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Abstract

Proactively managing the performance and resource e�ciency of
running software systems requires techniques to predict system
performance and resource consumption. Typically, performance
predictions are based on performance models that capture the
performance-relevant aspects of the considered software system.
Building performance models involves the estimation of resource
demands, i.e., estimating the time a unit of work spends obtaining
service from a resource.
A number of approaches to estimating the resource demands of a
system already exist, e.g., based on regression analysis or stochas-
tic �ltering. These approaches di�er in their accuracy, their ro-
bustness and their applicability. For instance, there are notable
di�erences in the amount and type of measurement data that is
required as input. However, to the best of our knowledge, a com-
prehensive evaluation and comparison of these approaches in a
representative context does not exist.
In this thesis, we give an overview of the state-of-the-art in re-
source demand estimation and develop a classi�cation scheme for
approaches to resource demand estimation. We implement a sub-
set of these estimation approaches and evaluate them in a repre-
sentative environment. We analyze the inuence of various factors
of the environment on the estimation accuracy, considering the
impact of current technologies, such as multi-core processors and
virtualization.
Our work improves the comparability of existing estimation ap-
proaches and facilitates the selection of an approach in a given
application scenario. Additionally, it shows possible directions for
future research in the �eld of resource demand estimation.
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Zusammenfassung

Um die Leistung und Ressourcene�zienz von Softwaresystemen
zur Laufzeit vorausschauend steuern zu k�onnen, werden Metho-
den f�ur die Vorhersage der Leistung und des Ressourcenbedarfs
eines Systems ben�otigt. Vorhersagen zur Leistung basieren typi-
scherweise auf Modellen, die relevante Leistungseigenschaften des
betrachteten Softwaresystems erfassen. Das Erstellen eines solchen
Modells beinhaltet die Sch�atzung von Ressourcenverbr�auchen, d.h.
die Sch�atzung der Zeit, die eine Ressource f�ur die Bearbeitung ei-
nes Auftrags ben�otigt.
Es gibt bereits eine Reihe von Verfahren zur Sch�atzung der Res-
sourcenverbr�auche eines Systems, die zum Beispiel auf Regressi-
onsanalyse oder stochastischen Filtern basieren. Diese Verfahren
unterscheiden sich in ihrer Genauigkeit, ihrer Robustheit und ihrer
Anwendbarkeit. Es gibt zum Beispiel betr�achtliche Unterschiede
bei der Menge und der Art der Messdaten, die als Eingabe er-
wartet werden. Es gibt unserem Kenntnisstand zufolge keine um-
fassende Evaluation und kein Vergleich dieser Verfahren in einer
repr�asentativen Umgebung.
Diese Arbeit gibt einen �Uberblick �uber den aktuellen Stand der
Technik im Bereich der Sch�atzung von Ressourcenverbr�auchen und
es wird ein Klassi�kationsverfahren f�ur Verfahren zur Sch�atzung
von Ressourcenverbr�auchen entwickelt. Wir implementieren eine
Untermenge dieser Sch�atzverfahren und evaluieren sie in einer re-
pr�asentativen Umgebung. Wir analysieren den Einuss von ver-
schiedenen Umgebungsein�ussen auf die Genauigkeit der Sch�at-
zungen und betrachten dabei auch die Auswirkungen von aktu-
ellen Technologien, wie zum Beispiel Multi-core Prozessoren und
Virtualisierung.
Unsere Arbeit verbessert die Vergleichbarkeit von existierenden
Sch�atzverfahren und vereinfacht die Auswahl eines Verfahrens in
einem konkreten Anwendungsszenario. Au�erdem verdeutlicht sie
m�ogliche zuk�unftige Forschungsrichtungen auf dem Gebiet der
Sch�atzung von Ressourcenverbr�auchen auf.
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1. Introduction

People and companies increasingly rely on IT services to automate tasks and processes in
many application areas. These services are subject to a set of performance requirements. A
failure to meet performance requirements can result in substantial �nancial losses [MDA04].
Therefore, performance plays a vital role in the development and operation of IT services.

Performance requirements de�ne objectives for the timeliness and resource e�ciency of a
system [Smi02]. The performance of a system can be de�ned as the degree to which a
system meets these objectives. This de�nition of performance is compatible with green
computing [WC08], as it postulates the minimization of the resource consumption of a
system while ensuring its timeliness objectives, such as response time and throughput.

Software projects are often focused primarily on functional correctness and postpone per-
formance considerations to later phases of the system lifecycle [SW02]. There is a common
belief that performance problems can be solved by simply adding additional hardware or
tuning the software later. However, the time and cost required to �x the performance of a
system at later stages outweighs the costs of built-in performance [Smi90]. Therefore, per-
formance requirements need to be considered during the complete system lifecycle, starting
with the requirements analysis, through design and development, and all the way up to
operation and maintenance.

Software Performance Engineering (SPE) is a \systematic, quantitative approach to the
cost-e�ective development of software systems to meet performance requirements" [SW02].
At each stage of the system lifecycle, SPE provides methods to predict the expected
performance of a system and helps to achieve the optimal performance [MDA04]. At
system design time, performance evaluation helps to compare di�erent design alternatives
regarding their performance characteristics. At deployment time, performance prediction
allows to determine the required server capacity for current and future workloads. During
system operation, the performance inuence of workload and system con�guration changes
needs to be evaluated when proactively managing software systems to permanently ensure
performance requirements.

Performance models are commonly used to predict the performance of a system [Kou05].
A performance model is an abstraction of a real system capturing its performance-relevant
aspects. Performance models are usually less expensive to build and analyze than per-
forming experiments on a real system and can also be used in early stages of the system
lifecycle, when no running system is available.

1



2 1. Introduction

1.1. Motivation

The construction of a performance model involves its parameterization. We need to de-
termine these parameters based on available information about the system represented
by the performance model. One type of parameters are resource demands. Resource
demands describe to what extent a resource is used for serving a request from a client.
Resource demands are of vital importance when analyzing a performance model quan-
titatively. Determining representative values of resource demands can be a challenging
and time consuming process [LZGS84]. In most cases, resource demands are not directly
observable at the system of interest. Then we have to estimate the resource demands from
available performance measures. Therefore, e�cient and reliable estimation approaches
for resource demands are necessary.

Many approaches to resource demand estimation have been proposed over the years.
These estimation approaches use varying mathematical methods, e.g., regression analy-
sis or stochastic �ltering, to infer resource demands from measurements at a real sys-
tem. When selecting an appropriate approach to resource demand estimation, we have to
consider di�erent characteristics of the estimation approach, such as the expected input
measurements, its accuracy or its robustness to measurement anomalies. Depending on
the constraints of the application context, only a subset of the estimation approaches is
applicable.

To the best of our knowledge there is no comprehensive survey of the state-of-the-art in
resource demand estimation. Furthermore, the evaluation of existing approaches to re-
source demand estimation di�ers in its scope. Most of the work is focused on speci�c
characteristics of one estimation approach. A comparative evaluation of di�erent estima-
tion approaches has not been performed yet. Therefore, the selection of an appropriate
approach to resource demand estimation is a challenging task.

In this thesis, we develop a classi�cation scheme for approaches to resource demand esti-
mation. The classi�cation scheme will de�ne the dimensions along which estimation ap-
proaches can be described and compared. Additionally, we will carry out further evaluation
of existing approaches in order to improve the comparability of estimation approaches. We
see the following bene�ts of this work:

� An overview of the state-of-the-art in resource demand estimation is provided in this
thesis. It can serve as an introduction to the topic of resource demand estimation.

� Each approach to resource demand estimation is subject to certain limitations. The
classi�cation scheme and the subsequent evaluation can help to identify and show
the limitations of an estimation approach.

� The classi�cation scheme can provide guidelines for a systematic selection of an
approach to resource demand estimation. Performance engineers are enabled to
readily compare a number of estimation approaches and to consider the pros and
cons of each estimation approach.

� Both the classi�cation scheme and the evaluation can help to identify future research
directions in the �eld of research demand estimation. These include extensions of
existing estimation approaches, combinations of two or more approaches, or the
application in new contexts, e.g., CPUs with dynamic voltage and frequency scaling
or in virtualized environments.

1.2. Aim of the Thesis

The aim of this thesis is the classi�cation of existing approaches to resource demand es-
timation and their evaluation in a realistic experiment environment. Based on a compre-
hensive literature research, we describe the state-of-the-art in resource demand estimation

2



1.3. Outline 3

and compare the assumptions and characteristics of the di�erent approaches to resource
demand estimation. We build a classi�cation scheme for these approaches to resource de-
mand estimation showing commonalities and di�erences between estimation approaches.
The evaluation comprises a set of experiments in a realistic experiment environment. The
evaluation is focused on online estimation approaches, which are applicable during system
operation.

In this thesis, we pursue the following goals:

� Identify existing approaches to resource demand estimation and determine their in-
trinsic assumptions and constraints.

� Develop a classi�cation scheme for approaches to resource demand estimation. The
idea of the classi�cation scheme is to facilitate the selection of an estimation approach
given a speci�c application scenario.

� Design a tool enabling the analysis of approaches to resource demand estimation.

� Design and conduct a series of experiments in a realistic experiment environment.
The goal of the evaluation is to improve the comparability of di�erent estimation
approaches.

� Identify future research directions in the �eld of resource demand estimation.

We provide ready-to-use implementations of a selected subset of approaches to resource
demand estimation as part of our tool. The tool uses non-intrusive, low overhead mea-
surements from standard monitoring tools as input, prepares the measurement data for
estimation and executes a con�gurable number of estimation approaches. The tool pro-
vides common functionality shared by many estimation approaches and can signi�cantly
reduce the e�ort of implementing additional estimation approaches.

1.3. Outline

Chapter 2 explains the foundations of the thesis. We then give an overview of the state-
of-the-art in resource demand estimation in Chapter 3. In Chapter 4, we describe the
classi�cation scheme for approaches to resource demand estimation. Chapter 5 gives an
overview of how we evaluate the approaches to resource demand estimation. In Chapter 6,
we explain the implementation of our tool for resource demand estimation. Chapter 7
contains the evaluation results.

3





2. Foundations

In this chapter, we give a short introduction to methods, models and tools that are used
later in the thesis. First we describe the core concepts of queueing theory. Then we
shortly explain the mathematical methods used by di�erent approaches to resource de-
mand estimation. Afterwards, we show how to obtain measurements required for resource
demand estimation. Finally, we give an overview of the Ginpex framework and the TPC-W
benchmark, which will be used for evaluation purposes.

2.1. Queueing Theory Background

The core concept of queueing theory is a queue (also called service station). In general
terms, a queue consists of a waiting line and one or more servers. Customers arrive
at the queue and are served immediately at the server if at least one is currently not
occupied. Otherwise, they have to wait in the waiting line until a server is free. After
service completion the customers leave the queue. Figure 2.1 shows an example of a queue
with a single server. The queueing paradigm can be used to create performance models of
computer systems. Physical resources, such as CPUs or disks, are represented by queues
in the performance model. In this context the server is also called resource and requests
(or transactions or jobs) are processed by the resource. In the following description we
will use these more speci�c terms.

Queue

Waiting Line Server

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Figure 2.1.: Single-server queue.

A number of terms are commonly used when describing the timing behaviour of a queue.
Requests arrive at the queue at arbitrary points in time. The number of requests per
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6 2. Foundations

time unit is called arrival rate. The time span between consecutive requests is called
interarrival time. Each request requires a certain amount of processing at a resource. The
time a resource is occupied with processing a request is called service time. The time a
request resides in the waiting line waiting for service is called queueing delay. When one
request is completed, the next is selected from the requests in the waiting line according
to a scheduling strategy. Typical scheduling strategies are First-Come-First-Serve (FCFS),
Processor-Sharing (PS) or In�nite-Server (IS). The sum of service time and queueing delay
is called the response time of a request at a queue.

There is a standard notation for describing a queue, which is called Kendall's notation. It
consists of six parameters A/S/m/B/K/SD where [Kou05]:

� A stands for the interarrival time distribution,

� S stands for the service time distribution,

� m speci�es the number of servers,

� B speci�es the maximum number of requests that a queue can hold,

� K speci�es the maximum number of requests that can arrive at the queue,

� and SD stands for a scheduling discipline.

Typical values for the distribution parameters are [Kou05]:

� M = Exponential (Markovian) distribution,

� D = Deterministic distribution, i.e. constant times without variance,

� Ek = Erlang distribution with parameter k,

� and G = General distribution.

Several queues can be connected together to form a Queueing Network (QN). Connections
between queues describe the possible routes on which a request can move through the QN.
If the requests come from outside sources to the QN and leave it on service completion,
the QN is called open. If no requests enter or leave a QN, it is closed. If a QN is open for
some requests and closed for others, it is called mixed.

If we want to analyze a QN quantitatively, we have to characterize its workload. The work-
load describes which and how many requests arrive at the system. Requests are grouped
into workload classes according to selected criteria, such as involved applications, func-
tions, resource consumption, etc. [Kou05, p. 133f]. For each workload class the workload
intensity and the resource demands for each individual queue need to be speci�ed. The
workload intensity describes the number of requests arriving at the system. The resource
demand is de�ned as following [LZGS84,MDA04]:

De�nition (Resource demand or service demand). The resource demand is the total av-
erage service time of a request at a resource over all visits. It can be de�ned as

Di;r = Vi;r � Si;r; (2.1)

where Di;r is the service demand of requests of class r at resource i, Vi;r is the number of
visits of requests of class r at resource i and Si;r is the average service time of requests of
class r at resource i.

The terms resource demand and service demand can be used interchangeably. In the
following we will use the term resource demand.

6



2.2. Mathematical Background 7

Given a QN, we can determine performance quantities of this QN using basic relationships
from operational analysis. In the following, two of those relationships, which are relevant
for resource demand estimation, are described. The Utilization Law is de�ned as [MDA04,
p. 64f]

Ui;r = Si;r �Xi;r (2.2)

where Ui;r is the utilization at resource i due to requests of class r, Si;r is the mean service
time of a request at resource i and Xi;r is the throughput of resource i.

The Service Demand Law is de�ned as [MDA04, p. 65f]:

Di;r =
Ui;r

X0;r
: (2.3)

It relates the service demand of requests of class r at resource i to the utilization Ui;r and
the total system throughput of class r. Vi;r speci�es the number of visits of requests of
class r at resource i.

If several assumptions hold for a QN, we can directly derive the mean response time of
requests at a queue with load-independent resource demands with the relation [MDA04, p.
366]

Ri;r =
Di;r

1� Ui

(2.4)

where Ri;r is the mean response time of requests of class r at resource i, Di;r is the resource
demand of requests of class r at resource i and Ui is the utilization of resource i. This equa-
tion is valid for open QNs. See [MDA04] for the corresponding equations of closed QNs.
When using this equation, the interarrival times must have an exponential distribution.
Furthermore, the QN must have a product-form solution. The BCMP theorem of Bas-
kett, Chandy, Muntz and Palacios de�nes a combination of service time distributions and
scheduling disciplines for which multi-class QNs have a product-form solution [MDA04]. If
a queue has a FCFS scheduling strategy, the service time distribution must be exponential.
PS queues can have any kind of service time distribution. For other scheduling strategies
see [MDA04].

2.2. Mathematical Background

In this section, we explain mathematical methods that are commonly used for resource
demand estimation. The methods are presented here in a general manner. In Section 3.1,
the application of these methods in the context of resource demand estimation is described.

2.2.1. Linear Regression

Given a set of independent variables x1 : : : xk and a dependent variable y, linear regression
tries to describe the relationship between the dependent variable and the independent
variables with the linear model

y = �0 + �1x1 + �2x2 + : : :+ �kxk + �: (2.5)

In regression analysis, y is known as response variable and xj with 1 � j � k as control
variables. The goal is to determine the parameters �j with 0 � j � k in such a way that
the residuals � are minimized regarding a speci�c measure. Examples for such measures
are the sum of squared residuals used in Least Squares (LSQ) regression or the sum of
absolute di�erences used for Least Absolute Di�erences (LAD) regression. To be able
to determine a unique solution for the parameters �j , at least n sets of known values

7



8 2. Foundations

(y; x1 : : : xk) are required, where n > k. The above linear model can be written in matrix
notation as [CP95, p. 96�]

Y = X� + � (2.6)

with following matrices

X =

0
BBB@
1 x1;1 x1;2 � � � x1;k
1 x2;1 x2;2 � � � x2;k
...

...
...

...
1 xn;1 xn;2 � � � xn;k

1
CCCA ;Y =

0
BBB@
y1
y2
...
yn

1
CCCA ; � =

0
BBB@
�1
�2
...
�n

1
CCCA and � =

0
BBB@
�0
�1
...
�k

1
CCCA :

X is called control matrix andY is the response vector. We assume that the vector of error
residuals � is independent and identically distributed with mean E[�] = 0 and a constant
variance. Then we can conclude that E[Y] = X� [CP95, p. 97]. The parameter vector �
needs to be estimated.

LSQ regression estimates the parameter vector � by minimizing the sum of squared resid-
uals. Hence, the following expression needs to be minimized

�T � = (Y �X�)T (Y �X�): (2.7)

The value �̂ that minimizes the previous expression can be calculated with following
formula [CP95, p. 97]

�̂ = (XTX)�1XTY: (2.8)

2.2.2. Kalman Filtering

Statistical �ltering is about the estimation of a hidden state of a dynamic system from
known system inputs and incomplete and noisy measurements [KTZ09]. In this context,
the term state is de�ned as follows:

"The states of a system are those variables that provide a complete represen-
tation of the internal condition or status at a given instant of time." [Sim06,
p. xxi]

The term dynamic system implies that the state of the system changes over time. Di�erent
statistical �ltering methods have been proposed. We describe the Kalman �lter here in
more detail because it is often used to estimate resource demands.

Generally speaking, we can distinguish between discrete-time and continuous-time systems.
Accordingly, di�erent de�nitions of the Kalman �lter exist for these types of system.
Subsequently, we will concentrate on discrete-time Kalman �lters. The notation used is
based on the one used in [KTZ09] and [Sim06].

The system state x is a vector containing the variables that describe the internal state
of a system. These variables cannot be directly observed at a system. The Kalman �lter
estimates the vector x from a series of measurements z. The system is described by two
equations. The �rst equation describes how the system state evolves over time according
to [Sim06]

xk = Fk�1xk�1 +Gk�1uk�1 +wk�1: (2.9)

The time advances in discrete steps, which are denoted by index k. xk is the system
state at time step k, which is calculated from the previous system state xk�1 and the
control vector uk�1 containing the inputs of the system. The matrices F and G are called
state transition model and control-input model. The process noise wk�1 is assumed to be
normally distributed with zero mean and covariance Qk.

8



2.2. Mathematical Background 9

The second equation describes the relationship between the system state xk and the mea-
surements zk at time step k according to [Sim06]

zk = Hkxk + vk: (2.10)

The matrix Hk is the observation model, which maps the state space to the observation
space. vk is the observation noise, which is assumed to be Gaussian white noise with zero
mean and covariance Rk.

If the relation z = h(x) between system state and measurements is non-linear, the Ex-
tended Kalman �lter (EKF) can be used. The EKF approximates a linear model with the
following output sensitivity matrix:

Hk =

�
@h

@x

�
x̂kjk�1

: (2.11)

The output sensitivity matrix is set to the Jacobian matrix of h(x). The partial derivatives
are evaluated with the current estimates of the system state. The vector x̂njm represents
the estimated system state x̂ at time step n given measurements z1 : : : zm.

The Kalman �lter is a recursive estimator. It starts with an initial state and continuously
updates its estimate as new measurements are obtained. At each time step k the calcula-
tions only depend on the previous estimate x̂k�1jk�1 and the current measurements vector
zk [KTZ09]. The internal state of the �lter is represented by two variables:

� the state estimate x̂kjk,

� and the error covariance matrix Pkjk.

The error covariance matrix is a measure for the estimated accuracy of the state esti-
mates [KTZ09]. At the beginning the �lter is initialized with given values for x̂0j0 and
P0j0.

The algorithm that calculates new state estimates consists of two phases [KZT09]: Predict
and Update. In the predict phase a new state estimate x̂kjk�1 is calculated with Equa-
tion 2.9. In the update phase the prediction error of x̂kjk�1 is determined according to the
current measurements zk. Then a corrected estimate x̂kjk is calculated. These two steps
are carried out each time a new measurement sample vector gets available.

Assuming a linear relationship between the measurements and the system state, and un-
correlated and normally distributed noise with zero mean, the Kalman �lter is an optimal
estimator. Since most systems are inherently nonlinear, the EKF provides a linear ap-
proximation for cases with slightly nonlinear characteristics [ZWL08]. When applying the
EKF to nonlinear problems, it is a Best Linear Unbiased Estimator (BLUE).

2.2.3. Mathematical Optimization

The estimation of resource demands can be formulated as a mathematical optimization
problem. Generally speaking, an optimization problem is described by a cost (objective)
function f with a domain D � R

n and a constraint set 
 � D [Dos09]. The objective
function can be either minimized or maximized. In the following, we assume that it should
be minimized. Then the optimization problem is also called minimization problem and can
be solved by �nding a value �x 2 
, so that

f(�x) � f(x); x 2 
: (2.12)

9



10 2. Foundations

Solutions of a minimization problem are called (global) minimizers [Dos09]. In contrast
to global minimizers, there are also local minimizers. A local minimizers �x sati�es the
condition

f(�x) � f(x); x 2 
; kx� �xk � � (2.13)

for � > 0 [Dos09].

Optimization problems can be classi�ed into di�erent categories. There are constrained
and unconstrained optimization problems. In the case of unconstrained optimization prob-
lems, there are no additional constraints in the constraint set, i.e., 
 = D. If additional
equality and inequality constraints are given, we speak of constrained optimization. De-
pending on the degree of the objective function and the constraints the following types of
optimization problems exist:

� Linear programming problems have a linear objective function and a set of linear
equality and inequality constraints.

� Quadratic programming problems are optimization problems with a quadratic objec-
tive function and a set of linear equality and inequality constraints.

� Non-linear programming problems can have any kind of non-linear objective function
and/or non-linear constraints.

Di�erent solution algorithms exist for the di�erent types of optimization problems. De-
scriptions of possible solution algorithms can be found in [Dos09] and [Nem89].

2.2.4. Independent Component Analysis

The original motivation for developing Independent Component Analysis (ICA) can be
illustrated with the so-called cocktail-party problem [HO00]: If there are a number of
people in a room talking simultaneously, how can we separate the speech signal of each
person assuming that only a mix of all signals can be recorded? The procedure of separating
the original signals from a set of mixed signals without deeper knowledge of the original
signal is called blind source separation. ICA is one method for blind source separation.
Today, ICA is used not only in signal processing but also in many other domains. As we
will later see in Section 3.1.4, it can be used for resource demand estimation, too.

Assuming that the observed mixtures xi are always a linear combination of the independent
components sj with some parameters aij , the relation can be written as [HO00]

x1 = a11s1 + a12s2 + : : :+ a1nsn

x2 = a21s1 + a22s2 + : : :+ a2nsn

...

xm = am1s1 + am2s2 + : : :+ amnsn:

xi and sj are both random variables. This linear equation can be also written using matrix
notation as

x = As (2.14)

where x is a random vector of the mixtures xi, s a random vector of the independent
components sj and A is called mixing matrix. Equation 2.14 describes the ICA model.
The general procedure of ICA is as follows: First ICA estimates the mixing matrix A, then
it calculates the inverse of A and derives the independent components s [HO00]. There
are di�erent methods to estimate the mixing matrix A. These methods are based on the

10



2.3. System Monitoring Approaches 11

assumption that the elements in vector s are statistically independent. See [HO00] for
examples.

It is important to note here that ICA does only work if the independent components have a
non-Gaussian distribution. If this is not the case, ICA fails to estimate the mixing matrix
A. In the case of Gaussian variables, the matrix A is not identi�able [HO00]. In fact, it
is possible to have one Gaussian variable in the model [HO00]. Then ICA still works.

2.3. System Monitoring Approaches

In order to determine the resource demands of a performance model correctly, we usually
depend on measurements at a running system. We can use monitoring tools to obtain
these measurements. Menasc�e [MDA04] distinguishes between three types of monitors:

Hardware. Hardware monitors provide measurements at the hardware level. They incur
no additional overhead. However, software-related information cannot be captured.

Software. A software monitor uses application or kernel instrumentation to perform mea-
surements. With these monitors it is possible to collect more �ne-grained mea-
surements, e.g., at process or even function-level. However, there are drawbacks
[PSST08]: application instrumentation requires changes to the code, kernel instru-
mentation relies on middleware or kernel agents to collect the data. In both cases
the monitoring activities can produce a signi�cant overhead.

Hybrid. Hybrid monitors combine features of hardware and software monitors. However,
these monitors need to be integrated into the system and are not available in common
systems.

Additionally, there are two possible modes of monitoring [MDA04]: event-trace and sam-
pling. Event-trace monitors collect and count single events, such as disk read operations.
If the event rate is high, this approach is not practical anymore. Sampling monitors only
collect data at discrete points in time. Thus, depending on the sampling interval, they can
reduce the monitoring overhead, even if the event rate is very high. However, the precision
also declines with longer sampling intervals.

Apart from monitoring tools, log �les can be used as a source of information. These log �les
are often created automatically by servers. For instance, web servers usually keep track of
all requests in a log. Performance measures, such as response time or queue length, can
be extracted from these log �les [KPSCD09].

2.4. Ginpex Framework

Ginpex [HKHR11] (Goal-oriented INfrastructure Performance EXperiments) is a frame-
work that allows to determine infrastructure properties, such as OS scheduling parameters
or virtualization overhead, with automated experiments. The framework can induce cer-
tain load patterns on a System under Test (SUT) during these experiments. We use this
feature of the framework during evaluation in order to generate arti�cial workloads with
speci�ed resource demands.

A measurements model contains a set of tasks modeling the workload pattern and a set of
probes de�ning the measurements of interest. There are di�erent tasks available: control
ow tasks, e.g., loop and parallel tasks, and resource demand tasks for di�erent types of
resources (CPU, network, I/O and disks). With these tasks it is possible to model custom
workload patterns. The measurements model is transformed into a Java program that is
deployed and run on the SUT. During program execution the speci�ed measurements are
obtained from the SUT.

11



12 2. Foundations

2.5. TPC Benchmark W

TPC-W [TPC02] is a web application benchmark simulating the operation of an online
bookstore. The web application is designed to be representative of typical internet com-
merce applications [TPC02]. The benchmark consists of a database, a set of dynamic web
pages and a load driver that emulates user sessions, also called Emulated Browsers (EBs).
The standard does not prescribe any implementation technologies. In our evaluation, we
use an implementation1 based on Java servlets and a MySQL database.

Browsing Type Ordering Type

Home Shopping Cart
New Products Customer Registration
Best Sellers Buy Request
Product Detail Buy Con�rm
Search Request Order Inquiry
Search Result Order Display

Admin Request
Admin Con�rm

Table 2.1.: TPC-W transactions.

The TPC-W standard de�nes 14 transactions that the online bookstore supports. These
transactions are listed in Table 2.1. The transactions can be roughly classi�ed into two
groups: browsing and ordering type. The former consists of read-only transactions, the
latter contains transactions updating the database. Furthermore, the standard also de�nes
three transaction mixes. These transaction mixes have di�erent ratios between browsing
and ordering transactions. The list of the standard transaction mixes is shown in Table 2.2.

Transaction Mix Browsing Type Ordering Type

Browsing 95 % 5 %
Shopping 80 % 20 %
Ordering 50 % 50 %

Table 2.2.: TPC-W transaction mixes.

The workload is generated as follows: Each EBs represents one user in the system. An EB
starts a user session, in which it calls several of the transactions in Table 2.1. The standard
describes the possible navigation paths within a user session with state transition tables
including transition probabilities between the transactions. The user think times between
two transactions and the minimum user session lengths are drawn from an exponential
distribution [TPC02]. It is possible to scale the workload by con�guring the mean user
think time and by changing the database size. The database size is determined by the
number of items and the number of customers.

1http://jmob.ow2.org/tpcw.html
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3. State of the Art

This chapter describes the current state of resource demand estimation. We did a com-
prehensive literature research on the topic of resource demand estimation and identi�ed a
number of di�erent approaches that have been proposed so far. We describe the results
of this literature research in the following sections. In Section 3.1, we explain how the
di�erent approaches work and what their fundamental assumptions are. In Section 3.2,
we give an overview of how these di�erent approaches have been evaluated in literature.

3.1. Resource Demand Estimation

In this section, we �rst describe our procedure for the literature research. Then we intro-
duce a common notation used for describing the approaches to resource demand estimation.
Afterwards, the approaches to resource demand estimation are illustrated.

Literature Research

The goal of the literature research is the identi�cation and collection of approaches to
resource demand estimation that have been published until today. The results of this
literature research are the foundation for the classi�cation scheme described in Section 4.
In a �rst step we used common scienti�c search engines, such as scholar.google.com, por-
tal.acm.org and citeseerx.ist.psu.edu, to get a �rst set of candidate articles on the topic.
We only considered scienti�c articles published in journals and conference or workshop
proceedings. In a second step, we analyzed the bibliographies of the articles found in the
previous step. We repeated this step until no additional articles were found. We then
collected the authors of the articles found and systematically scanned their publication
lists. Finally, we searched the proceedings of conferences well-known in the performance
modeling community. The conferences and workshops we considered are listed in Table A.1
on page 97.

There are several terms that are commonly used in literature instead of resource demand
estimation. Some authors speak of estimating service demands, service times or service
requirements. Additionally, resource demand estimation is also used as part of more
general activities, such as workload characterization, parameter estimation and model
calibration. We used these terms as keywords when searching for articles on the topic of
resource demand estimation.

We focused our literature research on approaches that depend only on measurements that
are obtained from a running system without intrusive application instrumentation. The
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14 3. State of the Art

reason for this decision is that we are mainly interested in estimation approaches that
are also applicable to live production systems where the internals of the application of
interest might be unknown. Therefore, we did not look at approaches that try to estimate
resource demands with static code analysis of the application source code or bytecode, such
as [Kap07], or that rely on pro�ling and application instrumentation, such as [BDIM04].

Notation

We use the following notation for the subsequent description of approaches to resource
demand estimation. We denote resources with the indexes i; j and workload classes with
the indexes c; d. The following parameters are used:

� Di;c is the average resource demand of requests of workload class c at resource i,

� Ui;c is the average utilization of resource i due to requests of workload class c,

� Ui is the average total utilization of resource i,

� �c is the average arrival rate of workload class c,

� Xc is the average throughput of workload class c,

� Rc is the average response time of workload class c,

� Ai;c is the average queue length of requests of workload class c seen on arrival of a
new request at resource i,

� I is the number of resources,

� and C is the number of workload classes.

Matrices and vectors are written in bold letters. We use capital letters for matrices, e.g.,
R, and small letters for vectors, e.g., r.

We assume that the Flow Equilibrium Assumption [MG00, p. 280] holds, i.e., that over
a su�ciently long period of time the number of completions is equal to the number of
arrivals. As a result, the arrival rate �c is equal to the throughput Xc. Therefore, arrival
rate and throughput are interchangeable in the following descriptions.

3.1.1. Service Demand Law

The Service Demand Law states that the resource demand of workload class c at a resource
i can be derived from the utilization of resource i due to workload class c and the through-
put of workload class c [MDA04, p. 65f]. See Equation 2.3 on page 7 for details. We can
use this relationship to determine resource demands based on utilization and throughput
data measured at a real system. However, we need to measure the utilization separately
for each work class. In most cases we only get the total utilization of a resource and must
estimate the per-class utilization then.

Kounev identi�es two approaches to estimating resource demands using the Service De-
mand Law [Kou05, p. 135�] :

� If only requests of one workload class arrive at the system of interest during a distinct
time interval, we can approximate the utilization due to this workload class by the
total utilization of the resource.

� In cases where requests of di�erent workload classes arrive at the system of interest
simultaneously, we need to apportion the utilization between the di�erent workload
classes appropriately.
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3.1. Resource Demand Estimation 15

The former approach is usually only applicable in dedicated experiment environments
where we can control the workload. In most cases the workload in a production environ-
ment consists of a mix of requests of di�erent workload classes. Then we can only use the
latter approach.

Di�erent methods for apportioning the total utilization between workload classes have
been proposed. Lazowska et al. [LZGS84, p. 285�] describe a method based on per-class
utilization measurements from an accounting monitor. Since accounting monitors fail to
capture the system overhead caused by requests of a workload class, they discuss di�erent
ways to distribute the unattributed CPU busy time between di�erent workload classes.
In [MAD97,MA98,MDA04], Menasc�e discusses further methods for apportioning based
on additional metrics collected by the operating system. Brosig et al. use in [BKK09]
an ad-hoc method to partition the total utilization Ui of resource i based on weighted
response time ratios. They estimate the per-class utilization from the total utilization
with the following relationship [BKK09]:

Ui;c = Ui �
Rc � �cPC
d=1Rd � �d

: (3.1)

It is implicitly assumed that the measured response time Rc of workload class c is approx-
imately proportional to the corresponding resource demands of this workload class, i.e.,
the response time Rc does not include any signi�cant time spent at other resources than
the one considered.

3.1.2. Approximation with Response Times

As described in Section 2.1 the response time of a request at a queue is the sum of the
queueing delay and the resource demand. If we assume that there are no queueing delays
and the response times do not include signi�cant time spent at other resources, the response
time is equal to the resource demand. In general, if queueing delays are signi�cantly smaller
than the resource demands, we can approximate the resource demands with the observed
response times. Obviously, this approximation only works if the resource utilization and
respectively the queueing delays are low.

Two di�erent variants of the response time approximation approach can be found in lit-
erature. Nou et al. [NKJT09] continuously measure the response time of each request
and use the minimum observed response time in a period of time as an estimate of the
resource demand. They assume that the actual resource demands have a small variance.
In [UPS+07] and [BKK09] the average response time over a period of time is used as an
estimate instead.

In cases where a system consists of multiple resources and we need to estimate resource
demands for each resource separately, we need extensions to the previously described
approach to resource demand estimation. Urgaonkar et al. [UPS+07] apply the response
time approximation approach when modeling a multitier internet application. They start
with the last tier, which does not call any external services on other tiers, and approximate
the resource demands of this tier with the response times measured at the tier. Then they
determine for each tier the time it waited for results from external services on other tiers.
The resource demand of the tier is the observed response time minus the time waiting for
other services. Nou et al. [NKJT09] try to break down the response times into the time
waiting for external services and the time using the resource for calculations. They use
utilization measurements to estimate the time needed to invoke external services.
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3.1.3. Linear Regression

A classic way to infer resource demands is based on regression analysis [BS78,RV95,KP-
SCD09, PSST08, CCT07, ZCS07, KZ06, SKZ07]. It was used early in [BS78] to estimate
the CPU utilization due to operating system supervisory calls on mainframe computers.
Later, Rolia et al. [RV95] discussed its use to estimate the resource demands of application
services.

The linear model of the linear regression is usually based on the Utilization Law (see
Equation 2.2 on page 7). Given a workload consisting of multiple workload classes, the
model can be described by the following relationship:

Ui =
CX
c=1

�cDi;c + Ui;0: (3.2)

The intercept term Ui;0 can be used to estimate the utilization due to any kind of back-
ground work in the system that is not described by a workload class. It is optional and can
be left out. Paci�ci et al. [PSST08] encountered problems estimating Ui;0 in some cases.
Therefore, they recommend to remove the intercept term from the model [PSST08].

In order to solve the model with linear regression, we need to obtain at leastN simultaneous
measurement samples of the aggregate utilization U and the arrival rate �c of each workload
class from the system. N must be greater than the number of resource demands we
want to estimate. With these measurements the matrices for Equation 2.6 on page 8
can be initialized in the following manner: The dependent response vector contains the
measurements of the total utilization and the control matrix contains the arrival rates for
each workload class.

Commonly, LSQ regression is used to get resource demand estimates from the previously
described linear model. However, when using LSQ regression for resource demand estima-
tion, several issues can arise:

� LSQ regression assumes that the resource demands Di;c are constant. However,
in reality the resource demands are stochastically distributed. Depending on the
actual form of the distribution of the resource demands the estimation errors di�er
signi�cantly [RV95].

� It is implicitly assumed that there are no close correlations between control vari-
ables. If there is no linear relation between control variables, they are called or-
thogonal. However, this is often not the case. Slightly related variables do not
inuence the regression analysis signi�cantly. If two or more control variables have
a close linear relation, we speak of multicollinearity or collinear data [CP95, p. 183].
Multicollinearity causes non-unique and unstable solutions and should therefore be
avoided [PSST08]. In [PSST08] the authors identify two common reasons for mul-
ticollinearity: (a) Two or more requests are related to each other, e.g., the number
of login requests usually approximately equals the number of logout requests. (b) If
there is only little variation in the control variables, the measurements usually su�er
from collinearity. Therefore, we need to make sure that the observation period is
long enough to capture signi�cant variances [PSST08,RV95].

� Outliers may disproportionally inuence the resulting parameter estimates. Out-
liers may provide valuable insight, but they can just result from some erroneous
measurements, too. Therefore, outliers should be detected and specially analyzed.

� We need to make sure that the system of interest is not modi�ed during the observa-
tion period. Modi�cations, such as hardware or software upgrades, might inuence
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3.1. Resource Demand Estimation 17

the resource demands. Such changes can be easily excluded in controlled environ-
ments. However, in production systems these changes are often not avoidable. In
such cases the analysis should be done separately for periods with a stable system.

� Ordinary LSQ regression can yield a solution with negative parameter values. Neg-
ative resource demands are not allowed. Therefore, we should add an additional
constraint that all entries in the resulting parameters vector must be non-negative.

There are a number of methods proposed in literature to avoid some of these issues. Paci-
�ci et al. [PSST08] use ordinary LSQ regression, but include several ad-hoc techniques to
reduce the inuence of multicollinearity and insigni�cant or low contributing ows. Zhang
et al. [ZCS07] use non-negative LSQ regression to avoid negative estimates. Stewart et
al. [SKZ07] come to the conclusion that the estimates provided by LAD regression pro-
duce more accurate models than their LSQ counterparts. Furthermore, LAD regression
is more robust to outliers [SKZ07]. In [CCT07,CCT08] the authors use robust regression
techniques, such as Least Trimmed Squares (LTS) regression, to cope with outliers, discon-
tinuities due to software or hardware upgrades, and multicollinearity. Similarly, Cremonesi
et al. [CDS10] consider the application of a clusterwise regression algorithm to estimate
resource demands in presence of software or hardware upgrades.

All of the previously described approaches based on linear regression use a model derived
from the Utilization Law. In contrast, Kraft et al. [KPSCD09] propose an approach based
on an alternative model using measurements of response times and queue length on arrival.
They assume a closed QN, where the system of interest is represented by one M/M/1 queue
with FCFS scheduling strategy [KPSCD09]. Then the mean response time of requests can
be described in the single workload case with the following relationship from Mean Value
Analysis (MVA):

Ri = Di(1 +Ai)

With this relation, generalized to multiple workload classes and arbitrary resource demand
distributions, they de�ne a linear model that can be solved by linear regression. They use
non-negative LSQ regression to obtain estimates of the resource demands.

3.1.4. Kalman Filter

Kalman �lters can be used to estimate the hidden state of dynamic systems. A general de-
scription of Kalman �ltering can be found in Section 2.2.2. Zheng et al. [ZYW+05,ZWL08]
consider the application of Kalman �lters to estimate hidden performance parameters of
a time-varying software system from a series of measurements. They chose the Kalman
�lter due to its ability to adapt quickly to changes in parameter values over time.

When using Kalman �lters for resource demand estimation we need to de�ne a state
and a measurement model that describe the dynamics of the system of interest and the
measurement process. Various formulations of these models are possible. In [ZYW+05], the
authors give some general guidelines on the structure of such models when tracking time-
varying performance parameters of a software system. They also provide an example in
which they estimate the resource demands of the systems in a typical three-tier application
with a single-class workload [ZYW+05]. Kumar et al. [KTZ09] extend this work to cases
with several workload classes. The following descriptions of the state and measurement
model are based on the �lter design described in [KTZ09].

If the system consists of a single resource, the system state x is a vector of the resource
demand of each workload class. In the case of a workload with of three classes the system
state x is de�ned as [KTZ09]

x =
�
D1 D2 D3

�T
:
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18 3. State of the Art

Assuming that there is no a-priori knowledge about the dynamics of the system state, a
constant state model is used, i.e, the state transition model Fk is the identity matrix. The
Equation 2.9 on page 8 is reduced to

xk = xk�1 +wk:

The measurement model can be based on di�erent kinds of measurements. In [ZWL08],
Zheng et al. propose to use a subset of the following components for the measurement
model:

� throughput,

� mean response time,

� mean utilization,

� or mean queue length.

In general, the number of linearly independent measurements included in the measure-
ment model should be greater than the number of estimated parameters in order to ob-
tain reliable estimates [ZWL08]. Furthermore, Zheng et al. recommend to include one
measurement that is related to all estimated parameters [ZWL08]. According to these
recommendations Kumar et al. de�ne their measurement model based on utilization and
response time measurements [KTZ09]. They describe their measurement model with the
relation [KTZ09]:

z = h(x) =

0
BB@
R1

R2

R3

U

1
CCA =

0
BB@

D1
1�U
D2
1�U
D3
1�U

1
P
(�1D1 + �2D2 + �3D3)

1
CCA : (3.3)

Based on the relation R = D
1�U , it is assumed that the observed resource can be modeled

by a M/M/1 queue. The symbol P denotes the number of processors in a system, the
utilization U is the average utilization of all CPUs. The measurement model is obviously
of a non-linear nature regarding the resource demand parameters because of the utiliza-
tion in the denominator of the response time relation. Therefore, the extended Kalman
�lter [Sim06] can be used for this estimation problem, which depends on the Jacobian
matrix of the measurement model. The Jacobian matrix of the measurement model in
Equation 3.3 is
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When using Kalman �lters for resource demand estimation, several parameters need to
be tuned for good �lter performance. Especially, the covariance matrices for the process
noise Q and the observation noise R are required. Additionally, the Kalman �lter expects
an initial estimate of the state vector x̂0j0 and of the error covariance matrix P0j0. In
[ZYW+05,ZWL08] the authors give recommendations on how to choose these values.

3.1.5. Optimization

In this section, we describe estimation approaches that are de�ned as optimization prob-
lems and solved with mathematical programming methods. The linear regression ap-
proaches in Section 3.1.3 are a special type of optimization problem where the objective
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3.1. Resource Demand Estimation 19

function has a well-de�ned structure. However, as they are very common in resource
demand estimation, they are described separately in Section 3.1.3. The estimation ap-
proaches described here are based on more general objective functions.

The de�nition of an optimization problem for resource demand estimation can be derived
from queueing models with basic operational laws of queueing theory described in Sec-
tion 2.1. Zhang et al. describe in [ZXSI02] how an optimization problem for resource
demand estimation can be derived from an open queueing model consisting of one queue
with PS scheduling and another queue with FCFS scheduling. They chose this example
queueing model as they consider it to be representative of typical multi-tier server ap-
plications [ZXSI02]. However, they also state that their approach can be generalized to
more complex models with various scheduling strategies [ZXSI02]. Their objective function
minimizes the weighted sum of the response time errors [ZXSI02], i.e.

min
CX
c=1

pc(Rc � ~Rc)
2 (3.4)

where pc =
�cPC
d=1 �d

: (3.5)

~Rc denotes the measured response time, Rc is calculated from the measured arrival rates
and the utilization. Zhang et al. weigh the response time error with the proportion of
requests of workload class c. The objective function is independent from the structure
of the queueing model. Furthermore, a set of constraints are necessary. The shape of
these constraints depends on the structure of the queueing model. In general, these con-
straints can be derived from basic queueing theory relationships, such as those described
in Section 2.1. Zhang et al. provide examples for such constraints in [ZXSI02]. In their
example the constraints are all linear. Therefore, they can use Quadratic Programming
(QP) algorithms to obtain a solution of the optimization problem.

The previously described queueing network optimization approach to resource demand
estimation lays the foundation for several following articles [LXMZ03,WXZ04,LWXZ06,
KZT09], which extend this approach in di�erent directions. In all of those subsequent
articles the objective functions also minimizes the utilization errors in addition to the
response time error. The new objective function is then de�ned as [LWXZ06]

min(
CX
c=1

pc(Rc � ~Rc)
2 +

IX
i=1

(Ui � ~Ui)
2): (3.6)

~Rc denotes the measured response time, ~Ui the measured utilization. The factor pc is the
same as de�ned in Equation 3.5. In [LXMZ03] and [KZT09] the authors use a variation of
this objective function where the sums of absolute errors are replaced by sums of relative
errors. The approach described by Liu et al. [LXMZ03] and Kumar et al. [KZT09] is
called "Inferencing" and is implemented in the context of the AMBIENCE tool [LXMZ03].
"Inferencing" provides a set of constraints applicable to QNs consisting of several M/M/1
queues with PS scheduling strategy and supports multi-class workloads. Kumar et al.
describe in [KZT09] an enhanced version of "Inferencing" that supports the estimation
of load-dependent resource demands. The enhanced version requires a-priori knowledge
of the type of function, e.g., polynomial, exponential or logarithmic, that best describes
the relation between workload and resource demand. Then it returns estimates for the
parameters of these functions. In [WXZ04] and [LWXZ06], the authors describe a method
to improve robustness of approaches based on optimization problems with a similar struc-
ture as Equation 3.6. They call their method self-adjusting nested estimation proce-
dure [LWXZ06]. It is based on a series of experiments, each producing a complete set of
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measurements required to get a solution of the optimization problem. In each experiment,
they consider not only the current optimal solution but the set of all optimal solutions
since the �rst experiment [LWXZ06]. Therefore, it is more robust to noisy measurements
and outliers [LWXZ06].

Menasc�e describes an alternative optimization problem for resource demand estimation
in [Men08]. In contrast to the previously described approaches, this approach depends
only on response time and arrival rate measurements. It does not require any utilization
measurements. It minimizes the squared sum of response time errors. The optimization
problem is described as follows [Men08]:

min
CX
c=1

(Rc � ~Rc)
2 with Rc =

IX
i=1

Di;c

1�
PC

d=1 �dDi;d

(3.7)

subject to Di;c � 0 8i; c and
CX
c=1

�cDi;c < 1 8i:

This formulation is based on the solution of an open multi-class queueing model. Since the
resource demand parameter is in the numerator and denominator of the fraction, the ob-
jective function is non-linear. Therefore, non-linear programming algorithms are required
to �nd solutions of this optimization problem. In [Men08], Menasc�e uses a numerical
solver provided by Microsoft Excel for this task. Generally speaking, only local solution
algorithms are available for this kind of problem, i.e., a starting point is given and the
algorithm iteratively searches for a feasible solution in the proximity. Such algorithms
might yield only a local optimizer of the problem.

In the most general formulation of the optimization problem, as used in [Nor09], there are
only two constraints. The �rst constraint ensures that all resource demands are always
non-negative, the second one states that the utilization of each resource is always below
a hundred percent. If some of the resource demands are known a-priori, these can be
included in the optimization problem as additional constraints [Men08]. This additional
knowledge might improve the quality of the solutions.

Menasc�e describes in [Men08] a recursive estimator based on the optimization problem
de�nition in Equation 3.7. The recursive estimator is de�ned as [Men08]

Dk = f(�k; rk;Dk�1):

At each step k, the matrix Dk is calculated by solving the optimization problem with
the current measurement vectors �k and rk. The starting point of the iterative solution
algorithm is the matrix Dk�1 containing the estimates from the previous step. Addition-
ally, a smoothing �lter might be required to lower short-term variation in the estimated
resource demands. The recursive estimator can be used for online estimation of resource
demands [Men08].

3.1.6. Maximum Likelihood Estimation

In [KPSCD09] Kraft el al. develop a resource demand estimation approach base on Maxi-
mum Likelihood Estimation (MLE) using measured response times and queue lengths that
were seen on arrival of a request. In general, MLE allows us to infer statistics of a random
variable by determining the probability of observing a sample path [KPSCD09]. In the con-
text of resource demand estimation, we want to estimate the resource demand Dc of class
c. We obtain N measurements of the response time and get a sequence R1; : : : ; RN . Then
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3.1. Resource Demand Estimation 21

we search for the resource demands D1; : : : ; DC so that the probability of observing the
measured response times is maximized. The likelihood function is de�ned as [KPSCD09]

L(D1; : : : ; DC) =
NX
k=1

logP[Rk j D1; : : : ; DC ]: (3.8)

The result of this function can be interpreted as the likelihood of observing a sample
sequence with the given parameter values. The corresponding maximization problem is
then formally de�ned as [KPSCD09]

max
D1;:::;DC

L(D1; : : : ; DC): (3.9)

In order to e�ciently solve this problem, we need an expression of the likelihood function
that is analytically di�erentiable. In [KPSCD09] Kraft et al. describe how to derive such
a likelihood function. The actual representation of the likelihood function depends on the
distribution of the resource demands. With the likelihood function we can determine the
gobal maximum of the likelihood function and thus get values for the resource demands
D1; : : : ; DC that explains the measured response times best.

3.1.7. Independent Component Analysis (ICA)

As described in Section 2.2.4, ICA is a method to solve the "blind source separation"
problem, i.e., to estimate the individual signals from a number of aggregate measurements.
Sharma et al. describe in [SBC+08] a way to map the "blind source separation" problem
to resource demand estimation. They use a linear model based on the Utilization Law (see
Equation 2.2 on page 7). In matrix notation the model is [SBC+08]

D�+E = U: (3.10)

If there are I resources, C workload classes and N measurement samples, then

� D is a I � C matrix containing the resource demands of each resource and each
workload class,

� � is a C � N matrix containing the arrival rates of each workload class and each
measurement interval,

� E is a I�N matrix consisting of constant terms capturing any non-linear components
and noise,

� and U is a I � N matrix with the utilization measurements of each resource and
each measurement interval.

Given this model, the arrival rates � can be interpreted as the sources, D as the mixing
matrix and U as the aggregate observations [SBC+08]. Then ICA can provide estimates
for � and D solely based on utilization measurements of I resources.

In order to be able to apply the ICA approach to resource demand estimation certain
assumptions must hold [SBC+08]:

� The number of workload classes is limited by the number of observed resources, i.e.,
the constraint C � I must hold.

� The columns of the arrival rate matrix � need to be statistically independent.

� The arrival rates are assumed to be non-Gaussian.

� The measurement noise is assumed zero-mean Gaussian.
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22 3. State of the Art

ICA does not only provide estimates of resource demands, it also automatically categorizes
requests into workload classes. This can signi�cantly simplify the creation of performance
models. However, the resulting workload classes are hard to interpret. It is not obvious
which requests map to which of the workload classes automatically determined by ICA.
This might hinder successive performance analysis based on the results from ICA.

3.2. Related Work

The approaches to resource demand estimation described in the previous section have been
evaluated by various authors so far. The goals of these evaluations are diverse and their
scope varies. In the following, we give an overview of how di�erent approaches to resource
demand estimation have been evaluated in literature so far.

Early work on the evaluation of linear regression in the context of resource demand es-
timation was done by Rolia and Vetland in [RV95] and [RV98]. They used a simulator
modeling a single server to analyze the impact of various factors on the estimation error.
They show that the number of workload classes and the resource demand distribution have
the biggest inuence on the estimation error [RV95]. They conclude that linear regres-
sion should only be used if the variation of the resource demands is low, because linear
regression assumes constant parameters [RV98].

In [PSST08], Paci�ci et al. consider the application of linear regression in cases where
the resource demands are time-varying. They extracted tra�c patterns from real-world
systems and applied them to a micro-benchmarking servlet. They come to the conclusion
that a number of practical issues, such as insigni�cant ows, collinear ows and background
noise, need to be addressed before using linear regression [PSST08]. Furthermore, they
show that in case of time-varying resource demands linear regression can only provide
rough estimates.

The robustness of linear regression under various conditions was evaluated by Casale et
al. in [CCT07,CCT08]. The authors come to the conclusion that robust regression tech-
niques can help with many issues occurring in real environments, such as outliers, work-
load collinearity and changes in resource demands after software or hardware upgrades.
In [SKZ07] the authors conclude that LAD regression provides better estimates in the
presence of outliers than ordinary LSQ regression.

The applicability of Kalman �lters to resource demand estimation was evaluated by Zheng
et al. in [ZYW+05, ZWL08] with a single workload class. They ran experiments to as-
sess the ability of the Kalman �lter to dynamically adapt its estimates to deterministic
and random changes in resource demands. They conclude that the Kalman �lter can ade-
quately track changes in resource demands if the changes are not very sensitive [ZYW+05].
Furthermore, they ran a set of experiments to determine the inuence of the assignment
of the process noise covariance matrix Q and the measurement covariance matrix R, and
the measurement interval length. They come to the conclusion that these parameters can
be derived from information about the system with reasonable e�orts [ZYW+05]. Kumar
et al. extend the evaluation of Kalman �lters to cases with multiple workload classes
in [KTZ09]. They come to the conclusion that the Kalman �lter has convergence prob-
lems in the cases with of multiple workload classes because of an underdetermined equation
system [KTZ09].

There are also articles that compare the accuracy of di�erent approaches to resource de-
mand estimation. In [KPSCD09], Kraft et al. compare their linear regression and maxi-
mum likelihood approaches based on response times to LSQ regression based on utilization
measurements. They used traces from a queueing network simulator and from experiments
on a real system for their evaluation. They come to the conclusion that the maximum
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likelihood approach provides the best accuracy in all their experiments under di�erent
utilization levels, number of workload classes and number of measurement samples [KP-
SCD09]. In [SBC+08], the ICA approach is compared to LSQ regression. The experimental
results show that the estimation accuracy of ICA is close to that of LSQ regression, but
it is generally a bit lower [SBC+08].

3.3. Concluding Remarks

Resource demand estimation is an active �eld of research. Over the years a number of
di�erent approaches have been proposed. As shown in this chapter, these approaches
di�er in the models they are based on and in the mathematical methods they use for
estimation. These diverse models and estimation methods imply di�erent assumptions
about the structure of the system of interest and its workload. When using one of the
approaches to estimate resource demands, we must bear in mind that the underlying
assumptions of the approach are ful�lled in the current context of application. We must
choose an approach that �ts the system of interest best in order to get reliable and accurate
estimates of its resource demands.

The related work presented in the previous section provides an overview of the existing
evaluation of the di�erent approaches to resource demand estimation. In many cases the
evaluation only comprises experiments with a single approach. A few authors also compare
one approach to another. However, we could not �nd an evaluation that systematically
compares several approaches to resource demand regarding di�erent aspects. Such an
evaluation would help to select an appropriate approach to resource demand estimation
that �ts best in a given application scenario.
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4. Classi�cation Scheme

In our literature research on resource demand estimation, we identi�ed commonalities and
variation points between di�erent estimation approaches. In this chapter, we describe a
classi�cation scheme for approaches to resource demand estimation that incorporates the
�ndings of the literature research. The goal of the classi�cation scheme is to help

� to systematically choose an adequate estimation approach in a concrete application
scenario,

� to characterize the state-of-the-art and identify possible future research directions in
the �eld of resource demand estimation,

� and to determine starting points for the subsequent evaluation.

The classi�cation scheme consists of a set of dimensions. Each dimension describes a
major aspect of an approach to resource demand estimation. There are continuous and
discrete dimensions. Discrete dimensions might be further divided into categories with
several characteristics.

We describe each dimension in a separate section. Each section consists of a short in-
troduction why the dimension is necessary. Then a general description of the dimension
follows. Afterwards, if appropriate, we categorize the existing approaches to resource
demand estimation in the described dimension.

Table 4.1 gives an overview of all estimation approaches we consider here. We usually
reference these approaches by the authors' names of the publication in which we found
the estimation approach. Sometimes we need to reference a group of several estimation
approaches. To simplify matters, we then use the more generic terms listed in the other
columns of the table.

Feature Diagrams

In the following, we use feature diagrams to describe the characteristics of a dimen-
sion in the classi�cation scheme. Feature diagrams were �rst introduced by Kang et
al. in [KCH+90] to model commonalities and variability points of software products in a
domain. A feature diagram consists of a tree, in which nodes correspond to features and
edges describe the compositions of these feature. A feature is de�ned as

"a prominent or distinctive user-visible aspect, quality, or characteristic of a
software system or systems" [KCH+90].
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Features can be mandatory, which is expressed by a �lled circle above the feature, or
they can be optional, recognizable by a hollow circle. Each feature can be composed of
a set of subfeatures. Decomposition edges de�ne the relationship between subfeatures
and the parent feature. And-decomposition edges indicate that all subfeatures should be
present. Alternatives (xor-decomposition) indicate that only one of the subfeatures should
be present. Or-decomposition edges are used to express that at least one of the subfeatures
needs to be present. The graphical notation of these elements is shown in Figure 4.1.

Feature

Mandatory

Optional Alternative (xor)

Or

And

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Figure 4.1.: Notation of feature diagrams.

In the classi�cation scheme, a feature describes a characteristic or quality of an approach
to resource demand estimation. The root feature corresponds to a dimension of the classi�-
cation scheme. The subfeatures describe the characteristics of this dimension. Mandatory
or optional elements indicate whether all or respectively only some of the estimation ap-
proaches possess this characteristic.

Class Variant Approach (identi�ed by authors)

Response time
approximation

Single resource Brosig et al. [BKK09]

Multiple resources
Nou et al. [NKJT09]
Urgaonkar et al. [UPS+07]

Service Demand
Law

Brosig et al. [BKK09]
Lazowksa [LZGS84]

Linear regression

LSQ regression
Rolia et al. [RV95,RV98]
Paci�ci et al. [PSST08]
Kraft et al. [KPSCD09]

LAD regression Zhang et al. [ZCS07,SKZ07]
Robust regression Casale et al. [CCT07,CCT08]
Clusterwise regression Cremonesi et al. [CDS10]

Kalman �lter Single workload class Zheng et al. [ZYW+05,ZWL08]
Multiple workload classes Kumar et al. [KTZ09]

Optimization Menasc�e [Men08]
Zhang et al. [ZXSI02]

"Inferencing" Liu et al. [LXMZ03,WXZ04,LWXZ06]
"Enhanced Inferencing" Kumar et al. [KZT09]

MLE Kraft et al. [KPSCD09]

ICA Sharma et al. [SBC+08]

DEC Rolia et al. [RKKD10,RKCD10]

Table 4.1.: List of approaches to resource demand estimation and corresponding references.

4.1. Input Parameters

All approaches to resource demand estimation require a set of input parameters. Obvi-
ously, the concrete set of input parameters di�ers depending on the underlying mathe-
matical methods and the concrete implementation of an approach. However, we could
identify a set of parameters that various approaches share with each other. The types of
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parameters expected by an approach to resource demand estimation is one dimension in
our classi�cation scheme. We only look at types of input parameters that are directly re-
lated to the estimation approach. Input parameters speci�c to a concrete implementation
of an estimation approach are not considered here.

Dimension Description

Input parameters

Model parameters

Resources

Number

of servers

Scheduling

strategy

Workload

Resource

demands

Workload

classes

Measurements

Aggregate

. . .Utilization

Per-class

. . .Response time

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Figure 4.2.: Types of input parameters.

Figure 4.2 depicts the types of input parameters we identi�ed as a feature diagram. The
parameters can be put into two major classes: model parameters and measurements. In
general, parameters of both classes are required. The model parameters provide informa-
tion about the performance model for which we estimate resource demands. The values
of these parameters need to be known beforehand. The measurements consist of a set of
samples of di�erent metrics. These samples need to be obtained from a running system,
either a live production system or a dedicated and controlled test system. Depending on
the situation only some speci�c metrics can be measured. For instance, the available mon-
itoring tools might not support data collection of a metric or the measurement overhead of
a metric might be unacceptable in some situations. Therefore, the required measurements
are a criterion when selecting an estimation approach.

The measurements can be further grouped into aggregate and per-class measurements. Ag-
gregate measurements are collected as totals over all workload classes that are processed at
a resource. For instance, the operating system can usually report only the total utilization
of a resource, and not the utilization due to requests of a speci�c workload class. Typical
per-class measurements are

� response time (average or of individual requests),

� throughput,

� arrival rate,

� visit counts,

� and queue length on arrival.

Any combination of aggregate and per-class measurements is allowed. The response time
needs to be further di�erentiated. It can either denote the response times of individual
requests at a system or the average response time of all requests in speci�ed time intervals.
If a system is made up of several distinct resources, the response time, throughput and
arrival rate metrics can be measured at di�erent positions in the system. Then it is
necessary to clearly de�ne the scope of the metric, e.g., the response time of a request at
a given resource or the response time of the whole system. If a system is in a steady state,
the Flow Equilibrium Assumption [MG00, p. 280] holds and the throughput and arrival
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rate are equal. However, we distinguish between these two metrics in the classi�cation
scheme, as this assumption might not always hold.

Since most approaches to resource demand estimation are based on statistical inference
methods, the system of interest needs to be observed for some time, collecting several
sets of measurement samples in order to obtain representative resource demand estimates.
However, the measurement data collection can be time-consuming and costly regarding the
monitoring overhead. Therefore, the number of measurements required by an estimation
approach can be a crucial factor. Generally speaking, it is helpful if there is a method to
determine bounds for the number of necessary measurement samples.

The model parameters describe the workload arriving at the system and the involved
resources. The approaches to resource demand estimation commonly require at least in-
formation about the number of workload classes. Additionally, it is possible that we know
some of the resource demands beforehand and can provide these values to the estimation
approach in order to improve solution quality. In general, the estimation approaches also
depend on some information about the resources for which we want to determine resource
demands. We must at least provide the number of resources relevant to resource demand
estimation. However, it might also be bene�cial for estimation approaches to get additional
information describing individual resources, e.g., the scheduling strategy and the number
of servers of the queue representing the resource of interest.

Categorization of Existing Approaches

We analyzed all approaches to resource demand estimation that are listed in Table 4.1 and
determined their input parameters. Table 4.2 contains an overview of the input parameters
of each estimation approach. Parameters common to all estimation approaches, such as
the number of workload classes and the number of resources, are not included in this
table. Obviously, the required input parameters vary widely between di�erent estimation
approaches. The required measurements depend primarily on the statistical model behind
the estimation approach. Estimation approaches expecting other combinations of input
parameters might be possible as well. Especially, optimization based approaches give
the freedom to adapt the underlying models, e.g., with additional constraints capturing
knowledge about the system of interest.

Most linear regression approaches are based on the Utilization Law described in Section 2.1.
They require the total utilization of a resource and the throughput of each workload class.
In contrast, the linear regression approach Kraft et al. describe in [KPSCD09] depends on
the measured response time and the queue length seen on arrival. For the Kalman �lter,
varying de�nitions are in use. Zheng et al. propose in [ZWL08] to use a subset of the
following metrics to build a Kalman �lter: throughput, end-to-end response time, total
delay at a resource, total utilization of a resource or the mean number of requests at a
resource. The ICA approach [SBC+08] only expects the total utilization of one or more
resources. However, the number of workload classes for which it can estimate resource
demands is limited by the number of observed resources. The DEC approach [RKKD10]
is based on per-class throughput and visit counts for each resource. Additionally, it is
assumed that a set of benchmarks stressing di�erent parts of the system is available.

Some of the estimation approaches also depend partly on resource demands that are known
beforehand. Menasc�e describes in [Men08] how to calculate one or more unknown resource
demands from a set of given resource demands. The given resource demands can come
from other estimation approaches or direct measurements. Another approach that expects
resource demands for each workload class is described by Lazowska [LZGS84]. Lazowska
assumes that the resource demands are measured with an accounting monitor. Such an
accounting monitor, however, does not include the system overhead caused by a workload
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Response time approximation
- Brosig et al. 7

- Urgaonkar et al. 7a 7

- Nou et al. 7 7

Service Demand Law
- Brosig et al. 7 7 7

- Lazowska 7 7b

Linear regression
- Kraft et al. 7 7

- Other regression approaches 7 7

Kalman �lter
- Zheng et al. 7 7

- Kumar et al. 7 7 7

Optimization
- Menasc�e 7 7c

- Zhang et al. 7 7 7

- "Inferencing" 7 7 7 7 7

- "Enhanced Inferencing" 7 7 7 7

MLE 7 7

ICA 7

DEC 7 7

aResponse time per resource.
bMeasured with accounting monitor. System overhead is not included.
cA selected set of resource demands is known a priori.

Table 4.2.: Input measurements of estimation approaches.

class. The system overhead is de�ned as the work done by the operating system and that
is caused by the processing of a request. Lazowska [LZGS84] describes a way to distribute
unattributed computing time between the workload classes. Thus we can obtain improved
resource demand estimates, which also include the system overhead.

Some of the optimization approaches require information about the scheduling strategy of
the involved resources. These approaches are based on response time equations used in
MVA. These response time equations depend on the scheduling strategy. There is a sep-
arate response time equation for each scheduling strategy. The optimization approaches
described by Zhang et al. [ZXSI02], Liu et al. [LXMZ03,WXZ04,LWXZ06] and Kumar et
al. [KZT09] automatically select the response time equation corresponding to the schedul-
ing strategy of the resource.

In addition to the types of input parameters required by an estimation approach, some
approaches also provide a rule of thumb regarding the number of required measurement
samples. Approaches based on linear regression [RV95,KPSCD09,PSST08] need at least
K + 1 linear independent equations to estimate K resource demands. When using robust

29
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regression methods, signi�cantly more measurements might be necessary [CCT07]. In
[KZT09] Kumar et al. give a formula to calculate the number of measurements required
by the "Enhanced Inferencing" approach. Yet, these are only minimum bounds for the
number of measurements. A lot more measurements are typically required to obtain good
estimates [SKZ07].

4.2. Output Metrics

Approaches to resource demand estimation are usually used to determine the mean re-
source demand of requests of a workload class at a resource. However, the estimated mean
value is not su�cient in some situations. We may require more information about the
con�dence of the estimates and the distribution of the resource demands. The output
metrics an estimation approach can provide might inuence the decision for or against it.

Dimension Description

Output metrics

Distribution

Distribution functionMoments

Con�dence intervalLoad dependency

Load dependentLoad independent

Mean resource demands

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Figure 4.3.: Output parameter dimension.

Figure 4.3 depicts possible output metrics in a feature diagram. All approaches we con-
sidered provide point estimators of the mean resource demands. If the resource demand is
load-independent, this is a constant value. Otherwise, it is a function that depends, e.g.,
on the arrival rates of the workload classes [KZT09].

However, we cannot generally rely on these mean values because they are only estimates
of the real resource demands. Con�dence intervals can help us to determine the reliability
of the resource demand estimates. If a con�dence interval is relatively wide, it might be
necessary to obtain more measurements or to vary the workload in order to gain more
con�dence in the estimates [CP95]. A wide con�dence interval can also indicate inap-
propriate model abstractions. Then a more �ne-grained model might yield better results.
Yet, a con�dence interval cannot be used to determine the validity of a statistical model,
i.e., if fundamental assumptions of an approach to resource demand estimation are not
ful�lled, the resulting con�dence intervals might be incorrect or misleading [RKKD10].

So far, we have assumed that the resource demands are deterministic and constant. How-
ever, this is often not the case in real computer systems [RKKD10]. Resource demands
might depend on the data processed by an application or on the current state of the system
or application [RV95]. In order to capture these non-deterministic characteristics in a per-
formance model, we must also consider the distribution of resource demands. Estimates of
higher moments of the resource demands or ideally the distribution function help in cases
where resource demands cannot be assumed to be deterministic.

Categorization of Existing Approaches

All of the estimation approaches in Table 4.1 can estimate load-independent mean resource
demands. The "Enhanced Inferencing" approach [KZT09] also supports the estimation
of load-dependent resource demands: The resource demand can be either a polynomial,
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exponential or logarithmic function of the arrival rate. The degree of the function is
prede�ned. Then the estimation approach estimates the parameters of the load-dependent
function.

There are standard formulas to compute con�dence intervals for linear regression. For
details see [CP95]. When using these formulas for LSQ regression, it is assumed that
resource demands are deterministic and the errors are normally distributed [RKKD10]. If
these assumptions do not hold, resulting con�dence intervals might not be reliable. The
DEC approach [RKKD10] also includes the calculation of con�dence intervals, providing
more robust intervals than linear regression [RKKD10].

None of the estimation approaches in Table 4.1 supports the estimation of distribution func-
tions of resource demands. However, there are estimation approaches that can calculate
higher moments of the resource demand estimation, e.g., the variance. Both the MLE [KP-
SCD09] approach and the optimization approach described by Zhang et al. [ZXSI02] are
capable of provide estimates of higher moments. Obviously, this additional information
comes at the cost of a higher number of required measurements.

4.3. Robustness

It is usually not possible to control every aspect of a system while collecting measure-
ments due to the inherent complexity of modern computer systems. This is true both
for controlled test environments and especially for production systems. This can lead to
anomalous behavior in the measurements [CCT07]. In general, approaches to resource
demand estimation should be as robust as possible regarding such anomalous behavior in
the measurement process.

Dimension Description

The authors in [CCT07, CCT08] and [PSST08] identi�ed the following issues with real
measurement data:

� presence of outliers,

� background noise,

� con�guration discontinuities,

� collinear workload,

� and insigni�cant ows.

Background and secondary activities can have two e�ects on measurements: outliers and
background noise [CCT07]. Background noise is created by secondary activities that utilize
a resource only lightly over a long period of time. Outliers result from secondary activities
that stress a resource highly for a short period of time. Outliers can have a signi�cant
impact on the parameter estimation resulting in biased estimates [CCT07]. Di�erent
strategies are possible to cope with outliers. It is possible to use special �lter techniques in
an upstream processing step or to use parameter estimation techniques that are inherently
robust to outliers. However, outliers may provide signi�cant information, e.g., they may
result from exceptionally complex requests. In this case the measurement sample should
not be ignored. It might indicate that the performance model needs to be re�ned further.

Changes to the software and hardware con�guration can be avoided in a controlled en-
vironment, but in production environments such changes may occur, possibly resulting
in discontinuous changes of some resource demands [CCT07]. For instance, a software
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update of the operating system might signi�cantly inuence the demands of certain func-
tions of an application if it uses updated operating system procedures. If we attempt to
describe measurement data with discontinuous changes with one linear model, the esti-
mated resource demands might have signi�cant errors. Then it is better to describe the
measurements with two separate linear models, one before the discontinuity and one after
it [CCT07,CCT08].

Another challenge for estimation approaches are collinearities between the throughput
of workload classes. There are two possible reasons for collinearities in the workload:
low variation in the throughput of a workload class or dependencies between workload
classes [PSST08]. For example, if we model login and logout requests each with a sepa-
rate workload class, these classes are probably dependent. The number of logins usually
approximately matches the number of logouts. Collinearities in the workload may have
negative e�ects on the estimates. A way to avoid these problems is to detect and combine
workload classes that are dependent [PSST08].

Insigni�cant ows are caused by workload classes with very small arrival rates. Paci�ci
et al. [PSST08] experience numerical stability problems with their linear regression ap-
proach when insigni�cant ows exist. In order to avoid numerical instabilities, it might be
necessary to remove insigni�cant ows before the measurement data is used for resource
demand estimation [PSST08].

Categorization of Existing Approaches

In the following, we describe how various authors addressed the issues described above.
However, we must keep in mind that some approaches to resource demand estimation are
inherently not prone to some of these issues. For instance, response time approximation is
evidently not inuenced by collinear workload because it does not depend on throughput
or arrival rate measurements.

Generally speaking, ordinary LSQ regression is prone to outliers. Stewart et al. come to the
conclusion that LAD regression is more robust to outliers than LSQ regression [SKZ07].
Robust regression techniques as described by Casale et al. [CCT07, CCT08] try to de-
tect outliers and ignore measurement samples that cannot be explained by the regression
model. Liu et al. [LWXZ06] also include an outlier detection mechanism in their estimation
approach based on optimization.

Robust and clusterwise regression approaches are proposed in [CCT07, CCT08, CDS10]
to detect software and hardware con�guration discontinuities. If such discontinuities are
detected, the resource demands are estimated separately before and after the con�guration
change. Approaches based on Kalman �lters [ZYW+05, ZWL08, KTZ09] are designed
to estimate time-varying parameters. Therefore, they automatically adapt to the new
resource demands after a software or hardware discontinuity.

Collinearities are one of the major issues when using linear regression [CP95]. A common
method to cope with this issue is to check the workload classes for collinear dependen-
cies before applying linear regression. If collinearities are detected, the involved workload
classes are merged into one class. This is proposed in [PSST08,CCT07]. The DEC ap-
proach in [RKKD10] mitigates these dependencies, since it only estimates the resource
demands for mixes of workload classes.

Paci�ci et al. also consider insigni�cant ows in [PSST08]. They call a workload class
insigni�cant, if the ratio between the throughput of the workload class and the throughput
of all workload classes is below a given threshold. They completely remove insigni�cant
workload classes in order to avoid numerical instabilities [PSST08].
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4.4. Accuracy

When we use a model to predict the performance of a system, the accuracy of the resource
demands has a crucial inuence on the accuracy of the predictions. Di�erent estimation
approaches might yield varying accuracy in a given environment. A performance engi-
neer must be able to determine the accuracy of candidate estimation approaches. If no
past experiences are available, the performance engineer must devise experiments for his
environment. Ideally, guidelines on the general accuracy of an approach under di�erent
conditions are generally available.

4.5. Resources

A performance model can capture the performance characteristics of a system at various
levels of abstraction. Depending on the level of abstraction, di�erent types of resources
need to be considered. Each resource type has di�erent characteristics. An approach to
resource demand estimation needs to consider the characteristics of the resources for which
resource demands are estimated.

Dimension Description

Resources

I/O

NetworkHard disk

Computer systemCPU

DVFSHyper-threadingMulti-core
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Figure 4.4.: Resource dimension.

The feature diagram in Figure 4.4 depicts the resource types we distinguish in this classi-
�cation scheme. At a high level, computer systems as a whole, e.g., servers in a multi-tier
infrastructure, are modeled with a single queue. If a more detailed performance model is
required, CPUs and I/O devices are explicitly modeled as distinct queues.

If we model a computer system with a single queue, the resource demand of this queue
must account for all kinds of delays, including CPU processing and I/O contention. The
end-to-end response time of requests comprises all of these delays. Therefore, estimation
approaches based on response times are usually better suited for the estimation of the
resource demands of complete computer systems. Assuming that the response time is
dominated by the CPU and delays incurred by other resources are insigni�cant, estimation
approaches based on the total CPU utilization are also applicable to complete computer
systems. In contrast, at the level of CPUs and I/O devices, we usually cannot determine
response times for these resources. We know only the end-to-end response time of the whole
computer system consisting of several CPUs and I/O devices. Estimation approaches that
depend on response times directly measured at a resource are hard to use at this level of
abstraction.

Modern CPUs have a number of features that can inuence their performance charac-
teristics signi�cantly, such as multiple cores, hyper-threading and Dynamic Voltage and
Frequency Scaling (DVFS). Multiple cores and hyper-threading are introduced to improve
parallelism. Multi-core and hyper-threading CPUs may be represented by queues with sev-
eral servers. However, this assumption does not always hold. For example, hyper-threading
can have e�ects on utilization measurements and the factor by which the computing power
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of a machine is increased can be signi�cantly smaller than the number of cores [PSST08].
DVFS is used to improve the energy e�ciency of CPUs by throttling their speed dur-
ing phases of low utilization. CPUs with DVFS are commonly modeled by a queue with
load-dependent service times.

Regarding I/O devices, we distinguish between hard disks and network devices. There are
�ne-grained analytical disk models available, which explicitly include �ne-grained device
characteristics, such as seek times, latency, caching and command queueing. See [Sch08]
for an overview of �ne-grained analytic disk models. Here we are interested in higher-level
abstractions that consider the hard disk as a black box and are solely based on readily
available measurements. If network delays are not negligible, we must estimate these
delays, too, so that a performance model provides accurate predictions.

Categorization of Existing Approaches

Most estimation approaches we consider here are focused on the estimation of resource
demands of CPUs or CPU-bound servers. Linear regression based on the Utilization Law
can also be used to estimate I/O demands of hard disks [RV95]. However, corresponding
evaluation in the context of I/O devices is missing. There is work to estimate network
delays. However, network resources are not part of the scope of this thesis.

4.6. Virtualization

The current trend of virtualization adds additional complexity to the problem of resource
demand estimation. The Virtual Machine Monitor (VMM) now resides between the phys-
ical hardware and a VM, in which the operating systems, middleware platforms and ap-
plications run. This new layer has signi�cant inuences on the measurement process and
the estimation of resource demands.

Dimension Description

The VMM is responsible for mapping the di�erent logical devices to physical ones in virtual
environments. This mapping a�ects resource demand estimation in several ways:

� The VMM needs to translate between the logical resources and the physical ones.
For instance, it may be necessary to translate certain guest CPU instructions into
instructions of the host system [Nor09] or to channel data between virtual and real
I/O devices [CG05]. This extra work causes an overhead at the VMM layer. The
overhead needs to be charged to the VMs that caused it [CG05].

� The physical resources are shared between VMs. A scheduler is distributing the
processing time between all VMs that require the resource. Therefore, a system
might not have instant access to a resource because another VM is using it and must
wait until the scheduler assigns the resource. That causes additional contention at
the VMM layer, which needs to be taken into account when estimating resource
demands [Nor09].

� Measurements in a VM are often less reliable. Clock synchronization issues and
granularity may distort measurements [Nor09]. If the operating system does not
know about the virtualization layer, utilization statistics can be wrong because the
operating system might include the time a physical resource was dispatched to other
VMs in the utilization calculation [Nor09].

When applying an approach to resource demand estimation in virtualized environments,
we must therefore ensure that the measurements the estimation approach depends on are
correct and reliable. Furthermore, we must consider how to charge the overhead at the
VMM layer to each VM and how we cope with the additional contention at the VMM
layer.
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Categorization of Existing Approaches

There are only few documented experiences of resource demand estimation in virtualized
environments. Norton [Nor09] evaluates the applicability of the Menasc�e optimization
approach [Men08] in virtualized environments. He starts with utilization measurements,
which might be unreliable due to inuences of the virtualization layer, and calculates �rst
estimates with the Utilization Law (see Equation 2.2 on page 7. Afterwards, the Menasc�e
optimization approach is used to re�ne these initial estimates. The Menasc�e optimization
approach only depends on response time and throughput measurements, which the author
regards as more reliable than utilization measurements. The author comes to the conclu-
sion that such a combination can improve the accuracy of resulting models in the presence
of virtualized environments [Nor09].

4.7. Applicability

The applicability dimension comprises special constraints and characteristics of an ap-
proach to resource demand estimation limiting its �eld of application. We must pay
attention to these applicability aspects when choosing an estimation approach.

Dimension Description

Applicability

System loadStochastic process

Non-stationaryStationary

Estimation mode

OnlineO�ine

Number of workload classes

MultipleClassesSingle class
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Figure 4.5.: Applicability dimension.

Figure 4.5 shows four categories of the applicability dimension:

Number of workload classes. Some estimation approaches can only provide estimates of
a single workload class at a time. These approaches cannot cope with mixes of
di�erent workload classes. Either we merge all workload classes into a single class or
we ensure that during a measurement period only requests from one workload class
arrive at the system. However, if the workload consists of several workload classes,
it is usually better to take an estimation approach that supports multiple classes.

Estimation mode. We can distinguish between two modes of resource demand estimation:
o�ine and online. In the o�ine mode, measurement and estimation are temporally
separated processes. First, we collect all necessary measurements and persist them.
Afterwards, we estimate the resource demands based on all collected measurements.
In contrast, online estimators collect regular measurements from the monitored sys-
tem and instantaneously update their estimates as new measurement samples become
available. This mode of estimation is usually used in production environments in or-
der to obtain current estimates of resource demands, e.g., as input for capacity and
performance management tasks.

Stochastic process. There are situations where resource demands cannot be assumed to
follow a stationary process. For instance, adaptive software systems often recon�gure
themselves in order to adapt to changes in the workload or the execution environ-
ment. In this case the resource demands are time-varying. Older measurements
might not explain the current system state anymore. Accordingly, an approach to
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resource demand estimation must attempt to adapt to these changes in the resource
demands within an acceptable time interval.

System load. Depending on internal assumptions some estimation approaches yield a poor
performance at certain utilization levels. This can result in very inaccurate or un-
stable estimates.

Categorization of Existing Approaches

The following approaches to resource demand estimation are only de�ned for a single-class
workload. The Kalman �lter de�nition described by Zheng et al. [WZL05, ZYW+05] is
based on single-class equations. Kumar et al. extend this de�nition to multiple work-
load classes in [KTZ09]. However, they also come to the conclusion that if the system
consists of several resources, the multi-class Kalman �lter might be underdetermined and
therefore might have a slow convergence. The robust regression method described by
Casale et al. [CCT07,CCT08] is also de�ned only for single-class workloads, but should
be generalizable to multi-class cases [CCT07].

Evidently, all of the estimation approaches can be used for o�ine estimation of resource
demands. If we want to perform online estimation, recursive or incremental estimation
approaches are generally better suited, as they can gradually improve estimates with
additional measurements. A typical example of recursive estimators are Kalman �l-
ters [WZL05, ZYW+05, KTZ09], but optimization approaches are considered for online
estimation as well [Men08].

In order to be able to adapt to non-stationary resource demands, we can usually adopt es-
timation approaches to include a sliding window or age discounting mechanism discarding
older measurements. For instance, Paci�ci et al. [PSST08] propose to extend linear regres-
sion with such a mechanism. However, they come to the conclusion that it can only provide
rough estimates of time-varying resource demands. Kalman �lters as proposed by Zheng
et al. [ZYW+05] are a promising alternative for time-varying parameters [ZYW+05]. In
general, a trade-o� is required between how fast an estimator adapts to changes in resource
demands and how strongly measurement errors inuence the estimates [ZYW+05].

If we approximate resource demands with response times, e.g., described in [BKK09,
UPS+07], it is important that the resource of interest is only lightly utilized. Other-
wise, queueing delays become signi�cant and the approximation is therefore inaccurate.
If we have a system where phases of light load alternate with phases of higher loads, we
might approximate the resource demands with the minimal observed response time as
used by Nou et al. [NKJT09]. Estimation approaches using the response time equation
(see Equation 2.4 on page 7) have problems if utilization converges to a hundred per cent,
since the response time then tends to in�nity. This is the case with most Kalman �lter
and optimization approaches.

4.8. Kind of Existing Evaluation

Existing evaluation results of approaches to resource demand estimation are a great help
when selecting and applying an estimation approach. This dimension of the classi�cation
scheme describes how the estimation approaches have been evaluated in literature so far.
Additionally, the categorization of existing approaches in this dimension provides support
to identify gaps in the existing evaluation and to plan new evaluation scenarios closing
those gaps.
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Dimension Description

The resource demand values of a real system are usually not known. This makes it di�cult
to determine the accuracy of an estimation approach. We must address this challenge when
creating evaluation scenarios. We identi�ed the following common evaluation procedures
to determine the accuracy of an estimation approach:

Simulation. We create a performance model of a real or hypothetical system. Common
modeling notations are QNs, Layered Queueing Networks (LQNs) or QPNs. We
parameterize the model with �xed values for the resource demands. These values
are arbitrary and need not correspond to the resource demands at a real system.
Then we solve the performance model analytically or with simulation in order to
obtain traces of the metrics required by the estimation approach, e.g., response time
and throughput. Afterwards we use these traces as input to our estimation approach
and compare the resulting estimates to the actual values.

Arti�cial benchmarks. We can use arti�cial benchmarks that generate a de�ned load on a
resource. For instance, the benchmark may perform time-consuming mathematical
calculations to stress the CPU of a system. Each run of the benchmark corresponds
to a request to the system. Furthermore, we must de�ne an arrival process that
drives the execution of the arti�cial benchmark. We can generate a synthetic arrival
process, e.g. a Markovian process, or use arrival patterns of request observed at
a real system. While running the benchmark, we monitor the system of interest.
The resulting measurements are used for resource demand estimation. Then we can
compare the estimated resource demands with the real ones.

Real applications. We can use measurement traces from real production systems or from
experiments with application benchmarks, such as SPECjEnterprise2010, TPC-W or
RUBiS. In this case we do not have any knowledge about the real resource demands
and cannot determine the estimation error. Therefore, we build a performance model
of the system and parameterize it with the estimated resource demands. We analyze
it analytically or with simulation and compare the results, such as response time, uti-
lization or throughput, with measurement data from the real system. We distinguish
between two di�erent ways of comparing measurements with predictions [SKZ07]:

� If we compare the results of the model with the measurement traces used for
estimation, we get the explanatory accuracy.

� If we compare the results of the model with other measurement traces than
those used for estimation, we get the predictive accuracy.

Obviously, if we only consider the explanatory accuracy, we cannot discover over�tted
estimates, which might lead to wrong predictions.

Each of the mentioned evaluation procedures has its pros and cons. Simulation is easy
to use and it is possible to clearly determine the inuence of di�erent factors on the
estimates. However, it fails to capture the complexity and unforeseeable behavior of real
environments and applications. Arti�cial benchmarks allow us to use real measurements
for resource demand estimation and to know the real resource demands. Yet, the generated
workload might not always be representative of real applications. Obviously, evaluation
scenarios with real applications are desirable. However, the experiment setup for such
evaluation scenarios is complex and it is not always possible to determine which factor has
an inuence on estimation accuracy.

Categorization of Existing Approaches

Early evaluation of linear regression models was done by Rolia and Vetland [RV95,RV98]
with a simulator. The predictive accuracy of LSQ regression is considered by Zhang et
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al. in [ZCS07] with experiments based on the TPC-W suite. Stewart et al. [SKZ07] com-
pare LSQ regression with LAD regression by using measurement traces from production
systems and from an application benchmark. They evaluate both the explanatory and
the predictive accuracy. Paci�ci et al. [PSST08] examine the accuracy of LSQ regression
when estimating time-varying resource demands. They use a micro-benchmark experi-
ment, where the resource demands can be controlled by parameters and use an arrival
process based on arrival patterns at a real system. The accuracy of the response time
based LSQ regression is studied by Kraft et al. [KPSCD09] with simulation. Casale et
al. [CCT07,CCT08] evaluate robust regression approaches with measurement data from a
real system. However, they only consider the explanatory accuracy.

The Kalman �lter approach is evaluated by Zheng et al. in [ZYW+05, ZWL08] with a
single workload class. The focus of this evaluation is on the tracking performance of the
�lter. The authors use a LQN simulator and simulate random and deterministic changes to
measured parameters and assess how well the Kalman �lter can cope with these variations.
Kumar et al. [KTZ09] extend this work to scenarios with multiple classes. They use a
micro-benchmarking servlet to determine the estimation accuracy while varying the real
resource demands.

In [LWXZ06], Liu et al. evaluate their optimization based approach with data obtained
from a real server environment. They consider the explanatory as well as the predictive
accuracy of their model. Similarly, the optimization approach of Menasc�e [Men08] is also
validated against data of real systems. The evaluation there focuses on the predictive
accuracy. The approach called \Enhanced Inferencing" in [KZT09] is evaluated with data
from a real system with synthetically generated workloads. The evaluation focuses on the
explanatory accuracy of the approach.

Kraft et al. [KPSCD09] run simulation experiments to compare their MLE approach with
several regression approaches. The ICA approach [SBC+08] is evaluated with an ap-
plication benchmark and synthetically generated workload. The resulting estimates are
compared to estimates obtained with linear regression. Rolia et al. use the TPC-W ap-
plication benchmark to study their DEC approach [RKKD10] and compare the predicted
demands with measurements and estimates obtained with LSQ and LAD regression.

4.9. Concluding Remarks

In this chapter, we described a classi�cation scheme for approaches to resource demand
estimation. The classi�cation scheme shows that there are many possible variation points
and di�erences between the estimation approaches. As a performance engineer it is impor-
tant to choose an estimation approach that �ts best in a given application scenario. The
classi�cation scheme can help in such situations as it enables the systematic comparison
of the estimation approaches regarding speci�c dimensions.

The classi�cation scheme also points out a number of possible future research directions.
For instance, the high-level resource demand estimation of I/O devices might be worth-
while to investigate. Furthermore, existing approaches to resource demand estimation
might need to be extended to reect modern features of CPUs, such as DVFS and multi-
core processors. Another major research topic is the estimation of resource demands in
virtualized environments.
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In this chapter, we describe our evaluation approach. We �rst state our evaluation goals
and then derive a number of speci�c questions for the evaluation. Afterwards, we select
a set of approaches to resource demand estimation regarding de�ned criteria. Finally, we
provide an in-depth description of our evaluation scenarios.

5.1. Goals and Questions

The major goal of the evaluation is the comparison of the accuracy of di�erent estima-
tion approaches under varying environmental conditions. Environmental conditions are
determined by the workload and the resources in a concrete application scenario. Starting
with this statement of the evaluation goal, we derive a number of questions, which are a
re�nement of the evaluation goal considering speci�c aspects of it.

A set of questions aims at the evaluation of the inuence of speci�c workload characteristics
on the accuracy of the estimation approaches. In particular, we consider the following
questions:

Q1: How does an increasing number of workload classes inuence the accuracy of the
estimation approaches?

Q2: In what ways are the estimation approaches inuenced by the workload intensity?

Q3: Are estimation approaches negatively a�ected by multicollinearities in the arrival
process?

Q4: In what ways are estimation approaches inuenced by background jobs?

Q5: Are estimation approaches negatively a�ected by delays due to software or hardware
contention?

The following question considers the applicability of the estimation approaches in real
environments:

Q6: What is the accuracy of the estimation with realistic workloads?

The last two questions are aimed at speci�c resource characteristics of. Here, we consider
the current trend towards multi-core processors and virtualized servers. The questions are:

Q7: In what ways are the estimation approaches a�ected by multi-core processors?
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40 5. Evaluation Strategy

Q8: Are the estimation approaches applicable in virtualized environments?

These questions need to be answered in our evaluation. In the following, we design a set
of evaluation scenarios addressing each of these questions.

5.2. Evaluated Approaches to Resource Demand Estimation

We will evaluate a subset of the approaches to resource demand estimation in Table 4.1 on
page 26 regarding the questions mentioned in Section 5.1. The decision which estimation
approaches we will evaluate is based on the following criteria:

Input measurements. The preferred types of input measurements are CPU utilization,
average or individual response times and throughput. These measurements can be
obtained easily with standard monitoring tools. Visit counts and queue lengths are
not observed by the monitoring tools we plan to use. Additionally, the estimation
approach must not depend on any known resource demands.

Applicability. In the evaluation, we want to estimate resource demands for several work-
load classes. The estimation approaches need to support multi-class workloads. Fur-
thermore, they should be applicable to resources with PS scheduling strategy.

Support for online estimation. We are primarily interested in estimation approaches that
support the online estimation of resource demands.

Implementation complexity. The implementation e�ort for the estimation approaches
should be within reasonable limits regarding the time frame of this thesis. Ideally,
there are ready-to-use libraries providing implementations of complete estimation
approaches or parts of them.

Additionally, we ensured that at least one representative of each major mathematical
method, namely linear regression, Kalman �ltering and mathematical optimization, is
included in the evaluation.

Estimation approach References

Response time approximation Nou et al. [NKJT09] and Urgaonkar et al. [UPS+07]
Service Demand Law Menasc�e [MDA04] with the apportionment scheme of

Brosig et al. [BKK09]
Linear regression Rolia and Vetland [RV95]
Kalman �lter Kumar et al. [KTZ09]
Menasc�e optimization Menasc�e [Men08]

Table 5.1.: List of evaluated estimation approaches including their main references.

Table 5.1 lists the estimation approaches we consider in the evaluation. We do not con-
sider the Service Demand Law approach by Lazowska [LZGS84] because it requires re-
source demands as inputs. The regression approach based on response times and MLE
proposed by Kraft et al. [KPSCD09] are not included as they are targeted for resources
with FCFS scheduling. The implementation e�ort for the optimization approaches by Liu
et al. [LXMZ03,LWXZ06], Zhang et al. [ZXSI02] and Kumar et al. [KZT09] is considered
too high within this thesis. This can be done in the context of future work.

5.3. Experiment Environment

In this section, we describe the experiment environment we use for the evaluation. We
require two separate environments for our experiments: a native and a virtualized envi-
ronment.
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5.3.1. Native Execution Environment

A pool of identical computers is available for the experiments. Depending on the scenario,
we use a di�erent number of computers. Table 5.2 lists the hardware con�guration of
the computers. The cores of the CPU can be individually activated and deactivated as
required. All computers are connected by a network.

CPU model Intel Core 2 Quad Q6600
Number of cores 4
CPU frequency 2.4 GHz
Memory 8 GB
Harddisk 2 x 500 GB SATA2 Disk
Network 1 Gbit/s

Table 5.2.: Hardware con�guration of the experiment computers.

An Ubuntu 10.04 64-bit operating system is installed on each computer. We use the
standard server kernel provided by Ubuntu in version 2.6.32. We removed all programs
and services that are not needed for the experiments in order to avoid unexpected inuences
on the measurements. For measurement purposes the sysstat package, which includes the
sar tool, is installed in version 9.0.6.

5.3.2. Virtualized Execution Environment

We conduct the experiments with virtualization on a SunFire X4440 x64 server. It has four
processors with six cores each and 128 GB main memory. We chose the Citrix XenServer
5.5 as virtualization platform because of its signi�cant market share [IDC10] and its free
availability. The virtualization platform hosts two full-virtualized VMs with the hardware
con�guration listed in Table 5.3.

CPU model Logical CPU
Number of cores 1
CPU frequency 2.4 GHz
Memory 4 GB
Harddisk 30 GB

Table 5.3.: Hardware con�guration of the experiment VMs.

The VMs are connected by a virtualized network. We installed the same operating system
and software in the VMs as in the native execution environment.

5.4. Evaluation Scenarios

This section contains a description of four evaluation scenarios. The scenarios are designed
to provide answers to the questions in Section 5.1.

5.4.1. Scenario A: Arti�cial Workload

This scenario addresses questions Q1 to Q5. To answer these questions, we require a
controllable and predictable workload. This is usually not the case with real workloads,
where the actual values of the resource demands are unknown and unwanted interactions
with the environment cannot be excluded completely. Therefore, we use an arti�cial
workload generated with the Ginpex framework [HKHR11].
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First, we carry out a base experiment excluding any inuences that might a�ect the esti-
mation approaches negatively. We do several experiment runs while varying the utilization
level between 20%, 40%, 60% and 80%, as well as the number of workload classes between
1, 2, 3, 4, 6, 8 and 16. This experiment is targeted at questions Q1 and Q2.

Afterwards, we conduct another three experiments using variations of the base workload.
These experiments are targeted at questionsQ3, Q4 andQ5. The utilization level and the
number of workload classes is �xed at 40% and respectively 4 classes in these experiments
.
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Figure 5.1.: Box plot of the response times of individual requests.

The estimation accuracy is determined by comparing the resource demands the Ginpex
framework generated with the estimated resource demands of each estimation approach.
We assume the generated resource demands of Ginpex to be of high accuracy. We validated
this assumption by measuring the response time of individual requests. Figure 5.1 shows
a box plot of the response times of individual requests at a utilization of 20% with four
workload classes. The con�gured resource demands were 25 ms, 50 ms, 75 ms, 100 ms for
workload class 1, 2, 3 and 4, respectively. The mean response time is in all cases close
to the con�gured resource demand indicating that the generated resource demands are of
high accuracy.

5.4.1.1. Workload

Ginpex measurement models describe the workload that is generated on the system of
interest. A measurement model consists of di�erent types of tasks. Tasks of the type
ResourceStrategyMeasurementTask incur a certain load with a speci�ed demand on a
resource. We use these resource demanding tasks to model the processing of a request.
The resource demand is generated by the calculating a Mandelbrot set. In this scenario,
we use a base workload and several variations of it. These workloads are described in the
following paragraphs.

Base Workload

The base workload models a system that processes requests of di�erent workload classes.
Each request requires a certain calculation time at the CPU of the system. The requests
arrive continuously at the system with varying interarrival times.

Figure 5.2 illustrates the timing of the generated workload. Resource demanding tasks
representing the processing of requests at the system alternate with pauses in which no
calculations are done. The duration of the resource demanding tasks is constant over time,
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Resource demanding task

Class 1 D1 D1 D1 D1

Class 2 D2 D2 D2

Class 3 D3 D3 D3

Class 4 D4 D4 D4

Time
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Figure 5.2.: Timing of the arti�cial workload.

whereas the duration of the pauses is randomly chosen from an exponential distribution.
There is a separate loop of resource demanding tasks and pauses for each workload class.
These loops run in parallel in order to avoid dependencies between the tasks of di�erent
workload classes resulting in collinearities in the throughput.

The mean interarrival time of each workload class is determined by the con�gured CPU
utilization level. The durations of the generated resource demands depend on the workload
class. The resource demand of workload class c is determined by the c-th element of
the array D = (25 ms; 50 ms; 75 ms; : : : ; 300 ms; 30 ms; 55 ms; : : : ; 105 ms). The Ginpex
framework provides sensors to measure the response times of each task. We use these
sensors to measure the actual response times of the resource demanding tasks.

Since some of the estimation approaches assume that the interarrival times follow an expo-
nential distribution, we have to ensure that the generated workload ful�lls this assumption.
However, this is not the case with the workload described before. The interarrival times
of the requests of one workload class have a shifted exponential distribution because the
minimum possible interarrival time is equal to the resource demand of the workload class.
The next task can only be started if the previous one has �nished.
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(a) Workload class 1
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(b) Workload class 2

Figure 5.3.: Q-Q plots of the interarrival time distributions.

We solved this issue by starting several threads for each workload class. Each thread
executes its own loop alternating between resource demanding tasks and pauses. With
ten threads per workload class, the interarrival times have approximately an exponential
distribution. To check this, we carried out 28 experiment runs with varying numbers
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of workload classes and at di�erent utilization levels. We determined the coe�cient of
variation for each experiment run and each workload class. The observed coe�cients of
variation had a mean value of 1.0000 with a standard deviation of 0.0433. The minimum
observed coe�cient was 0.8703, and the maximum one was 1.1623. A coe�cient of varia-
tion of 1 is a strong indicator for an exponential distribution. Additionally, we created a
Q-Q plot comparing the quantiles of the observed interarrival time distributions with the
quantiles of an ideal exponential distribution. If these plots are diagonal, the compared
distributions are equal, i.e., the interarrival times follow an exponential distribution. We
checked this visually for all experiment runs. Figure 5.3 shows a representative example
in the case of two workload classes. In general, we observed a small deviation from the
diagonal at higher quantiles, but the deviation is limited. Therefore, we consider it as an
adequate approximation of an exponential interarrival time distribution.

Collinear Workload

This is a variation of the base workload where we deliberately included dependencies
between tasks of di�erent workload classes. The workload can be con�gured to run tasks of
two or more workload classes always in sequence. As a result, we expect strong collinearities
in the throughput of di�erent workload classes.

Class 1 + 2 D1 D2 D1 D2 D1 D2

Class 3 + 4 D3 D4 D3 D4

Time
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Figure 5.4.: Timing of the collinear workload.

Figure 5.4 shows the timing of the tasks if always two of four workload classes are dependent
on each other. The two dependent classes always come directly after each other without a
pause. We recognize that this is an extreme type of dependency. In real applications, one
would expect that a certain time elapses between two dependent requests, e.g. the think
time of a user. However, we chose this extreme case of dependency to get clear collinearities
in the throughput so that the inuence on the estimation approaches can be determined
unambiguously. The correlation coe�cient between the throughput of dependent workload
classes is close to 1 as several validation runs showed.

Workload with Additional Wait Phases

This workload includes additional wait phases within the resource demanding tasks that
represent delays due to software or hardware contention, e.g., getting a database connection
from a pool or waiting for an I/O device to �nish. The length of the additional wait phase
is constant and can be con�gured.

Figure 5.5 illustrates the timing of the tasks including the additional wait phase. The wait
phase is always in the middle of a resource demanding task, splitting it into two parts of
equal duration. The resource demands used in this workload are 100 ms, 150 ms, 200 ms
and 250 ms. We subtracted the duration of the additional wait phase from the interarrival
times so that the utilization is not reduced by longer wait phases. The response time
measurements are determined for the complete resource demanding task including the
additional wait phase.
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Wait phase
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Figure 5.5.: Timing of the workload with additional wait phases.

Workload with Background Jobs

This workload contains an additional background job compared to the base workload. The
background job is realized as an extra thread. The other threads of the base workload
are not changed. The background job thread executes a loop that alternates between a
resource demanding task of 20 ms and a constant wait phase whose duration is determined
by the desired load level of the background job.

The duration of the background job is limited to �ve minutes. Then it pauses for another
�ve minutes. This is repeated continuously. The thread mimics the behavior of a secondary
activity that runs regularly in certain intervals in the system and causes a limited load
over a longer period of time, e.g., system updates or hard disk checks.

5.4.1.2. Experiment Setup

The Ginpex framework requires two machines to execute measurement models:

� The arti�cial workload is generated on the experiment machine. We run the Ginpex
load driver on this machine and perform the measurements.

� The experiment controller coordinates the experiment execution and collects the
measurements after an experiment run.

Only one of the processor cores of the experiment machine is enabled in this scenario.
The response times are measured with the sensors facility of Ginpex. The utilization is
measured with the Linux monitoring tool sar with a sampling interval of 15 seconds.

Since the experiments are repeated for varying utilization levels and varying numbers of
workload classes, we automated the experiment execution. Ginpex allows us to de�ne
custom experiments for this automation purposes by implementing a new experiment con-
troller. We implemented custom experiment controllers for di�erent experiments. These
experiment controllers con�gure the experiment machine, start the load driver, gener-
ate a measurement model with one of the workloads in Section 5.4.1.1 and then run the
generated model.

5.4.2. Scenario B: TPC-W Benchmark

In this scenario, we want to evaluate the estimation accuracy of di�erent estimation ap-
proaches in a realistic environment. We use the TPC-W application benchmark in this
scenario in order to analyze question Q6.

Since we do not know the actual resource demands of our application, we cannot directly
compare the estimation accuracy of the estimation approaches. Instead, we create a perfor-
mance model of our application and parameterize it with the estimated resource demands.
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Then we analyze the performance model and compare the predicted average utilization
and average response time with measurements from the real system.

The exact procedure is as following: We collect measurements at the real system when
applying the workload of the FIFA 98 world cup web site to the TPC-W benchmark
application. With these measurements, we estimate the resource demands and create a
performance model of the system. We analyze this performance model with 400, 600,
800 and 1000 EBs and then compare the results with corresponding measurements when
running the TPC-W benchmark with these number of EBs. Thus, we can evaluate the
accuracy of the predictions obtained with the estimated resource demands of an estimation
approach.

5.4.2.1. Application Benchmark

Due to the lack of traces from real production systems, we use an application benchmark
for this scenario instead. We identi�ed a number of requirements such an application
benchmark needs to ful�ll in order to obtain representative results. The requirements are:

1. The application benchmark must be representative for typical multi-tier applications,
which typically consist of an application server and a database. Preferably, the
benchmark should be based on the Java Enterprise Edition (Java EE) standard.

2. The benchmark must come with a ready-to-use load driver including standard work-
loads. The workload intensity must be con�gurable in order to be able to inject
di�erent loads on the system of interest.

3. The benchmark should primarily stress the CPUs of the systems.

4. It must be possible to run the benchmark distributed over several systems so that
resource demands of several resources need to be determined.

5. The workload must consist of several di�erent transactions.

6. The application benchmark should be accepted by the industry and academia to be
representative of real applications. Ideally, the benchmark is standardized.

We searched for application benchmarks that ful�ll these requirements and built a list of
possible candidates:

SPECjEnterprise2010. This is the newest version of the Java EE industry standard bench-
marks published by the SPEC consortium. It is modeled after an application of an
automobile manufacturer. It is a highly complex application using the complete tech-
nology stack of Java EE including web services and asynchronous communication.

RUBiS. This application benchmark is modeled after an internet auction system. It im-
plements the core transactions of an auction system: selling, browsing and bid-
ding. There are di�erent implementations of the system using di�erent technologies:
Java EE, java servlets only or PHP. This benchmark is not standardized by an in-
dustry consortium.

TPC-W. This application benchmark is standardized by the TPC-W consortium. There
are implementations based on Java EE and PHP. The application is modeled after
an online book store.

The SPECjEnterprise2010 benchmark has a high inherent complexity due to the multitude
of di�erent technologies it depends on. Therefore, we decided against its usage in this
scenario in view of the limited time frame of this thesis. As a compromise, we use the
TPC-W benchmark instead. This benchmark is standardized and used in many scienti�c
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papers [RKKD10,ZCS07,GBL+11]. We did not consider the RUBiS benchmark due to a
lack of current documentation about its setup and internal functioning.

We use the TPC-W implementation available from the OW2 consortium1. This implemen-
tation relies on Java servlets and Java Database Connectivity (JDBC) to access a MySQL
database. During setup and experiment runs we identi�ed two issues with the current
code provided by the OW2 consortium. Therefore, we changed the following parts of the
benchmark:

� The benchmark uses a custom implementation for database connection pooling. The
pool showed some reliability and performance problems when scaling the workload.
Therefore, we replaced it with the standard mechanism for pooling database connec-
tions provided by Java EE.

� When inserting rows in the database, the benchmark used an old-fashioned way
to determine the value of an auto-increment �eld. In case of high concurrency,
this caused consistency issues. We replaced the involved database queries with the
LAST_INSERT_ID() function provided by MySQL.

These are small changes of the TPC-W benchmark, which are not expected to inuence
its performance characteristics signi�cantly.

5.4.2.2. FIFA 98 World Cup Workload

The TPC-W benchmark provides a ready-to-use load driver that can simulate a closed
workload with a con�gurable number of users. The navigation behavior of each user is
described by a �rst-order Markov chain. This results in a very steady workload with only
few variations. However, real workloads are usually varying over time [SKZ07]. Time-
varying workloads can positively inuence some estimation approaches as already shown
by Stewart et al. [SKZ07]. To improve the representativeness of our evaluation, we use
workload traces from a real application instead.

Arlitt and Jin [MJ99] carried out a workload characterization of the access logs of the
o�cial web site of the FIFA 98 world cup. The access logs collected at the web servers of
the site between April 26 and July 26, 1998 are publicly available. The access logs contain
over 1.35 billion requests and can be regarded as being representative of a very busy web
site [MJ99].

We adapted the load driver of the TPC-W benchmark to use the access logs of the FIFA 98
world cup web site. Before, the think times between individual requests were drawn from
an exponential distribution with a con�gurable, but constant mean value. Now the load
driver uses the timestamps in the access logs instead to determine the think times. Each
time a client �nishes a request at the server, the load driver determines the next request
in the access log. Then it calculates the think time TT for this client in the following way:

TT = (LTnext � LTstart)� (Tcur � Tstart)

where LTnext denotes the timestamp of the next request in the log �le, LTstart the times-
tamp of the �rst request in the log �le, Tcur the current system time and Tstart the system
time when the load driver was started. If the think time is negative the client proceeds
immediately with the next request. The load driver can be con�gured to use only every
N -th request in the log �le, so that the workload can be scaled down.

We use a part of the access logs from day 66 in this scenario. The log starts at 15:00
and lasts for two hours. In view of our smaller deployment, we use only every seventh

1http://jmob.ow2.org/tpcw.html
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Figure 5.6.: Average throughput of FIFA 98 world cup workload.

request in the access log. Figure 5.6 shows the temporal development of the throughput in
this time window. The workload varies at around 300 requests per second. It has a peak
with almost 400 requests per second and levels out at slightly more than 200 requests per
second.

5.4.2.3. Experiment Setup

In this scenario, we use the native execution environment described in Section 5.3.1. En-
abling only one core of the processors, we avoid negative inuences on the resource de-
mand estimation due to multi-core processors. The TPC-W benchmark is deployed on
two servers. The front-end server runs an Apache HTTP server and a Tomcat servet con-
tainer. The back-end server contains a MySQL database server. The Apache web server
and the Tomcat servlet container are integrated with the mod jk module. The Apache
web server serves requests for static resources and delegates requests for servlets to the
Tomcat servlet container. The MySQL database is accessed through the standard JDBC
driver provided by MySQL. The MySQL database uses the standard con�guration, i.e.
tables are managed by the default storage engine MyISAM. The load driver is executed
on a separate machine. Table 5.4 gives details about the installed software.

Program Version

Apache HTTP server 2.2.14
mod jk 1.2.28
Java SE 64-bit 1.6.0 24
Tomcat 6.0.24
MySQL 5.1.41
MySQL JDBC ConnectorJ 5.1.14

Table 5.4.: Software con�guration for the TPC-W benchmark.

During experiment runs, we obtain measurements of the utilization on the front-end and
back-end server as well as the response times of individual request. We use the sar tool
provided as part of the Ubuntu Linux distribution to monitor the utilization of the servers.
We use a sampling interval of one second. The response times are collected with the built-
in logging facilities of the Apache web server. Its access logs contain the response time of
each request. We de�ned a custom logging format to print out the response time of each
request with microsecond accuracy.

5.4.2.4. TPC-W Performance Model

The performance model needs to capture the major performance-relevant aspects of the
TPC-W benchmark application. We regard the application as a black box without any

48



5.4. Evaluation Scenarios 49

knowledge about its internal structures. Observations at the running system showed that
the processing resources with the greatest inuence on the performance are

� the CPU of the web server,

� the CPU of the database server,

� and the hard disk of the database server.

Since our focus lies on estimation approaches for CPUs and servers, we exclude the inu-
ence of the hard disk by keeping the complete database in memory.

With a high number of users, software contention plays a non-negligible role when pre-
dicting the performance of a web server or a database server. We identi�ed the following
sources for software contention:

� The Apache web server uses a process pool to process incoming requests.

� The Tomcat servlet container uses two process pools. One for parsing forwarded re-
quests from the Apache web server and another one for executing servlets to generate
the response.

� The Tomcat servlet container maintains a pool of database connections.

� The MySQL database server has a limited number of threads to process queries from
clients.

We ensured that these pools do not incur any additional delays by setting their maximum
size high enough so that requests never have to wait because of empty pools.

The workload is divided into two classes. One class for browse transactions and another
one for order transactions. Table 2.1 on page 12 describes the assignment of the TPC-W
transactions to the corresponding workload classes. The transactions of the browse work-
load class mainly cause SELECT queries at the database server, whereas transactions of the
order workload class result in a mixture of INSERT, UPDATE and SELECT requests.

EB

T2WebServer-CPUT1 DB-CPU T3
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Figure 5.7.: QPN model of the TPC-W benchmark.

We use the QPN modeling formalism [Bau93] for our performance model. Figure 5.7
depicts the QPN model of the TPC-W benchmark application. It consists of three queueing
places: EB, WebServer-CPU and DB-CPU. WebServer-CPU and DB-CPU both contain a PS
queue, the place EB contains an IS queue. All queues have an exponential service time
distribution. The mean service time of the queue of EB is equal to the think time con�gured
in the load driver, i.e., in our case 1.75 seconds. It contains an initial population of tokens
of the color client corresponding to the con�gured number of EBs in the load driver.
Transition T1 contains two �ring modes with equal �ring weights. Both modes consumes
tokens of color client and produce one token of color browse or respectively order. The
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equal �ring weights ensure that we get a mix of 50% browse and 50% order requests.
Two colors are de�ned in the place WebServer-CPU, one for each workload class. The
mean service time is set to the estimated resource demand of each workload class. The
transition T2 just takes a token from place WebServer-CPU and puts a token of the same
color in place DB-CPU. Place DB-CPU also contains a color de�nitions for each workload
class. The service times are again set to the estimated resource demands of the database
server. Finally, transition T3 consumes a token of color browse or order and puts a token
of color client in place EB.

The workload of the TPC-W benchmark is session-based in fact. However, Zhang et
al. [ZCS07] show that the TPC-W application can be adequately modeled with the sim-
pli�ed transaction-based equivalent. Therefore, we do not explicitly model sessions in our
performance model.

To analyze the QPN model, we use the well-proven and e�cient simulator SimQPN in
version 2.0 [KB06, KSM10]. This simulator provides so-called probes that can measure
the response time of individual tokens over several places [KSM10]. The response time
measurements start when a token enters place WebServer-CPU and �nish when it leaves
place DB-CPU.

5.4.3. Scenario C: Multi-core Processors

In the previous scenarios, we always enabled only one processor core. Now, we use two and
more cores for the experiments. The multi-core scenario comprises two separate experi-
ments. In the �rst experiment, we use the base workload from Scenario A in Section 5.4.1.1
and apply it on a computer with multiple processor cores. We carry out several experiment
runs while increasing the number of enabled processor cores from one to four.

Class 1

Class 2

Time
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Figure 5.8.: Timing of the parallel workload.

In the second experiment, we use a workload with parallel tasks instead. Figure 5.8
illustrates the timing of the parallel workload. The resource demanding tasks fork a
con�gurable number of threads, where each thread generates a share of the total resource
demands. The total resource demands are equally distributed between the threads. To
ensure that the duration of the generated resource demand of each thread is not too short
for Ginpex, we increased the resource demands to 100 ms, 125 ms, 150 ms and 175 ms
in this experiment. We carry out several experiment runs while varying the number of
threads between 1 and 8.

5.4.4. Scenario D: Virtualization

This scenario is based on the one described in Scenario B in Section 5.4.2. Here, we
deploy the TPC-W benchmark in the virtualized experiment environment instead. See
Section 5.3.2 for details about the virtualized execution environment. The database server
and the application server each run in their own VM. The load driver runs externally on a
native computer. The load driver is connected with the VMs through a 1 Gbit/s network.
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The general experiment procedure and setup is the same as in Scenario B in Section 5.4.2.
We also use the same workloads and performance models for performance prediction.
Measurements of the utilization and response time are done within the VMs.
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6. Implementation of Estimation

Approaches

In this chapter, we describe the tool for resource demand estimation we implemented as
part of this thesis. We start with a description of the requirements that we expect from
this tool. Then we develop an architecture for the tool that ful�lls these requirements.
Afterwards, we explain the design of the major components of the tool. Finally, we give
an overview of the implementation of the tool including a description how we realized the
estimation approaches.

6.1. Requirements

The goal of the tool for resource demand estimation is to enable the evaluation of di�erent
estimation approaches. For this purpose, we identi�ed the following requirements:

Support for di�erent estimation approaches: In Section 5.2, we selected a couple of ap-
proaches to resource demand estimation for further evaluation. The tool must sup-
port for these estimation approaches. The correctness and reliability of their imple-
mentations is important. Therefore, the implementations should reuse proven and
commonly used components if available.

Support for inhomogeneous measurement data sources: Depending on the evaluation
scenarios described in Section 5.4, di�erent measurement tools are used. The tools
store the measurement data in di�erent formats. The data needs to be transformed
into a common data format in order to simplify the implementation of the estimation
approaches. For our purposes, it is necessary to import and transform measurement
data from Ginpex and sar as well as access logs from Apache HTTP servers.

Data preparation: The raw measurement data from the monitoring tools requires further
preprocessing before it can be used for resource demand estimation. Since the data
might come from independent tools the observation periods might di�er, e.g., if the
tool for monitoring the utilization is started before response times are measured.
In such cases, only measurements from the overlapping parts of the observations
periods should be used for resource demand estimation. Furthermore, it is necessary
to derive additional metrics from the existing observations, such as average response
times or throughput, if monitoring tools do not provide the desired metrics.
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Analyzable results: After resource demand estimation, the results need to be further an-
alyzed and interpreted. Therefore, the resulting estimates and the input data after
preparation should be stored in CSV �les to simplify their subsequent processing
in analysis tools, e.g., gnuplot, R or Matlab. The results of each approach to re-
source demand estimation should be stored separately. Additionally, the estimation
approaches should output not only the �nal estimates but also their temporal evo-
lution as new observations become available.

Con�gurability: The tool should provide variation points that can be con�gured sepa-
rately in order to adapt the estimation process to speci�c scenarios and to evaluate
the impacts of di�erent parameters on resource demand estimation. Especially, we
should be able to con�gure the following parameters:

� The estimation approaches that are used.

� The input �les containing the measurement data.

� The output directory where the results are stored.

� Parameters speci�c to each estimation approach.

Scriptability: It should be possible to start the estimation tool from the command line in
order to allow the simple integration in scripts.

6.2. Architecture

With the requirements de�ned in Section 6.1, we developed an architecture for our resource
demand estimation tool. In this section, we describe the resulting architecture. A core en-
tity in this architecture are traces. A trace is a table where each row contains observations
of a speci�c metric at a certain time. The �rst column contains timestamps, each following
column contains the actual observations. Traces are used to store the measurement data
and the resulting estimates.

Figure 6.1 depicts the architecture of the tool. We structured the program into a number
of components in accordance with the separation of concerns principle. Each component
is responsible for a subset of the requirements. We implemented the following six compo-
nents:

� The estimation controller is the central component that controls the execution of
resource demand estimation. It expects a con�guration �le as input. The user
must provide this �le. It is used to adapt the estimation process to the �eld of
application. The con�guration de�nes which implementations of the data importer,
data preprocessor, estimation strategy and data exporter components are used.

� The trace repository is the central place where traces are stored. All other compo-
nents can read and write traces in the repository. It is currently implemented as an
in-memory, non-persistent data store.

� The data importer component loads measurement traces produced by the monitoring
tools. It translates the traces to a canonical format and stores them in the trace
repository. Di�erent implementations of this component exist for each supported
measurement trace format. There are currently implementations for utilization traces
from sar, response time traces from Ginpex and access log �les from Apache web
servers.

� The data preprocessor component prepares the measurement traces for resource de-
mand estimation. For example, it may be necessary to �lter out observations or to
derive additional metrics from existing measurement traces. A data preprocessor
loads, changes and stores traces in the repository.
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� The estimation strategy component implements the actual resource demand estima-
tion. There are implementations of this component for each approach to resource
demand estimation. An estimation strategy gets the required measurement traces
from the trace repository and stores the resulting estimates in the repository.

� The data exporter component is used to export selected traces from the trace repos-
itory in a data format that can be used for subsequent analyses. There are currently
component implementations that write traces to CSV �les or print them to the con-
sole.

Data ExporterData Exporter

Estimation StrategyEstimation Strategy

Data PreprocessorData Preprocessor

Data ImporterData Importer

Trace Repository

Data Importer

Data Preprocessor

Estimation Strategy

Data Exporter

Estimation Controller

Figure 6.1.: Architecture overview.

The tool is based on the Eclipse platform and divided into set of plug-ins. To ensure the
easy scriptability, we realized it as a headless Eclipse application, i.e., it has no graphical
user interface. The user provides all information necessary for the estimation tool either
in the con�guration �le or with program arguments on the command line. Since the
structure of the con�guration �le is relatively complex, we decided to use the Eclipse
Modeling Framework (EMF) for this purpose. Therefore, we created a metamodel that
describes the con�guration model.

6.3. Design

We describe the central design decisions of the estimation tool in this section. In particular,
we explain how the measurement data and estimation results are managed in the trace
repository and we give an overview of the metamodel de�ning the estimation con�guration
model.

6.3.1. Trace Repository

The trace repository is the central data storage for measurement data and estimation
results. Figure 6.2 shows the data model of the repository. Traces are the core entity of
the repository data model. A trace contains a set of tuples t = (T;D1; D2; : : : ; DN ) where
T is a timestamp and Di are observations made at time T .

Each trace is associated with exactly one resource, e.g., a utilization trace references the
monitored CPU or a response time trace is linked with the group of systems for which the
response time is measured. There are two types of traces: measurement and result traces.
Measurement traces contain the input data for estimation approaches. A measurement
trace contains only observations of one metric. Possible metrics are: utilization, response
times, throughput and average response time. Result traces are used to store the results
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- resource : Resource
- observationStart : long
- observationLength : long

Trace

- metric : Metric

MeasurementTrace

- approachId : String

ResultTrace

TraceColumnDefinition

TraceRepository

columnDefintions

1..*
- timestamp : long
- values : double[]

TraceRow

*

dataRows

*

WorkloadClass

workloadClass0..1

Figure 6.2.: Data model of the trace repository.

of an estimation approach. They always contain an identi�er of the estimation approach
in order to distinguish between the results of di�erent approaches.

A trace consists of a set of rows. Each row contains a timestamp and a set of values.
The number of values in each row must be equal to the number of columns de�ned in the
trace. A column de�nition contains additional metadata about the observations stored
in the corresponding column. It can be optionally associated with a workload class. For
instance, a throughput trace usually contains several columns, one for each workload class.
If no workload class is associated with a column, the observations in this column are for all
workload classes, e.g., the total utilization of a resource. Only one such column is allowed
in a trace.

The trace repository o�ers a number of operations to load and store traces. The methods
queryMeasurementTraces() and putMeasurementTrace() are for measurement traces.
Correspondingly, the methods queryResultTraces() and putResultTrace() are for re-
sult traces.

6.3.2. Estimation Con�guration Metamodel

An estimation con�guration model contains two types of information:

1. a description of the workload and the resource environment for which resource de-
mands should be esimated.

2. a con�guration of the estimation process including concrete values for the con�gu-
ration parameters of the components.

Figure 6.3 gives an overview of the top-level elements of the metamodel. The root element
of a con�guration model is always an instance of the EstimationConfiguration class. El-
ements of the classes Workload and ResourceEnvironment contain information of type 1.
Elements of the classes DataImportSpecification, PreprocessingSpecification, Es-
timationSpecification and DataExportSpecification contain information of type 2.
We describe each of these six classes and their children in the following.

Figure 6.4 depicts the elements for describing the workload and the resource environment.
Each element of the class WorkloadClass introduces a workload class with a given name.
The name is used as a human-readable identi�er of the workload class. The subclass
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EstimationConfiguration

DataExport
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1
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Figure 6.3.: Overview of the metamodel.

HttpWorkloadClass provides the additional attribute urlPrefix. All requests in an access
log from a web server whose Uniform Resource Locators (URLs) starts with this pre�x are
attributed to that workload class.

The resource environment is modeled with di�erent types of resources. All types of re-
sources are subclasses of the common base class Resource. A system group represents
a set of computer systems, e.g., web server, application server and database server of a
multi-tier application architecture. Each system of a system group is represented by a
system node including its CPUs and disks. This information of the resource hierarchy is
required to attribute measurement traces to the correct resource.

Resource

Environment

SystemGroup

SystemNode

CPU

Disk

groups0..*

nodes

systemGroup

0..*

cpus

systemNode

0..*

disks

systemNode

0..*

Resource

Workload

WorkloadClass

workloadClasses0..*

HttpWorkload

Class

Figure 6.4.: Workload and resource environment description.

The components DataImporter and DataExporter are con�gured with the elements shown
in Figure 6.5. A data import con�guration contains the attribute fileName, which lets
the user specify the measurement trace �le that should be imported. Additionally, each
data importer con�guration must be associated with one resource. This association states
that the imported measurement trace were collected for the speci�ed resource. There are
specialized con�guration elements for each supported input and output format.
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SarCSVImport
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GinpexRespTimesCSVImport

Configuration

ApacheLogImport

Configuration

Resource
resource
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Figure 6.5.: Data import and export con�guration.

Figure 6.6 shows the elements of a preprocessing speci�cation. The data preprocessing
con�guration is used to con�gure a DataPreprocessor component. There are di�erent
types of data preprocessing con�gurations for di�erent purposes:

� An observation period standardizer ensures that all observation periods of di�erent
measurement traces have the same start time and length. It determines the maximum
overlap of the observation periods and discards all measurements that lie outside.

� A transient period cutter removes a con�gurable number of measurement samples at
the beginning and the end of each measurement trace.

� The throughput and average response time calculators are applied to response time
traces to calculate throughput and average response times at speci�ed intervals.

If several data preprocessing con�gurations are speci�ed, several data preprocessor com-
ponent instances are created and executed in the same order as the corresponding data
preprocessing con�gurations. Therefore, it is possible that a data preprocessor works on
the output of a previous one.

Preprocessing 

Specification

AbstractPreprocessor

Configuration

AbstractAggregating

PreprocessorConfiguration

preprocessors {ordered}0..*

ObservationPeriod

StandardizationConfiguration

ThroughputCalculator

Configuration
AverageResponseTime

CalculatorConfiguration

TransientPeriod

CutterConfiguration

Figure 6.6.: Data preprocessing con�guration.

Finally, the estimation speci�cation, as shown in Figure 6.7, is used to con�gure each
estimation strategy. The estimation strategies might provide additional con�guration pa-
rameters that are speci�c for each strategy.
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Figure 6.7.: Resource demand estimation con�guration.

6.4. Implementation

In this section, we discuss major implementation issues and show how we solved them.
We start with an in-depth description of the data preprocessors. Afterwards, we give an
overview of the tools and libraries we considered to use for the implementation of the
estimation approaches including a consideration of the pros and cons of each identi�ed
alternative. Subsequently, we provide details about the concrete realization of each esti-
mation approach. Finally, we describe the plug-in structure of the tool.

6.4.1. Data Preprocessing

We implemented four data preprocessors that prepare the input measurement traces for
resource demand estimation:

� The ObservationPeriodStandardizer is used to adapt the observation periods of
a set of measurement traces to a common period, in cases where traces originate
from separate, not synchronized monitoring tools. In a �rst step, the Observation-
PeriodStandardizer fetches all utilization and response time traces of a system
group and determines the maximum overlapping part of the observation periods of
all traces. In a second step, the overlapping part is used as the new standard ob-
servation period for all measurement traces. Measurements outside of the standard
observation period are discarded. If the measurement traces originate from di�er-
ent systems, the ObservationPeriodStandardizer assumes that the time on these
systems is synchronized, e.g., with Network Time Protocol (NTP).

� The ThroughputCalculator depends on response time measurements of individual
requests. It determines the number of requests during given time intervals based on
the arrival timestamps of the observed requests. Then it uses this information to
calculate the throughput during these time intervals. These time intervals are taken
from the utilization measurement traces available for the current machine. Thus,
we can ensure that throughput and utilization measurements have the same time
intervals.

� The AverageResponseTimeCalculator works similarly. It also calculates the av-
erage response times for speci�ed time intervals. We use the time intervals of the
utilization measurement traces here as well.
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Estimation approach Languages and libraries

Response time approximation Java, Apache Commons Math
Service Demand Law Java, Apache Commons Math
Kalman �lter C++, Bayes++ [Bay]
Linear regression Matlab
Menasce optimization Matlab
ICA Matlab, FastICA [Fas]

Table 6.1.: Programming languages and libraries used for the implementation.

The ObservationPeriodStandardizer should be applied to the measurement traces be-
fore all other preprocessors. Thus, the traces produced by the ThroughputCalculator and
the AverageResponseTimeCalculator automatically have the correct observation period.
These two preprocessors are independent of each other and can be applied in any order.

6.4.2. Tools and Libraries

If possible, the implementations of the approaches to resource demand estimation are
based on existing tools and libraries in order to ensure their reliability and correctness
and to reduce the implementation e�ort. Table 6.1 gives an overview of the programming
languages and libraries used for implementing the estimation approaches.

We realized the response time approximation and Service Demand Law estimation ap-
proaches directly in Java. Both approaches require only basic statistical functions, such
as the mean or minimum functions. We used the Commons Math library of the Apache
Foundation for these functions.

There is already an implementation of an extended Kalman �lter for resource demand
estimation in our research group. We integrated and extended this implementation in
our tool. The implementation is realized in C++ and is based on the Bayes++ library,
which provides various Bayesian �ltering algorithms including Kalman �lters [Bay]. The
library contains a set of base classes that can be extended to de�ne custom state and
observation models that describe the system of interest. The �lters included in the library
work with the given models to derive estimates of the real state. The Kalman �lter
implementation of Bayes++ already addresses common issues that occur in the practical
application of Kalman �lters, such as ensuring the symmetry of matrices. The existing
implementation of our research group provides complete implementations of state and
observation models for resource demand estimation according to the �lter design described
by Kumar et al. [KTZ09].

As the existing Kalman �lter implementation is written in C++, an adapter to call it from
Java code is necessary. We considered the following alternatives to realize this integration:

Separate program. We invoke the Kalman �lter as an external program and pass on the
required information through program arguments or temporary �les. This can be
done with standard Java classes. However, it requires additional logic to write the
measurements to temporary �les and read the resulting estimates.

Java Native Interface (JNI). The Java Development Kit (JDK) includes the JNI tech-
nology for developers who want to access C functions from Java code. However, the
Application Programming Interface (API) of JNI is very complex and data types
need to be converted manually between C and Java. Therefore, a lot of glue code is
required to access C functions in Java.

Java Native Access (JNA). The third-party library JNA hides the complexity of JNI
from the developer. The developer must only provide plain Java interfaces containing
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Java method declarations for each C function that should be accessible in Java. JNA
automatically generates proxies which invoke the corresponding C functions through
JNI and convert the input and output parameters to the expected type.

We chose to use JNA for our purpose. It allows us to tightly integrate the Kalman �lter
implementation without the need for temporary data transfer �les. At the same time, the
integration can be done without much coding e�orts.

The remaining estimation approaches, namely linear regression, Menasce optimization and
ICA, rely on more complex mathematical methods, such as non-negative LSQ regression
and non-linear, constrained optimization. Therefore, we looked for existing implemen-
tations of these methods we can build upon. In particular, we considered the following
alternatives:

Third-party Java libraries. There are a number of third-party Java libraries providing
mathematical and statistical functions. Examples for such libraries are Apache Com-
mons Math 2.2, Colt 1.2 or OR-Objects 1.2.4. The advantage of these libraries is
their simple integration in Java programs. However, they primarily support linear
programming algorithms in the current versions. Solution algorithms for non-linear,
constrained optimization problems are missing.

The R statistical language. R is a programming language spe�cially targeted to statis-
tical computations. It provides tools to solve linear regression problems as well as
algorithms for linear and quadratic optimization. However, it also lacks algorithms
for non-linear, constrained algorithms. Furthermore, the invocation of R in Java is
time-consuming because the commands need to be put together manually in Java
code.

Matlab. Matlab is a proprietary program for numerical mathematical computations. It
includes a number of toolboxes for di�erent domains. There are also toolboxes
for statistics and optimization, including algorithms for ordinary and non-negative
LSQ regression, and for non-linear, constrained optimization. Functions and scripts
for mathematical computations are written in a proprietary programming language.
However, Matlab allows to automatically generate Java classes for selected functions.
This simpli�es the integration of Matlab functions in Java programs.

GNU Octave. Octave is a free tool for numerical mathematical computations similar to
Matlab. Its script language is to a large extent compatible to Matlab. However, it
only supports a subset of Matlab functions. Especially, it only supports one algorithm
for the solution of non-linear optimization problems.

After considering the pros and cons, we decided to use Matlab for the further imple-
mentation because it provides the best support for the required mathematical methods.
Additionally, the possibility to generate Java classes encapsulating Matlab functions sim-
pli�es its integration in Java programs. Obviously, the dependency on Matlab limits the
distribution of our tool for resource demand estimation. However, as part of this thesis it
is not regarded as a major issue.

We used the FastICA library [Fas] for the ICA estimation approach. Packages are available
for di�erent environments, including Matlab. We used the current version 2.5 for Matlab
in our implementation.

6.4.3. Implementation of the Estimation Approaches

Response time approximation

This estimation approach is either applied to a whole system group or to each system
node separately. The behavior is controlled with the resourceLevel attribute in the
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estimation con�guration. This attribute can be set to SystemGroup or to SystemNode. It
is uncommon to use it for separate resources within a system, such as CPUs and disks,
because corresponding response time measurements on this level of granularity are usually
hard to obtain. Our implementation starts with a conservative estimate, which is either
provided by the user with the attribute initialEstimate in the con�guration �le or set to
Double.MAX_VALUE. Then the estimate is updated for each new response time measurement
if the new value is smaller than the current estimate.

The attribute windowSize in the estimation con�guration can be used to specify that
only measurements in the speci�ed time window are considered when determining the
minimum. For example, if the window size is set to ten minutes, the minimum response
time is only determined for the measurements that were made in the last ten minutes.
If this value is not set, all measurements are considered when determining the minimum
response time.

Service Demand Law approach

The Service Demand Law approach is implemented as described by Brosig et al. [BKK09]
including the partitioning scheme for the total utilization with weighted response time
ratios. For details see Section 3.1.1 on page 14. This approach also supports the attribute
windowSize in the estimation con�guration. Here, it controls the size of the time window
for which the average response time and average utilization is determined. If this attribute
is missing, the averages are calculated over all available measurements.

Kalman �lter approach

There are several attributes that control the behavior of the �lter. The attributes process-
Noise and observationNoise in the estimation con�guration correspond to the process
noise Q and the observation noise R. The attribute initialEstimate provides a way to
specify an initial estimate x0j0 for all workload classes. If the attribute initialEstimate
is missing, the �lter sets the starting point to one by default. The initial estimate of the
error covariance P0j0 is automatically derived as recommended by Zheng et al. [ZYW

+05]:
The diagonal elements of the matrix P0j0 are initialized with the square of the initial
estimates x0j0.

The �lter design is based on the one proposed by Kumar et al. in [KTZ09], except that we
only estimate the resource demands for systems and no network delays. The network delays
are assumed to be zero. The state and the observation model have the same structure as
described in [KTZ09]. We have generalized the models accordingly so that they can be
used for an arbitrary number of workload classes and resources.

We included the truncation method proposed by Zheng et al. in [ZWL08] in order to limit
the estimates to non-negative resource demands. The lower bound is chosen to be zero,
the upper bound is set to in�nity.

Linear regression

The implementation of the linear regression approach uses non-negative LSQ regression
by default. We use the Matlab function lsqnonneg for this task. It is also possible to
use ordinary LSQ regression, which allows negative resource demand estimates. This kind
of regression can be activated by setting the attribute allowNegativeEstimates to true.
Then the Matlab function regress is called instead. Furthermore, it is also possible to
specify the attribute windowSize to con�gure a sliding time window.
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Menasce optimization

The Menasce optimization is based on non-linear, constrained optimization. Matlab pro-
vides the fmincon function for such optimization problems. The fmincon function searches
for an allocation of the variable vector x, that minimizes an objective function f(x) ful-
�lling a set of constraints on x [Mat]:

min
x

f(x) such that

8>>>><
>>>>:

c(x) � 0
ceq(x) = 0
A � x � b

Aeq � x = beq

lb � x � ub

(6.1)

The caller can specify functions for c(x) and ceq(x) to de�ne nonlinear constraints. Matri-
ces A and Aeq with corresponding vectors b and beq are used to de�ne linear constraints.
Furthermore, vectors lb and ub limit the range of possible values of x.

Menasc�e provides a general description of the optimization problem in [Men08]. We had
to translate it according to the input format expected by the fmincon function of Matlab.
We solved it in the following way:

� In fact, the service demands Di;c with 1 � i � I and 1 � c � C for I resources and
C workload classes constitute a I �C matrix. This matrix is reshaped into a vector
x = (D1;1; : : : ; D1;C ; D2;1; : : : ; D2;C ; : : : ; DI;1; : : : ; DI;C) because fmincon assumes x
to be a vector.

� We implemented the objective function as a Matlab function that takes vector x
containing the resource demands and returns a scalar value. This function is passed
to fmincon as a function reference.

� The constraint that all resource demand parameters must be non-negative, is realized
by setting the parameter lb (lower bound) of fmincon to a vector of zeros.

� The second constraints states that for each resource the total utilization is always
less than one. It is passed to the fmincon function as a linear constraint of the
following form:

A � x � b

where A =

0
BBB@

�1 : : : �C 0 : : : 0 : : : 0 : : : 0
0 : : : 0 �1 : : : �C : : : 0 : : : 0
...

. . .
...

...
. . .

...
. . .

...
. . .

...
0 : : : 0 0 : : : 0 : : : �1 : : : �C

1
CCCA , b =

0
BBB@

1
1
...
1

1
CCCA :

A is a matrix with I rows and C �I columns that contains throughput measurements
�i for all workload classes. The vector b is of size I.

Since the fmincon function uses gradient-based algorithms to �nd a solution, it depends on
the �rst-order partial gradients and the Hessian matrix of the objective function. We rely
on the possibility to let fmincon determine the partial gradients and the Hessian matrix.
Specifying this information as additional input to fminconmight improve estimation speed
and quality.

Matlab provides di�erent gradient-based algorithms that can be used with the fmincon

function. By default, we use the interior-point algorithm [BGN00] because it is appli-
cable to small dense problems as well as large sparse ones and supports bounds and linear
constraints. Other algorithms can be speci�ed with the solutionAlgorithm attribute.
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As all algorithms are gradient-based, they iteratively search for a solution. The maximum
number of iterations before stopping if no solution is found the search is con�gured with
the attribute maxIterations.

The search for a solution starts with an initial estimate. An initial estimate for all workload
classes can be speci�ed with the initialEstimate attribute in the estimation con�gura-
tion. The fmincon function is iteratively invoked for each measurement. The solution
of one iteration is used as the initial estimate for the next one. In order to compensate
temporary uctuations we apply a smoothing method and calculate averages over the last
N solutions. The number N can be speci�ed with the windowSize attribute.

Independent Component Analysis

The ICA estimation approach expects the number of independent components as input.
Since we do not know the exact number of independent components in advance, we set
it to the number of resources for which we have utilization measurements as described by
Sharma et al. in [SBC+08]. This might result in superuous independent components if
the number of workload classes is less than the number of resources. In this case the user
has to identify and eliminate the superuous independent components manually.

The estimates of the ICA cannot be directly mapped to the actual workload classes.
Therefore, it creates new workload classes for each independent component. The new
workload classes are labeled IC x where x is a number.

6.4.4. Plug-in Overview

We implemented the estimation tool as a set of Eclipse plug-ins. Figure 6.8 gives an
overview of all plug-ins. The plug-ins in the upper half contain the actual code of the
estimation tool we have written. The wrapper plug-ins for external, third-party libraries
used by the estimation tool are depicted in the lower half.

edu.kit.ipd.descartes.redeem

edu.kit.ipd.descartes.redeem.backend.kalman

edu.kit.ipd.descartes.redeem.backend.matlab

org.apache.commons.math com.sun.jna

edu.kit.ipd.descartes.redeem.model

org.apache.commons.io

com.google.common

org.apache.commons.csv com.mathworks.matlab.javabuilder
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Figure 6.8.: Overview of plug-ins.

The plug-in edu.kit.ipd.descartes.redeem.model contains the EMF metamodel of
the estimation con�guration model including the Java source code generated by
EMF. The plug-ins edu.kit.ipd.descartes.redeem.backend.kalman and edu.kit.

ipd.descartes.redeem.backend.matlab contain the C++ functions of the Kalman �lter
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and the Matlab functions for linear regression, Menasce optimization and ICA. Addition-
ally, they contain the wrapper code to call these functions from Java code. The plug-in
edu.kit.ipd.descartes.redeem contains the core components of the estimation tool,
which are the trace repository, the data importers and exporters, the data preprocessors
and the estimation strategies.

The plug-ins depend only on the core runtime of Eclipse. The estimation tool is realized
as a headless application, i.e., it does not depend on a graphical user interface. The user
controls the behavior of the estimation tool with program arguments and the estimation
con�guration �le.

6.5. Future Enhancements

For the future we plan to extend the estimation tool in the following directions:

� The current implementation does not support real online estimation of resource de-
mands. This would require a direct connection between the monitoring tools and
the estimation tool. The monitoring tools must continuously send updated measure-
ments to the estimation tool. This could be realized with standard management
protocols, such as Simple Network Management Protocol (SNMP), Java Manage-
ment Extensions (JMX) or Windows Management Instrumentation (WMI), which
are supported by many servers and operating systems.

� The expressiveness of the resource environment description in the estimation con-
�guration model is currently limited. For instance, it is not possible to describe
communication links between servers. In combination with detailed visit counts,
this information can be bene�cial for resource demand estimation.

� The results of the resource demand estimation can be only stored in at �les in
the current version. Future versions might support to automatically parameterize
performance models with the estimated resource demands. This can be realized by
providing specialized data exporters for the performance models.

� The implementations for the data importer, preprocessor, estimation strategy and
data exporter components are hard-wired in the current version. It would be useful
to use the extension mechanism provided by the Eclipse plug-in system instead. This
would greatly improve the extensibility of our tool.

� A graphical user interface including an editor for the estimation con�guration model
would improve the usability of the tool. Furthermore, a specialized launcher for the
estimation tool could be developed that allows to start the estimation from within
Eclipse.

6.6. Concluding Remarks

We provide a ready-to-use tool for estimating resource demands based on non-intrusive,
low-overhead measurements, such as the CPU utilization and average response times. The
tool comes with implementations of di�erent estimation approaches. The tool executes
the following major steps when estimating resource demands: It starts with importing the
raw measurement traces as produced by the monitoring tools. Then the raw measurement
data is prepared for resource demand estimation. Afterwards, the tool invokes a set of
estimation approaches with the imported measurement data. Finally, the results from
the resource demand estimation are stored in �les and the user can analyze the results.
Each of these steps is con�gurable and can be adapted to the speci�c requirements of a
concrete situation. The tool can also be extended with custom implementations of the
core components.
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7. Evaluation Results

In this chapter, we describe the results of the evaluation of di�erent approaches to resource
demand estimation. We evaluated the estimation approaches listed in Section 5.2. These
estimation approaches were applied to the scenarios described in Section 5.4. In the
following sections we explain the results of each scenario.

7.1. Scenario A: Arti�cial Workload

In this section, we describe the results of a number of experiments with arti�cial workloads
generated with the Ginpex framework [HKHR11]. We compare the estimation accuracy of
di�erent approaches to resource demand estimation and evaluate the inuence of certain
workload characteristics.

The estimation accuracy is quanti�ed with the mean relative error Erel de�ned as

Erel =
1

C

CX
c=1

����D
c
est �Dc

real

Dc
real

����
where C denotes the number of workload classes, Dc

est the estimated resource demand
of workload class c and Dc

real the real resource demand of workload class c. We use the
average of the estimates in the last ten minutes of the observation period as Dc

est in order
to compensate for short-term uctuations of the estimates. If we aggregate the results
from several experiment runs, we use the total mean relative error Etotal de�ned as

Etotal =
RX
r=1

Er
rel

where R denotes the number of experiment runs and Er
rel the mean relative error of

experiment run r.

This section is structured as follows: We �rst mention major issues that need to be con-
sidered when using the estimation approaches. Then we present the results from the
base experiment. Afterwards, we show three sensitivity analysis di�erent variations of the
workload of the base experiment. At the end, we discuss the results of this scenario.
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7.1.1. Preliminary Remarks

During evaluation, we identi�ed the following issues that need to be considered when using
the estimation approaches. Using the Kalman �lter approach as desribed by Kumar et
al. [KTZ09], we experienced numerical stability and convergence problems. Furthermore,
the Kalman �lter and Menasc�e optimization approaches both depend on a sensible initial
estimate to converge to a solution. Finally, the size of the monitoring window signi�cantly
inuences the estimation accuracy of some of the estimation approaches. In the following,
we describe these issues in-depth.

7.1.1.1. Numerical Stability

The error covariance matrix Pkjk, which is part of the state of a Kalman �lter, must
always be symmetric. In theory, the Kalman �lter equations are designed in a way that
updated values of Pkjk are always symmetric matrices. However, given the �nite-precession
arithmetic of computers, Pkjk might become asymmetric after some �lter steps. Then the
estimation accuracy of the Kalman �lter might su�er or with our implementation, the
estimation fails prematurely because a sanity check fails. We solved this issue by explicitly
making the matrix Pkjk symmetric after each update step, as proposed by Simon [Sim06].
We used the following equation to keep Pkjk symmetric:

Pkjk =
1

2

�
Pkjk + P T

kjk

�
(7.1)

We added this additional step in the Bayes++ library before the updated matrix is assigned
to the variable containing the error covariance matrix Pkjk.

The calculation of the gain matrix in the update phase of the Kalman �lter includes an
inversion operation on an intermediary result matrix. In some experiments, we experi-
enced failures because the Kalman �lter implementation could not calculate the inverse of
this matrix. An in-depth analysis of the problem revealed that the inversion fails if the
calculated utilization in the measurement model of the Kalman �lter (see Equation 3.3
on page 18) is close to 100%. Then elements of the observation vector and the Jacobian
matrix of the measurement model might be close to in�nity causing numerical stability
problems. As a result, some matrices cannot be inverted. We solved this issue by limiting
the calculated utilization to 99%. All values above are truncated.

7.1.1.2. Initial Estimates

The Kalman �lter and Menasc�e optimization approaches rely on an initial estimate of
the resource demands. A performance engineer must provide sensible values as initial
estimates. We observed a dependency between the given initial estimate and the estimation
accuracy.

Figure 7.1 shows the total mean relative error of the Kalman �lter and Menasc�e opti-
mization approaches when varying the initial estimate. The measurement data came from
28 experiment runs with varying utilization levels (between 20% and 80%) and varying
number of workload classes (between 1 and 16). The initial estimate is the same for all
workload classes. The Kalman �lter reveals signi�cant convergence issues if the initial
estimate is chosen too high. In this case, the calculated utilization based on the measured
throughput and the initial estimate is close to or above 100% in the transient phase before
the Kalman �lter can reach better estimates. The measurement model in Equation 3.3
on page 18 has a highly non-linear character with utilization close to 100% because the
response time asymptotically tends to in�nity. We use the EKF here to cope with the
nonlinear measurement model. However, EKF is only expected to work well with almost
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Figure 7.1.: Total relative error depending on the initial estimate.

linear models [ZWL08]. If the initial estimate is too high, the Kalman �lter starts in the
critical region where the measurement model is highly non-linear, and therefore has con-
vergence issues. Otherwise, the inuence of the initial estimate is insigni�cant as already
shown by Zheng et al. [ZWL08].

The Menasc�e optimization approach has signi�cant convergence issues if we set the initial
estimate to zero or to a high value where the calculated utilization is close to or above 100
per cent. In both cases, the solution algorithm we used to solve the non-linear optimization
problem could not �nd a solution within a reasonable number of iterations. We limited
the maximum number of iterations to 1000. The solution algorithm might be able to �nd
a solution to the optimization problem when raising this limit. However, the solution
algorithm can require signi�cant computing time the more iterations it requires. This
might not be feasible when using it for online estimation in a production environment.

As a general rule of thumb, we recommend to use initial estimates that underestimate the
real resource demands. If we have no previous knowledge of the order of magnitude of
the real resource demands, it might be worthwhile to obtain a rough estimate with the
Service Demand Law or response time approximation before applying the Kalman �lter
or Menasc�e optimization. We used one millisecond as an initial estimate in the following
experiments because it is always signi�cantly smaller than the real resource demands,
which are greater or equal to 25 milliseconds.

7.1.1.3. Monitoring Window Size

We obtained utilization measurements every �fteen seconds on the experiment machine.
The throughput and average response time measures are determined for the same inter-
vals. These measurement traces are used to examine the sensitivity of various estimation
approaches under di�erent monitoring window sizes. The results of this analysis help us
to determine optimal monitoring window sizes for the following experiments.

Figure 7.2 depicts the estimation accuracy of each approach with window sizes of 15 sec,
30 sec, 60 sec and 120 sec. We obtained the measurement data during a number of ex-
periment runs with varying utilization levels (between 20% and 80%) and varying number
of workload classes (between 1 and 16). All in all, we carried out 28 experiment runs.
Figure 7.2(a) shows the total mean relative error over all experiments and Figure 7.2(b)
depicts the standard deviation of the mean relative errors of each experiment run.
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(a) Total mean relative error
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(b) Standard deviation of mean relative error

Figure 7.2.: Estimation accuracy under di�erent monitoring window sizes.

The response time approximation and the Service Demand Law approaches are obviously
not dependent on the size of the monitoring window. The response time approximation
approach works on the response times of individual requests and thus is not inuenced
by the size of the monitoring window. The Service Demand Law approach calculates
the average utilization and throughput over the whole observation period. Therefore, the
size of the monitoring window is irrelevant. The Menasc�e optimization approach is only
slightly inuenced by the size of the monitoring window. It provides better estimates
with longer monitoring windows. Especially, the variation of the mean relative errors is
reduced. The Kalman �lter yields the best results with a window size between 30 and 60
seconds. With shorter or longer monitoring windows the estimates become less stable and
the mean relative error increases.

In our experiments, the size of the monitoring window had the biggest inuence on the esti-
mation accuracy of the linear regression approach. The mean relative error is signi�cantly
reduced when using shorter monitoring windows. At �rst sight, this result contradicts
the observations done by Zhang et al. [ZCS07]: They come to the conclusion that larger
monitoring windows work better in their case. However, the generated workload in this
experiment has only a low variation in the throughput. If utilization and throughput are
averaged over long intervals, the variation is even more reduced. That is a problem for
linear regression as it requires a certain level of variation in the control variables in order
to obtain accurate estimates.

This analysis shows that there is no window size that �ts best for all approaches to resource
demand estimation considered. Therefore, we used di�erent monitoring window sizes in the
following experiments. We used a monitoring window size of 15 sec for linear regression,
one of 30 sec for the Kalman �lter, and one of 60 sec for the other approaches.

7.1.2. Base Experiment

In this section, we present the results from the base experiment. We attempted to exclude
any external inuences that could have a negative e�ect on the estimation approaches.
This experiment lays the foundation for a number of experiments described in the following
section where we analyze the e�ects of di�erent workload characteristics on the estimation
accuracy of the considered estimation approaches. We carried out a number of experiment
runs at utilization levels of 20%, 40%, 60% and 80%, and with 1, 2, 3, 4, 6, 8 and 16
workload classes, all in all 28 experiment runs. Each experiment run lasted approximately
25 minutes.
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Figure 7.3.: Temporal development of the total mean relative error.

We start with an analysis of the convergence behavior of the estimation approaches. Fig-
ure 7.3 depicts the development of the total mean relative error over time. In this exper-
iment, the response time approximation approach has by far the best convergence of all
estimation approaches. It provides almost instantly very accurate estimates of the resource
demands. However, we should keep in mind that this experiment o�ers ideal conditions
for the response time approximation approach. Furthermore, we should assume that the
resource demands generated by Ginpex are slightly scattered so that the response time
approximation approach might underestimate the actual resource demands because it re-
lies on the minimum observed response time. Kalman �lter, linear regression and Service
Demand Law have a similar convergence behavior. In under �ve minutes, they provide
estimates that are close to their �nal estimate in. Afterwards, they still improve their
resource demand estimates, but the improvements are only small. The convergence of the
linear regression approach is signi�cantly slower. The mean relative error of linear regres-
sion is very high in the �rst �ve minutes. The mean relative error then slowly converges
to a level comparable to the Kalman �lter approach.
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(a) Sum of mean relative error
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(b) Standard deviation of mean relative error

Figure 7.4.: Total mean relative error at varying utilization levels.

Figure 7.4 shows the total mean relative error for each level of utilization separately. The
total mean relative error signi�cantly varies with di�erent utilization levels. Only the re-
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sponse time approximation approach has a constantly low relative error over all utilization
levels. Since we approximate the resource demand with the minimum observed response
time, one request that experiences no delays due to resource contention is su�cient to
obtain an accurate resource demand estimate for a workload class. Such requests that are
not delayed are even observed at high utilization levels of around 80%. If we approximate
the resource demands with average response times, the estimation error in this experiment
is expected to be signi�cantly higher at high utilization levels.

The linear regression approach has the highest total mean relative error. At the same
time it has also the highest standard deviation of the relative error. These high errors are
caused by a very slow convergence of the linear regression in some of the experiment runs.
If we extend the observation period, the resource demand estimates of linear regression
might be better. We assume that the slow convergence is caused by collinearities in the
throughput measurements. In some experiments the coe�cient of correlation between the
throughput measurements of two workload classes were up to 0.6. However, we could not
determine a clear relationship between correlation coe�cients and the mean relative error.

The Kalman �lter has a peak at a utilization of 80%. This peak is primarily caused by
one experiment run where the Kalman �lter has convergence issues, as we can see in Fig-
ure 7.5(d). In this case the estimation approach highly overestimates the resource demands
at the start although we provided very low initial estimates. Then the convergence issues
already described Section 7.1.1.2 apply because the calculated utilization is close to 100%.

We conclude that response time approximation, Service Demand Law and Menasc�e opti-
mization provide the best and most reliable estimates in the base experiments with a mean
relative error of below ten percent in all experiment runs. The Kalman �lter approach can
have convergence problems if the utilization is high (above 80%). The estimation accuracy
of linear regression has a high variance compared to the other approaches and its resource
demand estimates are therefore less reliable.

7.1.3. Sensitivity Analyses

7.1.3.1. Collinear Workload

Linear regression is known to be prone to multicollinearities between the control variables.
We are primarily interested in how the Kalman �lter approach can cope with collinearities
in the throughput measurements. We do not consider other estimation approaches in this
experiment because it can be argued that these estimation approaches are not inuenced
by multicollinearities.

We used the collinear workload described in Section 5.4.1.1. The workload consisted of
six classes causing a utilization of 40% on average. We repeated this experiment while
varying the number of collinear workload classes between 2, 3 and 6 classes.

Figure 7.6 shows the mean relative error for each experiment run. As expected, the linear
regression is signi�cantly inuenced by the collinear throughput measurements. It fails
to distribute the observed utilization between the workload classes. The resource demand
estimates have a high variance over time. The coe�cient of covariation of the estimates of
one workload class over time is up to 600% and the estimates never settle down to a stable
value. The resource demand estimates of some workload classes temporarily collapse to
zero.

Compared to linear regression, the collinear throughput measurements do not clearly in-
uence the resource demand estimates of the Kalman �lter approach. The mean relative
error is always below 3% and does not change when varying the level of collinearity in the
throughput measurements. Although the Kalman �lter also uses the Utilization Law in
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(a) 20% utilization
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(b) 40% utilization

Kalman �lter Linear regression Service Demand Law Menasce optim. Response time approx.

10

20

30

40

50

Approaches

M
e
a
n
re
la
ti
v
e
e
rr
o
r
(i
n
%
)

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

(c) 60% utilization
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(d) 80% utilization

Figure 7.5.: Mean relative errors with the arti�cial workload.
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Figure 7.6.: Mean relative error in the presence of multicollinearities.

its measurement model (Equation 3.1.4 on page 17) it is able to compensate the loss of
information due to collinear throughput measurements. We assume that the inclusion of
response time measurements in the measurement model makes it robust to multicollinear-
ities.

We conclude that only the linear regression approach shows a high sensibility to collinear
throughput measurements. This result for the linear regression corresponds with earlier
experiences described by Paci�ci et al. [PSST08] and Casale et al. [CCT08]. The Kalman
�lter approach can cope well with the type of collinear workload used in this experiment.

7.1.3.2. Workload with Additional Wait Phases

In this experiment, we use the workload described in Section 5.4.1.1 where an additional
pause of a certain duration is inserted in the middle of a task. This pause could stand
for delays incurred by hardware or software contention, e.g., the waiting time for an I/O
device. The workload consists of four classes and causes a CPU utilization of about 40%
on the experiment machine. Only two of the workload classes have an additional wait
included, one of these workload classes contains a wait Twait and the other class 2 � Twait.
We chose this distribution of the waiting times so that the responses time of a workload
class are not proportional to the resource demand. We did three experiment runs while
varying Twait between 20 ms, 50 ms and 100 ms.
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Figure 7.7.: Mean relative error in the presence of additional wait phases.

Figure 7.7 shows the results of this experiment. It depicts the mean relative error of each
estimation approach and each experiment run. The additional wait inuences primarily
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the measured response time. Therefore, the estimation accuracy of the linear regression
approach, which is based on the Utilization Law, is not impaired. The other estimation
approaches all reveal a sensitivity to the duration of the wait because they depend on
response time measurements. The response time approximation approach is inuenced
most by the additional wait depending solely on response time measurements. The other
three approaches, namely Kalman Filter, Service Demand Law and Menasc�e optimization,
show similar behavior. The relative mean error of the Service Demand Law approach rises
with higher waiting times because we use the apportioning scheme described by Brosig
et al. [BKK09]. This apportioning scheme is based on the assumption that the response
times are proportional to the resource demands. This is not the case in this experiment.
Other apportioning methods might be more appropriate here.

This experiment shows that delays due to software or hardware contention can have a
signi�cant inuence on the estimation accuracy. All estimation approaches relying on
response time measurements are a�ected negatively by additional delays. The estimation
accuracy is inversely proportionally to the length of the delay. Delays during the processing
of requests due to software or hardware contention need to be identi�ed and considered
speci�cally during resource demand estimation.

7.1.3.3. Workload with Background Jobs

In this experiment, we used the workload described in Section 5.4.1.1 where an additional
background job is included, which causes a certain load on the monitored system. The four
workload classes cause a utilization of 40%. The background job is not included in any of
the four workload classes. It represents any kind of unforeseen work that the performance
engineer did not include in his model. We did four experiment runs varying the utilization
due to the background job between 5%, 10%, 20% and 40%.
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Figure 7.8.: Mean relative error in the presence of background jobs.

Figure 7.8 shows the results of this experiment. In general, all estimation approaches ex-
cept for the response time approximation are negatively inuenced by background jobs.
A background job primarily a�ects the utilization measurements. If the background job
causes a substantial utilization, the response times are also inuenced because requests
have to wait longer for resources. Therefore, estimation approaches solely based on re-
sponse time and throughput measurements, e.g., the Menasc�e optimization approach, are
less inuenced by background jobs than approaches based on utilization measurements.

Figure 7.9 shows the development of the total mean relative error of all experiment runs
over time. The Kalman �lter approach continuously adapts its resource demand estimates
during phases of high load due to a running background job. It distributes the resource
consumption between the workload classes resulting in higher resource demand estimates
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Figure 7.9.: Temporal development of the total mean relative error with background jobs.

when a background job is running. When no background job utilizes the CPU, it quickly
reduces its estimates again. This illustrates the ability of the Kalman �lter to track time-
varying resource demands. However, it might not be our intention that the Kalman �lter
changes its estimates in presence of background jobs. Other estimation approaches do not
show this behavior because they take all measurements equally into account.

We conclude that unforeseen background jobs can signi�cantly inuence the results of all
estimation approaches. Estimation approaches relying on utilization measurements are
a�ected more by background jobs than estimation approaches solely based on response
time measurements. At any rate, a performance engineer must consider background jobs
that are possibly running on a system when estimating resource demands.

7.1.4. Discussion

We showed with a number of experiments, that the accuracy of an estimation approach
can be signi�cantly inuenced by the workload characteristics. None of the considered
approaches to resource demand estimation yield accurate estimates in all situations. In
the base experiment, the mean relative error is mostly below 10%. When varying the
workload characteristics, we observe mean relative errors of almost 200% in the worst
case.

Shortly summarized, we could show that the following workload characteristics have a
signi�cant inuence on the estimation accuracy:

� If the utilization of the monitored system is around 80% or higher, the Kalman �lter
design of Kumar et al. [KTZ09] has convergence issues in some cases.

� Multicollinearities in the throughput measurements only inuence the estimation
accuracy of the linear regression approach negatively.

� Additional delays due to software or hardware contention reduce the accuracy of
estimation approaches relying on response time measurements.

� Background jobs that are not included in the workload model can cause problems
with estimation approaches based on utilization measurements.

A performance engineer needs to consider these workload characteristics when choosing
an approach to resource demand estimation.
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7.2. Scenario B: TPC-W Benchmark

In the following scenario, we used the TPC-W application benchmark in order to analyze
the behavior of the approaches to resource demand estimation with realistic workloads.
We want to compare the predictive estimation accuracy of di�erent approaches to resource
demand estimation regarding utilization and response time predictions. Furthermore, this
scenario extends the evaluation to environments with resources.

The TPC-W benchmark is designed as a three-tier internet application. We deployed the
TPC-W application benchmark on two servers. The front-end server hosted the presen-
tation and logic tier, the back-end server contained a database. See Section 5.4.2.3 for
details about the experiment setup. We estimated the resource demands for the CPUs
of the front-end and back-end server. We identi�ed these two resources as potential bot-
tlenecks under heavy workload. Other resources are not considered in the performance
model. See Section 5.4.2.4 for an in-depth description of the performance model.

We started with one experiment run in which we applied a workload whose arrival pattern
follows that of the FIFA 98 world cup workload described in Section 5.4.2.2. During the
experiment run we monitored the utilization of each system as well as the throughput
and response times of each workload class over a period of two hours. The measurements
were obtained with a sampling interval of one second. Based on these measurements, we
obtained resource demand estimates for each resource and each workload class. As we
showed in Section 7.1.1.3, the estimation accuracy depends on the length of the moni-
toring window. Therefore, we used di�erent monitoring window sizes for each estimation
approach. We directly used the measurements with a sampling rate of one second for
linear regression . We averaged the measurements over 30 seconds for the Kalman �lter
and over 60 seconds for the other estimation approaches. Furthermore, we removed the
�rst �ve minutes from the measurement traces to ensure that the system is in a steady
state.

The estimated resource demands are used to parameterize the QPN model in Figure 5.7
on page 49. After model parameterization we have a separate model for each estimation
approach. We simulated all models with the SimQPN 2.0 tool, which o�ers an e�cient and
well-proven simulator for QPN models [KB06,KSM10]. We used the batch means method
for steady state analysis. The simulation stopped if the relative precision of the response
time is below 2% at a con�dence level of 98%. We repeated the simulation with 400, 600,
800 and 1000 clients in the system. Afterwards, we carried out a number of experiment
runs with the standard workload of the TPC-W benchmark with these numbers of EBs
and measured the average utilization and response time at the system.

First experiments runs revealed high errors in the predicted response times. We identi�ed
the network as a source of signi�cant delays. Each request at the web-server causes several
database queries requiring a round-trip between front-end and back-end server. A static
analysis of the TPC-W source code showed that one HTTP request for a TPC-W transac-
tion results in approximately six database queries on average. Under load, the measured
round-trip time between front-end and back-end server is approximately 0.5 milliseconds
on average. Assuming that all database queries are executed sequentially, we estimate the
total network delay to approximately three milliseconds. The estimated resource demands
at the front-end and back-end servers are all between one and two milliseconds and the
network delays cannot be neglected. Therefore, we subtract a constant delay of three
milliseconds from all measured response times before using them for resource demand
estimation. Thus, we exclude that this delay is erroneously attributed to the resource
demands of the CPUs of the servers by estimation approaches relying on response time
measurements. We added an additional place with IS scheduling to the performance model
with a constant delay of three milliseconds.
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(a) 400 EBs.

Udb Uweb Rbrowse[ms] Rorder[ms]
Measured 0.28 0.28 6.22 8.29
Kalman �lter 0.26 (8.84%) 0.29 (3.86%) 5.42 (12.81%) 7.25 (12.61%)
Service Demand Law 0.25 (12.46%) 0.29 (1.19%) 5.60 (9.94%) 6.81 (17.82%)
Linear regression 0.25 (12.42%) 0.29 (2.11%) 6.46 (3.84%) 5.93 (28.48%)
Menasce optim. 0.33 (18.15%) 0.33 (16.10%) 6.54 (5.10%) 8.14 (1.83%)

(b) 600 EBs.

Udb Uweb Rbrowse[ms] Rorder[ms]
Measured 0.37 0.42 7.64 9.67
Kalman �lter 0.39 (3.53%) 0.44 (5.55%) 5.99 (21.63%) 8.27 (14.45%)
Service Demand Law 0.37 (0.42%) 0.43 (3.84%) 6.21 (18.70%) 7.69 (20.42%)
Linear regression 0.37 (0.88%) 0.42 (1.74%) 7.19 (5.91%) 6.59 (31.90%)
Menasce optim. 0.49 (32.85%) 0.49 (18.07%) 7.63 (0.14%) 9.71 (0.46%)

(c) 800 EBs.

Udb Uweb Rbrowse[ms] Rorder[ms]
Measured 0.53 0.57 10.43 13.50
Kalman �lter 0.51 (3.65%) 0.59 (3.93%) 6.93 (33.56%) 9.97 (26.11%)
Service Demand Law 0.50 (7.19%) 0.58 (2.00%) 7.18 (31.18%) 9.05 (32.92%)
Linear regression 0.49 (7.99%) 0.57 (0.45%) 8.35 (19.97%) 7.55 (44.05%)
Menasce optim. 0.66 (23.07%) 0.66 (16.56%) 9.87 (5.37%) 13.05 (3.30%)

(d) 1000 EBs.

Udb Uweb Rbrowse[ms] Rorder[ms]
Measured 0.60 0.71 15.62 19.14
Kalman �lter 0.64 (6.83%) 0.73 (3.80%) 8.70 (44.33%) 13.21 (30.96%)
Service Demand Law 0.62 (2.48%) 0.71 (0.93%) 8.77 (43.85%) 11.44 (40.25%)
Linear regression 0.62 (2.10%) 0.71 (0.54%) 10.65 (31.79%) 9.62 (49.72%)
Menasce optim. 0.82 (35.90%) 0.82 (15.86%) 15.74 (0.79%) 21.63 (13.02%)

Table 7.1.: Prediction results for the TPC-W order mix in a native environment.

7.2.1. Results

Table 7.1 compares the simulation results with corresponding measurements at the real
systems. We consider the CPU utilization of the front-end server Uweb, the CPU utilization
of the back-end server Udb, the average response time Rbrowse of the browse workload class
and the average response time Rorder of the order workload class. The table contains the
measured values as well as the simulation results for each estimation approach. For each
simulation result the table shows the absolute values as well as the relative deviation from
the measured values in parentheses. The relative deviation is de�ned as

�X =
jXsimulated �Xmeasuredj

Xmeasured

(7.2)

where X is one of the previously listed performance measures. The response time ap-
proximation approach is not considered in this scenario because our implementation only
supports a single resource.

The workload used to obtain measurements for the resource demand estimation caused a
utilization of approximately 30-40%. Therefore, all estimation approaches also provided
the best results with 400 and 600 EBs. The Service Demand Law approach and the Kalman
�lter approach provide the best overall results at these load levels with utilization errors
of 12% and below and response time errors of mostly below 20%. In general, the accuracy
of the predictions of these two approaches are very similar. Both yield resource demand
estimates that predict the utilization of the system best, but fail to adequately explain the
response times at higher load levels with 800 EBs and more.

The linear regression approach provide resource demand estimates that can predict the
utilization of both systems well with relative errors of below 10% for almost all load
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levels. However, it seems as if the linear regression struggles to attribute the observed
load to the two workload classes correctly. The deviation of Rbrowse from the measured
response times is signi�cantly lower than the deviation of Rorder. We can explain this with
multicollinearities in the throughput measurements. The correlation coe�cient between
the throughput of order requests and the throughput of browse requests is always close to
one. This is because we only varied the total arrival rate according to the arrival patterns
of the FIFA 98 World Cup workload. We did not change the mix between workload classes
over time. According to Stewart et al. [SKZ07], linear regression works better if the mix
of the workload classes changes over time.

The Menasc�e optimization approach yields resource demand estimates that lead to the best
response time predictions. In most cases the response time error is 5% or less. Only in the
case with 1000 EBs the response time error is above 10% for one workload class. How-
ever, it signi�cantly overestimates the utilization of both systems in all cases. We assume
that the measured response times include some additional, unknown delays that cannot be
attributed to the CPU of the system. Nevertheless, the Menasc�e optimization approach
includes these delays in the resource demand estimates of the CPU, as we have already
shown in Section 7.1.3.2. These overestimated resource demands lead to signi�cant errors
when predicting the utilization of a system. Furthermore, we observed that the resource
demand estimates are essentially the same for all resources. There are only di�erences
between resource demand estimates of di�erent workload classes. If no predetermined re-
source demands are provided, the Menasc�e optimization approach gets only measurements
that describe the performance behavior of both resources, such as average response time
and throughput. It does not have any information speci�c to one resource. Therefore, it
does not have any clue how the work is distributed between the two resources and assumes
that the work is equally distributed between the two resources. For each resource, it re-
quires at least one predetermined resource demand of any workload classes. Otherwise,
the utilization predictions are meaningless. Other estimation approaches based on opti-
mization that also include utilization measurements in their model [LXMZ03, LWXZ06]
might be more appropriate for cases with several resources.

7.2.2. Discussion

We conclude that the predictive accuracy can signi�cantly vary between the considered
estimation approaches with a realistic workload. Especially, if the performance model
does not represent each source of delays individually, which is often not feasible due to the
complexity of modern computer systems, we get di�erent resource demand estimates. Gen-
erally speaking, approaches based on utilization measurements, such as Service Demand
Law and linear regression, provide estimates which yield more accurate predictions of the
utilization of a system. In contrast, approaches based on response time measurements,
such as Menasc�e optimization, are better suited when predicting the response time of a
system. Although, the Kalman �lter includes both types of measurements in its model,
its predictive accuracy in this scenario is comparable to that of approaches solely based
on utilization measurements.

7.3. Scenario C: Multi-core Processor

In Section 7.1, we ran the experiments on a single-core processor machine. However,
multi-core processors are the standard in most computer systems today. In this scenario,
we repeated the base experiment, which is described in Section 7.1.2, with a multi-core
processor. First, we used the same tasks as in Section 7.1 where all work is done sequen-
tially. Then we changed the workload so that the tasks split their work between several
threads. Section 5.4.3 contains a description of this parallel workload. We monitored the
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global utilization over all enabled cores, i.e., 100% utilization means that all cores of the
processor are fully utilized. In the following, we describe the results of these experiments.

7.3.1. Sequential Tasks

We carried out several experiment runs with four workload classes and a utilization level
of 40%. We varied the number of enabled cores of the processor between 1 and 4.
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Figure 7.10.: Mean relative error with a varying number of processor cores.

Figure 7.10 shows the mean relative error when varying the number of enabled cores.
Response time approximation is not inuenced by the number of enabled processor cores.
Since the tasks in this experiment are all sequential, the response times of the individual
tasks are not reduced by enabling more processor cores. More enabled processor cores only
improve the maximum possible throughput.

The Service Demand Law for resources with multiple servers is de�ned as

Di;c =
Pi � Ui;c

X0;c
(7.3)

where Pi is the number of servers at resource i [MDA04]. We extended the Service Demand
Law approach accordingly. We set Pi to the number of enabled processor cores. The
resulting resource demand estimates are very accurate with estimation errors below 5%.
This relationship appropriately describes the behavior of a multi-core processor in this
experiment. We did not consider the linear regression approach here. It is based on
the Utilization Law, which in turn can be directly derived from the Service Demand
Law. Therefore, we do no expect any inuence of multi-core processors on the estimation
accuracy of linear regression.

Kumar et al. already consider systems with multiple processors in their measurement
model for the Kalman �lter [KTZ09]. Essentially, they de�ne the response time as

Ri;c =
Di;c

1� 1
Pi

PC
d=1 �d �Di;d

(7.4)

where Pi is the number of servers of resource i. However, the experiment results show
that this relationship does not correctly explain the observed response times. As a result,
the estimation accuracy of the Kalman �lter declines substantially with several processor
cores resulting in estimation errors between 12% and 15%.

We used the response time equation in Equation 7.4 for the Menasc�e optimization approach
as well. The relative error of the Menasc�e optimization approach is even worse than that
of the Kalman �lter. It is between 18% and 25%. We assume that the Kalman �lter
can compensate a part of the error caused by the insu�cient model with the additional
information from the utilization measurements.
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7.3.2. Parallel Tasks

In this experiment we enabled all four cores of the processor and varied the workload
type instead. We used parallel tasks that distribute the calculations over several threads.
A task can utilize several cores of the processor simultaneously. Therefore, the response
time can be substantially reduced on multi-core processors. The workload consisted of
four workload classes that caused a total utilization of approximately 40% on average. We
carried out several experiment runs while varying the number of threads between 1 and 8.
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Figure 7.11.: Mean relative error with a varying number of threads.

Figure 7.11 depicts the mean relative error of each estimation approach with varying num-
ber of threads. All estimation approaches that rely on response time measurements, namely
Kalman �lter, Menasc�e optimization and response time approximation, are negatively af-
fected by parallel workloads. If the parallel tasks use two or more threads, the mean
relative error of these approaches lies between 30% and 80%. We need more sophisticated
models if requests are processed by several threads simultaneously.

The mean relative error of the Service Demand Law approach is relatively low, below 10%
in all experiment runs. We can observe only a slight increase in the mean relative error
with more threads. We assume that this is due to a higher scheduling overhead at the
operating system level.

7.3.3. Discussion

We conclude that approaches to resource demand estimation that primarily rely on utiliza-
tion measurements, such as linear regression and Service Demand Law, work better with
multi-core processors and parallel processing than estimation approaches using response
time measurements, such as the Kalman �lter and Menasc�e optimization. As we showed in
this scenario, Equation 7.4 insu�ciently describe systems with multi-core processors and
parallel processing. Future research is necessary to extend estimation approaches based
on response times to support parallel systems.

7.4. Scenario D: Virtualization

In this scenario, we analyze the estimation accuracy of di�erent approaches to resource
demand estimation in virtualized environments. The general experiment procedure is the
same as that in Section 7.2. We also used the TPC-W application benchmark, but in
this scenario we deployed it on virtualized servers instead. The front-end and back-end
servers both ran in a separate VM on the same physical computer. See Section 5.3.2 for
details about the setup of the virtualized servers. The workload used here is the same as
in Section 7.2.
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(a) 400 EBs.

Udb Uweb Rbrowse[ms] Rorder[ms]
Measured 0.21 0.25 10.72 11.73
Kalman �lter 0.22 (3.75%) 0.24 (6.83%) 5.25 (51.02%) 5.88 (49.87%)
Service Demand Law 0.24 (15.27%) 0.30 (17.17%) 5.95 (44.45%) 6.53 (44.31%)
Linear regression 0.25 (17.16%) 0.30 (19.38%) 7.88 (26.49%) 4.73 (59.68%)
Menasce optim. 0.52 (147.81%) 0.51 (101.37%) 11.67 (8.93%) 12.90 (9.93%)

(b) 600 EBs.

Udb Uweb Rbrowse[ms] Rorder[ms]
Measured 0.39 0.47 30.85 36.63
Kalman �lter 0.33 (15.38%) 0.35 (24.32%) 5.64 (81.72%) 6.38 (82.58%)
Service Demand Law 0.36 (6.39%) 0.45 (4.65%) 6.59 (78.63%) 7.32 (80.03%)
Linear regression 0.37 (5.65%) 0.45 (3.83%) 8.87 (71.26%) 5.20 (85.79%)
Menasce optim. 0.78 (101.84%) 0.76 (63.17%) 21.27 (31.04%) 24.08 (34.25%)

(c) 800 EBs.

Udb Uweb Rbrowse[ms] Rorder[ms]
Measured 0.58 0.86 222.88 303.75
Kalman �lter 0.43 (24.91%) 0.47 (45.47%) 6.16 (97.24%) 7.10 (97.66%)
Service Demand Law 0.48 (16.80%) 0.59 (31.72%) 7.73 (96.53%) 8.63 (97.16%)
Linear regression 0.49 (15.62%) 0.60 (31.05%) 10.53 (95.28%) 5.99 (98.03%)
Menasce optim. 0.98 (70.69%) 0.96 (11.15%) 114.58 (48.59%) 131.21 (56.80%)

Table 7.2.: Prediction results for the TPC-W order mix in a virtualized environment.

7.4.1. Results

Table 7.2 compares the simulation results with corresponding measurements at the virtu-
alized systems. The table does not include the results with 1000 EBs because the system
is overloaded with that number of simultaneous clients. We used the same constant delay
as in Section 7.2 that captures the inuence of the network. Round-trip measurements at
the virtualized systems yielded approximately the same delay under load.

The load curve of the virtualized systems is di�erent than that of their native counter-
parts. With 400 EBs the utilization of both systems is slightly lower in the virtualized
environment. In contrast, the utilization is signi�cantly higher in the virtualized systems
with 600 and 800 EBs. The CPU utilization of the virtualized system shows a non-linear
behavior. Therefore, all estimation approaches fail to provide resource demand estimates
that can be used to accurately predict the CPU utilization at di�erent load levels. The
estimates from the Kalman �lter predicts the CPU utilization best in the case with 400
EBs. Linear regression and the Service Demand Law provide the best estimates with 600
EBs.

We measured only the CPU utilization in the VMs and did not consider the CPU utilization
of the Xen Dom0 in this scenario. However, the TPC-W benchmark causes a considerable
amount of network tra�c. Furthermore, databases require a lot of hard disk accesses.
These I/O activities result in a certain CPU utilization of the Xen Dom0. For instance,
a typical webserver can cause 20%-45% CPU overhead in the Xen Dom0 [CG05]. A
performance engineer must consider this CPU overhead when predicting the performance
of a virtualized system. Especially, we have to attribute the CPU overhead in the Xen
Dom0 due to I/O activities to each VM in order to be able to predict the utilization of
the Xen Dom0 correctly [LZJ+11].

The measured average response time in Table 7.2 cannot be explained with any of the
estimated resource demands. The Menasc�e optimization approach can provide estimates
that work well with 400 EBs. However, the measured average response times with 600 and
800 EBs are 30%-50% higher than those predicted with the resource demand estimates
of the Menasc�e optimization approach. Furthermore, the resource demand estimates of
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the Menasc�e optimization approach clearly fail to explain the utilization of the VMs. The
virtualization platform seems to infer additional delays. These delays have a great inuence
on the observed response times.

7.4.2. Discussion

We showed in this scenario that virtualized environments are a challenge for the estimation
of resource demands. In particular, we identi�ed the following issues when applying the
considered estimation approaches in a virtualized environment:

� The utilization in the VMs has a non-linear relationship to the system load. We
might require estimation approaches for load-dependent resource demands.

� The virtualization overhead needs to be attributed to the VM that caused it. We
need to use methods to apportion the virtualization overhead between the VMs, such
as described in [CG05].

� The virtualization platform causes additional delays. The considered approaches to
resource demand estimation cannot be used to estimate these delays.

7.5. Concluding Remarks

In this chapter, we presented the evaluation results of di�erent approaches to resource
demand estimation. We showed that there is no optimal approach to resource demand
estimation for all situations regarding the estimation accuracy. External conditions, such
as multi-collinearities in the workload, background jobs or delays due to hardware and
software contention, have a signi�cant inuence on the accuracy of the estimation ap-
proaches. A performance engineer needs to choose an estimation approach depending on
the characteristics of a given application scenario.

We also showed that multi-core processors can negatively inuence the accuracy of esti-
mation approaches, particularly with highly parallel workloads. Especially, this is an issue
with estimation approaches that rely on response time measurements. Existing estima-
tion approaches need to be adapted to reect the performance characteristics of multi-core
processors and parallel workloads.

Virtualized environments pose a major challenge to resource demand estimation. The
accuracy of the estimation approaches signi�cantly decreases with virtualized systems as
shown with experiments in a realistic environment running the TPC-W benchmark. Future
research needs to analyze the inuence of the virtualization platform on the estimation
approaches and it might be necessary to develop estimation approaches that speci�cally
consider the characteristics of the virtualization platform.
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8. Summary and Outlook

8.1. Summary

In this thesis, we classi�ed existing approaches to resource demand estimation and evalu-
ated them in a realistic experiment environment. The classi�cation consists of an overview
of the state-of-the-art in resource demand estimation, a classi�cation scheme for approaches
to resource demand estimation and a categorization of the existing approaches according
to the classi�cation scheme. As part of the evaluation, we implemented a subset of the
estimation approaches and conducted a series of experiments comparing the accuracy of
the estimation approaches we implemented.

We carried out a comprehensive literature research on the topic of resource demand estima-
tion and identi�ed a number of di�erent estimation approaches. We focused our literature
research on approaches that depend only on measurements that can be obtained from
a running system without intrusive application instrumentation. The identi�ed estima-
tion approaches use di�erent models to describe the relationship between the observable
measurements and the "hidden" resource demands and rely on di�erent mathematical
methods to infer estimates for the resource demands. Mathematical methods commonly
used for resource demand estimation are linear regression, Kalman �ltering, mathemati-
cal optimization and ICA. The diverse models and mathematical methods imply di�erent
assumptions about the system structure and the workload. We gave an overview of the
state-of-the-art in resource demand estimation and described each estimation approach
including its intrinsic assumptions and limitations.

The �ndings of the literature research are incorporated in the classi�cation scheme for
approaches to resource demand estimation that we developed. The classi�cation scheme
consists of a set of dimensions. Each dimension describes a major aspect of an approach to
resource demand estimation. We considered the following dimensions in our classi�cation
scheme: input parameters, output metrics, robustness, accuracy, supported types of re-
sources, support for virtualization, applicability and existing evaluation. The dimensions
capture points of variation between the di�erent approaches to resource demand estima-
tion. Thus, the classi�cation scheme enables the systematic comparison of estimation
approaches and facilitates the selection of an estimation approach that �ts best in a given
application scenario. Furthermore, it points out future research directions, such as the
high-level estimation of resource demands of I/O devices or the support for new features
of modern CPUs.
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The goal of the evaluation was the comparison of the estimation accuracy of di�erent
estimation approaches under varying conditions. We selected a subset of estimation ap-
proaches for this evaluation. The focus lay on estimation approaches that can be used
for online estimation in productive environments. Furthermore, we ensured that at least
one representative of each major model and mathematical method is included in the set
of evaluated estimation approaches. The following estimation approaches were considered
in the evaluation: response time approximation, Service Demand Law, linear regression,
Kalman �lter and Menasc�e optimization.

We designed and implemented a tool for the estimation of resource demands. The tool
provides implementations of the estimation approaches we selected for evaluation. It relies
on measurements from the Linux system monitoring tool sar, from the Ginpex frame-
work [HKHR11] and from web server access logs. The tool can directly import measure-
ment traces as produced by these programs. It contains a set of preprocessors to prepare
the raw measurement data for resource demand estimation. Then it invokes a con�gurable
number of estimation approaches and stores the results of each estimation approach for
subsequent analyses.

A number of experiments where we used the Ginpex framework to generate controlled
workloads showed that the estimation accuracy is signi�cantly inuenced by external con-
ditions. Under optimal conditions the estimation error of all estimation approaches is
mostly below 10%. Factors, such as multicollinearities in the workload, background jobs,
which are not included in the performance model, or delays due to hardware or software
contention, inuence the results of the evaluated estimation approaches in di�erent ways.
With these disturbing factors, the estimation error of some estimation approaches increases
up to a maximum of 200%. None of the evaluated estimation approaches works well in all
situations. Therefore, we see the need for certain metrics that help to assess the reliabil-
ity of approaches to resource demand estimation, e.g., robust con�dence intervals for the
estimated resource demands.

We applied the di�erent approaches to resource demand estimation in a representative
scenario using the TPC-W benchmark application and real workloads from the FIFA 98
world cup web site. The resource demand estimates produced by the di�erent approaches
were used to predict the utilization and the average response time of the web server and the
database server at di�erent load levels. With the Service Demand Law, linear regression
and Kalman �lter approaches, we obtained similar predictions for the utilization with a
relative error of mostly below 10%. However, their response time predictions showed high
relative errors. Especially at high load levels with a utilization between 50% and 70%, the
relative errors of the response time predictions are above 30%. In contrast, the Menasc�e
optimization approach provides resource demand estimates that accurately predict the
response times at di�erent load levels with a relative error of mostly below 10%. However,
this comes at the cost of higher prediction errors for the utilization compared to the other
estimation approaches. We conclude that depending on the estimation approach resource
demands are optimized either for utilization or for response time predictions.

Our evaluation included scenarios with multi-core processors and virtualization. In the
case of multi-core processors, we analyzed the accuracy of the estimation approaches with
di�erent number of cores and di�erent levels of parallelism. The accuracy of estimation
approaches relying on response time measurements signi�cantly decreased with more pro-
cessor cores and higher levels of parallelism.

In our virtualization scenario, we repeated the experiments with the TPC-W benchmark
deployed on virtualized servers. This scenario showed that the evaluated estimation ap-
proaches fail to provide resource demands that can be used to predict the utilization and
the average response time at di�erent load levels.
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8.2. Future Work

In this section, we point out future research directions. We �rst describe future work
to enhance our classi�cation scheme and our evaluation. Afterwards, we mention several
topics for future research in the context of resource demand estimation, which we identi�ed
with the �ndings of our evaluation.

In the literature research, we did not speci�cally look at estimation approaches for hard
disks or network delays. These were out of scope of this thesis. It might be worthwhile to
include such estimation approaches in our classi�cation scheme as the evaluation with the
TPC-W benchmark showed the following:

� Database servers are often causing a signi�cant amount of I/O activity due to fre-
quent hard disk accesses.

� The network connection between the web server and the database server caused
non-negligible delays. We estimated these delays with an ad-hoc method. More
sophisticated estimation approaches are required here.

We see the following possibilities to extend the evaluation of the estimation approaches:

� In Section 7.2, we showed that the Menasc�e optimization approach fails in environ-
ments with multiple resources and multiple workload classes if no resource demands
are known beforehand. The inclusion of utilization measurements might solve this
issue. Therefore, it might be of interest to implement and evaluate an optimization-
based estimation approach that relies on the average response time as well as uti-
lization measurements of each resource. For instance, such an estimation approach
is proposed by Liu et al. [LXMZ03,LWXZ06].

� All resource demands were stationary over time in our evaluation. Additional scenar-
ios might assess the adaptation speed and estimation accuracy of di�erent estimation
approaches in case of time-varying resource demands.

� The use of a highly complex application, such as the SPECjEnterprise2010 applica-
tion benchmark, might provide valuable experiences for resource demand estimation
in productive systems.

The evaluation pointed out insu�ciencies of existing estimation approaches in combination
with current technologies. These are multi-core processors on the one hand and virtualiza-
tion technologies on the other hand. Existing estimation approaches need to be adapted to
appropriately reect the performance characteristics of multi-core processors. Especially,
this is the case with estimation approaches relying on response time measurements. The
inuence of virtualization platforms on resource demand estimation should be analyzed in
detail and it might be necessary to develop estimation approaches that speci�cally take
the characteristics of the virtualization platform into account. Future research needs to
address these issues.

As shown in the evaluation, the accuracy of estimation approaches depends on the charac-
teristics of the workload and the resources in a concrete application scenario. None of the
existing estimation approaches provides accurate resource demand estimates in all situa-
tions. We believe that a systematic methodology to tailor approaches to resource demand
estimation for speci�c environments would help performance engineers to build accurate
and representative performance models. Future work can build upon our classi�cation
scheme and our comparative evaluation in order to develop such a methodology.
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API Application Programming Interface.

BLUE Best Linear Unbiased Estimator.

DVFS Dynamic Voltage and Frequency Scaling.

EB Emulated Browser.

EKF Extended Kalman �lter.

EMF Eclipse Modeling Framework.

FCFS First-Come-First-Serve.

ICA Independent Component Analysis.

IS In�nite-Server.

Java EE Java Enterprise Edition.

JDBC Java Database Connectivity.

JDK Java Development Kit.

JMX Java Management Extensions.

JNA Java Native Access.

JNI Java Native Interface.

LAD Least Absolute Di�erences.

LQN Layered Queueing Network.

LSQ Least Squares.

LTS Least Trimmed Squares.

MLE Maximum Likelihood Estimation.

MVA Mean Value Analysis.

NTP Network Time Protocol.

PS Processor-Sharing.
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QN Queueing Network.

QP Quadratic Programming.

QPN Queueing Petri Network.

SNMP Simple Network Management Protocol.

SPE Software Performance Engineering.

SUT System under Test.

URL Uniform Resource Locator.

VM Virtual Machine.

VMM Virtual Machine Monitor.

WMI Windows Management Instrumentation.
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Appendix

A. Conferences

Conference or Workshop

IEEE International Symposium on Workload Characterization

ACM SIGMETRICS

IFIP International Symposium on Computer Performance, Modeling,
Measurements and Evaluation (PERFORMANCE)

ACMWorkshop on Hot Topics in Measurement &Modeling of Computer
Systems (HotMetrics)

ACM/IFIP/USENIX International Middleware Conference (Middle-
ware)

WOSP/SIPEW International Conference on Performance Engineering
(ICPE)

ACM International Workshop on Software and Performance (WOSP)

SPEC International Performance Evaluation Workshop (SIPEW)

IEEE/ACM International Symposium on Modelling, Analysis and Sim-
ulation of Computer and Telecommunication Systems (MASCOTS)

International ICST Conference on Performance Evaluation Methodolo-
gies and Tools (VALUETOOLS)

European Performance Engineering Workshop (EPEW)

International Conference on Quantitative Evaluation of SysTems
(QEST)

Table A.1.: Conferences and workshops included in the literature research.
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