
Pr
e-

pr
in

t
ve

rs
io

n
fo

r
pe

rs
on

al
u

se
on

ly
!

Improving the Energy Efficiency of IoT-Systems
and its Software

Norbert Schmitt

University of Würzburg, Würzburg, Germany,
norbert.schmitt@uni-wuerzburg.de,

Homepage: https://se.informatik.uni-wuerzburg.de

Abstract. The growing amount of small and inexpensive Internet of
Things (IoT) devices consumes energy. But also more opportunities are
opened up to conserve energy on operating these devices, not only by
monitoring the energy demand but by adapting the IoT system itself.
Thus improving energy efficiency by moving computations to IoT or
edge devices or the cloud that are suited for a given computation at a
particular time. This work presents a vision on how such an IoT system
can look and the challenges that are inherent to the problem of runtime
self-adaption in the context of code offloading to preserve energy, includ-
ing improving the energy efficiency of software at design-time through
informed design choices.

Keywords: Energy Efficiency, Code Offloading, Self-Aware, Cloud, Green
Software Engineering

1 Introduction

In 2011, Cisco estimated a total of 50 billion Internet of Things (IoT) devices op-
erating by 2020 [1]. This number was later scaled down in 2016, with estimations
ranging between 20 to 30 billion devices [2]. Even with the more conservative
estimations, the amount of IoT devices is still growing rapidly and growth is
assumed to continue in the future. All these devices produce data that needs to
be processed to be of value. The processing is usually done by cloud data cen-
ters. Yet, according to a New York Times study from 20121 data centers already
consume large amounts of energy. About 30 billion watts per hour worldwide.
The U.S. Environmental Protection Agency estimated in 2010 that the U.S. used
3% of its total electricity to run data centers [3]. With the growing amount of
data coming from IoT devices, more data centers would be necessary. Therefore
making IoT systems consisting of many IoT devices and centers, more energy
efficient, becomes more important.

Extensive research has been done to make data centers more energy efficient.
Ranging from the machine level, with more efficient hardware [4], up to intelli-
gently placing applications inside a data center [5]. And although the hardware

1 https://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-
amounts-of-energy-belying-industry-image.html



Pr
e-

pr
in

t
ve

rs
io

n
fo

r
pe

rs
on

al
u

se
on

ly
!

2

itself is becoming more energy efficient, there is still little awareness on the im-
pact of software on energy efficiency and the energy efficiency of the software
itself. A device’s power consumption is indirectly controlled by the software that
is defining what data and how data has to be processed [6]. With code offload-
ing, the software not only decides what and how data has to be processed but
also where. Most code offloading techniques are concerned mainly with improv-
ing the responsiveness of applications on devices with reduced processing power,
like smartphones and other mobile devices. The second major topic for code of-
floading is conserving battery runtime. Regardless, no code offloading technique
considers a bigger picture of many low-power interconnected IoT and edge de-
vices. Thus, possible efficiency improvements by optimizing the global state, the
time and location where computations take place, instead of single IoT or edge
devices and reducing the computational load on the cloud are not considered.

Hence the major goal of this vision is improving the energy efficiency for
IoT systems, many connected IoT and edge devices, and software in general. By
leveraging edge computing, pushing computations to devices at the edge of a
network, like switches and routers, the load on the IoT devices and the cloud
can be reduced. Offloading data processing on edge devices should be done with
care and only if an effect on the overall energy efficiency of the system, all inter-
connected devices, can be achieved. Furthermore, not all computations might be
feasible for offloading. Depending on a device’s capabilities, like available pro-
cessing power, in combination with the constraints, like the size of the data to
be processed and the time to result (timeliness), it can be beneficial or disadvan-
tageous to use edge devices for computation. Thus this vision intends to employ
the self-x attributes of Self-Aware Computing and Organic Computing [7] to in-
crease energy efficiency. By adapting and optimizing the current state either by
the system itself or controlled by a central entity. Through self-optimization and
self-configuration, the system itself learns and decides autonomously where the
data processing should take place, the IoT device, the edge or in the cloud. In
case data processing is pushed to the cloud auto-scalers geared toward energy ef-
ficiency can help reduce energy consumption further. Auto-scalers can base their
decision on energy consumption rather than resource usage. Additionally giving
developers the right tools to make them more aware of the energy efficiency of
their software and the implications of design decisions can further help in reduc-
ing energy consumption. This vision, therefore, proposes new research in code
metrics that can represent the energy efficiency of software, starting at existing
complexity metrics. This vision proposes a novel way to distribute computations
between the IoT devices, edge devices and the cloud as well as novel code metrics
to help make developers informed design decisions to increase energy efficiency.

The remainder of this paper is structured as follows: First, an overview of the
current related work is presented. Chapter 3 describes the current state of the
art in energy efficiency in data centers, code offloading and code metrics. In the
following chapter 4, identified challenges and problems are explained together
with possible approaches of how to solve these challenges. Finally, this paper
concludes in Chapter 5.



Pr
e-

pr
in

t
ve

rs
io

n
fo

r
pe

rs
on

al
u

se
on

ly
!

3

2 Related Work

Energy efficiency is a growing concern. Therefore extensive research has been
done to improve the energy efficiency. The release of the Server Efficiency Rating
Tool (SERT) [8] 2.0 in 20172 also demonstrates a consistent interest in this topic.
With the growth of data centers for cloud computing and virtualization, the
degrees of freedom to conserve energy have further increased from machine level
to whole data centers. This section gives a short overview of the related work,
grouped into three topics, cloud energy efficiency, code offloading and software
energy efficiency.

2.1 Cloud Energy Efficiency

The most common reduction in power consumption in cloud computing is through
virtual machine (VM) migration [5]. A management software decides on which
physical machine a VM gets deployed [9,10,11,12]. They focus on reducing the
power consumption without or minimal impact on performance to increase the
energy efficiency of cloud servers. Other examples are considering more con-
straints, such as quality of service (QoS) [13,12] or service level agreements
(SLA) [14]. They all rely on common utilization power models or build their own
model, such as Tian et al. [11]. Yet, servers are not the only power consumer
in large data centers. By virtualizing formerly physical devices of the network
infrastructure, researchers try to improve energy efficiency further [15,16]. This
paper focuses less on cloud energy efficiency and the placement of applications
inside a data center, but rather scaling the needed application instances inside
the cloud efficiently with an energy-aware auto-scaler that is either reactive [17]
or proactive [18].

2.2 Code Offloading

Code offloading is not a new technology and it has been argued that it can
be beneficial under certain conditions [19]. Namely, the trade-off between com-
putational and communication effort must be towards low communication and
high computation. There is also a variety of frameworks available with different
goals [20,21,22,23,24,25]. Yet, they either focus on scalability of the application,
performance or conserving battery capacity for mobile devices. They also can
only offload computations to the cloud and not between devices. As only the
own individual devices are optimized for saving energy and are limited to cloud
offloading, this work proposes an offloading technique that can share work be-
tween IoT, edge and cloud devices for the benefit of saving energy in the overall
system.

2 https://www.spec.org/sert/SERT-2.0-press-release.html



Pr
e-

pr
in

t
ve

rs
io

n
fo

r
pe

rs
on

al
u

se
on

ly
!

4

2.3 Software Energy Efficiency

Software developer choices can influence the energy consumption. The authors
show that different implementations for the same task as well as different pa-
rameterization, in the case of Singh et al. the buffer size for reading and writing
files, can change the energy consumption without changing the program’s seman-
tics [26]. Efforts were undertaken to determine the energy consumption resulting
from executing a given source code, but most work relies to some degree on infor-
mation about the hardware. Modeling a software’s energy consumption is either
done by training a model with measurements [27] or by defining a workload pro-
file from user input together with expert knowledge of the hardware [28]. This
paper tries to find new metrics that can reflect the energy consumption of a
running software by source code analysis.

3 Foundation

This chapter gives a short introduction to the definitions and metrics used
throughout this paper. This includes energy efficiency, the most efficient state
for an IoT system, the cyclomatic complexity and Halstead complexity metrics.

3.1 Energy Efficiency

This section is divided into two parts. First, the definition of energy efficiency,
followed by the definition of the most energy efficient state of an IoT system.
The term energy efficiency in this work is used according to Equation 1, also
used by the Standard Performance Evaluation Corporation (SPEC) [29]. The
efficiency eff is the throughput t per watt (power p). The throughput is given
in 1

s , the number of finished function calls per second.

eff =
t

p

[
1

Ws

]
(1)

An IoT system in this paper is defined as a network of IoT devices, from
sensors to mobile devices, and also including edge devices and the cloud. The
structure of the network itself is not relevant in this case and can be a mesh
or hierarchy. The optimal state of such an IoT system is considered to be in
such a way that not each individual device consumes the least amount of energy
for a given computation but the combined energy consumption for all necessary
computations in the system. Due to this definition, not each device’s power
draw is minimized. The definition allows individual devices to be less efficient
if it benefits the overall system. An example is shown in Figure 1. Here an IoT
system with different computations, A, B and C, is in an optimal state but
changes due to Dev. 4 joining the network. As the additional device disturbs
the current state, transfering it into a suboptimal state, the system must change
to restore a better energy efficiency. The system than uses code offloading on
methods A and C on Dev. 4 to return itself to a new optimal state including
Dev. 4.



Pr
e-

pr
in

t
ve

rs
io

n
fo

r
pe

rs
on

al
u

se
on

ly
!

5

A

C

Dev. 3 Dev. 2

A

C B

A

C

Dev. 3

A

C

Dev. 2

B

Dev. 1 Dev. 1Dev. 4

B

A

C

A

C

Dev. 3

A

C

Dev. 2

B

Dev. 1Dev. 4

A

C

State 1 - Optimal

C

A

State 2 - Suboptimal State 3 - Optimal

B

Fig. 1. Resuming to an optimal, more energy efficient, state for the overall system after
a mobile device (Dev. 4) joins the system.

3.2 Software Metrics

For preliminary measurements, two well known software metrics were used. The
cyclomatic complexity and the Halstead complexity metrics. The cyclomatic com-
plexity represents the program in the form of a control flow graph. Nodes (N)
in the graph represent locations in the code at which a decision must be made.
The directed edges E show the flow of the program after a decision is made. The
cyclomatic complexity C is then calculated as follows:

C = E −N + 2P (2)

E is the number of edges in the control flow graph and N is the number
of nodes. The value P represents the number of connected components of the
graph. For the preliminary measurements containing only single functions and
no real world program, connected components P is equal to 1. Thus simplifying
the equation to C = E −N + 2.

The Halstead complexity metrics build upon four measures. They include:

– N1: Total number of operators
– N2: Total number of operands
– η1: Number of distinct operators
– η2: Number of distinct operands

From these measure, several metrics can be calculated to express a program’s
complexity and size. By adding the distinct and total counters to the vocabulary
η = η1 + η2 and length N = N1 + N2 of a program, several metrics can be
calculated shown in Equation 3.

N̂ = η1 · log2 η1 + η2 · log2 η2 V = N · log2 η D =
η1
2
· N2

η2

E = D · V T =
E

18
B =

E
2
3

3000
(3)



Pr
e-

pr
in

t
ve

rs
io

n
fo

r
pe

rs
on

al
u

se
on

ly
!

6

– N̂ : The calculated program length (not lines of code).
– V : The program volume. A second measure, next to N̂ , of a program’s size.
– D: The difficulty to write the program, how complex is the code.
– E: The effort to write the program, how much work must be put in to

produce the code.
– T : Calculated time to write the program, how long it will take to write the

code.
– B: The number of delivered bugs.

4 Challenges

In the following chapter, the challenges identified in this paper are presented
together with first ideas for a solution and preliminary measurements if available.
The challenges are divided in runtime challenges and design-time challenges.
Runtime challenges include problems arising during operation of an IoT system
while the design-time challenges are concerned with developing energy efficient
software.

4.1 At Runtime

IoT systems consist of a multitude of different devices, as shown in Figure 2,
each with their capabilities regarding computational power, network, and energy
consumption. IoT devices can have very little to no computational power and
act just like data sources. Other devices can have more computational power
and therefore higher energy consumption but can do a certain amount of data
processing themselves without the cloud. The workload that a device can stem, is
not only constrained by its hardware but also its energy source and computation
speed. These constraints can be, but are not limited to:

– Time and space complexity of the algorithm to compute.
– Size of the data set.
– Energy consumption per computation (energy efficiency).
– Timeliness of the result, including latency.
– Locality of data (privacy).

For example, a battery powered surveillance camera could provide face recog-
nition itself as long as the battery holds enough charge and offload the face
recognition to an edge device or cloud server when the battery runs low. Ad-
ditionally, devices can be mobile. While stationary devices often communicate
with fixed devices after setup, moving devices switch between communication
partners frequently to stay available in the network to transmit data.

The network itself can be organized in a hierarchical or a mesh structure.
Even in the case the system already reached the most energy efficient state,
disturbances by a change in the environment, either by a defect, by sensors
moving in and out of reach of base stations or by sensors with critically low



Pr
e-

pr
in

t
ve

rs
io

n
fo

r
pe

rs
on

al
u

se
on

ly
!

7

Cloud

Edge device

User

IoT device with 
processing capability
IoT device without 
processing capability

Mobile IoT device

Fig. 2. Internet of Things System Example

battery charge, can result in a suboptimal state. For this reason, an automatic
offloading of computations to other devices should be triggered. The offloading
can be done either by a central instance or by the device that needs offloading
if the optimal state is disturbed.

The current state developing for IoT devices is, that each device must be
programmed and set up independently and is usually limited to this setup. If
the programming and deployment are not done by an expert, it is most likely
not in an optimal state regarding energy efficiency. The vision, therefore, aims
to remove expert knowledge and rely on self-improvement. It is divided into
two parts, the first, making and keeping the IoT system more energy efficient
by reactively or proactively distributing computations among IoT devices, edge
devices and the cloud. Secondly, improving energy efficiency of the software,
primarily computations performed on IoT devices.

Under these circumstances, the following challenges were identified.

C1: How can the energy efficiency of the system be modelled?

Before the system can make any meaningful decision about itself, it must
know its state. Hence a model of the system must be created from which decisions
can be derived. The current assumption is that there exist two different decisions
that must be made possible by such a model. The first one, is an immediate
decision that must not be optimal but quick to react to sudden changes in the
environment like a defect. The second decision is a long term planning to optimize



Pr
e-

pr
in

t
ve

rs
io

n
fo

r
pe

rs
on

al
u

se
on

ly
!

8

the system. An idea is to minimize the amount of immediate decisions and
proactively shifting computations by predicted disturbances in the environment.
The model can be based on hardware specifics or the running workload. For
the hardware specific model, performance counter have proven to be suited well
as a multitude of models show [30,31,32,33,34,35,36,37]. Performance counter
have the downside that expert knowledge about a device must be available to be
useful. Other higher-level metrics such as CPU usage are also feasible options.
For models not dependent on hardware, request rates or similar metrics can act
as a basis. Both options should be explored to overcome Challenge C1.

C2: When should the computation be offloaded from a device?

After determining the current state in Challenge C1, the next challenge can
be adressed. For Challenge C2, the idea is to show that each device has certain
trade-offs regarding its constrains mentioned earlier. As stated in Chapter 2,
offloading might only be beneficial under these constraints. First, a decision
algorithm must be derived if code offloading should actually take place, taking
into account the battery state (if any), the size of the data to transmit compared
to the network bandwidth, the timeliness including possible network latencies
and the energy consumption of the devices involved in the offloading process.
To derive a decision algorithm, first a careful selection of devices with different
characteristics and capacities has to be made to allow for a general answer. Fur-
thermore, not only the hardware is important but also the software. To show
that different computations are more suitable to run on edge, IoT devices, or
the cloud, a selection of different algorithms with different time and space com-
plexities must be selected as synthetic workloads. For example, different sorting
algorithms like randomized quicksort with O (n log (n)) and insertion sort with
O
(
n2
)

for sorting data. Real world workloads should also be included like face
recognition. It can then be determined how the energy efficiency behaves in re-
lation to increasing computational complexity, increasing size of data sets and
time-to-result.

C3: Where should the computation take place?

As a next step for the Challenge C3, a deployment model must be derived,
based on the results of C2 and the state of the art in placement algorithms. This
includes knowing what data size is to expected for a specific computation.

For all devices in the IoT system, its optimal and maximal computational
capacity must be known. While the capacity for a specific device can be read from
data sheets or measured, the requirements of the algorithms must be estimated,



Pr
e-

pr
in

t
ve

rs
io

n
fo

r
pe

rs
on

al
u

se
on

ly
!

9

Application Simulation Time (s)

Media Store 25.6
SPECjEnterprise2010 55.6
Process Control System 65.4
Business Reporting System 587.6

Table 1. Solving time for different performance models from Brosig et al. [38].

simulated or modelled, as running them on each device can quickly become
infeasible due to the large variety of devices.

C3 will be addressed by first deriving a simple decision tree, checking if all
requirements of an algorithm are met for deployment on a certain device. If
not all requirements are met, the workload cannot be computed on the device
in question and another one must be chosen. This can later be extended to
more complicated and better solutions if necessary. However, more important is
to identify the resource and time-to-result requirements of the algorithm. It is
intended to use static code analysis combined with machine learning to estimate
the resource requirements. The time-to-result requirements must be provided by
the developer as identical algorithms can have different requirements.

C4: How to design an auto-scaler to make informed decisions about en-
ergy efficiency?

Auto-scalers are used in cloud environments to automatically reduce or in-
crease the number of resources, normally virtual machines or container. This
is mostly used to save money as only the necessary amount resources are used
and paid for. An auto-scaler could also be used to conserve energy by deploying,
shutting down and moving application instances. By giving the auto-scaler a
model of the IoT system designed in Challenge C1 it can make informed deci-
sions about energy efficiency. However, solving a model can take large amounts
of time, especially for IoT and edge devices with limited computational capacity.
Table 1 shows the time to solve performance models of increasing size. As the
typical cloud is used by many customers, solving a model for each customer to
determine the best solution is time consuming. A cloud with 1000 customers,
in this case IoT systems, and an average solving time of 30s needs over 8 hours
to solve all models, not including the time to reach a decision from the model’s
output.

4.2 At Design-Time

With the previous challenges focusing on the runtime aspect, the remaining
challenges focus on the design time of the system. To improve energy efficiency



Pr
e-

pr
in

t
ve

rs
io

n
fo

r
pe

rs
on

al
u

se
on

ly
!

10

further, the developers should be more aware if and how certain design decisions
and programming patterns can influence energy efficiency. To be helpful for
the developer, a quick response is key or otherwise the information will not be
integrated in the final program. If a developer must wait several minutes or even
hours to know the impact of a small code change will discourage its usage. With
the added complexity that the information should be as hardware independent as
possible, the energy efficiency must be estimated without actually benchmarking
the code on real hardware. Requirements on the system can change over time.
While the devices can be exchanged and the system should adapt itself, the
software on the other hand must be adapted manually. By changing the software,
it can direct how energy is consumed on a device without changing the software’s
semantics. Determining how energy efficient a piece of software can run from the
sources alone is challenging.

C5: Are current metrics suitable to determine the runtime energy effi-
ciency behavior of software?

To overcome Challenge C5, first, it must be surveyed at what level design
decisions can be made that negatively affect energy efficiency. This could include
design patterns, programming language keywords and others. Their influence on
energy efficiency must be identified to give valuable feedback to the developer.
The first idea is to check existing code metrics and how they relate to energy ef-
ficiency. As a first impression, seven algorithms with different runtime behaviors
O
(
n2
)
, O (n · log (n)), O (n) and O (log (n)) were selected and measured. The

algorithms are:

– Linear search
– Binary search
– Mandelbrot escape time algorithm
– Sieve of Eratosthenes (prime number calculation)
– Insertion Sort
– Merge Sort
– Quick Sort

All were measured with data sizes ranging from 400 to 4096 · 102 bytes. The
size was doubled after each measurement of 240 seconds, resulting in 11 total
measurements for each algorithm per measurement run. The only exception is
the Mandelbrot escape time algorithm with only 9 measurements per measure-
ment run. For the escape time algorithm, image sizes starting at 100x100 were
calculated. First the x value is doubled. Afterwards the y value is doubled up to
the maximum image size of 1600x1600. Larger image sizes were not applicable.
Each measurement run is repeated eight times. From the data, the average bytes
processed per Ws is calculated with Equation 4 with n = 8. The number of it-
erations (how often the algorithm could be executed in a measurement) after



Pr
e-

pr
in

t
ve

rs
io

n
fo

r
pe

rs
on

al
u

se
on

ly
!

11

0 2 4 6 8
Cyclomatic Complexity

103

104

105

106

107

108

109

by
te

s 
/ W

s

Linear Search
Binary Search
Mandelbrot
Sieve of Eratosthenes
Insertion Sort
Merge Sort
Quick Sort

0 10 20 30
Lines of Code

103

104

105

106

107

108

109

0 50 100 150 200
Calculated Program Length

103

104

105

106

107

108

109

Fig. 3. Static code metrics and the amount of data (bytes) processed for each Ws
consumed by different algorithms.

240s is recorded to calculate the number of bytes processed, or generated in the
case of the escape time algorithm, by multiplying it with the known data size
for each iteration. The idle power pidle is subtracted from the measured average
power pavg to only show the power consumed by the active application.

1

n
·

n∑
i=1

iterationsi · bytesPerIterationi
(pavg − pidle) · 240s

(4)

From the measurement data, the average bytes processed per Ws is presented
in Figure 3 to show how energy efficient the implementation is. The calculated
complexity metric is on the x-axis and average bytes processed is on the y-axis
of Figure 3.

It seems odd that insertion sort has better energy efficiency in this scenario
then the divide-and-conquer sorting algorithms. This behavior could be due to
the linear iteration over the data array making better use of the optimizations
in hardware like memory prefetchers.

The figure also shows two groups of algorithms. Group 1 with the linear
search, binary search and insertion sort, group 2 with the sieve of Eratosthenes,
merge and quick sort and mandelbrot escape time algorithm as a possible out-
lier. Table 2 shows the Pearson correlation after applying the log function to
both groups. The measurement hints that arranging algorithms into groups can
give reasonably accurate results with existing code metrics to represent energy
efficiency of an implementation. While the correlation is very high, the values
should be taken with skepticism as only three data points are available for each
group and further measurements must be made to support the first impression.
Especially as the correlation including all algorithms does not support the use
of existing complexity code metrics, shown in Section 3.2.

The preliminary measurements show that code metrics can possibly be used
to give developers a base for comparison of different implementations but further



Pr
e-

pr
in

t
ve

rs
io

n
fo

r
pe

rs
on

al
u

se
on

ly
!

12

Metric C LoC η N N̂ V D

Correlation All −0.1996 −0.5142 −0.5868 −0.3832 −0.5888 −0.4263 −0.0293
Group 1 0.9925 0.9971 0.9996 0.9944 0.9989 0.9923 0.9957
Group 2 0.9484 0.9982 0.7185 0.9562 0.6820 0.9360 0.9534

Table 2. Correlation coefficients for different algorithms and software metrics.

work is necessary to identify the code constructs that are responsible for making
an algorithm run energy efficient or not.

C6: How can the energy efficiency behavior of the source code be commu-
nicated to the developer?

As a second part to convey energy efficiency of software to developers is the
introduction of a energy efficiency regression test, similar to unit testing. As
DevOps is growing among software developers, the time between a new version
of software and deployment is reducing. To ensure that energy efficiency remains
constant or improves, developers need to be aware of the implications of changes
in the source code to the energy efficiency. Based on the results from Challenge
C5, a regression test could be implemented to show if the energy efficiency of
the software has improved over time. While the metrics in C5 can be calcu-
lated on the developers machine to provide quick feedback, a regression test can
run predefined workloads on the application on a reference machine. Although
this machine could possibly be a virtual machine, it is highly depending on the
metrics, as some metrics could be dependent on hardware information such as
performance counter that are not available in a virtualized environment.

5 Conclusion and Future Work

This paper introduces the vision of making IoT systems and their software more
energy efficient. Six high-level challenges in Chapter 4 are presented that need to
be overcome. The challenges include finding suitable modelling techniques, moni-
toring parameters for code offloading between devices and application placement,
cloud auto-scaling. Additionally, static code metrics representing energy effi-
ciency are discussed, making developers more aware of energy efficiency in their
software design choices. Ideas and possible solutions, where to execute certain
computations in an IoT system, are presented. The preliminary measurements
for static code metrics show that they might be usable if algorithms or even full
applications can be sorted into groups with different energy efficiency behavior.

As a first step towards more energy efficient IoT systems, an abstract model
representation according to Challenge C1 is vital. After the state of an IoT



Pr
e-

pr
in

t
ve

rs
io

n
fo

r
pe

rs
on

al
u

se
on

ly
!

13

system can be determined, progress in the following runtime challenges can be
achieved. In Challenge C3, after building a decision model, with a decision tree
as a first choice, current suitable solutions to the placement problem must be
surveyed and evaluated.

The design time challenges in Chapter 4.2 can be addressed simultaneously.
First deriving a new static code metric to allow comparison of semantically
identical piece of source code and secondly, given developers a tool to raise
awareness that design time decisions can impact energy efficiency. This could be
achieved with a energy efficiency regression testing or other options.

References

1. Evans, D.: The internet of things - how the next evolution of the internet is
changing everything. Technical report, Cisco Internet Business Solutions Group
(IBSG) (April 2011) White Paper.

2. Nordrum, A.: The internet of fewer things [news]. IEEE Spectrum 53(10) (2016)
12–13

3. Lange, K.D., Tricker, M.G.: The Design and Development of the Server Efficiency
Rating Tool (SERT). In: Proceedings of the 2nd ACM/SPEC International Con-
ference on Performance Engineering. ICPE ’11, New York, NY, USA, ACM (2011)
145–150

4. Rotem, E., Naveh, A., Ananthakrishnan, A., Weissmann, E., Rajwan, D.: Power-
management architecture of the intel microarchitecture code-named sandy bridge.
IEEE Micro 32(2) (March 2012) 20–27

5. Jin, Y., Wen, Y., Chen, Q.: Energy Efficiency and Server Virtualization in Data
Centers: An Empirical Investigation. In: 2012 IEEE Conference on Computer
Communications Workshops. (March 2012) 133–138

6. Calero, C., Piattini, M.: Green in software engineering. Springer (2016)

7. Kounev, S., Kephart, J.O., Milenkoski, A., Zhu, X., eds.: Self-Aware Computing
Systems. Springer Verlag, Berlin Heidelberg, Germany (2017)

8. Lange, K.D., Tricker, M.G.: The Design and Development of the Server Efficiency
Rating Tool (SERT). In: ICPE 2016. ICPE ’11, New York, NY, USA, ACM (2011)
145–150

9. Hiltunen, M.A., Schlichting, R.D., Jung, G., Pu, C., Joshi, K.R.: Mistral: Dy-
namically managing power, performance, and adaptation cost in cloud infrastruc-
tures. In: 2010 IEEE 30th International Conference on Distributed Computing
Systems(ICDCS). Volume 00. (06 2010) 62–73

10. Urgaonkar, R., Kozat, U., Igarashi, K., Neely, M.: Dynamic resource allocation
and power management in virtualized data centers. In: Network Operations and
Management Symposium (NOMS), 2010 IEEE. (April 2010) 479–486

11. Tian, Y., Lin, C., Yao, M.: Modeling and analyzing power management policies
in server farms using stochastic petri nets. In: Future Energy Systems: Where En-
ergy, Computing and Communication Meet (e-Energy), 2012 Third International
Conference on. (May 2012) 1–9

12. Beloglazov, A., Buyya, R.: Energy Efficient Resource Management in Virtual-
ized Cloud Data Centers. In: 2010 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing, IEEE (2010)



Pr
e-

pr
in

t
ve

rs
io

n
fo

r
pe

rs
on

al
u

se
on

ly
!

14

13. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics
for efficient management of data centers for cloud computing. Future generation
computer systems 28(5) (2012) 755–768

14. Chase, J.S., Anderson, D.C., Thakar, P.N., Vahdat, A.M., Doyle, R.P.: Managing
energy and server resources in hosting centers. ACM SIGOPS operating systems
review 35(5) (2001) 103–116

15. Botero, J.F., Hesselbach, X., Duelli, M., Schlosser, D., Fischer, A., de Meer, H.: En-
ergy Efficient Virtual Network Embedding. IEEE Communications Letters 16(5)
(March 2012) 756–759

16. Bolla, R., Bruschi, R., Lombardo, C., Mangialardi, S.: DROPv2: Energy-Efficiency
through Network Function Virtualization. IEEE Network 28(2) (April 2014) 26–32

17. Chieu, T., more: Dynamic Scaling of Web Applications in a Virtualized Cloud
Computing Environment. In: IEEE ICEBE 2009, IEEE (2009) 281–286

18. Bauer, A., Herbst, N., Spinner, S., Ali-Eldin, A., Kounev, S.: Chameleon: A Hybrid,
Proactive Auto-Scaling Mechanism on a Level-Playing Field. IEEE Transactions
on Parallel and Distributed Systems (September 2018) Preprint.

19. Kumar, K., Lu, Y.H.: Cloud computing for mobile users: Can offloading compu-
tation save energy? Computer 43(4) (2010) 51–56

20. Cuervo, E., Balasubramanian, A., Cho, D.k., Wolman, A., Saroiu, S., Chandra, R.,
Bahl, P.: Maui: making smartphones last longer with code offload. In: Proceedings
of the 8th international conference on Mobile systems, applications, and services,
ACM (2010) 49–62

21. Chun, B.G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic execu-
tion between mobile device and cloud. In: Proceedings of the sixth conference on
Computer systems, ACM (2011) 301–314

22. Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: Thinkair: Dynamic re-
source allocation and parallel execution in the cloud for mobile code offloading. In:
Infocom, 2012 Proceedings IEEE, IEEE (2012) 945–953

23. Gordon, M.S., Jamshidi, D.A., Mahlke, S.A., Mao, Z.M., Chen, X.: Comet: Code
offload by migrating execution transparently. In: OSDI. Volume 12. (2012) 93–106

24. Flores, H., Srirama, S.: Adaptive code offloading for mobile cloud applications:
Exploiting fuzzy sets and evidence-based learning. In: Proceeding of the fourth
ACM workshop on Mobile cloud computing and services, ACM (2013) 9–16

25. Schafer, D., Edinger, J., Paluska, J.M., VanSyckel, S., Becker, C.: Tasklets:” better
than best-effort” computing. In: Computer Communication and Networks (IC-
CCN), 2016 25th International Conference on, IEEE (2016) 1–11

26. Singh, J., Naik, K., Mahinthan, V.: Impact of developer choices on energy con-
sumption of software on servers. Procedia Computer Science 62 (2015) 385–394

27. Seo, C., Malek, S., Medvidovic, N.: Component-level energy consumption estima-
tion for distributed java-based software systems. In: International Symposium on
Component-Based Software Engineering, Springer (2008) 97–113

28. Hao, S., Li, D., Halfond, W.G., Govindan, R.: Estimating mobile application energy
consumption using program analysis. In: Proceedings of the 2013 International
Conference on Software Engineering, IEEE Press (2013) 92–101

29. von Kistowski, J., Lange, K.D., Arnold, J.A., Sharma, S., Pais, J., Block, H.: Mea-
suring and benchmarking power consumption and energy efficiency. In: Companion
of the 2018 ACM/SPEC International Conference on Performance Engineering.
ICPE ’18, New York, NY, USA, ACM (2018) 57–65

30. Isci, C., Martonosi, M.: Runtime power monitoring in high-end processors: Method-
ology and empirical data. In: Proceedings of the 36th Annual IEEE/ACM Interna-



Pr
e-

pr
in

t
ve

rs
io

n
fo

r
pe

rs
on

al
u

se
on

ly
!

15

tional Symposium on Microarchitecture. MICRO 36, Washington, DC, USA, IEEE
Computer Society (2003) 93–

31. Contreras, G., Martonosi, M.: Power prediction for intel xscale/spl reg/ processors
using performance monitoring unit events. In: ISLPED ’05. Proceedings of the
2005 International Symposium on Low Power Electronics and Design, 2005. (Aug
2005) 221–226

32. Singh, K., Bhadauria, M., McKee, S.A.: Real time power estimation and thread
scheduling via performance counters. SIGARCH Comput. Archit. News 37(2)
(July 2009) 46–55

33. Chen, X., Xu, C., Dick, R.P., Mao, Z.M.: Performance and power modeling in
a multi-programmed multi-core environment. In: Proceedings of the 47th Design
Automation Conference. DAC ’10, New York, NY, USA, ACM (2010) 813–818

34. Lim, M.Y., Porterfield, A., Fowler, R.: Softpower: Fine-grain power estimations
using performance counters. In: Proceedings of the 19th ACM International Sym-
posium on High Performance Distributed Computing. HPDC ’10, New York, NY,
USA, ACM (2010) 308–311

35. Bircher, W.L., John, L.K.: Complete system power estimation using processor
performance events. IEEE Transactions on Computers 61(4) (April 2012) 563–577

36. Rodrigues, R., Annamalai, A., Koren, I., Kundu, S.: A study on the use of per-
formance counters to estimate power in microprocessors. IEEE Transactions on
Circuits and Systems II: Express Briefs 60(12) (Dec 2013) 882–886

37. Tsafack Chetsa, G.L., Lefèvre, L., Pierson, J.M., Stolf, P., Da Costa, G.: Exploiting
performance counters to predict and improve energy performance of HPC systems.
Future Generation Computer Systems vol. 36 (July 2014) pp. 287–298

38. Brosig, F., Meier, P., Becker, S., Koziolek, A., Koziolek, H., Kounev, S.: Quan-
titative Evaluation of Model-Driven Performance Analysis and Simulation of
Component-based Architectures. IEEE Transactions on Software Engineering
(TSE) 41(2) (February 2015) 157–175


	Improving the Energy Efficiency of IoT-Systems and its Software

