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Abstract. Forecasting is an important part of the decision-making process and
used in many fields like business, economics, finance, science, and engineer-
ing. According to the “No-Free-Lunch-Theorem” from 1997, there is no gen-
eral forecasting method, that performs best for all time series. Instead, expert
knowledge is needed to decide which forecasting method to choose for a spe-
cific time series with its own characteristics. Since a trial and error approach is
very inefficient and expert knowledge is useful but a time-consuming task that
cannot be fully automated, we present a new hybrid multi-step-ahead fore-
casting approach based on time series decomposition. Initial evaluations show
that this hybrid approach improves the forecast accuracy compared to six ex-
isting forecasting methods while maintaining a short runtime.

1 Introduction

Forecasting allows to predict the future by examining past observations. Classical
forecasting methods have their benefits and drawbacks depending on the specific
use cases. Thus, there is no globally best forecasting technique [19] and further re-
spectively expert knowledge is required for determining the best forecast method.
Typically, expert knowledge is needed for two domains, i.e., method selection and
feature engineering. The serious problem of expert knowledge is that it can take a
long time to deliver results and it cannot be completely automated. In the field of fea-
ture engineering, expert knowledge can be replaced by using deep learning [16,12] or
random forests [8,2]. To overcome the need of expert knowledge in method selection,
a more robust forecasting method compared to the classical forecaster is needed. In
this field, robust means that the variance in forecasting results should be reduced,
not necessarily improving the forecasting accuracy itself. By reducing the variance
of the results, the risk when trusting a bad forecast is lowered. Hybrid forecasting
is such a technique since the benefits of multiple forecasting methods can be com-
bined to improve the overall performance. Thus, we introduce a new hybrid, multi-
step-ahead forecasting approach for univariate time series. The approach is based
on time series decomposition and makes use of existing forecasting methods, i.e.,
ARIMA, ANN, and XGBoost.



2 Related Work

In 1997, Wolpert and Macready presented the “No Free Lunch Theorem” for optimiza-
tion algorithms [19]. It claims, that there is not a single algorithm that performs best
for all scenarios since improving the performance of one aspect normally leads to
a degradation in performance for some other aspect. This theorem can also be ap-
plied to forecasting methods as there is no single method that outperforms the others
for all types of data. To address this issue, many hybrid forecasting approaches have
been developed. A hybrid forecasting method makes use of at least two forecasting
methods to compensate the limitations of individual forecasting methods. Hybrid
methods can be categorized into three groups of approaches each sharing the same
basic concept.
The first and historically oldest group is the concept of ensemble forecasting and is
the technique of using at least two forecasting methods. While assigning a weight to
each method, the forecast result is the weighted sum of each forecast method. This
approach was introduced by Bates and Granger in 1969 [1]. The concept of this ap-
proach is rather simple, however, the assignment of weights is a crucial part. Thus,
many methods for weight estimation have been investigated [4,7,11].
The second group of forecasting methods is based on the concept of forecast recom-
mendation, where the goal is to build a rule set to guess the assumed best forecasting
method based on certain time series features. There are two common ways to gener-
ate the rule set. One method is using an expert system. Collopy and Armstrong used
this approach to create a rule set by hand in 1992 [6]. The other method is using ma-
chine learning techniques to automatically generate a rule set. In 2009, Wang et al.
proposed clustering and algorithms for rule set learning based on a large variety of
time series features [18].
The third group of forecasting methods is based on decomposition of the time series
with the goal to leverage the advantages of each method to compensate for the draw-
backs of the others. In literature, there are common approaches. The first approach
is to apply a single forecasting method on the time series and then apply another
method on the residuals of the first one [20,17]. The second forecasting method is in-
tentionally chosen to have different characteristics than the first one, that is, it should
have antithetic advantages and drawbacks compared to the first one. An alternative
approach is to split the time series into its components trend, seasonality, and noise,
applying a different forecasting method on each of them. Liu et al. introduced an
approach like this targetted for short-term load forecasting of micro-grids [13]. They
used empirical mode decomposition to split the time series and extended Kalman
filter, extreme learning machine with kernel, and particle swarm optimization for
the forecast.

The hybrid forecasting approach, we propose in this paper, focuses on forecasts
based on decomposition. In contrast to Zhang or Pain and Lin [20,17], we use explicit
time series decomposition, that is, forecast methods are applied to the individual
components of the time series as opposed to the residuals of previous forecasts. Liu
et al. introduced a short-term hybrid forecasting method based on an intrinsic mode
function. In our approach, the time series is split into trend, seasonality, and noise



components. Additionally, completely different forecasting methods are used as a
basis. Furthermore, the hybrid approach of this paper is designed to perform multi-
step-ahead forecasting with low overhead and short runtime.

3 Telescope Approach

We call the proposed hybrid forecasting approach Telescope according to the anal-
ogy with the vision on far-distanced objects. Telescope is developed in R to perform
multi-step-ahead forecasting while maintaining a short runtime. To this end, only
fast and efficient single forecasting methods are used as components of Telescope. A
diagram of the forecasting procedure is shown in Fig. 1.
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Fig. 1: A simplified illustration of the Telescope approach.

First, a preprocessing step is executed. The frequency of the time series is esti-
mated using periodograms, i.e., applying the R function spec.pgram. This function
uses fast Fourier transformation to estimate the spectral density. The estimated fre-
quency is needed to remove anomalies in the time series by applying the Anomaly
Detection R package [9]. This package uses a modified version of the seasonal and
trend decomposition using Loess (STL) [5]. The STL decomposition splits the time
series into the three components season, trend, and remainder. After the decom-
position, Anomaly Detection applies generalized extreme studentized deviate test
(ESD) with median instead of mean and median absolute deviation instead of stan-
dard deviation on the remainder to identify outliers. Furthermore, we use STL for an
additive decomposition of the revised time series. If the amplitude of the seasonal



pattern increases as the trend increases and vice versa, we assume multiplicative de-
composition. Thus, a heuristic testing for such a behavior is implemented. If a mul-
tiplicative decomposition is detected, the logarithmized time series is used for the
STL decomposition and the components are back-transformed after the decompo-
sition. We apply the STL package because of its short runtime compared to other
R decomposition functions like bfast. Afterwards, the season and trend forecast-
ing is executed. The seasonality determined by STL is simply continued, whereas
the trend is forecast using the auto.arima function from the forecast R package
by Hyndman [10]. Since there is no seasonal pattern left, seasonality is disabled in
auto.arima for this purpose. Moreover, this seasonality disabling decreases the run-
time of the algorithm. Additionally, the time series with removed anomalies is used
to create categorical information. For this purpose, the time series is cut into sin-
gle periods. Then, the single periods are clustered into two classes using the kmeans
R function. Each class is represented by its centroid. Next, this history of centroids
is forecast using an artificial neural network (ANN), i.e., the nnetar function of the
forecast R package [10]. If a specific time series is forecast several times, this clus-
tering task does not need to be performed every time. Finally, the last step is the
remainder forecast and composition. XGBoost is used [3], which is an implementa-
tion of gradient boosted decision trees and it works best when obtaining covariates.
XGBoost is applied using the trend, seasonality, and centroid forecasts as covariates
and the raw time series history as labels. In addition, 10% of the history data are used
for validation in the training phase to prevent XGBoost from overfitting. The sources
of the Telescope approach are currently under publication as open-source1.

4 Preliminary Evaluation

To evaluate the performance of this hybrid forecasting approach, we have conducted
some initial experiments presented in this section. As example time series, a trace of
completed transactions on an IBM z196 Mainframe during February 2011 and a trace
of monthly international airline passengers from 1949 to 1960 are used.

Each observation in the IBM trace contains the quarter-hourly amount of trans-
actions (e.g., bookings or money transfers). The trace contains 2670 observations and
is depicted in Fig. 2a. It shows a typical seasonal pattern with a daily and weekly cy-
cle, where the amount of transactions differs completely during weekdays and week-
ends. The trace exists of about 28 daily periods and 4 weekly periods. Since the ap-
proach is designed to perform multi-step-ahead forecasts, the last 20% observations
of the time series are chosen as forecast horizon. Thus, the history of the IBM trace
incorporates 2136 observations and the forecast horizon is set to 534 observations.
The border between history and horizon is shown as vertical purple line in Fig. 2a.
The forecast of the IBM trace is shown in Fig. 2b. The original time series is depicted
in black, whereas the forecast of Telescope is represented by the red line. As a ref-
erence, the second best forecast produced by the tBATS approach [14] is shown as

1 Telescope: http://descartes.tools/telescope

http://descartes.tools/telescope


dashed blue line. Besides the good fitting of the observed history, the hybrid ap-
proach succeeds in capturing the weekdays and weekends. In contrast to Telescope,
tBATS only repeats a single pattern for the whole horizon. For weekdays, the forecast
of Telescope and tBATS are very close to each other. However, tBATS misses captur-
ing the weekends.
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(a) All observations of the history and forecast
horizon of the IBM trace.
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(b) Telescope (red) and tBATS (dashed blue)
forecast of the IBM trace.

Fig. 2: Observations and forecast of the IBM trace.

The airline passengers trace consists of 144 observations and shows an exponen-
tial trend pattern as well as a seasonal pattern with yearly cycle. Furthermore, the
amplitude of the seasonal pattern increases as the trend rises. The airline passengers
trace is shown in Fig. 3a. Since the forecast horizon is set to 20%, the history con-
tains 115 observations and the forecast horizon consists of 29 observations. Again,
the border between history and horizon is shown as vertical purple line in Fig. 3a.
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(a) All observations of the history and forecast
horizon of the airline passengers trace.
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(b) Telescope (red) and tBATS (dashed blue)
forecast of the airline passengers trace.

Fig. 3: Observations and forecast of the airline passengers trace.



Fig. 3b shows the forecast of the airline passengers trace. Again, the original time
series is depicted as black line, the forecast of Telescope is shown as red line, and the
tBATS forecast is depicted as dashed blue line. Both, tBATS and Telescope succeed in
capturing the trend and season pattern. Though, besides the first value of the hori-
zon, the tBATS forecast is always greater than the Telescope forecast.

To evaluate the forecasting accuracy in a mathematical way the mean absolute
percentage error (MAPE) and mean absolute scaled error (MASE) measures are used.
The MAPE is a widely-used measure to assess forecasting accuracy based on the fore-
casting error normalized with the observations. However, MAPE has some serious
limitations, i.e., it cannot be used for time series with zeros in the forecasting horizon
and it punishes positive errors harder than negative errors. Thus, we additionally use
a second measure called MASE. Both measures are independent of the data scale but
in contrast to MAPE, MASE is suitable for almost all situations and the error is based
on the in-sample MAE from the random walk forecast. For a 20% forecast, the ran-
dom walk forecast would forecast the last value of the history for the entire horizon.
Thus, the investigated forecast is better than the random walk forecast if the MASE
value is less than 1 and worse if the MASE value is greater than 1. The MAPE and
MASE values can be calculated as follows:

M APE = 100× 1

n

n∑
i=1

| ei

Yi
| (1)

M ASE =

1

n

n∑
i=1

|ei |

1

n −1
×

n∑
i=2

|Yi −Yl |
(2)

Where Yl is the observation at time l with l being the index of the last observation of
the history. Yi is the observation at time l+i . Thus, Yi is the value of the i -th observa-
tion in the forecast horizon. The forecast error at time l+i is calculated as ei = Yi −Fi

where Fi is the forecast at time l +i . The amount of observations in the forecast hori-
zon is represented by n. Another important measure to evaluate the performance of
the forecasting approach is the elapsed time for the forecasting process. The total
time elapsed for the forecast is measured in seconds. Table 1 shows the MASE and
MAPE values and runtime of the hybrid approach for the IBM and airline passengers
traces compared to six state-of-the-art forecasting methods:

– ARIMA: auto-regressive integrated moving averages (auto.arima with season-
ality in package forecast [10]),

– ANN: artificial neural nets (nnetar in package forecast [10]),
– ETS: extended exponential smoothing (ets in package forecast [10]),
– tBATS: trigonometric, Box-Cox transformed, ARMA errors using trend and sea-

sonal components (tbats in package forecast [10,14]),
– SVM: support vector machine (svm in package e1071 [15]),
– XGBoost: scalable tree boosting (xgboost in package xgboost [3]) using only

the index of the observation as covariate.



On the one hand, the experiment shows that the hybrid approach reaches the
lowest MASE and MAPE values for both time series. The Telescope forecast reaches
a MASE value of about 0.064 for the IBM trace and 0.179 for the airline passengers
trace. The MAPE values are about 51.628% and 3.382%. The second best MASE values
are achieved by tBATS with about 0.191 for the IBM trace and 0.276 for the airline pas-
sengers trace. Furthermore, tBATS reaches the second best MAPE value for the airline
passengers trace with about 5.472%. However, ANN outperforms tBATS in matters of
the MAPE value for the IBM trace, i.e., ANN achieves a MAPE value of about 179.537.
On the other hand, the experiment shows that Telescope has a very short runtime
with about 8.557 and 2.679 seconds. On the IBM trace, ETS, SVM, and XGBoost itself
achieve shorter runtimes compared to Telescope. Though, each of these forecasting
methods delivers a bad accuracy. On the airline passengers trace, only tBATS has a
longer runtime than Telescope. Since the IBM trace is about 15 times as long as the
airline passengers trace, this experiment implies that the runtime of the Telescope
approach does not depend as much on the time series length as some state-of-the-
art forecasting methods, i.e., ARIMA, ANN, and tBATS, do.

Table 1: Accuracy and runtime of state-of-the-art forecasting methods and Tele-
scope.

Forecasting
Method

IBM Trace Passengers Trace

MASE MAPE [%] Time [s] MASE MAPE [%] Time [s]

Telescope 0.064 51.628 8.557 0.179 3.382 2.679

ARIMA 0.343 813.570 12.301 0.358 6.255 1.065

ANN 0.788 179.537 12.172 0.400 7.473 0.801

ETS 0.986 2992.701 0.531 0.358 6.361 2.371

tBATS 0.191 253.243 38.078 0.276 5.472 4.538

SVM 0.276 574.624 2.312 3.711 67.909 0.233

XGBoost 0.736 545.469 0.484 0.692 11.936 0.278

5 Conclusion

In this paper, Telescope, a new hybrid approach for multi-step-ahead forecasting, is
introduced. The approach uses clustering for creating categorical information like
weekdays and weekends. STL decomposition is used to split the time series into
trend, seasonality, and noise. ARIMA without seasonality is used to forecast the trend
with low overhead. The seasonal pattern delivered by STL is simply continued. Fi-
nally, XGBoost is applied using the trend, season, and cluster forecasts as covariates.
Initial evaluations show that the approach achieves good accuracy while maintain-
ing short runtime. As future work, we plan to perform more evaluations and include
several extensions to the algorithm like denoising based on wavelet transformations
and identification of break points in the trends.
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