
A Case Study on Optimization of Platooning
Coordination

Veronika Lesch, Marius Hadry, Samuel Kounev
University of Würzburg
Würzburg, Germany

{firstname.lastname}@uni-wuerzburg.de

Christian Krupitzer
University of Hohenheim
Hohenheim, Germany

christian.krupitzer@uni-hohenheim.de

Abstract—In today’s world, circumstances, processes, and re-
quirements for software systems are becoming increasingly com-
plex. In order to operate properly in such dynamic environments,
software systems must adapt to these changes, which has led to
the research area of Self-Adaptive Systems (SAS). Platooning
is one example of adaptive systems in Intelligent Transportation
Systems, which is the ability of vehicles to travel with close inter-
vehicle distances. This technology leads to an increase in road
throughput and safety, which directly addresses the increased in-
frastructure needs due to increased traffic on the roads. However,
the No-Free-Lunch theorem states that the performance of one
platooning coordination strategy is not necessarily transferable
to other problems. Moreover, especially in the field of SAS, the
selection of the most appropriate strategy depends on the current
situation of the system. In this paper, we address the problem
of self-aware optimization of adaptation planning strategies by
designing a framework that includes situation detection, strategy
selection, and parameter optimization of the selected strategies.
We apply our approach on the case study platooning coordination
and evaluate the performance of the proposed framework.

Index Terms—Platooning Coordination, Case Study, Optimiza-
tion, Algorithm Selection, situation Detection

I. INTRODUCTION

In a world as dynamic as we find it today, where circum-
stances, processes, and requirements are becoming increas-
ingly complex, the challenges for software systems to be able
to work in these dynamic environments are also increasing.
One of the most critical challenge for these systems is to
analyze their environment and to adapt to changes accord-
ingly. The Self-Aadaptive System (SAS) [1], [2] research area
attempts to address these challenges. The SAS can change
their behavior and deal with changes in their environment and
the system itself [3]. In our daily lives, we are constantly in
contact with SAS that aim to support and improve our way
of life without us directly noticing it. For example, the first
electric traffic signals as part of the Intelligent Transportation
Systems (ITS) is one use case of SAS that has led to the
development of real-time traffic control in urban areas [4].
Another promising example for ITS is platooning, which ad-
dresses increased infrastructure needs due to increased traffic
on roads. Due to advances in autonomous driving, an increased
infrastructure need can be reduced through platooning, which
is the ability of vehicles to travel with very close inter-
vehicle distances, enabled by communication [5]. The use
of platooning increases road throughput [6] and safety [5].

Platooning coordination is the process of assigning vehicles to
platoons and controlling the platooning activities. The platoon-
ing coordination problem is a multi-objective problem with
several dimensions, since objectives of the drivers, aspects
of the platoon, and global traffic need to be considered [7].
Platoons are usually coordinated using platooning coordination
strategies. This coordination is an example of SAS in ITS, as
these coordination strategies can be considered as adaptation
planning strategies that adapt the system, in this case the
platoons, to their current state and environment.

In line with the No-Free-Lunch theorem [8] the proper
selection of adaptation planning strategies is a key factor in the
success of any SAS, as the performance of one strategy may
not necessarily be transferable to other application scenarios.
In the year 1976, John R. Rice already defined the algorithm
selection problem, which involves finding the best performing
algorithm for the current problem [9]. This leads to the idea
of a mechanism that automatically selects the most promising
algorithm that is also generalizable to be applied in a variety of
applications. The observation from [10] that the choice of the
strategy for adaptation planning in self-adaptive systems [1],
[2] depends on the situation of the system opens a wide
area to which such a mechanism can be applied. Gathered
observations can be used to apply different strategies in
different situations or to adjust the parameters of a strategy.
Furthermore, the knowledge can be used in combination with
previous experiences to learn in which situation which strategy
and which parameter configuration work best. This idea of
combined reasoning and learning can be found in the SeAC re-
search area, whose ideas and approaches will be applied in this
work. There are several approaches to situation detection [11],
[12], [13], [14], [15], [16], [17], algorithm selection [18], [19],
[20], [21], [22], and parameter optimization [23], [24], [25],
[26], [27] especially in the SAS literature. However, there
is no integrated approach that combines these ideas into a
mechanism that is generalizable and applicable to a variety of
use cases.

In this paper, we propose self-aware optimization of adap-
tation planning strategies and optimization of systems-of-
systems, with a particular focus on the field of ITS. We address
the problem of self-aware optimization of adaptation planning
strategies by designing a framework that includes situation
detection, strategy selection, and parameter optimization of the

ar
X

iv
:2

11
1.

09
66

5v
1

 [
cs

.S
E

]
 1

8
N

ov
 2

02
1

selected strategies on the case study of platooning coordina-
tion. In addition, the framework applies concepts from SeAC
research and is able to learn from previous decisions.

The remainder of this paper is organized as follows: Sec-
tion II presents and discusses related work. Afterwards, Sec-
tion III-A proposes a self-aware approach on optimization of
platooning coordination strategies. Then, Section IV presents
our platooning coordination case study. Finally, Section V
summarizes the paper and outlines future work.

II. RELATED WORK

A recent study by Calinescu et al. [11] has shown that
situation-awareness is the main driver for the development of
self-adaptive systems and is therefore still an important re-
search topic with many open research challenges. Endsley [12]
presents a theoretical model of situation-awareness in relation
to dynamic human decision making, building on research on
naturalistic decision making. Fredericks et al. [10] present an
approach that uses clustering to determine the current situ-
ation. They use this information for optimization techniques
to discover the optimal configuration for black-box systems.
Liu et al. [13] propose an approach to situation-awareness
in autonomous driving that aims to improve the decision-
making process in an urban environment. Rockl et al. [14]
propose an architecture for driver assistance systems that uses
increased environmental information to detect hazardous situ-
ations. Hardes et al. [28] address communication problems in
urban platooning scenarios by using the concept of situation-
awareness. Porter et al. [16] propose a software framework
that learns optimal system assemblies in emergent software
systems. Kang et al. [17] analyze which history length and
sensor range provide the best results for long-term situational
awareness.

According to Lewis et al. [29], meta-self-awareness “leads
to the ability to model and reason about changing trade-
offs during the system’s lifetime”. Cox et al. [30] research
on meta-cognition, which bridges psychology and computer
science. Agarwal et al. [31] provide an approach that allows
computer systems to reason about their own knowledge.
Perrouin et al. [32] propose a rule-based approach to meta-
self-awareness. They use layered MAPE-K control loop to
optimize adaptation decisions and make an adaptive system
“resilient to a larger number of unexpected situations” [32].
Gerostathopoulos et al. [33] propose the concept of meta-
adaption for cyber-physical systems, which improves the adap-
tation of a cyber-physical system by generating new self-
adaptation strategies at runtime. Kinneer et al. [34] propose the
idea of re-using knowledge from previous plans for optimiza-
tion. They use a white-box approach with knowledge about
the system combined with a genetic algorithm to respond to
unexpected adaptation scenarios.

Kate Smith-Miles considers algorithm selection as learning
problem [18]. She reviews the interdisciplinary literature deal-
ing with algorithm selection and presents the developments in
this research area. Kerschke et al. provide a survey on auto-
mated algorithm selection [19]. The survey covers early and

recent work in this area and discusses promising application
areas. Further, it includes an overview on related areas such as
algorithm configuration and scheduling. Pascal Kerschke and
Heike Trautmann contribute an approach for automatic model
construction for algorithm selection in continuous black-box
optimization problems [20]. The goal of this approach is to
reduce the required resources of the selected optimization
algorithms. Kotthoff et al. apply algorithm selection on the
TSP problem [21]. They apply two existing TSP solvers and
show that they perform complementary in different instances.
The authors design algorithm selectors based on existing TSP
features from the literature as well as new features. Bischl et al.
propose a benchmark library for algorithm selection [22]. They
define a standardized format for representing algorithm selec-
tion scenarios. Further, they provide a repository containing
data sets from the literature to compare proposed approaches.

Neumüller et al. [23] present an implementation of pa-
rameter meta-optimization for the heuristic optimization en-
vironment HeuristicLab Hive. Their approach minimizes the
expert knowledge required to adapt the parameters of a meta-
heuristic. In their evaluation, Neumüller et al. showed that
the obtained parameter combinations in some cases deviate
strongly from the usual settings. However, their approach
mainly covers single-objective optimization, whereas a multi-
objective problem can only be assessed using a normalized and
weighted sum of objectives. Feurer et al. [24] improve the Se-
quential Model-based Bayesian Optimization used for tuning
the parameters of machine learning algorithms involving meta-
learning. Using the knowledge from past optimization runs,
they showed significant improvement in the Sequential Model-
based Bayesian Optimization algorithm. Zhang et al. [25]
address the problem of release planning, which means the
process of deciding which features to integrate into the
next version of a software release. The authors perform a
study on various meta- and hyper-heuristics used for multi-
objective release planning. They use different hyper-heuristic
algorithms to decide on search operators for meta-heuristics
to improve solution quality and compare their performance.
Chis et al. [26] use the Framework for Automatic Design
Space Exploration to compare the performance of different
multi-objective meta-heuristics. The authors show that all
algorithms find similar Pareto front approximations with good
solution quality. Similarly, Vinctan et al. [27] deal with design
space exploration by implementing a meta-optimization layer
for the tool Framework for Automatic Design Space Explo-
ration. With this approach, it is possible to introduce a meta-
optimization function that can use multiple meta-heuristics
simultaneously by switching between them at simulation run-
time. In the evaluation, the authors show that their meta-
optimization approach leads to better results than running two
different meta-heuristics independently and combining their
results.

Another research direction related to this work is the area of
Auto-ML. As the name suggests, automated machine learning
focuses on automating machine learning mechanisms by using
pipelines in combination with hyperparameter optimization

to reduce manual effort. Reinbo, for example, is an Auto-
ML framework that uses task pipelines and implements rein-
forcement learning and Bayesian optimization to automatically
determine the parameters [35]. A similar approach is used by
Chai et al. who propose an Auto-ML framework that covers
the common problem of data drift in machine learning [36].
Thornton et al. propose a mechanism for hyper-parameters
selection and optimization in the context of classification
algorithms [37]. Finally, Li et al. attempt to solve the problem
of tuning hyper-parameters using a random search mecha-
nism combined with adaptive resource allocation and early-
stopping [38].

This work delineates from the presented related work as
follows: All mentioned approaches already cover parts of
our proposed framework, such as a rule-based meta-self-
aware approach, situation-awareness, determining the optimal
configuration of a system, or performance comparison of
optimization techniques. However, there is no other work that
integrates all these aspects into one framework. The combina-
tion of a multi-layered framework with the LRA-M control
loop and the integration of adaptation planning strategies,
situation-awareness, strategy selection, learning approaches,
and optimization techniques make the proposed approach
unique and a valuable contribution to the research community.

III. SELF-AWARE OPTIMIZATION OF PLATOONING
COORDINATION

A. Assumptions

In this section, assumptions are made for the design of
the framework to ensure broad applicability in various use
cases. The following assumptions ensure the proper operation
of the framework as well as the use case and define the
interactions between both systems. At the same time, they
point out limitations that can be addressed in future work.

First, we assume that the use case for which the framework
is to be used consists of two parts. One part is the environment
in which entities operate based on their individual goals and
actions. The second part is an adaptation planning system
that monitors the entities and decides upon adaptation actions
based on global goals. We assume that the operating entities
adhere to the given plan of the adaptation planning system and
execute all given adaptations. If they cannot implement these
instructions, they report this to the adaptation executor, who
then decides on further actions that should be taken by the
entities. Further, we assume that the communication between
entities in the use case and adaptation planning system is
flawless and that the entities regularly report measurement
and observation values to the adaptation planning system.
Additionally, we assume that the applied strategy of the
adaptation planning system is interchangeable and has the
possibility to change its parameters at runtime.

Second, we assume that the use case to which the framework
is to be applied is digitized, meaning that performance and
monitoring data are captured and stored digitally—typically
centrally in the adaptation planning system. Further, the adap-
tation planning system is able to transmit relevant data to a

defined management entity—in this work the framework—
where higher level optimizations take place. We assume that
the interaction between framework and adaptation planning
system of the use case is always successful. Therefore, we
exclude any case where the connection between the two
systems fails or the computed changes cannot be transmitted to
the adaptation planning system due to other failures - resilience
management of both systems is part of the future work of this
paper.

Third, we assume that the adaptation planning system
works independently of a higher-level optimization, i.e., the
framework, and can be used with a previously defined strategy
algorithm and parameter set. Thus, it remains functional re-
gardless of whether the framework determines an optimization
adjustment. This is especially important in the startup phase
of the framework, when optimization adjustments have not yet
been determined. We also assume that this adaptation planning
algorithm works independently and flawlessly and does not
need to be monitored for failures.

Finally, we assume that the framework provides optimized
decisions to the adaptation planning system without explicit
request. Furthermore, we assume that the adaptation planning
system regularly retrieves and successfully implements these
changes. We assume that the adaptation planning system
reports its current configuration along with other monitoring
data to the framework to execute the optimizations based on
the current state at given time intervals. Based on this data,
future work can extend the framework to include a mechanism
to ensure successful implementation of new strategies and
parameter settings in the adaptation planning system.

B. Terminology

In this section, we define the terminology used in the fol-
lowing to avoid misunderstandings and imprecise expressions.
We start with the definition of the use case as well as the
entities and their actions in the use case, continue with the
definition of an observation, a context, and a situation, and
finally define the term framework.

Use Case: We define a use case as a group of entities
operating in a particular environment, pursuing their own
goals. Entities in the use case can be linked to an adaptation
planning system that helps them achieve their goals more
efficiently, or that adapts the entity’s actions to achieve global,
regional, or local goals. The complexity and abstraction level
of a particular use case are irrelevant as long as a adaptation
planning system is in place. This adaptation planning system
must provide multiple adaptation planning strategies and can
provide configuration options. With respect to the running
example platooning coordination, the use case could be de-
fined at the regional level, e.g., as coordination of platooning
of vehicles on a road segment with a central Platooning-
Coordination-System fulfilling the role of the adaptation plan-
ning system. The use case could also be defined at a lower
level, such as optimizing the inner platoon structure, i.e., the
order of vehicles within the platoon (cf. [39]).

Entity in a Use Case: An entity within a use case is a
machine, human, or other object that can receive and execute
instructions from an adaptation planning system. Entities may
have the ability to make decisions for themselves according to
their individual goals and do not necessarily need to receive
instructions from the adaptation planning system. Entities may
also work with coarse-grained instructions or work toward
individual goals. The entities within the use case are expected
to follow the adaptation actions they receive from an adap-
tation planning system, even if their individual goals dictate
a different direction. For a discussion of research challenges
related to coordinating global, regional, and local goals, we
refer the interested reader to our publication [40].

Actions of an Entity: Entities of a use case have a given
set of possible actions that they can execute to accomplish
certain tasks or achieve their individual goals. The actions to
be taken can either be specified in fine-grained terms by an
adaptation planning system, or entities can work autonomously
toward a coarser-grained goal. The second case also means that
entities can operate without an adaptation planning system if
the entities’ goals are defined and the available actions enable
the entities to achieve that goal.

Observation: An observation contains information about
the use case at a particular point in time. This includes details
about the entities, their sensed data from the environment as
well as the current configuration of the adaptation planning
system and its performance. These performance indicators
must be defined individually for each use case. Using expert
knowledge, the performance of the adaptation planning system
can be evaluated based on these indicators. We define each
observation as a triple (context, input,metrics) at a given
point in time that is sent to the system on a regular basis.
The context represents a set of values used to determine the
current situation of the use case. The input parameters are the
configuration parameters of the adaptation planning system.
The metrics are a set of indicators that represent the current
performance of the adaptation planning system.

Adaptation Planning System: An adaptation planning
system is a mechanism that uses the retrieved observations
from a use case in order to plan adaptations within a Self-
adaptive System. These systems aim to identify changes in
the environment and the system itself and to react accordingly
and apply adaptation planning strategies to plan adaptations.
The strategies are exchangeable within a Self-adaptive System
and require the configuration of parameters. These properties
can be used to tune the performance of Self-adaptive System
by an optimized selection of adaptation planning strategies and
parameter tuning.

Situation: We define a situation as a set of observed
contexts that have similar values. This means that environ-
mental factors, entities, and entity behavior occur in a sim-
ilar combination to previous context data. We use the term
situation from a technical point of view, following Cámara’s
definition, “where a situation includes at least the elements of
the situation [...], and environmental factors and their current
states” [41, p. 38]. We use the context data to determine

the situation the system is in. The knowledge of the current
situation is then used to adjust the adaptation planning strategy
and its parameters to optimize the overall performance of the
system. We also use this information to learn good strategies
for each situation and improve system performance for similar
situations in the future.

Framework: We consider a framework as an abstract
modular application that defines a specific process structure,
pursues a specific goal, and provides generic functionality by
combining components. We assume that these components
have well-defined interfaces through which they can commu-
nicate with other components to ensure smooth integration
into the overall framework. As part of this work, we have
implemented all relevant components of our framework. In ad-
dition, we have designed the framework to provide the ability
to extend it by adding new components or customizing existing
components. Furthermore, the user of the framework has to
define a configuration for the specific use case, which defines
the composition, setup and configuration of the framework and
the components used.

C. System Model

This section introduces the system model we use for
defining the self-aware optimization framework. The system
model is presented in Figure 1 and integrates three layers
following the three layer architecture proposed by Kramer and
Magee [42] to incorporate the principles of maintainability and
separation of concerns: (i) Application, (ii) Adaptation Plan-
ning, and (iii) Self-Aware Optimization. In the following, we
explain the details of each layer: the self-aware optimization
framework.

We refer to the bottom layer À of the system model as the
application layer and consider real-world use cases from Intel-
ligent Transportation Systems and logistics. Entities of the use
case monitor themselves and their environment. The collected
data is sent to the upper layer where the adaptation planning
system receives the data. After an adaptation planning cycle,
the use case entities can receive adaptation actions to follow
and execute. If the entities fail to carry out these instructions,
we assume that they will report this to the adaptation planning
system, which will decide on further action.

The middle layer Á, called adaptation planning, includes
the adaptation planning system, which receives observations
from the use case. The adaptation planning system applies a
strategy that uses the received observations to plan adaptations
for the managed system. These strategies are selected from
various existing strategies in the adaptation planning system.
The adaptation planning strongly depends on the use case
and is therefore out of scope of this work. The strategies can
range from simple rule-based algorithms to complex (multi-
objective) optimization algorithms. Furthermore, we assume
that the user of the framework will provide multiple strategies
per use case, customized for the particular use case, to provide
the possibility of strategy exchange when needed. The perfor-
mance data of the selected strategy is collected and—together
with the use case’s monitoring data—transferred to the next

Veronika Lesch 1

The Vision

Data

Data

Exec

Self-Aware
Optimization

Adaptation Planning

Exec

Strategy A
Strategy B
Strategy C
Strategy D

Parameter Setting 1
Parameter Setting 2
Parameter Setting 3

Fig. 1: Multi-layer architecture of the self-aware optimization framework. Layer 1 represents an adaptive system, the adaptation
planning system is shown in Layer 2, and Layer 3 shows the self-aware optimization.

layer, which performs a self-aware optimization. After one
self-aware optimization cycle, the adaptation planning layer
may receive instructions to change the strategy parametrization
or even to replace the strategy. As mentioned earlier, we
assume that the adaptation planning layer executes these
commands without interference.

Finally, the third layer Â is called self-aware optimization.
This layer is responsible for optimizing the parameters of the
selected strategy in the adaptation planning layer as well as
for the selection of strategies for the Á layer and, therefore,
integrates several components: (i) situation detection, (ii) algo-
rithm selection, and (iii) parameter optimization. The situation
detection component receives the monitoring data, that is, the
use case observations, and the performance data from the
adaptation planning system and categorizes the observation
into a currently present situation. The algorithm selection
component uses the information about the current situation,
combines it with experience from similar situations in the past
and selects the most appropriate adaptation planning strategy.
Finally, the parameter optimization component also receives
monitoring data and tunes the parameters of the adaptation
planning strategy. All decisions—including the situation, the
selected strategy, and the parameter settings—are used in
combination with monitoring and performance data to learn
from previous decisions. A knowledge base manages the set of
known situations as well as corresponding decisions and con-
tinuously learns which parameter and algorithm combination
fits best for the situations already experienced. In addition, it is
possible to develop another component that includes prediction
and forecasting mechanisms to enable proactive adaptation of
the system. Finally, the third layer passes the decisions to the

adaptation planning layer Á, which executes them.

D. LRA-M Loop Adoption

In this section, we present our concept of a self-aware
optimization framework from the control loop point of view.
This perspective allows us to elaborate on the idea of the
framework and explain the interplay between ongoing learning
and reasoning in the framework. Since we use the terminology
of self-awareness in this work, we focus this section on the
corresponding LRA-M control loop. The LRA-M control loop
was first introduced by Kounev et al. in 2017 [43] in his work
on Self-aware Computing Systems. This loop is quite similar
to other concepts like the MAPE-K control loop [44] or the
Observer/Controller concept [45] and most of these concepts
can be transformed into each other [40]. However, the LRA-
M control loop explicitly includes a Learn and a Reason
component. Learning allows the system to learn models of
the system itself and the environment, while reasoning uses
these models to trigger adaptation actions that modify the
system and affect the environment. These components are
essential parts of the framework because learning enables the
framework to form models of the environment, i.e., the two
lower levels of the system model (c.f. Section III-C) and to
recognize new situations. Reasoning gives the framework the
ability to consider which adaptation actions might be beneficial
in a given situation based on the knowledge of recent decisions
or decisions in similar situations. This combination of ongoing
learning and model-based reasoning forms the basis for the
proposed framework, which is why we chose to use the LRA-
M control loop. Since the LRA-M control loop is a general-
purpose concept applicable to diverse systems, we modify the

control loop to explicitly include the functionalities of our
proposed framework, as shown in Figure 2.

Model

Act

Actions

Goals

Self

Phenomena

ReasonLearn

Empirical Observations

Situation
Detection

Strategy
Selection

Parameter
Optimization

Fig. 2: Modified LRA-M control loop based on
Kounev et al. 2017. The basic LRA-M control loop is
extended to include analysis and the meta-optimization in
the Learn module and planning through optimization in the
Reason module.

The loop displays the system, also called the self, and its
interfaces with the environment. It interacts with the envi-
ronment by (i) perceiving Phenomena and storing them as
Empirical Observations, (ii) receiving Goals to be achieved,
and (iii) executing Actions based on the decisions made. The
Empirical Observations are captured in the use case, i.e.,
the application layer of the system model, and used in the
Learn and Reason modules. Furthermore, the decisions of the
adaptation planning layer are part of the captured phenomena
since they are needed as additional sources of information for
the third layer. In the ongoing learning process, the observa-
tions are abstracted into models that contain knowledge about
the environment and the system itself. We add the Situation
Detection component into the Learn module, which enables
to interpret the observations and updates the models to persist
all gathered information. So far, we use clustering algorithms
in the Situation Detection component to determine the current
situation. However we have built each component in a modular
fashion so that it is easy to extend the techniques used.
Further, the learning component receives performance data of
the managed use case with periodic observations and learns
the impacts of the actions taken based on the current situation.
This enables the system to continuously improve its reasoning
and acting, and to keep the system’s models of itself and
the environment up-to-date. These models serve as the basis
for the reasoning process that determines actions to be taken
in response to a changing environment. The reason module
determines actions for the adaptation planning system to adapt
to changes in the environment or to deteriorated performance
values. Hence, we assign the two components (i) Strategy

Selection, and (ii) Parameter Optimization to this module. The
Strategy Selection component combines the information from
Situation Detection, the current use case performance with the
learned models about the use case and determines whether to
keep the current strategy or switch to another existing strategy.
The Parameter Optimization component applies optimization
techniques to tune the parameters for the selected strategy.
So far, we use known, well-performing parameter settings as
initial values for the optimization process to achieve a faster
convergence of the optimization. The Situation Detection,
Strategy Selection, and Parameter Optimizations in the mod-
ified LRA-M control loop are newly introduced components
and not part of the original definition of the LRA-M control
loop. These three components build the main contribution
in terms of the proposed framework and are meant to be
generically applicable to a wide range of suitable use cases.

E. Framework Composition

This section presents the composition of the generically
applicable self-aware optimization framework. The framework
consists of several components that configure the framework,
store its observations, and execute the desired functionality,
that is, to determine which strategy algorithm and parameters
to use in the adaptation planning system. Figure 3 provides
a comprehensive overview of the framework’s structure. In
the following, we briefly introduce each component and state
its main contribution to the framework. All details of the
components can be found in the following sections.

First of all, the user of the framework can use the Domain-
Data-Model to configure the entire framework and all its
components. The Domain-Data-Model is the only part of the
framework that the user needs to configure with use case
specific information. Therefore, the framework considers the
two lower layers from Figure 1 as a black box, of which it only
knows the information defined in the Domain-Data-Model. In
the Domain-Data-Model, relevant information about the use
case such as the name and existing strategies in the adaptation
planning system are defined. The context part of the Domain-
Data-Model defines what sensor data the adaptation planning
system sends to the framework with respect to the context
of the system. With regards to the platooning coordination
use case, this sensor data could be the number of cars and
trucks on the road, the platooning percentage, or the average
speed of the vehicles. The parameter options of the Domain-
Data-Model specify which configuration parameters exist for
the adaptation planning strategy of the second layer and
which values they can accept. Finally, the Domain-Data-Model
contains a definition of the performance metrics used to assess
the performance of the use case.

The second component of the framework is responsible
for managing all sensor data received from the use case and
is called Empirical Observations. This component processes
incoming data from the use case and provides an interface
for the other components to retrieve the relevant data for the
according computation step of the framework. For example, it
maintains information about the entities of the framework such

Domain Data Model

Coordination

Fallback Rules

Empirical Observations

Situation Detection Parameter OptimizationStrategy Selection

Strategy A
Strategy B
Strategy C
Strategy D

Use
Case

Parameter
Options

Performance
MetricsContext Performance

MeasuresEntities Parameter
SettingsStrategy

Fig. 3: Composition of the self-aware optimization framework.
The framework contains the Domain-Data-Model for config-
uration, the Empirical Observations as a repository, a Coordi-
nation component that manages the workflow, and the three
main components Situation Detection, Strategy Selection, and
Parameter Optimization.

as the number of vehicles, the platooning percentage, and the
vehicle speed. It also obtains information about the currently
executed adaptation planning strategy and its parameter set-
tings in combination with performance metrics. This enables
the framework to reflect on previous adaptation decisions and
learn which combination of strategy and parameter settings
works best in a given situation.

The central component of the framework is the Coordi-
nation, which is responsible for retrieving the required data
from the observation storage and passing them to the next
component whose execution it triggers. This component is
constantly active and regularly invokes the other components
of the framework, namely the Situation Detection, the Strategy
Selection, and the Parameter Optimization, in this predefined
order. In the event that one of the other components fails, the
coordination component can fall back to user-defined fallback
rules from the Domain-Data-Model to remain functional.
These fallback rules can be simple if-then-else rules, but since
we provide the possibility to load arbitrary Python code into
the fallback rules, the user could also extend the framework
with a more sophisticated fallback mechanism.

The Situation Detection component of the framework re-
ceives the observation data of the use case, such as the
entities and their current state, and determines the situation
the use case is currently in. So far, we only use clustering
algorithms for this purpose. However, it is easy to extend the
component with other approaches, as we have designed the
framework to be modular and the approach used is configured
in the Domain-Data-Model. The identified situation is then
returned to the Coordination component, which forwards this
information to the Empirical Observations component.

After the Situation Detection completes its computation, the
Coordination invokes the Strategy Selection component. This
component combines knowledge about the current situation
with experience from previous decisions in similar situations

and determines which adaptation planning strategy is most
appropriate for this situation. This decision is returned to the
Coordination component that triggers the next component.

The last component of the framework is the Parameter
Optimization component. This component receives the cur-
rent parameter settings as starting point, historical data for
the current situation, the corresponding adaptation planning
algorithm, and performance measures. It then performs an
optimization process to tune the parameter setting for this
adaptation planning strategy to the current situation. It then
returns the settings to the Coordination component, which
stores all the collected information of this round of execution
from the components, updates the system models, and sends
adaptation actions to the adaptation planning system in layer
two.

Framework

Coordination

CoordinationUse Case Situation
Detection

Strategy
Selection

Parameter
Optimization

Domain Data Model

Configuration

Model
Learning

Observation

...

Xth Obs. Get Situation

...

Update
Get Strategy

Get Parameters

Adaptations

Update

Update

...

Model-based Reasoning ProcessModel Learning ProcessProcess

Fig. 4: Sequence diagram of the workflow of the self-aware
optimization framework. The user configures the framework
and the use case sends observations. The framework processes
the observations, identifies the current situation, selects the
strategy and parameter setting, and continuously learns and
updates its models.

In addition to the general composition of the framework,
we illustrate the workflow of the framework as a sequence
diagram in Figure 4. The user is shown on the left side of
the sequence diagram. He configures and starts the framework
using the Domain-Data-Model, sets up the use case and
configures it. The use case then starts its execution and sends
the defined observations to the framework in regular intervals,
regardless of the current computational state of the framework.
The Coordination component of the framework processes the
incoming observations and forwards them to the Empirical
Observations. After a certain number of received observa-
tions, the Controller component triggers the first execution

of the Situation Detection component and forwards relevant
observation data to this component. In the meantime, the
Coordination component receives further observations from
the use case, which are stored but not used until the next round
of execution. After the situation is detected, this component
returns the situation ID to the Coordination, which updates
the system model of the environment. Then, the Coordination
component triggers the Strategy Selection component with
filtered observation data containing only observations of the
identified situation. This component applies model-based rea-
soning based on this data to determine the most promising
adaptation planning strategy. Again, this decision is fed back to
the Coordination component which again updates the system
model. Finally, the observed data is filtered again to include
only data for the current situation and the adaptation plan-
ning strategy determined by the Strategy Selection. With this
data, the Coordination triggers the model-based reasoning of
the Parameter Optimization, which performs an optimization
process to find the best parameter setting for the current
situation and the selected strategy. After the Coordination
component obtains this parameter setting, it updates the system
model and sends adaptation tasks to the adaptation planning
system, which executes them. This step completes one round
of execution in the framework and after a predefined waiting
time, the Coordination starts the next round.

1) Coordination: This section provides a more technical
view of the Coordination component depicted in Figure 3
and extends the descriptions of the previous sections. We
further summarize the workflow of the Coordination compo-
nent using Pseudocode in Algorithm 1. The Coordination is
responsible for initializing and invoking all other components
of the framework. It also processes incoming observations
and updates the system models based on observations and
the framework’s adaptation decisions. It is triggered at the
start of the framework and instantiates all components of the
framework (lines 1-2). To do so, the Coordination receives the
Domain-Data-Model specified by the user, in which he defines
the configuration of all components. It parses the Domain-
Data-Model and instantiates the other components. After that,
the framework is fully set up and ready to start its execution.

The use case that the framework is intended to optimize
is responsible for sending observations on a regular basis.
Each observation consists of the use case entities, the currently
active adaptation planning strategy, its parameter settings,
and the use case performance metrics. Each new observation
received triggers a new round of execution in the Coordination
component. As a first step, the component uses the received
data to compute additional important information relevant to
subsequent processing (line 3): the time that the currently
active parameter setting was active and the Hypervolume of
the use case performance metrics. We require a user-defined
waiting time in the Domain-Data-Model to allow adjustments
to take effect. Thus, the framework calculates the time that
the current configuration is active in the use case and waits a
predefined amount of time before evaluating the performance
of the latest adaptation decisions to reduce unstable effects

Algorithm 1: Pseudocode workflow of the Coordina-
tion component.
Input: Domain-Data-Model, new observation, existing

observations

1 if start of framework then
2 initialize components defined in the

Domain-Data-Model;

3 derive additional information from the observation;
4 save new observation;
5 situation ← invoke Situation Detection on all

observations;
6 if situation could not be determined then
7 adaptations ← apply fallback rules to all

observations;
8 update system model with current adaptation

decision;
9 send adaptations;

10 else
11 update system model with current situation;
12 if waiting time after previous adaptation action is

over then
13 if same situation as before AND number of

optimization attempts not met then
14 parameter setting ← invoke Parameter

Optimization on observations of current
situation and strategy;

15 else
16 strategy ← invoke Strategy Selection on

observations of current situation;
17 parameter setting ← invoke Parameter

Optimization on observations of current
situation and strategy;

18 update system model with current adaptation
decision;

19 send adaptation decision to use case;

after recent changes. This also prevents too many adaptation
actions from being sent to the use case without enough time for
implementation. The Hypervolume measure is a widely used
quality indicator for multi-objective optimization, especially in
evolutionary optimization (c.f. [46]). We use the Hypervolume
to reduce the observed performance indicators of the use case
to a single performance value. This allows us to use any
single-objective optimization technique in the Parameter Opti-
mization component without requiring of multi-objectiveness
for this technique. Afterwards, the component forwards the
observation combined with the derived information to the
Empirical Observations component (c.f. Figure 3) that stores
the incoming data (line 4).

Then, the Coordination passes the new observation to the
Situation Detection component (line 5). Since the Situation
Detection component applies clustering algorithms for iden-

tifying the current situation, it needs all the observation data
collected from the use case for each execution. Therefore, we
decided to implement an additional internal data management
for the Situation Detection component to reduce the commu-
nication and data transfer between the components. After the
Situation Detection identified the current situation, it returns
the situation to the Coordination. If the available observation
data is not sufficient for the clustering algorithm or the current
situation is clustered as noise, the Situation Detection does not
return a situation.

The Coordination component checks whether the situation
detection was successful and returned a situation (line 6).
If the situation detection did not return a situation due to
insufficient data or classification as noise, the Coordination
component applies the fallback rules to the current obser-
vations (line 7). Then, the Coordination updates the system
model with the most recent adaptation decision and sends
the adaptations to the use case (lines 8-9). In case the
Situation Detection returned a valid situation (line 10), the
Coordination adds information about the current situation to
the system model. Since we apply a clustering algorithm in
the Situation Detection that always clusters all observation
data, it could restructure the whole data and find different
clusters compared to the clustering of previous executions.
In this case, the Coordination updates the system model and
reclassifies the already clustered observation data to match the
latest clustering (line 11).

After successfully updating the system model with respect
to the current situation, the Coordination checks whether
the waiting time after a previous adaptation action has ex-
pired (line 12). This waiting time is defined by the user in
the Domain-Data-Model and serves as a cool-down period
for use case adaptations to take effect. By doing this, we
ensure that the transient phase of the use case is waited for
and performance measures are retrieved that evaluate only the
most recent adaptations. If the waiting time is still active, the
current round of execution has ended and the Coordination
waits for the next observations of the use case. When the
waiting time has expired, new adaptation decisions can be
send to the use case. In the next step, the Coordination re-
quires another user-defined parameter from the Domain-Data-
Model: the number of optimization attempts for the Parameter
Optimization. This parameter specifies how many optimization
cycles are performed per situation before a change in strategy
is considered. This definition of optimization attempts per situ-
ation provides sufficient time to tune the parameters and avoids
a hasty change of the selected strategy. The Coordination first
checks if the current situation is the same as in the previous
execution. Then, based on the user-defined parameter, it checks
whether the necessary number of optimization attempts for
this situation has already been executed (line 13). If this is
the case, the Coordination requests all observations of the
current situation and strategy combination and passes them
to the Parameter Optimization. The Parameter Optimization
computes a new set of parameters and returns it to the
Coordination (line 14). However, if the number of optimization

attempts has been exceeded this indicates poor performance of
the currently used strategy which the framework uses to search
for a new, better fitting strategy. In this case, or whenever
the situation changed (line 15), the Coordination requests
all observations of the current situation and passes them to
the Strategy Selection component (line 16). This component
uses this information to reason about the most promising
strategy for adaptation planning. After the computation, this
component returns the selected strategy to the Coordination.
Then, the Coordination requests all observations of the cur-
rent situation and the selected strategy to pass them to the
Parameter Optimization (line 17). Using this information, this
component performs an optimization task to select the most
promising parameter settings for this strategy and returns the
results to the Coordination. The Coordination, in turn, uses the
strategy decision and its parameterization to update the system
model (line 18). Finally, it sends the adaptation decisions
including the strategy and the parameter setting to the use
case (line 19).

To better understand the timing within the framework, we
present an example timescale for invoking the three compo-
nents Situation Detection, Strategy Selection, and Parameter
Optimization in Figure 5. All timing values can be defined by

0 ... 120057030 60 600

Start

Receive Observations

Situation Detection

Strategy Selection

Parameter Optimization

... 3600...Time (sec)

Coordination

Fig. 5: Timescale of the components and their computations
the Coordination invokes. Illustrated is a time scale of 3600
seconds where observations arrive every 30 seconds. Each
observation triggers an execution of the Coordination which
then decides which other components to invoke.

the user with respect to the use case. Therefore, the timing
presented here should only be considered as an example for
demonstration and not as the fixed timing of the framework
for all use cases. For simplicity, we assume that no situation
changes occur in this example. The figure shows time in
seconds along the x-axis as a time scale, arranges the com-
ponents above the time scale, and received observations are
shown as arrows pointing to a specific time on the time scale.
The use case in this example is configured to send current
observations at a regular interval of 30 seconds. Each incoming
observation triggers the Coordination that decides which other
components are required at that time. At the beginning of
the framework execution, the Coordination stores the received
observations and forwards them to the Situation Detection.
However, since there is not enough data at the beginning of the
execution, the Situation Detection does not provide a situation

and the Coordination applies the fallback rules. Once there
is enough data (at second 600), the Coordination component
triggers the Situation Detection that returns a specific situation
ID. The situation identification then triggers the Parameter
Optimization for the first time. Strategy Selection is omitted at
this point because we decided to first optimize the parameters
of the current strategy to see if the performance of the strat-
egy can be sufficiently improved by an optimized parameter
setting. Therefore, the user defines a number of optimization
attempts that must be computed before the Strategy Selection
can be triggered. This parameter is situation dependent and
the number of optimization attempts is executed as long as
the situation remains the same. If the Situation Detection
component identifies a different situation than the last one,
the Coordination triggers the Strategy Selection and Parameter
Optimization regardless of whether the required number of
optimization attempts is reached. In the presented example,
this number of optimization attempts is set to five. Thus, after
3600 seconds execution time, the Coordination has already
triggered five optimization attempts and now additionally
triggers the Strategy Selection.

2) Domain Data Model: The Domain-Data-Model is a
representation of the use case for the framework and serves as
configuration file for the framework as depicted in Figure 3.
It contains all use case-specific information the framework
needs to optimize the use case and thus enables the generic
applicability of the framework for a variety of use cases.
This means that these settings strongly depend on the cho-
sen use case and can individually be enriched by use case
specific parameters. Further, the Domain-Data-Model provides
configuration information for the components of the frame-
work that the Coordination component uses to instantiate the
components. The Domain-Data-Model is defined using YAML
and consists of four main parts: (i) use case, (ii) context,
(iii) parameter options, and (iv) performance measures. In
the following, we describe each of these parts separately and
provide a short example YAML file for this part.

We name the first part of the Domain-Data-Model use
case (Listing 1, line 1) which contains general information
about the use case. The name (Listing 1, line 2) of the use
case is the first key of this part, which is used to identify all
information collected during the execution. The second key is
called available strategies (Listing 1, line 3) and consists of a
list of available adaptation planning strategies in the use case.
The Strategy Selection component of the framework uses this
list to determine the most promising strategy for the current
situation. The framework refers to them as black-box strategies
and sends the name to the second layer which is able to select
the appropriate strategy identified by its name. This list of
possible strategies does not need to be exhaustive and the
user can omit strategies he does not want to be executed.
The last key of this part is the fallback rules key (Listing 1,
line 4), which defines a path to a Python file that contains
fallback rules for the framework. These fallback rules should
reflect expert knowledge from the use case and are used by
the framework in case the situation detection is not possible

due to insufficient data or the current situation is identified as
noise. Listing 1 presents the first part of the YAML file of an
example use case called platooning_coordination. In
this use case, two adaptation planning strategies s_1 and s_2
are available. Finally, the path to the predefined fallback rules
is defined as Path.To.Rules.

Listing 1: Example for the use case part of the Domain-Data-
Model YAML.
1 u s e c a s e :
2 name: p l a t o o n i n g c o o r d i n a t i o n
3 a v a i l a b l e s t r a t e g i e s : ["s_1" , "s_2"]
4 f a l l b a c k r u l e s : "Path.To.Rules"

The second part of the Domain-Data-Model is called con-
text (Listing 2, line 5) and specifies what context data (List-
ing 2, line 6), i.e., observations, the use case sends to the
framework. Furthermore, this part defines the configuration
of the Situation Detection component with the key situa-
tion detection settings (Listing 2, line 13). The data key of
this part contains any number of context parameters from
the use case, which can be named arbitrarily, but must be
unique (Listing 2, line 9,11). The framework will use these
keys as identifiers when logging information to a database.
Further, each context parameter requires a data type specifi-
cation (Listing 2, line 10,12) and we currently accept int
and double values. The situation detection settings key de-
scribes the configuration of the Situation Detection component
and consists of the two keys algorithm and settings (Listing 2,
line 16,17). The algorithm key expects the definition of an
available situation detection algorithm. So far, four algorithms
are available which we describe in more detail in the next
section: RuleBased, K-Means, DBSCAN, and OPTICS. We
limit our contribution to them as these are the most common
algorithms, however, this list can easily be extended when-
ever another algorithm might perform better. Each algorithm
requires additional configuration parameters that are part of
the settings key. Listing 2 provides a short YAML example for
the context part. It defines two context parameters context1
and context2 for the data key with data type int and
double. For the situation detection settings it is specified
that the algorithm DBSCAN should be used and the required
settings for this algorithm min_samples = 120 and eps
= 34 are defined (Listing 2, line 18,19).

The third part of the Domain-Data-Model is called
parameter options (Section III-E4, line 20). It defines input
parameters of the adaptation planning strategy that can
be tuned by the framework and provides configuration
information for the Strategy Selection component. This
part consists of the options for the input parameters and
the strategy selection settings (Section III-E4, line 21,34).
The options key contains an arbitrary number of input
parameter options for strategies and the key is in turn
used as identifier for this parameter (Section III-E4,
line 24,28). Thus, it can be named arbitrarily but
must be unique within this Domain-Data-Model.

Listing 2: Context part of the YAML definition of the Domain-
Data-Model.
5 c o n t e x t :
6 d a t a :
7 # any number of context parameters
8 # with unique names
9 c o n t e x t 1 :

10 d a t a t y p e : i n t
11 c o n t e x t 2 :
12 d a t a t y p e : d ou b l e
13 s i t u a t i o n d e t e c t i o n s e t t i n g s :
14 # available algorithms: RuleBased,
15 # kMeans, DBSCAN, OPTICS
16 a l g o r i t h m : "DBSCAN"
17 s e t t i n g s :
18 min samples : 120
19 eps : 34

Each input parameter option further consists of three
mandatory keys: data type, min, and max and an optional
key strategies. The data type key defines the data type
of the input parameter option, where we accept int and
double (Section III-E4, line 25,29). The min and max keys
allow the user to specify the value range the input parameter
can take (Section III-E4, line 26,27,30,31). Finally, the
strategies key allows the user to define for which adaptation
planning strategy this input parameter is meaningful by
defining a list of strategies (Section III-E4, line 33). This
key is optional and the absence of this key leads to the
conclusion that this parameter applies to all strategies. The
second key of this part is the strategy selection settings
key, which configures the Strategy Selection component.
This key consists of five mandatory keys: observa-
tions between adaptations, min optimization attempts,
window size, threshold exceeds, and method and one
optional key called hypervolume threshold. The key
observations between adaptations defines the number
of observations the framework must receive before new
adaptation actions can be performed (Section III-E4,
line 35). This property allows the user to define the
transient phase for the use case where measurement data
might be unreliable due to recent changes in the system.
The min optimization attempts key defines the number
of parameter optimization attempts for a situation before
the Coordination component considers computing a new
adaptation planning strategy (Section III-E4, line 36). The
window size and threshold exceeds keys determine whether
a new strategy should be chosen (Section III-E4, line 37,38).
For a detailed explanation of these keys, please refer to
Section III-E4.

Listing 3 provides a short YAML example for the param-
eter options part of the Domain-Data-Model. It defines two
parameter options param1 and param2, where the first one
is of type int, can accept values in the interval [0, 100], and
applies to all defined strategies. The second parameter option
is of type double, can take values in the range [0.0, 2.0],
and is only applicable for the strategy s_1. Furthermore, it
specifies that the minimum number of optimization attempts

is set to five, as well as other required settings for the Strategy
Selection component.

Listing 3: Parameter options part of the YAML definition of
the Domain-Data-Model.
20 p a r a m e t e r o p t i o n s :
21 o p t i o n s :
22 # any number of context parameters
23 # with unique names
24 param1:
25 d a t a t y p e : i n t
26 min: 0
27 max: 100
28 param2:
29 d a t a t y p e : d ou b l e
30 min: 0 . 0
31 max: 2 . 0
32 # optional definition of
33 # relevant strategies
34 s t r a t e g i e s : ["s_1"]
35 s t r a t e g y s e l e c t i o n s e t t i n g s :
36 o b s e r v a t i o n s b e t w e e n a d a p t a t i o n s : 1
37 m i n o p t i m i z a t i o n a t t e m p t s : 5
38 window size : 5
39 t h r e s h o l d e x c e e d s : 3
40 # available methods:
41 # hypervolume, threshold
42 method: "hypervolume"
43 h y p e r v o l u m e t h r e s h o l d : 3 . 4

The last part of the Domain-Data-Model is called perfor-
mance measures (Listing 4, line 42) and defines indicators of
the performance of the defined use case. This part contains
any number of performance measures from the use case,
which can be named arbitrarily (Listing 4, line 43,47). Since
these names are used as identifiers in the framework, they
need to be unique. Each performance measure consists of
three mandatory keys data type, higher is better, and refer-
ence value, and an optional key called threshold value. The
data type specifies the performance measurement data type,
which can be either int or double (Listing 4, line 44,48).
The higher is better key defines whether a higher or a lower
value of this metric is better for this use case, and is of
type Boolean (Listing 4, line 45,49). The reference value key
specifies a reference value for the calculation of the Hyper-
volume, which needs to be of the same type as specified in
data type (Listing 4, line 46,50). Finally, the threshold value
key is only required if the threshold method is selected
in the strategy selection settings of the parameter options
part and defines a threshold value that cause the Strategy
Selection component to compute a new strategy. Listing 4
provides a YAML example for the performance measures
part of the Domain-Data-Model and defines two performance
measures pm1 and pm2. The first is of type int, where
higher values represent a better use case performance and
a reference value of -1. The second performance measure
is of type double, with lower values representing better
use case performance and a reference value of 100.0.

Listing 4: Performance measures part of the YAML definition
of the Domain-Data-Model.
42 p e r f o r m a n c e m e a s u r e s :
43 pm1:
44 d a t a t y p e : i n t
45 h i g h e r i s b e t t e r : True
46 r e f e r e n c e v a l u e : −1
47 pm2:
48 d a t a t y p e : d ou b l e
49 h i g h e r i s b e t t e r : F a l s e
50 r e f e r e n c e v a l u e : 100 .0

3) Situation Detection: The Situation Detection component
is responsible for identifying the current situation the use case
is currently experiencing as depicted in Figure 3. The use
case periodically sends observation data to the framework,
as defined in the context part of the Domain-Data-Model.
The frameworks’ Coordination component forwards this data
to the Situation detection. So far, this component provides
four methods for detecting the current situation: (i) rule-based,
(ii) K-Means, (iii) DBSCAN, and (iv) OPTICS. We limit the
available methods for this work but provide the possibility to
easily integrate other methods in the framework. All methods
operate on all context data available in the system. To reduce
the communication overhead within the framework, the Situa-
tion Detection contains a duplicated set of received observation
data within the component, and the Coordination only needs
to forward the current observation. The Situation Detection
component computes the current situation and returns a situ-
ation ID to the Coordination component. This ID is further
used in the Strategy Selection and Parameter Optimization
components to find appropriate adaptation decisions for this
specific situation and to learn from previous decisions in this
situation.

The situation detection process can be defined as a math-
ematical function that maps observation data from the use
case to an integer value. This value represents the situation
ID as defined in Equation (1). We define the value interval
of this function as [−1,∞), where the value −1 indicates
that the situation could not be detected. This could be the
case for two reasons: First, the amount of available data is
insufficient to determine the situation. Second, the observation
data is classified as noise, meaning that the currently observed
values cannot be classified as a specific situation. This could
be due to a novel situation for which these is not enough
data, or measurement inaccuracies in the use case. In the case
that the Situation Detection classified the current situation as
−1, the framework does not invoke any further computational
processes, such as Strategy Selection or the Parameter Opti-
mization. However, the Coordination component uses the user-
defined fallback rules from the Domain-Data-Model (Listing 1,
line 4) to determine any adaptation actions that may be
required. If the returned situation ID is equal to or greater
than zero, the Situation Detection component has determined
a valid situation. Therefore, the Coordination component can
invoke the Strategy Selection and Parameter Optimization
components. The actual value of the situation ID does not

allow for further interpretation regarding the similarity of
situations. For example, if the component identified three
situations s1 = 0, s2 = 1, s3 = 10, it means that these three
situations exist and are all different from each other. Moreover,
the proximity of the values 0 and 1 does not mean that the
situations s1 and s2 are more similar to each other than the
situation s3.

sit det(context) =

{
−1, if situation is classified as noise
>= 0, otherwise

(1)
Due to the ongoing nature of the framework, the use case

regularly sends new observation data. Therefore, the amount
of observation data grows as the framework is executed and
the Situation Detection component receives more and more
data to improve decision making. However, this could lead
to a changed in the assignment of context data to situations
during the execution time. This means, the situations identified
during the last Situation Detection process may not be the
same as those identified in the current process. Completely
new situations or a change in assignment from an already
assigned observation could lead to inconsistencies in the data.
For example, a context observation classified as situation s1
in the last process could now be classified as s2 when more
data is available. Therefore, the Situation Detection component
updates its learned models after each execution to match the
latest findings to the observation data.

We provide two types of situation detection mechanisms,
one rule-based mechanism and four clustering algorithms that
can be selected and configured by the user in the Domain-
Data-Model. Since we designed the framework to be modular,
it is easy to extend the framework with additional com-
ponents or to further develop individual components with
additional techniques. The following Algorithm 2 summarizes
the workflow behavior of the Situation Detection component.
The component receives the Domain-Data-Model and the
new observation and selects the configured algorithm for the
Situation Detection. In all cases, the component retrieves re-
quired parameters for the selected technique from the Domain-
Data-Model and invokes the configured technique. All tech-
niques return the situationIDs for all observations, that
is, the cluster to which each observation in the data set is
assigned. The component then update its situation model of
all observed data with the latest classification and returns the
situationID of the new observation to the Coordination
component.

The rule-based situation detection offers the possibility to
integrate domain knowledge in the identification process of
this component. For example, in the platooning use case, the
user could specify frequent traffic volumes for which he knows
the best performing configuration of the adaptation planning
system. The user defines the rules in form of a Python file
that is loaded and executed by the component. As the sim-
plest option, the user can define Event-Condition-Action rules
to specify known, well-performing configurations. However,
since the user describes the fallback rules in a Python file,

Algorithm 2: Pseudocode workflow of the Situation
Detection component.

Input: Domain-Data-Model, new observation

1 switch Domain-Data-
Model.situation detection settings.algorithm
do

2 case RuleBased do
3 retrieve path to fallback rules from

Domain-Data-Model;
4 situationID ← execute fallback rules;

5 case kMeans do
6 retrieve K-Means parameters from

Domain-Data-Model;
7 situationID ← invoke K-Means;

8 case DBSCAN do
9 retrieve DBSCAN parameters from

Domain-Data-Model;
10 situationID ← invoke DBSCAN;

11 case OPTICS do
12 retrieve OPTICS parameters from

Domain-Data-Model;
13 situationID ← invoke OPTICS;

14 update situation model with latest classifications;
15 return situationID of new observation;

he can also construct arbitrarily complex functions to identify
situations. Still, the user must provide a script that matches our
definition of the situation detection function in Equation (1).
The user can adapt these rules for future executions of the
framework as he gains new domain knowledge from running
the framework and analyzing its decisions. In the context of
this paper, we omit updating the user-provided rule set with
new knowledge from previous executions of the Situation
Detection. This also results in the framework being unable
to react to new situations in the fallback case, since they are
not present in the rules. In this case, the new situation must
be classified as noise. However, there are several approaches
to automatically update rule sets during execution [47], [48],
[49].

In addition to the static rule-based situation detection, we
provide three clustering-based situation detection methods.
Advantage of these methods are that they can automatically
detect new situations due to their unsupervised learning ap-
proach, and that they do not require domain knowledge [50],
[10]. One clustering algorithm we integrate into our framework
is K-Means in two versions. The first version works with a
predefined parameter k that specifies the number of clusters
to identify. In the second version, the algorithm can determine
the parameter k automatically by applying the concept of gap
statistics [51]. This method requires the definition of a min-
imum and a maximum value for k but no further interaction
with the user is required. The gap statistics estimates the best

value for k by applying K-Means to different values of k and
analyzing the quality of the clustering. Another method for
automatically defining k could be the elbow method [52]. In
this method, the user must plot various possible values of k
and their performance with regards to the resulting clustering.
Then, the user identifies the elbow of the resulting line that
represents the best value for k. Due to the mandatory user
interaction, we decided to omit the elbow technique. The
performance of the K-Means algorithm depends heavily on
the definition of k and the user may not have the expertise to
determine the number of distinct situations a priori. Further,
the K-Means algorithm always assigns all observations to
an existing cluster and cannot identify noise, which could
negatively affect the performance of the framework. There-
fore, we additionally integrate two density-based clustering
algorithms into the Situation Detection component to reduce
these drawbacks.

We select DBSCAN and OPTICS as density-based clus-
tering approaches. Neither method requires a number of
clusters as input. Instead, DBSCAN requires the definition
of min_samples, which specifies the minimum number
of observation samples to form a cluster. Additionally, an ε
(eps) value is required that defines the neighborhood of a
data point in which at least min_samples must be found
to classify that data point as core-point. For the definition
of ε the user needs domain knowledge and it has a great
impact on the identified cluster structure. OPTICS needs the
parameter min_samples which is the number of data points
in a neighborhood, to consider this point as core-point. Also
required is the parameter min_cluster_size, which is the
minimum number of data points required to form a cluster.
The user can determine both values by considering how long
a situation is usually active in the use case and how many
observations are sent to the framework. Both density-based
clustering algorithms can classify observations as noise, which
could happen when the use case observes a new situation for
a short time.

One important point that the user of the framework must
keep in mind is data management. Since the use case continu-
ously sends observation data, the amount of data is constantly
increasing. So far, we have not implemented any feature to
reduce the amount of considered data in the decision making,
which may lead to errors due to memory limitations. To reduce
the amount of considered and stored data, the framework needs
to determine what information will be important in the future
and what information can be omitted without negatively im-
pacting the future performance of the framework. One option
is to set a maximum number of data points considered, but this
could result in sparse situations being forgotten. Techniques
for reducing an ever-increasing amount of observation data
can be found in the literature. For example, Kang et al. [17]
research on the required knowledge of robots about their
environment to reduce the probability of collisions due to
estimation errors regarding other robots. Such a technique
could be easily added to the Situation Detection component as
future work to prepare the framework for long-term executions

as well.
4) Strategy Selection: The Strategy Selection is the second

component of the framework, that is invoked by the Coordi-
nation component as depicted in Figure 3. This component
is responsible for selecting the most promising adaptation
planning strategy for the use case with respect to the current
situation. This assumes, of course, that the use case supports
different strategies and that the user configured them for
selection. This functionality is based on the No-Free-Lunch
Theorem for optimizations [8] and the idea of situation-
dependent behavior of adaptation planning systems. Hence,
the goal is to select the strategy that seems most promising
for the current situation. To do this, the framework uses the
experience gained from previous executions of the strategies in
similar situations. However, which algorithm performs best in
a new situation is not known a priori. Therefore, the framework
must test the available strategies and start a new round of
learning for that situation. A general definition of the algorithm
selection problem can be found in [18]. In the following, we
explain the general workflow of the Strategy Selection and
refer to Algorithm 3.

Algorithm 3: Pseudocode workflow of the Strategy
Selection component.

Input: Domain-Data-Model, current strategy, number
of optimization attempts already performed, all
observations for the current situation

1 strategy ← current strategy;
2 if number of optimization attempts <

Domain-Data-Model.min optimization attempts then
3 return strategy;
4 else
5 exceed counter ← 0;
6 for observation within

Domain-Data-Model.window size do
7 if thresholds exceeded then
8 exceed counter++;

9 if exceed counter >=
Domain-Data-Model.threshold exceeds then

10 if all strategies already executed for this
situation then

11 strategy ← best performing strategy in
history;

12 else
13 strategy ← next strategy determined in

Domain-Data-Model;

14 return strategy;

Similar to the Situation Detection, this component also
receives the Domain-Data-Model as input. Additionally, the
Coordination component sends the currently active adaptation
planning strategy, the number of optimization attempts already
performed for this strategy, and all available observations for

the current situation. These observations contain the perfor-
mance measures of the adaptation planning strategy and form
the basis for the decision logic. First, the Strategy Selection
sets the currently active strategy as the selected strategy since
it assumes that no changes need to be made by default (line 1).
Then, the component checks whether enough optimization
attempts have been made to decide whether the strategy should
be changed. We decided to provide a fixed initial period during
which multiple optimizations of the parameters are performed
before considering a strategy infeasible for this situation. If
the actual number of optimization attempts has not reached
the minimum number of optimization attempts defined in the
Domain-Data-Model, it means that the Parameter Optimization
component might need more time to optimize the parameters
of this strategy, this component then returns the currently ac-
tive strategy (lines 2-3). If the required number of optimization
attempts has already been reached (line 4), this component
can select another strategy if the current strategy does not
meet the performance expectations (lines 5-8). To do this, the
component analyzes the performance of the strategy in the last
observations with respect to a defined threshold and counts the
number of times the threshold is exceeded. The actual number
of analyzed observations is determined using the window size
in the Domain-Data-Model. The component provides two
ways to define these threshold: (i) hypervolume threshold and
(ii) individual value thresholds. Full details of both methods
are provided later in this section. After the component deter-
mines the number of threshold violation in the last observa-
tions, it checks whether this number is above the predefined
maximum allowed threshold violations (line 9). If this holds,
the component proceeds and selects a new strategy (line 10).
It then checks to see if all strategies for that situation have
already been executed and if so, it selects the strategy that
resulted in the best performance measurements (line 11). Thus,
the component computes the Hypervolume of performance
measurements for each observation within the window size
and all strategies and selects the strategy that yields the
highest average Hypervolume. In the event that at least one
strategy defined in the Domain-Data-Model was not executed
for this situation, the Strategy Selection retrieves one of these
strategies from the Domain-Data-Model (line 13). This triggers
a trial-and-error phase in this component, since the decision
cannot be based on experience and the component is forced
to try new combinations. Finally, the component returns the
selected strategy to the Coordination component (line 14).

The Strategy Selection component provides two possibilities
to determine whether an algorithm meets the performance
expectations or should be modified. In both mechanisms, the
component counts the number of threshold violations and
compares them to the allowed threshold violations specified
by the user. The first method the component offers so far
is the Hypervolume threshold method which reduces the
performance measures to a single score. In this case, the
component computes the Hypervolume metric (c.f. [46]) and
compares its value to a user-defined threshold. To calculate
the Hypervolume, the user must specify reference values for

each performance measure in the Domain-Data-Model. These
reference values can either be defined out of range for the
performance measure in question, or set to a value within the
range that should never be dropped below. If the reference
value is defined within the value range and the actual value
falls below this value, the Hypervolume is defined as zero
regardless of the other performance measures. However, the
downside of this method is that it weights measures with a
larger value range more heavily, so the user should apply
a normalization mechanism before sending the performance
measures to the framework. Still, the advantage of this method
is that the performance of the overall adaptation planning
system is condensed into one metric and the user only needs
to specify one threshold value.

The second possibility to determine whether to change
the currently active adaptation planning strategy is to set
individual value thresholds. This method requires the user to
define individual thresholds for each performance measure of
the Domain-Data-Model that should never be fallen below.
Whenever one of the performance measures falls below this
threshold, the Strategy Selection component counts this as a
threshold violation, regardless of any possibly perfect perfor-
mance of the other measures. This method allows the user to
have more impact on the individual performance measures and
value ranges of these measures are less important. The user
can even rule out performance measures having an impact on
the strategy selection by setting the threshold out of the value
ranges. Similar to the other components of the framework, the
user can develop a customized version of the methods used in
this component. Additionally, the user can easily extent the
functionality of this component due to its modular design.
For instance, Machine Learning techniques such as Random
Forests [53] can be integrated to learn a model for the Strategy
Selection. This learning could use historical observation data
to computes features as basis for the learned model. As
the framework detects new situations, the model should be
retrained to also cover decisions for the new situation once
sufficient observation data has been collected.

5) Parameter Optimization: The last component to be
presented is the Parameter Optimization component depicted
in Figure 3. The Coordination component invokes this compo-
nent when a new strategy is determined, the situation changes,
or the performance of the strategy decreases with respect to
the performance measures of the use case. This component
uses optimization techniques to determine the best performing
parameter setting for the selected strategy. According to the
No-Free-Lunch Theorem [8], the choice of the optimization
algorithm depends heavily on the use case being optimized.
At the moment, this component uses Bayesian Optimization to
optimize the parameter setting, but the desired technique can
be easily replaced due to the modular nature of the framework.
The decision to use the Bayesian Optimization is based on our
platooning coordination use case, as our study of situation-
dependency showed that Bayesian Optimization is best s best
for this use case [54].

So far, the Parameter Optimization component applies

Bayesian Optimization to determine a new set of parameters
for the current strategy. For this computation, the component
uses historical observation data of the same situation and
strategy combination. The Coordination component is respon-
sible for providing only relevant data to this component. If
the situation-strategy combination has not changed since the
last invocation of this component, the Bayesian Optimization
integrates only the last observation into the optimization model
to computer new parameters. If either the situation or the
selected strategy has changed since the last invocation, the
optimization model must be re-trained using historical data
of the new situation-strategy combination, if available. This
allows the Parameter Optimization to react to the current
situation and strategy and learn from previous decisions.

The Parameter Optimization component returns the new
parameter set for the strategy to the Coordination component
which forwards the adaptations to the use case. The use
case executes these adaptations and collects new observations,
that is, performance data for the new parameter settings, and
sends them to the framework. In the next round of execution
by the framework, the optimization technique receives this
performance data and performs the next optimization step to
further optimize the strategy parameters.

When choosing which optimization technique to use, the
user of the framework must keep in mind that the algorithm
must be able to learn from previous decisions. It should
also be noted that the algorithm must process new incoming
observations on the fly and does not need to be fully trained
for every new observation. Finally, the overhead to completely
retrain the model when a new situation occurs or the selected
strategy changes should be kept to a minimum. In the best
case, the user should choose an optimization technique whose
optimization model can be extracted and reloaded when the
component needs to handle a new situation and strategy
combination. This would limit the time required to completely
re-train the model for each change in situation and strategy. For
future extension of the framework, the general meta-heuristic
search algorithm Stepwise Sampling Search (S3) [55] could
be tested for faster optimized parametrizations.

F. Use Case-specific Adapter of the Framework

All the components of the framework are designed to
be generically applicable to a variety of use cases enabled
by the Domain-Data-Model definition of use-case specific
characteristics and an adapter that manages the connection
between use case and framework as described in the following.
As mentioned earlier, the framework is modular and consists of
components that users can adapt to the use case depending on
their requirements. Nevertheless, all components are designed
to handle any kind of data from a use case as long as the data
and optimization goals are defined in the Domain-Data-Model.
This section briefly summarizes the required user actions to
apply the framework for any use case.

Figure 6 provides an overview of the architecture of the
adapter required to connect the framework to any use case.
The self-aware optimization framework is shown at the top,

while the use case consisting of the two lower levels (see Sec-
tion III-C) is shown at the bottom of the figure. The center
of the figure presents two adapter components which are
used to connect the framework and the use case: (i) Data
Preprocessing and (ii) Adaptation Executor. The framework
provides two interfaces that enable general applicability of the
framework as they are implemented with REST APIs. Further,
the Domain-Data-Model defines the data sent through these
APIs and provides all the necessary information to interpret the
parameters, make adaptation decisions, and send adaptation
actions. The API on the left receives the observation data,
while the API on the right provides the possibility to retrieve
adaptation decisions for the use case. We decided to further
abstract the data handling from the use case and include an
additional Data Preprocessing component. This component re-
ceives raw monitoring data from the use case, preprocesses this
data, and potentially calculates additional aggregate metrics
that may be required to assess the performance of the use
case. Due to the REST API, the whole component can be
replaced with a customized version to fit the desired use case.
The Adaptation Executor component, depicted on the center
right of the figure, retrieves the adaptation decisions from the
framework and converts these into specific adaptation actions
for the use case. This component also depends heavily on the
use case and the user must customize the existing component
to the requirements of the new use case. Since both adapter
components handle data transfer to and from the framework,
the implementation effort required to apply them to a new use
case should be minimal. If the use case already provides the
possibilities to send monitoring data directly to the framework
and retrieve and execute adaptation decisions, these adapter
components may not be necessary. However, we have chosen
to provide a template for such components as they represent
another level of abstraction to the use case and, thus, reduce
the required computational effort in the use case.

IV. EVALUATION

A. Methodology

In this work, we use the platooning coordination use case as
a running example of our self-aware optimization framework.
In this context, we also evaluate our framework in this use
case. We first define the applied scenarios, then summarize
the testbed and specify the framework configuration for our
evaluation before proposing our baseline approaches.

We use a simulated road section of the German highway A8,
which extends from the Stuttgart interchange to the Stuttgart-
Degerloch exit. According to Süddeutsche Zeitung, this section
is one of the busiest highway sections in Germany [56]. In
addition to the realistic model of this highway section, we use
real traffic data provided by the Federal Highway Research
Institute of Germany [57] to define the vehicle spawn rates for
our simulation. After a detailed analysis of the traffic values
for each day of the week with the goal of selecting two dis-
tinct days with individual traffic volume profiles, we selected
Wednesday as the representative weekday, and Saturday as
the representative weekend day. Figure 7 shows the traffic

Adapter

Data Preprocessing Adaptation Executor

Self-Aware Optimization Framework

DDM
DDM

Use Case
Layer 2 (Adaptation Planning)

Layer 1 (Adaptive System)

Fig. 6: Use case adapter for the generic self-aware optimization
framework. The use case with its two layers adaptive system
and adaptation planning are depicted at the bottom. It com-
municates with the Framework by sending observations and
retrieving adaptation actions. Additional Data Preprocessing
and Adaptation Executor components can provide a further
abstraction level.

volume for the selected days between 12:00 AM and 2:00 PM.
As the simulation of such high traffic volume requires high
computational power and a long computation time, we decided
to simulate the first 14 hours of a day. This time interval
contains a typical traffic volume profile for weekdays and
weekends and, therefore, provides a good balance between
long runtime and comprehensive simulation. We set the pla-
tooning percentage of all vehicles to 70% as we assume that
not every vehicle is capable of platooning or drivers choose
not to participate. Furthermore, we set the maximum speed
limit of cars to 120km/h, which corresponds to the actual
speed limits on this section [58]. In our evaluation, we use two
types of situation detection—OPTICS and rule-based situation
detection—and two types of triggers for strategy selection—
Hypervolume- and threshold-based triggers—which results in
four simulations per traffic profile. Since our approach involves
Bayesian Optimization that incorporates randomness, we run
three different random seeds in the traffic simulator SUMO
for each simulation.

We perform our simulations in the cloud of the Chair of
Computer Science II at the University of Würzburg. This cloud
consists of 18 hosts, each running RHEL-7-8.2003.0.el7.centos
and oVirt Node 4.3.10 with KVM version 2.12.0. The cloud
contains one large ProLiant DL380 Gen9 host with two
Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60 GHz CPU sockets
and eight cores per socket. The remaining hosts are ProLiant
DL160 Gen9 type with two CPU sockets of type Intel(R)
Xeon(R) CPU E5-2640 v3 @ 2.60 GHz, eight cores per
socket, and two CPU threads per core. We use three identical
virtual machines for the simulations, which are deployed in
our private cloud. Each virtual machine has two CPU sockets,
each with 4 cores running at 2.6 GHz and 32 GB available
RAM. We measure the simulation runtime of our scenarios,

0 2 4 6 8 10 12
Simulation Time (h)

0

1000

2000

3000

4000

5000

6000

7000

8000

Sp
aw

n
Ra

te
/h

Cars & Trucks Cars Trucks

(a) Wednesday

0 2 4 6 8 10 12
Simulation Time (h)

0

1000

2000

3000

4000

5000

6000

7000

8000

Sp
aw

n
Ra

te
/h

Cars & Trucks Cars Trucks

(b) Saturday

Fig. 7: Considered traffic scenarios of the framework evaluation for Wednesday on the left and Saturday on the right. Total
number of spawning vehicles is depicted as blue dashed line, cars are depicted as solid orange line, and trucks are depicted
as dotted green line.

resulting in an average runtime of 9.5 days for the Wednesday
scenarios and 9 days for Saturdays. Since the traffic volume
on Saturdays is lower than on Wednesdays, these simulations
require less runtime.

We test two situation detection approaches and two triggers
for strategy selection, which we now define. For the situation
detection, we use a rule-based approach as well as OPTICS,
which we have already presented in Section III-E. As data
input for the situation detection we use the amount of vehicles
on the road. We derived the rules for the rule-based approach
by taking definitions for peak hours, medium, and low traffic
volumes from the German city of Rostock [59]. This study
states that peak hours occur from Monday to Friday, which
led us to the decision to use the highest traffic volume on
Saturday as the upper limit for off-peak hours. This results in
the following rules: We consider the first situation with lowest
traffic volume, where the maximum number of vehicles on
the road section is 120. We define the medium traffic volume
from 121 to 280 vehicles and define the peak traffic volume
above 280 vehicles on the road segment. OPTICS requires the
definition of the minimum number of points and the minimum
cluster size, both of which we set to a value of 45. We
determined this value in a preliminary study with different
parameters, which showed that this configuration is best suited
for our use case.

Similar to the situation detection, we also evaluate two
triggers for the strategy selection component: Hypervolume
and individual thresholds. Both methods incorporate the four
objective metrics to assess the performance of the currently
active strategy: (i) throughput, (ii) time loss, (iii) platoon
utilization, and (iv) platoon time. The Hypervolume requires
the definition of a reference value which we set to -0.1, which
is outside the range of values of all considered platoon metrics.
We set the Hypervolume threshold to 0.3 and consider a time
window size of five, in which the Hypervolume must fall
below the threshold at least three times to trigger the strategy

selection. The threshold-based trigger requires the definition
of an individual threshold per platoon metric, which we set
as follows. We set the throughput metric threshold to 0.5,
since we assume that platooning coordination strategies have
little impact on this metric. Furthermore, we set the threshold
for the time loss metric to 0.9, since our preliminary study
showed that the time loss metric was always above 0.85 for
all runs, so we need a very strict threshold to have any effect
at all. We set the platoon utilization metric to 0.62, which is
also close to the defined platoon percentage and should lead
the system to high platoon utilization. The threshold for the
platoon time is 0.3, a comparatively low value that provides
the framework with a large margin for testing different strate-
gies. The strategy selection component requires specifying the
number of optimization cycles for each strategy as initial trial
phase in which no other strategy can be selected. We set
this value to ten. Finally, we specify the order in which the
platooning coordination strategies are selected: Best-Distance,
Best-Velocity, as well as Best-Distance-and-Lane. In our study
regarding the situation-awareness of platooning coordination
strategies [54] we analyzed that the Best-Velocity strategy is
the most appropriate for this use case. This would mean that
this strategy should to be tested first. However, we decided to
start with the Best-Distance strategy to force the framework
to select another strategy.

To evaluate the performance of our framework against a
set of baseline approaches, we apply the Best-Distance, Best-
Velocity, and a rule-based strategy to the two scenarios. Ta-
ble II summarizes the configurations of our baseline strategies.
We derived the rule-based strategy from our study of the self-
awareness of strategies [54]. Since the Best-Velocity strategy
performs by far the best in this study, we distinguish two
cases in which we change the configuration depending on the
number of vehicles on the road and the average car speed.
The rule-based strategy uses the first configuration when the
number of vehicles is below 500 and the average car speed

TABLE I: Configuration of the framework and tested strate-
gies, algorithms, and methods used in the evaluation.

DDM Part Parameter Value

Use Case Available strategies Best-Distance, Best-
Velocity, Best-Distance-
and-Lane

Situation Detection Algorithm RuleBased, OPTICS
Strategy Selection Method Hypervolume, threshold

Min. opt. attempts 10
Hypervolume Reference values -0.10

Threshold 0.30
Time window size 5
Threshold exceeds 3

Thresholds Throughput 0.50
Time loss 0.90
Platoon utilization 0.62
Platoon time 0.30

is above 125 km/h. It applies the second configuration when
the number of vehicles is higher than 500 and the average car
speed is lower than 125 km/h. We also apply the same set
of rules as fallback-mechanism in our framework when the
applied situation detection cannot detect the current situation.

TABLE II: Configurations of the baseline approaches used in
the evaluation.

Parameter Name Best-Distance Best-Velocity Rules I Rules II

Advertising
duration [m]

10 10 10 5

Search distance
front [m]

- 600 600 400

Search distance
back [m]

- 250 250 200

Max. speed differ-
ence [km/h]

35 - - -

Speed threshold
lane 2 [km/h]

100 100 100 100

Speed threshold
lane 3 [km/h]

130 130 130 130

Speed threshold
lane 4 [km/h]

160 160 160 160

B. Evaluation of the Situation Detection Component

In line with the workflow of our optimization framework,
we start our evaluation with the situation detection component.
Keep in mind, that this component uses the current amount
of vehicles on the road to identify a situation. Therefore, we
analyze the detected situations during the simulation for both
scenarios and compare the rule-based and OPTICS approaches
to the ground truth. Figure 8 shows the ground truth for
situation detection and the results of the component applied to
the Wednesday scenario. The orange line represents the vehicle
spawn rate, while the blue dots represent the cluster ID, that is,
the detected situation, at a given time. A feature of clustering
algorithms such as OPTICS is that the identified clusters
and observations assigned to them might change as new
measurements considered. This can cause the cluster IDs for
an observation to change over time, which is the motivation of
our ongoing model learning approach in the situation detection

component (c.f. Section III-E). However, this behavior is not
part of the illustration in Figure 8. The figure shows the cluster
numbers assigned when the observation first occurred. This
represents the situation based on which the framework makes
its decisions. The figures 8a and 8b show that the rule-based
situation detection component is close to ground truth, as it
identifies all three situations, but assigns fewer observations
to the peak traffic cluster. In addition, the rule-based approach
does not detect the start of the second peak traffic cluster.
The good performance of this approach was expected since
the rules were derived from the ground truth. The situation
detection using OPTICS, as shown in Figure 8c, identifies
the situations using clustering mechanisms and identifies four
different situations, but is not able to cluster all observations
denoted by cluster ID -1. The four identified situations are less
evenly distributed in terms of the observations they contain,
as cluster number one contains only a few observations.
Nevertheless, this mechanism is able to distinguish different
situations even if they do not completely consistent with the
ground truth.

The results of the situation detection component applied
to the Saturday scenario are depicted in Figure 9. Again,
the orange line represents the vehicle spawn rate and the
blue dots represent the identified cluster ID. Similarly to the
Wednesday scenario, the rule-based approach is close to the
ground truth, which is not surprising since the rules were
derived from the ground truth. However, the OPTICS approach
shows a different behavior as it is not able to identify at least
two different situations and combines all observations into
one situation. The poor performance of this approach could
be due to an unfavorable parameter configuration resulting
from our preliminary parameter study. Another factor could
be the lower number of vehicles on the road compared to the
Wednesday scenario, which could lead to similar observation
data. Further evaluation using more extensive scenarios and
additional parameter studies may provide more insight in the
future.

In summary, this evaluation shows that the rule-based ap-
proach performs well against the defined ground truth for both
scenarios. The OPTICS approach identifies distinct situations
in the Wednesday scenario, but only a single situation for
the Saturday scenario. The ground truth derived rules work
predictably well, but are a very rigid approach and do not
provide flexibility for future changes. A rule set must be
defined at design time using expert knowledge and will not
be further adapted. On the other hand, the clustering approach
OPTICS provides more flexibility, but does not find the
situations defined in the ground truth as reliably. For the
future, extended simulations with, for example, several days
could reveal more potential for improvements. In addition,
rule learning methods could be used to adapt the rule-based
situation detection during runtime.

C. Evaluation of the Strategy Selection Component

The second component of the framework, the strategy se-
lection component, receives the detected situation and selects

0 5 10 15
Simulation Time (h)

0

100

200

300

400
Nu

m
be

r o
f V

eh
icl

es

1

0

1

2

3

Si
tu

at
io

n

Vehicles Situation

(a) Ground truth for the situation detection.

0 5 10 15
Simulation Time (h)

0

100

200

300

400

Nu
m

be
r o

f V
eh

icl
es

1

0

1

2

3

Si
tu

at
io

n

Vehicles Situation

(b) Detected situations when applying rule-
based situation detection.

0 5 10 15
Simulation Time (h)

0

100

200

300

400

Nu
m

be
r o

f V
eh

icl
es

1

0

1

2

3

Si
tu

at
io

n

Vehicles Situation

(c) Detected situations when applying OP-
TICS situation detection.

Fig. 8: Actual situations of the ground truth and detected situations of the rule-based and OPTICS approach for Wednesday
traffic data. The orange line represents the vehicle spawn rate at a specific point in time. The blue dots represent the detected
situation at the current point in time incorporating all previously observed data points.

0 5 10 15
Simulation Time (h)

0

100

200

300

400

Nu
m

be
r o

f V
eh

icl
es

1

0

1

2

3

Si
tu

at
io

n

Vehicles Situation

(a) Ground truth for the situation detection.

0 5 10 15
Simulation Time (h)

0

100

200

300

400
Nu

m
be

r o
f V

eh
icl

es

1

0

1

2

3

Si
tu

at
io

n

Vehicles Situation

(b) Detected situations when applying rule-
based situation detection.

0 5 10 15
Simulation Time (h)

0

100

200

300

400

Nu
m

be
r o

f V
eh

icl
es

1

0

1

2

3

Si
tu

at
io

n

Vehicles Situation

(c) Detected situations when applying OP-
TICS situation detection.

Fig. 9: Actual situations of the ground truth and detected situations of the rule-based and OPTICS approach for Saturday traffic
data. The orange line represents the vehicle spawn rate at a specific point in time.

the most promising strategy to be applied in the adaptation
planning system. In this section, we analyze the proper oper-
ation and performance of the strategy selection component.
Therefore, Figure 10 shows the selected strategies for the
Wednesday scenario using OPTICS as the situation detection
mechanism and the Hypervolume trigger in Figure 10a as
well as the individual thresholds as trigger in Figure 10b.
We decided to use continuous line charts with vertical lines
representing a strategy change to better visualize the changed
strategies especially in cases where the selection changes
back and forth frequently. We base this evaluation solely on
OPTICS, as it identifies different situations for the Wednesday
scenario and is able to handle new situations not defined in a
rule set.

The blue points represent the determined situation, while
the red line illustrates the selected strategy at a certain point
in time, that is, the height of the line represents the selected
strategy. The left figure shows that the strategy selection
component selects a strategy and switches to the next one if the
performance metrics fall below the thresholds and the triggers
activate the selection. When using the Hypervolume trigger,
the strategy selection remains at the Best-Velocity and does
not switch to the Best-Distance-and-Lane within the first six
simulation hours compared to the individual threshold trigger.
After this time, the observations are classified as noise by

the situation detection, which causes the strategy selection
to revert to the rule-based strategy. Whenever new situations
occur, the strategy selection starts with the Best-Distance and
tests its performance before switching to the Best-Velocity
strategy. The results show that the individual thresholds trigger
the strategy selection more often than to the Hypervolume
trigger because the selection component examines the Best-
Distance-and-Lane twice. This is the intended behavior of the
framework and tells us that it is working properly. Also, this
may indicate that the individual thresholds are too restrictive
and could be relaxed to avoid jitters between strategies.

Figure 11 shows the results of the strategy selection compo-
nent for the Saturday scenario using OPTICS and rule-based
situation detection in combination with the Hypervolume and
individual threshold triggers. The reason for using the rule-
based situation detection in this evaluation is that OPTICS
situation detection was not able to identify more than one
situation for the Saturday scenario. Figure 11a presents the
OPTICS and Hypervolume evaluation, Figure 11b presents
the OPTICS and individual threshold evaluation, Figure 11c
illustrates the rule-based and Hypervolume evaluation, and
Figure 11d shows the rule-based and individual threshold
evaluation. Again, the blue points represent the identified
situation, and the red line represents the selected strategy at a
given time. All figures show the desired exploratory behavior

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Simulation Time (h)

1

0

1

2

3

Si
tu

at
io

n

R

BD

BV

BDL

St
ra

te
gy

Situation Strategy

(a) Selected Strategies when using the OPTICS
situation detection and Hypervolume trigger.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Simulation Time (h)

1

0

1

2

3

Si
tu

at
io

n

R

BD

BV

BDL

St
ra

te
gy

Situation Strategy

(b) Selected Strategies when using the OPTICS
situation detection and individual threshold triggers.

Fig. 10: Strategy selection on Wednesday traffic data. Blue points represent the detected situation at a specific point in time.
The red line represents the selected adaptation planning strategy at a specific point in time. (R = Rules, BD = BestDistance,
BV = BestVelocity, and BDL = BestDistanceAndLane)

of the strategy selection when a new situation occurs due to
the step-wise strategy change at the beginning. If a strategy
performs well, it is not replaced and remains active until the
triggers indicate a performance degradation. Since the OPTICS
situation detection identifies only one situation and classifies
some observations as noise, it shows a clear step-wise strategy
change and a reversion to the rule-based strategy when the
situation detection reveals noise. When using the rule-based
situation detection, the strategy selection is more stable since
no fallback mechanisms are required. However, Figure 11c
shows an anomaly in the strategy selection behavior, as the
detection of a new situation does not trigger a new exploration
of strategies after around eight hours. A detailed analysis of
this behavior led us to the conclusion that the detection of a
situation change was not perfectly aligned with the strategy
selection component and, hence, resulted in a lost situation
change. Thus, the currently active strategy, that is, the Best-
Velocity, remains active until about eleven hours of simulation
time. At this point, the Hypervolume trigger indicates a per-
formance degradation of the current strategy and the strategy
selection selects the Best-Distance strategy. However, it is
discarded after the initial trial period and the strategy selection
switches to the Best-Distance-and-Lane strategy. The same
lost update of a new situation can be observed in Figure 11d.
However, this figure shows a faster discarding of the currently
active strategy, similar to the behavior in Figure 11b. This also
indicates that the individual thresholds might be too restrictive
and could be relaxed in the future to produce a more stable
result.

In summary, this evaluation shows that both algorithm
selection trigger methods work properly and activate the
algorithm selection when the performance of the currently
active strategy deteriorates. While the Hypervolume threshold
provides a more stable result, the individual thresholds appear
to detect performance degradation earlier. Therefore, the in-
dividual thresholds explore more possible strategies, but also
result in higher jitter compared to the Hypervolume. However,
the definition of the individual thresholds can be adjusted

in future evaluation studies to achieve a trade-off between
detecting performance degradation quickly and reducing jitter.
All in all, both methods work properly and are capable of
triggering the algorithm selection.

D. Evaluation of the Parameter Optimization Component

We evaluate the performance of our optimization component
by analyzing the course of the Hypervolume metric used by
this component to optimize the parameter configuration of
the current adaptation planning strategy. The Hypervolume
metric (c.f. [46]) accumulates the platooning metrics into
one objective metric that can be used by the single-objective
Bayesian Optimization. Figure 12 shows evaluations of the
Saturday scenario using rule-based situation detection and
Hypervolume as trigger for the strategy selection component
on the left (Figure 12a and Figure 12c). The right side of
the figure shows measurements for the Saturday scenario
using OPTICS as situation detection mechanism and individual
thresholds as triggers for strategy selection (Figure 12b and
Figure 12d). The top figures show the identified situations
in blue in combination with the selected strategies in red.
The lower figures summarize the course of the Hypervolume
metric, that is, the performance indicator of the platooning
coordination strategy. The course of the Hypervolume met-
ric appears to be very fluctuating for both configurations
during the simulation time. This was to be expected, since
the optimization component needs some time to learn which
parameter setting works well for which strategy and situation.
Therefore, it makes most sense to analyze time windows of
the Hypervolume progression where the identified situation
and strategy remain stable. This is also a reason for choosing
Saturday scenarios for this evaluation, as traffic volumes do not
fluctuate as much as in Wednesday scenarios, which allows for
longer time frames per situation and strategy. When analyzing
the first stable phase on the left between 2.5 and 7.5 hours
of simulation time, the Hypervolume starts with a value of
about 0.5 Hypervolume points and drops to 0.3 Hypervolume
points. Then, it stabilizes back to about 0.5 Hypervolume

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Simulation Time (h)

1

0

1

2

3

Si
tu

at
io

n

R

BD

BV

BDL

St
ra

te
gy

Situation Strategy

(a) Selected Strategies when using the OPTICS
situation detection and Hypervolume trigger.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Simulation Time (h)

1

0

1

2

3

Si
tu

at
io

n

R

BD

BV

BDL

St
ra

te
gy

Situation Strategy

(b) Selected Strategies when using the OPTICS
situation detection and individual threshold triggers.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Simulation Time (h)

1

0

1

2

3

Si
tu

at
io

n

R

BD

BV

BDL

St
ra

te
gy

Situation Strategy

(c) Selected Strategies when using the rule-based
situation detection and Hypervolume trigger.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Simulation Time (h)

1

0

1

2

3

Si
tu

at
io

n

R

BD

BV

BDL

St
ra

te
gy

Situation Strategy

(d) Selected Strategies when using the rule-based
situation detection and individual threshold triggers.

Fig. 11: Strategy selection on Saturday traffic data. Blue points represent the detected situation at a specific point in time.
The red line represents the selected adaptation planning strategy at a specific point in time. (R = Rules, BD = BestDistance,
BV = BestVelocity, and BDL = BestDistanceAndLane)

points, indicating that the optimization component has ex-
plored different parameter settings and stabilized to a well
performing set of parameters. As discussed earlier, the change
in the situation is lost at about 7.5 hours of simulation time,
resulting in a sharply decreasing trend in the Hypervolume.
This leads to the extended Hypervolume threshold that triggers
the strategy selection at about 11 hours of simulation time.
The other configuration, depicted on the right of the figure,
captures OPTICS and individual thresholds. In this evaluation,
we can analyze the Hypervolume score for the simulation
period starting at four hours up to eight hours of simulation
time. The Hypervolume score shown on the bottom right
starts at a low value of around 0.2 score points, but quickly
increases to a value of 0.4 score points. This low start value
is due to the recent strategy change from the Best-Distance-
and-Lane strategy which was discarded in favor of the Best-
Velocity strategy after its initial trial phase. After that, the
Hypervolume score shows a slight increase to a value of
about 0.58 score points, but then decreases again to values
between 0.4 and 0.5 score points. This indicates, that the
Optimization component finds better parameter settings for the
selected strategy and then explores new parameter settings that
unfortunately lead to worse Hypervolume values. This triggers
the strategy selection, and since all existing strategies have
already been explored, the fallback rules take place.

In summary, this evaluation shows us that the Optimization

component has the potential to optimize the parameter settings
of the adaptation planning strategies, as the Hypervolume
score remains stable and shows slight increases in stable
situations for situation and selected strategy. However, negative
effects also occur when the Optimization component explores
new parameter settings, which may lead to worse results
compared to the previous settings that performed well. This
indicates that the stable phases of identified situations and
selected strategies, that is, the time for the Optimization com-
ponent to optimize the parameter settings, may be too short to
find stable configurations with good performance. Extended
evaluations over several days or even weeks could provide
more insight into the required amount of experience for the
Optimization component and increase the overall performance
of this component.

E. Evaluation of the Entire Framework

In our final evaluation, we analyze the overall performance
of the framework. First, we compare the four defined
configurations of the framework with the three baselines in
terms of the four platooning metrics of throughput, time loss,
platoon utilization, and platoon time. Table III presents the
mean and standard deviation results for these metrics for the
Wednesday scenario and IV summarizes the results for the
Saturday scenario for the three repetitions. We highlight the
best values of each platooning metric for the baseline group

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Simulation Time (h)

1

0

1

2

3

Si
tu

at
io

n

R

BD

BV

BDL

St
ra

te
gy

Situation Strategy

(a) Selected Strategies when using the rule-based
situation detection and Hypervolume trigger.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Simulation Time (h)

1

0

1

2

3

Si
tu

at
io

n

R

BD

BV

BDL

St
ra

te
gy

Situation Strategy

(b) Selected Strategies when using the OPTICS
situation detection and individual threshold triggers.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Simulation Time (h)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Hy
pe

rv
ol

um
e

(c) Hypervolume score of the selected strategy when
using the rule-based situation detection and Hyper-
volume trigger.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Simulation Time (h)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Hy
pe

rv
ol

um
e

(d) Hypervolume score of the selected strategy when
using the OPTICS situation detection and individual
threshold triggers.

Fig. 12: Evaluation of the optimization component on the Saturday scenario. The left side represents configurations using the
rule-based situation detection and Hypervolume triggers. The right side illustrates OPTICS situation detection and individual
threshold triggers (R = Rules, BD = BestDistance, BV = BestVelocity, and BDL = BestDistanceAndLane).

TABLE III: Evaluation summary of the average and standard deviation for performance metrics throughput, time loss, platoon
utilization, and platoon time for the Wednesday scenario. The best values are shown in bold. (Hv = Hypervolume, Th =
Threshold)

Configuration Throughput Time Loss Platoon Utilization Platoon Time

mean std mean std mean std mean std

Best Distance 0.9952 0.0 0.8992 0.0 0.6251 0.0 0.4908 0.0
Best Velocity 0.9942 0.0 0.9199 0.0 0.6973 0.0 0.6109 0.0
Fallback Rules 0.9950 0.0 0.9198 0.0 0.7176 0.0 0.6518 0.0

OPTICS & Hv 0.9943 0.0003 0.9122 0.0022 0.6690 0.0030 0.5442 0.0090
Rule-based & Hv 0.9946 0.0004 0.9102 0.0011 0.6647 0.0039 0.5302 0.0076
OPTICS & Th 0.9945 0.0003 0.9110 0.0014 0.6566 0.0072 0.5275 0.0119
Rule-based & Th 0.9943 0.0003 0.9108 0.0003 0.6343 0.0109 0.5005 0.0083

and the framework group in bold. In both evaluation scenarios,
the throughput metric results for all baselines and framework
configurations are very close, with values between 0.9943
and 0.9952 and low standard deviations. In the Wednesday
scenario, the Best-Distance baseline and rule-based situation
detection combined with Hypervolume thresholds perform best
on the throughput metric with values of 0.9952 and 0.9946,
respectively. In the Saturday scenario, all configurations of
the framework perform equally well, while the Best-Velocity
baseline performs best on the throughput metric with values of

0.9950 and 0.9951, respectively. All applied configurations and
baselines show higher diversity for the time loss metric, rang-
ing from 0.8992 to 0.9122 for Wednesday and from 0.9255 to
0.9411 for Saturday. Rule-based situation detection combined
with individual thresholds performs best for this metric among
all configurations tested, with a value of 0.9122 and 0.9333,
but achieves a lower value compared to the Best-Velocity
baseline, with a value of 0.9199 and 0.9411 for Wednesday
and Saturday, respectively. Results for the platoon utilization
metric range from 0.6251 to 0.7176 and from 0.5999 to 0.7101

TABLE IV: Evaluation summary of the average and standard deviation for performance metrics throughput, time loss, platoon
utilization, and platoon time for the Saturday scenario. The best values are shown in bold. (Hv = Hypervolume, Th = Threshold)

Configuration Throughput Time Loss Platoon Utilization Platoon Time

mean std mean std mean std mean std

Best Distance 0.9945 0.0 0.9255 0.0 0.5999 0.0 0.4522 0.0
Best Velocity 0.9951 0.0 0.9411 0.0 0.6942 0.0 0.5833 0.0
Fallback Rules 0.9950 0.0 0.9401 0.0 0.7101 0.0 0.6199 0.0

OPTICS & Hv 0.9949 0.0001 0.9309 0.0004 0.6360 0.0019 0.4918 0.0022
Rule-based & Hv 0.9950 0.0001 0.9297 0.0013 0.6367 0.0087 0.4880 0.0137
OPTICS & Th 0.9950 0.0000 0.9323 0.0012 0.6511 0.0065 0.5169 0.0159
Rule-based & Th 0.9950 0.0001 0.9333 0.0024 0.5677 0.0504 0.4182 0.0520

for Wednesday and Saturday, respectively. For this metric, the
fallback rule baseline among the baselines and the OPTICS
situation detection in combination with Hypervolume and indi-
vidual thresholds perform best. Finally, the results for the pla-
toon time metric range from 0.4908 to 0.6518 and from 0.4182
to 0.6199 for Wednesday and Saturday, respectively. Again,
the fallback rules baseline performs best for both scenarios,
and the OPTICS situation detection with Hypervolume and
individual thresholds performs best among the framework con-
figurations. The combination of the close average values for
all metrics and the small standard deviations does not suggest
significant advantages for some configurations. However, this
indicates that the framework performs comparably well when
considering the results of the baseline, which was designed
and configured with complete prior knowledge based on the
preliminary situation-dependency study we published [54].

In addition to evaluating the individual platooning metrics,
we also analyze the progression of the performance over the
simulation time. Therefore, Figure 13 and Figure 14 present
the mean Hypervolume area under curve over simulation time
for all configurations and baseline strategies for Wednesday
and Saturday. The baseline strategies are depicted as gray lines

0 2 4 6 8 10 12 14
Simulation Time (h)

0
1
2
3
4
5
6
7
8
9

Hy
pe

rv
ol

um
e

Au
C

Rule-based & Th
OPTICS & Th
Rule-based & Hv
OPTICS & Hv

Best Velocity
Best Distance
Rules Baseline

Fig. 13: Mean area under curve evaluation over time for the
Hypervolume score of all tested configurations and the base-
lines on the Wednesday scenario. The different colors represent
the tested configurations, the x-axis shows the simulation time,
and the area under curve is depicted on the y-axis.

with a dotted line for the Best-Velocity, a dashed line for Best-
Distance and a dashed and dotted line for the rules baseline.
The colors represent the different configurations. Both plots
show a similar result: The Best-Velocity and rules baseline
perform best, with a stable increasing gradient of the area
under curve, while the Best-Distance baseline performs worst.
The curves of the framework configurations do not increase
at a constant rate, but show more fluctuations in the gradient.
All lines are close to each other, but more noticeable differ-
ences appear as the simulation progresses. The OPTICS and
rule-base situation detection combined with the Hypervolume
trigger perform best for Wednesday. For the Saturday scenario,
both configurations perform well again, but OPTICS in com-
bination with individual thresholds outperforms them slightly
from ten hours of simulation time. For both scenarios, the
rule-based situation detection in combination with individual
thresholds performs worst of all configurations.

0 2 4 6 8 10 12 14
Simulation Time (h)

0
1
2
3
4
5
6
7
8
9

Hy
pe

rv
ol

um
e

Au
C

Rule-based & Th
OPTICS & Th
Rule-based & Hv
OPTICS & Hv

Best Velocity
Best Distance
Rules Baseline

Fig. 14: Mean area under curve evaluation over time for the
Hypervolume score of all tested configurations and the base-
lines on the Saturday scenario. The different colors represent
the tested configurations, the x-axis shows the simulation time,
and the area under curve is depicted on the y-axis.

It is not surprising that the Best-Velocity and the rules
baseline perform best, since our use case study published
in [54] extensively examined existing baseline strategies, their
configuration, and their performance in various situations. Us-
ing this information, we then defined these baseline strategies

to represent the best possible performance when complete
knowledge of situations, strategies, and configuration was
available at design time. However, such intensive studies are
not feasible, especially in such dynamic, adaptive use cases.
Moreover, it is in the nature of the framework to perform
worse than the gold standard, since it needs some time to
explore possible strategies and configurations before it can
learn and profit from earlier decisions. The better performance
of all framework configurations compared to the Best-Distance
baseline shows that the framework is able to identify and select
a strategy that works well. This reduces the need of expert
knowledge or extensive case studies for a use case and, hence,
provides a valuable contribution to self-aware optimization.

V. CONCLUSION

In today’s world, circumstances, processes, and require-
ments for software systems are becoming increasingly com-
plex. In order to operate properly in such dynamic environ-
ments, software systems must adapt to these changes, which
has led to the research area of Self-Adaptive Systems (SAS).
Platooning is one example of adaptive systems in Intelligent
Transportation Systems, which is the ability of vehicles to
travel with close inter-vehicle distances. This technology leads
to an increase in road throughput and safety, which directly
addresses the increased infrastructure needs due to increased
traffic on the roads. However, the No-Free-Lunch theorem
states that the performance of one platooning coordination
strategy is not necessarily transferable to other problems.
Moreover, especially in the field of SAS, the selection of the
most appropriate strategy depends on the current situation of
the system. In this paper, we address the problem of self-aware
optimization of adaptation planning strategies by designing a
framework that includes situation detection, strategy selection,
and parameter optimization of the selected strategies. We
apply rules and clustering techniques to identify the current
situation, as well as Bayesian Optimization to tune the selected
strategy’s parameters. Further, we learn models of the system
and its enviroment and reason on future decisions based
on these models. Finally, we apply the proposed framework
on the platooning coordination case study and evaluate the
performance of all components of the framework as well as
the overall performance of the whole framework. In the future
we plan to further enhance the components of the framework:
First, the coordination component processes the observations
from the use case and triggers the other components. However,
with increasing runtime of the framework, the amount of
data collected from the use case increases. This leads to
large data sets that do not necessarily contribute to good
performance of the overall system, as the information may
become outdated [60], [61]. Hence, it is useful to develop a
strategy on how to discard or aggregate the increasing amount
of data. Further, the situation detection currently comprises
of a rule-based and a clustering approach, but is not able to
adapt the rule set with learned insights. Hence, a rule-learning
mechanism could be applied to improve the rule base of
the situation detection. Currently, the strategy selection learns

which strategy to choose based solely on all observations
on the current situation. However, a global mechanism could
provide benefits to the component by adjusting the order of
strategies based on the performance of strategies previously
experienced in all situations. This could reduce the trial-and-
error phase for new situations and, thus, shorten the time to
convergence. The parameter optimization component currently
provides the hypervolume metric and individual thresholds.
However, for other use cases, other techniques for multi-
objective optimization could be useful, such as the concept
of Pareto-optimality to provide the operator with a set of
equally well performing configurations. Further, approaches
to reduce the search space for parameter tuning such as [62],
[63] could speed up the component. In general, we could
apply forecasting techniques [64] to anticipate future devel-
opments of the system and its environments to proactively
plan adaptations. In summary, we developed the framework
using components, which allows for dynamic evolution of each
component according to the individual requirements and best
practices of the targeted use case.

REFERENCES

[1] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee,
Software Engineering for Self-Adaptive Systems: A Research Roadmap.
Springer Berlin Heidelberg, 2009.

[2] C. Krupitzer, F. M. Roth, S. Vansyckel, G. Schiele, and C. Becker, “A
survey on engineering approaches for self-adaptive systems,” Pervasive
and Mobile Computing, vol. 17, pp. 184–206, 2015.

[3] V. Lesch, “Toward a Framework for Self-Learning Adaptation Planning
through Optimization,” in Organic Computing: Doctoral Dissertation
Colloquium 2020, S. Tomforde and C. Krupitzer, Eds. Kassel University
Press GmbH, jul 2020, pp. 17–31.

[4] X.-F. Xie, S. F. Smith, G. J. Barlow, and T.-W. Chen, “Coping with
real-world challenges in real-time urban traffic control,” in Compendium
of Papers of the 93rd Annual Meeting of the Transportation Research
Board, 2014, pp. 1–15.

[5] T. Robinson, E. Chan, and E. Coelingh, “Operating Platoons On Public
Motorways: An Introduction To The SARTRE Platooning Programme,”
in Proceedings of the 17th World Congress on Intelligent Transport
Systems, 2010.

[6] A. Alam, “Fuel-efficient distributed control for heavy duty vehicle
platooning,” Ph.D. dissertation, KTH Royal Institute of Technology,
Stockholm, 2011.

[7] T. Sturm, C. Krupitzer, M. Segata, and C. Becker, “A Taxonomy of
Optimization Factors for Platooning,” IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 10, pp. 6097–6114, 2021.

[8] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67–82, 1997.

[9] J. R. Rice, “The Algorithm Selection Problem,” in Advances in Com-
puters. Elsevier, 1976, vol. 15, pp. 65–118.

[10] E. M. Fredericks, I. Gerostathopoulos, C. Krupitzer, and T. Vogel, “Plan-
ning as Optimization: Dynamically Discovering Optimal Configurations
for Runtime Situations,” in In Proceedings of the 13th International
Conference on Self-Adaptive and Self-Organizing Systems. IEEE, 2019,
pp. 1–10.

[11] R. Calinescu, R. Mirandola, D. Perez-Palacin, and D. Weyns, “Un-
derstanding Uncertainty in Self-adaptive Systems,” in In Proceedings
of IEEE International Conference on Autonomic Computing and Self-
Organizing Systems. IEEE, 2020, pp. 242–251.

[12] M. R. Endsley, “Toward a Theory of Situation Awareness in Dynamic
Systems,” in Human Factors: The Journal of Human Factors and
Ergonomics Society. Sage Journals, 2017, vol. 37, pp. 32–64.

[13] W. Liu, S.-W. Kim, S. Pendleton, and M. H. Ang, “Situation-aware
decision making for autonomous driving on urban road using online
POMDP,” in 2015 IEEE Intelligent Vehicles Symposium. IEEE, 2015,
pp. 1126–1133.

[14] M. Rockl, P. Robertson, K. Frank, and T. Strang, “An architecture for
situation-aware driver assistance systems,” in 2007 IEEE 65th Vehicular
Technology Conference-VTC2007-Spring. IEEE, 2007, pp. 2555–2559.

[15] T. Hardes and C. Sommer, “Dynamic Platoon Formation at Urban
Intersections,” in Proceedings of the 44th IEEE Conference on Local
Computer Networks, 2019, pp. 101–104.

[16] B. Porter and R. Rodrigues Filho, “Losing Control: The Case for
Emergent Software Systems Using Autonomous Assembly, Perception,
and Learning,” in 10th International Conference on Self-Adaptive and
Self-Organizing Systems. IEEE, 2016, pp. 40–49.

[17] S. Kang, T. Choi, and T. P. Pavlic, “How far should I watch? Quantifying
the effect of various observational capabilities on long-range situational
awareness in multi-robot teams,” in In Proceedings of the IEEE In-
ternational Conference on Autonomic Computing and Self-Organizing
Systems. IEEE, 2020, pp. 146–152.

[18] K. A. Smith-Miles, “Cross-disciplinary perspectives on meta-learning
for algorithm selection,” ACM Computing Surveys, vol. 41, no. 1, pp.
1–25, 2009.

[19] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann, “Automated
Algorithm Selection: Survey and Perspectives,” Evolutionary Computa-
tion, vol. 27, no. 1, pp. 3–45, 2019.

[20] P. Kerschke and H. Trautmann, “Automated Algorithm Selection on
Continuous Black-Box Problems by Combining Exploratory Landscape
Analysis and Machine Learning,” Evolutionary Computation, vol. 27,
no. 1, pp. 99–127, 03 2019.

[21] L. Kotthoff, P. Kerschke, H. Hoos, and H. Trautmann, “Improving the
State of the Art in Inexact TSP Solving Using Per-Instance Algorithm
Selection,” in Learning and Intelligent Optimization, C. Dhaenens,
L. Jourdan, and M.-E. Marmion, Eds. Cham: Springer International
Publishing, 2015, pp. 202–217.

[22] B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky,
A. Fréchette, H. Hoos, F. Hutter, K. Leyton-Brown, K. Tierney, and
J. Vanschoren, “ASlib: A benchmark library for algorithm selection,”
Artificial Intelligence, vol. 237, pp. 41–58, 2016.

[23] C. Neumüller, A. Scheibenpflug, S. Wagner, A. Beham, and M. Af-
fenzeller, “Large scale parameter meta-optimization of metaheuristic
optimization algorithms with heuristiclab Hive,” Actas del VIII Español
sobre Metaheurı́sticas, Algoritmos Evolutivos y Bioinspirados, 2012.

[24] M. Feurer, J. T. Springenberg, and F. Hutter, “Initializing Bayesian Hy-
perparameter Optimization via Meta-Learning,” in Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015.

[25] Y. Zhang, M. Harman, G. Ochoa, G. Ruhe, and S. Brinkkemper,
“An Empirical Study of Meta- and Hyper-Heuristic Search for Multi-
Objective Release Planning,” ACM Transactions on Software Engineer-
ing and Methodology, vol. 27, no. 03, 2018.

[26] R. Chis, M. Vintan, and L. Vintan, “Multi-objective DSE algorithms’
evaluations on processor optimization,” in In Proceedings of the 9th
International Conference on Intelligent Computer Communication and
Processing. IEEE, 2013, pp. 27–33.

[27] L. Vinţan, R. Chiş, M. A. Ismail, and C. Coţofană, “Improving
Computing Systems Automatic Multiobjective Optimization Through
Meta-Optimization,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 35, no. 7, pp. 1125–1129, 2015.

[28] T. Hardes and C. Sommer, “Towards Heterogeneous Communication
Strategies for Urban Platooning at Intersections,” in 2019 IEEE Vehicu-
lar Networking Conference. IEEE, 2019, pp. 1–8.

[29] P. Lewis, K. L. Bellman, C. Landauer, L. Esterle, K. Glette, A. Dia-
conescu, and H. Giese, “Towards a framework for the levels and aspects
of self-aware computing systems,” in Self-Aware Computing Systems.
Springer, 2017, pp. 51–85.

[30] M. T. Cox, “Metacognition in computation: A selected research review,”
Artificial Intelligence, vol. 169, pp. 104–141, 2005.

[31] A. Agarwal, J. Miller, J. Eastep, D. Wentziaff, and H. Kasture, “Self-
aware computing,” Massachusetts Institute of Technology, Tech. Rep.,
2009.

[32] G. Perrouin, B. Morin, F. Chauvel, F. Fleurey, J. Klein, Y. Le Traon,
O. Barais, and J.-M. Jézéquel, “Towards flexible evolution of Dynam-
ically Adaptive Systems,” in In Proceedings of the 34th International
Conference on Software Engineering. IEEE, 2012, pp. 1353–1356.

[33] I. Gerostathopoulos, T. Bures, P. Hnetynka, A. Hujecek, F. Plasil,
and D. Skoda, “Strengthening Adaptation in Cyber-Physical Systems
via Meta-Adaptation Strategies,” ACM Transactions on Cyber-Physical
Systems, vol. 1, no. 3, pp. 1–25, 2017.

[34] C. Kinneer, Z. Coker, J. Wang, D. Garlan, and C. L. Goues, “Managing
Uncertainty in Self-Adaptive Systems with Plan Reuse and Stochastic
Search,” in Proceedings of the 13th International Conference on Soft-
ware Engineering for Adaptive and Self-Managing Systems, 2018, pp.
40–50.

[35] X. Sun, J. Lin, and B. Bischl, “ReinBo: Machine Learning pipeline
search and configuration with Bayesian Optimization embedded Rein-
forcement Learning,” arXiv preprint arXiv:1904.05381, 2019.

[36] J. Chai, J. Chang, Y. Zhao, and H. Liu, “An Auto-ML Framework Based
on GBDT for Lifelong Learning,” arXiv preprint arXiv:1908.11033,
2019.

[37] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-
WEKA: Combined selection and hyperparameter optimization of classi-
fication algorithms,” in Proceedings of the 19th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, 2013, pp.
847–855.

[38] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 6765–6816, 2017.

[39] V. Lesch, C. Krupitzer, K. Stubenrauch, N. Keil, C. Becker, S. Kounev,
and M. Segata, “A Comparison of Mechanisms for Compensating
Negative Impacts of System Integration,” Future Generation Computer
Systems, vol. 116, pp. 117–131, March 2021.

[40] V. Lesch, C. Krupitzer, and S. Tomforde, “Multi-objective Optimisation
in Hybrid Collaborating Adaptive Systems,” in Proceedings of the 7th
edition in the Series on Autonomously Learning and Optimising Systems,
co-located with 32nd GI/ITG ARCS 2019. Gesellschaft fuer Informatik
(GI), may 2019.

[41] J. Cámara, K. L. Bellman, J. O. Kephart, M. Autili, N. Bencomo,
A. Diaconescu, H. Giese, S. Götz, P. Inverardi, S. Kounev et al., “Self-
Aware Computing Systems: Related Concepts and Research Areas,” in
Self-Aware Computing Systems. Springer, 2017, pp. 17–49.

[42] J. Kramer and J. Magee, “Self-Managed Systems: an Architectural
Challenge,” in In Proceedings of Future of Software Engineering. IEEE,
2007, pp. 259–268.

[43] S. Kounev, P. Lewis, K. L. Bellman, N. Bencomo, J. Camara, A. Dia-
conescu, L. Esterle, K. Geihs, H. Giese, S. Götz et al., “The Notion of
Self-aware Computing,” in Self-Aware Computing Systems. Springer,
2017, pp. 3–16.

[44] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,”
IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[45] S. Tomforde, H. Prothmann, J. Branke, J. Hähner, M. Mnif, C. Müller-
Schloer, U. Richter, and H. Schmeck, “Observation and Control of
Organic Systems,” in Organic Computing–A Paradigm Shift for Complex
Systems. Springer, 2011, pp. 325–338.

[46] S. Wang, S. Ali, T. Yue, Y. Li, and M. Liaaen, “A practical guide to select
quality indicators for assessing pareto-based search algorithms in search-
based software engineering,” in Proceedings of the 38th International
Conference on Software Engineering, 2016, pp. 631–642.

[47] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “A Computational
Study of Representations in Genetic Programming to Evolve Dispatching
Rules for the Job Shop Scheduling Problem,” IEEE Transactions on
Evolutionary Computation, vol. 17, no. 5, pp. 621–639, 2012.

[48] S. Chand, Q. Huynh, H. Singh, T. Ray, and M. Wagner, “On the Use of
Genetic Programming to Evolve Priority Rules for Resource Constrained
Project Scheduling Problems,” Information Sciences, vol. 432, pp. 146–
163, 2018.

[49] A. Ghandar, Z. Michalewicz, M. Schmidt, T.-D. To, and R. Zurbrugg,
“Computational Intelligence for Evolving Trading Rules,” IEEE Trans-
actions on Evolutionary Computation, vol. 13, no. 1, pp. 71–86, 2009.

[50] S. Alelyani, J. Tang, and H. Liu, “Feature Selection for Clustering: A
Review,” Data Clustering: Algorithms and Applications, vol. 29, no.
110-121, 2014.

[51] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of
clusters in a data set via the gap statistic,” Journal of the Royal Statistical
Society: Series B (Statistical Methodology), vol. 63, no. 2, pp. 411–423,
2001.

[52] R. Gove, “Using the elbow method to determine the optimal number of
clusters for k-means clustering - bl.ocks.org,” https://bl.ocks.org/rpgove
/0060ff3b656618e9136b, accessed: 2021-03-12.

[53] M. Guillame-Bert, S. Bruch, J. Gordon, and J. Pfeifer, “Introducing
TensorFlow Decision Forests,” https://blog.tensorflow.org/2021/05/intr

https://bl.ocks.org/rpgove/0060ff3b656618e9136b
https://bl.ocks.org/rpgove/0060ff3b656618e9136b
https://blog.tensorflow.org/2021/05/introducing-tensorflow-decision-forests.html

oducing-tensorflow-decision-forests.html, Nov 2021, [Online; Accessed
2. Nov. 2021].

[54] V. Lesch, T. Noack, J. Hefter, S. Kounev, and C. Krupitzer, “Towards
Situation-Aware Meta-Optimization of Adaptation Planning Strategies,”
in Proceedings of the 2nd IEEE International Conference on Autonomic
Computing and Self-Organizing Systems (ACSOS 2021). IEEE, 2021,
best paper candidate.

[55] Q. Noorshams, “Modeling and Prediction of I/O Performance in Vir-
tualized Environments,” Ph.D. dissertation, Karlsruhe Institute of Tech-
nology (KIT), Karlsruhe, Germany, February 2015.

[56] dpa/lsw, “Verkehr - Stuttgart - Meistbefahrener Autobahnabschnitt:
Unfallzahlen verdoppelt - Wirtschaft - SZ.de,” https://www.sueddeut
sche.de/wirtschaft/verkehr-stuttgart-meistbefahrener-autobahnabschnitt
-unfallzahlen-verdoppelt-dpa.urn-newsml-dpa-com-20090101-170806-
99-537657, last Accessed: 2021-10-06.

[57] “bast (Bundesanstalt für Straßenwesen) - Automatische Zählstellen
2018,” https://www.bast.de/BASt 2017/DE/Verkehrstechnik/Fachthe
men/v2-verkehrszaehlung/Daten/2018 1/Jawe2018.html, last Accessed:
2021-11-12.

[58] J. Breithut, “A8 zwischen Stuttgart und Leonberg: Polizei stellt
Autobahn-Blitzer wieder auf,” https://www.stuttgarter-nachrichten.
de/inhalt.a8-zwischen-stuttgart-und-leonberg-polizei-stellt-autobahn
-blitzer-wieder-auf.631561fb-8f7f-4881-a4cc-74eac1f4a158.html, last
Accessed: 2021-10-06.

[59] P. T. V. AG, “Regionaler Nahverkehrsplan Mittleres Mecklenburg/Ros-
tock,” https://www.planungsverband-rostock.de/wp-content/uploads/20
18/07/NVP%5F%5Fbersicht.pdf, last Accessed: 2021-10-07.

[60] S. Markovitch and P. D. SCOTT, “The role of forgetting in learning,”
in Machine Learning Proceedings 1988, J. Laird, Ed. San Francisco
(CA): Morgan Kaufmann, 1988, pp. 459–465.

[61] S. Sukhov, M. Leontev, A. Miheev, and K. Sviatov, “Prevention of
catastrophic interference and imposing active forgetting with generative
methods,” Neurocomputing, vol. 400, pp. 73–85, 2020.

[62] D. Pukhkaiev and S. Götz, “BRISE: energy-efficient benchmark reduc-
tion,” in Proceedings of the 6th International Workshop on Green and
Sustainable Software, 2018, pp. 23–30.

[63] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential Model-Based
Optimization for General Algorithm Configuration,” in Learning and
Intelligent Optimization, C. A. C. Coello, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 507–523.

[64] M. Züfle, A. Bauer, V. Lesch, C. Krupitzer, N. Herbst, S. Kounev, and
V. Curtef, “Autonomic Forecasting Method Selection: Examination and
Ways Ahead,” in Proceedings of the 16th IEEE International Conference
on Autonomic Computing. IEEE, June 2019.

https://blog.tensorflow.org/2021/05/introducing-tensorflow-decision-forests.html
https://www.sueddeutsche.de/wirtschaft/verkehr-stuttgart-meistbefahrener-autobahnabschnitt-unfallzahlen-verdoppelt-dpa.urn-newsml-dpa-com-20090101-170806-99-537657
https://www.sueddeutsche.de/wirtschaft/verkehr-stuttgart-meistbefahrener-autobahnabschnitt-unfallzahlen-verdoppelt-dpa.urn-newsml-dpa-com-20090101-170806-99-537657
https://www.sueddeutsche.de/wirtschaft/verkehr-stuttgart-meistbefahrener-autobahnabschnitt-unfallzahlen-verdoppelt-dpa.urn-newsml-dpa-com-20090101-170806-99-537657
https://www.sueddeutsche.de/wirtschaft/verkehr-stuttgart-meistbefahrener-autobahnabschnitt-unfallzahlen-verdoppelt-dpa.urn-newsml-dpa-com-20090101-170806-99-537657
https://www.bast.de/BASt_2017/DE/Verkehrstechnik/Fachthemen/v2-verkehrszaehlung/Daten/2018_1/Jawe2018.html
https://www.bast.de/BASt_2017/DE/Verkehrstechnik/Fachthemen/v2-verkehrszaehlung/Daten/2018_1/Jawe2018.html
https://www.stuttgarter-nachrichten.de/inhalt.a8-zwischen-stuttgart-und-leonberg-polizei-stellt-autobahn-blitzer-wieder-auf.631561fb-8f7f-4881-a4cc-74eac1f4a158.html
https://www.stuttgarter-nachrichten.de/inhalt.a8-zwischen-stuttgart-und-leonberg-polizei-stellt-autobahn-blitzer-wieder-auf.631561fb-8f7f-4881-a4cc-74eac1f4a158.html
https://www.stuttgarter-nachrichten.de/inhalt.a8-zwischen-stuttgart-und-leonberg-polizei-stellt-autobahn-blitzer-wieder-auf.631561fb-8f7f-4881-a4cc-74eac1f4a158.html
https://www.planungsverband-rostock.de/wp-content/uploads/2018/07/NVP%5F%5Fbersicht.pdf
https://www.planungsverband-rostock.de/wp-content/uploads/2018/07/NVP%5F%5Fbersicht.pdf

	I Introduction
	II Related Work
	III Self-Aware Optimization of Platooning Coordination
	III-A Assumptions
	III-B Terminology
	III-C System Model
	III-D LRA-M Loop Adoption
	III-E Framework Composition
	III-E1 Coordination
	III-E2 Domain Data Model
	III-E3 Situation Detection
	III-E4 Strategy Selection
	III-E5 Parameter Optimization

	III-F Use Case-specific Adapter of the Framework

	IV Evaluation
	IV-A Methodology
	IV-B Evaluation of the Situation Detection Component
	IV-C Evaluation of the Strategy Selection Component
	IV-D Evaluation of the Parameter Optimization Component
	IV-E Evaluation of the Entire Framework

	V Conclusion
	References

