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Abstract—The growth of cloud services leads to more and
more data centers that are increasingly larger and consume
considerable amounts of power. To increase energy efficiency,
informed decisions on workload placement and provisioning are
essential. Micro-services and the upcoming serverless platforms
with more granular deployment options exacerbate this problem.
For this reason, knowing the power consumption of the deployed
application becomes crucial, providing the necessary information
for autonomous decision making. However, the actual power
draw of a server running a specific application under load is
not available without specialized measurement equipment or
power consumption models. Yet, granularity is often only down
to machine level and not application level.

In this paper, we propose a monitoring and modeling approach
to estimate power consumption on an application function level.
The model uses performance counters that are allocated to
specific functions to assess their impact on the total power
consumption. Hence our model applies to a large variety of
servers and for micro-service and serverless workloads. Our
model uses an additional correction to minimize falsely allocated
performance counters and increase accuracy. We validate the
proposed approach on real hardware with a dedicated bench-
marking application. The evaluation shows that our approach
can be used to monitor application power consumption down
to the function level with high accuracy for reliable workload
provisioning and placement decisions.

Keywords-Energy efficiency, serverless, micro-services, code-
offloading, DevOps

I. INTRODUCTION

According to a New York Times study from 2012, data

centers worldwide consume about 30 billion watts [1]. With

the increasing trend to move services to the cloud, the size

and number of data centers continues to grow. Especially the

Internet of Things (IoT) is rapidly growing with an estimated

20 to 30 billion devices by 2020 [2]. IoT devices produce

data that normally requires some processing causing additional

load on the cloud. In addition to the popular cloud services,

IoT devices capable of code offloading increase the load

on data centers. Millions of battery powered devices can

push computations to the cloud to preserve battery power.

This increased load results in higher power consumption for

the sum of all data centers. It is estimated at 140 billion

kilowatt-hours annually by 2020. Compared to 91 billion from

2013 [3], this is an increase of 54%. Therefore, the need to

make data centers more energy efficient and reduce the power

consumption is becoming increasingly important.

To conserve energy, accurate information about the current

state of servers and their workloads is necessary. This infor-

mation allows making well-informed decisions on workload

placement and provisioning. Upcoming micro-service archi-

tectures and serverless platforms allow for more granular

deployment options down to singular functions. This trend is

known as Function-as-a-Service (FaaS). As the choice of de-

ployment options increases, having detailed knowledge about

the power consumption of the deployed software becomes

crucial. The actual power draw of a server running a specific

application under load is not available without specialized

measurement equipment or power consumption models. The

expenditure on measurement equipment is high, even for

smaller data centers. Power models, on the other hand, are

often only available on the machine level and not on the

application or function level, necessary for autonomous and

fine-grained deployment decision making. In this paper, we

address this issue by proposing power models on the function

level designed to be usable without requiring specialized

measurement equipment.

Current research in energy efficiency is focused on the

energy efficiency of server hardware [4], as well as energy

efficiency on the data center level. For example, many tech-

niques have been proposed for application consolidation inside

a data center through virtualization [5]. With new emerging

paradigms, such as serverless computing, individual functions

of an application are deployed rather than a full applica-

tion stack. With the move towards fine-grained deployments,

away from classical multi-tier applications, hierarchical energy

saving techniques [6] become less suitable. Code offloading

(i.e., moving computations to the cloud to conserve battery

power), also leads to deploying only parts of an application [7].

The fine-granular control of the deployment limits the use of

existing power models, which normally do not capture the

power consumption in such detail. If the software in question

is also developed in a DevOps environment, code changes can

occur more often. These changes can impact power consump-

tion and consequentially also impact the optimal deployment.

Modeling a software system’s power consumption is normally

either done by training a model with measurements [8] or by



defining a workload profile from user input combined with

expert knowledge on the hardware [9].

In this paper, we propose a new online power modeling

approach on the application function level based on perfor-

mance counters. Instead of using the performance counters

to determine the total power consumption of a system, we

attribute the counted performance events to application func-

tions based on the stack trace of the monitored application.

Our approach constructs the stack trace without requiring

to instrument the application code manually. This allows

to determine the power consumption of specific functions,

even if their implementation changes frequently, allowing for

autonomous (but also manual) informed decision making about

energy efficiency.

The main contributions of this work are:

• A novel technique to attribute energy consumption

through globally recorded performance counters to spe-

cific functions without changing the business logic that

can act as an input to autonomous placement decision

making.

• A method for relative comparison of functions, portable

across different systems, allowing developers to improve

the source code to increase energy efficiency and au-

tonomous deployment of the most efficient version of a

function.

The remainder of this paper is structured as follows: First,

we describe our approach and the underlying foundations in

Section II. Section III shows our testbed setup, which is used to

evaluate our approach. In Section V, related work is reviewed.

Finally, after an outlook on future work in Section VI, the

paper is wrapped up in Section VII.

II. APPROACH

Our approach determines the power consumption of appli-

cation functions without requiring to change the application

itself. The source code can remain free of instrumentation

code that has no relation to the actual business logic. Existing

applications can be monitored without change and specialized

measurement equipment hardly present in most data centers.

A. Foundations

We must first show that energy efficiency is not only a

matter of efficient hardware but is also influenced by the

software running on said hardware. We further present the

used power model and benchmarking application.

Following the principle that applications indirectly control

the hardware they are running on [10], we base our approach

on improving the power consumption of the software rather

than the hardware. To investigate the validity of this principle

and in turn our approach, we measured the energy consump-

tion (power over time) of three different variants of a REST

service for 240s. This service performs caching and resizing

image files stored on a physical drive. While the resizing

needs processing by all variants, the implementation of the

data structure for the cache varies. Variants include a random

replacement strategy (RR) as a linked list, a least frequently

Implementation Energy [Ws]

Direct Drive Accesss (DDA) 3.78

Least Frequently Used (LFU) 3.68

Random Replacement (RR) 3.43

TABLE I
ENERGY CONSUMPTION OF DIFFERENT CACHE IMPLEMENTATIONS PER

REQUEST OVER A 240S MEASUREMENT PERIOD.

used strategy (LFU) with a red-black tree, and no cache with

direct drive access (DDA). The results in Table I show that the

DDA uses the most amount of energy per request. It seems

that the constant drive access is responsible for the higher

energy consumption but even LFU and RR exhibit differences

in energy consumption supporting our assumption. With a

constant request rate, the RR caching strategy will consume

the least amount of energy in this scenario. The lower energy

consumption for RR most likely occurs due to the random

selection of images. Singh et al. also confirmed the impact

of software on efficiency by showing that different software

designs, implementations, and configuration parameters for the

same logic result in different energy consumption [11], [12].

The power consumption Ptotal of a system consists of two

parts, the static or idle power consumption Pstatic and the

dynamic power consumption Pdynamic, as shown in Eq. (1).

The dynamic power is dependent on the systems utilization or

CPU utilization [10], [13], [14]. The idle consumption must

be measured and removed from the total power to determine

the power consumption caused by the running software. We

assume that Pidle = Pstatic for our approach. The relation

of power and temperature is considered by operating our

Systems Under Test (SUTs) in a controlled environment inside

an air-conditioned data center and warm-up periods before

measurements.

Ptotal = Pstatic + Pdynamic (1)

To derive the power consumption without actually measur-

ing it, our approach uses performance counters, a statistics fea-

ture available in modern CPUs. Their main use is identifying

performance bottlenecks in an application by counting specific

events occurring in a CPU. However, performance counters

have been shown to be correlated with power consumption,

which can be leveraged to model power consumption as

shown in existing work [15]–[21]. Typically, regression models

(Equation 2) are used in this context. Y is the response

variable, that is, Pdynamic in our case. X is the vector of

regressor variables for which we use the monitored counts

of performance events. The regression parameters β must be

trained to derive the power model.

Y ≈ f (X, β) (2)

The selection of performance events is critical to building

a viable model and needs expert knowledge about the system.

To avoid overfitting the regression model to specific events



relevant to our scenario, we use the identified events in the

work of Yasin [22]. In his work, he uses performance events

for systematically identifying bottlenecks. As performance and

power consumption are related, but not identical, we see this

as a useful selection of performance events without fitting the

model to a particular application. The following performance

counter descriptions are taken from the Intel manual and

shortened for brevity [23].

• CPU CLK UNHALTED.THREAD: “The event counts

the number of core cycles while the logical processor

is not in a halt state.”

• IDQ UOPS NOT DELIVERED.CORE: “Counts the

number of uops that the Resource Allocation Table

(RAT) issues to the Reservation Station (RS).”

• UOPS ISSUED ANY: “Counts the number of uops not

delivered to Resource Allocation Table (RAT).”

• UOPS RETIRED.RETIRE SLOTS: “Counts the retire-

ment slots used.”

• INT MISC.RECOVERY CYCLES: “Core cycles the allo-

cator was stalled due to recovery from earlier machine

clear event for this thread.”

• CYCLE ACTIVITY.STALLS MEM ANY: “Execution

stalls while memory subsystem has an outstanding load.”

• RESOURCE STALLS.SB: “Cycles stalled due to no store

buffers available.”

We monitor performance counters per CPU core. As we

do not want to instrument our application directly, we need

a method to attribute the performance events to application

functions. To keep the source code of the application as it is,

we obtain the stack trace with Kieker1, running concurrently

to the application. Kieker claims an overhead below 3% [24].

The application we selected is the image provider service

of the TeaStore2 [25] benchmarking application. TeaStore is

a Java application, specifically built for testing power and

performance models. The associated image provider uses CPU

(resizing images), memory (through caching), and I/O (loading

uncached images from storage). It features recursive and non-

recursive function calls allowing to validate our model’s com-

patibility with recursion. Function call overhead is attributed

to the calling function.

B. Model

To calculate the power consumption of our application, we

need to first know for how long a function of our application

has exclusive access to the processing resources. For this, we

state that if a function is on top of the call stack it has exclusive

access. An example stack trace is shown in Figure 1 with five

different functions. The time a function x resides on stack

height s can then be calculated with Equation 3 by adding up

the times between when the function was called tsx,n and its

return tsx,n+1.

1Kieker Application Monitoring: http://kieker-monitoring.net/
2TeaStore: http://descartes.tools/teastore

n−1
∑

i=1

tsx,n+1 − tsx,n (3)

As functions can call subroutines, we also calculate the time

any function was atop the caller up to the maximal stack height

smax of the current interval ∆t, as shown in Equation 4.

smax
∑

j=s+1

n−1
∑

i=1

t
j
i+1

− t
j
i (4)

By subtracting the time of the callee from the time of the

caller and dividing it by the sampling interval time ∆t =
1000ms (see Equation 5), we calculate the relative time-share

fx ≤ 1 of how long a function x has exclusive resource access

as follows:

fx =

n−1
∑

i=1

tsx,i+1 − tsx,i −
smax
∑

j=s

n−1
∑

i=1

t
j
i+1

− t
j
i

∆t
(5)

The server operating systems (usually being preemptive and

able to withdraw resources) weakens the assumption that an

application has exclusive access to a machine’s resources,

which introduces inaccuracies in the measurement of the stack

trace and performance counters. The withdrawal of resources

is reflected in the stack trace by a prolonged time between

the function call and its return. As our approach distributes

performance events according to the time a function spends on

top of the stack, this subsequently leads to more performance

events assigned to a function than it actually causes. Not only

can the prolonged time-share affect the performance event

counts, but also the callee of a subroutine. For example,

function a in Figure 1 is called once from function e and later

twice from function b. Taking that function e generates event

E that is not present for function b, then function a falsely

gets assigned event E. Additionally, the preemptive operating

system will also lead to higher recordings of performance

events. This effect leads to two inaccuracies in our approach.

First, a measurement sample can contain more performance

events and secondly, a longer time-share fx for the interrupted

functions adding performance events not associated with a call

to the functions.

The first problem is countered by measuring performance

events in the idle state and removing them from the perfor-

mance counter samples. We assume that the operating system

must run independently of the workload. A network heavy

application would force the operating system to empty the

network interface buffers more frequently, limiting workload

independence. The power consumption estimation should re-

flect whether the application is responsible for higher operating

system interventions. Only preemptions that also take place in

an idle state and are not attributable to the application should

be removed. While this still leaves errors in the stack trace,

the application in question does not need instrumentation to

pause performance event recording if control of the resources

is not available.
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Fig. 1. Example stack trace with five functions, performance counter sampling interval ∆t and stack sample times.

Introducing a correction factor to our performance event

assignment addresses the second problem. Removing falsely

counted performance events does not correct the prolonged

time-share and still leads to disproportional assignments of

performance events to interrupted functions. Hence, we intro-

duce a correction factor ct shown in Equation 6.

ct =











c0,a c1,a . . . cn,a
c0,b c1,b . . . cn,b

...
...

. . .
...

c0,z c1,z . . . cn,z











(6)

Each factor cE,x is built through an unweighted moving

average over the last n number of performance events of event

E assigned to function x in Equation 7. The smoothing over

the history reduces the amount of wrongfully assigned per-

formance events. This correction is limited, as functions only

called from one specific callee are not correctable since the

history never contains samples without the wrong performance

events.

cE,x =
1

n

n−1
∑

i=0

pcorrected,x,M−i (7)

Combining a function’s time on top of the stack fx (Equa-

tion 5) and the monitored performance events into a column

and row vector respectively in Equation 8, we finally calculate

the corrected amount of performance events for each function

pcorrected,t at time t in Equation 9. The total time-share for

all functions fTt ≤ 1 must be fulfilled.

fTt =
[

fa fb . . . fz
]

pt =
[

pc0 pc1 . . . pcn
] (8)

pcorrected,t =

(

ft · pt + ct

2

)

(9)

In combination with the regression model, we can now

determine the power consumption per function as the moving

average over the last n+ 1 assignments.
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Fig. 2. Evaluation testbed setup.

Hardware power management, like Dynamic Voltage and

Frequency Scaling (DVFS), are not directly modelled but

indirectly through the use of performance counters. Disabling

DVFS would increase accuracy but would reduce applicability

in realistic applications. With decreasing clock speed, the

number of performance counters decreases as well and the

runtime increases. As we assume a linear relation between

power (represented by performance counters) and runtime, the

energy efficiency is identical.

C. Testbed Setup

To investigate whether our model can distinguish between

the application’s functions and the overhead generated by

the software stack and operating system, we set up the

testbed shown in Figure 2. We use Apache JMeter3 as a load

driver to issue HTTP POST requests to the system under

test (SUT) over a dedicated network interface. Thus, the

employed monitoring tool Kieker does not create overhead

inside the backbone network. Kieker sends generated stack

traces through a second network interface to a dedicated

logging server. A Hioki PW3335 power meter connected to

the benchmark controller measures the SUT’s wall power.

After each measurement, the benchmark controller collects the

request rate, performance counters, and stack traces.

We use three physical servers as SUTs. Table II lists the

SUT servers. Each SUT has a different Intel Xeon CPU

generation, different core and thread counts (4/8, 8/16, 12/24)

and the medium and large SUT also have double memory

3Apache JMeter: https://jmeter.apache.org/



SUT CPU (Cores/Threads) Memory

Small (S) E3-1230 v5 @ 3.40GHz (4/8) 16GB
Medium (M) E5-2640 v3 @ 2.60GHz (8/16) 32GB
Large (L) E5-2650 v4 @ 2.20GHz (12/24) 32GB

TABLE II
SERVERS USED AS SYSTEM UNDER TEST (SUT).

capacity. The TeaStore image provider is deployed eight times

on each bare-metal SUT in Docker containers, including

application stack monitoring. Each Docker container hosts an

Apache Tomcat application server running the image provider

service. We selected eight instances of the image provider and

limited the CPU usage to 1 via Docker, which is the largest de-

ployment runnable on all SUTs without constraints. This also

eliminates possible accumulation errors due to multithreading.

Using the threadcount as the maximum for each SUT resulted

in memory contention on the large SUT and subsequently a

minimal ability to process any requests on time.

All SUTs use the same load profile with four different

load levels shown in Figure 3. This load curve was recorded

for the small SUT but the medium and large SUTs are

similar. Variations at the highest level are due to limitations

on our testbed present on all SUTs. The load driver repeatedly

requests random images with sizes ranging from 800 to 950

pixels in width and height from all application instances.

To build our regression model mentioned in II-A, we stress

the small SUT with the four different request rates and repeat

this measurement nine times. We use six measurements as

training data for our model and the remaining three for model

validation. The coefficients are listed in Table III.

III. EVALUATION

For our evaluation, we utilize our testbed described in

Section II-C. First, we evaluate if our model is valid and

0 50 100 150 200 250 300 350 400 450

Time in seconds

5

10

15

20

25

30

35

R
eq

u
es

ts
 p

er
 s

ec
o
n
d

Measured Load

Configured Load

Fig. 3. Configured and measured requests per second.

Performance Event β

Intercept 1.921

CPU CLK UNHALTED.THREAD −3.771 · 10−9

IDQ UOPS NOT DELIVERED.CORE −2.437 · 10−8

UOPS ISSUED ANY −2.787 · 10−9

UOPS RETIRED.RETIRE SLOTS 6.270 · 10−8

INT MISC.RECOVERY CYCLES 7.338 · 10−8

CYCLE ACTIVITY.STALLS MEM ANY 9.098 · 10−9

RESOURCE STALLS.SB 6.996 · 10−8

TABLE III
REGRESSION PARAMETERS β FOR OUR POWER MODEL.

Requests per Second Absolute Error Relative Error

8 1.18 W 7.5 %
16 1.15 W 3.5 %
24 1.70 W 3.5 %
32 1.48 W 2.6 %

TABLE IV
ERROR OF THE PREDICTION ABSOLUTE AND RELATIVE TO THE

MEASURED VALUES.

confirm that the differentiation of overhead of the software

stack and operating system from the actual test application

results in plausible values. Second, we show that our model

can identify a function’s power consumption by filtering out

the functions with significantly higher energy consumption.

As a last step we check if our approach is transferable to

different machines without retraining the regression model. We

then treat the model’s output as a relative value for comparing

implementations across different systems. We assume that

performance events caused on the trained system also occur

on an untrained system.

A. Application Separation

To determine if our model can distinguish between power

consumed on account of the application or otherwise, we

perform nine measurements on the small SUT. We apply

our approach to the recorded time-shares and performance

events without the correction factor. The power is calculated

for each function and summed. As fTt ≤ 1, not allocating

all performance events towards the monitored application is

likely. We consider this as software stack overhead due to the

Java Runtime Environment, Docker service, and the operating

system.

Figure 4 shows that the power draw from the overhead

can make up a considerable amount. Notably, around 170 to

240 seconds for the TeaStore application where the overhead

and application assigned power are close to equal. Neither

the overhead nor the application can reach the observed wall

power for the complete system as expected. If the overhead

(Po) and application power (Pa) are combined to the estimated

dynamic power (Pe = Po + Pa), the power consumption is

close to the measured wall power of the SUT. Table IV shows

the mean and relative errors for the prediction.

While the application power draw has rising steps in con-
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junction with the load level, the overhead shows a different

behavior. With the increasing load level, the overhead is also

expected to grow with the number of calls to the operat-

ing system. The overhead climbs with the load level to 24

requests per second. As the load switches to 32 requests

per second, the overhead drops sharply. We estimate that

the non-linear overhead could be due to falsely assigned

performance counters, changes in scheduling, e.g., to avoid

Java’s garbage collection while close or at full CPU capacity,

operating system interventions, simultaneous multithreading

or a combination of those. Further research is necessary to

find the cause and determine if this is a result of performance

events falsely assigned as overhead instead of the application’s

functions.

There is also a shift of 3 seconds between the model

estimation and the actual power measured. We attribute this

to certain inertia in the server system power supply as all

monitoring probes start within 10ms.

B. Correction Factor

To check if our correction factor ct (see Section II-B)

can dampen outliers, probably stemming from computations

scheduled in between the test application, we calculated our

model’s power consumption with varying sizes for the moving

average history. We let the size of the moving average range

from 2 to 60 seconds in steps of 2. Against our expectations,

the smoothing over the history only moved performance events

from the application to the overhead but not vice versa. Hence,

the correction factor in its proposed form is neglectable for

further evaluation, and other possibilities should be taken into

account.

C. Identifying Function Power Consumption

Our approach can identify the power consumption of a

micro-service or serverless cloud application. As the sum of

all function’s power consumption is accurate, we check each

function’s contribution to the overall power consumption.

As a first step, we summed up each function’s contribution

to the proportional power consumption over all load levels.

Four functions are consuming over 99% of the total power

attributed to the application out of in total 56 functions

called during the measurements. The remaining functions only

contribute marginally with one order of magnitude below

Function 12, which is below 1%. The four functions and their

relative energy consumption are:

• Function 08 (67%): Converts the internal image represen-

tation of Java into a byte array and encodes it in base64

for the request response.

• Function 12 (<1%): Creates a new object that can be

stored in the cache holding the base64 encoded data.

• Function 29 (1%): Converts the base64 encoded image

to the Java image representation.

• Function 47 (31%): Resizes images.

As the image provider has a least frequently used replace-

ment strategy, it seems that the substantial impact of these four

functions results from the requests selecting random images,

causing a low cache hit rate. Hence, images must be converted

back to the Java image representation, scaled, stored in the

cache, and converted back to base64 for the request response.

We further break down the contribution of each function

to the power consumption by load level. Figure 5 shows

the power consumption for the four functions. The sharp

changes in the load level are not included to let the load driver

stabilize. We cut off three seconds before and after each load

change. As the power consumption for each function rises

with the load level indicating that our approach can correctly

attribute a function’s impact on the energy usage, variations in

the measurement increase with the load level. This behavior

matches with the random sizes requested by the load driver

querying more images of different sizes, also coinciding with

the increasing contribution of Function 47, scaling images to

the correct size.
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Small/Medium Small/Large

Normalized MAE 0.1547 (15%) 0.1495 (15%)
σ 0.0975 0.1586

σ2 0.0095 0.0251

Measured MAE 5.7683 (10%) 12.4118 (21%)
σ 2.9736 4.5653

σ2 8.8421 20.8416

TABLE V
MEAN ABSOLUTE ERROR, STANDARD DEVIATION AND VARIANCE

BETWEEN THE SMALL, MEDIUM AND LARGE SUT.

D. Portability

As the software is indirectly controlling the hardware, we

assume that performance events occurring on one system are

also observable on others. We normalize the power estimation

of the model to see if our approach is usable as a reference

even without retraining the model. We then compare the

normalized estimations of the trained model of the small SUT

to the untrained medium and large SUTs. We do not normalize

over the measured load. Not every request must necessarily

call all functions.

Figure 6a shows the results for a single measurement of

each SUT. The small SUT works well as expected while the

medium and large SUT exhibit large variations. Especially at

the lowest and highest load. The same behavior is present for

both SUTs in Figure 6b, clearly visible at the large outliers at

the highest load level. The experienced behavior is observed

in the measurement as well as the relative application power

and therefore can not be completely attributed to the model

being untrained on the medium and large SUT’s data. The

model also overestimates the power consumption for the large

SUT. The measured power consumption in Figure 6b shows an

ordering from large to small SUT for identical request rates,

with the large instance mostly (88% of the time) below the

medium instance.

Calculating the absolute error between the trained small

server and the medium and large servers, we can see in Table V

that the power consumption deviates strongly from the mean

value. While the relative application power seems unsuitable

for comparison, we take a look if the proportional power

consumption remains portable.

In accordance with Section III-C, we examine the pro-

portional power consumption of the application functions in

Table VI. Proportional accounting to functions works well, yet

small deviations are present and were expected. The functions

vary between 3% to 2% for Function 08 and Function 29,

respectively. The remaining functions account for 2% of the

total power consumption of the medium SUT. We estimate

that small changes in the CPU’s architecture are responsible

for the minor changes shown in Table VI.

We showed that our approach can distinguish between the

power draw of our test application and the overhead of the

operating system and software stack. The correction factor as

a moving average did not yield the expected improvements
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Fig. 6. Normalized and measured application power consumption of all three
SUTs.

Functions
SUT 08 12 29 47 others

Small 67% < 1% 1% 31% < 1%

Medium 64% < 1% 3% 31% 2%

Large 66% < 1% 2% 31% < 1%

TABLE VI
PROPORTIONAL POWER CONSUMPTION OF APPLICATION FUNCTIONS FOR

ALL SUTS.

and is rejected. Further, we showed that the allocation of per-

formance events to specific functions works well and we can

identify functions with a high impact on power consumption.

It also achieves reasonable results across multiple SUTs.

IV. DISCUSSION AND LIMITATIONS

In our work, we use the performance counters pre-selected

by Yasin [22]. Yasin selected his chosen performance counters

to detect performance bottlenecks as opposed to predicting

a function’s power consumption. This choice might impact

the resulting quality of our approach. A further exploration



of the performance counter configuration space might yield a

set of performance counters even better suitable for our use

case. Nevertheless, the presented results already exhibit high

accuracy and adequate portability. Therefore, the used counters

are sufficient to confirm the applicability of our approach.

Since the performance counters are a proxy metric, they

represent the true values only to a certain degree. The same

is true for Running Average Power Limit (RAPL) counters.

Intel states that the RAPL counters are a software model and

not on-chip measurement Devices [26], [27]. To not rely on

an opaque software model not under our control, we opted for

a self-trained performance counter model. Additionally, the

most influential power consumer in a server is the CPU, apart

from special-purpose systems. While AMD and Intel both

have RAPL counters, others might not. To keep our approach

portable and transparent we do not use RAPL counters.

Serverless and virtualized environments are often not ex-

posing performance counters. This issue can be resovled by

recording the performance events on the host system and a

dynamic mapping from CPU core to VM or container. The

available counters or power consumption could then be made

available to a tenant.

As we try to keep the overhead introduced by the perfor-

mance counter sampling minimal, we only collect what is

necessary and use a low sampling rate of 1s, corresponding to

the sampling rate of the power meter. A higher frequency,

e.g., on a function basis may increase the accuracy, but

would incur a high overhead. As the evaluation shows, 1s is

enough to reach a sufficient accuracy. A possible technical

limitation of our evaluation is the timer resolution of the

monitoring solution Kieker. While Kieker claims a resolution

of one nanosecond, inaccuracies are possible. However, over

the course of our measurements, these inaccuracies should

compensate each other.

In this paper, we assume that power consumption is linearly

correlated to the runtime. However, idle phases like IO waits

might lead to a non-linear correlation. Micro-service work-

loads are often a mixture of CPU, memory and IO based

computations but linear models have proven to have high

accuracy. However, for IO heavy workloads, other models

could prove more accurate.

The applied error correction approach has shown no im-

provement to the uncorrected results. While, as presented

above, our results are suitable for our use case, more complex

error correction or smoothing algorithms might be beneficial.

Although our experiments stressed a benchmark application

with varying load levels and were conducted on three different

hardware scenario, the results may not be generalizable to

other types of applications or hardware scenarios.

V. RELATED WORK

We categorize related work into three types: (1) work that

deals with the proportionality (or the lack of proportionality)

between the performed amount of work and consumed power,

(2) work that deals with modeling and optimizing code using

performance counters, their possible inaccuracies, and (3)

work dealing with power consumption on mobile devices.

A. Energy Proportionality

Barosso and Hölzle prose that Energy Proportionality

should become a primary design goal [28], that is, servers

should be designed to consume energy proportional to the

amount of work performed. While the share of a server’s total

power consumption attributed to CPU processing is declining

due to power-saving features, this is hardly the fact for the

other components. The authors demand significant improve-

ments for the memory and disk subsystems. Furthermore, they

urge developers to run benchmarks not only at peak load but

also at lower load levels.

In [11] Singh et al. show the impact of different buffer sizes

used when reading/writing and compressing/decompressing

files of 20GB using the Java API. The buffer sizes vary from

1KB to 1GB in steps of power of 2. They conclude that,

like performance engineers optimizing parameters, the correct

setting can save energy and increase energy proportionality.

These works introduce new concepts but deal with propor-

tionality either on a data center level or server level while our

work is focused on the function level.

B. Performance Counters

Multiple works [15]–[20], [29], [30] use performance coun-

ters to create models for various applications like power

consumption and thread scheduling.

However, performance counters are known to be inaccu-

rate in certain situations. The authors of [31] name multi-

ple problems for the use of performance counters: complex

configuration, missing programmability, the requirement of

root privileges, and the lack of discrimination between the

triggering threads. The authors then perform a comparative

study of the accuracy of three commonly used measurement

infrastructures for performance counters on three different

processors. While this is correct for older architectures, CPU

vendors provide higher accuracy for most performance counter

values by now.

Therefore, they are suitable as a tool to optimize power con-

sumption. In [32] Wu and Taylor describe the methodology of

using performance counters to reduce the power consumption

of high-performance computers and supercomputers. They use

37 counters to identify energy saving potential inside large

workloads. They select a small subset of 37 counters and

focus on them. The function is then optimized through further

analysis and expert knowledge.

While these works lay an excellent foundation to build upon,

none of them deals with optimizing the energy proportionality

of an application.

C. Power Consumption on Mobile Devices

In [33] Li et al. present an approach to measure power

consumption on a source line level. To perform this measure-

ment, the authors combine hardware-based power measure-

ments with program analysis and statistical modeling. While



executing an application, the approach measures the energy

and derives the executed parts of the application using path

profiling. The per line consumption is then evaluated using

static and regression analysis as presented in the authors’

previous work [34]. However, this approach requires a signif-

icant amount of resources to perform the profiling, reducing

accuracy compared to an application running at 100%.

The work presented in [35] studies a self-modeling

paradigm for a mobile system. Thus, it allows the system to

generate its energy model without external assistance. This

generation uses the smart battery interface. While this ap-

proach presents a respectable precision, the results have been

achieved only on mobile hardware and especially relatively

old hardware that does not yet employ modern power-saving

technologies.

Pathak et al. introduce eprof, a fine-grained energy profiler

for smartphone apps [36]. When applied to several apps,

eprof exposes energy drainers like third-party advertisement

or pinpoints the location of wakelock bugs in the code. Next,

bundles are introduced to help developers to optimize the

energy drain of their app by presenting the app’s I/O energy

consumption.

The work in [37] introduces two tools. PowerBooter is

a tool to construct a power model without using a power

meter. PowerTutor is a tool that using online analysis shows

developers the implications of their design choices on power

consumption. Unlike [33], this approach is not based on the

code line level but rather on the component level. Thus, the

model is built using the consumption of the CPU, LCD, GPS,

Wi-Fi, 3G, and audio components.

For Java-based software systems [38] presents the first

iteration of a framework for estimating power consumption.

This approach focuses on the interaction among distributed

components. Thus, it allows developers to estimate their

systems’ power consumption at design-time.

These works have in common that they do not directly use

CPU performance counters but either use the sensors of a

mobile device or Java’s bytecode. While this might work for

the specific device or language, it is complicated to derive

lessons for the general utilization. Also, these works give little

consideration to energy proportionality.

VI. FUTURE WORK

Based on this work, possible contributions in the future

become possible. To face the limitations of this work, a first

step is to validate our approach on broader hardware set with

different workloads. A next step is to introduce a sample

based stack monitoring compared to the event based Kieker

solution, minimizing the interference and overhead and thus

allowing us to monitor large-scale cloud systems. Further,

our model should be compared to existing and well-studied

power models. For the DevOps community, providing valuable

insight into the power consumption of application functions

can be beneficial to conserve energy as well as to support

autonomous placement and deployment decisions.

To further reduce the monitoring overhead, we envision

a fast stack simulation that returns the current stack layout,

together with a detailed overhead evaluation. However, such a

solution needs to monitor additional input parameters instead.

Compared to the current event based stack monitoring, sample-

based or the simulation could achieve a lesser overhead.

As the correction factor for our approach did not work as

expected, different alternatives include a Kalman filter and

time-series prediction. A prediction, including a confidence

value, could improve our work and determine falsely allocated

performance events. Static code analysis can also help reduce

errors. For example, by analyzing functions, finding disk

access through known functions in the language’s API, per-

formance events could be shifted towards the causing function

away from functions without disk access.

VII. CONCLUSION

Reducing the power consumption of services is crucial for

modern providers to be profitable. The move from infrastruc-

ture or platform granular deployment options to function gran-

ularity adds additional complexity. Developers and providers

aim to optimize the performance per power ratio of the de-

ployed applications and their underlying functions. Therefore,

it is necessary for them to know about the composition of a

function’s power requirement.

In this work, we presented a technique to determining the

power consumption of application functions without changing

the application itself. We allocated monitored performance

events to specific functions. Thereby, it is possible to assess

a functions impact on the total power consumption. We

evaluated our approach on three different SUTs. To assess the

accuracy of our model we compared the calculated values to

the measured values. We observed an error of 7.5% for the

system under light load and of 2.6% for the system under

heavy load. Our approach also correctly yielded the functions

responsible for most of the power consumption, making au-

tonomous placement and deployment decisions possible. This

also gives insights to developers to improve their code in

terms of energy efficiency, as well as energy proportionality,

while operators can select machines providing optimal energy

efficiency for the most consuming functions.

We also validated the portability for our approach. While

the accuracy for the prediction decreases proportional to the

commonality to the base system, the estimated share of a

functions power consumption remains accurate. Furthermore,

we analyzed related works, which provide a foundation to

build upon, but do not target the granularity of function level

power consumption without dedicated measurement equip-

ment. Finally, we presented planned future extensions to our

work.

In conclusion, our approach gives developers and service

providers the possibility to discover which functions consume

the most power. This ability allows focussing optimization

efforts on the relevant functions. Additionally, our applica-

tion features satisfactory portability and, therefore, applies to

heterogeneous systems.
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