
Emulating the Power Consumption Behavior of
Server Workloads using CPU Performance Counters

Norbert Schmitt
Universität Würzburg

norbert.schmitt@uni-wuerzburg.de

Jóakim v. Kistowski
Universität Würzburg

joakim.kistowski@uni-wuerzburg.de

Samuel Kounev
Universität Würzburg

samuel.kounev@uni-wuerzburg.de

Abstract—The accurate measurement of a server’s power
consumption when running realistic workloads enables char-
acterization of its energy efficiency and helps to make better
provisioning and workload placement decisions. Information on
the energy efficiency of a server for a given target workload
can greatly influence such decisions and thus the final energy
efficiency of a cluster or data center. However, measuring energy
efficiency and power consumption of server applications has
become challenging as applications are often distributed or
require work intensive configuration, setup, and specialized load
drivers for reproducible testing. As a result, it may be not feasible
to perform tests using the actual workload that is to be deployed.

We introduce an approach to create small-scale workloads
that emulate the power consumption-relevant behavior of an
application by deliberately triggering specific power relevant
performance counter events. These workloads can then be easily
deployed on a target server for fast and efficient power character-
ization. We validate the proposed approach by approximating the
power consumption behavior of different workloads at multiple
load levels. We show that our approach is capable of producing
small-scale workloads that reflect the power consumption behav-
ior of their reference applications over multiple load levels with
a minimum error of less than 1%.

I. INTRODUCTION

Energy efficiency of servers has become more and more
significant over the past decades. In 2010, the US Environ-
mental Protection Agency (EPA) estimated that 3% of the US
energy consumption is caused by data center power draw [1].
Similarly, a New York Times study from 2012 found that data
centers worldwide consume about 30 billion watts per hour [2].

Reducing this significant power consumption and improving
the energy efficiency of servers requires the ability to accu-
rately and reliably evaluate the efficiency of servers when run-
ning the applications they are expected to execute. Evaluation
results can help to improve energy efficiency by enabling, i. a.
better server purchasing and application placement decisions,
as well as efficient configuration of hardware or software.

However, performing accurate measurements with real
world applications is difficult. They are often distributed and
load is driven by external requests. This makes the setup
and configuration complex, time consuming, and difficult,
especially since it can be hard to evaluate individual soft-
ware components on their respective servers in isolation.
Additionally, internal power meters might not measure losses
in the power supply and RAPL counters only model the
CPU and DRAM. External power meters on the other hand
require stable loads for a period of time in order to provide

accurate measurements [1]. Achieving stable loads for real
world applications requires specialized external load drivers
and may also limit configurations for which a test can be run.
As a result, it is often not feasible to test the actual application.

We introduce an approach to create small-scale workloads
that emulate the power consumption-relevant behavior of
large-scale workloads by approximating their CPU perfor-
mance counter (PC) profile. We analyze PCs and their relation
to power consumption to construct a Performance counter
Event Trigger (PET) framework. PET is designed to use PC
measurements of third-party applications to construct a small-
scale workload emulating the application’s PC profile aiming
at reproducing its power consumption-relevant behavior.

PET’s small-scale workload can easily be locally executed
and measured on a target server platform. It is not part of any
larger distributed workload, requires no additional configura-
tion and is designed to be a transactional workload runnable at
different load levels for server and workload characterization.

The major contributions of this paper are:
• We characterize and analyze CPU PCs with respect to

their relevance for server power consumption modeling.
• We show that emulating a workload’s PC profile can lead

to a similar or even identical power profile.
• We propose a light-weight approach for emulating a third

party workload’s power consumption-relevant behavior,
enabling easier benchmarking of large-scale applications.

We validate our approach by its ability to accurately em-
ulate power consumption-relevant behavior of a small-scale
test application, a standard industry benchmark and a virtual
network function, which, considering its heavy I/O load, would
intuitively be expected to be difficult to model using CPU
performance events. We analyze PET’s ability to accurately
reproduce the original workloads’ PCs and power characteris-
tics and compare multiple PC triggering options. We show that
PET is capable of emulating the power consumption behavior
of realistic workloads down to 0.19W (1%) mean deviation.

The remainder of this paper is structured as follows: Sec-
tion II describes the measurement methodologies for both wall
power and PC events. Section III presents related work. We
describe our approach, including PC selection and composi-
tion, in Section IV. Finally, we evaluate the PC triggers and
approach’s accuracy in Section V, discuss possible limitations
and future work in Section VI, and conclude the paper in
Section VII.



II. FOUNDATIONS

In this paper, we measure CPU performance counters and
system AC power (wall power). Measurements of wall power
require a specialized setup and measurement methodology
with external measurement devices, whereas CPU counter
measurements require system instrumentation.

A. Power Measurement Methodology

For this work, we use the SPEC Power Methodology [3].
Existing work has shown that this methodology ensures high
accuracy for power measurements [4] and supports the char-
acterization of system power over multiple load levels [5].

The measurement methodology’s goal is achieving stable
load at multiple load levels for steady-state power mea-
surements on the system under test (SUT). To this end, it
assumes transactional workloads. Throughput is used as the
system-level performance metric for determining the current
load level. In our context, a transaction is any computational
unit for which a beginning and end can be defined so that
throughput may be measured. Load levels are defined in terms
of transaction rate. As a result, the maximum load level
(100%) is the load level that achieves the maximum system
performance in terms of throughput. A random exponentially
distributed delay between successive transactions is added to
achieve load level targets below 100%. The mean delay is
chosen so that the target transaction rate corresponds to the
selected load level.

Time

L
o

a
d

 I
n

te
n

s
it
y

P
re

-M
e

a
s
u

re
m

e
n

t 
1

5
 s

P
o

s
t-

M
e

a
s
u

re
m

e
n

t 
1

5
 s

C
a

lib
ra

ti
o

n
 

1
2

0
 s

10 s10 s 10 s 10 s 10 s

1
5

 s

1
5

 s

1
0

0
%

 L
o

a
d

 
1
2
0
 s

1
5

 s

1
5
 s

6
7

%
 L

o
a

d
 

1
2

0
 s

1
5
 s

1
5

 s

3
3

%
 L

o
a

d
 

1
2

0
 s

Scenario

Interval Interval Interval Interval

Scenario

Scenario

Scenario

Calibration Phase Measurement Phase

Fig. 1. Calibration and measurement phases. [6]

For stable measurements at the different load levels, mea-
surement is organized into multiple phases, each consisting
of one or multiple intervals, as illustrated in Fig. 1. First,
a calibration phase executes one or multiple calibration in-
tervals at maximum load that measures the SUT’s maximum
performance. Afterwards, the measurement phase measures a
separate interval for each target load level. The exact number
and target load levels depends on the specific test in question.
Each interval includes short timed pre- and post- measurement
intervals to avoid measurement during transient phases.

B. Performance Counters

Hardware manufacturers implement PCs in most processors
to monitor a system’s behavior by recording a variety of
events, such as cache misses, branch mispredictions, and
others. PCs can be read using either specialized software,

performance monitoring utilities of the operating system (OS),
or by directly accessing model specific registers of the CPU.
Most counters log events on a system wide basis but some
allow reading event subsets on a per socket or per core basis.
In general, PCs can be partitioned in two groups. Occurance
events that count how often an event has been observed and du-
ration events that count the accumulated clock ticks during the
occurance of an event [7] [8]. Reading PCs can have significant
overhead, depending on the instrumentation [9]. Care must be
taken when the third-party application is instrumented so the
maximal throughput is not influenced, including a dedicated
benchmarking network.

III. RELATED WORK

PET generates performance events for efficiency bench-
marking. Thus, we group related work in the following two
categories.

A. Energy Efficiency and Benchmarking

A wide variety of work exists on energy efficiency bench-
marking with a focus on CPU-intensive workloads. Yet, most
contributions are focused on a broader scope, such as [6], in
which workloads are distributed hierarchically from multiple
machines down to simultaneous multithreading, or [10], which
distributes virtual network functions efficiently while also
taking software defined networking into account. [11] concen-
trates on the trade-off between the virtualization overhead and
efficiency increase when using VMs to aggregate workloads
on fewer physical machines with higher utilization. Yet, using
less systems does not necessarily increase efficiency, as shown
in [5], in which the efficiency of the SERT CPU workloads
under different load levels is measured. [11] also explores the
influence of different workloads on efficiency. The proposed
solution tries to simulate workloads on a lower level without
the need to approximate multiple connected systems.

A different point of view is presented in [4], showing that
repeatable power measurements can be difficult to achieve and
measurement results can vary, even with nominally identical
CPUs. This work focuses on a specific component rather than
a complete system, in which the CPU is only one of many
components influencing the efficiency.

B. Power Estimation and Performance Counters

PCs are often used for software performance analysis or
for compiler optimizations [12] [13]. For example, power con-
sumption aware thread scheduling based on PCs is explored
in [14] and [15]. Having a framework that can reliably trigger
performance events can be used for validation and testing such
implementations.

Modeling power consumption based on PCs is also a
possible application. In [16], [17] and [18], models are devel-
oped that estimate power consumption as a function of PCs,
dependent on the workload. [19] creates a model based on PCs
but focuses on embedded devices with specialized CPU and
memory architecture. [20] describes a tool based on PCs for
the UltraSPARC platform which provides energy estimations.



These works show that PCs can be used for power estimations.
It is therefore expected that the proposed framework for emu-
lating the power consumption-related behavior of a workload
by triggering counter events is a viable approach for power
characterization.

[21] studies the accuracy of PC measurement facilities.
In [22] two major deviations of PCs are identified, while the
overhead of common PC implementations is researched in [9].
It is shown that the PAPI interface has significant overhead.

IV. APPROACH

The primary goal of our approach is the emulation of the
power consumption-relevant behavior on a SUT by leveraging
PCs as a basis for the emulation. To this end, PCs with
relevance to power consumption must be identified by a real
world reference workload. As an initial reference workload,
we use a deep packet inspection (DPI) firewall, as it produces
significant CPU load, but is also bound to other hardware
components due to its intensive use of network I/O.

A. General Methodology

The system on which the measurements are performed is a
HP DL20 Gen9 with 16GiB of memory (single module), a
Xeon E3-1230v5, one 500GiB 7200 rpm disk drive, two dual
port 1GBit/s network adapters (BCM5720) and a standard
non-redundant 290W power supply. We use Debian with ker-
nel version 3.16.0-4-amd64. Use of different hardware should
not influence PET. We assume that each component uses a
minimum amount of energy to be active and is consuming a
specific amount of energy for each event occurrance. PET’s
goal is approximation of a software’s power consumption
characteristics using a PC approximation. Many hardware
differences, such as active idle consumption, affect the original
software and the approximation equally and have no bearing
on the applicability of PET. System dependability might be an
issue if the system is different in a major form, for example
an extra L4 cache.

Our approach consists of the following four steps:
a) Identifying Relevant PCs: The firewall is measured at

ten load levels, ranging from 10% to 100% in 10% steps.
During the measurement, PCs and power consumption are
recorded once per second. Relevant counters are identified by
correlating an increase in counter events with the increase of
power consumption over the different load levels using the
Pearson correlation coefficient. A PC is considered relevant
if its correlation with power consumption exceeds 0.8. It is
assumed that some PCs are collinear, causing other counters
to be triggered as side effects. Instead of not implementing
counters causing side effects in PET, we chose to compensate
side effects. Counters with dependencies or those requiring
active management, such as CPU frequency, are excluded.

b) Implementing Event Trigger: As the next step, we
implement event triggers designed to generate the respective
performance events on demand by executing suitable artificial
workloads. The accuracy of an event trigger can be influenced

by implementation details and several competing trigger im-
plementations are analyzed for each event under consideration.
The implementations capable of reaching the defined target
counter values with best accuracy are selected for PET. We
also analyze potential side effects of our implementations by
measuring the influence of event trigger implementations on
other counters. Side effects must be considered, given that
some PCs are not independent of each other. Recorded side
effects are used to determine interactions/influences between
performance events and their potential impact regarding the
final power consumption emulation. We also consider back-
ground noise, which if not considered may lead to erroneous
assumptions regarding the event trigger accuracy and side
effects. Consequently, we measure the counter background
noise on the SUT in an idle state for 120 s.

c) Workload Composition: PET creates the final work-
load for power consumption behavior using one of three
composition mechanisms. The mechanisms differ by how they
account for the PC side effects that are caused by the concrete
trigger implementations and possible collinearities. The first
naive method ignores side effects and operates only on the
target event count recorded for the workload. The second
composition mechanism accumulates the side effects. If an
event causes a side effect, its target value is multiplied with
the number of side effects it is causing. All side effects
on an event are summed and subtracted from the original
target value. The third composition method uses simulated
annealing, as described in [23]. We use simulated annealing, as
PCs can have non-linear dependencies to a degree that makes
an analytic solution of integrating side effects unfeasible.
Simulated annealing is preferred to regular hill climbing as
it is less prone to be caught in local extrema.

d) Trigger Pruning: Finally, we prune event triggers
from the composition. In cases where some PCs reach values
close to the system’s background noise, it may be beneficial
to remove them from the composition under the assumption
that they have a low or negative impact on the system’s power
consumption. We make this assumption if the PC in question:
i) is overcounting by at least one order of magnitude, taking
into account the median over all load levels, ii) features a
correlation with power consumption of less than 0.9 in the
reference measurement or iii) features a median reference
value below the background noise.

Not pruning transactions may lead to inaccuracies in both
the power consumption as well as the target performance in the
power measurement methodology. The power methodology is
based on reaching target load levels by injecting respective
target throughputs, which can only be done if the sizes of
transactions within the workload are sufficiently small, so that
steady state can be reached during measurement. However,
triggers can only ever trigger a whole number of performance
events. PET’s goal is to preserve the ratio between different
performance events for each transaction within the workload.
Consequently, triggering events that occur in very small num-
bers causes all other events to have to be triggered in relatively
high numbers, in turn causing transactions to grow in size.



This can cause instability in power measurements as large
transactions are run at low frequencies, making it hard to
ensure steady state during measurements.

B. Performance Counter Relevance to Power

In this first step of our approach, we analyze PCs with
respect to their relevance for modeling a system’s power
consumption profile. The goal of this analysis is the selection
of the most power relevant counters for inclusion in the PET
framework.

Counters that are implemented in PET and that have a
high correlation with system power include L3MISS, L2MISS,
READ, WRITE, INST, irq and ctxt. Despite lower correlation
(< 0.8), L3HITs and L2HITs are selected, considering that
cache misses do correlate with power consumption. If a
memory access misses L2, it could either hit or miss L3. It
therefore seems reasonable to include L3HIT as L2 misses
could directly generate L3 hits if needed. As the cache’s
content needs to be controlled to reliably trigger cache misses,
L2HIT is also included in PET despite a correlation of 0.727.
Correlation on the remaining events is deemed too low to
be relevant or the event has a dependency on an already
implemented counter.

C. Event Trigger Implementation

Triggers to generate performance events can be imple-
mented in multiple ways. The following paragraphs describe
our competing implementations for triggering counters.

To trigger cache hits, misses and memory access, an array
of at least twice the L3 cache size and up to 2048MiB is used.
The array is traversed in a step size of 2, 4 and 6 times the
cache line to determine if it has an influence on accuracy.
A random number is added to each step size to account
for the influence of hardware prefetching which can detect
linear memory access. To determine if different instructions
allow for a better accuracy, C, non-temporal SIMD intrinsics,
and Assembler (ASM) for read, write and copy functionality
are implemented. Each combination is tested with process
owned memory, shared memory and mapped kernel memory
marked as uncachable via the page attribute table. In case of
uncachable memory, only fixed pointers are used.

Retired instructions are implemented by looping over an
instruction adding a constant to a temporary variable. For
each iteration, the counter is incremented by the amount of
assembler instructions that build the loop.

To trigger a context switch, a new process or thread has to
be created. We create a thread with an empty workload that
is switched in and immediately joined to be switched out by
the OS. Consequently, context switches are always triggered
in groups of two.

We use the Boost open source library to generate interrupts
by program the advanced programmable interrupt controller to
throw a local timer interrupt after a deadline is reached. The
deadline is set to the minimum value after which interrupts
can be observed.

V. EVALUATION

We evaluate our approach by measuring each trigger imple-
mentation by itself to determine its accuracy. Each trigger’s
most viable solution is incorporated into PET for use in the
final workload compositions. This final framework is then
evaluated for its ability to emulate the power consumption
behavior of different server workloads with increasing com-
plexity. For each of the workloads, measurements are taken
for parallel and sequential versions with one, four and eight
processes. As L2 cache misses are triggered as L3 hits, L2
misses are implicitly evaluated using L3 hits.

A. Accuracy of Performance Event Triggers

We evaluate the event trigger implementations based on
their ability to reach pre-defined constant event counter num-
bers. The target ensures that the trigger implementation works
and the deviation shows how accurate a trigger can modify
its corresponding PC. Cache counters are evaluated based on
their ability to accurately reach a target count of 1 × 106,
memory access target count is 64×106 due to always reading
or writing a complete cache line. For instructions retired, a
value of 1× 1010 is set as target count. Context switches and
interrupts are set to 1× 105. For parallelization, target values
must be reached for each process. PCs are measured on an
idle system for 120 s to establish the background noise.

a) L3 Cache Misses: Figure 2 shows that all read (red)
and copy (blue) implementations reach a low deviation if used
sequentially with step size 6 and random factor for higher
memory sizes. For 512MiB, the ASM read implementation
reaches the best deviation of -3.5%. The copy implementations
perform equally well but exhibit higher side effects by writing
and reading from memory. Write functions (green) generate
almost no cache misses. The accuracy of the event trigger
decreases without randomness, except for ASM that cannot be
optimised by the compiler. Decreasing the step size reduces
the accuracy for all implementations. Using shared memory
instead of process memory yields similar behavior. Setting
parts of memory as uncachable results in a negligible amount
of L3 cache misses. We assume that accessing uncachable
memory is not counted towards cache misses and is therefore
not further investigated. The L3 cache miss trigger exhibits
similar behavior when used in parallel with 4 and 8 processes.
Using shared memory requires system calls but is otherwise
comparable to using process memory and not used in PET.
We can conclude that a step size of 6 works best overall
and that the C and ASM implementations exhibit a higher
overall accuracy than the SIMD implementation, with ASM
exhibiting the most promising characteristics. It is included in
PET without randomness and a step size of 6 together with a
memory size of 512MiB, as a compromise between memory
footprint and accuracy.

b) L3 Cache Hits and L2 Cache Misses: Cache hits
are measured similarly as L3 cache misses, except we only
evaluate a step size of 6 due to its promising characteristics.
The results with a random step are presented in Table I. Results
without randomness and write functionality are not presented



16 32 64 128 256 512 1024 2048
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Memory allocated (Mbyte)

L3
 c

ac
he

 m
is

se
s

 

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

Fig. 2. L3 cache misses at different allocated memory sizes for one process,
step size 6, random step and target value 1× 106

Processes ASM SIMD C

1 Read 923 975 966 181 971 336
Copy 922 185 979 248 968 232

4 Read 3 391 786 3 408 932 3 537 446
Copy 2 218 435 3 155 795 2 701 179

8 Read 5 253 885 4 047 238 4 199 528
Copy 3 738 683 4 343 272 4 320 763

TABLE I
L3 CACHE HITS FOR PROCESS OWNED MEMORY WITH RANDOM STEP AND

TARGET VALUES 1× 106 , 4× 106 AND 8× 106 BYTES

due to not reaching the target values by a large margin. Using
shared memory results in similar behavior as observed with
L3 cache misses. As with L3 cache misses, ASM and C
implementations perform better than SIMD. With a deviation
of -11.5%, the C read implementation performs best up to
4 processes in parallel. Increasing the process count above
the number of physical cores (4) does not scale well. The C
read trigger shows the most deterministic behavior overall and
scales with the process count up to the physical core count and
is used in PET.

c) L2 Cache Hits: The separate L2 cache hit trigger is
not able to generate enough cache hits to reach the target value
and not deemed sufficiently accurate to be included in PET.

d) Bytes Read from Memory Controller: As shown for
L3 cache misses, a step size of 6 works best in triggering
cache misses and investigations for other step sizes are omit-
ted. The results in Table II show a large overcount on all
implementations and memory sizes. Especially if parallelizing
using 4 processes, the ASM read implementation comes close
to the target value with only a small deviation. With 8
processes, deviations are larger with over -30% across all
implementations. The ASM read function performs similarly
as the C function and works well on lower process counts if
combined with uncachable memory. ASM read is used in PET.

e) Bytes Written to Memory Controller: The bytes writ-
ten counter behaves similar to Figure 2 using process owned
memory. The implementation works well for memory sizes
of 512MiB and larger. Adding a random step size generally
performs better due to circumventing hardware prefetching.
Yet, implementations are not as accurate when parallelized.
The event trigger struggles at approximating the target value

Processes Implementation Bytes read Deviation

1 SIMD 64 002 560 0.004%
ASM 64 038 080 0.060%
C 64 025 024 0.039%

4 SIMD 242.41× 106 −5.31%
ASM 255.98× 106 −0.01%
C 191.16× 106 −25.33%

8 SIMD 326.43× 106 −36.24%
ASM 343.67× 106 −32.88%
C 347.82× 106 −32.07%

TABLE II
BYTES READ RESULTS AND DEVIATION WITH UNCACHABLE MEMORY FOR

TARGET VALUES 64× 106 , 256× 106 AND 512× 106 BYTES

in multi-process environments. Using shared memory yields
the same characteristics and the uncachable memory did not
perform as expected with poor accuracy.

f) Instructions Retired: Retiring instructions works with
good accuracy and deviations of 0.05%, 0.30% and 0.52%
for 1, 4 and 8 processes respectively.

g) Context Switches: To test if our trigger implementa-
tions causes context switches in groups of two, we evaluate the
implementation with different correction factors f by which
the target event count is divided. The results using f = 2.00
of our assumption and f = 1.00 cause high deviations in all
cases. We also test a correction factor of f = 1.25. This works
well with one and four processes with deviations of 0.6%
and 0.2%. With eight processes, a slightly higher deviation of
−5.4% can be observed. We therefore use f = 1.25 in PET.

h) Interrupts: The results show that the interrupt imple-
mentation performs well with only minor deviations of 0.3%,
0.2% and −0.2% for 1, 4 and 8 processes.

B. PET

PET is evaluated using three workloads with increasing
complexity on the same set of selected performance counters.
The first is the synthetic workload PI, designed to only stress
the CPU by approximating π using the Gregory-Leibniz series.
The second workload, XMLValidate is a standard benchmark
workload from the SPEC SERT [1] stressing the CPU and
memory. For each transaction, XMLValidate randomly moves
comments inside an XML document which is then validated
against a XML schemata. The last and most demanding
workload is a DPI firewall that also uses additional network
interface cards (NICs) driven by external load generators.

For each load level, a pre-measurement, measurement and
post-measurement time of 30 s, 120 s and 10 s is used. For each
workload, we evaluate PET’s three composition mechanisms
to include the measured side effects. The mean and maximum
deviation and coefficient of variation (CV) over all load levels
is presented in our work. We also analyze the ability to accu-
rately trigger the target performance counters and evaluate the
results for each of the three different composition mechanisms.

a) PI Workload: When using a performance trigger com-
position that ignores side effects, power consumption behavior
seems accurate on average. However, the maximum deviation
is over 10% as shown in Table III. If accumulating side effects,
the CV is higher but it deviates less from the target power



Power Deviation
Measurement Mean Max. CV

PI Naive 2.95% 14.96% 6.94%
Full Accumulation −1.93% −12.43% 7.24%

Sim. An. −42.05% −59.63% 28.26%

PI Naive −1.32% −4.39% 1.79%
Pruned Accumulation −0.62% −4.51% 2.00%

Sim. An. 2.18% 9.36% 3.45%

XMLVal. Naive −10.48% −38.93% 27.69%
Full Accumulation −4.32% −11.29% 5.04%

Sim. An. −52.57% −67.78% 26.81%

XMLVal. Naive −23.31% −39.48% 29.82%
Pruned Accumulation −4.36% −11.57% 5.40%

Sim. An. −18.85% −27.02% 8.61%

NFV Naive −6.63% −16.35% 8.27%
Full Accumulation −23.69% −40.19% 14.33%

Sim. An. −20.77% −35.97% 12.33%

NFV Naive −4.52% 27.18% 13.42%
Pruned Accumulation −23.38% −39.83% 14.28%

Sim. An. −20.83% 36.20% 12.28%

TABLE III
WORKLOAD EMULATION RESULTS WITH MEAN AND MAXIMUM

DEVIATION AND CV

consumption on average and at its peak. Using simulated
annealing to account for side effects does not perform as
well and has a lower accuracy. Still a low deviation of below
5% can be achieved on simple workloads. When pruning
performance triggers, all triggers except instructions retired
and context switches can be removed. Pruning event triggers
results in an overall improvement for all three composition
methods. For PI, accumulating side effects for the pruned
trigger composition is determined as the best solution, as its
average deviation is closest to the target power consumption
behavior with only marginally higher maximum deviation and
CV. The results show that the local, CPU heavy, PI workload
can be approximated with good accuracy and only minor
deviations from the target power behavior with our approach.
It also shows that event trigger pruning can be beneficial for
workloads that are focused on specific hardware components.

b) XMLValidate: For the XMLValidate workload accu-
mulation works well and reaches deviations and a CV com-
parable to the PI workload. Simulated annealing and naive
composition are not as accurate. L3 cache misses and hits,
bytes read and written, and the retired instruction count are not
pruned for all measurements. The interrupts are pruned from
all configurations due to low correlation. Context switches are
removed from accumulation due to a significant overcount.
Using a more complex workload does not necessarily result in
a higher deviation as XMLValidate shows. The accumulation
measurement is in close proximity to the PI workload, with
a mean deviation of below 5%. Yet, pruning performance
triggers does not necessarily yield better results. This is mainly
due to the workload stressing more hardware components,
which in turn leads to fewer event triggers that can be removed.

c) NFV: The DPI firewall stresses hardware parts other-
wise not used by the previously employed CPU and memory
bound workloads. Using the firewall, we evaluate the ability
to emulate the power consumption-relevant behavior even

though specific hardware components (NICs) remain unused.
The results in Table III show that this can be achieved.
The naive composition that ignores side effects works best,
deviating the least from the target in both mean and maximum
power consumption. Yet, PET slightly underestimates power
consumption consistently. All compositions favor underesti-
mation. This behavior is expected considering that PET does
not utilize NICs. The accumulation and simulated annealing
compositions do not achieve the naive method’s good accuracy
with higher deviations and CVs.

Only L3 cache misses can be pruned not resulting in
an overall better approximation. This coincides with the
XMLValidate workload. Accumulation and simulated anneal-
ing show only minor effects on the efficacy of pruning. Pruning
improves the naive composition on average but at the cost of a
higher CV and maximum deviation. We assume that the mean
deviation would be close to the full measurement without an
overestimation at the 90% load level.

VI. FUTURE WORK

Most results using simulated annealing show that it does
not improve results as assumed. One possible cause could
be the parameterization of the simulated annealing algorithm
which leaves room for improvements. Another option would
be an energy function less suited for balancing PC events and
their side effects. We still think annealing techniques can help
improve the results but need further research for our use case.

Some of the less optimal results shown in the XMLValidate
workload are most likely based on the write PC. XMLValidate
exhibits large amounts of memory access which is the least
accurate event trigger in PET. Further research in this direction
is necessary to increase the accuracy of the trigger implemen-
tation, making PET more accurate on complex workloads.

To further increase accuracy and support a broader range
of systems, other PCs for disk I/O or GPU could also be
investigated in the future.

VII. CONCLUSION

In this paper, we introduce PET, a framework for creation
of synthetic workloads that emulate the power consumption-
relevant profile of other applications. PET is intended to
be used to emulate workloads for which the setup of a
power benchmarking infrastructure is either highly complex or
infeasible. Specifically, we show PET’s use in the context of
benchmarking virtual network functions, which usually require
a complex network setup.

PET emulates specific power consumption-relevant behav-
iors by triggering the performance counter events measured of
the original workload. For this, it composes performance event
trigger implementations into a synthetic workload, considering
their power relevance and counter interdependencies. We show
that PET can emulate the power consumption of workloads
with an average deviation of less than 10% even if the original
workload used additional hardware, such as network interface
cards. It can reach a deviation of less than 1% when emulating
workloads that do not employ such additional hardware.



REFERENCES

[1] K.-D. Lange and M. G. Tricker, “The Design and Development of the
Server Efficiency Rating Tool (SERT),” in ICPE 2016, ser. ICPE ’11.
New York, NY, USA: ACM, 2011, pp. 145–150. [Online]. Available:
http://doi.acm.org/10.1145/1958746.1958769

[2] C. Babcock, “NY Times data center indictment misses the big picture,”
2012.

[3] Standard Performance Evaluation Corporation, “SPEC Power and Per-
formance Benchmark Methodology,” http://spec.org/power/docs/SPEC-
Power and Performance Methodology.pdf.

[4] J. von Kistowski, H. Block, J. Beckett, C. Spradling, K.-D. Lange, and
S. Kounev, “Variations in CPU Power Consumption,” in ICPE 2016.
New York, NY, USA: ACM, March 2016.

[5] J. von Kistowski, H. Block, J. Beckett, K.-D. Lange, J. A. Arnold, and
S. Kounev, “Analysis of the Influences on Server Power Consumption
and Energy Efficiency for CPU-Intensive Workloads,” in ICPE 2015,
ser. ICPE ’15. New York, NY, USA: ACM, February 2015.

[6] J. von Kistowski, J. Beckett, K.-D. Lange, H. Block, J. A. Arnold, and
S. Kounev, “Energy Efficiency of Hierarchical Server Load Distribution
Strategies,” in MASCOTS 2015. IEEE, October 2015.

[7] AMD64 Architecture Programmer’s Manual Volume 2: System
Programming, Advanced Micro Devices Inc., April 2016. [Online].
Available: http://support.amd.com/TechDocs/24593.pdf

[8] Intel R© 64 and IA-32 Architectures Software Developer’s
Manual, Intel Corporation, June 2016. [Online]. Avail-
able: http://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-manual-325462.pdf

[9] V. M. Weaver, “Self-monitoring Overhead of the Linux perf event
Performance Counter Interface,” in ISPASS 2015. IEEE, March 2015,
pp. 102–111.

[10] R. Bolla, R. Bruschi, C. Lombardo, and S. Mangialardi, “DROPv2:
Energy-Efficiency through Network Function Virtualization,” IEEE Net-
work, vol. 28, no. 2, pp. 26–32, Apr. 2014.

[11] Y. Jin, Y. Wen, and Q. Chen, “Energy Efficiency and Server Virtu-
alization in Data Centers: An Empirical Investigation,” in 2012 IEEE
Conference on Computer Communications Workshops, Mar. 2012, pp.
133–138.

[12] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A Performance
Counter Architecture for Computing Accurate CPI Components,” in
ASPLOS XII, 2006, pp. 175–184.

[13] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. O’Boyle, and
O. Temam, “Rapidly Selecting Good Compiler Optimizations using

Performance Counters,” in CGO ’07 Proceedings of the International
Symposium on Code Generation and Optimization, 2007, pp. 185–197.

[14] K. Singh, M. Bhadauria, and S. A. McKee, “Real Time Power Estimation
and Thread Scheduling via Performance Counters,” ACM SIGARCH
Computer Architecture News, vol. 37, pp. 46–55, May 2009.

[15] F. Bellosa, “The Benefits of Event-Driven Energy Accounting in Power-
Sensitive Systems,” in Proceedings of the 9th workshop on ACM
SIGOPS, 2000, pp. 37–42.

[16] W. L. Bircher and L. K. John, “Complete System Power Estimation
Using Processor Performance Events,” IEEE Transactions on
Computers, vol. 61, no. 4, pp. 563–577, Apr. 2012. [Online].
Available: http://dx.doi.org/10.1109/TC.2011.47

[17] A. Lewis, S. Ghosh, and N.-F. Tzeng, “Runtime Energy Consumption
Estimation Based on Workload in Server Systems,” in Proc. of the
2008 Conf. on Power Aware Computing and Systems, ser. HotPower’08.
Berkeley, CA, USA: USENIX Association, 2008, pp. 4–4. [Online].
Available: http://dl.acm.org/citation.cfm?id=1855610.1855614

[18] C. Isci and M. Martonosi, “Runtime Power Monitoring in High-End
Processors: Methodology and Empirical Data,” in Proceedings
of the 36th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 36. Washington, DC, USA:
IEEE Computer Society, 2003, pp. 93–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=956417.956567

[19] G. Contreras and M. Martonosi, “Power Prediction for Intel XScale R©

Processors Using Performance Monitoring Unit Events,” in Proceedings
of the 2005 International Symposium on Low Power Electronics and
Design, ser. ISLPED ’05. New York, NY, USA: ACM, 2005, pp. 221–
226. [Online]. Available: http://doi.acm.org/10.1145/1077603.1077657

[20] I. Kadayif, T.Chinoda, M. Kandemir, N. Vijaykrishnan, M. Irwin, and
A. Sivasubramaniam, “vEC: Virtual Energy Counters,” in PASTE’01,
2001, pp. 28–31.

[21] D. Zaparanuks, M. Jovic, and M. Hauswirth, “Accuracy of performance
counter measurements,” in ISPASS 2009, Apr. 2009, pp. 23 –32.

[22] V. M. Weaver, D. Terpstra, and S. Moore, “Non-Determinism and Over-
count on Modern Hardware Performance Counter Implementations,” in
Performance Analysis of Systems and Software, 2013. ISPASS 2013.
IEEE International Symposium on, 2013.

[23] D. Henderson, S. H. Jacobson, and A. W. Johnson, The Theory
and Practice of Simulated Annealing, F. Glover and G. A.
Kochenberger, Eds. Boston, MA: Springer US, 2003. [Online].
Available: http://dx.doi.org/10.1007/0-306-48056-5 10


