavior. Moreover, queue-
ing Petri nets have been shown to lend themselves very well to modeling distributed
component-based systems [7] which are commonly used as building blocks of Grid in-
frastructures [8]. We have evaluated the quality of our online performance prediction
mechanism and present some results that demonstrate its effectiveness and practicality.
The framework presented in this paper can be used as a basis to implement intelligent
mechanisms for QoS-aware resource allocation, load-balancing and admission control.
Finally, although our approach is targeted at Grid computing environments, it is not in
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any way limited to such environments and can be readily applied in the context of more
general Service-Oriented Architectures (SOA).

The paper is structured as follows. We start by introducing the Globus Toolkit and
discussing some of our previous work related to the paper in Section 2. Section 3
presents our approach to online performance prediction. In Section 4, we present our
case study and the experimental evaluation of our performance prediction mechanism.
Finally, in Section 5 we present some concluding remarks and discuss our future work.

2 The Globus Toolkit

The Globus Toolkit (GT) is a community-based, open-architecture, open-source set of
services and software libraries that support Grids and Grid applications [6]. The toolkit
addresses issues of security, information discovery, resource management, data man-
agement, communication, fault detection, and portability. Globus Toolkit mechanisms
are in use at hundreds of sites and by dozens of major Grid projects worldwide.

RunQueues

Job prep
are

d

Returns

Client StageOut

Start

StageIn

Submit

Waiting

Active

CleanUp

FileCleanUp

CacheClearUp

Done

...

Globus Toolkit Node

SSL/SOAP

SSL/SOAP

Service Threads

G
row

s

Submit

Finish

Fig. 1. Job Workflow in Globus Toolkit 4

Unfortunately, despite its popularity and success, the current implementation of the
Globus Toolkit (GT4) exhibits very poor performance and reliability when the Grid
middleware is overloaded. In our previous work [9,10], we have studied the behavior
of Globus under heavy load and proposed enhancing the Grid middleware with a self-
management layer to improve its performance and reliability under load [11]. In this
paper, we show how the Grid middleware can be further enhanced with online perfor-
mance prediction capabilities that are required in order to implement intelligent QoS
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control mechanisms. We plan to use the online performance prediction framework pro-
posed in this paper to extend our self-management layer with some more sophisticated
QoS-aware resource allocation and admission control mechanisms.

We now take a brief look at the internal flow of control in Globus when processing
jobs. Figure 1 shows the workflow of a job executed by Globus. When a client submits
a job to a Globus server (using the globusrun-ws interface in its non-batch working
mode), the job is picked by a ServiceThread which performs an SSL handshake. After
the handshake, the SOAP request is parsed preparing the job for execution. The job is
then started and proceeds through several stages as shown in Figure 1. At each stage the
job is placed in a RunQueue and processed by a pool of threads. The most important
stage is when the job is executed at the OS level. This is done by a separate OS pro-
cess forked by Globus. After the job execution finishes, it goes through several clean
up stages (RunQueues) and finally a ServiceThread generates the SOAP response and
sends it back to the client.

3 Modeling Approach

Formally, a Grid environment based on the Globus Toolkit can be represented as a
4-tuple G = (S,V,F,C) where:

S = {s1,s2, ...,sm} is the set of Grid servers,
V = {v1,v2, ...,vn} is the overall set of services offered by the Grid servers,
F ∈ [S −→ 2V ]1 is a function assigning a set of services to each Grid server. Since Grids

are typically heterogeneous in nature, we assume that, depending on the platform
they are running on, Grid servers might offer different subsets of the overall set of
services,

C = {c1,c2, ...,cl} is the set of currently active client sessions. Each session c ∈ C is a
tuple (v,λ) where v ∈ V is the service used and λ is the rate at which requests for
the service arrive.

3.1 Scheduling Mechanism

We have implemented a configurable service request dispatcher that provides a flexible
scheduling and load-balancing mechanism for service requests. It is assumed that for
each client session, a given number of threads (from 0 to unlimited) is allocated on
each Grid server offering the respective service. Incoming service requests are then
load-balanced across the servers according to thread availability. Threads serve to limit
the concurrent requests executed on each server, so that different scheduling strategies
can be enforced.

A scheduling strategy can be represented by a function T ∈ [C × S −→ N0 ∪{∞}]
which will be referred to as thread allocation function. The service request dispatcher
queues incoming service requests (as part of a client session) and schedules them for
service at the Grid servers as threads become available. Note that threads are used here

1 2V denotes the set of all possible subsets of V , i.e. the power set.
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as a logical entity to enforce the desired concurrency level on each server. Thread man-
agement is done entirely by the service request dispatcher and there is no need for Grid
servers to know anything about the client sessions and how many threads are allocated
to each of them. While the service request dispatcher might use a separate physical
thread for each logical thread allocated to a session, this is not required by the archi-
tecture and there are many ways to avoid doing this in the interest of performance. For
maximum scalability, multiple service request dispatchers can be instantiated and they
can be distributed across multiple machines if needed.

Service request dispatchers completely decouple the Grid clients from the Grid
servers which provides some important advantages that are especially relevant to com-
mercial Grid environments. First of all, the decoupling enables us to introduce fine-
grained load-balancing at the service request level, as opposed to the session level.
Second, service request dispatchers make it possible to load-balance requests across
heterogeneous server resources without relying on any platform-specific scheduling
or load-balancing mechanisms. Finally, since clients do not interact with the servers
directly, it is possible to adjust the resource allocation and load-balancing strategies
dynamically.

3.2 Online Performance Prediction

In order to enhance the Grid middleware with online performance prediction capabili-
ties, we have developed an online performance prediction component that can be called
at any time during operation to predict the Grid performance for a given scheduling
strategy represented by a thread allocation function T . Performance prediction is car-
ried out by means of an online performance model generated and analyzed on the fly.
The online performance prediction component can be used to find an optimal schedul-
ing strategy that satisfies the client SLAs under given resource utilization constraints.
Based on this, intelligent QoS-aware admission control mechanisms can be developed.
For example, when a client sends a request to start a new session, the scheduler can
reject the request if it is not able to find a scheduling strategy that satisfies the client
SLAs. The design of intelligent mechanisms for QoS control is outside the scope of
this paper. In the following, we focus on the performance prediction component and
evaluate its effectiveness in the context of a real-life Globus deployment.

The performance prediction component is made of two subcomponents - model gen-
erator and model solver. The model generator automatically constructs a performance
model based on the active client sessions and the available Grid servers. The model
solver is used to analyze the model either analytically or through simulation. Differ-
ent types of performance models can be used to implement the performance predic-
tion component. In this paper, we use Queueing Petri Nets (QPNs) which provide
greater modeling power and expressiveness than conventional modeling formalisms
like queueing networks, extended queueing networks and generalized stochastic Petri
nets [12,13,14]. In [7], it was shown that QPN models lend themselves very well to
modeling distributed component-based systems and provide a number of important
benefits such as improved modeling accuracy and representativeness. The expressive-
ness that QPNs models offer makes it possible to model the logical threads used in
our scheduling mechanism accurately. Depending on the size of QPN models, different
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methods can be used for their analysis, from product-form analytical solution meth-
ods [15] to highly optimized simulation techniques [16].

Figure 2 shows a hierarchical QPN model of a set of Grid servers accessed through
our service request dispatcher. The Grid servers are modeled with nested QPNs repre-
sented as subnet places. The Client place contains a G/G/∞/IS queue which models the
arrival of service requests sent by clients. Service requests are modeled using tokens of
different colors, each color representing a client session. For each active session, there
is always one token in the Client place. When the token leaves the Client queue, tran-
sition t1 fires moving the token to place Service Queue (representing the arrival of a
service request) and depositing a new copy of it in the Client queue. This new token
represents the next service request which is delayed in the Client queue for the request
interarrival time. An arbitrary request interarrival time distribution can be used. For each
Grid server, the service request dispatcher has a Server Thread Pool place containing
tokens representing the logical threads on this server allocated to the different sessions
(using colors to distinguish between them). An arriving service request is queued at
place Service Queue and waits until a thread for its session becomes available. When
this happens, the request is sent to the subnet place representing the respective Grid
server. After the request is processed, the logical service thread is returned back to
the thread pool from where it was taken. By encapsulating the internal details of Grid
servers in separate nested QPNs, we decouple them from the high-level performance
model. Different servers can be modeled at different level of detail depending on the
complexity of the services they offer.

At each point in time, the online performance prediction component keeps track of
the active client sessions and the currently available Grid servers. It is assumed that
when servers are added to the Grid, for every server a performance model is provided
in the form of a nested QPN that captures the server capacity and its internal behavior
when processing service requests. When invoked, the performance prediction compo-
nent uses the models of the Grid servers to dynamically construct an up-to-date model
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of the Grid environment that reflects the current workload (in terms of active client
sessions) and the currently available server resources. The model is constructed by in-
tegrating the Grid server models into the high-level QPN model discussed above. The
model generation and analysis is completely automated and happens on the fly.

4 Case Study

In this section, we present our case study of a deployment of GT4 which we have
enhanced with online performance prediction functionality as described in the previous
section. We evaluate the quality of our performance prediction mechanism and present
some experimental results that demonstrate its effectiveness. Our testing environment
depicted in Figure 3 consists of two heterogeneous Grid servers, the first one 2-way
Pentium Xeon at 2.4 GHz with 2 GB of memory and the second one 4-way Pentium
Xeon at 1.4 GHz with 4 GB of memory. Both servers run Globus Toolkit 4.0.3 (with
the latest patches) on a Sun 1.5.0 06 JVM. The Grid clients are emulated on a separate
machine with identical hardware as the first Grid server. The machines communicate
over a Gigabit network.

1Gb Ethernet Switch

4-way Pentium Xeon 1.4GHz
4 GB RAM

Globus Toolkit 4.0.3

2-way Pentium Xeon 2.4GHz
2 GB RAM

Globus Toolkit 4.0.3

2-way Pentium Xeon 2.4GHz
2 GB RAM

Client Emulator
Service Request Dispatcher

Fig. 3. High-level view of our testing environment

4.1 Workload Characterization

As a basis for our experiments, we use several sample jobs each executing some busi-
ness logic requiring a given amount of CPU time. Some of the jobs include calls to
external (third-party) service providers that are not part of the Grid environment. In
order to build performance models of the two Grid servers, we must first characterize
their workload in terms of the service demands of the jobs they execute.

There are several approaches to determining the CPU service demands. The most
reliable method is to use a Globus profiler to measure the CPU service times directly.
We can use the BSC Monitoring Framework (BSC-MF) [9] developed at the Barcelona
Supercomputing Center in conjunction with the Paraver performance analysis tool [17].
Another approach which does not require profiling Globus is to estimate the service
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times based on measured CPU utilization and job throughput data. This approach is
very general and does not require any profiling tools. For each job type, an experiment
is run injecting jobs of the respective type. Based on the utilization law [18], we can
then compute the average job service demand D as the ratio of the measured CPU
utilization U to the job throughput X . In certain cases, techniques can be employed
that help to estimate the service demands without the need to do any measurements on
the system [19]. Such techniques are based on analyzing the business logic that jobs
execute at the source code level.

Table 1 shows the service demands of the sample jobs we analyzed. For each job
type, the internal job processing CPU time is shown, the time waited for external ser-
vice providers, the measured total job CPU service demand and the job management
overhead introduced by Globus. The overhead is consistently around 1 second across
the seven job types.

Table 1. Estimated job service demands and Globus processing overhead (sec)

Job A B C D E F G

Internal job processing CPU time 20.00 10.00 6.00 5.00 4.00 1.00 0.50
External service provider time 5.00 0.00 2.00 0.00 3.00 0.20 0.00
Job CPU service demand 21.00 11.00 6.89 5.84 4.79 1.93 1.54
Globus management overhead 1.00 1.00 0.89 0.84 0.79 0.93 1.04

In the rest of the case study, we concentrate on the middle three jobs (C, D and E),
which we analyze in more detail. We assume that these jobs are exposed as three sep-
arate services offered by the Grid servers. Table 2 shows the service demands of the
three services at the two Grid servers.

Table 2. Service demands of workload services (sec)

Service Service 1
(Job C)

Service 2
(Job E)

Service 3
(Job D)

CPU service demand on the 2-way server 6.89 4.79 5.84
CPU service demand on the 4-way server 7.72 5.68 6.49
External service provider time 2.00 3.00 0.00

4.2 Grid Server Models

We assume that when Grid servers join the Grid they first register with the online
performance prediction component responsible for the local environment. Each server
provides a performance model in the form of a nested QPN that captures its internal
behavior when processing service requests. When invoked, the performance prediction
component dynamically constructs an up-to-date model of the Grid environment by
integrating the Grid server models into the high-level model presented in Section 3.2
(see Figure 2). The two servers used in our case study were each modeled using a
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nested QPN as shown in Figure 4. Service requests arriving at a Grid server circulate
between queueing place Server CPUs and queueing place Service Providers, which
model the time spent using the server CPUs and the time spent waiting for external ser-
vice providers, respectively. Place Server CPUs contains a G/M/m/PS queue where m
is the number of CPUs, whereas place Service Providers contains a G/M/∞/IS queue.
The service times of service requests at these queues are set according to the mea-
sured service demands shown on Table 2. For simplicity, we assume that the service
times at the server CPUs, the request interarrival times and the times spent waiting for
external service providers are all exponentially distributed. In the general case this is
not required. The firing weights of transition t2 are set in such a way that place Ser-
vice Providers is visited one time for Services 1 and 2 and it is not visited for Ser-
vice 3. The model solver component of the performance prediction component was
implemented using SimQPN - our highly optimized simulation engine for QPNs [16].
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Fig. 4. Grid server QPN model

Before the Grid server models can be used for performance prediction they must
be validated. This is normally done by comparing the model predictions against mea-
surements on the real system. Our initial attempts to validate the model revealed that
predictions were accurate in scenarios with no limitation on the number of concurrently
scheduled requests and much less accurate in scenarios with limited number of threads
allocated to client sessions (see Section 3.1). Table 3 shows four of the scenarios we
considered. Given that for some scenarios the error was higher than 15%, the models
could not pass our initial validation attempt. To investigate the problem, we analyzed
the internal behavior of Globus when processing service requests. Figure 5 shows the
stages and the CPU usage during the processing of a request for Service 3 (job D) in
isolation. This view was obtained from a trace generated by BSC-MF [9] and processed
using Paraver [17]. The black zones show periods when a CPU was used and the zones
in between, marked with red horizontal lines, correspond to periods during which all
CPUs were idle (in total about 1 sec). The idle CPU periods were occurring during job
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state transitions. Note that the service was executed in single user mode and therefore
the idle CPU periods were not being caused by contention for software or hardware re-
sources, neither were they being caused by I/O, since the disk utilization was negligible.
Taking these “hidden internal delays” introduced by Globus into account helped us to
understand why the model predictions were much less accurate in the case with limited
concurrency. Indeed in this case, given that there are limited threads available and client
requests have to wait at the service request dispatcher to obtain a thread, a difference
of 1 sec in the time spent by jobs on the server obviously would have a much bigger
impact on the overall response time than in the case with unlimited threads. Monitoring
Globus under load with multiple concurrent requests revealed that the idle CPU periods
during service execution were pretty much constant and were not affected much by the
workload intensity or transaction mix. Having concluded this, we decided to calibrate
our models by introducing an additional 1 sec delay during service execution. For sim-
plicity, we added this delay to the time waited in place Service Providers. After this
calibration, the discrepancy between the model predictions and measurements on the
real system disappeared.

Table 3. Model predictions before calibration

Services No of threads
allocated

Request interarrival
time (sec)

Request
response time (sec)

Error (%)

measured predicted
2 unlimited 4 11.43 10.47±0.033 8.3%
1—3 unlimited 8 / 8 13.66 / 12.91 12.21±0.019 / 11.17±0.031 11% / 13%
3 5 2.5 10.93 8.14±0.030 25%
1—3 2/2 8 / 8 18.15 / 9.79 15.58±0.23 / 7.8±0.05 14.1% / 20.3%

Fig. 5. Paraver view of a job execution inside Globus

An alternative approach to model the Grid environment is to use a general purpose
simulation system such as OMNeT++ [20] which is based on message-passing. We
have used OMNeT++ successfully to model a Tomcat Web server [21] with software
admission control. Figure 6 compares the precision of interval estimates provided by
SimQPN and OMNeT++ when simulating a model of our Grid environment described
above with several concurrent client sessions. The precision is measured in terms of
the maximum width of 95% confidence intervals for job response times. For run times
below 1 second, SimQPN provided slightly wider confidence intervals than OMNeT++,
however, there was hardly any difference for run times greater than 1 second. At the
same time, while OMNeT++ results were limited to job response times, SimQPN results
were more comprehensive and included estimates of job throughputs, server utilization,
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queue lengths, etc. Moreover, QPN models have the advantage that they are much easier
to build and, as discussed in Section 3.2, they can be hierarchically composed which
facilitates the dynamic model construction. The hierarchical composition is essential
since it introduces a clear separation of the high-level system model from the individual
Grid server models. The latter can be developed independantly without knowing in
which environment they will be used.

4.3 Experimental Results

We now evaluate the quality of our online performance prediction mechanism in the
context of the scenario described above. We have developed a client emulator frame-
work that emulates client sessions sending requests to the Grid environment. The user
can configure the target session mix specifying for each session the service used and
the time between successive service requests (the interarrival time). Client requests are
received by the service request dispatcher and forwarded to the Grid servers according
to the configured scheduling strategy as described in Section 3.1. Figure 7 illustrates
the flow of control when processing service requests.

Whenever the online performance prediction component is invoked, it uses the QPN
models of the Grid servers to dynamically construct a QPN model of the Grid environ-
ment that reflects the current workload in terms of active client sessions and the selected
scheduling strategy. The generated model is then analyzed by means of simulation us-
ing SimQPN. The method of non-overlapping batch means was used with a batch size
of 300 and the simulation was configured to run sequentially until the half-widths of
95% confidence intervals for response times dropped below half a second.

We used the online performance prediction component to predict the Grid perfor-
mance under a number of different workload and configuration scenarios varying the
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session mix, the scheduling strategy and the number of servers available. Table 4
presents the results from an experiment in which the workload evolved through five
different stages each one with different session mix and duration between 1200 and
3600 seconds. In the beginning of each stage, the scheduling strategy was modified dy-
namically and the online performance prediction component was called to predict the
system performance on the fly. The average time needed to predict the system perfor-
mance (including model generation and analysis) was 6.12 seconds, the maximum was
12 seconds. Performance predictions were recorded and were later compared against
the actual performance measured during the run. The experiment was repeated multiple
times and exhibited negligible variation in the measured performance metrics. Table 4
shows the results from comparing the model predictions against the measurements on
the system. 95% confidence intervals for response times are provided. The mean mod-
eling error was only 7.9% (with standard deviation 6.08) and it did not exceed 22.5%
across all scenarios. We conducted a similar experiment for a number of different work-
load and configuration scenarios. The results from the analysis were of similar accuracy
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Table 4. Comparison of model predictions against measurements on the real system

Services No of threads
allocated

Request
interarrival
time (sec)

Request
response time (sec)

Error (sec) Avg. CPU utilization

server 1 server 2 measured predicted measured predicted
1 3 2 12.5 13.86 13.23±0.591 +0.63 0.66 0.65
1 5 3 13 14.57 13.41±0.622 +1.16
2 2 4 11 11.36 10.63±0.432 +0.73
2 1 2 12 11.07 10.49±0.452 +0.58
2 5 4 15 12.49 10.99±0.453 +1.5
3 1 5 13 9.37 8.36±0.331 +1.01
3 1 2 16 9.41 8.53±0.363 +0.88
3 4 4 16 10.17 9.79±0.520 +0.38

1 1 10 12.5 11.61 11.13±0.597 +0.48 0.56 0.58
1 4 7 15 11.95 12.57±0.736 -0.62
2 8 6 15 12.20 10.45±0.567 +1.75
2 4 6 9 10.67 10.45±0.466 +0.22
2 3 8 15.5 10.59 10.39±0.542 +0.2
3 7 3 16 10.90 8.93±0.577 +1.97
3 10 2 12 11.67 9.01±0.508 +2.66

1 5 2 12.5 13.81 13.81±0.669 +0 0.64 0.66
1 2 1 13 13.76 14.19±0.750 -0.43
2 1 4 11 10.4 10.2±0.532 +0.2
2 1 5 12 10.3 10.18±0.507 +0.12
2 4 1 15 13.45 11.80±0.479 +1.65
3 1 1 13 9.61 9.7±0.504 -0.09
3 3 2 16 10.9 9.82±0.627 +1.08
3 2 2 16 9.51 9.57±0.617 -0.06

1 1 1 14.5 12.36 14.28±0.443 -1.92 0.61 0.63
1 3 2 17 13.40 13.2±0.393 +0.2
1 5 3 18 15.51 13.2±0.438 +2.31
2 5 1 15 13.19 11.5±0.336 +1.69
2 4 3 25 11.88 11.16±0.405 +0.72
2 1 3 15 10.29 10.13±0.302 +0.16
2 5 2 25.5 13.3 11.11±0.412 +2.19
3 4 4 16 9.48 9.66±0.317 -0.18
3 1 4 16 8.25 8.38±0.234 -0.13
3 3 3 25 8.65 9.56±0.340 -0.91

1 4 2 18.5 13.35 14.77±0.623 -1.42 0.64 0.65
1 4 5 15 12.05 14.56±0.618 -2.51
1 4 4 16 12.58 14.50±0.673 -1.91
2 1 2 15 10.67 10.78±0.460 -0.11
2 5 1 17 11.86 12.59±0.534 -0.73
2 2 2 19 11.09 11.51±0.492 -0.42
2 4 2 15.5 11.53 11.99±0.528 -0.46
3 2 5 16 9.42 10.1±0.475 -0.68
3 1 4 19 8.98 9.14±0.413 -0.16
3 3 5 23 8.92 10.57±0.535 -1.65

as the ones presented here and demonstrated the effectiveness of our performance pre-
diction mechanism. The computational overhead of the online performance prediction
component was measured to be less than 60 sec for scenarios with up to 40 Grid servers
and 80 concurrent sessions.
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5 Conclusions and Future Work

In this paper, we presented a novel case study with the Globus Toolkit, the world’s lead-
ing open-source framework for building Grid infrastructures, in which we showed how
performance models can be generated dynamically and used to provide online perfor-
mance prediction capabilities. We have augmented the Grid middleware with an online
performance prediction component that can be called at any time during operation to
predict the Grid performance for a given resource allocation and load-balancing strat-
egy. The quality of our performance prediction mechanism has been evaluated under
a number of different workload and configuration scenarios varying the session mix,
the scheduling strategy and the number of servers available. We presented some exper-
imental results that demonstrated the effectiveness, practicality and performance of our
approach. The modeling error of predicted response times was only 7.9% on average
(with standard deviation of 6.08) and it did not exceed 22.5% across all considered sce-
narios. The framework we propose provides a basis for designing intelligent QoS-aware
resource allocation and admission control mechanisms.

Our performance prediction mechanism is based on hierarchical queueing Petri net
models that are dynamically composed to reflect the system configuration and workload.
Using queueing Petri nets we could accurately model the resource allocation and load
balancing mechanism which combines hardware and software aspects of system behav-
ior. Moreover, queueing Petri nets provide great flexibility in choosing the level of detail
and accuracy at which system components are modeled. To the best of our knowledge,
this is the first application of queueing Petri nets as online performance models.

The area considered in this paper has many different facets that will be subject of
future work. We are currently working on extending the Globus Toolkit with online
QoS control functionality. Based on the online performance prediction mechanism pro-
posed in this paper, we are building a framework for QoS-aware resource allocation
and admission control. The framework includes an intelligent QoS broker component
that negotiates QoS goals and SLAs with Grid clients before making a commitment.
Taken collectively these enhancements will not only provide sophisticated QoS control
capabilities but can also be exploited to make the Grid middleware self-configurable
and adaptable to changes in the system environment and workload. Another aspect we
intend to investigate is how our framework can be extended to take into account the
costs associated with using the Grid resources when negotiating QoS targets.
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