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Abstract
Nowadays, data centers are becoming increasingly dynamic due to the common
adoption of virtualization technologies. Systems can scale their capacity on
demand by growing and shrinking their resources dynamically based on the
current load. However, the complexity and performance of modern data centers
is influenced not only by the software architecture, middleware, and computing
resources, but also by network virtualization, network protocols, network services,
and configuration. The field of network virtualization is not as mature as server
virtualization and there are multiple competing approaches and technologies.
Performance modeling and prediction techniques provide a powerful tool to
analyze the performance of modern data centers. However, given the wide variety
of network virtualization approaches, no common approach exists for modeling
and evaluating the performance of virtualized networks.
The performance community has proposed multiple formalisms and models

for evaluating the performance of infrastructures based on different network
virtualization technologies. The existing performance models can be divided
into two main categories: coarse-grained analytical models and highly-detailed
simulation models. Analytical performance models are normally defined at a high
level of abstraction and thus they abstract many details of the real network and
therefore have limited predictive power. On the other hand, simulation models
are normally focused on a selected networking technology and take into account
many specific performance influencing factors, resulting in detailed models that
are tightly bound to a given technology, infrastructure setup, or to a given protocol
stack.

Existing models are inflexible, that means, they provide a single solution method
without providing means for the user to influence the solution accuracy and
solution overhead. To allow for flexibility in the performance prediction, the user
is required to build multiple different performance models obtaining multiple
performance predictions. Each performance prediction may then have different
focus, different performance metrics, prediction accuracy, and solving time.

The goal of this thesis is to develop a modeling approach that does not require
the user to have experience in any of the applied performance modeling formalisms.
The approach offers the flexibility in the modeling and analysis by balancing
between: (a) generic character and low overhead of coarse-grained analytical
models, and (b) the more detailed simulation models with higher prediction
accuracy.
The contributions of this thesis intersect with technologies and research areas,

such as: software engineering, model-driven software development, domain-specific
modeling, performance modeling and prediction, networking and data center
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networks, network virtualization, Software-Defined Networking (SDN), Network
Function Virtualization (NFV). The main contributions of this thesis compose the
Descartes Network Infrastructure (DNI) approach and include:

• Novel modeling abstractions for virtualized network infrastructures. This
includes two meta-models that define modeling languages for modeling data
center network performance. The DNI and miniDNI meta-models provide
means for representing network infrastructures at two different abstraction
levels. Regardless of which variant of the DNI meta-model is used, the
modeling language provides generic modeling elements allowing to describe
the majority of existing and future network technologies, while at the same
time abstracting factors that have low influence on the overall performance. I
focus on SDN and NFV as examples of modern virtualization technologies.

• Network deployment meta-model—an interface between DNI and other meta-
models that allows to define mapping between DNI and other descriptive
models. The integration with other domain-specific models allows capturing
behaviors that are not reflected in the DNI model, for example, software
bottlenecks, server virtualization, and middleware overheads.

• Flexible model solving with model transformations. The transformations
enable solving a DNI model by transforming it into a predictive model.
The model transformations vary in size and complexity depending on the
amount of data abstracted in the transformation process and provided to
the solver. In this thesis, I contribute six transformations that transform
DNI models into various predictive models based on the following modeling
formalisms: (a) OMNeT++ simulation, (b) Queueing Petri Nets (QPNs),
(c) Layered Queueing Networks (LQNs). For each of these formalisms,
multiple predictive models are generated (e.g., models with different level of
detail): (a) two for OMNeT++, (b) two for QPNs, (c) two for LQNs. Some
predictive models can be solved using multiple alternative solvers resulting
in up to ten different automated solving methods for a single DNI model.

• A model extraction method that supports the modeler in the modeling
process by automatically prefilling the DNI model with the network traffic
data. The contributed traffic profile abstraction and optimization method
provides a trade-off by balancing between the size and the level of detail of
the extracted profiles.

• A method for selecting feasible solving methods for a DNI model. The
method proposes a set of solvers based on trade-off analysis characterizing
each transformation with respect to various parameters such as its specific lim-
itations, expected prediction accuracy, expected run-time, required resources
in terms of CPU and memory consumption, and scalability.

• An evaluation of the approach in the context of two realistic systems. I
evaluate the approach with focus on such factors like: prediction of network
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capacity and interface throughput, applicability, flexibility in trading-off
between prediction accuracy and solving time. Despite not focusing on the
maximization of the prediction accuracy, I demonstrate that in the majority
of cases, the prediction error is low—up to 20% for uncalibrated models and
up to 10% for calibrated models depending on the solving technique.

In summary, this thesis presents the first approach to flexible run-time perfor-
mance prediction in data center networks, including network based on SDN. It
provides ability to flexibly balance between performance prediction accuracy and
solving overhead. The approach provides the following key benefits:

• It is possible to predict the impact of changes in the data center network
on the performance. The changes include: changes in network topology,
hardware configuration, traffic load, and applications deployment.

• DNI can successfully model and predict the performance of multiple different
of network infrastructures including proactive SDN scenarios.

• The prediction process is flexible, that is, it provides balance between the
granularity of the predictive models and the solving time. The decreased
prediction accuracy is usually rewarded with savings of the solving time and
consumption of resources required for solving.

• The users are enabled to conduct performance analysis using multiple dif-
ferent prediction methods without requiring the expertise and experience in
each of the modeling formalisms.

The components of the DNI approach can be also applied to scenarios that are
not considered in this thesis. The approach is generalizable and applicable for
the following examples: (a) networks outside of data centers may be analyzed
with DNI as long as the background traffic profile is known; (b) uncalibrated
DNI models may serve as a basis for design-time performance analysis; (c) the
method for extracting and compacting of traffic profiles may be used for other,
non-network workloads as well.
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Zusammenfassung
Durch Virtualisierung werden moderne Rechenzentren immer dynamischer. Syste-
me sind in der Lage ihre Kapazität hoch und runter zu skalieren , um die ankom-
mende Last zu bedienen. Die Komplexität der modernen Systeme in Rechenzentren
wird nicht nur von der Softwarearchitektur, Middleware und Rechenressourcen
sondern auch von der Netzwerkvirtualisierung beeinflusst. Netzwerkvirtualisierung
ist noch nicht so ausgereift wie die Virtualisierung von Rechenressourcen und
es existieren derzeit unterschiedliche Netzwerkvirtualisierungstechnologien. Man
kann aber keine der Technologien als Standardvirtualisierung für Netzwerke be-
zeichnen. Die Auswahl von Ansätzen durch Performanzanalyse von Netzwerken
stellt eine Herausforderung dar, weil existierende Ansätze sich mehrheitlich auf
einzelne Virtualisierungstechniken fokussieren und es keinen universellen Ansatz
für Performanzanalyse gibt, der alle Techniken in Betracht nimmt.

Die Forschungsgemeinschaft bietet verschiedene Performanzmodelle und Forma-
lismen für Evaluierung der Performanz von virtualisierten Netzwerken an. Die
bekannten Ansätze können in zwei Gruppen aufgegliedert werden: Grob-detaillierte
analytische Modelle und fein-detaillierte Simulationsmodelle. Die analytischen
Performanzmodelle abstrahieren viele Details und liefern daher nur beschränkt
nutzbare Performanzvorhersagen. Auf der anderen Seite fokussiert sich die Gruppe
der simulationsbasierenden Modelle auf bestimmte Teile des Systems (z.B. Protokoll,
Typ von Switches) und ignoriert dadurch das große Bild der Systemlandschaft.

Darüber hinaus sind die existierende Ansätze inflexibel – mit anderen Worten –
sie bieten nur ein einzelnes Lösungsverfahren an, ohne die Genauigkeit oder den
Lösungsaufwand beeinflussen zu können. Um Flexibilität anzubieten, wird der
Benutzer gezwungen, mehrere verschiedene Performanzmodelle zu bauen, die auf
verschiedenen Lösungsansätzen basieren. Jedes Performanzmodell bietet verschie-
dene Performanzmetriken, Schwerpunkte, Analysegenauigkeit, und Lösungsdauer
an.
Als Ziel dieser Dissertation wird ein Modellierungsansatz vorgeschlagen, der

mehrere verschiedene Performanzmodelle anbietet, ohne von dem Benutzer die Ex-
pertise in jedem Formalismus zu verlangen. Der Ansatz unterstützt die Flexibilität
durch die Möglichkeit des automatischen Balancierens zwischen: (a) Dem generi-
schen Charakter mit niedrigen Lösungsaufwand von analytischen Modellen, und
(b) den detaillierten Simulationsmodellen, die bessere Genauigkeit der Vorhersage
anbieten.

Die Beiträge der Dissertation schneiden Forschungsgebiete wie: Softwareentwurf,
Modell-basierte Softwareentwicklung, Domänen-spezifische Modellierungssprachen,
Modellieren und Vorhersage der Performanz, Netzwerke in Rechenzentren und
Netzwerkprotokolle, Software-Defined Networking (SDN), Network Function Vir-
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tualization (NFV). Die Hauptbeitrag der Dissertation stellt der DNI-Ansatz dar,
welcher die folgenden Teile beinhaltet:

• Neuartige Modellierungsabstraktionen für virtualisierte Netzwerkinfrastruktu-
ren. Das schließt zwei Meta-Modelle ein, die zwei Modellierungssprachen für
Performanz der Netzwerke definieren. Die Descartes Network Infrastructure
(DNI) und miniDNI Meta-Modelle bieten vielfältige Modellierungsmöglichkei-
ten, um die Netzwerkinfrastrukturen auf verschiedenen Abstraktionsgraden
darzustellen. Unabhängig von der Variante der Sprache, bietet die Model-
lierungssprache generische Elemente, die die Mehrheit von existierenden
und zukünftigen Netzwerken abdecken. Zeitgleich abstrahieren die Modelle
solche Faktoren, die wenig Einfluss auf der Performanz des Systems haben.
In der Dissertation, werden SDN und NFV als repräsentative Beispiele von
Netzwerksvirtualisierungstechnologien herangezogen.

• Das Netzwerk deployment Meta-Modell stellt eine Schnittstelle zwischen DNI
und anderen deskriptiven Modellierungssprachen dar. Es ermöglicht die Inte-
gration mit den Modellen und unterstützt damit die Modellierungsdomäne
anderer Gebiete, z.B. der Softwarearchitektur, der Servervirtualisierung, und
der Betriebssystem-Overheads.

• Flexibles Lösen der Modelle mit Hilfe von Modelltransformationen. Die
Modelltransformationen ermöglichen das Lösen von den deskriptiven DNI
Modellen mittels Übersetzung des Modells in ein prädiktives Modell, das
mit existierenden Lösungsverfahren gelöst werden kann. Die Modelltransfor-
mationen unterscheiden sich vor einander hinsichtlich von der Komplexität
und der Menge an in der Transformation abstrahierte Daten. Im Rahmen der
Dissertation trage ich sechs Modelltransformationen bei, die die DNI Modelle
in verschiedene prädiktive Modelle übersetzen. Die unterstützten prädiktiven
Modelle basieren auf folgenden Formalismen: (a) OMNeT++ Simulation, (b)
Warteschlangen-Petri-Netze (QPNs), (c) Layered Queueing Networks (LQNs).
Für jeden der oben genannten Formalismen werden mehrere prädiktive
Modelle generiert, die sich von einander im Detailgrad unterscheiden. Es
werden zwei Modelle jeweils für OMNeT++, QPN, und LQN generiert, die in
Kombination mit verschiedenen Lösungsverfahren bis zu zehn verschiedene
automatisierte Lösungsmethoden für ein DNI Modell anbieten können.

• Eine Methode für Modellextraktion, die den Modellierer beim Modellieren des
Netzwerkverkehrs durch automatisches Vorausfüllen des Modells unterstützt.
Die beigetragene Methode bietet eine Abstraktion für Netzwerkverkehrsmo-
delle an, die dem Benutzer eine Abwägung zwischen der Größe und dem
Detailgrad des Modells erlaubt.

• Eine Methode zur Selektion eines optimalen Modelllösungsverfahrens. Basie-
rend auf den von dem Benutzer gegebenen Präferenzen, schlägt die Methode
ein Set von Lösungsverfahren vor. Die Lösungsverfahren werden dabei mit
Fokus auf verschiedenen Aspekten analysiert, um das Optimum zu empfehlen.
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Es werden bei der Analyse die folgende Faktoren betrachtet: Anwendbarkeit
der Transformation, erwartete Genauigkeit der Vorhersage, Skalierung des
Verfahrens, und den Lösungsaufwand – ausgedrückt als die “Zeit bis zum
Ergebnis”, und auch als Verbrauch von Ressourcen wie CPU und Arbeitsspei-
cher.

• Eine Evaluierung des Ansatzes im Kontext von zwei realistischen Systemen.
Der Ansatz wird mit Fokus auf mehreren Faktoren analysiert, zum Beispiel:
Vorhersage der Netzwerkkapazität und des Durchsatzes, Anwendbarkeit, Fle-
xibilität in der Abwägung zwischen Genauigkeit und Mehraufwand. Obwohl
der Ansatz sich nicht auf der Vorhersagegenauigkeit fokussiert, demons-
triere ich, dass er geringe Vorhersagefehler liefert – bis zu 20% für nicht
kalibrierte und bis 10% für kalibrierte DNI Modelle, abhängig von dem
Lösungsverfahren.

Zusammenfassend präsentiert diese Dissertation den ersten Ansatz für flexible
Performanzanalyse zur Laufzeit von SDN-basierten Netzwerken in Rechenzentren.
Er bietet eine flexible Möglichkeit zwischen der Genauigkeit und dem Mehraufwand
des Lösungsverfahren abzuwägen. Der Ansatz bietet die folgende Vorteile:

• Es ist möglich die Auswirkung von Änderungen im Rechenzentrum auf
Netzwerkperformanz vorherzusagen. Mögliche Änderungen beinhalten hierbei:
Änderungen der Netzwerkstopologie, der Hardwarekonfiguration, Last des
Netzwerkverkehrs, und der Konfiguration der Softwareanwendungen.

• Das DNI Meta-Modell kann erfolgreich die Performanz von verschiedenen
Netzwerkinfrastrukturen abbilden und vorherzusagen, inklusive proaktiven
SDN-basierten Szenarien.

• Der Prozess der Vorhersage ist flexibel. Das bedeutet, dass der Ansatz die
Balance zwischen Detailgrad von Modellen und Mehraufwand des Lösens
anbietet. Hierbei wird eine voraussichtlich verringerte Genauigkeit durch
Einsparungen in der Lösungszeit und den verbrauchten Ressourcen belohnt.

• Der Ansatz ermöglicht dem Benutzer verschiedene Lösungsverfahren anzu-
wenden, ohne ihn zu zwingen, dass er über Expertise und Erfahrung im
Anwenden der Lösungsformalismen verfügt.

Die Komponenten des DNI Ansatzes können auch bei solchen Szenarien ange-
wendet werden, die in der Dissertation nicht direkt genannt werden. Der Ansatz
bietet ein breites Anwendungsgebiet, zum Beispiel: (a) Es können die Netzwerke
außerhalb vom Rechenzentrum analysiert werden, solange der zugrunde liegende
Netzwerkverkehr bekannt ist; (b) nichtkalibrierte DNI Modelle können zur Ent-
wurfszeitanalyse der Performanz dienen; (c) die Extraktion- und Komprimierungs-
methode von Lastprofilen kann auf andere, nicht netzwerkbezogene Lastprofilen
angewendet werden.
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Chapter 1

Introduction

1.1 Motivation
Nowadays, data centers are becoming increasingly dynamic due to the common
adoption of virtualization technologies. Virtual machines, data and services can
be migrated on demand between physical hosts to optimize resource efficiency
while enforcing service-level agreements [GGP12, LCE10]. Systems can scale their
capacity on demand by growing and shrinking their resources dynamically based
on the current load. Moreover, new services (both computing and network) can be
composed and deployed on-the-fly leveraging their loosely-coupled nature. These
are examples of factors that make modern enterprise systems complex, dynamic,
and challenging to manage.

Multiple approaches have been proposed to address the challenges that modern
network infrastructures face. The main trend among the various approaches is
network virtualization. Modern network infrastructures are increasingly adopting
virtualization with the emergence of paradigms such as SDN and NFV. The field
of network virtualization is not as mature as server virtualization and there are
multiple competing approaches and technologies [BBE+12, CB10]. This increases
the sources from where the performance-relevant system complexity originates.
The complexity and thus performance of data centers is influenced not only by the
software architecture, middleware, and computing resources, but also by network
virtualization, network protocols, network services, and configuration.

The complexity of modern enterprise systems running on virtualized computing
and network infrastructures makes it challenging to analyze and predict their
performance in an accurate and cost efficient manner [MLP+13, WN10a, MST+05].
Nevertheless, modern data center systems are expected to deliver reliable per-
formance, thus performance-aware design, optimal configuration, and resource
management policies need to be applied [BAB12, Kan09]. Performance modeling
and prediction techniques provide powerful tools to analyze the performance of IT
systems and applications running in a modern data center. However, given the
wide variety of network virtualization approaches, no common approach exists for
modeling and evaluating the performance of virtualized networks.

The performance community has proposed multiple formalisms and models that
can be applied to evaluate infrastructures based on different network virtualization
technologies, for example: simulation (OMNeT++ [Var01], NS-3 [RH10]), stochastic
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queueing networks, or Markov chains [BGdMT06]. The existing modeling ap-
proaches can be divided into two main categories: coarse-grained analytical models
(e.g., [JOS+11, ANP+13]) and detailed simulation models (e.g., [RH10, Omn16,
DLWJ08]).
Analytical performance models (e.g., [ANP+13, Jar14]) are normally defined

at a high level of abstraction (i.e., they are technology independent and can be
applied to various network setups). Such coarse-grained performance models
abstract many details of the real network without explicitly taking into account
aspects such as, for example, the software deployment context, influence of the
server virtualization, or the network virtualization technology; therefore, they have
limited predictive power. Moreover, analytical performance models are normally
expressed as mathematical formulas and they do not explicitly capture the internal
system structure. Modeling the internal system structure allows to predict the
performance of different system configurations enabling what-if analysis.

On the other hand, simulation models usually capture the internal structure of
the modeled system explicitly. Such model are normally focused on a selected net-
working technology and take into account numerous technology-specific parameters,
resulting in detailed models that can be used for accurate performance predic-
tion. Unfortunately, the models are usually tightly bound to a given technology,
infrastructure setup, or to a given protocol stack. This narrows the applicability of
conventional network simulation models to specific cases and thus narrows the
scope and feasibility of what-if analysis. Moreover, simulation models are often
impractical for use at run-time, given that simulations are usually expensive to
build and solve [WvLW09, BMB+15].

Existing network performance models do not adequately capture the link of the
network infrastructure to the virtualized servers and the applications that generate
the traffic in the network. In a virtualized data center, the performance of the
virtualized computing infrastructure plays an important role for an end-to-end
performance analysis: according to [WN10b], “the fundamental problem is that
the simple textbook end-to-end delay model composed of network transmission
delay, propagation delay, and router queueing delay is no longer sufficient. Our
results show that in the virtualized data center, the delay caused by end host
virtualization can be much larger than the other delay factors and cannot be
overlooked.”

Existing data center network models are usually tightly bound to a given technol-
ogy, infrastructure setup, or to a given protocol stack, which makes them inflexible.
A performance model is considered inflexible when it provides a single solution
method without providing means for the user to influencing the solution accuracy
and solution overhead. To allow for flexibility in the performance prediction, the
user is required to build multiple different performance models obtaining multiple
performance predictions. Each performance prediction may then have different fo-
cus, different performance metrics, prediction accuracy, and solving time. However,
building multiple semantically different performance models requires the network
operator (or the modeler) to understand and master multiple different modeling
formalisms. Without sufficient expertise and experience in each of the modeling
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formalisms, building such models is error prone and may lead to incorrect out-
comes, misleading conclusions regarding the performance, and unfeasible resource
management decisions.

The goal of this thesis is to develop a modeling approach that bridges the gap
between coarse-grained analytical models and detailed simulation models (see
Fig. 1.1). The proposed approach is intended to provide a balance between the
generic character of coarse-grained analytical models and the more accurate and
detailed simulation models. This is achieved by focusing on the major performance
influencing factors of virtualized network infrastructures while abstracting the less
relevant parameters.

Level of detail

Solution
time Simulation

models

Analytical
models

Targeted
models

Figure 1.1: Division of the performance model space into analytical and simulation
models. Models with high level of detail (gray-striped area) are out of scope.

This thesis bridges the following gaps:

• First, the currently existing performance modeling approaches does not
offer flexibility. The main missing feature is the ability to select required
modeling granularity (coarse-grained analytical models versus highly detailed
simulation models) while still keeping its generic nature of the model (i.e.,
the ability to model different data center networks).

• Second, there is a gap between the performance models of the software
architecture, the computing infrastructure, and the network infrastructure.
These domains are intertwined and influence each other.

• Third, the existing models lack the generic character and obstruct the usage of
the modeling formalism by non-experts. The gap exists between professional
performance analysts and the users who are not experts in performance
modeling (e.g., network operators).

• Finally, there is a gap between a novice user and a new modeling formalism.
The users require guidance during the process of building a model. Preferably,
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a model should be automatically extracted and presented to the user for final
tuning.

Before I present the problem and the approach, I define the scope and focus of
this work. The scope intersects with many technologies and research areas. It can
be placed at the intersection of the following domains:

• Software: software engineering, model-driven software development,
• Modeling: domain-specific languages, meta-modeling,
• Performance: prediction using analytical and simulation methods,
• Networking: networking and data center networks, network virtualization,

SDN, NFV.
I limit the scope of the modeling approach to network infrastructures managed

by a single administrative entity. A good example of such a network is a private
cloud data center managed by a single company or organization. The model must
contain all data about background traffic in the modeled network, thus I assume
that the modeler should have access to all components of the network in order to
obtain the required data. A single administrative entity shall ease the access to
the extraction of the background traffic profiles as the centralized administration
simplifies the privacy-related procedures for capturing traffic traces. Nevertheless,
the approach can be theoretically applied to any network infrastructure (even the
Internet) yet the performance prediction accuracy will strongly depend on the
modeling accuracy of the background traffic profile.

I focus on the network infrastructures of modern virtualized data centers. As a
representative network virtualization technology, I select SDN [MAB+08a]. I justify
the selection of SDN by its popularity, novelty, and wide adoption. According
to a report published by Transparency Market Research [Res13], the global SDN
market is expected to reach USD 3.52 billion by 2018, growing at a compound
annual growth rate of 61.5% from 2012 to 2018.

I target medium-detailed solvers to demonstrate the flexibility of the performance
prediction process. The flexibility aims at delivering multiple different predictions,
each with different accuracy and solving time, so that the optimal solving method
can be selected for each run-time situation. I treat equally important accurate,
long-running simulations and coarse but quickly solvable performance models.
The medium-detailed modeling granularity is additionally motivated by the

generic nature of the proposed modeling approach. I aim at supporting any
network infrastructure regardless of the protocols, algorithms, technologies, and
used hardware. This aim excludes the usage of fine-grained predictive models as
they are usually designed to analyze a single defined protocol or device.
Regarding the performance metrics, I focus on the capacity of the network. I

analyze the throughput of network devices to conclude how much network
capacity is used at a given moment. The approach, however, is not limited to
capacity-related metrics and supports any performance metric that is offered by
the predictive model solvers delivered in this work.
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1.2 Problem Statement
Managing system resources to ensure optimal capacity and performance without
violating service level agreements (SLAs) is a challenging problem. It requires
the ability to predict the behavior of the system in the face of changes that may
originate from the dynamic workload, virtualization, or online reconfiguration of
the system, so that resource allocations can be adapted before such changes occur.
Methods that predict the performance of a system can be characterized in

terms of multiple different features. For example, the methods may differ in their
prediction accuracy and the time it takes to provide the performance prediction.
Additionally, many other features may characterize a performance prediction
approach, for example: level of detail of the returned performance analysis (the
returned metrics, averages, probability distributions, etc.), scalability of the solution
(size of the network/number of flows that can be modeled), consumption of
resources (CPU, memory), repeatability of the analysis, reliability of the solving
(i.e., a guarantee that a method will finish and return results).

Providing various approaches to solve a single performance prediction problem
allows to see the system from different point of view, each of them disclosing
different possible positive and negative aspects. Finding a set of heterogeneous
performance predictors that differ in their characteristics but can be used in-
terchangeably or simultaneously to solve a model is called flexible performance
prediction. In the following, I describe the challenges of flexible performance predic-
tion and provide a formal view on the problem formulation.

1.2.1 Flexible Performance Prediction
Existing approaches to performance prediction usually focus on optimizing a
single prediction criterion (e.g., maximizing prediction accuracy or minimizing
solving time) and provide limited the balance between multiple criteria. Due to
that, an analysis of possible trade-offs between the parameters that characterize a
performance prediction method is missing. An approach to flexible performance
prediction is expected to provide different performance analysis methods that
analyze the same system but represent it differently, for example: abstracting
selected parts of the system, representing it using different formalisms, solving
using different solving methods.

Considering the focus of this thesis, I present the flexible performance prediction
problem in the area of data center networks and in the system run-time phase (in
contrast to the system design-time, when the system has not been built yet). An
approach to run-time flexible data center network performance prediction has to fulfill
several requirements:

• The performance prediction approach should express the prediction results
using at least one standard metric, such as: device/port capacity, network
interface throughput, end-to-end transmission delay, ratio of dropped traffic
for an interface. The metrics can be expressed as averages or distributions,
so that various statistics can be calculated for more detailed analysis.
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• The prediction mechanism should support conducting an analysis of an
impact of a change in the system on the system performance. The analysis
should be based on data acquired from the running system. The data should
be extracted from the system and fed into a model (preferably automatically),
so that various changes can be introduced to the model without affecting the
operation of the system. To possible system changes, I account, for example:
switch reconfiguration, topology change, migration of an application service,
change in the workload profile or intensity.

• The model of a running system should be represented using terms that are
familiar to an average user, for example, a network operator or a data center
operator. The users should be able to tune the extracted model according to
their needs.

• To call the performance prediction flexible, the user should be offered multiple
solving methods for a single input model. The solving methods should differ
in at least one characteristic (e.g., prediction accuracy, solving time, solver
resource consumption).

• The performance prediction method should abstract parts of the system that
have low influence on the performance. The criterion for including or ab-
stracting a given part of the system in the model should be configurable. This
enables generating models at different abstraction levels and thus supporting
different performance analyses.

• The extremes of the finest and the coarsest modeling granularity should be
defined for the modeling formalism. The former defines the upper bound in
term of data required by the model, whereas the latter defines the minimum
set of data that needs to be provided.

• The modeling approach should be accessible from a programming language
and should offer a form of an application programming interface (API), so
that automation and integration with other tools is possible.

An ideal approach that meets the requirements of run-time flexible data center
network performance prediction faces many challenges. In the following, I present
the decomposition of the problem statement and provide most relevant research
questions and challenges for each part.

Design of the descriptive modeling language. The most challenging design
decision is to find a balance between the level of detail and granularity of the modeling
language (i.e., its expressiveness), on the one hand, and its generality and wide
applicability, on the other hand. The less technical details are required and the
more generic an universal the used modeling elements are, the more network
infrastructures can be represented using the language. On the other hand, with
increasing generality, specific network technologies need to be represented in
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a more abstract manner limiting the types of existing predictive models (e.g.,
protocol, or domain-specific) that can be automatically generated.

The SDN-based networking introduces several new challenges and problems. As
stated in [KPK15], the SDN paradigm introduces strong correlations and mutual
performance influences between the SDN controllers, the SDN-applications, the
SDN switches (data planes), and the performance of the underlying network. These
performance influencing factors are not present in classical (non-SDN) networks.

Another issue is the naming of the model entities such that experts from different
technology domains can quickly understand their intention. This is important to
reduce the learning curve for practitioners using the language. The scope of this
thesis spans two expertise areas: data center networking and software applications
deployed in virtualized servers, thus the descriptive models can be built by experts
from both domains and the terms used in the model must be understandable for
both.

The challenges can be summarized with the following research questions: (1) At
what level of abstraction should the network be modeled to support different
trade-offs between model accuracy and analysis overhead? (2) Which network
entities should be modeled directly (e.g., “a protocol” versus Transmission Control
Protocol (TCP)) and which entities should be abstracted (e.g., a server versus a
node)? (3) How should SDN-based networks be modeled distinguishing between
physical and logical implementation of the network control plane? (4) How to
represent the correlation between highly-specialized software SDN-applications
and the overall network performance?

Automatic model-to-model transformations. Descriptive models organize infor-
mation about a domain. The proposed modeling language have descriptive nature
and do not provide any means of performance prediction. To leverage the descrip-
tive domain information in the performance prediction process, a model needs to
be transformed into a predictive model using a model transformation. Kleppe et
al. [KWB03] defines a model transformation as follows. “A transformation is the
automatic generation of a target model from a source model, according to a trans-
formation definition. A transformation definition is a set of transformation rules
that together describe how a model in the source language can be transformed
into a model in the target language. A transformation rule is a description of how
one or more constructs in the source language can be transformed into one or
more constructs in the target language.”
I identify at least three challenges concerning the automatic transformations

between models. The aim of a model transformation is to transform a model
specified in one language into a respective model in another language, possibly
without any human involvement. Full automation of this process requires to solve
many challenges assuming no external sources of additional information.

The first challenge concerns the level of detail that should be abstracted from the
source modeling language in a transformation. More detailed descriptive models
allow to abstract more parts of the source model and thus increase the flexibility
of the approach. The more detailed the language is, the more technology-specific
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and less generic it becomes. Moreover, larger models increase the time of the
transformation, as more objects need to be transformed. On the other hand, more
detail enable transformations to produce more accurate predictive models.
The second challenge is the parameterization of the source modeling language.

Descriptive models may define some of their parameters as optional. The user
building a model is required to provide only the mandatory data. Proper optional-
ity settings of the language elements may be crucial for selected transformations
to deliver usable predictive models and feasible predictions.
The third challenge concerns the support in selecting feasible model transfor-

mations for a given scenario. Assuming that multiple model transformations can
be applied, the approach should filter-out the incompatible transformations and
suggest which transformations are better suited for the specific scenario.
Based on the stated challenges, I identify the following research questions:

(1) How to design a transformation if the target model requires more information
than currently available in the modeling language? (2) Which data should be
abstracted if the target model is less detailed than the input model? (3) How to
optimize the performance of the transformation? (4) Which are the most important
factors that influence the prediction accuracy and solving time? (5) How can an
optimal set of transformations be recommended considering the user-provided
criteria regarding the prediction? How fine-granular should the recommendations
be?

Support for semi-automatic model extraction. Other challenges concern the sup-
port for extracting the system models based on monitoring data from a running
system. Experienced users may value the wide variety of modeling possibilities
and model the network manually from a scratch, but providing an initial precon-
figured model saves time and requires less involvement from the user. However,
automatically extracted data may not always represent the actual system in a
reliable manner. For example, tools that analyze the topology of a network may
only see the logical topology based on routing information, whereas the actual
physical topology may differ. Additionally, some of the extracted information
related to hardware devices may differ from the official technical specification and
thus be uncertain.

Traffic profile extraction faces similar challenges. The realistic network traffic is
usually too difficult to model manually assuming the existence of complex traffic
patterns, high traffic volumes, and the required measurement time resolution
expressed usually in microseconds. Fortunately, traffic models can be extracted
from captured traffic traces. The traffic profiles are represented as time-series that
approximate the captured traces representing only model-relevant data without any
payloads. It may be desirable to store the traffic models in a compressed form to
avoid increasing the solving times due to the model size. An optimization method
may be developed to compact the traffic models and ensure balance between the
model size and the level of detail.
I formulate the following research questions regarding the support for model

extraction: (1) Which information can be extracted automatically out of a running
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data center? (2) How to design an extraction process that supports heterogeneous
hardware? (3) How reliable are the extracted data? (4) Which mechanisms (e.g.,
security policies) may prohibit access to the respective parts of the modeled system
and thus affect the completeness of extracted information? (5) How long should the
traffic be observed to obtain a reliable traffic model? (6) At which level should the
traffic data be abstracted to find balance between size of the model and accuracy
of the representation?

Compatibility and integration with other domain modeling languages. Model-
ing the data center network infrastructure is insufficient to provide a complete
view over the data center as a whole. Computing resources, software architecture,
and storage equipment can also limit the performance of the system in specific
scenarios. Thus, solving network-focused or software-focused performance models
separately provides only a partial coverage of the modeled system. Such focused
performance models may represent properly a system under certain circumstances,
that is, if the modeled fragment of the data center is a bottleneck (e.g., network
bottlenecks cause delays in distributed business applications). In general, however,
domain-specific models should offer an interface allowing to integrate the model
with other models, so that a holistic representation of the data center can be build
and used to evaluate the end-to-end application performance.

However, integrating different modeling languages poses several challenges that
need to be addressed. The main concerns can be summarized with the following
research questions: (1) How to design a minimal weaving model to integrate two
or more models representing different aspects of the system? (2) How to ensure
that the integrated models can be separated again if needed? (3) How do design
an approach to the solving of the integrated models?

Building a testbed for validating the approach (technical). Building a realistic
data center testbed for validation of the proposed approach is an important
technical challenge. I target virtualized network infrastructures in this thesis and
thus require a reference network infrastructure that represents one of the up-to-date
data center network virtualization technologies. This requires acquiring modern
network hardware, building a representative topology, configuring the hardware,
and running realistic workloads to generate representative network traffic. The
technical challenges can be summarized with the following questions: (1) How to
build a minimal representative data center assuming budget limitations? (2) How
to select a representative, future-proof network virtualization technology? (3) Shall
the devices be homogeneous or heterogeneous? (4) What hardware and in what
amounts should be obtained? (5) Which network topology is scalable enough to
treat it as representative? (6) Which applications/benchmarks shall be used for
generating realistic data center network workloads?
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1.2.2 Formal View of the Problem
In this section, I provide a formal specification of the problem of flexible perfor-
mance prediction. It is challenging to define the tackled problem as an instance
of a known optimization or decision problem given that it is unclear how the
objective function should be defined. Thus, instead of proposing an optimization
problem with a formally defined objective function, I define the problem as a
constraint satisfaction problem.

The formal notations presented in this section allow to understand the problem
from the formal perspective. However, further in the thesis, I refer to the problem
using the natural language.

Formalization

The notation used in this section is summarized in Tables 1.1 and 1.2.

Table 1.1: Denotation of the real and modeled entities used in the formal problem
description.

Real entity Description Model Description

Assume all happens in a time span t0 → t1 starting in moment t0 and ending in t1.
neti i-th network Φ̄i,k k-th descriptive model of i-th network
neti i-th network Φi,j j-th predictive model of i-th network

∀k Φ̄i,k describes neti and allows to produce multiple different Φi,j .
∀j Φi,j represents the performance of neti.

fn(neti) Measured value of n-th
performance metric of
network neti

gs,n(Φ) Value of n-th performance metric
obtained from model Φ using s-th
solver g.

∀s ∀i gs,n(Φi,j) approximates fn(neti).

Table 1.2: Further notation used in the formal problem description.
Symbol Description

I = {net1, . . . , neti, . . . , netI} Set of networks
Φ̄i,k k-th descriptive model representing i-th network

Ji = {Φi,1, . . . ,Φi,j , . . . ,Φi,J} Set of J predictive models representing i-th network
N = {P1, . . . , Pn, . . . , PN} Set of performance metrics
S = {g1, . . . , gs, . . . , gS} Set of network model solvers
R = {r1, . . . , rl, . . . , rL} Set of model transformations

Assume there exists i-th real network neti,t0→t1 observed in a time span starting
in moment t0 and ending in t1. The i-th network can be represented by a k-th
descriptive model Φ̄i,k and j-th predictive model Φi,j (regardless of its form; time
span indexes are omitted for brevity). The performance of a network can be
represented with N performance metrics, so that the value of the n-th metric
fn(neti) can be measured or estimated empirically. For a network model Φi,j , the
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performance can be predicted using an s-th solver gs,n(Φi,j), which solves the
model and returns the performance metric values. I assume that only predictive
models can be solved directly. The descriptive model Φ̄i,k cannot be solved directly
and must be transformed into a predictive model first.

The relative performance prediction error with respect to the n-th performance
metric is defined as follows:

εs,n = errn(neti, fn,Φi,j , gs,n) =

∣∣∣∣fn(neti)− gs,n(Φi,j)

fn(neti)

∣∣∣∣ . (1.1)

For an ideal model solver g∗ and ideal network model Φi,∗, the prediction accuracy
is maximal and the error ε∗,n = 0 for each n in this case.

The solvers are characterized by solving time defined by function h(gs,Φi,j) that
returns the solving time of model Φi,j with the s-th solver. The maximal duration
of the model solving may be constrained by the user, so I assume that

S

∀
s=1

0 < h(gs,Φi,j) ≤ hmax, (1.2)

whereas the prediction accuracy error for solver s may be constrained with respect
to the performance metrics by defining εmaxn

N

∀
n=1

0 < εs,n < εmaxn . (1.3)

In general, different network models and different solvers offer different solving
time and prediction accuracy.

If s′ 6= s′′ and j′ 6= j′′ then:
h(gs′ ,Φi,j) 6= h(gs′′ ,Φi,j),

h(gs,Φi,j′) 6= h(gs,Φi,j′′),

errn(neti, fn,Φi,j , gs′,n) 6= errn(neti, fn,Φi,j , gs′′,n),

errn(neti, fn,Φi,j′ , gs,n) 6= errn(neti, fn,Φi,j′′ , gs,n).

(1.4)

The problem is formulated as follows. Find a set of solvers S∗ ⊆ S and network
models J ∗i ⊆ Ji, such that the constraints given by Equations 1.2 and 1.3 are
satisfied, that is: the solving time is lower than the user-given maximum hmax

(Eq. 1.2) and the prediction error is lower than the user-given maximum εmaxn

(Eq. 1.3). Assuming that the solvers offer different trade-offs between accuracy
and cost (Eq. 1.4), the problem is a constraint satisfaction problem given with the
following constraints:

∀
s∈S∗

: h(gs,Φi,j) ≤ hmax,

∀
j∈J ∗i

∀
s∈S∗

N

∀
n=1

: errn(neti, fn,Φi,j , gs,n) < εmaxn .
(1.5)
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The Approach in the Formal Context

Before presenting the approach of this thesis in detail (Section 1.3), I place its
elements (the descriptive model, transformations, and solvers) in the context of the
above problem formalization. This helps to better under understand of both—the
formalization and the approach.

In this thesis, the models Φi,j are generated using model transformations (defined
as functions rl : Φ̄ 7→ Φ) from a k-th descriptive model Φ̄i,k representing the i-th
network. The set of K descriptive models representing the i-th network and
L model transformations allow to generate up to J predictive network models
Φi,j = rl(Φ̄i,k) (assuming that 0 < l < L and 0 < k < K, then J ≤ K · L). In
practice, not all J models can be solved as not all model transformations support
producing a valid network model for each scenario.

Based on the introduced notation and the problem statement, the main contribu-
tions of this thesis are:

1. the modeling language that allows building multiple (assume K) descriptive
models Φ̄i,k that represent the i-th network,

2. a set of model transformations R = {rl : l = 1, . . . , L} that convert the
descriptive model Φ̄i,k into up to J different predictive models Φi,j .

1.3 Approach and Contributions
As a main contribution of this thesis, I propose a generic approach to modeling
and analyzing the performance of virtualized data center networks in a flexible
way. The approach proposed in this thesis is named DNI. DNI is both an
approach to performance prediction as well as a modeling language on which
the approach is based. The main part of the approach is the DNI meta-model—a
novel descriptive modeling language providing modeling abstractions that can
be used to describe the performance-influencing aspects of both virtualized and
non-virtualized data center network infrastructures. DNI is a sister language to the
Descartes Modeling Language (DML) [KHBZ16]. DML targets software architecture
and server virtualization, whereas DNI focuses on network infrastructures in a
data center.

The approach includes six automatic model-to-model transformations that trans-
form a descriptive DNI model instance into solvable predictive performance models.
The obtained predictive models can be solved by up to ten solvers—each of them
employing a different abstract representation of the modeled network. Further-
more, techniques are provided to facilitate the extraction of the DNI models from
monitoring data collected from the system under study, as well as to support the
user in selecting appropriate model solvers for the specific performance prediction
scenario.
The components of the approach are illustrated in Figure 1.2. The goal is to

analyze the performance of a data center network, used to connect a computing
infrastructure hosting a set of applications. An engineer builds a model of the
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data center network either manually or with the help of model extraction tools.
Next, the network representation is stored in a DNI model, that is, an instance of
the DNI meta-model. Once the DNI model is checked for validity, the execution
of all further steps is automated. Multiple model-to-model transformations read
the data stored in the model and automatically generate predictive performance
models. Finally, the predictive models are solved using the available model solvers
and the prediction results are returned to the user.
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Figure 1.2: DNI Approach: areas, contributions, and focus.

The main benefit of the proposed approach—the flexibility of the performance
analysis—is achieved through using multiple different transformations of the DNI
model that captures the performance-relevant network aspects. The DNI model is
automatically processed to obtain different predictive models that represent various
modeling granularities and can thus be used to provide multiple performance
predictions with various characteristics. By integrating multiple different predictive
models and solution techniques, the approach allows the user to flexibly trade-off
between prediction accuracy and overhead according to the user requirements and
constraints. In contrast to this, a traditional approach to model a system using
multiple different predictive models would require significant manual effort to
build each predictive model separately. It would also require expertise in the
respective modeling formalisms and thus would limit the applicability of the
approach to data center operators who are performance analysis experts at the
same time. This is illustrated in Figure 1.3. As discussed in Chapter 3, currently no
such flexible approaches exist in the domain of virtualized data center networks.

The approach is characterized by the following novel aspects:

(1) The generic character of the modeling language makes it technology-independent
allowing to model communication networks of different types.

(2) Once a network is modeled in DNI, multiple predictive models are generated
automatically. This allows to conduct multiple performance analyses using
different prediction tools without requiring knowledge and experience in
performance prediction techniques.

(3) The automatically generated predictive models vary in their prediction accu-
racy and solution time. This allows to obtain less accurate prediction results
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Figure 1.3: Core benefit of the DNI approach: DNI supports a range of models
with different modeling granularities without requiring expertise in each of them.

in a shorter time or more accurate results at higher solution costs depending
on the user preferences.

(4) The approach supports modeling virtualized networks based on SDN as a
selected representative network virtualization technology. The generic nature
of a node in the network allows to use the proposed modeling formalism for
NFV-based networks as well.

In the following, I present in more detail the building blocks of the approach
proposed in this thesis, grouping the thesis contributions into research (primary
and secondary) and technical. The secondary research contributions are closely
related to the approach, however they are validated using different case studies
than the primary research contributions.

1.3.1 Primary Research Contributions

Novel Modeling Abstractions for Virtualized Network Infrastructures

The main contribution of this thesis is the DNI meta-model, which defines a mod-
eling language designed to model virtualized data center network infrastructures
for capacity management purposes. This involves the following main parts:

(a) the DNI meta-model—a new medium-detailed descriptive modeling language
for data center networks,

(b) miniDNI meta-model—a minimal version of the modeling language for the
coarsest modeling granularity,

(c) modeling elements for describing SDN-based networks and their performance-
relevant aspects,

(d) a meta-model integration interface for integration between DNI and DML as
a representative descriptive model for other data center domains.

DNI is designed to offer a flexible medium-detailed modeling granularity ab-
stracting low level details of the network and focusing on the most important
performance-influencing factors. The meta-model offers flexibility by allowing the
user to specify parts of the system in different ways, as discussed in detail in
Section 4.3.1.
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The miniDNI meta-model is a minimal version of the DNI modeling language.
miniDNI is useful in cases where a minimum amount of information about the
system under study is available. miniDNI defines a lower bound on the modeling
granularity for which feasible performance analysis is supported.
Regardless of which variant of the DNI meta-model is used, the modeling

language provides generic modeling elements allowing to describe the majority
of existing and future network technologies. In this thesis, I focus on SDN and
NFV as examples of modern virtualization technologies. DNI provides support for
SDN supports novel prediction scenarios (e.g., software SDN forwarding table),
while at the same time abstracting factors that have low influence on the overall
performance.

Another important part of the DNI approach is the network deployment meta-
model—an interface between DNI and other meta-models that allows to define
mapping between DNI and other descriptive models. The integration with other
domain-specific models allows capturing behaviors that are not reflected in the DNI
model, for example, software bottlenecks, server virtualization, and middleware
overheads.
The contributions presented above were published in [RSK16, RKTG15, RK14b,

RKZ13, RZK13]. The DNI modeling language was initially designed in 2012 [RZK13]
and gradually extended until its final version in 2016 [RSK16].

Flexible Model Solving with Model Transformations

DNI models have a descriptive nature, that is, they store information about the net-
work infrastructure, however, without providing any means to predict the network
performance under different conditions. To enable performance prediction, a DNI
model is transformed into predictive models using model-to-model transformations.
Each model transformation (or a chain of multiple transformations) contributed in
this thesis enables solving a DNI model by transforming it into a predictive model.
The model transformations vary in size and complexity depending on the amount
of data abstracted in the transformation process and provided to the solver.
In this thesis, I contribute six transformations that transform DNI models

into various predictive models based on the following modeling formalisms: (a)
OMNeT++ simulation, (b) Queueing Petri Nets (QPNs), (c) LQNs. For each of
there formalisms, multiple predictive models are generated (e.g., models with
different level of detail): (a) two for OMNeT++, (b) two for QPNs, (c) two for
LQNs. Moreover, some predictive models can be solved using multiple alternative
solvers resulting in up to ten different automated solving methods for a single
DNI model. As described in Section 1.2.1, the main incentive for supporting
various modeling formalisms is the difference in their characteristics, which is
a prerequisite for the flexible performance prediction approach. In this thesis, I
focus mainly on the OMNeT++ and QPN models and solvers as the applicability
of the LQN formalism for data center networks is limited. For this reason, the
LQN model transformation (described in detail in Section 5.5), it is considered as
a secondary contribution.
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The proposed list of performance modeling formalisms is by no means exhaustive.
In this thesis, I contribute, selected model-to-model transformations, however, the
general approach does not limit the amount and type of transformations that may
be applied to a DNI model, so the set of supported transformations can be further
extended.
The DNI solvers contributed as part of this thesis are evaluated in terms of

their execution times and prediction accuracy for the metric network capacity. The
network capacity is expressed as the maximum possible network traffic that can
be sustained, that is, the amount of consumed network bandwidth. However,
the solvers deliver other performance metrics as well, for example, end-to-end
network transmission delays and packet losses. Nevertheless, given the medium-
detailed nature of the DNI modeling approach, it is impractical to conduct model
calibration for such performance metrics due to the inherent interferences between
the network and the computing infrastructure. Software applications are typically
sources of much higher delays than the network, so the analysis with the DNI
approach is unfeasible unless the solvers for the integrated DNI and DML are
used. On the other hand, pure point-to-point delays (e.g., port-to-port) are of
limited practical value in the context of a complex data center, where usually
the end-to-end processing time of a service is more interesting than a low-level
switch-to-switch latency.

The model transformations contributed in this thesis are presented in Chapter 5
in an illustrative, graphical form. The graphical examples-based presentation of
the transformations eases their understanding. Formally, all transformations are
specified with code included as a part of this thesis. The contributions regarding
model transformations were published in [RSK16, RKTG15, RK14a, RK14b, RKZ13].

1.3.2 Secondary Research Contributions
Traffic Model Extraction

As a secondary contribution of this thesis, I provide methods and tooling that
support the modeler in the modeling process by automatically extracting and
prefilling the DNI model with the network traffic data. Traffic profiles are difficult
to extract manually due to the high amount of data transmitted over the network
in a short period of time. Fortunately, traffic models can be extracted automatically
from traffic traces captured on the network ports of the devices. The traffic profiles
I capture are represented as time-series of the data volume for an interface. They
contain only model-relevant data (simplified time series) without any payloads.
Moreover, I provide a new traffic profile abstraction and optimization method in
order to minimize the size of the traffic model while assuring the compactness and
representativeness of the extracted traffic profiles. The method ensures balance
between the size and the level of detail of the extracted profiles.
I consider the extraction process as semi-automatic because the contributed

method expects captured traffic traces as an input and produces a partial DNI
model. The approach was published in [RSS+16].
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A Method for Selecting Feasible Solvers for DNI Model

A DNI model can be automatically transformed into multiple predictive models.
As a secondary contribution, I conduct a trade-off analysis characterizing each
transformation with respect to various parameters such as its specific limitations,
expected prediction accuracy, expected run-time, required resources in terms of
CPU and memory consumption, and scalability (based on the modeled traffic
volume and network size). The analysis should enable the declarative and tai-
lored performance prediction—as presented in [WvHK+16, GBK14]—based on the
constraints and requirements specified by the user, for example, in the following
way: network size ≈100 servers; traffic volume: low; expected prediction accuracy: any;
expected solving time: <10 minutes;. The proposed method is presented in Section 5.6
(selection of solver based on the modeled features) and 7.4.3 (evaluation of the
solvers based on the solving time and solver resource consumption).

Transformation to Layered Queueing Networks

I provide a model transformation to a coarse-grained predictive model that offers
support for analytical solver to speed-up the solving process and propose the
most coarse-grained representation of a network. In Section 5.5, I propose a
transformation that transforms QPN models into LQNs. As QPN models can be
automatically obtained based on two types of DNI models (DNI and miniDNI),
chaining the transformations DNI-to-QPN and QPN-to-LQN may provide two
LQN models representing the network with different granularity. The obtained
LQN models can benefit from three existing solvers (two of which are analytical):
LQNS [FMW+09], LQSIM [FMW+09], LINE [PC13]. The analytical solvers are
expected to speed up the solving process for large models.
I characterized the QPN and LQN formalisms by comparing the differences. I

characterized their incompatibilities and highlighted model fragments where the
information could be lost due to the different nature of the formalism (e.g., loops
or fork-join patterns).
The QPN-to-LQN model transformation was published in [MRSK16]. The

evaluation of the transformation published in [MRSK16] was further extended by
Müller in his master thesis [Mü16].

1.3.3 Technical Contributions
Additionally to the presented scientific and conceptual contributions, I provide tools,
editors, and evaluation procedures that implement the approach. The technical
contributions allow to use the conceptual contributions in practice without in-depth
understanding of the internal specifics of the approach.

Implementation of the DNI Modeling Language Including an Editor

The DNI meta-model is the basis of the approach proposed in this thesis. The
meta-model is the implementation of the modeling language. The DNI meta-model
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is implemented using Ecore, which is “the defacto reference implementation of
Essential Meta-Object Facility (EMOF)” [Eco10, MOF14]. The DNI meta-model is
implemented using a derivative of Ecore called Xcore [Xco16], which allows to
specify Ecore meta-models in textual form and adds programmability allowing
automatic derivation of property values while maintaining full compatibility with
Ecore. The implementation of the DNI meta-model includes an automatically gen-
erated and fine tuned editor, which supports the modeler in the process of manual
DNI model building by suggesting feasible parameter values, applying defaults
where applicable, and issuing warnings where relevant. The implementation of the
DNI meta-model is publicly available in the DNI Git repository that is available
under: http://descartes.tools/dni.

Implementation of the DNI Tool Chain

Once a DNI model is built, it can be processed in numerous ways. The model can
be verified for correctness, duplicated and prepared for batch analysis, optimized
for compactness, and transformed into predictive models, which can be solved
providing performance predictions. Each of these steps requires a transformation,
a script, or an application to be run in a specified order. The DNI tool chain is a
wrapper implementation that encapsulates the transformations, model verification
scripts, model manipulation scripts, adapters to run the solvers, and scripts
to process the prediction results and display them in a desired form. The
DNI tool chain allows, for example, conducting automated batch performance
analysis, in which each copy of a DNI model represents a change in the original
model, for example: analyze network capacity for a workload intensity originating
from 1, 2, 3, ..., 10 deployed applications. The implementation of the DNI tool
chain is publicly available in the DNI Git repository that is available under:
http://descartes.tools/dni.

Evaluation of the Approach in the Context of two Realistic Systems

The validation of the DNI approach addresses several goals: applicability of
the approach, multiple performance predictions with different accuracies and
solving times, good prediction accuracy of network capacity, good usability of
automatically extracted traffic models. I validate the approach using two realistic
systems: SBUS-PIRATES message bus for traffic monitoring systems, and L7sdntest
software that generates load by mimicking a cloud storage, for example, Dropbox.
As part of the evaluation, I conduct a range of experiments to demonstrate and
validate the approach. Based on the obtained results, I evaluate the approach with
focus on such factors like: prediction of network capacity and interface throughput,
applicability, flexibility in trading-off between prediction accuracy and solving time.
The validation results show that the proposed approach can provide a variety

of performance predictions that can be applied in practice based on the required
accuracy and solving time constraints. Despite not focusing on the maximization of
the prediction accuracy, I demonstrate that in the majority of cases, the prediction
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error is low—up to 20% for uncalibrated models and up to 10% for calibrated
models depending on the solving technique. Moreover, the modeling abstractions
included in DNI allow to properly represent the behavior of SDN-based networks
with heterogeneous network devices enabling performance analysis of switches
with different implementations of flow tables.

1.4 Application Areas
The DNI approach was designed to enable conducting performance analysis in
various scenarios. In this section, I present several such scenarios and application
areas for DNI.

Run-time Capacity Management

Data center networks are no longer static nowadays. To handle varying dynamic
workloads, networks not only adapt in terms of their virtual logical structure
but also the physical topology can be expanded by adding or replacing network
devices and servers. Each change in the data center may have an impact on the
overall system performance and thus various resource allocations may need to be
applied to handle the varying workloads without exceeding the capacity of the
network and violating the service agreements.
With DNI, data center operators can investigate the impact of changes in the

allocated resources before such changes happen. They may also analyze the
current state of the system and identify potential bottlenecks as candidates for
reconfiguration or upgrade. Assuming that the model is calibrated with data
collected at run-time, the prediction errors are usually lower than in design-time
performance analysis. The DNI approach helps to answer the following questions
that may come up during system operation:

• What is the average utilization of a given device/network interface for the
current load conditions and network configuration?

• How many application services can be deployed in the data center without
exceeding the available network capacity?

• Which maximal ratio of over-provisioning can be applied to handle the
maximum number of customers?

• Which level of bandwidth over-provisioning is required to handle workload
spikes without exceeding the maximal capacity of the network?

• Which hardware should be upgraded (which device encounters the most
serious bottlenecks)?

The run-time capacity management consist of analyses that concern different
parts of the data center network. In the following, I present three areas, for which
the impact analysis of changes is supported with DNI. They include: workload
profile and intensity, structure, and configuration of the network.
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Impact Analysis of Changes in the Workload Profile and Intensity

Network workloads are usually highly dynamic, so the data center infrastructure
must be able to handle them to satisfy the customer needs. With the DNI approach,
a system operator may analyze the possible scenarios of workload profile and
intensity in order to prepare the system for a load spike. DNI may support
the operator in predicting the impacts of possible workload fluctuations on the
system’s capacity. DNI provides support in answering the following questions that
may arise during workload analysis:

• How much bandwidth is needed between devices to handle the expected
traffic workload?

• How many service requests must be refused to keep a safe buffer of free
network capacity?

• How to load-balance the network traffic to not exceed the capacity of the
network?

Impact Analysis of Network Structure Changes

Thanks to modern virtualization technology, it is much easier nowadays to replace
data center equipment during run-time. Virtualized servers may be migrated to a
different node while the hardware gets upgraded. Unfortunately, the virtualiza-
tion of networks is more complex and less mature when compared against the
virtualization of computing resources. Network hardware upgrades may lead to
serious consequences for the system if there is no free network capacity on other
devices. Similarly, scaling the network infrastructure of the data center (e.g., to
support more servers) may require updating the topology. DNI supports network
operators by allowing them to analyze the network with various devices and
network topologies to select the best upgrade/maintenance plan. DNI provides
support in answering the following questions that may arise by considering an
upgrade in the data center network structure:

• Will the new hardware handle the usual traffic better than the old one?
• How robust is the network topology against link failures? Can it handle the

traffic after a failure?
• Which topology is optimal for the expected future scaling of the offered

services?

Impact Analysis of Network Configuration Changes

Proper network configuration plays an important role for sustainable performance
of the data center. Especially in SDN-based networks, a misconfiguration is
easy to overlook (e.g., a flow rule is installed into improper flow table) and the
consequences may be severe for the performance of the entire network (as presented
in, e.g., [KPK15]). Similarly the configuration of routing may overload selected
links, so that redundant paths must be enabled to increase capacity (e.g., using
Equal-Cost Multi-Path Routing (ECMP)). In the same way, improper configuration
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of load balancing (e.g., implemented using SDN, as shown in [Sto16]) may impact
selected services while their duplicates may run underutilized.
The DNI approach supports modeling of the most performance-influencing

configuration options. This allows the network operators to analyze the impacts
of a potential reconfiguration the system performance. The contributed approach
aids the network operator in answering the following questions:

• How to load-balance the network traffic to not exceed the capacity of the
network or overload the application servers?

• How to configure an optimal routing?
• Is the SDN flow table big enough for current and future SDN scenarios?
• What happens if an SDN device starts using the slow software flow table?
• What happens when the SDN flow table capacity is exceeded?

1.5 Thesis Organization
In Chapter 1, I introduced the reader to the topic and gave a compact overview of
the most important aspects of this thesis. The rest is organized as follows.

In Chapter 2, I present the foundations. The chapter describes the basics of the
research areas that this thesis spans including: (a) network and its virtualization
including SDN and NFV in the context of data centers; (b) approaches to modeling
of network traffic and performance; (c) run-time and design-time aspects of the
performance prediction; (d) descriptive modeling using meta-models as domain-
specific modeling languages.

Chapter 3 summarizes related work on performance analysis of SDN-based—or
other virtualized—data center networks. I focus on approaches based on a gray-box
modeling or using descriptive models.
Chapter 4 describes the main primary research contribution of this thesis: the

DNI meta-model and its minimal version miniDNI. The DNI meta-model is
presented in two parts: first, how it supports modeling of classical networks
(Section 4.1) and second, how the language is extended to offer the support for
SDN-based networks (Section 4.2). The description is enriched with examples that
demonstrate various applications of the modeling language (including an NFV
scenario). Next, in Section 4.3, I present the flexibility offered by the DNI and
miniDNI meta-models. Section 4.4 describes the integration of DNI with DML. The
integration is presented using examples and a compact deployment meta-model
defining the mapping between the meta-models is proposed.

Chapter 5 describes how a DNI model is processed and solved to provide perfor-
mance predictions. First, I describe the procedures used for model validity checking,
the ways to parametrize transformations, and so-called in-place DNI transforma-
tions that transform the user-friendly DNI version into a transformation-friendly
format. Next, in Sections 5.2–5.5, I describe six model-to-model transformations
that automatically process descriptive models (DNI, miniDNI) and produce pre-
dictive models that can be solved with various solvers. Finally, in Section 5.6, I
characterize the differences and semantic gaps between the transformations and
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the solvers. I present a method that recommends a set of feasible solvers by
evaluating the feasibility of transformations and solvers based on the network
features included in a DNI model.

In Chapter 6, I present how DNI models can be extracted semi-automatically. I
present a method for extracting the DNI traffic models out of tcpdump simplified
traces. Moreover, I propose an optimization method to compact the extracted
traces providing a trade-off between the accuracy of the representation and the
model size. The proposed extraction method provides a valid partial DNI model
that can be completed manually and solved using the presented approach.
Chapter 7 presents the validation of the DNI approach. In addition to the

experiments, I present the experimental testbed used for experiments and the
methods for practical model extraction, calibration, and solving. The approach is
validated using two case studies: (1) SBUS-PIRATES case study from the project
Transport Information Monitoring Environment (TIME) conducted at Cambridge
University [BBE+08, Ing09b], (2) Cloud file backup based on the L7sdntest software
that mimics a cloud backup/file exchange scenario. Additionally, I extend the
validation focusing on the flexibility of the prediction process and presenting the
trade-offs between prediction accuracy and solving time of the validated solvers.
Moreover, in Section 7.5, I validate the traffic model extraction method using the
robot telemaintenance case study, whereas in Section 7.6, I separately validate the
QPN-to-LQN transformation.

Finally, in Chapter 8, I summarize the contributions of this thesis and formulate
directions for future work.

22



Chapter 2

Foundations
In this chapter, I present the foundations of most relevant research areas that are
used in this thesis. This includes: networks and network virtualization, modeling of
network traffic, performance modeling and prediction in run-time and design-time
phase, and the descriptive modeling languages.

First, in Section 2.1, I present generic data center network virtualization tech-
niques following a coarse definition of virtualization. I identify techniques that
constitute atomic building blocks for complex virtualization architectures. From
the presented data center network virtualization architectures, I select two rep-
resentative technologies—SDN and NFV—that are generic, promising, and have
gained much attention from the industry and academia. I present the foundations
of SDN and NFV in Section 2.2.
In Section 2.3, I briefly present general approaches to performance modeling

of networks based on analytical models, gray-box models, and simulation. In
Section 2.4, I present the differences between run-time and design-time aspects
of performance modeling, and finally, in Section 2.5, I describe the basics of
domain-specific modeling languages (DSMLs) and meta-modeling.

2.1 Generic Data Center Network Virtualization
In nowadays data centers, the use of virtualization techniques allows flexible
assignment of resources to virtual machines (VMs). However, virtualization comes
at the cost of increased system complexity and higher dynamics due to the
introduction of an additional level of indirection in resource allocations and the
resulting complex interactions between the applications and workloads sharing the
physical infrastructure.

While sharing computational resources and main memory works relatively well
in cloud computing, sharing of network resources is more problematic [AFG+10].
There are established mature solutions for system virtualization enabling effi-
cient and fair sharing of computational and storage resources like, for example,
virtualization platforms based on Xen [BDF+03] or VMware [SVL01]. Unfortu-
nately, currently no such widely adopted standard approach exists for network
virtualization in data centers. Software-Defined Networking (SDN) and Network
Function Virtualization (NFV) are highly promising candidates for virtualization of
enterprise data center networks, hence I discuss them separately in Section 2.2.
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Due to the large amount of specific approaches to network virtualization, I focus
on generic virtualization techniques that are typically used as building blocks
for implementing concrete network virtualization solutions. I categorize various
techniques and discuss their common aspects and different characteristics.

According to [FRZ14], “network virtualization is the separation of logical network
structure from the physical network structure”. In this section, I decompose the
network into smaller parts and consider the virtualization aspect at the level of
elementary network components: links, nodes, interfaces, protocols. I distinguish
three categories of generic network virtualization techniques. Each category
contains generic building blocks that enable the implementation of specific features
as part of a virtualization solution based on these techniques. For the sake of
completeness, I include the Other Specialized category to cover uncommon, highly
specialized approaches as well. The categorization is depicted in Figure 2.1. The
categories are discussed in the following sections.

Generic Building Blocks of Data Center Network Virtualization 

Link Virtualization Virtual Network Appliances

Packet Scheduling

Traffic Profiling
Device Aggregation

Resource Reservation
Overlaying Other Specialized

Admission Control
Load Balancing

Device Emulation

Adding Layers Modifying Layers

Figure 2.1: Categorization of generic data center network virtualization techniques.

2.1.1 Link Virtualization
Under the term link virtualization, I understand a way to transfer multiple separate
traffic flows over a shared link (physical or emulated), in such a way that each
traffic flow appears to be using a dedicated link referred to as virtual link.

Internet Engineering Task Force (IETF) developed the Integrated Services (IntServ)
approach [RB94] to provide guaranteed bandwidth to individual flows. The guar-
antee is provided by a reservation of resources over an entire communication
path using the Resource Reservation Protocol (RSVP). In modern packet-switched
networks, traffic classification combined with packet scheduling algorithms is
used to differentiate QoS levels. Based on the Differentiated Services (DiffServ)
approach [BBC+98], probabilistic QoS guarantees are provided by classifying en-
queued packets and dequeuing them according to predefined policies or advanced
scheduling algorithms [GS08, GSR10]. In addition, a traffic profiling technique
allows to limit the packet sending rate. In contrast to IntServ, the deployment of
traffic profiling at the end hosts allows to avoid bandwidth reservation in switches
if the cross traffic is not exceeding the capacity of a given path. Admission
control techniques allow to drop incoming flows if the admission would exceed the
available capacity or cause QoS degradation. Finally, load balancing mechanisms
utilize multiple paths leading to a given destination by spreading the traffic over
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separate routes and providing an illusion of a single link with increased capacity.
Although some of these approaches can be treated as well known QoS mechanisms,
they match the proposed definition of network virtualization by providing an
abstraction of a separate network channel with defined performance parameters.

2.1.2 Virtual Network Appliances
A virtual network appliance is any networking device that does not exist in a
pure physical form but acts like an analogous physical equivalent. I distinguish
two types of virtual network appliances: (1) device aggregation where multiple
networking devices act as a single logical entity, and (2) device emulation where
an equivalent of a physical device is emulated by software. Emulation can apply
to selected fragments or to an entire device.

Device Aggregation

VMware offers the vNetwork Distributed Switch [Zho10] that combines all virtual
switches of a hypervisor into one logical centrally managed unit. Another example
of device aggregation is the Juniper Virtual Chassis technology [Net11]. This
feature allows up to ten switches to be interconnected and managed as a single
virtual switch. Similar approaches are usually applied to provide a single point of
management over the devices.

Device Emulation

Multiple VMs running on a single physical machine are normally communicating
using a software switch (or a bridge) provided by a hypervisor. In this case,
the functionality of a networking device is emulated by the virtualization soft-
ware [SVL01]. Based on the incentives of NFV, a commodity server can be turned
into a networking device using software emulation. There are several software
solutions that provide such functionality, for example, Quagga [Sch09] or Open
vSwitch [ope11], which implement functionalities of an SDN switch. Emulation of
a physical device usually introduces additional performance overhead [CWD11]. I
discuss more on NFV in Section 2.2.2.

2.1.3 Protocol Overlaying
An overlay network is a network resulting from a modification or expansion of a
layer belonging to the ISO/OSI stack; in short, it is a method for building a network
on top of another network [BCH+11]. The major advantage of overlay networks
is their separation from the underlying infrastructure. Overlaying in networks
consists mainly of adding a new layer to the existing stack of protocols by defining
tunnels, or modifying a layer, for example, by introducing a new addressing scheme.
Some virtualization techniques may use both approaches (adding and modifying a
layer) simultaneously. Overlaying can be regarded as a link virtualization technique
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however, I classify it separately to clearly separate different goals and a wider
scope of these approaches.

Adding a Layer (Tunneling).

Tunneling consists of using one layer in order to transport data units of another
layer—data units of one protocol are encapsulated in the data units of another
protocol. The result of the tunneling is adding an additional layer to the default
networking stack. For example, tunneling of layer 2 (L2) frames over L3 Internet
Protocol (IP) creates a new layer between the L3 and L4 layers.
One of the most popular techniques that use tunneling in practice is Virtual

Private Network (VPN). VPNs carry private traffic over a public network using
encrypted tunnels. VPNs focus on security issues and do not provide QoS
or performance isolation. Generic Routing Encapsulation (GRE) is a tunneling
protocol that can encapsulate a protocol in an L3 protocol, for example, IPv6 over
IPv4. Another example of an overlay network is Multi-Protocol Label Switching
(MPLS) [ER01]. It operates between L2 and L3 of the International Standard
Organization/Open Systems Interconnection (ISO/OSI) stack and is often referred
to as layer 2.5 protocol. MPLS provides IP packet switching based on a short label
instead of a long IP address. The subsequent classification and forwarding are
based only on the label, accelerating the forwarding process. MPLS assures QoS
similarly to the DiffServ approach. Due to mature traffic engineering functions of
MPLS, it is mainly deployed by the Internet service providers as a replacement
of ATM or Frame Relay protocols. However, deployment of MPLS in a data
center requires compatible hardware. Overlay networks are often used to address
limitations of the Internet or to provide new functionalities like, for example,
provide local connectivity in distributed computing environments [GABF06].

Modifying a Layer

Modifying a specific layer consists mainly of providing a new protocol for that
layer or changing the behavior of an existing one. The main goal of such a
modification is to mend certain drawbacks of an existing technique or to provide
a new functionality.
The VLAN technique [Soc05] provides logical isolation between broadcast do-

mains in L2 by creating virtual subnets on top of a single physical subnet. It
is a modification of the Ethernet consisting of adding additional fields to the
Ethernet frame headers. In VLANs (802.1Q), the new addressing scheme consists
of expanding traditional Ethernet frames by a VLAN ID which allows to create
4096 VLANs. The main limitation of the VLAN technique, namely a limit of
4096 VLANs in a network, is about to be eliminated by VXLAN which assumes
24-bit VLAN network identifier [vxl11]. Unfortunately, VLANs do not provide
performance isolation and their QoS capabilities are limited to traffic prioritization
(802.1p). Moreover, the Spanning Tree Protocol typically used in VLANs cannot
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utilize the high network capacity of modern data center network architectures like,
for example, fat-tree [AFLV08], DCell [GWT+08], BCube [GLL+09].

Another example of a layer modification is the networking infrastructure used at
Facebook where the default L4 TCP has been replaced with a custom UDP transport
layer to obtain lower latencies in their data centers [Rot09]. The main drawback of
network virtualization based on overlaying is the performance overhead caused
by processing packets in the additional layer or the lack of hardware support for
modifications of layers.

2.2 Network Virtualization Technologies
In Section 2.1, I presented an overview of generic data center network virtualization
technologies. In this section, I present in more detail two, that are the most relevant
to this thesis: SDN and NFV.

2.2.1 Software-Defined Networking
In SDN, the network topology, the devices, and the functions are designed to be
programmable similar to the software. The network functions are decoupled from
the hardware and implemented as a software on the entities called controllers.
Such architecture helps to overcome the limitations of network elements with
fixed feature sets. New protocols, additional functionalities and highly dynamic
adaptations are delivered as software with the advantage of flexibility and short
release-cycles. SDN follows the following four principles.

Separation of control and data planes is the major novelty of SDN. In traditional
networking devices, the control plane, containing the logic like routing algorithms,
and the forwarding plane are implemented in one hardware device. This normally
does not allow to modify any algorithms implemented in the control plane as
it is programmed on a very low level, embedded in hardware and optimized
for performance. This limits the flexibility of the network itself as implementing
new algorithms require replacement of the device. In SDN, the intelligence is
extracted into a separate control plane, so that each device can communicate with
the controller over well defined API and protocol (usually, OpenFlow [MAB+08b]).
The controller is a commodity hardware server (or a VM), so it can be flexibly
programed by the user without cumbersome and expensive hardware upgrades.

Logically centralized control enables configuration and management of the net-
work from a single SDN controller. For reliability and load balancing purposes,
the controller may be duplicated and may run on multiple physical or virtual
instances.
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Open interfaces and standard protocols are required to use SDN network devices
from different vendors. Especially the communication between control and data
planes relies on open protocols to facilitate different switch models and a vendor-
independent controller.

Programmability means to influence the network logical topology and the for-
warding behavior of packets by external software or applications in an flexible (i.e.,
changeable on-demand) fashion, so that the network functions can be purchased
separately from the hardware. This allows the network applications run on top of
the network and offer services regardless of the hardware model or vendor.

Performance-Relevant SDN Elements

SDN-enabled devices have undergone architectural and structural changes due to
the numerous features that SDN offers. Here, I investigate the most important
performance-relevant changes in the design of an SDN forwarding device. As this
thesis aims at medium modeling granularity, I analyze the structure focusing on
selected performance-relevant aspects.

Data plane

Line card

Control plane

Line card

BCAM 
exact match

Match 
flow table entry

A
m

Forward or 
broadcast

1

ca
pa

cit
y

learn source

store mac_src + port

(a) Classical (non-SDN).

Data plane

Line card

Control plane

Line card

BCAM 
exact match

TCAM 
wildcard match

Software
exact & wildcard 

match

Match 
flow table entry

a

C
d

xa

C
rd

ar
d

Apply action/
instructions

Rule 
promotion 

engine

1

2

3

flow-mod packet-in

Rule insertion  
engine

drop

ca
pa

ci
ty

ca
pa

ci
ty

(b) SDN.

Figure 2.2: Comparison of typical forwarding pipelines of classical (non-SDN) and
SDN devices.

The typical processing pipelines of a non-SDN and an SDN forwarder are
presented in Figure 2.2. Typically in a non-SDN device (presented in Fig. 2.2a)
the processing is conducted as follows. First, a network packet (frame, packet, or
segment depending on the protocol) arrives to a line card and is passed to the
device. Next, the device matches the destination address of the packet against
the addresses stored in a flow table. The flow table is the local representation
of device knowledge. It contains mapping of already seen destinations to the
identifiers of the line cards of the device. Once a match is found, the packet is
send to the outgoing line card and transmitted to its destination. Otherwise, the

28



2.2 Network Virtualization Technologies

device issues broadcast awaiting the response of the destination node, so that
the information about the proper line card can be stored in the flow table. The
architecture of classical flow tables is relatively simple. Data is usually stored in a
binary content-addressable memory (BCAM) [PS06] which uses data search words
consisting entirely of ones and zeros. In classical switches, the flow table maps an
address of known length to the line card identifier. The memory has limited but
rather high capacity and is optimized for performance.

The general processing in an SDN device is similar. However, an SDN device has
complexer internal structure (as shown in Fig. 2.2b) to support more sophisticated
features. In contrast to a classical device, SDN-enabled forwarder may have
multiple logical flow tables that may by implemented using different physical
memories [KPK15]. SDN devices use usually a ternary content-addressable memory
(TCAM) memory which (in contrast to BCAM) may store a third state don’t care
denoted as ∗ or x. This allows the SDN devices to conduct wildcard matching. The
matching of packet fields in an SDN device is more complex than in an classical
one. A single flow rule located in a flow table may define many fields (e.g., ten in
OpenFlow v1.0) against which the matching can be done. Additionally, a rule may
specify an action that is executed and a set of statistics that are updated after a
successful match. This complexity requires more advanced memory chips that are
usually characterized with high energy consumption and price, so their capacity is
strictly limited.
Multiple hardware vendors has addressed the limited capacity of hardware

TCAM chips by implementing, so called software flow tables. The software flow
tables do not have a designated chip in the forwarder but are usually placed in
the SDRAM (synchronous dynamic random-access memory). This increases the
maximal capacity of such flow table, however, the performance of forwarding using
rules placed in software tables is drastically decreased [KPK15, RSK16, RSKK16].
An SDN device may contain two additional entities to manage the flow rules

in the flow tables: rule insertion engine and rule promotion engine (marked in
gray in Fig. 2.2b). These engines are responsible for selecting proper memory chip
where an incoming rule should be installed and for moving the already installed
rules between the flow tables respectively. Additionally, the rule insertion engine
may return an error in case of incompatibility of a given flow rule with a memory
implementing a flow table.

Finally, if no flow rule can be matched, the devices issues a packet-in message and
sends it to the controller. The controller may respond with a flow-mod message,
which contains instructions about new rules to be installed to handle future
occurrences of packets from the same flow. The SDN controller is implemented
using a dedicated software and deployed on a commodity server, so the modeling
of its performance should be conducted using the techniques devoted for software
performance modeling, for example, as presented in [RBB+11, KHBZ16].
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Typical Use Cases for SDN

There are many application areas where the SDN concept may be used in prac-
tice [Jar14, SSHC+13]. The programmability and open interfaces allow program-
mers to develop new network software that can be deployed in an SDN controller
and offer new network functions without hardware upgrade. This has lead to
explosion of customized services that previously required a specialized and often
expensive hardware to run.

From a general point of view, a network based on SDN can work in three modes:
proactive, reactive, and hybrid. In a proactive mode, the SDN devices receive flows
rules from an SDN controller before the affected traffic appears in the device. In the
reactive mode, no preconfiguration takes place. Once an unknown flow arrives to a
device, the SDN controller is queried for a rule and the rule is applied to the flow.
Finally, the hybrid mode profits from the benefits of both modes. The network
my be partially precofigured, whereas the unknown flows are forwarded to the
controller that decides how to handle the flow. The controller may store a rule
on an SDN device either for a predefined period of time (by setting the timeout
parameter > 0) or permanently (timeout = 0). These possibilities enable, among
others, scenarios that were previously nearly impossible to implement without a
dedicated hardware, for example:

• centralized network management [KF13],
• firewall and traffic filtering [AMX15, HHAZ14],
• load balancing [KK12],
• policy-based routing [Fin13],
• application aware quality-of-service (QoS) [HsSL+14],
• network virtualization (e.g., Flowvisor [SGkY+09] or OpenVirteX [ASLG+14]),
• service insertion and chaining (typical to NFV) [QG14].

2.2.2 Network Function Virtualization
NFV is a new paradigm in networking, that moves network functionality out of
proprietary hardware devices into virtual machines, running on industry-standard
high-volume servers, switches, and storage [CCW+12, Tay14]. These functions
include the typical—basic routing, switching, forwarding—and the complex—load
balancers, firewalls, network address translators [Tay14]. In this paradigm, the
aforementioned functions are implemented as virtualized network functions (VNFs)
running in virtual machines on commercial off-the-shelf (COTS) hardware taking
advantage of the economies-of-scale of the latter.
Any network functions that can be implemented with COTS equipment can be

encapsulated and offered as VNFs. However, not all network functions are suited
for virtualization. For example, it is challenging to virtualize high-bandwidth fiber-
optic gateways, as these would require special equipment and logic for dealing
with the unique hardware. The specialized hardware itself is the main feature to
these function are not targeted for execution on commodity hardware. However,

30



2.2 Network Virtualization Technologies

the vast majority of network functionality is not hardware-dependent and can be
virtualized [HGJL15].

NFV data plane. The data plane is responsible for the forwarding of data.
Processing may involve modifying the data, for example, encrypting it. This
usually stresses the input/output (I/O) or central processing unit (CPU) of the
node. Because the device should be able to saturate the bandwidth of the
network cards, this processing is sometimes done in dedicated application-specific
integrated circuit (ASIC)or digital signal processing (DSP) components. Finding
the destination for the forwarding is done via a forwarding table, managed in the
control plane; the packet is passed up to the control plane if the processed traffic
has yet unknown destination [SSHC+13].

NFV control plane. The control plane is responsible for setting up the rout-
ing/forwarding table on the device [SSHC+13]. The forwarding table is what
the data plane uses to determine where packets should go. Additionally, the
control plane might dictate what operations the data plane should perform on the
data. This plane is not very I/O intensive and does most of its work in the CPU.
Jobs performed include, for example: starting and stopping sessions, authorizing
network access, and registering new devices in the network.

NFV management plane. The management plane represents the interaction with
the device by network operators, including configuration and monitoring. The
management is mostly manual, but it may also be automated. Here, configuration
of the control and data plane are performed. In general, this concerns the
initialization and fine-tuning of the device, but not the standard operation.

NFV in Relation to SDN

In traditional devices, the data and control planes are tightly coupled in the
network device. (The management plane, as it plays more of an auxiliary role, is
somewhat separate.) The data plane is bound to the hardware, and the control
plane is intertwined. The goal of SDN is to decouple these two planes, so that
the control plane may, for example, even be situated on a completely different
device. This allows network intelligence and state to be logically centralized and
consolidated [SSHC+13, FRZ14].

Neither NFV nor SDN are dependent on each other; they do, however, comple-
ment each other and are mutually beneficial. While NFV goals can be achieved
without the separation of the data plane and control plane, the usage of SDN can
simplify NFV, providing better configurability, integration, and performance. NFV
benefits from SDN by providing infrastructure upon which the SDN software can
run.
SDN shares some common ideas with NFV, for example, that SDN software

should run on commodity hardware [CCW+12]. The two developments come

31



Chapter 2: Foundations

from different sources: SDN was proposed by university researchers, while NFV
by network operators. Both had the goal of simplifying complex networking
processes [Pat13].

Performance-Relevant Aspects of NFV

From the performance perspective, NFV setups depend on the performance of the
underlying commodity hardware. There are two main hardware factors influencing
the performance.
First, the performance of the data plane is dependent on the line cards of an

NFV node. Commodity servers offer usually typical 1Gbps Ethernet network cards
that matches a typical top-of-the-rack (ToR) switch setup. However, obtaining a
typical port density (i.e., number of ports per device) is much more challenging
than in network devices. The port density is usually limited not only by the
physical size of the hardware, but also by the bandwidth of the bus with which
are they communicating with the CPU and the system.

Secondly, the performance of the I/O–CPU subsystem of an NFV node defines
the performance of the control plane and the network functions. This part is
almost identical to any computing use case as the virtual functions and the control
plane are delivered by software applications. Usually, the designers of an NFV
node leverage specialized operating systems and thin middleware to optimize
the performance and minimize bottleneck. The leveraging of commodity allows
to model NFV system using usual performance modeling approaches from the
computing and software architecture domains (e.g., Descartes Modeling Language
(DML) or Palladio Component Model (PCM)).

2.3 Performance Modeling of Networks
Modeling of networks for performance analysis purposes is a well established
field of science. Since the discovery of a telephone and emergence of telephony
operators in 19th century, the capacities of circuit-switched telephone exchanges
were challenging to model. A. K. Erlang modeled the arrivals of the telephone calls
and provided the formulas for call loss and waiting times to provide optimal service
to the customers [Erl09, Erl17]. Since that time, many models were proposed—
analytical and later also simulations—for circuit and packet-switched networks. In
this section, I briefly present the foundations of relevant models for network traffic
and network structure.

2.3.1 Network Traffic Models
Network traffic models are usually expressed as a sequence of arrivals of discrete
entities, such as packets, connections, calls, etc. They are usually represented
mathematically using counting processes or interarrival time processes. A counting
process is a stochastic process and defines how many arrivals were observed since
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the beginning of the observation, whereas the an interarrival time processes is a
random sequence that defines the length of the interval separating consecutive
arrivals.

Analytical traffic models are usually required to represent specific characteristics
of the traffic observed in real, for example, burliness or self-similarity. The oldest
analytical model of traffic is the Poisson model [Erl09, GSTH08]. It assumes that
packet arrivals are independent and their interarrival times are exponentially
distributed with rate parameter λ : P{An ≤ t} = 1 − e−λt. Unfortunately, the
Poisson model is unable to represent burstiness of the traffic and is unsuitable
for representing self-similarity [Man65], which are dominant phenomena in many
nowadays data networks. Originally, Erlang proposed the Poisson model for legacy
telephone circuits, which were not affected by these phenomena.
Many other traffic models were proposed to address the issues of the Poisson

model, so that the realistic network traffic could be accurately modeled [WP98,
FM94, QKW+04, RK96, SJLW11]. All of them focus on representing the statistical
features of the originally observed traffic.

2.3.2 Black-Box and Gray-Box Performance Models
Black-box and analytical performance models abstract the modeled system to the
highest degree. Such models require a defined set of inputs—which is usually a
set of parameter values required in a formula—and return values of performance
metrics as the output. I distinguish black-box and gray-box models based on the
degree to which they include internal structure of the modeled system.

Black-Box Models

Black-box models are the most coarse performance analytical models. They do
not consider the internal structure of the modeled system and do not allow to
change any system parameters that do not belong to the input variables of the
model (e.g., deployment of services, topology). Usually, such a black-box model is
trained based on experimental data, so that the underlying mathematical model
fits the characteristics observed in reality. According to [Lju01], black-box modeling
(also known as system identification) should be rather called curve fitting. To
examples of such techniques I account: statistical regression, linear and non-linear
interpolation, differential equations, neural networks, Classification and Regression
Trees (CART), Multivariate Adaptive Regression Splines (MARS), Kallman filters
and others (some surveyed in [WHKF12, HLT09, SCBK15a]). Such models usually
properly represent a concrete aspect of a system allowing rapid performance
analysis of its features. On the other hand, such models are usually fitted to
the measurement data and provide no guarantee to represent the general system
behavior. Moreover, changes in internal structure of the system are also not
allowed as the structure is completely abstracted—if the modeled system changes,
the model must be newly built from new data.
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Gray-Box Models

Gray-box models partially represent the structure of the modeled system. The de-
gree to which the structure is included in the model is variable and depends on the
level of detail included in modeling formalism. The most popular and well estab-
lished formalism for modeling networks are Queueing Networks (QNs) [LZGS84].

QNs provide means to represent the resource contention in the modeled system.
The formalism uses queues that consist of waiting lines and a service stations. The
requests wait in a queue to be serviced in the service station which represents a
limited resource. The service stations may represent one or multiple servers. The
QN models may be parametrized in numerous ways, for example: the structure of
the connections between queues in the QN, queueing disciplines, scheduling at a
server, server processing rates.

An unification of the queue characteristics was proposed by Kendall [Ken53]. He
proposed to describe each queue using a tuple of three parameters A/S/c which
was later extended into six: A/S/c/K/N/D, The parameters have the following
meaning:

— A is the arrival process (interarrival time distribution),
— S denotes the service time distribution,
— c denotes the number of servers,
— K denotes the capacity of the queue (i.e., maximal number of requests),

equals to ∞ if omitted,
— N is the size of population from which the customers come, equals to ∞ if

omitted,
— D is the queueing discipline, which defines the order in which the requests

are dequeued form the waiting line.
The commonly used values denoting distribution parameters (A,S) are: M for
exponential (Markovian); D for deterministic; Ek for Erlang-k; and G for general
(i.e., unknown).

QNs wide applicability has lead to emergence of multiple analysis methods and
laws which apply for selected QNs. Examples include: the Utilization Law, the
Little’s Law, the Response Time Law, the Forced Flow Law, the Pollaczek-Khinchine
formula [LZGS84]. However, analytical solving of QNs face multiple limitations.
The most efficient analytical analysis of QNs is enabled for so-called product-

form QNs [Bal00]. There exist efficient polynomial time algorithms for analysis
providing a good balance between high accuracy of performance analysis and
the efficiency of analysis. Unfortunately, the product form requires that several
assumptions hold. The most important requirements are quasi-reversibility and
partial balance [Bal00]. This applies mainly for models that can be represented by
a set of QNs containing M/M/1 queues. More complex QNs are generally difficult
to solve analytically (either by exact or approximate algorithms); this applies to
models with unknown distributions and queueing disciplines other than first in
first out (FIFO). Simulation-based approaches are usually used for solving such
complex cases (see Section 2.3.3). Further details on QNs have been presented in
[BGdMT98, GSTH08].
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Perti Nets (PNs) [Pet62] were proposed by Carl Adam Petri in 1962 with a
main purpose to support modeling of concurrency, for example: synchronization,
blocking, and software contention. A PN is a bipartite directed graph that consist
of: (1) a finite set of places, (2) a finite set of transitions—separate from the set of
places, (3) a finite set of forward and backward incidence functions, and (4) an
initial marking. In an ordinary PN, places are interconnected with transitions
using directed weighted arcs that define incidence functions. The initial marking
defines the initial assignment of tokens to the places, whereas the further states
of the PN are defined by the transitions and incidence functions that define the
behavior of the net. A transition fires if all preceding places contain the respective
number of tokens defined by the weights of the arcs. Once a transition fires, the
tokens from the preceding places are consumed and new tokens are placed in the
succeeding places in the quantity defined by the weight of outgoing arcs.

The ordinary PNs are missing the notion of time, so multiple extension to PNs
were introduced. They include: colored Petr nets (CPN), which introduce multiple
classes of tokens (colors); stochastic Petri nets (SPN), which add a firing delay to
the transitions; generalized stochastic Petri nets (GSPN), which mix PNs with SPNs;
hierarchical Petri nets (HPN), which allow to define subnets; and combinations of
those, for example, colored generalized stochastic hierarchical Petri net (CGHSPN).
Queueing Petri Nets (QPNs)—discussed in Section 5.2—mix QNs with CGHSPNs
by adding a queue to each place.

Available tools for the analytical solution of QPNs are based on the analysis of
underlying Markov chains [BK98]. However, the underlying Markov chains are
usually too big for efficient analysis. In [Kou05], Kounev claims that “QPN models
of realistic systems are too large to be analyzable using currently available analysis
techniques”.
Layered Queueing Networks (LQNs) [FAOW+09] are performance models that

are an extension of regular QNs. Compared to ordinary QNs, LQNs introduce the
concept of layers, software servers, and they allow the modeling of simultaneous
resource possession. LQNs are usually used to model software and hardware
contention in a uniform way, as well as scheduling disciplines, simultaneous
resource possession, synchronization, and blocking [WNPM95]. LQN formalism
has been developed as a DSML that covers wide range of computer systems with
a special focus on software and hardware systems. In contrast to that, QPNs are
general-purpose models and are not bound to any particular domain.
Woodside et al. [WNPM95] claim that “LQNs have a great advantage over the

competing models (Petri nets, Markov chains, timed process algebras) that they
scale up to large systems with dozens or hundreds of cooperating processes.”
Achieving such speed-ups in the solving is usually connected with abstracting
selected data or limiting the modeling capabilities.
Heimburger [Hei07] analyzed the differences between the solvers for QPNs

(SimQPN [KB06]) and LQNs (LQNS [FMW+09]) in the context of the performance
prediction of Java Enterprise Edition (Java EE)-based software. Here, I generalize
the comparison of the formalisms and briefly summarize the key differences in
Table 2.1.
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Table 2.1: Selected key differences between QPN and LQN formalisms.
Feature QPN LQN

Unit of flow Colored tokens Calls
Workload Open and closed Open and closed
Hierarchy Yes, subnets, can be flattened. Yes, layers, cannot be flattened.
Direction of
flow

Any place with any transition An activity to an entry, higher layer to
lower layer only.

Loops Yes, any type (including infinite), loop
iterations can be modeled
probabilistically or deterministically.

Yes, most of deterministically modeled
loops (exceptions see Section 5.5.3),
number of loop iterations must be
known and finite.

Starting point No explicit starting place or transition.
Transitions that fire first can be
calculated.

Top layer

In QPNs, the colored tokens represent the behavior of the model—they are
deposited in places and are moved from place to place by firing the transitions.
In LQNs, this function is realized by calls denoted normally as arrows pointing
to an entry. Both formalism support modeling of open and closed workloads,
however LQNs can be claimed to provide less support for closed workloads due
to the limitations concerning loops that span multiple layers. Layers are used
to represent the hierarchy in LQNs, whereas in QPNs, nets can be nested using
subnet places. QPN tokens can be moved from a place to another place when a
transition fires. A transition can connect any two places at a given level in the
hierarchy. The tokens, however, can be forwarded (via input and output places of
subnets) to any place or transition disregarding the hierarchy.
In contrast to QPNs, the LQN calls can connect only the layers that are non-

higher than the layer from which the call originates. This limits the direction
of the calls and narrows the modeling capabilities. The hierarchy of LQN layers
cannot be flattened, whereas in QPN it does.

Another difference is the way the loops are modeled. The LQN formalism allows
to explicitly model simple loops where the loop iterations need to be specified by
a constant, finite value. QPNs do no support loops directly, however loops can be
build easily using few places, tokens, and transitions. A loop built in this way can
iterate over a defined number of times (also infinite) or the number of iterations
can be specified probabilistically. Finally, QPNs do not have a predefined single
starting point, whereas LQNs have so-called top layer where the execution starts.
Other formal, analytically solvable performance formalisms include: process

algebras [Hil96, HHK02], Markov chains [BGdMT98, BH02, Her01].

2.3.3 Simulation Approaches
Simulation helps analyzing the models for which no efficient analytical or numerical
analysis methods exist. Simulation offers the user a controlled environment in
which a system can be investigated in more detail than using the analytical
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methods. It often provides visualization and batch analysis tools (e.g., for a range
of parameter values) to help understand the internal behavior of complex systems.
Numerous simulation tools were proposed for solving performance models.

Complex QNs, for which no analytical method apply, can be solved with various
simulation frameworks and tools. To examples of such tools I account: Java
Modeling Tools (JMT) [BCS09], General Purpose Simulation System (GPSS) [Gor78],
or SimPy [MV16].
QPNs can be efficiently solved with SimQPN [KB06], which is a simulator for

QPNs that I use in this thesis. Its features and limitations have been characterized
in Section 5.2 and 7.4.

In the area of network simulators, the most popular simulation frameworks are
OMNeT++ [Var01] and ns-2/3 [RH10]—both discrete event simulators. In [RH10],
ns-2 is considered as the standard simulator for academic network research as it
supports modeling of the most popular network setups and protocols. Examples of
further similar simulators include: openWNS, OPNET, GTNetS, and IKR simulation
library [WGG10]. All these simulators focus on medium-detailed modeling of the
popular TCP/IP protocol stack and therefore are limited in their scope. Moreover,
there exist simulators that are tightly bound to a given protocol or even to a concrete
implementation of that protocol. An example is the Venus simulator [DLWJ08]
where its authors use the TCP implementation extracted from the FreeBSD kernel
for maximum simulation accuracy.
Despite more accurate modeling and higher prediction accuracy simulation

approaches have also drawbacks. Simulation of large, complex models may
require long solving times and consume high amount of resources—mainly CPU
power and memory capacity. The complexity of a simulation-based performance
analysis depends on the size and features of the analyzed model but also on the
simulation implementation. Simple simulation scenarios may exhibit short solving
times, however, the benefits come at the price of a trade-off between prediction
accuracy, model size, or modeling granularity. For some scenarios (e.g., small
and simple models), simulation may overlap with analytical methods providing
similar results but with higher solving times when compared against analytical
approaches. Therefore, simulation-based performance analysis is recommended for
such application scenarios where high prediction accuracy is more important than
the minimization of solving times.

2.4 Run-Time and Design-Time Aspect of Performance
Prediction

The characteristics and differences between design-time and run-time performance
prediction have been thoroughly investigated by Brosig in [Bro14a]. In this section,
I summarize the main findings of Brosig and position his findings from the
perspective of data center networks as the application area.
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Goal

Run-time and design-time performance prediction approaches aim at estimating
the performance of a system based on different data. Despite the aim, the goal
of the modeling is different. Modeling in design-time targets the evaluation
of various design alternatives before implementing and deploying the modeled
system. Run-time analysis may benefit from the additional data available due to
the measurements on the running system and thus, the goal of run-time analysis is
to predict the impact of changes applied to the running system on its performance.

Structure of the Model

Run-time models benefit form the automatic extraction methods as the modeled
system is available and can be represented in a model without involvement of a
human operator. Although user-usability is an important factor, the major parts
of a run-time model may be prefilled by a script and later tuned by an operator.
Design-time models, on the other hand, cannot be extracted in most of the cases
(e.g., with exception where partial models are extracted from code stubs or early
Unified Modeling Language (UML) designs). Instead, the design-time models are
targeted for manual modeling with separation of modeler roles, where domain
experts model a part of the system in which they are specialized. This leads to
emergence of many sub-models that are tuned for the specific needs of respective
domain experts.

Availability of Input Data

Performance models require data to correctly represent the modeled system. Work-
loads, structure, configuration, hardware specification of the system components are
inevitable for building a performance model. In design-time, only selected required
parameters may be available (e.g., planned structure, deployment, or hardware
specifications), whereas the rest must be estimated usually using analytical models
or the data from similar existing systems. Unfortunately, even similar systems
may perform differently and the vendor performance data does may not always
accurately represent the real operation conditions (e.g., such extreme cases as the
temperature of operation or different performance offered by different instance of
the same model of hardware). This causes that the design-time models are usually
coarser than the run time models as they need to incorporate possible performance
estimation errors.

In contrast to this, run-time models are usually fed with realistic monitoring data
which originate directly from the modeled system. The user models a concrete
system instance deployed in a known environment. This allows to calibrate the
model properly and minimize the possible errors caused by uncertain data sources.

However, some run-time scenarios may be still partially affected by uncertainty,
for example, impact analysis of hardware upgrade. Moreover, the precise design
documentation may be missing in some cases and the system needs to be abstracted,
whereas the design-time models are assumed to have full knowledge about the
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structure of the designed system. This shows that not only availability of the
modeling data differs, but also the type of modeling data is different.

Solving Restrictions

A modeled system may be solved using performance solvers. Both approaches
to performance modeling—run-time and design-time—use similar solvers as the
purpose of modeling—performance—is the same. However, solving a design-time
model experiences much looser time restrictions, as there is usually enough time
for conducting fine-grained low-level simulations.
In contrast to this, run-time modeling scenarios may face near-real situations.

An example of such scenario may be a forecast or a trigger caused by a workload
spike that forces the system to reconfigure (e.g., scaling or migration of some
components) in order to avoid service level agreement (SLA) violation. In such
situations, the impact of possible reconfigurations of the system must be analyzed
in a timely manner sacrificing the prediction accuracy and benefiting from the
short solving times. Naturally, in other situations the time restriction can be looser
and more accurate solvers can be used.
This difference in application scenarios leads to another difference between

modeling approaches. Design-time approaches aim at minimizing prediction
accuracy errors (assuming the uncertainty of input data), whereas the run-time
approaches should provide flexible means to adapt the prediction accuracy and
solving time based on the situation.

Differences in Change Impact Analysis

Finally, the art of changes which are subject of analysis may differ for the run-
and design-time modeling scenarios. At the design-time, the spectrum of analyzed
system configurations is wider. The designers may investigate various structures
and configurations that are not available in run-time (e.g., including various network
topologies or hardware types). The scope of run-time analysis is shifted towards
reconfigurations, hardware upgrades, or redeployments as major reconfigurations
including long system down-times are usually undesired. This allows to divide
the running system into static and non-static parts and conduct the analysis for
the latter assuming that the former remains unchanged. Therefore, the run-time
analysis is more constrained and focused in contrast to design-time where almost
any parameter of the system may be varied significantly increasing the number of
possible designs to analyze.
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2.5 Modeling Languages, Meta-Models and
Descriptive Models

In this thesis, I often speak of modeling languages, formalisms, meta-models,
descriptive models. In this section, I briefly introduce the concept of a meta-model
and a descriptive modeling language.
There exist multiple definitions of models. In [Pid03], Pidd provides a general

definition of a model as “a representation of reality intended for some definite
purpose”. If a model (M1) is representation of reality (M0), then the representation
of a model (M1) is called meta-model (M2, model of model), and the representation
of a meta-model (M2) is a meta-meta-model (M3), and so on. In practice meta-
meta-models describe them selves and do not require a further level of modeling.
There are multiple definitions of a meta-model; I provide an exemplary one

from Seidewitz [Sei03]: “A meta-model makes statements about what can be
expressed in the valid models of a certain modelling language.” In other words, a
meta-model defines a modeling language by defining a valid set of models.
In this thesis, I distinguish descriptive and predictive models. Both types of

model have their respective meta-models, however, a descriptive model describes a
given domain without providing any other means of analysis. In contrast to this,
a predictive model can be solved by at least one solver that provides performance
prediction as the result of solving. In other words, a descriptive model is a
structured form of data representation, whereas predictive model is an input to a
solver that can conduct performance prediction.
I use Ecore for meta-model implementation in this work. Ecore is “the defacto

reference implementation of OMG’s (Object Management Group) Essential Meta-
Object Facility (EMOF)” [Eco10, MOF14]. EMOF is one of two compliance points for
Meta-Object Facility (MOF), whereas MOF is a closed meta-modeling architecture
that defines a meta-meta-model (M3), which conforms to itself. MOF can be
viewed as a standard to write meta-models.

In order to conduct model transformations, both input and output models must
have their meta-models defined in MOF. However, some models may miss the
definition of their underlying meta-model or the definition is provided using
other meta-modeling standards. For example, OMNeT++ defines its syntax using a
Backus–Naur form (BNF) grammar, whereas LQN solvers described in Section 5.5
provide XML Schema Definition (XSD) to formally describe the format of their
input files. Both formats—BNF and XSD—were transformed into MOF compatible
meta-models for the need of this work.
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Related Work
I present the related work in two parts. First, in Section 3.1, I focus on the primary
research contributions (see Sec. 1.3.1), whereas in Section 3.2, I present the related
approaches to traffic model extraction, that is considered as secondary research
contribution of this thesis (see Section 1.3.2).

3.1 Related Areas
I review the state-of-the-art in the areas related to the main contributions of this
thesis. To better structure the review, I consider related work along three different
dimensions illustrated in Figure 3.1a. The first dimension is the network domain,
distinguishing between approaches targeted at classical data centers and SDN-
based networks. The second dimension concerns the descriptive system architecture
models to represent the end-to-end system architecture including the computing
infrastructure and the software running on top of it. Finally, the third dimension
distinguishes the types of performance models and their scope in terms of the aspects
they capture.

A detailed literature review on classical approaches to performance modeling of
communication networks in general can be found, for example, in [Pui03, HP93].
In the following sections, I describe the state-of-the-art for each of the most relevant
topics that are marked in Figure 3.1a as:

• F0, F1, F2: F like Focus of this thesis,
• A1, A2: A like system Architecture models,
• P1, P2: P like Performance models respectively.
In Sections 3.1.1 (P1) and 3.1.2 (P2), I review related work contributing per-

formance models of classical or Software-Defined Networking (SDN)-based data
center networks, however, without maintaining a link to the end-to-end system
architecture (software, servers, etc.). Sections 3.1.3 (A1) and 3.1.4 (A2) describe
contributions that provide descriptive architecture-level models, but do not model
performance aspects. Finally, Section 3.1.5 (F0) describes architecture-level perfor-
mance models that do not include networks, whereas Sections 3.1.6 (F1) and 3.1.7
(F2) review related work addressing all three aspects, that is, performance, archi-
tecture models, and SDN-based data center networks. The work presented in this
thesis contributes directly to the areas F2 and F1.
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Figure 3.1: Related work divided into domains and relations between them.

The relations and intersections between the work presented in this chapter
follows the Venn diagram presented in Figure 3.1b. I consider the performance
and architecture models of non-SDN data center networks separately from the
performance and architecture models of SDN-based networks (i.e., P1 ∩ P2 = ∅,
A1∩A2 = ∅). Analogically, to the area F0, I account architecture-level performance
models that do not focus on networks.

3.1.1 Performance Modeling of Data Center Networks (P1)

There exists a lot of literature on performance modeling and evaluation of data
center networks (e.g., [HP93]). Existing modeling approaches are mostly based
on stochastic models such as classical product-form queueing networks, layered
queueing networks, stochastic Petri nets, stochastic simulations models, and so
on. I distinguish specific performance models (network simulators) and general
purpose models that can be used to model data center networks.

The most popular network simulation frameworks are OMNeT++ [Var01] and
ns-2/3 [RH10]—both discrete event simulators. In [RH10], ns-2 is considered as
the standard simulator for academic network research. ns-2 supports modeling
the most popular network setups and protocols; modeling of custom networks—
for which no models are provided in the standard libraries—requires manual
implementation. Modeling custom network setups using ns-2 requires extensive
knowledge of programming in Tcl and C++ and thus it requires a significant time
investment to learn how to build models. Similar observations apply to OMNeT++—
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almost all non-standard protocol-specific models need to be implemented by hand
at the required modeling granularity. Changing the modeling granularity (e.g.,
abstracting some highly-detailed information) requires changing the code of the
custom model. Further similar simulators include: openWNS, OPNET, GTNetS, and
IKR simulation library [WGG10]. All these simulators focus on medium-detailed
modeling of the popular TCP/IP protocol stack; extensions to support further
popular protocols are often available as add-ons. There are also simulators that
are tightly bound to a given protocol or even to a concrete implementation of
that protocol. An example is the Venus simulator [DLWJ08]; the authors use the
Transmission Control Protocol (TCP) implementation extracted from the FreeBSD
kernel for maximum simulation accuracy.
On the other hand, there exist many general-purpose performance modeling

formalisms that can be applied to data center networks. To such formalisms I
account, for example, queueing networks, layered queueing networks, stochastic
Petri nets, stochastic process algebras, Markov chains, analytical estimation methods
(e.g., bounds analysis). In [Pui03], Puigjaner reviewed selected general-purpose
performance modeling formalisms and their applicability in the networking area.
Each of these formalisms requires extensive knowledge and experience in order to
be able to apply it to a specific domain—this limits the use of such formalisms to
experts having experience in the given formalism and the respective domain. I
described selected methods in more detail in Section 2.3.

3.1.2 Performance Modeling of SDN-based Networks (P2)
I now review some related work on performance models applicable especially in
the area of SDN-based networks. I consider the general SDN networks as well as
SDN-based data center networks.

According to [ANP+13], “in spite of active research around SDN and OpenFlow
in particular, there are very few works to either address the performance issue of
the SDN or OpenFlow as one of its early implementation or evaluation frameworks”.
The authors of [ANP+13] propose an analytical performance model based on
network calculus. Additionally, they claim that “this is the first time that a network
calculus-based analytical study is presented to model the behavior of SDN.” The
modeling approach presented in the paper is focused on performance evaluation
of SDN switches and controllers. In contrast to my approach, the proposed model
does not cover the computing infrastructure, the software architecture and the
hosted applications.

The authors of [JOS+11] propose a performance model based on queueing theory
to evaluate SDN-enabled switches. The evaluation focuses only on OpenFlow-
enabled switches and controllers; the scope of the complete data center architecture
is missing. Similarly, the authors of [BBGP10] focus only on a selected part of
SDN-based networks—the data plane of a switch. The authors of [KJ13] proposed
an SDN extension to OMNeT++ simulation based on INET library. The proposed
simulation models in detail the communication between an SDN switch and a
single SDN controller. Nevertheless, given the simulation at the protocol-level,
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their approach focuses on the specific network protocols supported by the INET
library and misses the scope of the entire data center.

Other works, for example [TGG+12, KWS+13, BKLG14], focus on simple setups
spanning an SDN switch and a controller, thus their scope is also limited and no
end-to-end models of the complete system architecture are considered. In other
works (e.g., in [GYG13]), the authors evaluate the influence of SDN on the network
performance, however, no explicit models are provided.

3.1.3 Architecture-Level Modeling of Data Center Networks (A1)
I briefly review related work on descriptive architecture-level models applicable in
the area of data center networks, however, without providing explicit support for
performance analysis.

In [ITU00], the authors propose a formally complete language Specification and
Description Language (SDL) that was originally designed for telecommunication
systems. Its current areas of application are wider and also include process control
and real-time applications in general. The language was also combined with Uni-
fied Modeling Language (UML) to extend its specification capabilities. However,
the scope of the modeled systems is general with no specific consideration of perfor-
mance aspects. The Common Information Model (CIM) [Bd05] is an open standard
that defines objects of an IT environment and relations between them. Similarly
to SDL, CIM does not provide any means to describe the performance aspects
of network infrastructures. In [PTC12], the authors propose an architecture-level
modeling approach designed for specifying the behavior of autonomic networks.
The authors follow a similar approach to Descartes Network Infrastructure (DNI)
(i.e., leveraging a descriptive model coupled with model transformations), but
again the proposed models do not cover performance aspects.
The authors of [GRSS12] proposed LARES (LAnguage for REconfigurable

Systems)—a formalism to model and analyze system dependability. LARES al-
lows to model any system element by describing the probabilities failures and
their consequences. The work described in [BCR+09] is driven by similar goals.
The authors propose a modeling approach called SLIM to express the possible
states of a system component in order to predict component failures and the
possible propagation of errors. While the techniques used in LARES and SLIM
are similar to the DNI approach (meta-models, model transformations), the goals
of these approaches differ from my goals (dependability of systems vs. network
performance).

3.1.4 Architecture-Level Modeling of SDN-based Networks (A2)
In [HHSDK14], Haleplidis et al. propose a model for SDN and Network Function
Virtualization (NFV)-based networks. The authors consider SDN and NFV as being
part of a bigger network picture and provide a common abstraction model. Their
model supports “interoperability and homogeneity, as well as one protocol for
control, management and orchestration of the network data path and the network
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functions, respectively”. The authors focus on modeling the network architecture
using elements such as forwarding element, control element, and logical function
block, however, without explicitly considering performance relevant aspects.

3.1.5 Architecture-Level Performance Modeling (F0)
In this part, I briefly discuss related work on architecture-level performance models
that do not explicitly model the network infrastructure or that represent the
network in a highly abstract and simplified manner.

The wide variety of existing performance modeling approaches makes it hard to
select an appropriate model for a given scenario. A common approach is to use a
descriptive architecture-level model (capturing the performance-relevant aspects of a
system in a descriptive manner) and to then apply model-to-model transformations
to automatically generate different predictive models (e.g., queueing networks or
stochastic simulation models) that can be used for performance analysis.
Approaches based on model-to-model transformations originate mainly from

the software engineering community. UML models are used to analyze various
software-related metrics [BdMIS04]. Software architecture models are annotated
with performance-relevant information and automatically transformed into predic-
tive models. Examples include: UML with Stochastic Well-formed Nets [BM07],
Performance by Unified Model Analysis (PUMA) [WPP+05], or Kernel LAnguage
for PErformance and Reliability analysis (KLAPPER) [GMS07]. Similar work was
surveyed by Koziolek in [Koz10]. Software architecture models have been extended
to also include information about the hardware resources and the deployment of
software components. Among the modeled hardware-related aspects also very
simple network models have been considered (e.g., [RBB+11, CPSV08]).
In [Zsc09], the author discusses semantic concepts for the specification of non-

functional properties of component-based software. He proposed a new specifica-
tion language quality-modelling language for component-based systems (QML/CS)
that can be used to model non-functional product properties of components and
component-based software systems. As the modeling focus is put on software, the
hardware resources and their non-functional properties are modeled in a black-box
manner. The author proposed to represent the network resource demands in terms
of required bandwidth. However, the network infrastructure and network traffic
are not considered in this work. Moreover, the proposed approach focuses on
the modeling language and lacks tooling required for analysis and solving of the
models.

End-to-end performance analysis requires taking into account multiple performance-
influencing factors such as computing resources, deployment middleware, storage,
and networks. Networks are usually abstracted in models such as the above
and represented as black-box statistical models. For example, in [BKR09], the
authors use Palladio Component Model (PCM) to model software architecture at
design-time. PCM represents the network as a linking resource, which represented
as a black-box analytical function abstracting the network configuration, topology
and traffic patterns.
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3.1.6 Architecture-Level Performance Modeling of Data Center
Networks (F1)

I now consider architecture-level performance models that provide support for
modeling data center networks as part of the system architecture. In [dWK05],
the authors propose to extend the SDL and UML languages with performance
annotations. The obtained models are used for automatic generation of simulation
models based on a proprietary simulator. The models are evaluated at the protocol
level by simulating data center networks but also broadband links and mobile
access networks. On the one hand, the focus is put on the protocol level, on the
other hand, the scope is not limited to a given type of networks (e.g., mobile
access networks or data center networks).
In [DDSG07], the authors proposed a modeling approach named Syntony.

Syntony is used to model the Ad-hoc On-Demand Distance Vector protocol and
compare the model-based analysis to the native OMNeT++ implementation. Similar
to [dWK05], the modeling is focused on the protocol-level. Similar approach is
presented in [MTMC99].

The authors of [KO01] present a stochastic model for the window dynamics in
TCP and investigate the throughput performance of TCP-Tahoe. According to the
authors “the overall purpose is to investigate the impact of packet loss probability
on the resulting TCP throughput”. They use the ns-2 simulator to evaluate
the performance of the TCP protocol, however, the modeling and performance
prediction is limited to a particular version of the TCP protocol.

The I/O path model (IOPm) [KL12] was designed do model the architecture of
parallel file systems. Although the focus is placed on the I/O system, IOPm is
able to model simple storage networks in a data center. The network models are
only used to detect bottlenecks and the scope is limited to storage networks.

3.1.7 Architecture-Level Performance Modeling of SDN-based
Networks (F2)

Finally, I target the architecture-level performance models that provide support for
modeling SDN-based networks (with and without the data center in their scope).
To the best of my knowledge, there exist no works that model the performance of
SDN-based data center networks at the architecture level, including the link to the
computing infrastructure, the software architecture, and the applications deployed
on it. The results of this thesis directly contribute to the areas F2 and F1.

3.2 Traffic Model Extraction
In Chapter 6, I describe a secondary contribution that aims at extracting network
traffic models from tcpdump traces. Here, I present the related approaches to
network traffic modeling and extraction.

46



3.2 Traffic Model Extraction

As noticed by Adas, “Traffic models are at the heart of any performance
evaluation of telecommunications networks” [Ada97]. On the other hand, the
authors of [KSG+09] claim that “there is not much work on measurement, analysis,
and characterization of data center traffic” suggesting that more focus should be
put to modern data centers and the intra-data-center traffic characterization.

There exist many related work on modeling general network traffic [FM94,
QKW+04, GS08, SJLW11]. Most of the works focus on probabilistic models that
were meant to approximate the characteristics of network traffic when aggregated
or to preserve self-similar nature of the traffic. However, the goals of the extraction
proposed in this thesis are different. Here, I aim at representing the traffic
deterministically to analyze the traffic exactly from the time it was recorded and
not to generalize the model to larger time scales. To achieve this, I envision the
following steps: (1) I decompose the traffic profile into a set of generators (on-off
traffic sources) with defined start and end of their activity, (2) I flexibly compress
the model of the network traffic at the same time being able to control the loss
of the characteristics of the original trace (because some solvers do not accept
large detailed inputs, for example: SimQPN [SKM12a]), (3) the approach supports
any traffic aggregation interval, whereas the trace driven simulations use usually
packet as a smallest unit of traffic and due to that produce fine-grained models
with predefined, constant granularity.

The authors of [vKHZ+15] propose a similar approach to the method proposed
in Section 6.2. They propose a tool that extract workload profiles (not network traces
but rather service requests) and decompose them into patterns. The decomposed
traces are stored in an Ecore-based models [SBPM09] and are used mainly for
workload forecasting and replaying modified traces in benchmark environments
(e.g., replaying an original trace but with amplified burstiness).

Although the approach is similar, the details clearly separate their work from
this one. First, the workload model that LIMBO extracts is different to the DNI
Traffic model, so the extraction procedure cannot be applied. I extract sets of traffic
generators whereas LIMBO looks for patterns like, for example: seasonal, trend,
burst. Second, I focus on network traffic models extraction by considering time
series of the transferred data; LIMBO defines workload at the level of requests that
can be mapped to various data sizes. And finally, LIMBO depends strongly on
seasonality of the workload as the first step of their extraction procedure searches
for data seasonal patterns (e.g., sine-shape). The DNI approach also supports
seasonal patterns in the form of a set of ON-OFF traffic generators (see network
traffic generator model in Section 6.2.1), however any other traffic characteristic can
be modeled as well using the traffic generator representation.
Regarding the approaches to model extraction, the most of the approaches

calculate traffic statistics from the traces and represent the traffic statistically,
for example, using packet size distributions and packet interarrival times (as
described in Section 2.3.1). Such approaches cannot be applied in the context
of this thesis, as I aim to discover relatively compact set of traffic generators to
represent the trace deterministically. Other works, for example [VV06], do model
the structural information about the traffic, but this is usually represented as users,
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sessions, connections and packets causing the approach to be application-specific.
Additionally, in [VV06], there is no intention for flexibility of representation of the
traffic, so that the trade-off between model size and accuracy of representation
cannot be selected.
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Network Performance Abstractions
Managing the end-to-end performance in modern virtualized data center infras-
tructures is a challenging task and may be difficult to be addressed manually.
Multiple management-related questions may appear, as presented in Section 1.2.1.
Answering such question requires to consider the system in a changed state with
respect to the current one. However, introducing the changes on a running system
may cause service outages and lead to service level agreement (SLA) violations,
therefore it is required to predict the impact of such changes considering the
system run-time. I refer to this as online performance prediction, that is, I assume,
that the user can observe the running system and build a model based on the
observed data. The model can be later used to conduct a what-if analysis with-
out reconfiguration of the real system. The requirements for online performance
prediction are presented in Section 1.2.1.

In this chapter, I propose new data center network performance abstractions for
use in online scenarios in the form of a descriptive meta-model called Descartes
Network Infrastructure (DNI). The DNI meta-model provides a new approach
to model: (1) performance-relevant aspects of a network, (2) the performance of
networks based on Software-Defined Networking (SDN) and Network Function
Virtualization (NFV), and (3) load-balancing scenarios in data center networks.

Defining the scope of the proposed modeling language is challenging (see
Section 1.2.1). I aim at finding a balance between the ability to model all important
performance-relevant factors and the generic character of the meta-model. Including
more detail in the model requires more time, data, and user experience to build
fine-grained network models. On the other hand, abstracting too much information
causes degradation of prediction accuracy.
The presented entities of the DNI meta-model constitute a definition of a new

modeling formalism for run-time performance prediction in the context of data
center networks. In the contrast to other models (as discussed in Chapter 3), DNI
is not separated from the computing and software contexts, so it can be used for
end-to-end performance analysis of modern IT infrastructures (when used together
with Descartes Modeling Language (DML)). DNI is divided into three logical
parts: structure, traffic, and configuration, so that the slightly different parts of the
network infrastructure can be modeled using various tool or using the knowledge
of various experts. The major criteria for the design of DNI are the following.

49



Chapter 4: Network Performance Abstractions

• Separation of concerns: I envision that DNI models can be created (or semi-
automatically extracted) step-wise by engineers having expertise in different
areas. To this end, the DNI meta-model is divided into three parts: (a)
structure (modeled, e.g., by technical personal of a data center) describing the
network topology, servers, and virtual machines; (b) configuration (modeled,
e.g., by a data center manager) describing the protocols, algorithms, and
routes of the network; and (c) traffic (modeled, e.g., by software engineers)
describing the deployment of the software components on servers and
specifying the characteristics of the traffic sources.

• Wide applicability: the modeling approach should be applicable to the major
types of network infrastructures used in today’s data centers. Finding a
balance between the generic nature of the meta-model and the accuracy of
the provided performance predictions is one of the main challenges addressed
in this work.

• Support for network virtualization: the DNI meta-model should support
describing virtualized network infrastructures. To demonstrate this ability, I
apply the approach in the context of SDN. I include SDN-specific modeling
elements to increase the expressiveness of the meta-model in the SDN domain
without sacrificing its generic character.

• Integration with DML: the DNI meta-model should be integrated with DML
to enable end-to-end performance analysis of the software, computing, and
network infrastructure in a data center. DML is a sister-language for DNI
that targets software architecture and servers virtualization.

The remainder of this chapter is organized as follows. In Section 4.1, I introduce
the DNI meta-model focusing on the modeling of classical, non-virtualized network
infrastructures. In Section 4.2, I extend the meta-model for modeling classical
networks and present new entities used for virtualized networks (based on SDN
and NFV). Section 4.3 discusses the flexibility of building DNI model with various
level of detail to balance between the fine and coarse granularity of the model.
Next, in Section 4.4, I present an approach to integrating the DNI meta-model
with the DML meta-model, so that the models can jointly represent a data center.
Finally, Section 4.5 summarizes this chapter.

4.1 Modeling Classical Networks
In this and the following sections, I present the DNI meta-model. To efficiently
represent its elements in text, I use the following notation: the meta-model entities
are presented using verbatim font face, (e.g., Node or End Node as combination of
two entities: Node and End). Class attributes and objects are presented using italics,
for example: DatabaseServer is a Node having NetworkInterface named eth0 that
has interfaceThroughput of 100Mbps. On the other hand, in the diagrams, I use the
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classical notation similar to Unified Modeling Language (UML) (stemming from
Essential Meta-Object Facility (EMOF)) where italics denote abstract entities.

– datacentername: String

NetworkInfrastructure

NetworkStructure NetworkTraffic NetworkConfiguration

111

Figure 4.1: Root of the DNI meta-model.

The root element of the DNI Meta-model (NetworkInfrastructure) connects
three main parts: network structure, traffic and configuration (see Fig. 4.1).
To analyze the performance of any network infrastructure, one must know
how the network is physically built (NetworkStructure), how it is configured
(NetworkConfiguration) and how it is used (NetworkTraffic).

– address: String
– protocolRef: Protocol

Address

AddressableEntity

Entity

– name: String
– description: String

NamedElement

– uid: String

Identifier

0..*

Figure 4.2: Core of the DNI meta-model: Entities.

DNI contains various kinds of entities. An Entity is named (NamedElement) to
allow the user to assign an understandable name for each element and optionally
provide additional description. From the modeling perspective, the entities are
identifiable (using Identifier), so that each object can be distinguished from the
others even if the set of object names is non-unique. Moreover, some entities can
be additionally addressed using network Address as some users may prefer to
identify the objects in this way. The core part that describes entities in the DNI
meta-model is presented in Figure 4.2.

Every numeric value in the model is modeled as a Dependency—presented
in Figure 4.3. A Dependency represents a Variable (constant or random) or a
Function. Additionally, each Dependency can be accompanied with a DNIUnit

that represent processing performance (SpeedUnit), data size (DataUnit), or time
(TimeUnit). Examples of a Dependency can be the following parameter value
descriptions: “exponentially distributed with mean value of 100ms”, or just “5Mbps”.
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– value: double

ConstantDoubleVariable

FunctionVariable

RandomVariable

0..1

cdf
1

none
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G

«enumeration»

UnitPrefix

bytesPerSec
bitsPerSec
packetsPerSec

«enumeration»

Speed

s
ms
us

«enumeration»

Time

– unit: Time

TimeUnit

– prefix: UnitPrefix

DataUnit

– unit: Speed
– prefix: UnitPrefix

SpeedUnit

– getValue()

Dependency

– value: long

ConstantLongVariable

DNIUnit

– lambda: double

ExponentialFunction

Figure 4.3: In the DNI meta-model, Dependencies are used to model numeric
values and functions.

4.1.1 Network Structure

NetworkStructure represents the physical and logical network structure of a data
center. The user should start building a DNI model by defining the topology of the
network. The simplest representation of a network is a Node. A Node represents
any computing, storage, or networking device as long as it has NetworkInterfaces
or can host applications. To enable prediction, the solvers used by DNI require to
use at least a single NetworkInterface via which traffic is traversing.

The DNI meta-model representing the network structure is depicted in Figure 4.4.
For now, I abstract the SDN-related entities; they are discussed in Section 4.2.

Node

The NetworkStructure is a graph consisting of Nodes and Links connected through
NetworkInterfaces. I assign a IPosition to a Node to indicate its role in the
topology. An End Node represents a device (physical or virtual) that produces
or consumes network traffic but does not forward it. On the other hand, an
Intermediate Node forwards traffic but does not produce nor consume any (an
exception to this rule is described in Section 4.2). A Node can be also have both
IPositions simultaneously (i.e., End Intermediate Node) to represent a node that
forwards and produces or consumes the traffic. I distinguish End Nodes (e.g.,
virtual machine, server) and Intermediate Nodes (e.g., switch, router), because
their performance descriptions are different, for example, end nodes do not utilize
information about forwarding performance. Moreover, only End Nodes can host
CommunicatingApplications.
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1..*

software

– forwardingLatency: Variable
– switchingCapacityPPS: Variable
– forwardingBandwidthBPS: Variable

IntermediatePerformance

NetworkStructure

End

CommunicatingApplication

NetworkInterface

Link

– softwareLayersDelay: Variable

EndPerformance

– isUp: boolean
– packetProcessingTime: Variable
– interfaceThroughput: Variable

NetworkInterfacePerformance

– propagationDelay: Variable
– maximalSupportedBandwidth: Variable

LinkPerformance

0..*

– isPhysical: boolean

Node

Intermediate

IPosition

0..1

0..10..1

connects

20..*

0..*

hosts
0..*

0..1

0..1

0..1

Figure 4.4: DNI meta-model of network structure.

To represent virtual and physical Nodes, I propose the hosts relation, that allows a
Node to be hosted on another Node. The Node’s property isPhysical is automatically
derived and tells if a node is virtual or physical. According to the Figure 4.4, any
two Nodes can be connected with a Link over NetworkInterfaces. I limit the valid
connections of virtual in the following way: A virtual Node can be connected only
to the physical not that hosts it or to other virtual nodes that share the same host. This
constraint is implemented using Object Constraint Language (OCL) to disallow
building invalid models.

The performance description of an End Node and an Intermediate Node dif-
fer from each other. The EndPerformance describes coarsely the delay that is
incurred by the software layers (parameter softwareLayersDelay), whereas the In-

termediatePerformance concerns the performance of forwarding. The forwarding
performance is described using the following parameters:

• forwardingLatency, which is added to every forwarded data unit;
• switchingCapacityPPS, which describes how many data units can be processed

in an unit of time (expressed in units packetsPerSec);
• and forwardingBandwidthBPS, which describes how much data the forwarding

engine can handle (expressed in units bitsPerSec or bytesPerSec).

The PPS and BPS suffixes serve as suggestions for the modeler which units
should be used. The meta-model itself does not forbid setting incorrect units.
Enforcing to do so at the meta-model level would make it more complex, so the
allowed units are defined using OCL constraints.

The total forwarding delay of an Intermediate Node is calculated in the model
transformations. The calculations are suggested to follow the following recom-
mendations. Let df (msg) denote the total forwarding delay of a message msg of
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size size(msg) on a node, f_latency denote forwardingLatency, capacity switching-
CapacityPPS, and bandwidth the forwardingBandwidthBPS. Assuming, that the unit
of size(msg) and bandwidth is consistent (bits and bitsPerSecond or bytes and
bytesPerSecond), the total forwarding delay is expressed by the Equation 4.1. The
forwarding delay does not include the delays incurred by NetworkInterfaces.

df = f_latency +max(
1

capacity
,

fb

size(msg)
) (4.1)

Intermediate Node

End Node

App App App

a) b) d)c) e)

App

Figure 4.5: Example of various Node IPositions combinations: a) intermedi-
ate, b) end, c) end+intermediate (receiver), d) end+intermediate (sender), and e)
end+intermediate (forwarder).

The forwarding delay is calculated differently for a node that is an End and
Intermediate at the same time. Possible combinations of Node IPositions are
depicted in Figure 4.5. For example, a switch based on NFV (Fig. 4.5e), the
forwarding delay is calculated as in Equation 4.2, where s_latency is the value of
the softwareLayersDelay parameter.

df = 2 ∗ s_latency + f_latency +max(
1

capacity
,

fb

size(msg)
) (4.2)

On the other hand, in case b) and c) the forwarding does not happen, so the
total node delay equals s_latency, whereas in case d) the total delay is the sum of
s_latency and df as presented in Equation 4.1.

Note that all performance parameters are specified as Variable and in some
cases might be specified as random variables or functions. This allows various
modeling approaches and gives the modeler freedom to select the most suitable
one. Moreover, the model-to-model transformations that use DNI as input may
interpret the performance parameters differently or even do not support some
combinations of the parameters.
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Network Interface

DNI Nodes are connected using NetworkInterfaces and Links. The performance
description of a NetworkInterface (entity PerformanceNetworkInterface) in-
cludes: isUp flag, interfaceThroughput, and packetProcessingTime. The parameters
are understood as follows:

• isUp: if set to false, all traffic directed to this interface will be dropped;
• interfaceThroughput: defines the throughput of the interface, usually specified

using bps units;
• packetProcessingTime: adds a constant delay to every data unit traversing this

interface. The delay is applied additionally to the delay that is calculated
based on the interfaceThroughput parameter.

Moreover, the traffic traversing a NetworkInterface is decapsulated or encap-
sulated using the dataPayload information from the NetworkProtocols that the
NetworkInterface implements. The connection between NetworkInterface and
NetworkProtocol in the meta-model is depicted in Figure 4.6. Every NetworkIn-

terface is a AddressableEntity, which has a reference to the NetworkProtocol

that provides the address and thus sets the dataPayload and packetOverhead val-
ues. If a NetworkInterface has more than one address, the packetOverhead is
calculated as a sum of the packetOverheads provided by the protocols in the Proto-

colStack that is referenced by the addresses. As a NetworkProtocol may belong
to various ProtocolStacks, the relevant protocol is referenced directly from the
NetworkInterface using the usedProtocolStack parameter.

NetworkInterface

– isUp: boolean
– packetProcessingTime: Variable
– interfaceThroughput: Variable

NetworkInterfacePerformance

0..1

– address: String

Address

AddressableEntity

Entity

0..*
NetworkConfiguration

1
protocolRef

0..1

ProtocolStack

1..*
– dataPayload: integer
– packetOverhead: integer

NetworkProtocol 1..*

ProtocolLayer
implements

carries
0..1

ProtocolsRepository

1

usedProtocolStack 1

1

Figure 4.6: Relation between NetworkInterface and NetworkProtocol in the DNI
meta-model. Dotted entities originate from the NetworkConfiguration part of the
DNI meta-model (presented in Section 4.1.3).

Link

In DNI, Link represents a physical or virtual medium over which the traffic is
transfered. A Link is virtual if it connects NetworkInterfaces that belong to at least
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one virtual Node; otherwise, the Link is considered physical. Physical Link have
the performance constrained by the propagationDelay that is limited by the speed
of causality (also known as the speed of light). The maximalSupportedBandwidth
is provided for the comfort of the user and is supposed to be less exact than
the propagationDelay. The propagationDelay and maximalSupportedBandwith may be
propagated back (or forward) to the connected NetworkInterfaces in a model-
to-model transformation. For example, the NetworkInterface.packetProcessingTime is
increased by the value of Link.propagationDelay and the Link.propagationDelay is set
to 0.

4.1.2 Network Traffic

In a data center, most of the network traffic is generated by deployed applications.
As depicted in Figure 4.7, in the DNI meta-model, network traffic is generated by
TrafficSources that originate from CommunicatingApplications. Communicatin-

gApplications are deployed on End Nodes. Each TrafficSource generates traffic
Flows that have exactly one source and possibly multiple destinations. The Flow

destinations are located in CommunicatingApplications, so they can be uniquely
identified. Each TrafficSource can generate a set of Flows. The information
about the precise transmission time of a flow is modeled in the workload model.

deployedOn

1NetworkTraffic

– dataSize: Variable

GenericFlowTraffic

p
CommunicatingApplication

1

End (Node)

software

0..*
TrafficSource

trafficSources

originatesFrom 0..1

1..*Workload

GenericWorkload

Action

0..*

– numIterations: Variable

Loop

Branch

Sequence– waitTime: Variable

Wait

Transmit

Stop

Start

1..*

1 1..*

0..* 0..*

Flow

destination

1..*

1

transmits

ordered

FlowTraffic

0..*

generatedTraffic

source

1
1..*

0..*

flows

Figure 4.7: DNI meta-model of network traffic.

DNI supports modeling of open workloads. Currently, DNI supports a Generic-

Workload but the set of supported workload models can be extended to support
more compact (and thus probably more abstract) alternative descriptions (e.g.,
as presented in [vKHK14, Ada97]). A GenericWorkload consist of Actions that
include Wait, Transmit, and additional meta-actions and containers: Start, Stop,
Loop, Branch, Sequence. The actions Start, Stop, and Sequence play important
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role for modeling languages that do not provide containers with order relation. An
example of a workload is presented in Figure 4.8 using object diagram.

– 

picture_storage: 
CommunicatingApplication

– 

Cam1: CommunicatingApplication

– 

Cam1: TrafficSource

–

transmit-1: Flow-destination

– 

Cam1: GenericWorkload

– 

: Start

– numIterations: 5000

: Loop

– 

: Stop

-actions[] {ordered}

– numSlots: 2

: Sequence

– waitTime: 
Exponential(100ms)

: Wait

– 

: Transmit

-intern[] {ordered}
-transmits

-workload – dataSize: 400KB

: GenericFlowTraffic

Figure 4.8: Example of the DNI model presenting the workload. Depicted using
the UML object diagram.

The example in Figure 4.8 represents a fragment of a system where cameras
take pictures and transmit them to the storage. The Cam1 application takes 5000
pictures, each every 100 milliseconds on average (the wait-time is exponentially
distributed), and sends it to the picture-storage application. Each picture is modeled
deterministically as data of constant size 400KB. Note that the traffic model does
not define the path (or route) which is used for transmission.

Moreover, the Flow entity is a pair of source and destinations. Flow does not
include any other traffic characteristic. Thanks to this, it is a flexible modeling
element, as all other descriptions of the traffic characteristics (data size and the
workload pattern) are modeled orthogonally. Each flow can be described by
means of various flow descriptions; currently DNI supports a GenericFlowTraffic

description that captures the size of transferred data. The meta-model can be
extended to support other traffic models from the literature, for example, presented
in [FHH02, KMF04].

4.1.3 Network Configuration

The third part of the DNI meta-model—NetworkConfiguration—contains the
information about network paths, protocols, and protocols stacks. The model
represents a snapshot of the current network configuration. This assumes that, for
example, the routes in the network are modeled statically for a given moment of
time. DNI does not support dynamic routing as this would require including more
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detailed information in the model (e.g., routing algorithms), which is intentionally
abstracted here.

NetworkConfiguration

ProtocolStack

1..*
– isDefault: bool
– probability: Variable

Direction

1

– dataPayload: integer
– packetOverhead: integer

NetworkProtocol

1..*

ProtocolLayer

1

implements

carries
0..1

RoutesRepository

Node

Flow

NetworkInterface

onNode

1

flow
1

via

1

ProtocolsRepository

1

1..*

Figure 4.9: DNI meta-model of network configuration. Entities in dotted boxes
represent the entities form the other parts of the DNI meta-model.

The network-configuration meta-model is presented in Figure 4.9. In the meta-
model, a route or network path is represented as a set of Directions. Each
Direction consists of three references to: Node, NetworkInterface, and Flow.
It should be read as: On node onNode, the flow flow should be forwarded over
network interface via with probability probability. Note that the flow includes
the information about its destination, so it does not need to be specified in the
Direction. The probability defines the behavior of load balancing on the node. It
is required that the sum of destination probabilities for a given node and flow is
larger than 0. The probabilities may be normalized in the model transformations
(presented in Chapter 5) if they do not sum up to 1.

An exemplary fragment of the DNI model is presented in Figure 4.10. The
traffic flows from App1 to App2 via nodes N1, N2, N3, to node N4. The included
object d: Direction presents a fragment of the path configuration that says that the
flow f on node N2 should be forwarded via port p1 with probability 0.5. This rule
affects the half of the forwarded traffic. It is not said what happens with the other
half; by default it will be dropped. Some model-to-model transformations may
normalize the probabilities and interpret this as the entire traffic will be forwarded
via p1. It is important that each transformation clearly specifies the way in which
this parameter is handled.

A ProtocolStack is an ordered set of ProtocolLayers, where each Proto-

colLayer references a single NetworkProtocol. The NetworkProtocol itself is
described in a minimal way by specifying the overhead introduced by the protocol
(parameter packetOverhead) for each portion of data (parameter dataPayload). The
overhead may also include other factors as, for example, the retransmissions of lost
data units if the modeled protocol offers delivery guarantee (e.g., the Transmission
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N2 N3

Node

N4N1

p1

p2

eth0eth0

p1

p2

p0
p0

NetworkInterface

Link

CommunicatingApplication

App2App1
– source: App1
– destination: [App2]
– generatedTraffic: …

f1: Flow

– onNode: N2
– flow: f1
– via: p1
– probability: 0.5

d: Direction

Figure 4.10: Example presenting a fragment of a DNI instance using both: unofficial
graphical notation and object diagram elements. The Direction d defines that half
of the traffic from App1 to App2 should be routed via port p1 on node N2.

Control Protocol (TCP)). For example, a NetworkProtocol with dataPayload=1500B
and packetOverhead=42B adds 42B overhead to each 1500 bytes of data payload
block. At the lowest layer of the protocol stack, the packetOverhead should include
not only the data unit headers (e.g., 22 bytes for Ethernet II) but also all interframe
gaps, preambles, and start-of-frame delimiters (20 bytes in total for Ethernet II).
The calculation of the total overhead of a protocol stack is conducted in the model
transformations.

4.2 Modeling SDN Networks

In this section, I present the SDN extensions to the DNI meta-model. Each of
the three parts: structure, traffic, and configuration is presented again in a wider
context. I focus in the description on the newly added entities that are relevant
for SDN-based networks.

4.2.1 Processing in an SDN Node

The DNI representation of network traffic processing in the SDN mode approx-
imates the behavior of a real SDN node. In this section, I present the main
differences between the SDN and the native traffic processing. The foundations of
SDN processing are described in Chapter 2, Section 2.2.1. For each Node in DNI, I
define four processing possibilities.

1. Native: when SDN is disabled or not supported by the node.
2. Hardware SDN switching: takes place when the modeled node contains

a hardware flow table and the SDN rule that matches the incoming flow is
located in this table.
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3. Software SDN switching: takes place when the modeled node contains a
software flow table (usually implemented in SDRAM of the node) and the
SDN rule that matches the incoming flow is located in this table.

4. Processing in the SDN controller: no SDN rule can be found in the flow
tables of the node, so the forwarding decision has to be made by the SDN
controller.

The native behavior is described in detail in Section 4.1. In the following
sections, I describe how the proper SDN processing mode is selected and how the
forwarding is conducted.

4.2.2 Network Structure

The NetworkStructure part of the meta-model was extended by the IType entity
that defines the type of Node either as Common or SDN. In this section, I focus on
the SDN Node. The SDN Node can process traffic using hardware- and software flow
tables, for which the performance is described using hardware- and softwareSwitch-
ingPerformance parameters respectively. Lack of any of these performance properties
means that the respective switching mode is not supported by the node. In an
extreme case when both parameters are not set, a warning shall be returned to the
user and, by default, an infinite performance should be assumed. The meta-model
including the SDN-relevant entities is presented in Figure 4.11.

1..*

software

– forwardingLatency: Variable
– switchingCapacityPPS: Variable
– forwardingBandwidthBPS: Variable

IntermediatePerformance

NetworkStructure

End

CommunicatingApplication

NetworkInterface

Link

– softwareLayersDelay: Variable

EndPerformance

– isUp: boolean
– packetProcessingTime: Variable
– interfaceThroughput: Variable

NetworkInterfacePerformance

– propagationDelay: Variable
– maximalSupportedBandwidth: Variable

LinkPerformance

0..*

– isPhysical: boolean

Node

IType
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IPosition

SDNCommon

1

0..1

SdnNodePerformance
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0..*
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0..*

0..1
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softwareSwitchingPerformance

hardwareSwitchingPerformance

0..1 0..1

0..1

0..1

SdnController
– isDefault: boolean

SdnControllerApplication

0..*

– responseDelay: Variable

PerformanceSdnApplication

0..1

controller

0..1

– probabilityHardware: Variable = 1.0
– probabilitySoftware: Variable = 0.0
– probabilityController: Variable = 0.0

SdnFlowRule

0 *
NetworkConfiguration

controller
Application
0..1

switch

Flow
1

1

0..*

openFlowEndPoint

1

Figure 4.11: Meta-model of network structure with SDN entities included (in gray).
Dotted entities represent other parts of DNI.
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Traffic arriving to an SDN Node should be forwarded using one of three SDN
forwarding modes: hardware, software, or via the controller. The selection of
the forwarding mode is based on the SdnFlowRules. An SdnFlowRule defines the
probability for the given flow, on a given node to be forwarded using the: software
switching mode, hardware switching mode, or the SDN controller.
The probabilistic modeling of the SDN node behavior is an abstraction of a

complex real behavior. In DNI, the probabilities define the chance that a message
(defined by the GenericFlowTraffic in NetworkTraffic) is processed using the
given mode. In the reality, the node may forward first packet of each flow to
the controller to request a decision regarding the forwarding mode. The decision
is later applied for all packets that belong to the same flow and arrive before a
timeout occurs. In DNI, this behavior is modeled more coarsely as a result of
finding a balance between the extremes of modeling granularity.

A message arrives 
to a node N

Sdn Flow Rule 
for flow F and 

node N exists?

STOP
Drop packet

Split the traffic 
according to the 
probabilities from 

SdnFlowRule

N.iType=SDN?

packet from 
SdnController?

Apply Intermediate 
Performance

no

yes Apply hardware Sdn 
Switching 

Intermediate 
Performance

no
yes

Apply software Sdn 
Switching 

Intermediate 
Performance

Forward to the 
SdnController

Forward packet to the 
output port based on 

the Direction

no
yes

START

STOP

Figure 4.12: Flow diagram for forwarding in a DNI Node.

The processing of incoming traffic in an SDN Node is presented using a flow
diagram in Figure 4.12. After a message arrive to the node, the type of the
node is analyzed. For a Common Node, the normal IntermediatePerformance is
applied and the message is forwarded to the output port. For an SDN Node the
processing continues. In the next step, the node checks if the message originates
from the SDN controller. If no, the node makes a rule lookup and selects a
SdnFlowRule that matches the flow and the node. If the node is unable to find any
SdnFlowRule the message is dropped. In the other case, the SdnFlowRule is read
and the probabilities are used to select the processing mode. Then, the message is
forwarded according to hardware, software, or SDN controller processing. If the
message is forwarded to the controller the processing is paused and a packet-in
message is forwarded to the controller. The processing in the node is paused until
the controller responds with a flow-mod message. If a flow-mod message arrives
back to the node, the paused message is processed further using the arbitrarily
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chosen hardware switching mode. Arbitrarily selecting the hardware processing
mode is an approximation of the real behavior.

Packet arrived to the 
SDN controller

Select Sdn Controller 
Application based on 

SdnFlowRule

Apply Performance Sdn 
Application response 

delay
Send back to the node

Figure 4.13: Flow diagram for processing a packet-in request in an SDN controller.

The processing of packet-in messages in the SdnController is approximated as
presented in Figure 4.13. Once the packet-in message arrives to the controller, the
proper SdnControllerApplication is selected (based on the SdnFlowRule), the
processing delay is applied (defined in PerformanceSdnApplication entity) and
the flow-mod message is returned to the node. The transmission of the flow-mod
and the packet-in messages is conducted according to the topology and directions
specified in the rest of the DNI model.

4.2.3 Network Traffic
The NetworkTraffic part of the SDN DNI meta-model includes three new en-
tities: SdnController, SdnControllerApplication, and PerformanceSdnApplica-
tion. Both SdnController and SdnControllerApplication inherit form Communi-
catingApplication and are deployed in End Nodes. SdnController is a container
for SdnControllerApplications. SdnController normally does not generate traffic
by itself (although it is not forbidden in DNI). SdnControllerApplications repre-
sent the behavior of the SDN Controller, which can handle each flow differently.
In DNI, the behavior of the controller is modeled in a black-box manner by coarsely
specifying the delay between receiving a packet-in messaged and responding with
a flow-mod message. The PerformanceSdnApplication entity is depicted in Fig-
ure 4.14 using dashed line, because it approximates the more detailed software
description offered normally by DML.

Each SDN Node may communicate with the SdnController using the same infras-
tructure as the other DNI nodes. A Flow must be defined for the communication
between an SDN Node and the SDN Controller. Defining a Flow requires both
nodes to host CommunicatingApplication, but only End Node is allowed to do so.
To allow communication of any SDN Node with the SdnController, I introduce
the openFlowEndPoint. The openFlowEndPoint allows to “deploy” a Communicatin-
gApplication on an SDN Node disregarding its IPosition. In this way also the
exchange of packet-in flow-mod messages can be conducted over a path (defined by
Direction entities) that is defined in the configuration part of DNI.

4.2.4 Network Configuration
The SDN version of DNI’s NetworkConfiguration includes a set of SdnFlowRules
that were discussed in Section 4.2.2. An SdnFlowRule connects a Node and a Flow
with an SdnControllerApplication. It defines also the probabilities that specify

62



4.2 Modeling SDN Networks

deployedOn
1

NetworkTraffic

– dataSize: Variable

GenericFlowTraffic

CommunicatingApplication

1

End (Node)

software

0..*
TrafficSource

trafficSources

originatesFrom 0..1

1..*Workload

GenericWorkload

Action

0..*

– numIterations: Variable

Loop

Branch

Sequence– waitTime: Variable

Wait

Transmit

Stop

Start

1..*

1 1..*

0..* 0..*

Flow

destination

1..*

1

transmits

ordered

FlowTraffic

0..*

generatedTraffic

source

1 SdnController

– isDefault: boolean

SdnControllerApplication

– responseDelay: Variable

PerformanceSdnApplication

0..1

0..1

0..*

controller

1..*

SDN (Node)

openFlowEndpoint
1

0..*

flows

Figure 4.14: The DNI meta-model of network traffic with SDN entities included
(in gray). The dashed entity PerformanceSdnApplication is a simplified represen-
tation of software component performance description that can be modeled using
DML.

the forwarding mode of an SDN Node. SdnFlowRule do not apply to Common Nodes.
The SDN version of DNI’s NetworkConfiguration is depicted in Figure 4.15.
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Figure 4.15: The DNI meta-model of network configuration with SDN entities
included (in gray).
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4.3 Flexibility of Modeling
DNI meta-model offers high degree of modeling freedom. Many performance-
related parameters can be left unspecified without violating the validity of a model.
I present the flexibility of instantiating of the DNI meta-model in Section 4.3.1.
Despite the high level of abstraction of DNI, still many parameters are required to
build a DNI model. To reduce the amount of the required input data, I propose
a smaller version of the DNI meta-model called miniDNI. I present the miniDNI
meta-model in Section 4.3.2.

4.3.1 Flexibility in Building DNI Models
A valid instance of the DNI meta-model can be build in many ways. Providing a
valid model guarantees that the model transformations (described in Chapter 5)
will be able to analyze and transform it. The set of model transformations that
support DNI is unbound, so it cannot be guaranteed that each valid DNI model
will be transformed or solved if a given transformation does not support a part of
the DNI model. This aspect is discussed in more detail in Chapter 5.
The DNI meta-model offers a lot of flexibility already in the modeling phase.

Several parts of the meta-model give freedom to the modeler to pick the proper
level of details. The options from which the modeler can choose have been
depicted as a tree in Figure 4.16.

Flexibility in building DNI models

Traffic Structure

Background traffic

Yes No

Flow sizes

single binmany 
bins

Performance
descriptions

Yes No

How detailed? How many? How detailed? How many?

Traffic workload
overheads 

Yes No

How detailed?

Figure 4.16: Flexibility in building DNI models.

The modeler may choose the level of detail for the DNI model based on the
answers to the following questions. (1) How detailed the traffic workload overheads
may be modeled (usage profile versus usage profile with overheads)? (2) Shall
model background traffic be modeled? If yes, then how detailed? (3) How to group
the sizes of flow messages? (4) How many performance descriptions to include in
the DNI network structure elements? (5) How detailed the structure performance
descriptions should be (e.g., vendor-provided data versus measurement)? In the
following, I present the places in DNI where the user may decide about the
granularity of modeling.
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Skipping Performance Descriptions

Assigning performance description for DNI entities is optional. Performance
descriptions can be assigned to the following DNI entities: End Node, Intermedi-
ate Node, SDN Node, NetworkInterface, Link, and SdnControllerApplication. I
assume, that DNI models can be build step-wise and the elements without per-
formance annotation should be treated as structural information. For this reason,
an element without a performance description is assumed to incur 0 delay and
deliver infinite throughput. Combining elements with and without the performance
description creates a space for the modeler to vary the level of detail of the model.

Accuracy of Modeling Workloads

A workload in DNI is understood as the amount of data that is created in a given
moment of time in a given CommunicatingApplication. Workload (including its
Actions) is the only entity in DNI that represents a time span with contrast to the
other entities, which represent a snapshot of a system’s state in a single moment
of time. The Workload can be specified flexibly, that is, including or abstracting
the following factors: the overheads of the application and the operating system,
background traffic, the exact flow sizes, exact timing of transmission actions.
Workload is an important part of DNI regarding the sensitivity (as demonstrated

in Chapter 7). It means, that excluding selected elements of the workload in the
model may decrease the representativeness of the model and thus degenerate the
performance prediction accuracy delivered by the solvers.

In an ideal case, the modeler defines Workload from the usage profile context.
For example: “Application A generates one message of size 2.47MB every second and
transmits it to application B.”. In an ideal case, such a natural language description
may be directly translated into DNI workload as a Loop that contains two actions:
Transmit a flow of size 2.74MB and Wait one second. In reality, prior to sending,
the messages will be processed by the application, the operating system of the
node, and the network interface. This may reshape the traffic workload of the
application and result in imprecise representation of the traffic, which in result
may lead to lower performance prediction accuracy. Analyzing the overheads
incurred by the application and the operating system (and possibly virtualization
layers) lies not in the scope of DNI and is normally handled by DML. Integration
of DNI and DML will be discussed in Section 4.4.
Preferably, the DNI traffic workload should be captured at the respective net-

work interface. In this way the DNI’s traffic workload represents the real traffic
profile with the highest modeling accuracy which implies also higher performance
prediction accuracy in the end. The modeler decides which elements of the traffic
profile will be included in the DNI’s traffic workload model and which will be
abstracted.

Another example that concerns the flexibility of modeling of the traffic workload
is the background traffic. It is difficult to model the background traffic if it
cannot be precisely measured. For scenarios where the background traffic cannot
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be abstracted, its traffic profile should be automatically extracted. I describe
automated extraction of the DNI traffic workloads in Section 6.2.

Binning of Flow Message Size

The DNI traffic workload is composed of Transmit and Wait actions. Each
transmit action refers to a FlowTraffic, which specifies the size of the transferred
message. Each DNI Flow contains a set of discrete values of its message sizes. The
granularity of the message sizes set can be freely defined by the modeler. One
modeler may measure the message sizes and bin them into predefined set of bins,
for example, 200KB, 210KB, 220KB, whereas another may round up the sizes, treat
the messages as identical approximating their sizes to 210KB.

4.3.2 miniDNI Meta-Model

In the miniDNI meta-model (depicted in Fig. 4.17), I abstract selected parts of DNI.
Regarding the DNI’s NetworkStructure, I removed the NetworkInterface entity,
which is merged now with the Link. The performance of a Link in miniDNI is
described using throughput and delay. The performance descriptions of various Node

aspects are merged into a single object NodePerformance. The NodePerformance

includes softwareLayersDelay and four throughput specifications, each for the fol-
lowing forwarding modes: native mode (non-SDN), software SDN, hardware SDN,
and via SDN controller. The performance of an SDN controller is now represented
using a single parameter that abstracts DNI’s SdnControllerApplications and
the path between a node and the controller.
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Figure 4.17: miniDNI meta-model with SDN entities included (in gray).

The CommunicatingApplications are abstracted and represented as Traffic-

Sources. However, miniDNI’s TrafficSource is less detailed than the DNI’s
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TrafficSource. A TrafficSource in miniDNI generates workload that uses a
concept of “messages” without enforcing specific interpretation of the message.
As a possible interpretation of a message, I understand, for example: a picture, a
database transaction. A workload generated by a TrafficSource is described by
using two parameters: bytesPerMessage and messagesPerSecond.
The configuration of a network is modeled using two entities: Route and

FlowTable. A Route is an ordered list of Nodes with distinguished start and end
(which can be derived automatically for the convenience of the modeler). Each
TrafficSource follows a Route that it refers to. A FlowTable is used only in
SDN setups and represents the mapping of a TrafficSource, a Node, to one of
four processing modes: native (non-SDN), SDN with hardware flow table, SDN
with software flow table, and SDN over the controller. miniDNI does not support
specifying the probabilities that describe the chance of being forwarded using
a given mode. The traffic from a TrafficSource is forwarded deterministically
using the predefined forwarding mode that is specified in the FlowTable.

Table 4.1: Comparison of the differences in modeling granularity between the DNI
and the miniDNI meta-models.

Modeling detail DNI miniDNI
Traffic patterns yes no, flat traffic
Packet-level traffic yes no, coarse messages
Network Protocols yes no
SDN support yes, probabilistic yes, deterministic

In Table 4.1, I present the main differences in modeling granularity between
the DNI and the miniDNI meta-models. In contrast to DNI, miniDNI models
the traffic at the level of messages. Using messages instead of packets flattens
the traffic profile by aggregating the traffic in one-second intervals and thus
destroys any bursts or peaks in the traffic profile. The NetworkProtocols are
not modeled in miniDNI, thus their overheads need to be aggregated into other
performance-relevant parameters. miniDNI supports SDN networks, however only
using deterministic mapping of flows to predefined flow tables in the nodes. I
present miniDNI model-transformations in Chapter 5 and evaluate the performance
prediction accuracy of the generated predictive models in Chapter 7.

4.4 Integration of the DNI Abstractions with
Descartes Modeling Language

DNI extends DML in a natural way. Both meta-models represent complementary
parts of a data center: DNI models the networks, DML models the computing
and software parts. DNI and DML can be used separately as well as together to
jointly represent a data center.

In this section, I present the relation between DNI and DML. First, I present an
overview of the DML in Section 4.4.1, next I analyze the overlapping parts and
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propose the mapping of the data center structure in Section 4.4.2, the applications
in Section 4.4.3, and the network workload in Section 4.4.4. In Section 4.4.5, I
summarize the mappings between the models and propose a Network Deployment
meta-model that binds DML and DNI meta-models. Next, in Section 4.4.6, I
demonstrate the integration on an example.

4.4.1 Overview of Descartes Modeling Language

System Architecture Model

Application Architecture Meta-Model

B
A

C

Resource Landscape Meta-Model

<<Container>>
Node1

<<Container>>
Node3

<<Container>>
Node2

Deployment

Usage 
Profile

<<InternalAction>>
ResourceDemand

Figure 4.18: Overview of DML’s structure. Excerpted from [Bro14b].

Brosig [Bro14b] describes DML as follows. “The system architecture meta-model
consists of the application architecture meta-model and the resource landscape
meta-model. The resource landscape meta-model allows modeling the physical and
logical resources (e.g., virtualization and middleware layers) provided by modern
dynamic data centers [HBK12]. The application architecture meta-model allows
modeling the performance-relevant service behavior of the applications executed
in the resource landscape [BHK14, BHK12]. These two meta-models are connected
with the deployment meta-model, which can be used to describe how software
components are deployed. The usage profile meta-model can be used to describe
how users access the hosted applications.” An overview of DML is presented in
Figure 4.18. In the following sections, I present how I extend the Deployment part
of DML to allow integration with DNI.

4.4.2 Data Center Structure
DML and DNI are both located within the data center context. Both meta-models
represent selected aspects of physical and virtual elements of a data center structure.
DML uses the Resource Landscape to represent computing nodes, storage nodes,
and virtual containers. DNI uses the Network Structure part to describe physical
and virtual nodes (including network nodes) that are connected with network
links.
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DML’s Resource Landscape meta-model is presented in Figure 4.19 and 4.20. It
describes a DistributedDataCenter that consist of DataCenters. A DataCenter

contains Compute- and StorageNodes that can be organized hierarchically in a
CompositeInfrastructure. Some DNI and DML entities overlap with each other.

template

0..*

1..*
Container

DataCenter

DistributedDataCenter

ComputeNode StorageNode

CompositeInfrastructure

0..1

– ofClass: RuntimeEnvironmentClasses

RuntimeEnvironment

0..* 0..*

0..*
ConfigurationSpecification

0..*

ContainerTemplate

runningOn
referingContainers 0..* 0..*

0..*

HYPERVISOR
OS
OS_VM
PROCESS_VM
MIDDLEWARE
OTHER

«enumeration»

RuntimeEnvironmentClasses

Figure 4.19: DML’s Resource Landscape meta-model. Updated and redrawn based
on [Hub14].

ConfigurationSpecification

ActiveResourceSpecification

2

– bandwidth: double

LinkingResourceSpecification

PassiveResourceSpecification

– schedulingPolicy: SchedulingPolicy
– processingRate : double

ProcessingResourceSpecification

– capacity: Integer

PassiceResourceCapacity

Container
links

0..*0..*1

Figure 4.20: DML’s Resource Landscape meta-model: ConfigurationSpecification.
Updated and redrawn based on [Hub14].

The overlapping entities and the degree to which they overlap is presented in
Table 4.2.

4.4.3 Data Center Applications

The business applications are represents in DML using AssemblyContexts. An
AssemblyContext binds DML’s software components together to form a Composite-

Component or a System. The software component instances in DML are represented
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Table 4.2: Overlapping entities in DNI and DML—data center structure.
Real entity Server, Switch, Storage, virtual machine (VM)
DNI Node
DML ComputeNode, StorageNode, RuntimeEnvironment
A server, switch, and VM can be represented in DNI using the Node entity. A server is represented
by an EndNode (Node with IPosition=End), a switch as IntermediateNode, and a VM as Node that
is hosted on another Node. It is impossible to distinguish an instance of DML’s ComputeNode form
a StorageNode in DNI—both will can be represented with End Node. Only specific DML’s
RuntimeEnvironments can be mapped to DNI’s Nodes. DNI requires a Node to be able to have
network interfaces, so only a RuntimeEnvironment ofClass=OS_VM can represent a Node that is
hosted on another Node (a virtual machine). RuntimeEnvironments of other classes are ignored by
DNI.
Real entity Network Connection, Network Cable/Medium
DNI Link, NetworkInterface, Node
DML LinkingResourceSpecification
DML represents the network as a black-box using the LinkingResourceSpecification that binds
two Containers. The network path between two containers can include a single or multiple
network links. This can be expressed as a chain of the following DNI entities
NetworkInterface-Link-NetworkInterface-Node. So a LinkingResourceSpecification abstracts
the network topology and represents a Link or the Network structure depending on the case.

as chains of assembly contexts, because a single component can be deployed mul-
tiple times. In Figure 4.21, I present an example from [Bro14b] to illustrate this.
In the example, there are three component instances—as seen in Figure 4.21b–
composed using two components: a1c0 and a1c3 (Fig. 4.21a).

 sys

a1c1

a1c2

a1c3

a2c1

a1c2

a1c3a1c0

<<System>>
<<Interface
ProvidingRole>>

<<Interface
RequiringRole>>

<<AssemblyConnector>>

<<AssemblyContext>>

<<InterfaceProviding
DelegationConnector>>

(a) Example system instance.

sys

c1c0

a1c0

c1

c2c2

c3 c3

a1c1

a2c1

a1c2 a1c2

a1c3 a1c3

(b) Example system instance as
composition tree.

Figure 4.21: Assembly Context in DML. Excerpted from [Bro14b].

In DNI, the business applications are represented using the CommunicatingAp-
plication entity. A CommunicatingApplication represents a chain of DML’s
AssemblyContexts, that is, a component instance. Component instances that do
not communicate over network are modeled using CommunicatingApplication but
have no TrafficSource in DNI.
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4.4.4 Traffic Workload

Both DML and DNI use the term “workload” but the meaning is different. DML
defines workload as the unit of work representing request to the modeled system.
The workload in DML is represented by UsageProfile meta-model. A workload in
DNI represents the amount of traffic that needs to be transmitted over network. So
DNI’s workload is indirectly caused by DML’s workload. A graphical comparison
of the workloads is depicted in Figure 4.22. Unfortunately, the traffic Workload in

ComputingNode

User

Component
Component

Component

Co

I will call the 
following 

functions …

(a) DML.

Node Node

…

No

I will generate the 
following traffic

Communicating
Application

Communicating
Application

TrafficSource

(b) DNI.

Figure 4.22: Different meaning of workloads in DML and DNI.

DNI cannot be directly mapped to selected DML entities (and vice versa) as the
discrepancy between the representations is too big. Fortunately, the DNI’s traffic
Workloads can be extracted from a DML instance.

Extracting Traffic Volume

Network traffic emerges when a software component calls an interface (a soft-
ware interface) of another software component under the assumption that the
components are deployed on separate nodes. The signature of the called soft-
ware component contains call parameters and return parameters. The size of the
call parameters and the return parameters defines the traffic flow sizes in both
communication directions respectively.

An example is presented in Figure 4.23. The WebShop component instance
deployed on the ApplicationServer requires the interface of the SQLDB component.
By calling the interface, the WebShop transmits data over the network (abstracted
in Fig. 4.23). After processing the call, the SQLDB component returns data to the
caller and thus traffic in opposite direction emerge.

A traffic Workload of DNI’s TrafficSource can be extracted if the following
factors are known: (1) size of the data parameters in the call, (2) size of the
returned data, and (3) moments of the call and the returning of data. This
information is partially included in DML. Selected time aspects may need to be
simulated (solved) to obtain the exact time stamps of the events. I explain how
the three required parameters are represented in DML in the following.

The software components in DML are specified using three levels of granularity.
The ServiceBehaviorAbstraction is presented in Figure 4.24. Each ServiceBehav-
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<<ComputingInfrastructure>>
DatabaseServer

<<ComputingInfrastructure>>
ApplicationServer

<<ActiveResourceSpecification>>

<<ProcessingResourceSpecification>>
 

processingResourceType=CPU
processingRate=2.66  GHz
schedulingPolicy=PROCESSOR_SHARING
numberOfParallelProcessingUnits=2

<<ActiveResourceSpecification>>

<<ProcessingResourceSpecification>>
 

processingResourceType=CPU
processingRate=2.8  GHz
schedulingPolicy=PROCESSOR_SHARING
numberOfParallelProcessingUnits=8

<<AssemblyContext>>
WebShop

<<AssemblyContext>>
SQLDB

<<DeploymentContext>>

Figure 4.23: DML Example. Excerpted from [Bro14b].

InterfaceRequiringEntityInterfaceProvidingEntity

InterfaceProvidingRequiringEntity

BasicComponent

BlackBoxBehavior

CoarseGrainedBehavior

FineGrainedBehavior

Signature

ServiceBehaviorAbstraction

1

0..*

0..*

0..*

InterfaceProvidingRole
1

Figure 4.24: DML’s FineGrainedBehavior. Excerpted from [Bro14b].

iorAbstraction may be described using BlackBox-, CoarseGrained- (Fig. 4.25a),
and FineGrainedBehavior (Fig. 4.25b).
The BlackBoxBehavior contains only the specification of response time of a

service. Based only on a BlackBoxBehavior, the information about outgoing traffic
workload cannot be extracted because the BlackBoxBehavior abstracts external
calls. I can extract the incoming calls as long as they originate from a service
described with Coarse- or FineGrainedBehavior.

In contrast to the BlackBoxBehavior, the CoarseGrainedBehavior and the Fine-
GrainedBehavior represents the external calls (see Fig. 4.25), so the originating
traffic workload can be extracted from services described with these entities.

Each ExternalCall is parametrized with CallParameter and ParameterCharac-
terizationType that contains information about BYTE_SIZE (see Figs. 4.26a and 4.26b).
Calculating the total size of each ExternalCall and combing it with the respec-
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ResourceDemand
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0..*
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(a) CoarseGrainedBehavior.
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ExternalCall
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(b) FineGrainedBehavior.

Figure 4.25: Service behaviors in DML. Excerpted from [Bro14b].

tive behavior descriptions (CallFrequency for CoarseGrainedBehavior and the
ComponentInternalBehavior for FineGrainedBehavior) allows to specify the vol-
ume of traffic originating and ending in a given software component instance.
The calculated traffic volumes shall be used to calculate the DNI’s dataSize of a
GenericFlowTraffic.

CallParameter

ServiceInputParameter

ExternalCallParameter

ExternalCallReturnParameter

ExternalCallInterfaceProvidingRole

1 1 1

(a) CallParameter hierarchy.

VALUE
NUMBER_OF_ELEMENTS
BYTE_SIZE

«enumeration»

ParameterCharacterizationType

(b) CallParameter.

Figure 4.26: CallParameter in DML. Updated and redrawn based on [Bro14b].

Extracting Traffic Profile

The traffic profile in DNI includes time series containing the information about the
moments in which traffic is generated by a service. The service generates traffic
by being called or by calling other services. DML uses the usage profile model to
represent the user interactions with a system. The DML’s usage profile model is
based on Palladio Component Model (PCM) [BKR09]. I present the usage profile
meta-model in Figure 4.27.

The DML’s usage profile is similar to DNI’s Workload model. Both model contain
control-flow entities (e.g., loop, branch), delay entity, and a workload generating
entity. In DML, the workload generating entity is represented with System-

CallUserAction. The SystemCallUserAction generates load by demanding the
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Figure 4.27: Usage Profile Model in DML. Updated and redrawn based on [Bro14b].

service from a given component instance. In DNI, an equivalent of the System-

CallUserAction is the TransmitAction. A TransmitAction generates load in the
form of transmitting a given volume of data over the network. As described in
Section 4.4, the SystemCallUserActions are the causes of TransmitActions and
the latter can be obtained based on the former.

DML allows to represent a usage profile in the form of open and closed workload.
In contrast to this, DNI supports only open workloads, yet according to [SWHB06]
closed workloads can be transformed into open ones.

To build DNI’s traffic Workload, I propose the following procedure.

1. Convert DML’s closed workload into an open workload for the required time
frame (if needed).

2. Identify the chain of SystemCallUserActions and DelayUserAction con-
tained in the usage profile model.

3. For each SystemCallUserAction

a) Unfold the chain of ExternalCalls of the callee in a recurrent manner.
b) Calculate the response time of the called services based on the Ser-

viceBehaviorAbstractions, represent each response time as a DNI’s
WaitAction.

c) Build a TransmitAction for each ExternalCall that originates and ends
in different nodes.

d) Use ParameterCharacterizationType BYTE_SIZE to calculate the size of the
transmitted volume.

The procedure is discussed in more detail in Section 4.4.6, where I demonstrate it
using an example.

4.4.5 Network Deployment Meta-Model

The mapping of DML and DNI entities is presented using the Network Deployment
meta-model that extends the Deployment meta-model of DML. In Figure 4.28,
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I present the Network Deployment meta-model. The original DML Deployment
model (presented in gray in Fig. 4.28) contains DeploymentContext entity that
binds AssemblyContext in DML Application Architecture model (in yellow) with a
Container from DML Resource Landscape.

resourceLandscape

1

1

1

DeploymentContext

AssemblyContext

Deployment

Container

0..*

DataCenter

ComputeNode

StorageNode

RuntimeEnvironment

NodeCommunicatingApplication

NetworkNodeDeploymentContext

networkNode

1

1

NetworkSoftwareDeploymentContext

1

1

DistributedDataCenter
NetworkDeployment

0..*

0..*
Mapping

DML

ComputeNode, 
StorageNode

RuntimeEnvironmentNode.iPosition=any
Node.hostedOn<>NULL 

Node.iPosition=End 
Node.hostedOn=NULL

–

DNI

Node.iPosition=Intermediate
Node.hostedOn=NULL

DML – Deployment

DML – Application Architecture

DML – ResourceLandscape

DNI

DNI – Network Deployment

1

Figure 4.28: NetworkDeployment meta-model as extension of DML’s Deployment.
Respective parts are presented using distinguished colors.

The entities marked in white in Figure 4.28 bind DNI with the current DML
deployment model. The NetworkDeployment contains two types of mappings:
DNI Node to DML Container; and DNI CommunicatingApplication to an Assem-

blyContext in DML. The mapping between DML Container and DNI Node is
annotated with additional context information regarding the types of nodes that
can be mapped to each other. The relation between DML Container and DNI
Node is discussed in Section 4.4.2. Neither the DNI NetworkDeployment nor the
DML Deployment meta-models define mappings of workloads—they need to be
extracted at the model level.

4.4.6 Example

I present the usage of the combined deployment models and the workload
extraction process using a running example. As a basis, I use the DML example
presented in Figure 4.23.

Mapping of Nodes and Applications

The mapping begins with identifying the nodes. The ApplicationServer and Databas-
eServer are modeled using the ComputeNode entity (orange color in Fig. 4.29). This
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maps onto DNI’s End Node. It is unknown if the ApplicationServer and Databas-
eServer are configured to forward traffic, so I do not add the Intermediate entity to
the DNI nodes. The mapping is formalized with NetworkNodeDeploymentContext

entities.

:NetworkNodeDeploymentContextDML – Deployment

DML – Ressource Lands.

DNI

DNI – Network Deployment

ApplicationServer:ComputeNode

DatabaseServer:ComputeNode

:DataCenter

WebShop: AssemblyContext

SQLDB: AssemblyContext

:DeploymentContext

:DeploymentContext

Deployment NetworkDeployment

ApplicationServer: Node

DatabaseServer: Node:NetworkNodeDeploymentContext

NetworkSoftwareDeploymentContext

NetworkSoftwareDeploymentContext

WebShop: CommunicatingApplication

SQLDB: CommunicatingApplication

ApplicationServer: End

DatabaseServer: End

software

software
DML – Application Arch.

Figure 4.29: Example DML model (from Fig. 4.23) mapped onto DNI. Mapping
presented using object diagram.

The ApplicationServer and DatabaseServer host business applications modeled in
DML using AssemblyContext (yellow color in Fig. 4.29): WebShop and SQLDB
respectively. For each DML object representing an AssemblyContext, I create a
CommunicatingApplication in DNI and deploy it on the respective DNI equivalent
of DML’s node: WebShop on the ApplicationServer End Node and SQLDB on the
DatabaseServer End Node. The mapping of AssemblyContexts to Communicatin-

gApplications leverages the NetworkSoftwareDeploymentContext entities. The
DNI’s TrafficSource entities are not created in this step as it is unsure if the
applications generate any network traffic. I demonstrate the workload extraction in
the following.

Extracting Traffic Flows

The example DML model from Figure 4.23 was extended by adding Service Behavior
Description. The extended fragment of the example is presented in Figure 4.30.
The WebShop component is described using CoarseGrainedBehavior, in which one
external call is made. The WebShop calls the SQLDB component to fetch data
from a database. The call is specified using the ExternalCall- and External-

CallReturnParameter, in which WebShop sends 3500-byte request to SQLDB and
the SQLDB responds with a data block of size 4 194 304 bytes (≈4MB).

The CoarseGrainedBehavior allows the modeler to extract the information
about DNI Flows. The modeler knows that the information is exchanged in both
directions (call + reply) and the size of the data is known. Based on these data, I
build two DNI Flows as shown in Figure 4.31. To each newly built Flow, I attach
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:CoarseGrainedBehavior

:ExternalCallFrequency

ExternalCall

– name: orderID
– characterization: BYTE_SIZE
– value: 3 500

ExternalCallParameter

– name: returnOrderData
– characterization: BYTE_SIZE
– value: 4 194 304

ExternalCallReturnParameter

– value: 1

CallFrequency

Figure 4.30: Example DML model (from Fig. 4.23) extended by defining Service
Behavior Description using CoarseGrainedBehavior. The deployment part of the
example is abstracted for brevity.

a GenericFlowTraffic that defines the size of a single message exchanged in the
flow. The SQLDB-WebShop flow has 4MB, whereas the opposite WebShop-SQLDB
3 500 bytes. In this step, one can also add TrafficSources to the respective
CommunicatingApplications.

ApplicationServer: Node

DatabaseServer: Node

WebShop: CommunicatingApplication

SQLDB: CommunicatingApplication

ApplicationServer: End

DatabaseServer: End

software

software

: NetworkTraffic

WebShop-SQLDB: Flow

SQLDB-WebShop: Flow

– dataSize: ConstantLongVariable: 4

: GenericFlowTraffic

– prefix: M

DataUnit

– dataSize: ConstantLongVariable: 3500

: GenericFlowTraffic

WebShop: TrafficSource

SQLDB: TrafficSource

Figure 4.31: Extracting DNI Traffic Flows based on DML model. Object diagram.
Gray entities are highlighted to show the new objects with respect to the previous
step (Fig. 4.29).

Extracting Traffic Workload

In the last step of the traffic workload extraction, I add Workload objects to
the TrafficSources. The workload profiles are extracted based on the DML’s
usage profile. I add a simple usage profile to the DML example presented in
Figures 4.23 and 4.30. The extended DML example is presented in Figure 4.32.

In the example presented in Figure 4.32, I add a user that calls the fetchData
functionality provided by the WebStore component. I represent the call using the
dashed arrow as the respective part of DML model is abstracted from the Figure
for brevity. The user calls the function with parameter oderID valued as 1 or
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<<UsageProfileModel>>

<<UsageScenario>>

<<SystemCallUserAction>>

fetchData
<<CallParameterSetting>>

name: orderID
characterization: VALUE
value: IntPMF[(1;0.5) (2;0.5)]

<<DelayUserAction>>
delay: 1s

<<OpenWorkloadType>>

interarrivalTime: Exp(10s)

interfaceProvidingRole

calls

Figure 4.32: Example DML model (from Fig. 4.23 and 4.30) extended by defining
Usage Profile Model (presents using graphical notation based on [BKR09]). The de-
ployment and the Service Behavior Description parts of the example are abstracted
for brevity.

2, each with probability 0.5. Next, the user waits exactly one second and its
actions are over. The complete process repeats in an open-workload-manner with
interarrival time expressed as exponential distribution with mean of 10 seconds.

The usage profile presented in Figure 4.32 can be transformed according to the
procedure presented in Algorithm 1.

Algorithm 1 A sketch of procedure for extracting DNI traffic workload from DML
usage profile.

1: function ProcessSystemCallUserAction(action)
2: assemblyContext←action.interfaceProvidingRole
3: TWA ← new Ordered Set � TWA: Traffic Workload Actions
4: return ProcessAssemblyContext(assemblyContext, TWA)

5: function ProcessAssemblyContext(ac, TWA) � ac is DML.AssemblyContext
6: if ac.serviceBehaviorDescription.hasExternalCalls=true then
7: callee ← ac.calls
8: ta1 ← new DNI.TransmitAction
9: ta1.transmits ← Flows.filter(f|f.source=ac and f.destination.includes(callee)).generatedTraffic

10: ta2 ← new DNI.TransmitAction
11: ta2.transmits ← Flows.filter(f|f.source=callee and f.destination.includes(ac)).generatedTraffic
12: TWA.add ← ta1
13: TWA.add ← ProcessSystemCallUserAction(callee, WTA)
14: TWA.add ← ta2
15: else
16: waitAction ←new DNI.WaitAction
17: waitAction.waitTime ← ac.getProcessingTime()
18: TWA.add ← waitAction
19: return TWA

In Algorithm 1, I make the following assumptions: (1) it is known if an
AssemblyContext has external calls to components deployed on another node, (2) the
AssemblyContext has single ExternalCall that can be identified with ac.calls (line 7
in Algorithm 1), (3) components with ExternalCalls have negligible low processing
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time, and (4) the execution time of each component call is known beforehand. Not
all of the assumptions hold a priori (before solving the DML model), yet all are
known a posteriori.

In Algorithm 1, each SystemCallUserAction points at a component represented
by AssemblyContext. The AssemblyContext is then processed recurrently. If the
AssemblyContext calls external components, then two TransmitAction objects are
build, one for the request and second for the reply. The DNI actions are added in
the order of calling the respective components in DML.

I do not provide procedures for processing other DML AbstractUserActions as
the mapping is trivial. The DelayUserAction may be transformed directly, whereas
the container actions (e.g., Loop-, BranchUserAction) have the same semantic as
in DNI, so the transformation procedure is intuitive. In Figure 4.33, I present the
example after extracting the DNI traffic workloads based on DML usage profile. I
mark added entities in gray for brevity.

ordered set ordered set

WebShop: CommunicatingApplication

SQLDB: CommunicatingApplication

: NetworkTraffic

WebShop-SQLDB: Flow

SQLDB-WebShop: Flow

– dataSize: ConstantLongVariable: 4M

: GenericFlowTraffic

– dataSize: ConstantLongVariable: 3500

: GenericFlowTraffic
WebShop: TrafficSource SQLDB: TrafficSource

: GenericWorkload : GenericWorkload

– waitTime: SQLDB.ac.getProcessingTime

: Wait

: Transmit

{1}

{2}

– waitTime: SQLDB.ac.getProcessingTime

: Wait

: Transmit{1}

{2}

– waitTime: exp(10s)

: Wait
{3}

– waitTime: exp(10s)

: Wait
{3}

……

Figure 4.33: Extracting DNI Traffic Workload based on DML model. Object
diagram. Gray entities are highlighted to show the new objects with respect to the
previous step (Fig. 4.31).

In the last phase of the DNI traffic workload extraction, a GenericWorkload

object for each TrafficSource is built. Next, an ordered set of actions is attached
according to the execution order in the DML usage profile. In the example, the
WebShop calls the SQLDB component by transmitting the request to it. This is
represented by the Transmit action executed as first (order denoted: {1}). Next, the
WebShop TrafficSource idles for the time of execution of the SQLDB component.
As the DML usage profile contains no further actions, the same sequence is
repeated for the time frame of the measurement.
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The SQLDB TrafficSource executes analogous scenario. First, it idles while it gets
called and executed—for simplicity of this example, I assume that SQLDB is called
immediately. Next, SQLDB generates a response based on the ExternalCall-
ReturnParameter that war transformed into the SQLDB-WebShop Flow. Finally,
SQLDB idles exp(10) seconds as defined in DML. The process repeats until the
experiment is over.

The example is additionally depicted using a sequence diagram in Figure 4.34a
with the respective time series representing DNI Traffic Workload actions in
Figure 4.34b. At time t0 the user sends a request to the WebShop component.

WebShop: 
AssemblyContext User

fetchData

SQLDB: 
AssemblyContext 

fetchOrderData(orderID)

returnOrderData

delay 1s

t0

t1

t2

t3 delay exp(10s)

start

end

(a) DML call sequence diagram.

transmit
WebShop––SQLDB

wait 1s

wait WebShop.getProcessingTime() =
SQLDB.getProcessingTime()

transmit
SQLDB––WebShop

transmit
WebShop––SQLDB

t3

wait exp(10s)

time
t0

}

t1

}

(b) DNI Workload.

Figure 4.34: Extraction of the DNI traffic workload model from a DML model.

Immediately an ExternalCall is issued and the SQLDB component is called. In
this moment the network traffic is produced. The SQLDB component replies within
time t1 − t0 and the result is immediately passed to the user. Next, the user waits
for 1 second and her actions end. After a time specified as exp(10s) the process
begins again with another user. The exponentially distributed inter arrival time
defines the duration period t3 − t0. In the diagrams in Figure. 4.34, I assume that
t2 − t0 < t3 − t0.
The user actions and component calls are mapped to the DNI traffic workload

actions depicted in Figure 4.34b. In DNI traffic workload, I assume that a Transmit
action happens immediately because the processing and transmission delays are
applied in other places (e.g., a NetworkInterface entity or a SoftwareLayersDelay
parameter in the End Node). Thus, the first transmit action happens at time t0
(WebShop→SQLDB) and the second in t1 (SQLDB→WebShop). Also in t0 starts
the delay action that takes as long as the DML call fetchData needs. Similarly, in
t0 start the 1s and the exp(10s) wait actions. In moment t3 the process is repeated
until the complete workload is extracted. This ends the extraction of the traffic
workload.
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4.5 Summary
In this chapter, I described network performance abstractions for performance
prediction. The proposed performance abstraction cover classical, SDN-, and NFV-
based network infrastructures, network configuration, and the traffic workloads.
The introduced modeling formalism may be used jointly with the DML to cover
wider scope of a data center than the DML or DNI alone.

In Section 4.1, I introduced the DNI meta-model focusing on the modeling
of classical, non-virtualized network infrastructures. In Section 4.2, I extended
the meta-model for modeling classical networks and presented new entities used
for virtualized networks (based on SDN and NFV). Section 4.3 discussed the
flexibility of building DNI model with various level of detail to balance between
the fine and coarse granularity of the model. Next, in Section 4.4, I presented
how to integrate DNI meta-model with the DML meta-model using the Network
Deployment meta-model as an interface, so that the models can jointly represent
a data center. The integration of DML and DNI solvers opens several challenges
that are discussed as a part of future work in Section 8.2.1.
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Model Transformations and Solving
Descriptive models organize information about a domain. Instances of Descartes
Network Infrastructure (DNI) meta-model have descriptive nature and do not
provide any means of performance prediction. To leverage the descriptive domain
information in the performance prediction process, a DNI model needs to be
transformed into a predictive model that can be solved. In this chapter, I describe
the transformations and solution techniques available for DNI models.
The performance of network infrastructure has important influence on the

performance offered by a data center to the end user. Being able to analyze new
network topologies, configuration settings, Software-Defined Networking (SDN)
configuration, or applications deployment without interrupting the operation of
a network is of high value to a network operator. The network operator can use
DNI to simulate different settings of the network before applying the changes
to the productive system. The approach based on DNI offers coarse to medium
detailed performance predictions focused on network throughput. The offered
performance predictions vary in accuracy an the solving time depending on the
simulated network and the selected solver.

The approach proposed in this thesis aims at run-time performance analysis for
capacity management purposes. It aims at analyzing and adapting the network
configuration and resource allocation dynamically. To dynamic adaptations, I
account any reconfigurations that are justified with anticipated changes in the
environment that lead to changes in the offered quality of service—in extreme
cases to service level agreement (SLA) violations. To examples of changes in
the data center that may trigger adaptations I account: a network traffic load
spike, traffic flows previously unknowns to an SDN controller, changes in traffic
characteristics (e.g., less “elephant” and more “mice” flows).
A typical scenario for run-time performance analysis and dynamic adaptation

may be presented as follows:
1. Anticipation of an event that may influence the performance of the system,
2. Analysis of the impact of that event on the system,
3. Building a set of candidate corrective reconfigurations to minimize the impact

of the event on the performance,
4. Analysis of the implications of applying each corrective action,
5. Selection of an optimal corrective action and applying it to the system.

83



Chapter 5: Model Transformations and Solving

The proposed approach contributes directly to the steps two and four of the
presented scenario. Anticipating future events (step 1) can be conducted using
forecasting techniques [HHKA14]. Moreover, a data center operator may analyze
the impact of a planned event (e.g., replacement of a device) on the system’s per-
formance. In step two, the modeler builds a DNI model including the anticipated
or planned change and uses the proposed approach to evaluate the influence of
the change on the performance. If the impact of the change is low, no action is
required, however, if the event causes significant changes in the offered capacity or
performance, a corrective action needs to be applied to prevent or minimize the
negative outcomes. In step three, an expert proposes a set of possible corrective
actions, for example, reconfigurations, new resource allocation, or scaling the
system. Each proposed corrective action needs to be evaluated to select the optimal
one. In step four, the proposed approach allows to build a DNI model for each
candidate corrective action and evaluate its impact on the system. Finally, based on
the performance predictions, an optimal corrective action is selected and applied
to the system before the anticipated or planned event occurs.
Data center network operators may be challenged with scenarios other than

the typical scenario described in the previous paragraph. The network operators
may face the following questions for which the answers can be found using
the proposed approach: (1) How a new network configuration influences the
throughput offered to an application? (2) Which SDN rules should be installed to
not violate SLA? (3) Which switches should be replaced to increase capacity of
the network? (4) How to redeploy virtual machines (VMs) onto servers to avoid
bottlenecks? (5) To which degree the SDN-based load-balancing may increase the
capacity of the system? (6) Which network links are overloaded and should be
load-balanced?
In this chapter, I describe how to conduct run-time performance analysis of

data center networks using the modeling formalism introduced in Chapter 4. The
approach to performance prediction I propose is based on model transforma-
tions [SK03].
Kleppe et al. [KWB03] defines a model transformation as follows. “A trans-

formation is the automatic generation of a target model from a source model,
according to a transformation definition. A transformation definition is a set of
transformation rules that together describe how a model in the source language
can be transformed into a model in the target language. A transformation rule
is a description of how one or more constructs in the source language can be
transformed into one or more constructs in the target language.”

The approach is presented in Figure 5.1a. First, a descriptive model is extracted
or built manually based on the existing network infrastructure. Next, a model trans-
formation is executed to obtain a predictive model. The predictive model is solved
using a compatible solver and performance predictions—in form of performance
metric values—are delivered as an output. The performance predictions may be
used for recalibrating the descriptive model and the process may be repeated until
the required accuracy is reached.
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Figure 5.1: Model transformations in the process of performance prediction.

Model transformations are developed for a pair of languages defined by their
meta-models. Correctly developed transformation can consume any model (an
instance of a meta-model) at the input model and produce an equivalent repre-
sentation as the output model. In the model-based approach proposed in this
thesis, the output model that a transformation produces is a descriptive model that
can be directly solved by a proper solver. The output model of a transformation
must be also described using a meta-model in order to build and execute the
transformation. The schema presented in Figure 5.1b depicts the general process
of building a transformation (the meta-model of the predictive model is abstracted
in the figure).

The model transformations are often judged based on their correctness and
completeness. The terms correctness and completeness can be defined differently in
various communities, so I provide the definition and interpretation used in this
work.

A model transformation is correct if for any valid input model, the transformation
builds a valid output model. A model is valid if it complies to its meta-model.
A model transformation is complete if it can transform all entities of the input
meta-model. Other properties of model transformations are defined in [LAD+14,
CH06, MVG06].

It is impossible to prove for a transformation that the semantics of the input
model and the output model is identical after the transformation. I intentionally
propose model transformations that produce descriptive models with different level
of detail (i.e., slightly different semantics) to highlight the flexibility in network
performance prediction. The transformations contributed in this thesis in fact
approximate the input DNI model with the output models. Lucio et al. [LAD+14]
define approximation transformations as an approximation of model m1 using m2

where m1 is equivalent to m2 up to a certain error margin.
For selected cases (e.g., stochastic simulation models), one could show that

input and output models are semantically equivalent by comparing the underlying
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Markov chains. This applies, however, only to predictive stochastic models and to
non-approximate model transformations (i.e., transformations that do not abstract
any data between the input and output models).

An overview of the DNI model transformations is presented in Figure 5.2. DNI
and miniDNI models are presented using rounded rectangles. The models can
be processed by model-to-model transformations denoted using gray rounded
rectangles. A model-to-model transformation may produce a descriptive or a
predictive model on its output. Predictive models (i.e., such models that can
be directly solved with a solver) are presented using a “document” shape. The
predictive models can be directly solved using solvers denoted using parallelograms.
Models and model transformations that support the SDN annotations of DNI are
marked with a star.

DNI Model Checks and 
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DNI-to-mDNI
DNI-to-OMNeT

INET

miniDNI Model

mDNI-to-QPN

OMNeT++QPN
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SDN
Support 
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el

Figure 5.2: Overview of models, transformations, and solvers.

In Table 5.1, I present currently available transformations and their support for
classical and SDN-based network scenarios. Currently available set of transforma-
tions allows to automatically generate up to ten various performance prediction
methods:

1. DNI→ DNI-to-QPN→ solver SimQPN,
2. DNI→ DNI-to-QPN→ QPN-to-LQN→ solver LINE,
3. DNI→ DNI-to-QPN→ QPN-to-LQN→ solver LQNS,
4. DNI→ DNI-to-QPN→ QPN-to-LQN→ solver LQSIM,
5. DNI→ DNI-to-mDNI→ mDNI-to-QPN→ solver SimQPN,
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Table 5.1: Matrix of DNI support of transformations and solvers.
Transformation Solver DNI DNI+SDN Published and

presented in
DNI-to-QPN SimQPN yes yes [RK14a, RK14b,

RKTG15, RSK16]
Section 5.2

DNI-to-miniDNI —- yes yes [RKTG15]
Section 5.3.1

miniDNI-to-QPN SimQPN yes no [RKTG15]
Section 5.3.2

DNI-to-
OMNeT++INET

OMNeT++INET yes no [RKZ13, RZK13]
Section 5.4.1

DNI-to-
OMNeT++generic

OMNeT++generic yes yes unpublished yet
Section 5.4.2

QPN-to-LQN LINE, LQNS,
LQSIM

partially
supported

partially
supported

[MRSK16]
Section 5.5

6. DNI→ DNI-to-mDNI→ mDNI-to-QPN→ QPN-to-LQN→ solver LINE,
7. DNI→ DNI-to-mDNI→ mDNI-to-QPN→ QPN-to-LQN→ solver LQNS,
8. DNI→ DNI-to-mDNI→ mDNI-to-QPN→ QPN-to-LQN→ solver LQSIM,
9. DNI→ DNI-to-OMNeT++INET → solver OMNeT++INET,
10. DNI→ DNI-to-OMNeT++generic → solver OMNeT++generic.

The proposed set of transformations offers up to 10 solvers for a single DNI model.
Unfortunately not all solvers support every instance of the DNI meta-model, so
the number is lower in the practice. I elaborate more on transformation and solver
feasibility in Section 5.6.2. In general, the set of the DNI transformations is not
limited and may be extended as a part of the future work.
The rest of this chapter is organized as follows. In Section 5.1, I describe

the transformation preparation steps including: DNI validity checking, in-place
transformations, and transformation parametrization that enables specific transfor-
mation behavior. Next, in Section 5.2, I present the DNI-to-QPN transformation
that transforms DNI models into Queueing Petri Net (QPN) models. I describe the
transformation including its rules, features, examples, and limitations. Similarly,
I present the DNI-to-mDNI and the mDNI-to-QPN transformations in Section 5.3.
In Section 5.4, I describe two DNI-to-OMNeT++ transformations, whereas in Sec-
tion 5.5, I present the QPN-to-LQN transformation that aims at providing analytical
solvers based on Layered Queueing Network (LQN) for DNI. In Section 5.6, I
compare the transformations and discuss the semantic gaps between the predictive
models obtained in the transformations. Finally, in Section 5.7, I conclude this
chapter.
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5.1 Model Parametrization and Validity Checking
Each DNI model must be valid before it is passed to a model transformation to
produce a predictive equivalent. In Section 5.1.1, I explain the validity and the
necessary steps to ensure that a DNI model is valid.

A valid DNI model can be transformed using a model transformation, however
the transformations can be additionally parametrized to produce slightly different
model for each setting. I discuss the parametrization of model transformations in
Section 5.1.2.

The DNI meta-model was designed to meet multiple criteria, among others the
ease of use by non-experts. Optimizing the meta-model for the modeler’s ease
of use makes it more difficult to read for transformation developers. Fortunately,
the DNI model provided by a modeler can be preprocessed using in-place trans-
formations (so called DNI-to-DNI transformations) to adapt it to the needs of the
transformation developers without loosing any information. I describe selected
in-place DNI model transformations in Section 5.1.3.

5.1.1 Model Validity Checking
A valid DNI model shall satisfy the constraints specified in the meta-model, that
is, the cardinality of required features must be met and the Object Constraint
Language (OCL) constraints cannot be violated. Basic constraints are defined in
the meta-model, however not all constraints can be defined in the meta-model
without bloating the meta-model definition with complex OCL invariants. Multiple
complex OCL constraints can also cause building the model more difficult and
this contradicts my aim to make DNI easy to use by non-experts. Instead of
adding multiple OCL constraints, I decided to use only one (i.e., entities must have
unique IDs) and provide a validation script to provide simple pre-transformation
model analysis. The validation script is implemented using Epsilon Validation
Language (EVL) and contains few rules that analyze model structure. I briefly
discuss selected validation rules in the following.

• Connections between Virtual and Physical Entities. In reality, it is impossi-
ble to directly connect two virtual machines with a link if the machines are
hosted on different nodes. The same holds for DNI. I report a DNI model
as invalid if at least on the following conditions hold. Assume nodeA is
connected directly with a Link to nodeB. Moreover, nodeA.hostedOn<>null and
nodeB.hostedOn<>null. The model is invalid if nodeA.hostedOn <> nodeB.hostedOn.
Moreover, this rule disallows connections between the Nodes that are not on
the same virtualization level, whereas the virtualization level is understood
as the number of Nodes on which a Node is hosted.

• Completeness of Routing Information. It is required that the traffic gener-
ated by DNI traffic sources can reach its destinations. This means that there
must exist at least one complete route (i.e., set of Direction entities) between
each pair of nodes that communicate with each other. Additionally, for each
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SDN Intermediate Node there must exist at least one route to a Node that
hosts the SdnController assigned to the SDN Intermediate Node.
In reality, it is allowed to run a network with incomplete or erroneous routing
configuration. Network devices are able to pick a default destination or drop
the traffic that cannot be forwarded. In contrast to this, DNI requires that all
sources and destinations of a Flow have at least one valid route defined in
the model, where the route is specified using a set of Direction entities.

5.1.2 Transformation Parametrization
Model transformations interpret the information included in the input DNI model
and produce an output model using a set of rules. The way in which a trans-
formation interprets the DNI information can be parametrized, so that the users
receive the predictive models according to their expectations.
Most of the DNI parameters and entities are not obligatory. For example, a

performance description of a Intermediate Node can be omitted if it is unknown.
The assumed interpretation of missing model parameters (as long as the model
is valid) is as follows: the unspecified parameters or entities are not limiting
the performance, that is, the performance is infinite and there are no processing
delays. However, the user might want to omit the performance to indicate that,
for example, a given Node does not process any traffic and drops all incoming
messages. This could be achieved by setting the respective bandwidth or capacity
parameter to zero, however such transformation behavior must be known to the
modeler. I propose two interpretations of missing performance-related parameters
to either infinite performance (default) or drop all traffic. The user may configure the
expected behavior for the transformations.
Similar parametrization rules are offered for the SDN rules in the DNI-to-QPN

transformation. An SdnFlowRule allows to specify three probabilities to define
the forwarding mode in which an Intermediate Node operates: software SDN,
hardware SDN, or non-SDN forwarding. If three probabilities add up to one,
there is no ambiguity. Disambiguation arises if the sum of the probabilities is
less than one. Modeling probabilityHardware as 0.5, probabilitySoftware as 0 and
probabilityController as 0.1 opens two possible interpretations: (a) the probabilities
should be normalized, so that the sum is 1.0, or (b) the probability of dropping a
packet on the node is 1.0− 0.5− 0.1 = 0.4. Selecting one of the two modes defines
another possibility for the user to configure the transformation behavior.
I assume that the obtained predictive models can be solved without any other

parametrization. This means that some fine-grained predictive models may need
to be solved with default parameter values. For example, OMNeT++INET defines
default values for TCP configuration. Other solvers require instructions regarding
solving methods. For example, default configuration of the LQNS solver offers
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simulation-based solution; a proper change in the configuration enables an analyti-
cal LQN solver. SimQPN requires selecting a solving method and parameterizing
the warm-up phase and stopping criterion. On the other hand, OMNeT++-based
solvers do not require (despite the possibility) any extra parametrization regarding
the solving method. To guarantee that the solving process can be started automati-
cally straight after transforming a DNI model, the respective transformations need
to pass the solver-specific parameters to the solvers (or generate default values
of these parameters). The configuration of the solver is considered as another
possible parameterization of the model transformations.

The transformation parameters are defined in the DNI tooling. The tooling
technically consist of a Java-similar application or Apache ANT scripts that run the
respective transformations followed by starting the solvers where possible.

5.1.3 In-Place DNI Transformations
To ease the development of the transformations, some DNI entities are processed
using in-place transformations. I briefly discuss selected in-place DNI transforma-
tions.

Routing Directions Aggregation

Based on DNI Directions, FlowRoutes are build. The FlowRoute represents a
network path using an ordered list of network interfaces that need to be traversed
to reach the destination of a Flow. Each FlowRoute references single Flow and
specifies the probability that describes the chance of selecting a given path if
multiple are available. An example of the routing in-place transformation is
presented in Figure 5.3.

The example demonstrates two directions that define load-balancing. In fact, the
DNI model contains two additional Direction objects: first for node N1 and second
for node N3, but they are abstracted in the example. Based on the Directions,
two FlowRoutes are built—each with probability 0.5 for each redundant connection
between nodes N2 and N3.
FlowRoute representation is compacter and easier for the transformation de-

veloper to work with—one can query the model to return all FlowRoutes that
reference a given Flow. This returns the information about all available traffic
paths in the network along with the probabilities of selecting given path by the
traffic.

Flattening Workload Branches

DNI Workloads may contain Branches. A Branch defines that a given traffic source
spawns a new thread and starts behaving as two independent traffic sources.
Although it is easier for the modeler to work with branches, it is more challenging
to process a workload including branches in the transformations. Thus, the second
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Figure 5.3: In-place transformation building FlowRoutes based on Directions.
Demonstrated using example presented formerly in Fig. 4.10.

in-place DNI transformation removes branches, so that every DNI TrafficSource

produces Workload containing only Transmit, Wait, and Loop actions.
Figure 5.4 depicts an example representing a Workload before and after applying

the in-place branch removal transformation. The in-place transformation searches

transmit

transmit

branch1

branch

branch2

transmit

transmit

traffic source 1

traffic source 2

wait

time time

Figure 5.4: Example demonstrating in-place DNI transformation removing Branches
from Workloads. Left: workload with a branch, right: two workloads without
branches.

the workload and removes each Branch action. For each Branch removal, new
Workloads are created—one for each branch of the Branch action. The first branch
is left in the original workload. The search continues for all workloads, including
the newly separated ones. The transformation adds a Wait action to each newly
separated workloads to represent the time between the Start and the Branch

actions in the original Workload.
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5.2 Steady-State Performance Analysis with Queueing
Petri Nets

In this section, I describe the transformation that transforms an instance of
the DNI meta model to a QPN model. QPNs [Bau93b] are a combination of
classic Queueing Networks (QNs) [BGdMT06] and Colored Generalized Stochastic
PNs (CGSPNs) [CDFH93]. While CGSPNs are a powerful formalism to describe
the synchronization and timing behavior of software programs, they lack the
expressiveness to easily describe the scheduling of jobs at hardware resources. In
addition to ordinary places and transitions known in CGSPNs, QPNs therefore
introduce queueing places consisting of a queue and a depository. The queues
correspond to those in a traditional QN, including a scheduling strategy and
a service time distribution. Incoming tokens are first served in the queue and
then put into the depository where they become available to outgoing transitions.
Using QPNs, it is possible to model both software and hardware contention of
software systems in a single model [KB03]. For solving QPNs, I use SimQPN
simulator [KB06], which is part of Queueing Petri Net Modeling Environment
(QPME) [SKM12b].

5.2.1 QPN Notation
The QPN formalism was introduced by Bause in [Bau93a]. The graphical notation
used in this section is summarized in Figures 5.5 and 5.6.

Queueing 
Place

Subnet
Place

Queue Depository

Ordinary 
Place

Nested QPN

oo o o o o

Transition Token

o
o o

(a) QPN notation elements.

48(8( ' (3 2 6 , 7 2 5 <

(b) Queueing Place.

Figure 5.5: Notation used in QPN diagrams. Excerpted from [KBB+11].

A QPN consists of set of places and set of transitions. Tokens can be grouped in
to classes that are distinguishable by colors. In a transition, the incidence function
defines the number of tokens required in each preceding place to be ready to
fire. When a transition fires, it consumes the tokens from the preceding places
and deposits defined number tokens in the succeeding places. A transition can
fire in many ways—the different firing possibilities are referred to as modes. The
graphical notation of a transition incidence function is presented in Figure 5.6.
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Figure 5.6: Notation used in QPN transitions.

Comparing to classical QNs, QPNs introduce a new type of place: the queueing
place. A queueing place consists of a queue, and a depository. Tokens are placed
inside the queue according to a certain scheduling strategy. The service time is
defined through a parameter. Once a token has completed its service, it is put
into the depository, which then behaves like a regular (ordinary Petri Net (PN))
place. Only tokens in the depository are considered available for the succeeding
incidence functions. Furthermore, QPNs can be nested using subnet places that
contain an arbitrary subnet with an obligatory single input and output place.

5.2.2 Network Topology

The transformation begins with translation of all network nodes into subnet places.
For each Node, a subnet is created. To reflect the topology, the subnets are
connected with links that are represented by two transitions—each for one of both
directions. The incidence functions for links are defined as non-blocking, that is,
they fire immediately for a single token of any color and deposit the token in
the succeeding place in the graph. As an example, a QPN representing three end
nodes connected with a single intermediate node is depicted in Figure 5.7.

5.2.3 Node

The internal structure of the subnet representing a Node is depicted in Figure 5.8.
All incoming tokens are placed in the input-place first. Next, they are forwarded
to the queueing places that represent receive queues of the network interfaces
(port-#-rx). The traversing-transition has two tasks: (a) deleting the tokens that have
destination in this node, (b) passing the traversing tokens to the traversingTraffic
place. No tokens are passed to the traffic sources as the DNI meta-model and the
transformation support only open workloads (exception: SDN controller can accept
incoming packet-in messages—will be discussed later). Next, the sdn-transition
gathers the traversing tokens and the tokens generated in the traffic sources and
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Link-1-R
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Figure 5.7: QPN representation of network nodes and links. The internal structure
of Node subnets is presented in Fig. 5.8.

forwards them to the switching place or the sdnSwitching subnet based on the
Node configuration. For a Common Node, all tokens are routed to the respective
switching place. For SDN Node the tokens are routed via sdnSwitching if a matching
SdnFlowRule exists. Once the switching delay is applied in the switching or the
sdnSwitching place, the tokens are directed to the proper port-#-rx and leave the
Node. Graphically, I depict the internal structure of the sdn-transition in Figure 5.9a.
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sdnSwitchingport-#-rx
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input-
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Figure 5.8: QPN representation of DNI’s Node. Figure depicts the internal structure
of a Node subnet place.

End and Intermediate Node

Each End Node represents a machine that can host Communicating Applications
stack that may contain multiple Traffic Sources. An End Node without traffic
sources specified in the input DNI model may be removed from the QPN model
or may be transformed without building the respective trafficSource-# subnets.
Similarly, each Intermediate Node is transformed into QPN subnet presented in
Figure 5.8 with an empty set of trafficSource-# subnets.
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Figure 5.9: Internal structure of transitions for non-load-balanced scenario. Token
colors: t traffic, f flow-mod.

SDN and Common Node

The processing of the traffic in and SDN Node is conduced in the sdnSwitching
subnet place. For a Common Node (or if a given flow is not forwarded in the SDN
mode), the processing is done in the switching subnet place.

The sdnSwitching subnet groups entities that are responsible for forwarding in
SDN Nodes. I depict its internal structure in Figure 5.10. Two separate subnet places
handle the traffic switched in the software- and hardware SDN switching mode: hw-
and swSdnSwitching respectively. The third switching mode—via the controller—is
handled with the buffer and toController ordinary places and tr-FM and controller-tr
transitions.
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Figure 5.10: Internal structure of the SdnSwitching subnet place. Token colors: t
traffic, f flow-mod, p packet-in.
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The decision about the processing path in the SDN forwarding mode is executed
in three transitions: tr-Con, tr-Hw, and tr-Sw. The arriving traffic tokens are
deposited in select-forwarding-mode ordinary place. Next, the succeeding transitions
fire according to their weights. The weights of the transitions are modeled using
three parameters A, B, and C. Each of the three transitions will deposit one traffic
token in one of the succeeding places.

The values of weights A, B, and C are related to the probabilities defined in the
respective DNI’s SdnFlowRule as follows. First, A,B,C are real numbers between
zero and one: A,B,C ∈ R and A,B,C ∈ [0, 1]; Next, A = probabilityController,
B =probabilityHardware, and C =probabilitySoftware. For multiple colors representing
traffic (t in Fig. 5.10), transitions tr-Con, tr-Hw, tr-Sw must contain multiple modes
(or be represented as multiple single-modal transitions) for each traffic color
because the weights are defined for each flow separately.

The traffic tokens directed to the SDN controller are forwarded to the toController
place. Next, the controller-tr transition issues a new token with color p (packet-in)
and forwards it to the output place and further to the node where the controller is
deployed. At the same time, the traffic token t is deposited in the buffer where it
waits for the controller’s response. When controller replies (using flow-mod token f ),
the traffic token is released form the buffer and forwarded via the hwSdnSwitching
place.

Forwarding Performance

The forwarding performance of an Intermediate Node is modeled using three
subnet places: switching, hwSdnSwitching, and swSdnSwitching. Each place is re-
sponsible for representing the performance in native, SDN hardware, and SDN
software switching mode respectively. The internal structures of the switching, hwS-
dnSwitching, and swSdnSwitching subnets are identical. THeir structure is presented
in Figure 5.11. The forwarding performance is modeled using three queueing

subnets:
switching 

hwSdnSwitching
swSdnSwitching

input outputinput forwarding-
latency

switching-
capacity

forwarding-
bandwidth

tfl
t

t sc

fb

1
1

1 tfb
t output

sc 1
1t

1

max-tr output-trcritical-section

Figure 5.11: Internal structure of the switching, hwSdnSwitching, and swSdnSwitch-
ing subnet places.
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places, each corresponding to a parameter from the IntermediatePerformance

DNI entity. The forwarding-latency place models the forwardingLatency parameter
of the IntermediatePerformance and so on. The transitions max-tr and output-tr
represent max function that applies the larger delay to the traffic. The critical-section
asserts that the maximum function operate on maximally two tokens at the same
time.

SDN Controller

The SdnController subnet—depicted in Figure 5.12—is responsible for receiving
the packet-in tokens (color p) and replying with the flow-mod tokens (color f ).
The SdnController subnet is located in the Node subnet in the same column as
the trafficSource-# subnets. The tokes arriving to the controller are delayed twice.
First, the delay of the controller is applied (controllers are complex software) and
then the delay of the respective SdnControllerApp is added. The representation
presented here can be enhanced using more detailed software modeling provided
by Descartes Modeling Language (DML) [KHBZ16].

subnet: sdnController

sdnApp1 sdnAppN

outputinput controllerDelay sdnApp-tr

…

ll D l

nApp1 sdnAp

output-tr

Figure 5.12: QPN representation of DNI’s SdnController.

The packet-in and flow-mod tokens are routed using DNI Directions that bind
the openFlowEndPoint of an IntermediateNode with the Node that hosts the Sd-

nController and its applications. For each traffic color a separate set of packet-in
and flow-mod colors is generated.

Load Balancing

Tokens that represent the load-balanced flows are processed normally with ex-
ception of the routing-transition. The routing-transition (as depicted in Fig. 5.8) is
replaced by multiple transitions, each with a single mode but different firing
weight. The firing weight represents relative firing frequency of the transition, so
that it can properly represent load-balancing ratios. An example of SDN switching
and “60/40” load-balancing is depicted in Figure 5.13. In this example, the tokens
consumed from the sdnSwitching place are interchangeably deposited to port port-
1-tx and port-2-tx with probabilities 0.6 and 0.4 respectively. For multiple traffic
colors, the load balancing transitions routing-transition-# must contain multiple
modes (or be represented as multiple single-modal transitions) for each traffic color
because the weights are defined for each flow separately.
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fragment of subnet: Node

port-1-tx

port-2-txrouting-transition-2

weight=0.4

weight=0.6
routing-transition-1sdnSwitchingsdnSwitching

switchingi hi

sdn-
transition

routing-
transition

Figure 5.13: QPN representation of a Node with “60/40” load balancing for a
single flow.

5.2.4 Virtual Nodes

DNI’s Nodes can host other nodes to represent server virtualization scenarios. A
Node that is hosted on another Node has identical internal subnet place structure
to a regular Node (presented in Fig. 5.8). The hosting and hosted Nodes are
connected using a queueing place named VMM (named after the virtual machine
monitor). The VMM represents the overheads caused by the virtualization. In
networking scenarios, the virtualization overhead is caused mainly by a virtual
switch connecting the physical and virtual part of the environment. The structure of
a QPN subnet representing a Node that host other Nodes is presented in Figure 5.14.

subnet: Node
virtual part

sdnSwitchingport-#-rx

input

port-#-rx

port-#-tx

output

port-#-tx

routing-
transition

input-
transition

output-
transition

switching

trafficSource-#

traversingTraffic

sdn-
transition

traversing-
transition

it hi

VMM

VM-1 VM-2

Node

Link

Figure 5.14: QPN representation of a Node hosting virtual nodes.
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The upper part of Figure 5.14 represents a typical structure of a Node subnet. In
the bottom, a virtual part is distinguished. The virtual part is connected to the
physical part using the VMM queueing place. Note, that traffic originating and
terminating in the virtual part needs to be forwarded via the physical part. This
leads to double forwarding, which is an expected behavior, if a flow traverses the
virtual part of a Node. First, the traffic is directed to the sdn-transition, switching
or sdnSwitching places, and then it is directed to the virtual part in the routing-
transition. Once the processing in the virtual part is finished, the traffic is directed
to the sdn-transition in the physical part, so the forwarding in the switching or
sdnSwitching place is conducted again.

The virtual part presented in Figure 5.14 can be freely defined and may represent
an entire network (e.g., as presented in Fig. 5.7) including complex topologies. The
network modeled in virtual part can be hierarchical and can contain other “virtual”
networks.

Although virtual-virtual networks are supported in both DNI and QPN, the
modeling requires special caution as the meta-model constraints do not report
erroneous connections between virtual network levels. For example, the default
DNI editor forbids modeling a direct connection between a physical and virtual
Node (this is possible only via VMM) but no error is shown if a virtual-virtual
network hosted on node 1 is connected with a Link to a virtual network hosted on
node node 2.

5.2.5 Traffic Source

A TrafficSource is represented as a subnet place in the QPN model. The main
responsibility of the traffic source subnet is the generation of tokens according
to the workload defined in the DNI model. Figure 5.15 depicts a QPN model of
an exemplary traffic source. All unnamed transitions are generated as mandatory
connections between two consecutive places; these transitions are passing all token
colors in a non-blocking fashion.

subnet: traffic-source-#

input input-tr workload-
control

workload outputtransmit-
flow

workload-start

workload-stop

Figure 5.15: QPN representation of the TrafficSource. Token colors: gray workload
execution token (WE) (workload-execution), white traffic.

To control the order of actions executed in the workload, the workload-execution
color (WE for short) is defined. The workload-control place contains initial marking
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(tokens at the start of the simulation) of a single WE token. Later, the WE token
traverses the places and transitions according to the order defined in the DNI
traffic workload model.

The traffic generation procedure runs as follows. No tokes arrive to the input
place of the traffic-source-# as all are ignored and destroyed in the preceding
transition (due to the assumed open workload model). The WE token (initial
marking) is passed to the workload-start transition that stems from the StartAction
defined in the DNI workload model. Next, the WE token is passed to the subnet
representing the workload of the modeled TrafficSource. Once the workload
execution is ready, the WE token is passed back to the workload-control place via
the workload-stop transition. Then, the entire process is repeated. The example of a
traffic workload modeled with a workload subnet is presented in Figure 5.16.

subnet: workload

wait-actioninput input-tr loop output

transmit-action

output-tr

transmit-flow

Figure 5.16: QPN representation of the a traffic workload example containing
actions: wait, transmit, loop. Token colors: gray WE, white traffic.

Each WaitAction is represented using a queueing place. A TransmitAction is
transformed to transmit-action transition. A transmit-action transition passes WE
token and produces a token representing a flow (white in Fig. 5.16). The flow
token is immediately deposited in the output place and is ready to be routed and
transmitted by the end node. The WE token is passed further to the next action
in the workload (loop in this example) until it reaches its end in the output-tr
transition. Then, the WE token is passed to the higher subnet in the hierarchy as
the workload generation process is hierarchical and recursive. The traffic tokens
generated in the loop subnet are passed to the output using a separate transition
transmit-flow.

The LoopAction is represented as a subnet and its internal structure is depicted in
Figure 5.17. A single WE token arriving to the input is transformed into multiple
tokens in the 1-to-num-loop-iter transition (in the example presented in Fig. 5.17,
the loop iterates three times). The transition produces exactly the amount of tokens
that corresponds to the number of loop iterations defined in the DNI model. The
next transition—loop-start—is a synchronization point; it requires one token from
the loop-iter-left and another one from the loop-control place. The latter has a single
WE token set as initial marking, so that the subworkload can start as soon as the
loop subnet receives a WE token from outside.
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subnet: loop

input 1-to-
num-
loop-
iter

loop-iter-left loop-control

loop-
start

subworkload

loop-
stop

loop-iter-done

forward-generated-traffic

num-
loop-

iter-to-1

output

Figure 5.17: QPN representation of the workload loop action with three iterations.
Token colors: gray WE, white traffic.

When all actions of the subworkload are finished, the loop-stop transition duplicates
the WE token and passes one to the loop-iter-done and the second one to the loop-
control place. Now, the next loop iteration can begin, as long as there are WE
tokens in the loop-iter-left place left. When the loop-iter-done place contains the
amount of tokens equal to the number of iterations (three in the example presented
in Fig. 5.17), the num-loop-iter-to-1 transition fires, consumes all input tokens and
deposits a single WE token int the output place. The execution of all loop iterations
is finished.

The actions that are looped are represented as a subnet for brevity and modu-
larity. The internal structure of the subworkload subnets corresponds to the traffic
source subnet presented in Figure 5.16. This allow to specify the workloads
hierarchically and improves the maintainability of the transformation. The tokens
that represent traffic flows are directly sent to the output place to be immediately
passed to the sdn-transition in the respective parent node subnet.

subnet: branch

input fork-branch

subworkload-2b kl d

outputsubworkload-1 pass-we

pass-traffic

Figure 5.18: QPN representation of the workload fork and branch actions. Token
colors: gray WE, white traffic.

The structure representing a BranchAction is depicted in Figure 5.18. The
incoming WE tokens are multiplied in the fork-branch transition and passed to the
subworkload subnets. Once the processing in the subworkload subnets is finished,
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the WE tokens are transformed back to a single on in the pass-we transition. The
pass-traffic transition passes all traffic tokens generated in the subworkload subnets
without reduction of its quantity. In the practice, the branches are usually removed
from the model by the flattening described in Section 5.1.3.

5.2.6 Routing Information
The information included in DNI’s NetworkConfiguration is used, among others,
for proper wiring of a resulting QPN. The DNI Directions and Flows define
possible paths of communication in a network. A Flow identifies the communicating
parties, whereas Directions define which paths are used for the communication.

For each DNI Flow, at least one set of Directions must exist, so that the flow’s
source and destinations can be reached in the graph defined by Nodes and Links.
Providing incomplete routing information (e.g., missing Direction in DNI) cause
the resulting QPN to be not live.
DNI Directions are used in the routing-transition. The parameter via defines

which port-#-tx queueing place handles the tokens representing a given flow. The
wiring is transformed by defining a transition mode that connects the preceding
place (sdnSwitching or switching) with the succeeding queueing place.

Information modeled as SdnFlowRule defines the modes of sdn-transitions. Tokes
representing a Flow are directed to the sdnSwitching subnet if a SdnFlowRule exist
for a given Flow and Node. Otherwise, the tokens are processed by the switching
subnet. The mapping of flows to QPN token colors is discussed in Section 5.2.7.

5.2.7 QPN Colors and Traffic Clustering
The QPME editor and the SimQPN simulator divide tokens into classes called
colors. The tokens having the same color are indistinguishable. Thus, all important
components of the simulated traffic (e.g., flows) must be modeled as separate
colors. Except of the WE tokens described in Section 5.2.5, the transformation
generates multiple token colors related to the modeled traffic.

The traffic-token colors are related to the traffic modeled in DNI. The colors are
automatically generated based on the traffic model. The transformation generates
a separate color for each flow in the model. Additionally, if a Flow has multiple
FlowTraffic descriptions, each FlowTraffic is represented with a color. Multiple
FlowTraffics can be clustered as well to reduce the number of colors and thus
make the modeling granularity coarser.
The traffic clustering helps to reduce the number of colors and thus shorten

the SimQPN’s solving times. I assume, that the message size defined in a Flow-
Traffic entity can be clustered. For example, for a dataSize modeled as normally-
distributed N(µ, σ2), the transformation may generate a single color for the flow
with dataSize = µ, or three with the following data sizes: µ − σ, µ, and µ + σ.
The modeler decides how many clusters shall be used for modeling traffic as this
affects the prediction accuracy and the solving time. By decreasing the number
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of clusters, I accept the loss of prediction accuracy but expect shorter simulation
times.

Additionally, each traffic-token color has additional pair of colors for representing
packet-in and flow-mod tokens in SDN scenarios. In case of multiple SDN switches
and controllers, each traffic color has multiple pairs of packet-in and flow-mod
colors—each color pair for one switch-controller pair. This may lead to the
explosion of colors and should be carefully modeled because the SimQPN solver
can handle maximally 2563 = 16 777 216 colors.

5.3 Abstracting DNI with miniDNI and Solving with
QPN

Sometimes, a quickly conducted but less accurate performance prediction is more
valuable than a long-running but more accurate simulation. To the examples that
leverage quick performance prediction I include: (1) run-time reconfiguration of
resources to handle a workload spike, (2) trigger-based scaling of the infrastructure,
(3) rapid self-reconfiguration due to a failure. For such cases, a coarse model-based
prediction is of higher value than an expert’s educated guess. To other examples
where coarser modeling can be applied, I account all scenarios with insufficient
data to feed and calibrate the complete model. In both cases, the modeler may
decide to use a coarser model instead of DNI.
In this section, I present a transformation that converts a DNI model into

a miniDNI model. The transformation transforms DNI models into respective
miniDNI models. However, miniDNI models can be also built or extracted directly
from a running system without needing to build a DNI model. The available
extraction approaches are discussed in Sections 6.1 and 6.2.

5.3.1 Transformation of DNI to miniDNI
In the DNI-to-miniDNI transformation selected information is abstracted because
the miniDNI model contains less detail than the respective DNI model. I provide
an overview of transformation rules in Table 5.2.
As first, the transformation processes all DNI Nodes. A DNI Node is trans-

formed to miniDNI Node, disregarding of its IPosition (End or Intermediate)
and IType (SDN or Common). The DNI performance descriptions related to Node
(EndPerformance, IntermediatePerformance, SdnNodePerformance) are simplified
and aggregated in the miniDNI NodePerformance. The IntermediatePerfor-
mance is reflected in the forwardingThroughput parameter; the EndPerformance
is transformed to the softwareLayersDelay parameter; and the SdnNodePerfor-
mance transforms into the following three parameters: forwardingThroughput-sdn-hw,
forwardingThroughput-sdn-sw, and forwardingThroughput-sdn-controller.
The information about forwarding latency and switching capacity is abstracted

from the miniDNI model. The transformation recalculates the value of the for-
warding performance, so that the values stored in miniDNI are the minimal
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Table 5.2: DNI-to-miniDNI transformation rules.
DNI miniDNI Comments
Node Node All miniDNI Nodes share the features of DNI’s End,

Intermediate, and SDN Nodes.
Link,
NetworkInterface

Link A DNI Link connecting two NetworkInterfaces is
transformed into a miniDNI Link connecting two
miniDNI Nodes.

Communicating-
Application,
TrafficSource,
Flow, Workload,
Workload- Actions

TrafficSource All DNI information about software is abstracted and
presented as a miniDNI TrafficSource. Information
about traffic generated by a traffic source is aggregated
into a single TrafficSource entity with parameters:
messageSize and numberOfMessagesPerSecond.

Network-
Configuration

Route,
FlowTable

The information about DNI NetworkProtocol is
abstracted from miniDNI, whereas DNI Directions
and SdnFlowRules are simplified.

expected throughputs (cause by either limited switch capacity, forwarding latency,
or forwarding bandwidth).
The DNI NetworkInterfaces and Links are transformed into miniDNI Links,

so that a triple (network interface, link, network interface) is represented with the
miniDNI Link. The performance descriptions of the NetworkInterfaces and the
Link are aggregated to represent the slowest of the three DNI equivalents.

The DNI NetworkTraffic sub-meta-model is transformed into a single miniDNI
TrafficSource. A TrafficSource corresponds to DNI TrafficSource, however
the structure in the miniDNI model is flat—no information about the Commu-
nicatingApplications is preserved. The DNI Workload and its actions is also
flattened and represented as messages that have size (parameter bytesPerMessage)
and are generated with a given frequency (parameter messagesPerSecond).

Transformation of the DNI Workload into the miniDNI TrafficSource abstracts
the most of the data. The traffic is presented as a flat stream of messages generated
in constant intervals, so that all traffic patterns are neglected. The transformation
unfolds and flattens (removes branches and loops) the workload graph of DNI until
all Branch and Loop entities are removed. Next, the duration of the workload is
calculated by summing the duration of all Wait actions. Similarly, the total volume
of data is aggregated by summing the size of flows referenced by the respective
Transmit actions. Finally, I assume that a single message per second is generated
and set the parameter messagesPerSecond to 1 and calculate the size of a message
by dividing the total traffic volume by the workload duration in seconds.
The values of both TrafficSource parameters may be freely defined by the

modeler when a miniDNI model is built manually. In the transformation however,
the approximation needs to be used as the values are calculated automatically.
The miniDNI TrafficSource parameters may be also indirectly extracted using
the approach presented in Section 6.2.
The miniDNI meta-model represents routing information using Route entities

that reference Nodes in a given order additionally distinguishing the start and the
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end of a route. Traffic generated by each miniDNI TrafficSource needs to follow
a single route. Load balancing is not supported in miniDNI.

Information about SDN is represented using FlowTables. A FlowTable defines
the forwarding mode in which a Node processes the traffic generated in Traffic-

Sources. The forwarding mode can be selected from traffic-native, traffic-sdn-hw,
traffic-sdn-sw, traffic-sdn-controller. A FlowTable references Nodes where the given
traffic should be processed according to the given forwarding mode. For ex-
ample, flowTable1.traffic-native=traffic-source-1 and flowTable1.onNodes=(node1, node2)
means that the traffic generated by traffic-source-1 will be forwarded using native
(non-SDN) mode on nodes node1 and node2.

The obtained miniDNI model is a descriptive model and needs to be further
transformed in order to deliver performance predictions. In Section 5.3.2, I present
the mDNI-to-QPN transformation that transforms a miniDNI model into a QPN
model.

5.3.2 Transformation of miniDNI to QPN

The QPN models resulting from the mDNI-to-QPN transformation differ from
the models obtained in the DNI-to-QPN transformation (presented in Section 5.2).
Both resulting QPN models represent the same network, but they differ in the
amount of detail being modeled. In the following, I present the mDNI-to-QPN
transformation and describe the abstractions it introduces.

The miniDNI meta-model describes the structure of a network using Nodes

and Links. These two entities are mainly used to generate the structure of the
respective QPN. Every Node is represented as a subnet. Connections between
subnets are obtained by transforming Links into pairs of queueing places connected
to Subnets using immediate transitions.

miniDNI link

transmission-delay

transmission-delay

node node

Figure 5.19: QPN representation of miniDNI Network including Links and Nodes
in mDNI-to-QPN transformation.

The QPN representation of a Link, presented in Figure 5.19, consists two
queueing places where contention effects from the network interfaces happen. The
delays in transmission-delay places are calculated using information included in
the LinkPerformance entities. Two pairs of immediate transitions are required by
the QPN formalism to connect two consecutive places. The transitions contain
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modes—one for each token color traversing the link. The colored tokens represent
traffic in the QPN. There is exactly one color for each TrafficSource. Colors are
assigned to places and transitions based on the information contained in the Route

entities. The transformation reads the routing information and assigns a color to
the place or transition if the respective link or node carries the traffic of the given
flow.

subnet: miniDNI node
miniDNI traffic-source

color-generation

generation-delay

forward-traversing-traffic

dummy-traffic-source

input output

Figure 5.20: Internal structure of miniDNI Node subnet place including Traffic-

Source in mDNI-to-QPN transformation.

The colored tokens representing network traffic are generated in the Nodes. The
structure of the QPN representing a Node is presented in Figure 5.20 and consist of
three parts. The first part is the forward-traversing-traffic transition. It is responsible
for processing the tokens from the input to the output place if the Node is neither
the source nor the destination of the traffic flow represented by the token color.
The transition is removed from the QPN model if a given node is not traversal
for any color. The information about traversal nodes is derived from the Route

entities. The second part consist of the ordinary place called dummy-traffic-source.
This place is necessary to keep the QPN graph connected in case the respective
node does not act as a traffic generator, nor a destination or a traversal node.

The third part of the subnet contains the set of traffic sources responsible for
generating tokens representing traffic. Each traffic source (see dashed frame in
Fig. 5.20) generates tokens of one color. A single token represents a single message
of the given size. The intergeneration time—derived from messagesPerSecond param-
eter in the TrafficSource entity—is modeled as a parameter of the generation-delay
places.

The transition between the input place and the traffic source is responsible for
removing incoming tokens—it contains modes that remove every token that arrives
to it. By such representation, I model the traffic as an open workload, exactly as
specified in the original DNI model. Only tokens that have their destination in the
given node are removed; other (traversing) tokens are passed to the output place
using the forward-traversing-traffic transition.
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5.4 Solving DNI with Discrete Time Simulation
DNI models may be transformed and solved with discrete time simulation. As
an example of a discrete simulation framework, I present two solvers based on
OMNeT++ simulation framework [Var01].
First solver—named OMNeT++INET—and its model transformation was origi-

nally presented in [RZK13, RKZ13]. The solver is based on INET [Omn16] library
that provides network models and algorithms present in the TCP/IP-based net-
works. The OMNeT++INET simulation does not cover SDN networks and its
support is limited to protocols included in the INET library. The main goal of
developing this solver was to reuse as many INET objects as possible and minimize
the customizations in the simulation framework. The solver and the respective
DNI transformation is presented in Section 5.4.1.
The second solver—named OMNeT++generic—and its model transformation is

presented in Section 5.4.2. The second solver is based on generic OMNeT++ discrete-
time simulation. This means, that no external libraries are used in its development
and all components are programed using the “vanilla” OMNeT++ installation. This
approach to simulation development simplifies the dependencies management and
increases the solver life-time as the interfaces to external libraries do not need to
be maintained anymore.

5.4.1 Classical Network: OMNeT++INET
INET [Omn16] library offers ready-to-use components for OMNeT++ to simulate,
among others, TCP/IP-based networks. The DNI meta-model covers wider scope
than the modules provided by INET, so the DNI-to-OMNeT++INET transformation
abstracts selected information included in DNI and narrows the scope to the
elements available in INET. On the other side, the behavior of Transmission
Control Protocol (TCP) is modeled in INET with much more detail compared
to the description included in DNI. This leads to accepting default parameters
offered by INET if an equivalent information does not exist in DNI. For example,
DNI does not define any parameters of TCP whereas OMNeT++INET allows to
define, for example, version of TCP (Tahoe, Reno) or initial window size. These
factors need to be taken into account when using the DNI-to-OMNeT++INET
transformation. The default parameters can be tuned manually in the simulation
framework, however this requires that the user is knowledgeable with OMNeT++.
The transformation builds the ned and ini files used by OMNeT++. OMNeT++

uses ned files for defining the structure of the network (topology, connections
between modules, available parameters), whereas ini files are used to define values
of the parameters defined in the ned files. The transformation does not generate
any code that defines the behavior of the OMNeT++ modules—it is assumed that
the required code is delivered with the solver.
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Table 5.3: DNI-to-Omnet-INET transformation rules.
DNI Entity OMNeT++ Entity Comment
Network
Infrastructure

network A network in OMNeT++ is a top-level entity and
represents the simulated environment.

End Node
hosts=null

StandardHost

End Node
hosts<>null

VMM VMM is a custom module that contains a Router and
StandardHosts.

Intermediate
Node

e.g., Switch or
Router

Depends on the value of IntermadiateNode.type
enumeration.

Link Datarate-
Channel

Applies to both PhysicalLink and VirtualLink.

Network-
Interface

inout gate of
e.g., a Router.

Generated automatically for StandardHosts and VMMs
based on the connections section of the OMNeT++ ned
file.

Network-
Protocols

represented
directly

OMNeT++ and INET simulate network protocols
directly as long as DNI uses TCP, UDP, IP.

Traffic-Source TcpApp or
UdpApp

Choice of application type depends on the
NetworkProtocol in the L4 (e.g., for TCP we use
TcpApp).

Workload configuration of
e.g., TcpApp

The choice of concrete Workload depends on traffic
generation implementation and configuration of
TrafficSources.

Transformation Rules

The DNI-Omnet-INET transformation transform models by executing rules pre-
sented in Table 5.3. First, the main ned file describing a network is build. The
top-level network represents the topology of the network and includes equivalents
of the DNI Nodes and Links. An example of OMNeT++’s top-level network is
presented in Figure 5.21. The End Nodes are modeled using StandardHost module
provided by INET, whereas Intermediate Nodes are represented as a Switch or
Router. The transformation selects between a Switch or Router based on the
Protocols in the ProtocolStack attached to the DNI NetworkInterfaces used
by a given DNI Node. As the transformation supports only TCP, UDP, and IP
protocols, the matching depends on the name of the protocol.

An End Node that hosts other Nodes is transformed into a OMNeT++’s VMM. The
VMM does not exist in the original INET library, so I provide its implementation
as an OMNeT++ module. Its internal structure is presented in Figure 5.22 and
contains a Router and an array of StandardHosts, which both are standard INET
modules.
NetworkInterfaces are generated in OMNeT++ automatically when two of DNI’s

Node equivalents (e.g., StandardHost and a Router) are connected. An example
is presented in Listing 5.1—each Node (e.g., relate1, relatesw2) gets a gate named
ethg.

The performance of a DNI Link and NetworkInterface is calculated in the trans-
formation and transformed into a ThruputMeteringChannel. The ThruputMeter-
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Figure 5.21: Example of a top-level OMNeT++ network including modules: Stan-
dardHost (e.g., relate3), Switch (e.g., sw1), VMM (e.g., relate4).

Figure 5.22: Internal structure of the custom VMM OMNeT++ module.

ingChannel wraps the DatarateChannel and provides traffic statistics. Exemplary
channel definition in a ned file is presented in Listing 5.2.

A DNI TrafficSource is transformed into OMNeT++’s Tcp- or UdpApp depend-
ing on the transport protocol used by the Node that hosts the TrafficSource. Tcp
and UdpApp are standard INET modules with simplified specification of traffic
generation behavior. As the default form of defining traffic is not satisfactory, I
contributed modified versions of Tcp and UdpApp: DNITcp and DNIUdpApp respec-
tively.
DNI***Apps allow to specify traffic generation behavior by defining time series

of events in textual form. For example, a fragment: “send 800000 every 0.0010
for 999 times; send 1000 every 0 for 1 times;” means that 800 000 bytes will be
generated 999 times in a loop with inter-generation time of 10ms. Then, a single
1000 bytes long message will be sent immediately. DNI TrafficSources with
Workloads containing branches are transformed into multiple DNI***Apps—one
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Listing 5.1: A definition of topology in OMNeT++. Nodes are connected using
channels representing DNI Links and gates (ethg) representing DNI NetworkInter-
faces.
connect ions allowunconnected :

re la tesw1 . ethg++ <−−> CHANNEL_098461 <−−> rela tesw2 . ethg ++;
re la tesw2 . ethg++ <−−> CHANNEL_064472 <−−> rela tesw3 . ethg ++;
r e l a t e 1 . ethg++ <−−> CHANNEL_035945 <−−> rela tesw1 . ethg ++;
r e l a t e 2 . ethg++ <−−> CHANNEL_021247 <−−> rela tesw1 . ethg ++;
r e l a t e 2 . ethg++ <−−> CHANNEL_079851 <−−> rela tesw2 . ethg ++;

Listing 5.2: A definition of a channel in OMNeT++.
channel CHANNEL_098461 extends ThruputMeteringChannel {

da ta ra te = 1 . 0Gbps ;
delay = 9.999999974752427E−7s ;

}

DNI***App for each branch. The traffic specification format was later improved for
the OMNeT++generic solver that is presented in Section 5.4.2.

Limitations

Simulation of a TCP/IP-based network in OMNeT++ INET requires several further
simplifications in order to comply with DNI. First, DNI defines explicitly which
Nodes may communicate using a given path. In OMNeT++, communicating pairs
and routing information need to be encoded in the form of static routing with
predefined routes. Moreover, OMNeT++ requires setting valid Internet Protocol
(IP) addresses, whereas DNI identifies entries based on IDs. This may lead to
a broadcast storm if the addressing information in DNI is missing or do not
correspond to valid IP addressing schemes.

Similar problem appears if the modeled switches use Virtual Local Area Networks
(VLANs) to separate logical networks (e.g., as defined in is IEEE 802.1Q). VLANs
are modeled in DNI by explicitly defining possible communication paths for
Node pairs. OMNeT++INET does not provide a configurable module to represent
VLANs, so a Router must be used. Despite the limitations, the OMNeT++INET
solver provides valid performance predictions for TCP/IP-based scenarios. Their
evaluation is presented in Chapter 7.

5.4.2 SDN-based Network: OMNeT++generic Simulation
The second OMNeT++-based solver—named OMNeT++generic—is an independent
OMNeT++ simulation and does not require any additional OMNeT++ packages
or libraries. The main aim of this solver is to overcome the limitations of the
OMNeT++INET simulation and support generic network protocols by abstracting
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their behavior. The generic OMNeT++ solver should support SDN and load
balancing scenarios thanks to its generic character. I characterize the solver and its
transformation in the following sections.

Nodes and Links

Similarly as in DNI, OMNeT++generic represents a network using nodes and
links connected with network interfaces. An exemplary network is presented in
Figure 5.23.

Figure 5.23: Example of a top-level OMNeT++generic network.

The example in Figure 5.23 includes the following OMNeT++ modules: node
(depicted as a desktop computer), network interface (depicted as a network card),
link (depicted as black vectors connecting components), flow (depicted as box with
arrow), application (depicted as a box with screen), and protocol (depicted as a gray
box).

DNI Links are represented as OMNeT++Channels, which are generic OMNeT++
entities. Links are grouped by their type (based on their maximal offered band-
width) and represented in OMNeT++ as channel types. Example is presented in
Listing 5.3 where three types of channels are defined: 1Gbps Cat6, 10Gbps SFP+,
and 40Gbps QSPF+. The channel types correspond to the cable types used in
the real testbed. Any virtual Links (i.e., Links connecting VMs or a hypervisor)
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Listing 5.3: Definition of channels in generic OMNeT++.
channel Cat6 extends ThruputMeteringChannel {

da ta ra te = 1Gbps ;
@display ( " l s =black , 1 " ) ;

}
channel SFP extends ThruputMeteringChannel {

da ta ra te = 10Gbps ;
@display ( " l s = ,2 " ) ;

}
channel QSFP extends ThruputMeteringChannel {

da ta ra te = 40Gbps ;
@display ( " l s = ,3 " ) ;

}

are defined as custom channel class, similarly as for OMNeT++INET presented in
Section 5.4.1.
Channels connect network interfaces. A network interface in OMNeT++generic

is represented with a pair of queues—one for transmitting, second for receiving
data (see Fig. 5.24). Both queues have identical performance specification that
stems from DNI’s NetworkInterface and NetworkInterfacePerformance entities.
Additionally, queues gather traffic statistics that are later reported as the results of
the prediction.

Figure 5.24: Internal structure of network interface in OMNeT++generic.

DNI Nodes are represented as OMNeT++ custom modules called node. OM-
NeT++’s node represent any DNI Node, disregarding its IType (SDN or Common) and
IPosition (End or Intermediate). An OMNeT++ node is assumed to combine a
SDN, End, and Intermediate Node in a single entity—the performance specification
and hosted applications can successfully represent the relevant parameters included
in DNI. In contrast to OMNeT++INET, OMNeT++generic does not represent the
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Listing 5.4: A fragment of application, flow, and deployment configuration in
generic OMNeT++ solver.
∗ ∗ .App_C39 . deployedOnNode = "C39 "
∗ ∗ .App_C39 . traff icXML = xmldoc ( " F low1_Traf f i c . xml " )

∗ ∗ . Flow1 . uid =" Flow1 "
∗ ∗ . Flow1 . SourceSoftware = "App_C39"
∗ ∗ . Flow1 . Dest inat ionSof tware = "App_C10"
∗ ∗ . Flow1 . DataSize = 1000 .0MiB

Listing 5.5: Definition traffic source behavior in generic OMNeT++.
<?xml vers ion=" 1 . 0 " encoding="UTF−8" standalone="no " ?>
<workload>

<ac t i ons id=" 0 ">
<ac t ion id=" 0 " t ransmit=" Flow1 " waitTime=" 10 .0 "/>
<ac t ion id=" 1 " t ransmit=" Flow1 " waitTime=" 10 .0 "/>
. . .
<ac t ion id=" 98 " t ransmit=" Flow1 " waitTime=" 10 .0 "/>
<ac t ion id=" 99 " t ransmit=" Flow1 " waitTime=" 10 .0 "/>

</act ions >
</workload>

internal structure of a node. Instead, the behavior is defined in the code of the
node module.

It is assumed, that any OMNeT++ node can act as a traffic forwarder. Its forward-
ing performance is defined by the respective DNI parameters (IntermediatePerformance
for Common Node and PerformanceSdnNode for SDN Node) or set as unlimited in case
of lacking the respective performance descriptions. The OMNeT++ equivalent of
an SDN Node includes descriptions for software and hardwareSwitchingPerformance, so
that the proper behavior can be applied based on the SdnFlowRule configuration.

Applications and Traffic Sources

DNI CommunicatingApplications are represented in OMNeT++ under the same
name (see, for example, App_C39 in Fig. 5.23). The deployment of applications
and the destinations for the traffic they generate is defined in the configuration
file omnetpp.ini. A fragment of this file is presented in Listing 5.4.
In the example presented in Listing 5.4, application App_C39 is deployed on

node C39 and communicates with application App_C10. The App_C39 sends a
single type of message that is defined by Flow1 and has size of 1000MB. The traffic
pattern is defined in an xml file Flow1_Traffic.xml. An example of traffic generation
specification is presented in Listing 5.5.

In the example from Listing 5.5, App_C39 sends periodically a message defined
by Flow1 and waits 10 seconds before sending the next message. The action is
repeated 100 times. The Workload descriptions included in DNI are unfolded to
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Listing 5.6: A fragment of routing and load balancing configuration in generic
OMNeT++ solver.
∗ ∗ . SW35 . d i r e c t i on s = " Flow2␣SW35_IF1␣ 1 . 0 "
∗ ∗ . SW40 . d i r e c t i on s = " Flow1␣SW40_IF2␣ 0 . 3 ␣Flow1␣SW40_IF3␣ 0 . 7 "

represent a single time series for a traffic source. Workloads containing Branch
actions are duplicated and handled separately, so that each branch is represented
as a separate OMNeT++ traffic generator. This allows to keep the OMNeT++
generator descriptions in the form of a time series containing only transmit and
wait events.

Network Configuration

The information about network configuration is used twofold. First, the Net-
workProtocols and ProtocolStacks are used to calculate transmission overheads—
the overhead may be calculated, given data header size (e.g., header length of the
IP) and an average data unit length (e.g., payload size for Ethernet). The data is
represented in DNI in the dataPayload and packetOverhead parameters. Moreover,
the routing information is transformed into the configuration of OMNeT++’s node.
An example is presented in Listing 5.6.

First line presented in Listing 5.6 defines that all Flow2 messages on SW35 node
should be forwarded via interface SW35_IF1. The second line, on the other hand,
defines a load balancing behavior where 30% of Flow1 messages traversing via
node SW40 are directed via interface SW40_IF2 and 70% via SW40_IF3.

5.4.3 Limitations of OMNeT++-based Solvers and their
Transformations

In the preceding sections, I presented two OMNeT++-based solvers with different
characteristics and capabilities. First—OMNeT++INET—offers fine-detailed support
for such common network protocols as TCP, UDP, and IP. Unfortunately, as INET
library does not include any SDN models (at the time of development), the solver
cannot support SDN-based scenarios. Load-balancing scenarios are not supported
as well. Moreover, the OMNeT++INET solver depends on the INET library, so
its support for scenarios may change as the library evolves. Additionally, the
simulation times may be long as the INET library introduces additional overhead.
The second solver—called OMNeT++generic—addresses the weaknesses of the

previous one. It supports all network protocols, however at the abstracted, coarser
level than in the OMNeT++INET. Moreover, it supports SDN-based scenarios
as the node model was developed from scratch. Additionally, it supports load
balancing scenarios where traffic is split into multiple network paths or directed
to multiple receiver nodes. Unfortunately, the behavior of the OMNeT++generic
solver was custom programmed. This implies that the future version of the
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OMNeT++ simulation framework may not support the programed concepts any
more and the risk of bugs in the implementation is higher when compared against
OMNeT++INET that leverages well established simulation library.

The OMNeT++ solvers, as the heaviest from the simulation frameworks used in
this thesis, are expected to deliver long solving times. Their solving performance
depends mainly on the number of messages (and events) created in the simula-
tion engine. I compare the features of the solvers and their transformations in
Section 5.6.1.

5.5 Layered Queueing Networks: Transformation and
Solvers

In this section, I present model transformation to the LQN representation. The
LQNs offer analytical solvers to speed-up the solving process. The formalism
is briefly introduces in Section 2.3.2. I propose to transform QPN models rep-
resenting DNI into LQNs as LQNs can be solved using efficient and well es-
tablished solvers—including two analytical ones. The LQN solvers I consider
are: LINE [PC13], LQNS [FMW+09], and LQSIM [FMW+09]. In the following, I
describe my contributions to building the QPN-to-LQN model transformation.
The validation of the QPN-to-LQN transformation was not conducted for QPN

models obtained using DNI-to-QPN transformation due to the limitations of the
transformation and the LQN solvers. The QPN models obtained in the DNI-
to-QPN transformations are big and have complex structure. Instead, I validate
the QPN-to-LQN transformation using simpler QPN models. The validation is
presented in Section 7.6. The contribution presented in this section was published
in [MRSK16].

5.5.1 QPN and LQN Solvers and their Limitations
In this section, I discuss the following four solvers: SimQPN [KB06] for QPNs,
LINE [PC13], LQNS [FMW+09], and LQSIM for LQNs. I briefly characterize the
main known limitations of the solvers in their current versions.
SimQPN [KB06] is a tool for steady-state analysis of QPNs. It is based on

discrete-event simulation of a QPN and can yield throughput, utilization and
response time statistics as a result (including confidence interval and histograms).
Its capabilities are limited by the amount of free memory to a simulation of few
millions (×106) of tokens (tokes can be created and destroyed during the analysis)
on a commodity hardware.

LINE solver [PC13] leverages the benefits of fluid analysis techniques for solving
the LQNs. Currently, its coverage of LQNs is still limited, for example, it does
not support the <and> node in the activity graphs what limits the set of models
that can be solved efficiently. While support for this functionality is planned, no
concrete release date is available yet. According to the developers of LINE, the
<or> node is supported.
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LQNS (analytical) and LQSIM (simulation) [FMW+09] are two state-of-the-art
solvers for LQNs. The LQNS solver implements an analytical solving technique—
mean-value analysis (MVA)—and combines the advantages of other existing
solvers, namely SRVN [WNPM95] and the Method of Layers (MOL). Accord-
ing to [FMW+09], LQNS and LQSIM do not support recursive calls (a task calling
its own entries) and provide only limited support for replication on subsystems.
LQNS cannot handle activity sequences which fork is located in one task and join
in another. Moreover, LQNS and has troubles solving models having exclusively
external arrival flows.
The analysis of PCM models using QPNs and LQNs has been evaluated by

Brosig et al. in [BMB+15]. Compared to LQNS, SimQPN was evaluated to provide
full support of response time distributions, flexible parameter characterizations,
and blocking behavior. On the other hand, the analyzed LQN models were more
compact and the solving using LQNS was faster than the solving in SimQPN of
the respective QPN models.

5.5.2 QPN-to-LQN Transformation
In this section, I present the QPN-to-LQN transformation that enables the fluid
analysis for QPN models. The transformation consists of rules that are executed for
each matching element of the source model (QPN) and that produces respective
elements in the destination model (LQN).
In the simplest case, transformation rules are context-free, injective functions

mapping the elements of a single QPN type to the equivalent LQN elements.
However, when comparing the two formalisms, one can quickly note that this is
not the case for the QPN-to-LQN transformation—certain behaviors (e.g., loops,
forks, etc.) are explicit model elements in LQNs, while the same behavior is
modeled in QPNs using a combination of places and transitions. In order to
identify such combinations of places and transitions (in the following, I call this
a pattern), the transformation rules need to consider the context in which the
QPN model elements are used (i.e., identify neighbor elements and understand
their roles). An example of such context information may be the neighboring
places and transitions or a topology of the QPN. As a result, there may be several,
context-sensitive transformation rules that apply to the same model element in a
QPN.
To determine which context-sensitive transformation rules shall be used for a

certain model element, the structure of the QPN needs to be analyzed first. In the
analysis, the transformation searches for known QPN patterns (e.g., loops, forks,
joins). In general, graph pattern matching is an NP-complete problem [GJ79], but
many efficient pattern matching algorithms exist (e.g., [FWW13]). For discovering
patterns, I leverage the fact that any colored Petri net can be unfolded into a
single-colored one [LHY12].
The LQN formalism requires to explicitly model the starting point of the calls

as top layers. In QPNs, one needs to determine these starting points first, as a net
is represented as an arbitrary graph. In order to determine the starting places, the
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reachability of places withing the QPN needs to be calculated and open or closed
workload places must be identified (e.g., using the approach described in [WSK15]).
In case of a closed workload, the cycle around the complete net is temporarily
removed from the QPN model and transformed into the LQN as a special top
layer that is annotated with a user population. The starting places define the
starting point for the search of other patterns. Table 5.4 gives an overview of
our transformation rules. The rules are described in detail and accompanied with
examples in the following sections.

Table 5.4: Key rules used in the QPN-to-LQN transformation.
QPN element/pattern LQN representation

Queues Processors
Queueing places Task with entry and assigned processor
Ordinary places Depends on context. See Section 5.5.2.
Token colors Individual entries for each color in the respective task
Modes of transitions Activity Graphs for every input color that resemble the mode wiring

(see Fig. 5.28)
Fork and join pattern Fork and join nodes in activity graphs
Loop pattern Loop notation (see Fig. 5.33)
Critical sections Critical sections are created by a layer that marks the entrance to the

section, has limited resources and uses a processor with a FCFS
scheduling strategy.

Queues and Queuing Places

In QPN, I distinguish queueing places and queues. A queueing place consists of
a queue and a depository. A queue may be shared between different queueing
places. Queues are used to describe scheduling behavior in QPNs (e.g., at hardware
resources). In LQNs, the same scheduling behavior can described using processors.
The transformation directly maps queues to processors. The associated queueing
places are mapped to tasks in the LQN that use the corresponding processor.
In case of shared queues (i.e., multiple queueing places referencing a single
queue), each queuing place is mapped to separate tasks using the same underlying
processor. Figure 5.25 illustrates the mapping for the different cases.

Colors in Places

Tokens in QPN may represent a single request, a resource (e.g., database connection
in the pool), or a user. Each token has an associated color. Colors are usually
used to model the routing of requests (different colors are traversing different
path) or to represent various classes of requests (e.g., separate colors for read
and write requests). While colors help to reduce modeling efforts, they do not
increase the modeling power of QPNs. Using replication of parts of the net,
every colored Petri net can be transformed into non-colored one without loss of
information [LHY12, JK09].
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Figure 5.25: Transformation of queueing places with: (a) single place, queue, and
color; (b) single place, queue, and two colors; (c) two places, single queue and
single color. Processing times are modeled with the exponential distribution with
a mean value defined in seconds.

The calls in a LQN are identical and cannot be distinguished by different types
(or colors). In order to distinguish different types of calls to a task in LQN, I map
each color to a separate entry. An example is presented in Figure 5.25b. In case of
queueing places, the entries are parameterized with the service time specified in
the QPN. In case of ordinary places, the service time is set to zero.

Ordinary Places

Ordinary places play a specific role in QPNs. They accumulate tokens but have
limited influence on the time aspect of the QPN. I transform ordinary places based
on the context in which they appear. The following cases are distinguished.

First, an ordinary place is a part of a pattern, for example, a critical section and
represents the limited resources (see pool place in Fig. 5.34 on page 124). This case
is covered by the critical section pattern described in Section 5.5.2.

Second, an ordinary place can be reduced if it does not influence the execution
(e.g., it was used only for the convenience of the modeler). It can be reduced—i.e.,
the neighboring transitions can be merged—only if the place is the only successor
of the preceding transition and the only predecessor of the succeeding transition.
An example is depicted in Figure 5.26a.

Third, an ordinary place can be used also as a synchronization point. This
happens when a succeeding transition consumes multiple tokens and the tokens
are held in the ordinary place until the required amount is deposited. According
to LQNS documentation [FMW+09], LQN supports this case using the calls-mean
parameter that can be specified as a real variable. An ordinary place followed by
a transition that consumes n and produces m tokens will result in calls-mean= m

n
in LQN. An example is depicted in Figure 5.26b.

Finally, an ordinary place (the same applies to a queueing place) can precede a
branch where the deposited token is consumed by one of the succeeding transitions.
I depict it in Figure 5.27, where the token in place p1 has equal probability = 0.5
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Figure 5.26: Transformation of QPN ordinary places depending on context.

to be consumed by transition t1 or t2. The probabilities can be calculated based on
the firing priorities of the transitions—by default all transitions have equal priority.
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Figure 5.27: Transformation of QPN ordinary places depending on context: branch
in workload.

Transitions and Modes

In QPNs, transitions consume tokens from incoming places and produces new
tokens in outgoing places. Transitions can fire in different modes to model various
dynamic behaviors. The incidence function defines the number and color of
tokens consumed and produced by a firing mode. Figure 5.28 depicts the possible
transition configurations and their LQN equivalents respectively.

Multiple incoming places connected to the same mode represent a synchroniza-
tion point or a “join” (Fig. 5.28a). Transitions containing multiple modes can be
decomposed into multiple transitions, each containing a single mode. As a result,
they can be treated as independent calls to the same entry of a task (Fig. 5.28b).
Multiple outgoing places from the same mode represent a fork (Fig. 5.28c). The
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transformation maps the transitions to LQN activity graphs, where Fork and joins
are represented by <and> nodes (depicted as &) (Fig. 5.28a and 5.28d).

Fork and Join Pattern

The fork and join pattern in QPNs is built by defining a mode in a transition that
consumes a token and forwards the token to multiple succeeding places. I present
a simple fork-join pattern in QPN in Figure 5.29. In LQNs, forks are modeled
with activity graphs. The <and> nodes are used to execute calls in parallel and
to join (synchronize) them after they are finished. In Figure 5.30, I present the
transformed LQN equivalent model of the QPN presented in Figure 5.29.

Finding the start and end of forking process is challenging. While the start (the
fork) is marked by a mode consuming a token and depositing multiple tokens,
each in possibly separate place, the matching end (the join) must be found using a
graph searching methods. Since colors can change on the way through the graph
it is non-trivial to match a fork with the respective join.
To address this problem, I envision the following possibilities. First, one can

try to fit the fork-join pattern in a single LQN task, so that more solvers can be
used to solve such model (see solvers limitations in Section 5.5.1). The analysis of
non-trivial fork-join patterns in QPN (e.g., with colors changing between fork and
join) is conducted using algorithms for graph analysis (e.g., [RS10]).
Second, one may omit the search for matching forks and joins and proceed

to the further transformation rules. In this way, the fork and join pair may be
separated and placed on different tasks. Although this limits the compatible set
of solvers (e.g., LQNS does not support separated fork-join), the model will be
transformed correctly.

Loop Pattern

The QPN formalism does not support modeling of loops directly (there exists no
QPN loop element) but a loop can be modeled indirectly using multiple simpler
QPN elements. Examples of QPN loops modeled indirectly are presented in
Figures 5.31 and 5.32.
The loop presented in Figure 5.31 iterates based on the probability defined

in the incidence function of the Loop-Exit transition. The expected number of
iterations needs to be calculated in the transformation, as LQN requires exact
number of iterations to be specified. In Figure 5.32, the number of iterations is
defined deterministically by the number of tokens produced by the 1-to-num-loop-
iter transition. LQN supports loops directly, so once the loop pattern is recognized
correctly and the number of iterations is calculated, the transformation rule is
trivial. Graphical representation of an equivalent LQN loop is shown in Figure 5.33.
The QPN representations of loops are treated as patterns that need to be

discovered by the transformation (or a separate QPN analysis library) in order to
be transformed. In case of an unsupported loop pattern (there may exist other
patterns than the two presented in Fig. 5.31 and 5.32), the transformation of a
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Figure 5.28: Transformation of QPN transitions. QPN transition t1 contain modes
that consume and produce tokens on fire. LQNs representation is simplified (no
processors) for brevity.
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Figure 5.29: Exemplary QPN containing the fork and join pattern.
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Figure 5.30: Exemplary LQN containing the fork and join representation of the
QPN shown in Figure 5.29.

loop may be covered by the remaining transformation rules (depending on how
the loop was modeled in QPN), however, the compact notation of LQN loop (as
in Fig. 5.33) will not be used.

Critical Section Pattern

A critical section is a region which can simultaneously handle only limited number
of objects. Both LQN and QPN can model critical sections. Figure 5.34 shows a
critical section in QPN. It is modeled with the enter section transition that consumes
a token from the start and second from the pool place. The amount of initial tokens
in the pool defines the number of tokens that enter the section at the same time.
At the end, the leave section transition passes the token further to the end place
and at the same time deposits another token back into the pool, so that the next
token from start can enter the section.

LQNs represents a critical section with a layer that contains a defined number
of first come first serve (FCFS) queues. The number of FCFS queues in LQN
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Figure 5.31: Example of a QPN loop representation with probabilistically modeled
number of iterations. Excerpted from [BMB+15].
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Figure 5.32: Example of a QPN loop representation with deterministically modeled
number of iterations (repetition of Fig. 5.17).

corresponds to the QPN’s pool tokens that limit the maximum number of tokens
in the critical section. Every task in every queue will execute a synchronous call
to perform the work in the critical section. Only when this call finishes, the next
element will be dequeued and processed. Graphically, I depict LQN critical section
in Figure 5.35. The size of the pool is denoted with the quantity of the task
critical_section[3].

5.5.3 Transformation Limitations

In contrast to previously presented model transformations, the QPN-to-LQN trans-
formation consumes QPN models at the input. Unfortunately, the QPN-to-LQN
transformation does not fully support all QPN models due to its limitations. The
DNI models may be solved using LQN only if the DNI-to-QPN or miniDNI-to-QPN
transformations produce a QPN model that is compatible with the QPN-to-LQN
transformation. If the DNI-to-QPN transformation results in an incompatible QPN
model, the QPN-to-LQN transformation will fail and the LQN solvers cannot be

123



Chapter 5: Model Transformations and Solving

e1

CPU
num iter

parent

pre-loop

post-loop

sub-workload

Figure 5.33: LQN loop representation with deterministically modeled number of
iterations.
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Figure 5.34: Example QPN containing a critical section. The pool contains, so
maximally three tokens can enter the subnet.

used. Unfortunately, there is no guarantee that the QPN representation of a DNI
model will be compatible with LQN. The partial support of QPN models in the
QPN-to-LQN transformation is caused by the nature of both meta-models. QPN
formalism is more general than LQN so QPN may represent more scenarios than
the LQN. Due to that, some QPN scenarios cannot be represented by the LQN for-
malism what makes the transformation of many cases impossible. The QPN-to-LQN
transformation has been validated in Section 7.6 using compatible QPN models.
The resulting LQNs were solved using three LQN solvers: LQSIM [FMW+09],
LQNS [FMW+09], and LINE [PC13].

In the remainder of this section, I describe the limitations of the QPN-to-LQN
transformation. This section covers general limitations of the LQN formalism and
do not focus on solver-specific limitations (the limitations of LQN and QPN solvers
are presented in Section 5.5.1). The most challenging parts of the transformation
are: loops where a higher layer in LQN needs to be called, and the problem of
finding the top layers (also called reference layers). I discuss both problems in the
following.

124



5.5 Layered Queueing Networks: Transformation and Solvers

e1

end

start
e1

e1

enter
[0]

call_subnet
[0]

leave
[0]

e1

subnet …
critical_section [3]

Figure 5.35: LQN representation of the critical section corresponding to the QPN
in Figure 5.34.

Support for Specific Loops

Currently LQN supports a loop node, which executes a defined number of loop
iterations assuming that the number of loop iterations is known beforehand.
Unfortunately, it is impossible to build a LQN model of a QPN loop with unknown
number of iterations, for example, as seen in Figure 5.36. This limitation stems
form the lack of support of LQN to call layers that lie higher in the hierarchy.
Solvers like LINE will run into recursion problems (exceeding the maximum depth).
The general loop that models the closed workload of a complete LQN model is a
special case and LQN supports it even if the number of iterations is infinite or
unknown.

t1

t2t3 task2task

task1taskstartstart

Figure 5.36: Example of QPN containing a second internal loop.
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Finding the Top Layer

LQN use a special layer (called reference or top layer) to start the workload cycle.
The task in the top layer will be executed periodically according to the think
time parameter. QPN does not necessarily have obvious starting places. Finding
the transitions that fire first or model the think time of the closed workload is
challenging. In order to address this limitation, I propose to analyze the input
QPN and estimate which transitions will fire as first. I aim to find the transition
that models the beginning of a closed workload. Unfortunately, QPN allows to
represent a system in many ways and it is not guaranteed that the transitions
found are responsible for representing the think time of a closed workload loop.
An approach to this problem was tackled by Walter et al. in [WSK15].

In the transformation, for each transition found a top layer is built. The top
layer is treated specially in LQN as it is a starting point. Assuming that a top
layer is found, I construct LQN tasks that succeed the top layers by traversing
the subsequent QPN elements starting with the places that are successors of the
first-firing transition.

5.6 Selection of Optimal Solver
Model transformations presented in this chapter generate various predictive models.
The transformations may support only selected DNI models, based on the features
represented in the DNI model (e.g., SDN-specific entities). In Section 5.6.1, I
analyze the semantic gaps between the solvers, transformations that generate the
predictive models, and formalisms that are used for a predictive model. The
analysis serves as a basis to recommending a feasible solver for the user, based on
hers requirements. Next, in Section 5.6.2, I propose a procedure for recommending
the most feasible transformations and solvers for a given prediction scenario.

5.6.1 Differences between Predictive Models and Solvers
In the presented approach, DNI serves as the information source to automatically
generate multiple predictive models out of a single descriptive model. In this
section, I compare the predictive models by describing their performance-relevant
network capabilities and limitations. A selection of features and metrics of the
predictive models is presented in Table 5.5.

I characterize selected features that are supported by the transformation and the
solver itself. Some features are supported partially (symbol ⊕) when the solver
coarsely approximates the real behavior. On the other hand, if a real feature can
be supported via extension of the transformation or the solver (e.g., for OMNeT++
solvers), the feature is marked as �. The mark � implies that the current version
of the solver or transformation do not support the feature or metric. The minus
symbol denotes that the feature is not supported and the support cannot be added
without reprogramming of the solver. The question mark denotes that a feature is
not supported and some data is missing to judge if the feature can be supported.
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Table 5.5: Selected features of the predictive models resulting from model trans-
formations.
Feature OMNeT++

INET
QPN
(DNI)

QPN
(mDNI)

OMNeT++
generic

LQN
(QPN
mDNI)

LQN
(QPN
DNI)

Intermediate and
end nodes

+ + – + – ?

Node virtualization + + – + – ?
SDN support × + � + ? ?
Traffic patterns + + × ⊕ × ×
Packet-level traffic
generation

+ × × + × ×

TCP/IP + × × × × ×
UDP/IP + + + + – –
Generic protocol – + + + + +
Load balancing × + × + � �

Performance metrics
Throughput time
series

+ × × + × ×

Throughput
distribution

+ ⊕ ⊕ + ⊕ ⊕

End-to-End delay
time series

� × × + × ×

End-to-End delay
distribution

� � � � � �

+ support, ⊕ partial support, � extension possible, − support in an abstracted form, × no support,
? no data (assume: no support).

The IPosition of the DNI’s Node allows the modeler to distinguish , among
others, network switches from the application servers. The IPosition of a Node
is not abstracted in both transformations using OMNeT++ and in DNI-to-QPN.
The transformation DNI-to-miniDNI abstracts a Node with a generic entity, so the
solver produced by mDNI-to-QPN transformation does not recognize whether a
Node is End or Intermediate. Similar holds for LQN models, whereas the LQN
model obtained from QPN and DNI is not fully supported by the QPN-to-LQN
transformation, so no statement can be made.
Analogously, the modeler cannot distinguish a VM from a server (except of its

name) when looking at the QPN model obtained from miniDNI and the respective
LQN model. Only the DNI→ QPN→ LQN model lacks the information about the
support of node virtualization due to the limitations of the transformation.
SDN-based scenarios are fully supported by the DNI→ QPN and the OM-

NeT++generic models. The OMNeT++INET solver cannot simulate scenarios with
SDN elements. The model mDNI→QPN can represent SDN scenarios in an
abstracted manner, yet the current form of the mDNI→QPN transformation can-
not. There is insufficient data available regarding the LQN solvers, because the
QPN→LQN transformation cannot cope with the QPN models obtained in the
DNI→QPN and mDNI→QPN transformations.
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Distinguishing traffic patterns (e.g., sudden load spikes, seasonal patterns—as
specified in [vKHK14]) is supported by the OMNeT++INET and the QPN model
obtained in DNI→ QPN transformation. The OMNeT++generic transformation
simplifies the traffic profile so only coarse traffic patterns are supported (e.g., load
spikes lasting several minutes). Rest of the models represent the traffic more coarse
and flatten the traffic characteristic.
Only OMNeT++ models are able to represent packet-level behavior of the

generators. OMNeT++INET model describes traffic generator at the messages
level (e.g., transmit a 5MB picture from A to B), but the simulation reproduces
the packetization as in the real network. The OMNeT++generic model can be
configured to represent traffic at the packet level, however by default, the model
represents the traffic with messages. The other predictive models support the
granularity of a message and the packet-level generation is unavailable.
The behavior of a TCP-based network differs from other protocols. TCP can

modulate the network performance by instructing a traffic source to send messages
slower if there is a congestion in the network. Moreover, TCP guarantees message
delivery by retransmitting lost messages or their fragments. To model this behavior,
few TCP algorithms need to be present in the predictive model (e.g., slow start,
TCP Vegas). Only OMNeT++INET supports such behavior. The other predictive
models cannot reproduce such behavior and offer UDP-similar transmission.

The UDP transmission is allows packets to be dropped if a network is congested.
This is directly modeled in OMNeT++INET, whereas the OMNeT++generic model
and both QPN models drop packets only if a queue is overloaded and the solving
may fail (e.g., due to solver’s high memory consumption). LQN models do not
drop “calls” (the unit of flow in the model), so their behavior abstracts the real
UDP behavior (UDP may transfer all packets without drops as well).
Finally, all models except of OMNeT++INET support a generic protocol—an

abstraction that allows to coarsely model any network protocol. The OMNeT++INET
requires a protocol to be selected from a predefined set (TPC+IP or UDP+IP) to
run a simulation.
Load balancing scenarios can be solved with QPN solvers and with the OM-

NeT++generic solver. Despite the support of load balancing mechanism in LQN
formalism, the QPN-to-LQN transformations in its current version is unable to
transform such scenarios.
All performance models analyze throughput as the main performance metric,

however, only OMNeT++-based solvers provide detailed throughput values for
each moment of the simulation; the other models provide aggregated statistics.
Despite the different granularity of traffic modeling (packet-level in OMNeT++
versus message-level in QPNs), analysis of the end-to-end transmission delay is
possible in both formalisms. The necessary extensions are available, however, the
calibration and evaluation of the delay metrics is considered as a future work.
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5.6.2 Optimal Solvers for Performance Prediction
The selection of an optimal solver for a given prediction scenario depends on the
following user-given constraints:

1. time frame in which the performance prediction results need to be delivered,
2. accuracy of the performance prediction,
3. required performance metric and resolution of the result,
4. model-related factors—e.g., model size, support of features (e.g.: SDN, custom

protocol, load balancing).
In the following sections, I discuss the constraints and propose an approach to
selecting the optimal solver for performance prediction. The detailed evaluation of
the solving time is conducted in Section 7.4.

Solving Time

The users usually require to obtain a result of performance analysis in a given
time frame. This factor plays important role especially for run-time performance
prediction scenarios where the performance predictions are used to optimize
system’s configuration in reaction to an event. The performance of the performance
prediction process is challenging to predict and depends on multiple factors, for
example:

1. size of the input model,
2. scalability of the solver,
3. performance of the transformation program,
4. required accuracy or size of the confidence interval for a given metric.
The user may however, estimate the solving time given the information about the

transformation architecture and the overall performance of an solver. For example,
the solvers that simulate the network traffic on a packet level require to process
more events than the solvers that simulate messages as the units of flow.
A source model that includes less information, in the most cases, will usually

result in a less complex predictive model. For example, the solvers transformed
from a miniDNI model can be solved faster than the solvers transformed directly
from the DNI model, as the miniDNI meta-model abstracts information from a
DNI model.
Next, the architecture of a solver itself influences the solving time. Multi-

threaded simulation solvers perform in general no worse than single threaded.
Some solvers handle larger model better as they approximate the models with
analytic formulas and the approximation is better for larger systems or more
intensive workloads (e.g., LINE [PC13]).
Before a solver can solve a predictive model, a transformation needs to build

the predictive model. Model transformations are applications which run times
depends on the size and the complexity of the input model. Moreover, to conduct
a sensitivity analysis (e.g., how performance of the network changes for various
values of a parameter) multiple predictive models need to be generated thus, a
transformation needs to be executed multiple times.
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In the context of this thesis, by no means a solver can guarantee a constant maximal
solving time. The detailed analysis of the solving time is conducted in Section 7.4.
There, I show the usual solving times for typical models. Additionally, for selected
solvers, I conduct solving time scalability analysis, that is, how the solving time
changes depending on the input model size.

Prediction Accuracy

Each solver handles the user-required accuracy according its own internal mecha-
nisms. For example, SimQPN repeats the solving until the steady-state is reached
and the user-given stopping criterion is satisfied. On the other hand, the OM-
NeT++-based simulators do not provide means to increase prediction accuracy
without changing the model or increasing the number of simulation repetitions.
Neither they guarantee to reach steady-state if a simulated scenario is too short.
Moreover, the user is required to conduct multiple simulation runs to meet the
requirements regarding confidence intervals of the result.
The solving time is usually connected with prediction accuracy, so solvers

providing more accurate performance predictions run longer than other less
accurate solvers. The dependency between solving time and the delivered accuracy
cannot be described with a defined dependency (e.g., linear or exponential) as it
depends on the complexity of the input model and the solver itself.

Performance Metric

By selecting an optimal solver for a given scenario, the user needs to consider
the performance metrics that a solver delivers. In this thesis, I focus mainly on
the network capacity and network interface throughput, however many solvers
measure other metrics as specified in Table 5.5.

Model-Related Factors

To conduct performance analysis, a DNI model needs to be transformed to a
predictive model and then solved. This processing chain causes that selected
models are not supported due to the limitations of the transformations and
solvers. For each model—based on the scenario that it models—selected model
transformations and solvers may return an error as the features included in the
model may not supported. Based on Table 5.5, I propose a procedure for selecting
the feasible solvers for a DNI model and scenario.

First, I define a set of solvers for which a model can be build using the currently
existing set of transformations. Let S denote a vector containing real values defined
as:

S = [s1, s2, · · · , s6]T (5.1)

where, sn denotes the feasibility of an n-th solver for the given scenario. The
solvers are enumerated as follows:
s1: OMNeT++INET,
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s2: QPN DNI,
s3: QPN minDNI,
s4: OMNeT++generic,
s5: LQN QPN DNI,
s6: LQN QPN miniDNI.

I treat the three LQN solvers (LQNS, LQSIM, LINE) as one and assume that the
QPN-to-LQN transformation supports any QPN model as an input. The limitations
of this transformation (without this assumption) are described in Section 5.5.3.

To evaluate the solvers I assume, that each solver sn is evaluated with a positive
real number sn = [0,∞), where 0 denotes the best fit and higher number less
fit for the scenario. The infeasibility of a solver for a given scenario is modeled
with infinity sn =∞. The user shall prefer solvers with lower score. Solvers with
non-zero score solve the model as well but they may treat the user input model in
and abstract way and omit or simplify some information. The solvers with infinity
score will return error during the transformation phase.

The procedure for joint evaluation of the solvers and transformations is presented
in Algorithm 2. The scoring used in the algorithm is based on Table 5.5. Whenever
the table defines no support for a feature (symbol ×), the score is set to infinity.
Abstracted support for a feature (symbol −) adds 100 to the evaluation score,
partial support (symbol ⊕) adds 50. Full support (symbol +) adds nothing to the
score. The features that are possible with an extension (symbol �) are assumed to
exist.

Algorithm 2 A function evaluating feasibility of solvers and model transformations
based on features included in the input DNI model.

function EvaluateSolversFeasibility
S = [0, 0, 0, 0, 0, 0]T

if required load balancing then
s1, s3 =∞; s2, s4, s5, s6 = 0; . s5, s6 Implementation required

if required protocols other than ’TCP’, ’UDP’, ’IP’ then
s1 =∞

if required protocol ’UDP’ then
s5, s6+ = 100;

if required strict behavior of protocol ’TCP’ then
s2, s3, s4, s5, s6+ =∞;

if required packet-level granularity then
s2, s3, s5, s6+ =∞;

if required traffic patterns then
s4+ = 50; s3, s5, s6+ =∞;

if required SDN support then
s1+ =∞; s3, s5, s6+ = 100; . s5, s6 more data required

if required strict distinction of virtual nodes then
s3, s5+ = 100; s6+ = 100; . s5, s6 more data required

if required strict distinction of end and intermediate nodes then
s3, s5+ = 100; s6+ = 100; . s5, s6 more data required

return S
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Algorithm 2 calculates the rating of six solvers based on nine questions. Each
question should be answered as yes or no by the user to calculate the complete
rating. The final score is calculated as a numeric value. The score 0 means the
best fit of a solver to the model, score ∞ means no support.
Three questions concern “strict” requirements: TCP behavior, distinction of

physical and virtual nodes, and distinction of end and intermediate nodes. The
strictness is defined to stress the requirements of the user, for example, the user
wishes no TCP behavior approximation using another protocol. Strict distinction of
virtual and physical nodes means that the virtual and physical Nodes are modeled
using different entities in the predictive model. The similar hold for End and
Intermediate Nodes.

LQN Solvers (s5 and s6) support only selected input models due to incomplete
transformation implementation. Due to that, the complete feasibility analysis
cannot be conducted. Four questions in Algorithm 2 are answered assuming the
required support is available in an abstracted form. The four cases are annotated
with a comment that more data is required to conduct full analysis.

In Section 7.4, I conduct extended feasibility analysis that includes the solving
times and resource consumption of the solvers.

5.7 Summary
In this chapter, I presented the approach to solving DNI models based on model
transformations. I described six model-to-model transformations and presented ten
possible ways of solving a DNI model.

In Section 5.1, I presented the pre-transformation steps including model vali-
dations, transformation parametrization, and in-place DNI-to-DNI transformations.
The model validation rules guarantee that the user-build DNI model is valid and
can be transformed by selected transformations (depending on the support for
the network features modeled in DNI). Ambiguous model settings are concer-
tized using transformation parametrization, so that the user-built DNI model is
transformed according to the user’s requirements. Next, the input DNI model is
transformed in-place to translate the user-friendly DNI format into a DNI form that
is easier to transform by the transformation developers. Afterwards, a valid DNI
model can be transformed into predictive models using model transformations or
their combinations.
The contributed set of model transformation enables a DNI model to be

transformed into six predictive models (DNI-QPN, mDNI-QPN, DNI-QPN-LQN,
mDNI-QPN-LQN, DNI-OMNeT++INET, and DNI-OMNeT++generic) that can be
currently solved using the six available solvers: one for QPN, OMNeT++INET,
OMNeT++generic, and three for LQN. These contributions allow to automatically
generate up to ten various methods for performance prediction for a single DNI
model (depending on the features included in the DNI model).

Finally, in Section 5.6, I characterized the differences and semantic gaps between
the predictive models built using the transformations. I specified the limitations
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of the transformations and solvers taking into consideration the network features
modeled in an input DNI model. Additionally, I proposed an algorithm for
evaluating the feasibility of a solver depending on the network features modeled
in DNI.
In Chapter 7, I validate the approach to performance prediction using the

predictive models generated using the model transformations described in this
chapter.
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Chapter 6

Extraction and Calibration of the DNI
Models
Manual building of Descartes Network Infrastructure (DNI) models may be cumber-
some if the modeled system (including the workloads) is complex. Fortunately, the
major part of a DNI model may be extracted automatically or semi-automatically
based on the data gathered from the running system. Such automatically prefilled
models may be later manually fine-tuned by the human modeler.
In this chapter, I discuss possible methods for DNI model extraction as a

secondary research contribution of this thesis. In Section 6.1, I present conceptions
for extraction of network structure, selected hardware parameters, and network
configuration. In Section 6.2, I provide an approach to semi-automated extraction
of traffic models based on the traffic traces captured from the running system.
Finally, in Section 6.3, I discuss the approaches to model calibration, which tune
the model to represent the modeled system more reliably, so that the performance
accuracy may be improved.

6.1 DNI Model Extraction
DNI models can be built manually using standard tooling, for example, Eclipse
Eclipse Modeling Framework (EMF), or an automatically generated text editor
(using e.g., Xtext, or Human Usable Textual Notation (HUTN)). To build a DNI
model manually, a modeler needs to include information about the network:
topology, configuration and traffic. Spinner [SWK16] states that “performance
models can provide many benefits, their manual creation and maintenance is time-
consuming and expensive, severely limiting their usage in real-world systems”.
Additionally, the incentive for model extraction is even stronger for highly dynamic
systems because they may reconfigure them selves autonomously during their
operation and thus manual extraction may be infeasible. Fortunately, major part
of the information required by DNI can be extracted automatically allowing to
generate an initial model populated with the relevant data. I propose the following
detailed objectives for DNI model extraction:
(a) automatically extract information about the network topology, addresses, and

interface names based on data from network configuration files;
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(b) automatically extract information about the deployment of software on net-
work nodes based on data provided by server operating systems;

(c) automatically extract information about the configuration of switches and
routers based on data obtained through the OpenFlow protocol (for Software-
Defined Networking (SDN) devices) or Simple Network Monitoring Protocol
(SNMP) for non-SDN devices;

(d) semi-automatic extraction of workload profiles based on techniques for cap-
turing and analyzing traffic traces;

(e) semi-automatic extraction of selected performance characteristics based on
performance monitoring data (e.g., the statistics collected by OpenFlow or
SNMP).

The accuracy and the amount of extracted information defined in the objectives
a) to e) will vary depending on the logical access to the devices in the data center,
their support for monitoring protocols, and the security policies used in the data
center. Assuming that the data center is managed by a single operator with full
access to the devices and monitoring data, I envision the extraction methods that
are conceptually described in the following.

Topology can be extracted based on multiple complimentary sources of infor-
mation. In SDN-based networks, the SDN controller can provide the information
about physical topology including the basic data regarding network interfaces: the
known nodes, and their addresses. For a non-SDN-based network, the following
information sources may be used: traffic traces, SNMP data, routing/switching
tables, and internal data from network node operating systems.
End-nodes (e.g., servers, virtual machines (VMs)) that do not produce traffic

can be extracted using simple agents that would need to be installed on each
node; the intermediate nodes (e.g., routers, switches) could be partially discovered
based on host Address Resolution Protocol (ARP) tables or Link Layer Topology
Discovery (LLTD). For networks based on non-IP and non-Ethernet protocols, only
end-node agents and SDN controllers will supply the topology information. In
the worst-case, a network administrator should provide the topology specification
manually.
In this thesis, I assume, that the data center operator has full access to the

infrastructure and information about physical topology is accessible. In some cases,
however, the physical network topology may be invisible to the tools and protocols.
This applies mainly to virtual networks (e.g., based on tunneling) that abstract the
physical topology by provide a virtual one instead. Models extracted in such way
are also valid for performance prediction purposes, however in such cases, the
vendor-provided hardware performance specifications cannot be used directly to
parametrize the model.

Software deployment can be extracted based on traffic traces and the mapping
of network addresses (Media Access Control (MAC) or Internet Protocol (IP)) to
the nodes. In case the topology cannot be extracted successfully (or the addresses
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are unavailable), the manual specification of the software deployment is relatively
simple: for each software application a single node needs to be assigned. In the
worst-case, a system administrator must specify the mapping between nodes and
software applications manually.

Automatic extraction of software deployment may face several challenges. Traffic
sources extracted based on traffic traces may represent different software structure
than in the reality. For example, an application composed of multiple modules may
not be recognized as one but as multiple separate applications. Despite possible
deviations, the extracted model will correctly represent that part of the system
from the performance point of view and the performance analysis shall not be
affected.

Network configuration is relatively simple to extract automatically as most of the
data can be provided, for example, by switching/routing tables, SDN controllers,
or SNMP monitoring tools. Additionally, many hardware vendors provide ready
solutions for network monitoring and configuration so the relevant data may be
read from a running system. Due to the medium-granular structure of DNI, the
required network configuration data (i.e., routing, protocol overheads, and SDN
flow rules) pose no major extraction challenges.

Performance descriptions capture information closely related to the performance
of a given node, network interface, or a link. Some of that information may be
found in a technical specification of a given device (e.g., switching delays of a
switch, or the maximal throughput of a cable), whereas some of it may need to
be measured experimentally. Assuming that no technical information is provided
(or the vendor-provided data is inaccurate), the performance characteristics can
be extracted from network monitoring data using resource-demand estimation
techniques [SCBK15b].

Workload and traffic profiles. Modeling of the workloads in a system during
the run-time is the most challenging part of extraction. The challenges are mainly
caused by non-deterministic behavior of the users who use the modeled system. In
practice, traffic traces need to be captured in order to reliably represent a particular
network traffic workload. Unfortunately, the traffic traces may be to big to model
directly as the traces need to be captured on all network interfaces of the nodes.
To address these challenges, I propose a flexible approach to network traffic model
extraction based on the traffic traces. The approach is described in Section 6.2.

6.2 Traffic Model Extraction
Traffic profiles are usually difficult to extract manually due to the amount of data
transmitted over the network. Fortunately, traffic models can be extracted from
captured traffic traces. The traces can be captured on the monitoring port of a
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switch (a port that aggregates and mirrors the traffic from all ports) or at the
network interfaces of the servers producing traffic.

In the proposed approach, the traffic profiles are represented as time-series that
are build based on the captured traces. For each traffic source, the traffic profile
captures only model-relevant data (simplified time series) without any payloads.
The traffic profiles are represented the original time series in a simplified and
compressed form. An optimization method is proposed to assure compactness and
representativeness of the extracted traffic profiles. The method ensures balance
between the size and the level of detail of the extracted profiles.
The approach to traffic model extraction was developed in cooperation with

Viliam Šimko and published in [RSS+16].

6.2.1 Network Traffic Generator Model
In the proposed approach, the extraction of a network traffic model is divided
into two coarse steps: (a) extraction and optimization of the traffic generators, and
(b) transformation of the traffic generators into an instance of the DNI meta-model.
The first step is tailored to simplify the second step and to provide the intermediate
format for the traffic model: a generator model (described in Section 6.2.1). The
output of the first extraction step is not bound to the DNI model and can be used
for other models as well.

Before I explain the extraction pipeline and signal decomposition, it is necessary
to summarize important assumptions about the network traffic. Typically, in a
network traffic dump, one can identify multiple communicating parties based on
IP addresses, ports or other parameters. For example, inside the communication
from a single server I can identify two applications by the Transmission Control
Protocol (TCP) port, albeit the IP address is always the same. Here, I assume that a
pre-processing step takes place to isolate individual sessions that are of the interest
of the modeler. I assume that the network traffic is represented as a univariate
time-series with one-second time granularity and positive values (packets with
negative size do not make sense).
In reality, I may observe regular and periodic data transfers but also irregular

and highly asymmetric signals depending on the application. Therefore, the
decomposition algorithm has to handle irregular signals well and to take advantage
of regularities whenever possible.

The last assumption in the approach concerns the DNI model and the simulation
models that can be automatically generated from a DNI model. Network traffic
in simulators generated by DNI (e.g., SimQPN [SKM12a] or OMNeT++) has to
be modeled as a collection of traffic generators emitting packets with a certain
frequency. The information about packets emitted is encoded into DNI flows that
are later transformed into entities used in the respective simulation (e.g., packets
in OMNeT++ or tokens in SimQPN). There is not much room for implementing
arbitrary real-value functions, which also hinders the application of Fourier and
Wavelet transforms as explained further in Section 6.2.3.
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6.2 Traffic Model Extraction

Simple Traffic Generator Model

The extracted network traffic is stored in an intermediate format that represents
a collection of simple traffic generators. I assume the model of a simple traffic
generator as depicted in Figure 6.1.

Figure 6.1: Model of a simple traffic generator.

A simple traffic generator is a tuple:

Generator = (scale, amplitude, begin, end)

where the parameters are defined as follows:
• scale: how frequently the generator emits packets; every wlen = 2scale

seconds,
• amplitude: size of the packet to be emitted,
• begin: beginning of the interval when the generator is active,
• end: end of the activity interval.
The extracted set of generators is saved in a text format for further processing. I

parse the generator descriptions and build a DNI model but the data can be also
used for other purposes (e.g., protocol debugging). Figure 6.2 demonstrates the
idea behind the decomposition into activity of simple traffic generators and the
corresponding fragment of the DNI model.

Examples of Network Traffic

In Figure 6.3, I present four examples of a recorded network traffic. The first
time-series represents data transfer during 60 minutes of video streaming with
occasional caching. The second example represents an irregular data transfer with
a heat-up phase containing several small data transfers, followed by a continuous
transfer reaching the link capacity. The third example represents a signal with
several outliers—an example of multiple applications transferring data in parallel.
The fourth time-series represents a regular signal.

Clustering of the traffic

I observe that the traffic rates can be efficiently clustered because an application
usually transfers data in packets of certain sizes. This can be seen in Figure 6.4. I
plotted the kernel density plot for each of the exemplary traffic dumps showing
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Figure 6.2: A toy example: decomposition into traffic generators at different scales
and amplitudes and the corresponding instance of a DNI traffic model.

the amount of different transfer sizes. In order to compare all the densities,
I applied normalization and plotted them together in a single diagram. Each
local maximum in the diagram represents a cluster candidate. From Figure 6.4, I
observe that a good estimate for the clustering is between 3 and 7 clusters. I also
provide an mechanism for estimating the optimal number of clusters automatically,
tailored for a given signal. Similar behavior can also be observed in other network
traces, such as those made available publicly by the LBNL-ICSI (Lawrence Berkeley
National Laboratory and International Computer Science Institute) Enterprise
Tracing Project [PAB+05].

6.2.2 Traffic Model in DNI

The generators extracted from the traffic traces are meant to be represented in
DNI model. The DNI meta-model and its part representing network traffic is
presented in detail in Section 4.1.2. Here, I present it very briefly for the sake of
self-containment of this chapter.
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6.2 Traffic Model Extraction

Figure 6.3: Four examples of typical traffic dumps (with duration of 60, 10, 10, 10
minutes respectively). X-axis represents time in seconds, y-axis represents bytes
transferred per second.

In the DNI meta-model, network traffic is generated by traffic sources originating
from communicating applications that are deployed on so-called end nodes (e.g.,
servers, VMs). Each traffic source generates traffic flows that have exactly one
source and possibly multiple destinations. The flow destinations are software
components that are located in nodes and can be uniquely identified by a set of
protocol-level addresses. Flows can be composed in a workload model that defines
how each flow is generated (e.g., including sequences, loops, or branches).

Besides the network traffic information, the DNI model represents also the
network topology and its configuration. I say, that the extracted model is partial,
because I focus on the traffic part. In fact, the tools derive simplified models of
network topology and the deployment of communicating applications on nodes,
but this information is incomplete as its extraction is a part of the future work.
For simplicity of this extraction approach, I assume that all nodes are connected
with a star topology (which is not always the case in general). The concepts of
approach to extracting the other parts of DNI (i.e., topology, software deployment,
and network configuration) were discussed in Section 6.1.

6.2.3 Approach based on Multi-Scale Decomposition

In Figure 6.5, I present the high-level overview of the approach, that is, the
extraction pipeline. The process starts by recording real traffic on multiple interfaces
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Figure 6.4: Normalized kernel density plots of transferred bytes from the example
traffic dumps.

within the network (e.g., using tcpdump). A single traffic dump (here depicted as
tcpdump.log) is treated as a univariate irregular time-series that is further passed
into the Multi-scale decomposition step (explained in detail later), which in turn
produces the Decomposition matrix. The matrix is later transformed into text format
in step Create network traffic generators (general output) and converted to the DNI
model in step Transform generators to DNI (DNI-specific output).

Multi-scale
decomposition

Transform decomposition
matrix to generators

Record network
traffic using tcpdump

Create network
traffic generators

Network
traffic

INPUT

tcpdump.log

Decomposition
matrix

Configuration
for generators

DNI model
(partial) OUTPUT

Network 
generators 

(text file)
Transform 

generators to DNI

Figure 6.5: Overview of the extraction pipeline (rectangles represent data, ovals
represent actions).

Each row of the matrix is a separate regularized time-series. First column
represent the original signal (for debugging purposes), while the other columns
represent packets emitted by simple traffic generators operating at different fre-

142



6.2 Traffic Model Extraction

quencies and amplitudes. The decomposition matrix is then further transformed
into the Configuration for generators. This is a sequence of tuples in the form of
(scale, amplitude, begin, end) as already explained in Section 6.2.1. Finally, a DNI
model is produced which reflects the decomposition in the desired format.

Discrete Wavelet Transform for time-series decomposition

The Multi-Scale Decomposition (MSD) decomposition is loosely inspired by Wavelets,
in particular by Discrete Wavelet Transform (DWT) [Mal08]. In DWT, the signal
is processed at multiple scales: Scales = (1, . . . ,maxscale), where: maxscale =
log2|signal|.
The DWT software packages, such as wavethresh in R, expect the input signal

length to be a power of two. For each scale s ∈ Scales, the signal has half the
size of the signal at the previous scale (s− 1), i.e.: |signals| = |signals−1|/2. Scale
0 represents the original signal, that is, signal = signal0. Roughly speaking, at
each scale s ∈ Scales, DWT computes the interference between the signals and
a particular wave (stretched and shifted mother wavelet). This yields a vector of
coefficients Coefs = (cs1, . . . , c

s
|signals|). All scales together form a pyramid which

can be represented as a single linear vector:

Coef =
⋃

s∈Scales

Coefs

The DWT coefficients represent the original signal in a new space of functions. It
should be noted that the time complexity of DWT is O(|signal|), the length of the
original signal and the length of Coef vector are the same:

|Coef | = |signal|

In a similar way, the original signal can be reconstructed by a process which
uses DWT coefficients Coef and stretched/shifted wavelets in an inverse manner.

The applications of DWT usually involve manipulation of DWT coefficients, such
as removing all coefficients from a particular scale Coefs (e.g. for compression).
However, there are other application areas of science and engineering, for example,
noise reduction, edge detection, time/frequency analysis.
Nevertheless, given the purpose of traffic modeling with DNI, the DWT is not

particularly useful. Although it enables frequency analysis at different bands, the
DWT coefficients cannot be directly mapped to simple traffic generators. Remember
that a DWT coefficient represents the strength of interference between the signal
and a wavelet at a particular time (shift) and frequency band (scale). A single
coefficient can well be a negative number. This makes sense for inverse DWT, when
multiple functions are summed together forming the original signal, but has little
use when modeling a simple traffic generator that can only produce positive traffic.
Due to that limitation, I propose a custom DWT-inspired transformation instead—the
aforementioned Multi-Scale Decomposition (MSD).
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Multi-scale time-series decomposition

Similarly to DWT, the notion of scales is preserved in MSD, however, the scales
are processed in reversed order: maxscale, . . . , 1. Instead of a pyramid of DWT
coefficients, MSD transforms the signal into a matrix of Emits. Each scale s
corresponds to a vector Emitss of equal length:

|Emits1| = . . . = |Emitsmaxscale| = |signal|.

Multi-scale Decomposition

Read input

Time-series

[time, value]

INPUT

OUTPUT

Regularized

time-series

Estimate optimal

number of clusters

Clustering by

amplitude

Clustered

time-series

Extract emit candidate

Optimize emits

Subtract emits

from signal

Working

signal

Smootthing

Smoothed

decomposition

matrix

next scale

Decomposition

matrix

Emits

Regularize and

apply padding

Split signal into intervals

Figure 6.6: Multi-scale decomposition algorithm. Rectangles represent data, ovals
represent actions.

Before the actual MSD loop, the input time-series needs to be preprocessed in
three steps including: regularization, padding, and clustering.

Regularization. Every second should be represented by a single value. Gaps in
the signal are replaced by zeros, while multiple values are aggregated using the
sum function. (see Fig. 6.6: Regularize and apply padding).

Padding. The signal length is padded with zeros to the nearest power-of-two
(e.g. signal with the size of 4000 samples is padded to 4096 samples).
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Clustering. Values in the signal are clustered. As already explained, I can
efficiently apply clustering of values using k-means. I can either manually set
the number of clusters (e.g., six clusters) or I can use an automated estimation
approach (Fig. 6.6: Estimate optimal number of clusters). I compute total within-
cluster sum of squares for up to 25 clusters. Then, I pick the lowest number such
that a higher number would only differ by less than a preselected cutoff value
(10% by default). After k-means clustering of values, a new signal is generated
where original values are replaced by the cluster centers.

     Progress of the decomposition:   Emits/Activity of generators: 
s=5   00004440222000002224333000003000                                 
S=4   00004440222000002224333000003000                 4444444444444444
s=3   00004440222000002220333000003000                         33333333
s=2   00004440222000002220333000000000                                 
s=1   00004440222000002220333000000000       44  22      22  33        
noise 00004400220000002200330000000000     44  22      22  33          

                Reconstructed signal: 00004440222000002220333400030000
                     Original signal: 00004440222000002224333000003000

Figure 6.7: Example decomposition explained step-by-step.

Such a preprocessed signal then goes into the MSD loop, where it is passed
through a sieve which subtracts certain sub-signal in each iteration until only
“noise” remains. The subtracted sub-signal (a vector of emits) is such a traffic that
can be generated by a simple traffic generator with a frequency corresponding to
the particular scale.

An example decomposition of a short signal is depicted in Figure 6.7 (without
any clustering nor optimization). Signal in this example consists of 32 samples
which is then processed at five scales. Deriving the emits at each scale require:
1) split the remaining signal into equal intervals (Fig. 6.6: Split signal into intervals),
2) extract a single emit candidate from each interval (Fig. 6.6: Extract emit candidate),
3) optimize the vector of emit candidates (Fig. 6.6: Optimize emits).
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Split the signal into equal intervals. At a given scale s, the working signal is
split into intervals (I1, . . . , Iwtimes) of equal length wlen.

wlen = 2scale

wtimes = |signal|/wlen.

Extract a single emit candidate from each interval. For each interval Ii, a single
emit candidate is selected that has the highest value such that it appears only once
inside the interval.

Emits =
wtimes⋃
i∈1

select(Ii)

If no such a candidate exists, the select function returns 0 as a candidate.

Optimize the vector of emit candidates. The Emits vector is then optimized as
follows:

1. Small sequences of equivalent consecutive emits are removed. The reason for
this is to prevent isolated peaks to become emits at higher scales. Example:

001100201110→ 000000001110

2. Small gaps are removed in order to achieve higher compression. Example:

000111211100→ 000111111100

Time complexity of MSD is O(nlog(n)), n = |signal|. After emits from all scales
were collected, vector of emits at each scale can be further smoothed (an optional
step, Fig. 6.6: Smoothing).

Decomposition of a real signal

I have demonstrated in Figure 6.7 the result of decomposition on a toy signal
consisting of 32 samples. I now take a look at decomposition of a real network
traffic (10 minutes sampled at 1 second, total 600 samples). This signal has been
already presented in Figure 6.3 (second diagram from the top). Without any
optimization nor clustering, MSD decomposes the signal into 253 intervals as
depicted in Figure 6.8.
The top diagram shows the original and reconstructed signal combined. To

provide more insight into the decomposition algorithm, I use three visual tools for
comparing signals from the frequency-content point of view:

1. Periodogram [Blo76] compares spectra of the original signal(solid line) and
reconstructed signal (dashed line) as given by the Fourier Transform. From
left to right are shown densities of all frequencies (from lower to higher) in
the signals’ spectra.

146



6.2 Traffic Model Extraction

Figure 6.8: Decomposition example #1: 10 minutes of traffic without optimization.

2. Squared Coherency [Blo76] diagram estimates the percentage of variance in the
original signal that is predictable from the reconstructed signal at the same
frequency band. The higher the value, the more similar the reconstructed
signal to the original is.

3. Scaleograms [TC98] represent signals in a time/frequency domain as given by
the continuous wavelet transform using the Paul mother-wavelet.

When I reconstruct the signal, I can see that it matches its original with an
exception of few isolated peaks and some additional high-frequency content.
Frequency, however, is not the main criterion for evaluating the quality of the
decomposition. More important is the overall shape of the signal that plays the
major role later in the simulation phase.

With a moderate optimization, as depicted in Figure 6.9, I was able to reduce
the number of intervals to 33 (i.e., 13%). At the same time, the reconstructed signal
still preserves the shape of the original. The trade-off between the reconstruction
accuracy and the model size can be fine-tuned using the following parameters:
(1) number of clusters, (2) reduction of gaps and isolated peaks in emit vectors,
and (3) final smoothing of emit vectors.

In Section 7.5, I fix the parameters of the flexible extraction process and evaluate
the approach using different traffic traces from a real-world telemaintenance case
study.
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Figure 6.9: Decomposition example #2: 10 minutes of traffic with moderate
optimization.

6.3 DNI Model Calibration

The main purpose of the model extraction is to support the modeler in the
modeling process and provide a DNI model for optional fine tunings. The DNI
model describes a network, however, to be useful for performance prediction, it first
needs to be annotated with performance-relevant information. Many performance
related factors included in DNI may be obtained from technical documentation or
vendor data sheets. Unfortunately, not all required data is available in automated
extraction process, whereas some may be unreliable or imprecise.

In this section, I briefly present the procedures for calibration of a DNI model.
In the calibration process, the user manually provides missing performance anno-
tations to fill the gaps remained after the extraction. Additionally, calibration is
used for fine tuning of the performance descriptions of DNI models that deviates
from the vendor-provided performance data. The following sections present the
calibration of the respective parts of a DNI model.

Network Structure

Annotating the network structure—mainly the processing rates of the interfaces and
devices—is done directly using the values provided in the technical specifications
of the respective devices. In such way, I describe all network interfaces of switches
and physical hosts, as the vendor provided data is accurate in majority of cases.
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The links themselves are physical media and the only factor that influences their
performance is the propagation delay, which is specified as a tabulated value for
the underlying network. The maximal forwarding delays of network nodes can be
found in the technical documentation. Unfortunately, as I showed in [RSKK16],
some SDN switches devices do not follow the technical specification for certain
conditions.

Performance measurements are required for situations in which the performance
data provided by vendor is inaccurate. DNI models the performance of a network
node using standard parameters used by hardware vendors: forwarding capacity
(expressed in packets per second (Pps)), forwarding bandwidth (expressed in
bytes per second (Bps)), and forwarding delay. Normally, the first two parameters
describe the characteristics of the switching matrix of the node, whereas the
forwarding delay encapsulates internal device operations, for example, flow table
lookup. I approximate the node total forwarding delay as:

node_forwarding_delay =forwarding_delay+

+max

(
1

capacity
,
dataPayload+ packetOverhead

bandwidth

)
+

+
2(dataPayload+ packetOverhead)

interface_bandwidth .

The forwarding delay describes the delay of the switching matrix, whereas the
dataPayload and packetOverhead are taken as a sum from the respective protocols in
the protocol stack. For example, for a typical TCP/IP/Ethernet protocol stack, an
IP router processes the overheads of the IP and TCP, however it does not include
the overheads for Ethernet protocol as the IP router does not forward Ethernet
frames.
In the practice, the calibration of a network forwarder (e.g., switch, router, or

a node based on Network Function Virtualization (NFV)) consist of estimation
of the forwarding delay value (assuming that capacity and the bandwidths are
known). The forwarding delay may be approximated with formula 6.1 using the
data stored in the DNI model.

forwarding_delay =
MTU

measured_throughput−

−max
(

1

capacity
,

MTU

bandwidth · capacity

)
−

− MTU

bandwidth
.

(6.1)

In equation 6.1, the maximum transfer unit (MTU) is a sum of data payload and
packet overhead respective to the network layer in which the given device operates.

The measured throughput of the calibrated device is expressed in bytes per
second, the capacity is obtained from the vendor data sheet of from the switch
configuration (e.g., if capacity limiting is enabled), and the bandwidth denotes the
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minimum from: the advertised bandwidth of the slowest network interface and
the switching matrix (e.g., 1Gbps).
In [RSK16], I applied the described calibration procedure for finding the for-

warding delay of the HP 3500yl switch that worked in the SDN software mode
(i.e., the active SDN flow rule was located in the software flow table). In the
example from [RSK16], the capacity of the switch was limited to 10Kpps, expected
bandwidth 1Gbps, MTU 1542 bytes (1500 bytes payload plus 42 bytes total over-
head at the Ethernet protocol level), and measured throughput about 61Mbps.
Using the formula 6.1, I obtained the approximated forwarding delay of 75.6µs. I
conducted a batch study using a series of automatically generated QPN models
varying the forwarding delay to find the best fit to the measured data. The study
returned the best results for forwarding delay between 80 and 90µs, whereas the
same study with OMNeT++generic solver gave 82µs.

SDN Nodes and SDN Controller

Parameterization of the SDN part of a DNI model consist of finding two groups
of values: (1) three probabilities of forwarding using a given forwarding mode:
SDN software flow table, SDN hardware flow table, and via the SDN controller
(for each SDN device), and (2) the delays of the SDN controller applications. The
later may be estimated analogically to the forwarding delay for a network node,
whereas the former requires an analysis of the flows and flow tables in a controlled
experiment.

The probabilities that define which forwarding mode is applied for a flow on a
device may be estimated a priori as follows. For a given flow and an SDN device,
one needs to count the flow rules in the flow tables that match the flow. If a rule
is found only in the software flow table (with the timeout parameter set to zero,
what means that the rule does not expire), then the probablity_software = 1.0
and the rest is 0. Similarly, one can examine the hardware flow table to set the
value of probablity_hardware. If both tables contain a matching flow rule, then the
forwarding mode of the device is decided based on the rule priorities. However,
if no rules are found, or the rules have defined timeouts > 0, then the calibration
requires to conduct an experiment.
In the experiment, one shall run a representative network workload while

observing the flow table match counters on the SDN device. The ratio of the
messages matched in a given flow table to the total number of messages in the flow
will approximate the probability of forwarding in the respective forwarding mode.
For example, if a DNI workload contains 100 messages (pictures, connections, etc.)
and the counters report the following values: table miss = 13, match table_sw = 50,
match table_hw = 37, then the probabilities can be modeled as follows:

probablity_software = 0.5,

probablity_hardware = 0.37,

probablity_controller = 0.13.

150



6.3 DNI Model Calibration

Protocol Overheads

Information about protocol overheads is extracted from the operating system (e.g.,
using the Linux command ifconfig). Parameters like the data payload and the
protocol overhead play an important role for calculating protocol overheads in
solvers that do not represent network traffic at the packet-level. To calculate an
overhead, I add the value of header length multiplied by the estimated number
of packets. The number of packets is calculated by dividing the message size by
the value of data payload. For large messages, even small errors by specifying the
data payload and the protocol overhead may add up and decrease the prediction
accuracy, so caution and precision is advised.
Identification of improperly modeled protocol parameters may be conduced by

comparing the total amount of data received by the receiver in the solver against
the measurements in the real system at the lowest level of the network (usually in
Ethernet layer). For non-standard network protocols where overheads are difficult
to obtain, the values of data payload and protocol overhead may be estimated
as follows: (1) pick data payload arbitrary (e.g., 2000 bytes), (2) assuming the
known total volume of transmitted user data (Layer 7 or L7 data) and the volume
of received data at the lowest measurable network layer (Layer 2 or L2 data, (3)
calculate per packet overhead using the following approximation formula:

packetOverhead = dataPayload · (L2received − L7sent)

L7sent
.

This procedure applies to the lowest protocol in the protocol stack assuming that
the measurements are conducted at the level of the lowest protocol. For example,
specifying proper data payload and packet overhead (i.e., the values for MTU
and headers size) of the Ethernet protocol plays important role for measurements
conducted at the switch ports (a switch receives Ethernet frames). Using this
calibration procedure, the overheads of the higher layer protocols are abstracted
and presented as a cumulative overhead of the protocol stack.

Network Paths and SDN Flow Rules

In this thesis, I assume that the configuration of the network is known and
can be acquired directly form the nodes. This included routes or paths in the
network, as well as the currently installed SDN flow rules on each SDN-enabled
device. Network links and ports disabled by Spanning Tree Protocol (STP) are
represented in the structure part of DNI, but no routes are allowed to reference
the disabled interfaces. No model calibration procedure is envisioned for the DNI
part containing routing and SDN flow rules due to the nature of these data (either
it is fully available or not available at all).

Load Balancing

DNI supports load balancing scenarios by allowing to specify a single source
and multiple destinations of a traffic flow. The rates at which the load balancing
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algorithm operates may be approximated by dividing the total data volume arrived
to a load-balanced destination by the total data volume transmitted by the sender.
This approach abstracts the behavior of many non-trivial load balancing algorithms,
however a more detailed representation than the load balancing ratio is not
supported by the DNI meta-model.

Traffic Patterns

Excluding the approach presented in Section 6.2, the traffic patterns can be modeled
manually on the protocol level based on traffic monitoring tools or recorded traffic
traces. Silence intervals between sending consecutive messages can be calculated
manually and averaged over the duration of the entire experiment. In case of any
parameter variability, a probability distribution can be constructed by observing
the durations of the transmission and the silence in a network interface.

Assuming that a traffic source generates the traffic based on the ON-OFF traffic
pattern (e.g., “send a 2MB picture every 10ms”), the calibration of the traffic
patterns can be done manually based on the protocol level traces. However,
manual calibration is error prone and the errors usually cumulate when the
network is under high load, yet low accuracy calibration is possible.

The main challenge is the extraction of the duration of the silence period (OFF
period). I depict schematically this phenomenon in Figure 6.10. Although the
silence period at the software level may be known, it may differ at the protocol
level. In many solvers (also in OMNeT++), the traffic generation process happens
immediately, whereas in the real system, the transmitted data must be copied
between the respective memory cells and mutexes need to be freed before a sleep
instruction (that maps to the beginning of OFF period) can be executed. The same
hold for the estimation of the duration and the start of ON periods. The precise
modeling of the generation delay may be omitted by infrequent data generations,
however, for short OFF periods, this parameter has strong influence on the accuracy
of the prediction.

The generation delay shown in Figure 6.10 stems from the overheads caused by
the computing nodes. This causes that the user requests submitted in a defined
interval may stretch at the network level. Unfortunately, manual tuning of the
length of the OFF interval is cumbersome and usually requires to either: (a) know
the exact value of the network bandwidth between the sender and receiver, or
(b) conduct manual analysis of the traffic traces. These challenges were the main
incentives for proposing the approach to traffic extraction presented in Section 6.2.

Server Virtualization and Computing Overheads

Another challenging part is the extraction of the parameters that describe the
virtual entities (e.g., nodes, network interfaces, links). In case of data transmission
from one VM to another collocated VM, the data is in fact copied between the
memory cells of the host machine. The exact path of the data and the overheads
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Figure 6.10: Differences between OFF period durations in the simulation (upper
part) and in the real system (lower part).

depend on the host hardware, hypervisor type and the delays are difficult to
estimate a priori.
Additionally, the performance of the network bridge (that is built-in in the

hypervisor) depends on the overall system load, which is not reflected in DNI
since all model input parameters (e.g., resource demands) are modeled as load-
independent.

The values of the performance parameters describing virtual entities are finally
estimated experimentally and modeled in a black-box manner. It is required to
examine the performance of the hypervisor-emulated network by running stress
tests using, for example, the iperf tool. The average bandwidth achieved in the tests
is used directly to describe the speeds of the virtual network interfaces in VMs and
in the hypervisor bridge. Unfortunately, obtaining repeatable calibration experiment
results is difficult as the network performance of the hypervisor depends on the
load and the configuration of the host system (this information is missing in DNI,
however it may be available in Descartes Modeling Language (DML)). Increasing
the prediction accuracy for scenarios with high VM-to-VM workloads requires to
integrate DNI with a respective DML model (as described in Section 4.4. DML
models the computing, virtualization, and software architecture and provides
modeling entities that DNI does not support. In Section 7.3.5, I present an example
of modeling a scenario including VM-to-VM workload.

6.4 Summary
This chapter describes the secondary contributions of this thesis. It includes
the processes in which a DNI model can be extracted and calibrated afterwards.
I presented an approach to automated extraction of traffic models as they are
the most challenging to model manually in complex scenarios. For the rest
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of the modeling, I proposed instructions how the automated extraction can be
implemented as a part of future work.

Finally, I described how a model can be tuned in terms of performance descrip-
tions once it is built. In this chapter, I leverage the fact that the modeled system
exists, controlled experiments are allowed or trace data is available to calibrate the
model. The approaches described in this chapter were applied in practice in the
evaluation (if not stated differently). In Chapter 7, I validate the DNI approach
and the secondary contributions of this thesis.
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Validation
This chapter presents the evaluation of the primary and secondary research contri-
butions of this thesis. I validate the primary contributions that include data center
network modeling abstractions presented in Chapter 4 and the transformations and
automatically generated solvers presented in Chapter 5. Additionally, I validate
the secondary contributions: traffic model extraction (presented in Section 6.2 and
the QPN-to-LQN transformation (presented in Section 5.5).
In Section 7.1, I describe the evaluation goals. Thereafter, I present two case

studies that I use to validate the contributed models and transformations with
respect to the goals stated in Section 7.1. In Section 7.2, I present the SBUS-
PIRATES case study and using it, I demonstrate the modeling capabilities of
DNI and solving accuracy of the DNI solvers. This case study does not include
SDN-based scenarios. In Section 7.3, I validate DNI and its solvers in the SDN
context. As a case study, I use the Cloud file backup that is implemented using
the L7sdntest software. Additionally, I validate the modeling flexibility aspect
based on the Cloud file backup case study focusing on the performance prediction
accuracy and the solving time of the generated SDN DNI models. In Section 7.4, I
validate the modeling flexibility aspect based on the SBUS-PIRATES and Cloud file
backup case studies. I focus on the model solving time and resource consumption
during the solving process. In Section 7.5, I validate the approach to traffic model
extraction introduced in Section 6.2. The validation is conducted using a separate
telemaintenance case study. Section 7.6 validates the QPN-to-LQN transformation
as a part of the secondary contributions of this thesis. I summarize the conducted
experiments and conclude the validation in Section 7.7.

7.1 Evaluation Goals
By evaluating the proposed performance abstractions introduced in Chapter 4 and
the model transformations presented in Chapter 5, it is not possible to prove that
the proposed formalism and its transformations provide accurate performance
predictions for any network. The model may not capture complex behaviors of the
network infrastructures that are driven by sophisticated algorithms that are not
represented in DNI. If the influence of the algorithms on the performance is high,
the predictions may be inaccurate. Thus, the proposed meta-model and the model
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transformations cannot guarantee a constant prediction accuracy. The accuracy
may vary depending on scenario details.

Moreover, it is also nearly impossible to prove that a transformation is valid, as
the size of a model instantiated from the DNI meta-model has no upper bound.
However, I will show that the transformations are complete. Completeness of a
transformations should be understood as the ability to map any performance-relevant
change in the DNI model to a respective change in the predictive model that is generated
by the transformation. In this chapter, I demonstrate that the typical data center
scenarios and common what-if analysis questions are well supported by the DNI
approach to fit into real situations. The proposed set of model transformations
is representative to demonstrate the flexibility of the prediction process, however,
it is by no means complete and further transformations can be implemented to
extend the variety and flexibility of the approach.

The goal of the evaluation presented in this chapter is to demonstrate that:
1. The proposed DNI meta-model provides good modeling abstractions to

represent the typical what-if performance analysis scenarios in data center
network context including SDN-based networking setups.

2. The proposed set of model transformations provides the flexibility in terms
of generating multiple predictive performance models that differ in provided
prediction accuracy and solving times, so that the user can select the most
feasible solving method based on her requirements.

3. The proposed methods for traffic extraction support the flexibility of the
approach by allowing to select a trade-off between detailed traffic modeling
and compactness of the model. This will influence the details included in
the generated predictive models and thus contribute towards the flexibility
of the approach.

As a part of the validation, I evaluate also the QPN-to-LQN transformation as a
secondary contribution to demonstrate it support for performance prediction for
selected Queueing Petri Net (QPN) models.
In the following, I break down the evaluation goals into three orthogonal

aspects. First is the support of DNI to model data center network infrastructures.
I evaluate the approach using classical network scenarios (Section 7.2) and later
evaluate it for SDN scenarios (Section 7.3). Moreover, in selected scenarios, I
demonstrate modeling of selected Network Function Virtualization (NFV) concepts.
This evaluation aspect is discussed in Section 7.1.1.

The second aspect of the evaluation is the ability to provide performance
prediction capturing the data center-specific performance characteristics. This part
evaluates the model transformations that generate multiple predictive models from
a single DNI model. I evaluate how well a change in the DNI model (after
being transformed into the predictive models) can represent a change in a real
environment. This evaluation aspect is discussed in Section 7.1.2.

Finally, I evaluate the nonfunctional features of the generated predictive models
in terms of resource consumption (number of CPU cores and memory) and
the solving time. Providing variety of solving times combined with different
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prediction accuracies contribute to the modeling flexibility of the DNI approach.
This evaluation aspect is discussed in Section 7.1.3.

7.1.1 Modeling Capabilities
By evaluating the modeling capabilities of the DNI approach, I take into account
the ability of the model to represent typical data center networks scenarios in
terms of: topology including the virtual topologies, hardware-related performance-
influencing factors, configuration of the network including the protocols, and the
network traffic. The questions that should be answered by the validation may
be the following. Does the meta-model include all constructs to represent the
factors and parameters that influence performance the most? Does the meta-model
abstracts the aspects that have minor influence on the performance? Is it possible
to represent a system that uses virtualization on the server side as well as on the
network side? Which parts of the system cannot be modeled and what are the
consequences of these limitations? Is it possible to represent the most performance
influencing factors of SDN-based networks in DNI? Which NFV-based scenarios
are supported?
The evaluation based on these questions is addressed using two case studies.

First case study, called SBUS-PIRATES, represents a realistic road traffic monitoring
scenario where distributed cameras photograph the cars in a city and transmit
the pictures to the data center for processing. With this case study, I analyze the
modeling capabilities of DNI in non-SDN data center networks.

The second case study, Cloud file backup, represents a distributed data exchange
scenario. The clients request backup file resources that are distributed in the
network. The users request the downloading or uploading of the files in a batch,
whereas the servers deliver the requested data. Using this case study, I analyze the
modeling capabilities of DNI in SDN-based data center networks. Some scenarios
represent NFV setups, however no direct evaluation of NFV is provided.

7.1.2 Prediction Capabilities
I evaluate the prediction capabilities of the generated predictive models by ana-
lyzing the prediction accuracy. The main goal is to minimize the prediction error
considering a given level of performance abstractions. According to [MDA04], the
commonly accepted throughput prediction inaccuracy should not exceed 5% for
properly calibrated model, whereas 30% is acceptable for non calibrated models
(i.e., with no access to run-time data that help to tune the model accordingly to
the scenario). I stress, that minimization of the performance prediction accuracy is
not an ultimate goal of this thesis. I value more the flexibility of the prediction
process where the user can select a feasible trade-off between prediction accuracy
and the solving time of the performance model.

I evaluate the prediction capabilities in Sections 7.2 (case study SBUS-PIRATES)
and 7.3 (case study Cloud file backup). In the evaluation scenarios of the former
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case study, I operate mainly with uncalibrated DNI models, whereas in the latter, I
calibrate the models according to the calibration procedure presented in Section 6.3.

7.1.3 Flexibility of Performance Prediction
I evaluate the flexibility of the performance prediction approach by analyzing the
nonfunctional characteristics of the generated predictive models and their solvers. I
focus on the solving time and the consumption of resources during solving as main
metrics of nonfunctional characteristics. The flexibility is analyzed by comparing
the average prediction accuracy against the solving time and consumption of
resources. It is expected, that the predictive models with higher level of detail
provide predictions in a longer time but with higher accuracy. In evaluation of
prediction flexibility, I aim to provide a wide variety of prediction accuracies and
solving times, so that the user can select the most feasible approach for a given
scenario.
There are three factors that impact the performance prediction flexibility: the

set of available model transformations, the set of available solvers that solve
the generated models, and the flexibility of the modeling itself (as presented in
Section 4.3). Additionally to the flexibility of performance prediction, I demonstrate
the flexibility of modeling. This means, that a given scenario can be modeled
in DNI in multiple ways (e.g., using miniDNI, or coarser approximating the
granularity of the traffic model), which also influences the solving time and
prediction accuracy. The analysis of the flexibility of performance prediction is
discussed in Section 7.4.

7.2 Performance Prediction of Classical Networks
In this section, I evaluate the prediction accuracy of predictive models obtained
in the flexible performance prediction approach. The approach leverages DNI
models instantiated from the DNI meta-model (described in Chapter 4) and obtains
predictive models using model transformations (presented in Chapter 5). For each
DNI model, multiple descriptive models can be generated. In this section, I evaluate
three predictive models: OMNeT++INET, DNI-QPN, and miniDNI-QPN that were
generated using model transformations: DNI-to-OMNeT++INET, DNI-to-QPN, and
DNI-to-miniDNI chained with miniDNI-to-QPN respectively.
As evaluation scenarios, I use various data center configurations that differ in

terms of: network traffic workload, topology, deployment of applications, and
network configuration. I use SBUS-PIRATES as a case study for generating network
traffic. The case study is presented in Section 7.2.1.
The evaluation presented in this section is focused on prediction accuracy

of the generated predictive models. I investigate non-SDN network setups. I
calibrate DNI models manually if not stated otherwise. Note, that the evaluation
quantitatively compares prediction accuracies of selected model solving techniques.
The evaluation of solving performance of various solvers is presented in Section 7.4.
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7.2.1 Case Study: Event-oriented Message Bus
The system under study is a traffic monitoring application based on results from
the Transport Information Monitoring Environment (TIME) project [BBE+08] at the
University of Cambridge. The system consists of multiple distributed components
and is based on the SBUS-PIRATES (short SBUS) middleware [Ing09a].

SBUS Structure

The SBUS-PIRATES serves as communication middleware for a traffic monitoring
application. It monitors the road traffic using cameras and license plate recognition
techniques. The cameras photograph registration plates, which are later recognized
using a recognition algorithm. Additionally, the application measures speed of
cars and position of the public traffic vehicles (e.g., buses or trams). Based on this
data, the application allows city traffic controllers to: (1) fine the speeding drivers;
(2) collect toll based on local zone regulations—for example, when driving into
the city center requires to pay a fee (e.g., in London, UK, or Göteborg, Sweden);
(3) prioritize public transportation by controlling the traffic lights.

The original application scenario—as presented in [Ing09b]—includes the follow-
ing application components, which communicate over the SBUS message bus:

• Cameras that take pictures of vehicles,
• Speeding component that calculates if a photographed car is speeding,
• Toll component that calculates if a fee for entering a paid zone should be

applied,
• LPR (License Plate Recognition) that runs the recognition algorithm,
• SCOOT component that controls the scheduling of traffic lights,
• Location component that calculates the location of public transport vehicles,
• ACIS component that reports the current state of a bus ,
• Bus Proximity component that calculates the distance between a bus and

traffic lights.
In the evaluation scenarios for this case study, I consider mainly two kinds

of components: cameras and license plate recognitions (LPRs). The cameras are
distributed in the city and take pictures of cars that are speeding or entering a
paid zone. Each camera is connected to a local SBUS-PIRATES component that
sends the pictures together with a time stamp to the LPR components. LPRs are
deployed in a data center due to their high consumption of computing resources.
They receive the pictures emitted by cameras and run a recognition algorithm to
identify the license plate numbers of the vehicles.

In the conducted experiments, I disabled the recognition algorithm of the LPRs,
so that no additional computational load is generated. Each LPR discards a
message after receiving it. This allows to investigate the network performance
without the influence of software bottlenecks.

SBUS middleware passes the messages between system components at the
software level. Unfortunately, the original implementation of SBUS contains
software bottlenecks (single-threaded implementation) and sporadic memory leaks
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as presented in [RKZ13]. This affects the accuracy and stability of performance
measurements in the hardware testbed for data-intensive scenarios. To cope with
the limitations of SBUS, I use additionally the network performance benchmark
names Unified performance tool for networking (Uperf) [upe12].

Uperf Benchmark

Due to technical limitations of the SBUS implementation, I used Uperf as a
reference for experiments under high load to exclude the influence of software
bottlenecks on the network performance. Uperf benchmark [upe12] is a network
performance tool that supports modeling and replay of various network traffic
patterns. Uperf was shown to emulate the network traffic without exhibiting any
scalability or stability issues under high load [RKZ13].
Uperf allows the user to model the real world application using an Extensible

Markup Language (XML)-based profile. It allows the user to use multiple protocols,
varying message sizes for communication, a one-to-many communication model,
support for collection of statistics.

The XML-based profiles in Uperf are similar to DNI traffic models. The profiles
contain a mix of operations which can be looped and composed to represent any
network workload. The set of available operations include:

• Connect that opens a connection to the listener,
• Accept that accepts a connection on the listener,
• disconnect that interrupts an opened connection,
• read, recv that represents receiving abstract data,
• write, sendto that represents sending abstract data,
• sendfilev that represents sending existing file as data,
• NOP, think that does nothing for a given time (waits).

Uperf supports one-to-one and one-to-many communication. For the purpose of my
evaluation, I have wrapped the execution of Uperf in a software, so that a central
experiment controller may start multiple Uperf instances at once and thereby
support many-to-many communication.

7.2.2 Validation of DNI-to-OMNeT++INET Transformation
In this section, I apply the proposed approach to the SBUS-PIRATES case study
and validate the DNI-to-OMNeT++INET transformation. I investigate the capacity
of a data center network that handles the stream of pictures captured in the
cameras. I assume, that the picture streams arrive to a data center via multiple
external networks (e.g., metropolitan area network (MAN)) that are attached to
the servers in the data center. The detailed modeling of the external connections
is abstracted and the respective traffic sources are modeled as they were deployed
locally. This setup presents the proper way of representing traffic from external
networks in DNI and does not influence the realism of the case study.
The main goal of the experiments conducted in this part is to demonstrate

that the proposed approach can support a network operator to estimate the
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required network capacity for Transmission Control Protocol (TCP)-based networks
using automatically generated simulation models that are solved later by the
OMNeT++INET solver.
The experiments conducted in this part of the validation base on the DNI

meta-model and transformation that do not support SDN-based networks. The
validation and conducted measurements were published in [RKZ13].

Hardware Testbed and Experiment Setup

The system under study was deployed in a local data center in the environment
consisting of eight servers and three switches. Each server is equipped with an
eight-core processor with 3.3GHz, 16GB of memory, and four 1Gbps Ethernet
ports. The servers are running Ubuntu 12.04-Server operating system. I use HP
ProCurve 3500yl switches, each with 24 1Gbps Ethernet ports. I consider two
physical topologies: star and tree.

The star topology of the network environment is depicted in Figure 7.1a, whereas
the tree topology is depicted in Figure 7.1b. In both topologies, the host H2 is
connected to the switches with an isolated connection to acquire the monitoring
data from the switches using Simple Network Monitoring Protocol (SNMP). Host
H2 does not take active part in the scenario to minimize the influence of the
measurement traffic on the measured traffic.
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Figure 7.1: Experimental environment and network topology for SBUS-PIRATES
case study. Dashed links are used for monitoring and measurements, solid links
for experiment data traffic.

In every scenario, I measure the amount of the traffic that traverses the network
interfaces of all switches. I use the set of byte counters to measure the number
of bytes transmitted through each interface of a switch. I read the values of the
counters through SNMP every second and calculate the average throughput for
that interval. The sizes of transmitted messages are constant in all experiments.
The experimental network was isolated from other networks (e.g., Internet). During
the measurements, all think times were modeled as exponentially distributed;
confidence intervals are calculated for significance α = 0.05.
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In each experiment, I send predefined amount of pictures (10 000 for each
camera if not stated differently) and execute the experiment 30 times for SBUS and
16 times for OMNeT++. I use 16 repetitions for OMNeT++ due to long simulation
time; to simulate one real second, the generated OMNeT++ model needs about
100 seconds.

Modeling

For each scenario conducted in this part of validation, I prepare a DNI model and
transform it using the DNI-to-OMNeT++INET transformation. I build each DNI
model manually according to the following steps.

1. For each server Hx, create an instance of an EndNode.
2. For each switch Sx, create an instance of an IntermediateNode.
3. For each physical cable, create an instance of an Link.
4. For each Node, add the respective NetworkInterfaces. Annotate each Net-

workInterface with performance description and assign bandwidth of 1Gbps.
5. Annotate each IntermediateNode with performance data from the vendor

data sheet: switching capacity 75.7Mpps, switching bandwidth 101.8Gbps,
forwarding latency < 3.4µs.

6. Represent each camera and LPR module as CommunicatingApplication and
deploy it to the respective node.

7. Assign a workload to each camera. The workload contains a loop with 10 000
iterations. It repeats two consecutive actions: transmit and wait.

8. Each transmit action refers to a Flow that defines source and destination
of the data exchange. Cameras are sources, whereas LPRs are destinations.
For each Flow, specify the transferred data volume according to the scenario
setup. LPR components are modeled to generate no traffic.

9. Model network configuration to contain the TCP/IP/Ethernet ProtocolStack.
Use standard values for data payload and protocol overheads, that is, payload
1500 bytes, overhead 42 bytes for an Ethernet frame (22 bytes overhead plus
8 bytes start-of-frame delimiter plus 12 bytes interframe gap). The overheads
for the IP and TCP are both 20 bytes, whereas the payloads equal to 1480
bytes and 1460 bytes respectively.

10. Model the Directions according to the available communication paths in
the network. The traffic can be directed to the neighbors of a node only if
the routing table contains a correct entry. This allows to represent properly
the Virtual Local Area Networks (VLANs) configuration, that is, no traffic is
allowed to cross VLAN boundary if no entry in the routing table exists.

No calibration of the DNI model is conducted in this part of the validation. The
consequences of this are explained in the discussion of the experiment results
(Section 7.2.2). The EndNodes were intentionally modeled as ideal, that is, no
performance bottlenecks are assumed in the operating system or middleware.
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Results

In the experiments, I assume that there are N cameras connected with the data
center using a dedicated network line. The network line is assumed to be a leased
channel that is characterized with a maximum bandwidth 1Gbps. The channel is
only used by the cameras—there is no other traffic in the network. Every camera
sends data (pictures, time stamp, etc.) of size L every p units of time. I model the
intensity of the road traffic with λ photographed cars per second. I consider two
scenarios. In scenario #1, I use the star topology, whereas in scenario #2, I use the
tree topology. The scenarios and their parts are described as follows.
Scenario #1A: A single camera is connected with the data center using a

dedicated leased line. The line has maximum bandwidth of 1Gbps. The road
traffic intensity is λ = 2 photographed cars per second. The scenario represents
a real situation where the following question arises: How much bandwidth will
be utilized by the system on the path between LPR and the switch if the traffic
intensity increases?

Scenario #1B: I consider a situation when new cameras are added to the observed
area in the city. The data center operator may consider the following question:
How many cameras can be handled without network traffic congestion for a
defined road traffic intensity? In this scenario, all cameras are deployed in a single
VLAN with servers connected in a star topology (see Fig. 7.1a). The cameras
transmit the data over a single shared network link to the LPR component.
In scenario #2, I consider the situation with multiple cameras and LPR compo-

nents deployed on different servers due to predefined distribution of computational
workload. This represents multiple areas in the city connected to the data center
over separate network lines, each represented with nodes that are described as
senders. The senders deployed in VLAN 11 transmit the data to the LPRs de-
ployed in VLAN 12. Moreover, I model an additional source of external traffic by
deploying additional camera component on host H8 and investigate the impact of
connecting an additional part of the city to the data center.
Scenario #2 consists of four sub-scenarios. In scenario #2A, I examine the

bottlenecks in VLAN 21 and in the switches S1 and S2. In the scenario #2B, I
analyze the changes in the network performance if the connection between switch
S1 and S3 fails. In Scenario #2C, I assume that a network operator reacted to
the failure of the connection by disabling the connection to the fourth camera
hosted on H7. Finally, in scenario #2D, I represent the situation where VLAN 22
is brought back to operation, however the camera component deployed on host
H7 remains turned off.

Scenario #1A. In the first scenario, I set the message size to L = 2000kB and
vary the think time p for a single sender. In experiment A (see Fig. 7.2 left), I set
the think time to 500ms and decrease it in steps of 50ms. The values are arbitrarily
selected to represent different traffic intensities. The measured throughput grow
exponentially for lower think times. Note, that the throughput values for SBUS
drop for the p value below 100ms. This phenomenon is caused by scalability
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problems of SBUS (single-threaded implementation of the SBUS wrapper). I
comment on it more in the discussion.

Due to the technical limitations of the SBUS implementation, I used Uperf as a
reference for experiments including high network loads. As shown in Figure 7.2,
Uperf emulates the SBUS network traffic very closely for the feasible range of
think times without exhibiting any scalability or stability issues under high load.

L
a

y
e

r 
2

 T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

Think time [ms]

Experiment A: 50-500ms

uperf CI
OMNeT CI

SBUS CI

 40

 60

 80

 100

 120

 140

 160

 180

 0  100  200  300  400  500

Think time [ms]

Experiment B: 5-40ms

uperf CI
OMNeT CI

 300

 400

 500

 600

 700

 800

 900

 5  10  15  20  25  30  35  40

Figure 7.2: Scenario #1A: Confidence intervals for the mean throughput for think
time 50–500ms (left, experiment A) and for 5–40ms (right, experiment B).

Both, OMNeT++ and Uperf followed the trend of SBUS, slightly overestimating
the actual throughput. Additionally, I investigated a range of smaller think times
in experiment B (Fig. 7.2 right). In this experiment, the prediction errors were
lower than 16%.
Based on the prediction results, the data center network has enough capacity

to handle a single camera taking theoretically up to 200 pictures per second. The
result of 200 is a theoretical upper bound under assumption, that transmission of
the picture takes 0 time. In reality, a 2000kB picture is transferred for about 16ms
over a 1Gbps link (excluding overheads), so the maximum intensity of the picture
stream that can be handled is bound by 1000ms/(16 + 5ms) ≈ 47 pictures.

Scenario #1B. In the second scenario, I varied the think times and the number of
cameras producing the traffic. I arbitrarily select the think times as 25, 50, 75, and
100ms to represent high traffic intensities. Due to the scalability issues of SBUS,
the measurements were taken only for OMNeT++ and Uperf, which served as a
reference. The results are depicted in Figure 7.3; the relative errors are given in
Table 7.1.

For think time p = 75ms and 100ms, I observe linear dependency between the
number of cameras and the achieved throughput. For p = 50ms, the maximum
capacity of the network was reached with five cameras. Similar situation was
observed for p = 25ms. The network was saturated with the traffic from four
cameras.
In the presented experiments, the relative prediction error was higher than

in scenario #1; the extremes of confidence intervals of both models were a
maximum 21% of the reference value apart. According to Uperf, the maximum
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Figure 7.3: Scenario #1B: Confidence intervals for varying number of cameras and
think time p. For Uperf, 1st and 3rd quartiles are shown additionally.

Table 7.1: Prediction errors and goodness of fit for scenarios #1A and #1B.
OMNeT vs.
SBUS

uperf vs. SBUS OMNeT vs.
uperf

OMNeT vs.
uperf

Scenario #1A
Think time: 50-500ms 5-40ms

Error (min–max) 0− 14.1% 1− 16.4% 0− 11.6% 0− 15.8%
Fit R2 0.9877 0.9859 0.9885 0.99743

Scenario #1B
Think time: 25ms 50ms 75ms 100ms
Error (min–max) 0− 20.2% 0− 17.1% 0− 20.9% 0− 17.5%
Fit R2 0.9287 0.9793 0.9963 0.9980

achievable bandwidth is 963Mbps; OMNeT++ reports the maximum as 935Mbps
(underestimating it by 3%).

Analyzing the prediction results, I observe, that the data center network can
handle theoretically picture streams from: more than five cameras assuming 10
pictures per second (100ms think time); five cameras assuming 13 pictures per
second (75ms think time); up to four cameras assuming 20 pictures per second
(50ms think time); and maximally two cameras assuming 40 pictures per second
(25ms think time).

The second scenario showed how OMNeT++INET predicts throughputs for high
network loads. The analysis of prediction accuracy is presented in Table 7.1. In the
scenarios #1A and #1B, the relative prediction error was higher than in scenario #1;
the extremes of confidence intervals of both models were distanced by a maximum
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20.9% of the reference value. Also the goodness of fit was usually lower than in
the previous scenario.

Scenario #2. In this scenario, I represent a more complex set of communicating
pairs. I deploy the following set of traffic flows (sources and destinations):
H1→ H7, H3→ H6, H4→ H5, H5→ H6, and additionally in the scenarios #2A
and #2B, H8→ H7. The camera components are configured to spawn two threads,
each sending a picture of size L = 400kB every 1ms. This represents a hypothetical
situation of pairs of cameras that photograph cars from both directions (front and
rear) with lower quality pictures. This may put network into stress due to high
volume of smaller data portions.

In every experiment run, each sender host sent 10 000 pictures. The measure-
ments stop once all cameras report successful transmission of all pictures. The
measured values of throughput are presented in Table 7.2 for scenarios #2A, #2B,
and in Table 7.3 for #2C, and #2D respectively. Prediction errors were calculated
as the difference between the mid points of confidence intervals.

Scenario #2A. The model kept the prediction error at the acceptable level not
exceeding 25%. OMNeT++INET tend to overestimate the prediction. All existing
bottlenecks were detected but there was also false positives: the bandwidth on
paths S3→ H7 and S2→ H6 were overestimated by OMNeT++INET 24% and 8%
respectively and bottlenecks were reported, although there were still free resources
on that link in reality. I comment on the results in more detail in the following.
The results are presented in Table 7.2, where SBUS is treated as the reference and
OMNeT++ as the prediction.

Table 7.2: Scenarios #2A and #2B: Measured and predicted bandwidth between
network nodes.

SBUS OMNeT Relative SBUS OMNeT Relative
Measured Mbps Mbps error % Mbps Mbps error %

link lCI uCI lCI uCI lCI uCI lCI uCI
Scenario #2A: VLAN 22, H8→ H7 #2B: no VLAN 22, H8→ H7

H1→S1 352 413 440 448 13.4% 210 246 298 314 31.9%
H3→S1 396 499 407 494 0.1% 277 302 303 323 7.7%
H4→S1 540 563 595 611 9.1% 402 440 355 367 −15.1%
H5→S2 533 545 667 684 25.4% 443 533 364 474 −13.1%
H8→S2 376 440 491 500 18.7% 470 530 630 647 25.8%
S1→S2 915 932 926 944 1.3% 897 946 937 950 1.7%
S1→S3 352 413 440 448 13.4% — — — — —
S2→H5 616 638 667 684 7.6% 410 469 393 418 −8.8%
S2→H6 860 872 926 944 8.1% 732 851 591 680 −19.8%
S2→S3 376 441 491 500 18.5% 695 822 623 712 −12.5%
S3→H7 680 803 931 948 23.7% 696 822 623 712 −12.5%

In scenario #2A, I observe the following phenomena that affect the prediction
accuracy. Firstly, the scenario simulates network traffic carried over TCP. TCP does
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not allow to exceed the network capacity and cause packet drops in theory. In
practice, the traffic can be dropped or delayed in a congestion situation, so that TCP
can adapt the sending rate at the sender node to not exceed the capacity [Jac88].
This causes, that the flow throughput on an overloaded link propagates back to
the sender, so that it transmits the traffic at a lower rate. Once the throughput
on the bottleneck resource drops, the algorithms increase the sending rate. This
results in the average throughput fluctuation and thus provide large confidence
intervals. Note, that the DNI meta-model do not support modeling of the TCP
parameters, so the behavior of the simulated protocol was defined by the default
configuration of OMNeT++INET.

Secondly, SBUS confirms each successfully received message. Additionally, TCP
uses retransmissions and confirmations to assure delivery guarantee. This was a
direct cause of the high traffic observed on the S2-H5 link. The receiving rate
of the H5 node were higher than the sending rate of the sender node H4. The
difference between the throughputs is caused by the confirmations that arrived to
the H5 node as a result of the H5-H6 communication.
Thirdly, the senders in this scenario transmitted data at a lower rate than

modeled in DNI. The SBUS implementation was unable to guarantee the 1ms
break between consecutive picture transmissions and thus transmitted the data
slower than assumed. The modeled intergeneration break of 1ms were increased
in reality by the SBUS software stack and the operating system overheads. Careful
model calibration at the packet level (e.g., analysis of a tcpdump) would provide
the exact length of the pauses between picture data transmissions.

Finally, several prediction errors may sum up and thus increase the throughput
prediction error on an aggregate link. This was the case for the flow S2-H6 that
was affected by two elementary flows that merged on the S2-H6 link, that is,
H5-S2 and H3-S1. As both elementary flows were overestimated by OMNeT++, the
throughput prediction on link S2-H6 suffered double prediction error. Similarly,
the prediction accuracy of S3-H7 was affected by the elementary flows H1-S1 and
H8-S2. These errors can be avoided in the future by calibrating the DNI model,
not only for the senders, but for all network interfaces in the data center.

Scenario #2B. In scenario #2B, I investigate the failure of VLAN 22 (link S1-S3),
that causes even more congestion on the link S1-S2. The congestion on S1-S2 was
predicted accurately but it affected the flows sharing this link in the way described
previously in scenario #2A. TCP plays an important role here—it defines the shares
for a congested resource based on the control flow algorithms and the order in
which the traffic arrives to the bottleneck. The prediction errors are at the similar
level as in scenario #2A, however, several underestimations appeared due to the
new traffic situation. I comment on the results in more detail in the following.

In this scenario, the S1-S2 link was shared among the flows H1-H7, H3-H6, and
H4-H5. The summarized throughput rate varied between 889 and 988Mbps for
reference measurement and 956 and 1004Mbps for simulated traffic. The prediction
error for the summarized throughput is low, however the prediction errors for the
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component flows vary between −15 and 32%. This phenomenon is mainly caused
by the TCP configuration, which exact behavior is not modeled in DNI.

Similar situation is observed on the S2-S3 link that carry two component flows
H1-H7 and H8-H7. Additionally, the prediction was affected by the confirmations
sent for the reverse flow H7-H8, so the throughputs measured for S2-S3 are higher
than the predictions.

Scenario #2C. In scenario #2C, I assume, that the network operator disables one
camera (on node H8) to decrease the load in the However it did not affect the
bottleneck between switches S1 and S2. The largest relative prediction error is
observed on the not overloaded links (path H1-S1-S2-S3-H8) and amounts up to
26% higher predicted bandwidth than the SBUS reference. The most overloaded
link S1-S2 was predicted accurately. The results are presented in Table 7.3, where
SBUS is treated as reference and OMNeT++ as prediction.

Table 7.3: Scenario #2C and #2D: Measured and predicted bandwidth between
network nodes.

SBUS OMNeT Relative SBUS OMNeT Relative
Measured Mbps Mbps error % Mbps Mbps error %

link lCI uCI lCI uCI lCI uCI lCI uCI
Scenario #2C: no VLAN 22, no H8→ H7 #2D: VLAN 22, no H8→ H7

H1→S1 244 291 311 323 15.9% 819 846 807 822 −2.4%
H3→S1 272 287 295 312 8.6% 354 365 410 495 29.2%
H4→S1 366 394 346 356 −8.3% 524 540 604 612 15.1%
H5→S2 443 521 347 457 −15.1% 527 548 677 685 26.1%
S1→S2 931 952 945 951 0.4% 884 902 938 947 5.4%
S1→S3 — — — — — 823 849 807 822 −2.8%
S2→H5 368 409 383 405 0.6% 546 571 677 685 21.3%
S2→H6 714 807 584 676 −16.8% 864 880 938 947 7.9%
S2→S3 247 302 349 363 26.3% — — — — —
S3→H7 248 306 349 363 25% 824 849 904 919 8.7%

In this scenario, the link S2-S3 became less loaded as it now carries only
the H1-H7 flow (the link S1-S3 is still disabled in this scenario). However, the
H1-H7 flow still traverses the overloaded link S1-S2 and is thus affected by the
TCP discrepancies between the OMNeT++ and the reference measurement. The
congestion on S1-S2 propagated back to the H1-S1 link and caused high prediction
errors for H1-S1, S2-S3, and S3-H7, which carried the flow to node H7.
The influence of the TCP is also visible on the S2-H6 link. The throughput

of this link was underestimated by OMNeT++ by over 130Mbps what resulted
in relative error of −17% (midpoint for OMNeT++ 630Mbps, whereas for the
reference 760Mbps). The node H6 received two component flows: from H3 and H5.
Throughput for H5-S2 was underestimated, whereas the flow H3-S1-S2-H6 traversed
the overloaded link S1-S2. That caused retransmissions as the queueing time on
the switch S1 grew due to the congestion. Although the interface throughput
on H3-S1 was overestimated, the competing flow H4-S1 achieved less bandwidth
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from TCP and the errors canceled each other out. This should impact the S2-H6,
however OMNeT++ has simulated less retransmissions and thus predicted less
load on the link S2-H6.

Results scenario #2D. Scenario #2D represents the situation where the VLAN 22
is repaired and link S1-S3 becomes available again, however the camera on the
node H8 remains off. In this case, the load in the network was more balanced as
five out of 9 links reached utilization of over 85%. The predictive model discovered
all eight highly saturated links and reported all possible bottlenecks correctly.
OMNeT++ leveraged the freed capacity to a higher degree as it could generate

more traffic in a time unit due to lack of software and operating system overheads.
Higher prediction errors (up to 30%) are observed for not fully utilized links,
that is, H3-S1 (absolute error ≈ 100Mbps), H5-S2 (absolute error ≈ 150Mbps), and
S2-H5 (absolute error ≈ 110Mbps). They were affected by the bottlenecks (and
thus TCP-related discrepancies between SBUS and OMNeT++) on the links S1-S2
and S2-H6.

Discussion

In this section, I applied the DNI approach to the SBUS-PIRATES case study and
validated the DNI-to-OMNeT++INET transformation. I investigated the capacity of
a data center network that handles the stream of pictures captured in the cameras.
The validation was conducted for manually built, uncalibrated DNI model. I used
the model to investigate possible data center situations in two scenarios.
Despite the factors that decreased the prediction accuracy, the performance

predictions are acceptable. Summarizing, the automatically generated simulation
model solved by OMNeT++INET provided accurate predictions not exceeding the
average prediction error of 32% in the worst case. The model correctly recognized
all bottlenecks. Additionally, in case of high traffic load (presence of bottlenecks),
the relative prediction errors were low and did not exceed 13%; in case of not
fully saturated resources, the relative error was higher—up to 25%. I stress that
the presented predictions were obtained by an automatically generated simulator;
the simulation model was generated from a DNI model where most of low-level
details were abstracted.

In scenario #1, I analyzed the capacity of the data center network organized in
a star topology and processing the external stream of camera pictures arriving
to the data center over a single dedicated link. I presented, how the network
operator may analyze the capacity of the network in means of the maximal
number of camera pictures processed in a second. In scenario #1A, I showed that
the infrastructure can handle a stream of 2000kB pictures arriving to the data
center at 5ms intergeneration intervals. Scenario #1B demonstrated, that the same
infrastructure can handle multiple cameras transmitting the pictures at variable
intergeneration intervals.
Scenario #2 demonstrated more complex network topology and more camera

traffic flows present in the data center simultaneously. I showed, how the con-
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figuration of the data center may be manipulated in the model without affecting
the production environment. I demonstrated four sub-scenarios where selected
links and services were enabled and disabled respectively. For this scenario, the
manual analysis would be cumbersome as many flows need to share capacities of
bottleneck resources, whereas DNI was able to represent the performance situation
correctly providing up to 30% relative performance errors in the worst case. Note,
that I assume the prediction errors up to 30% are commonly accepted values for
uncalibrated models. Moreover, the way I modeled the system in this scenario
resembles more from design-time than from the run-time performance modeling
because the model was not calibrated using the run-time data.
There are at least three factors that caused the worst-case relative prediction

errors to reach the border of 30%. In the following, I will discuss them in more
details.

TCP Configuration. TCP congestion avoidance and flow control algorithms are
responsible for tuning the sending rate of the sender based on the current network
conditions. There are multiple flow control algorithms that observe multiple
parameters to control the flow of packets [Jac88]. Scenarios in this case study run
over TCP. The DNI meta-model includes only the most essential information about
network protocol and does not provide support for modeling any internal TCP
parameters. OMNeT++INET does provide simulation of the TCP internal behavior,
yet the protocol is simulated with default configuration as no TCP parameters are
provided by DNI. This leads to an information gap and the prediction accuracy
depends on the OMNeT++INET default configuration.
In the scenarios, OMNeT++INET uses TCP Reno algorithm (default OMNeT++

setting, that is not supported by the transformation), whereas modern Linux servers
(starting from kernel 2.6.19) implement the CUBIC algorithm [HRX08]. Although
the delivered performance at the medium-detailed level should be similar, the
algorithms may prioritize flows competing for a bottleneck resource differently
depending on multiple factors (e.g., moment of start of the connection, network
path load level, number of competing flows). Under this assumption, the sum of
throughputs of the competing flows should be predicted correctly, however the
component flows may share the resource using different ratios—both phenomena
were observed in the measurements and the predictions.

Calibration of the DNI model. The lack of calibration of DNI also model influ-
enced the prediction error. This allowed to investigate the role which calibration
plays in performance prediction. There are two main factors that are affected by
the lack of calibration: software and operating system overheads, and the replies
issued by LPR component after receiving a picture form camera.

Software overheads caused that the transmission of the pictures was additionally
delayed by the software layers on the sending host. As a result, the pictures
were not precisely sent in the intergeneration intervals specified in the model but
suffered an additional delay. Although the software overheads are expected to be
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low, they play important role if the generation of consecutive pictures is specified
with intervals at the millisecond level. DNI can cope with such problems leveraging
the softwareLayerDelay parameter in the EndNode entity. Finding a proper value of
this parameter may be challenging however. This strengthens the incentives for
providing the automated extraction method presented in Section 6.2.

Another factor that affected the accuracy of prediction was lack of calibration of
the LPR reply size. High number of the small messages generated by every LPR
component may incur higher throughputs caused by the protocol overheads (e.g.,
when the maximum size of data payload is not exceeded). Additionally, the TCP
confirmations (ACK messages) for the picture streams cause additional traffic in
the reverse directions. This may play important role (depending on the modeled
software) for predicting performance of a bidirectional resource (e.g., link S2-H5
and H5-S2). Although the influence of the ignored stream was expected to be
negligibly low, the TCP overheads may cause either (a) an underestimation of the
reference throughput or, (b) observation of more traffic on the receiver side than
generated by the sender (in some scenarios, for example, in scenario #2A).

Reference Measurement Method. The throughput measurement procedure may
affect the accuracy of the measurements. I use the byte counters located on every
switch to observe the number of bytes sent or received currently. The counters are
queried every second, however the counters update-rate depends on the hardware
and may differ for some devices. The measurements may be distorted for update
rates that are larger or equal to the query rate. For example, the counter value may
be read multiple times within the period between updates. Thus the calculated
throughput for the current second may be 0, whereas it may be doubled in the
next measurement (e.g., 300, 300, 0, 600, 300 . . . ). This does not affect the average
throughput over the experiment duration, however, the confidence intervals may
be larger.

Finally, long simulation times for OMNeT++INET heavily impacted the duration
of the experiments. I decided to conduct less repetitions of OMNeT++INET
simulations than for the reference measurements. This increased the confidence
intervals for results reported by OMNeT++INET. Note, that OMNeT++ was not
affected by the issue with port counters update rate.

7.2.3 Validation of the DNI and miniDNI QPN Transformations
In this section, I validate the DNI approach using the SBUS-PIRATES case study
with larger set of model transformations. The transformations include: DNI-to-
OMNeT++INET, DNI-to-QPN, DNI-miniDNI-to-QPN. In this part of validation, I
use two sources of picture streams that are directed to three LPR components
deployed in virtual machines (configuration selected arbitrarily). Additionally, I
manually calibrate the traffic part of the DNI model to decrease the prediction
errors observed in scenarios #1 and #2 (presented in Section 7.2.2).

The main goal of the experiments conducted in this part is to demonstrate that
the proposed approach can deliver multiple performance predictions with different
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Figure 7.4: Network topology used in the experiment. Dashed links are used for
monitoring, solid links for experiment data traffic. Server S1 is the experiment
controller.

level of abstraction for a single DNI model. The generated performance models
are solved using two solvers: OMNeT++INET and SimQPN, whereas SimQPN is
used twice for models generated by the DNI-to-QPN and DNI-miniDNI-to-QPN
transformations. The experiments conducted in this part of the validation base on
the DNI models and its transformations that do not support SDN-based networks.
The validation and conducted measurements were published in [RKTG15, RK14a].

Hardware Testbed and Experiment Setup

The system under study was deployed in a local data center consisting of nine
servers and three switches. Each server is equipped with four 1Gbps Ethernet ports.
The switches are HP ProCurve 3500yl. The physical topology and the configuration
of the network environment is depicted in Figure 7.4. Server S1 is used to control
the experiment and to acquire the monitoring data from switches using SNMP.
Two servers, S2 and S3, are native (not virtualized) and serve as sources of the
camera picture streams. The nodes S4–S6 are hosting virtual machines (VMs)
on top of the VMware virtualization stack. Server S8 hosts VMware Control
Center and S9 is a storage. Servers S7,S8, and S9 do not take active part in the
experiment.

To obtain the baseline performance values, I measure the amount of the traffic
flowing through the network interfaces of three switches. I use the counters located
in the switches to measure the number of bytes transmitted through each interface.
I read the values of the counters through SNMP every second and calculate the
average throughput for that interval. Server S1 makes measurements using an
isolated VLAN. The size of transmitted messages is constant in all experiments
and equals 2.5 megabytes. The experimental network was isolated from other
networks (e.g., the Internet). During the measurements, all intergeneration times
were modeled as exponentially distributed; confidence intervals are calculated for
a significance level of α = 0.05. In every experiment, I send predefined amount of
pictures (5 000 for each camera) and execute the experiment 30 times for SBUS,
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uperf, OMNeT++ and once for QPN (SimQPN cares internally about the required
number of repetitions).

Modeling

For each scenario conducted in this part of validation, I prepared a DNI model
and transformed it using four transformations that are subject of validation in this
section. I built each DNI model manually, similarly to the procedure presented in
Section 7.2.2. The DNI models contain several elements that were not covered in
the previous validation scenarios. I model them as presented in the following.

Traffic Model Calibration. As observed in Section 7.2.2, proper calibration of
traffic flows play important role by performance prediction. The main source of
inaccuracy stems from the influence of the software and computing hardware on
the intergeneration times (here called think times).

In this experiment, I minimize the influence of imprecise modeling of the picture
intergeneration gaps in the camera components by manual analysis of the tcpdump
traces. The problem can be explained as follows. The application is requested to
generate and transfer a picture over the network. Assume, the picture is generated
in moment tapp,0 and passed to the operating system for the transmission over
the network. At the same moment, the think-time timer starts counting the time
when a next picture should be generated, say tapp,1. Hence, the think time is
defined as think_time = tapp,n − tapp,n−1. The network interface that transfers
the picture data starts the transmission in moment tnet,0 and tnet,1 respectively.
Ideally, I expect that think_time = tapp,n − tapp,n−1 = tnet,n − tnet,n−1, however,
the software stack and the operating system incur an additional overhead that
cause tapp,n− tapp,n−1 < tnet,n− tnet,n−1. Moreover, the pictures are not transmitted
immediately, as the transmission itself takes non-zero time. The challenge is to
find the difference between the think times at the network interface level and at
the software application level.
Normally, the software and operating system overheads could be estimated by

modeling the computing resources with Descartes Modeling Language (DML). For
this validation however, the delay caused by the overheads needs to be estimated
manually. The procedure for manual calibration of the traffic model was presented
in Section 6.3.

To calibrate the DNI model for the following experiments, I analyzed an output
of the tcpdump program and added a constant factor to every application-level
think time of about 10ms. The calibration was conducted for the scenario #3A
with original think time of 100ms. As shown later in the results, this allowed
to decrease the prediction error for OMNeT++INET when compared against the
results presented in Section 7.2.2. Note, that I use here a constant delay added to
each think time, whereas in the reality, the value varies depending on the server
load and the type of hosted applications (e.g., SBUS vs. Uperf), modeling of which
is not supported by DNI currently.
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Modeling of Virtual Machines. The scenarios assume that the LPR components
are deployed onto three virtual machines. The main LPR functionality (i.e., image
recognition) was disabled to minimize the CPU load on the receiver nodes. This
allowed to minimize the influence of server virtualization on the transmission
delays. Using Uperf as a second reference allowed to decrease the influence of the
computing load even more, because the traffic generation and receiving procedures
are simplified when compared against the SBUS implementation.
Lack of visible influence of the server virtualization architecture allowed to

simplify the modeling of VMs. Each physical server hosting a VM was modeled as
EndNode hosting a virtual switch (IntermediateNode) that connected the VMs to
the physical interfaces. Measurements of the virtual switch performance revealed
high throughput and very low latency of the virtual switching—at the level of few
microseconds. This had no visible influence on the performance in this scenario,
however, a highly loaded physical host (and thus the hypervisor) may impact the
performance of virtual switching. I discuss more on this in Section 7.3.5, where
the maximal capacity of VM-to-VM network connection is investigated.

Results

I evaluate the proposed approach in five scenarios (#3A–#3E). I deploy the cam-
era components and the LPR components and configure the communication
between the components according to the following plan: S2→VM4.1, S2→VM5.1,
S3→VM6.1, and S3→VM5.1. I increase the amount of transmitted pictures per
second by decreasing the think time between sending consecutive pictures to: 100,
50, 35, 20, and 10ms respectively.

I measure the throughput on the switch ports (for the reference models: SBUS
and Uperf) and compare them against the values predicted by the generated
simulation models. In this experiment, I measure throughputs on selected switch
interfaces: S2→SW1, S3→SW3, and SW2→S5. I expect the monitored throughputs
to be equal on each interface. The variations may happen when the network capac-
ity is saturated, because the TCP protocol may divide the throughput unequally
among the flows. The results are presented in Table 7.4, whereas the relative
prediction errors in Figure 7.5.

All three predictive models estimated that the capacity of the network can
accommodate a stream of 2.5MB pictures that arrive to the data center every
20ms. Such stream would consume about 75% of available network capacity.
Handling a stream with double frequency of interarrival times would exceed the
capacity of the network.

Reference measurements. Based on the results, I observe the expected equalities
in the measured throughputs for scenarios #3A–#3D. By unsaturated network,
the two reference models performed similarly (max. 5.3% throughput variation
relatively). In scenario #3E, the network capacity was exceeded and SBUS returned
larger confidence intervals for the reference measurements. This phenomenon is
caused by software performance bottlenecks in the original SBUS implementation

174



7.2 Performance Prediction of Classical Networks

Table 7.4: Scenarios #3A–#3E: measured and predicted throughput. All values in
mega-bits per second.

Link SBUS uperf OMNeT QPN QPN
reference1 reference2 DNI DNI mDNI
lCI uCI lCI uCI lCI uCI avg. avg.

Scenario #3A (think time 100ms)
S2→SW1 205 216 211 219 199 224 202 202
SW2→S5 205 215 211 219 199 214 202 202
S3→SW3 204 215 210 220 200 223 202 202

Scenario #3B (think time 50ms)
S2→SW1 430 449 385 410 407 448 450 450
SW2→S5 431 447 390 403 404 437 450 450
S3→SW3 430 447 383 410 408 442 450 450

Scenario #3C (think time 35ms)
S2→SW1 541 562 496 539 471 530 578 578
SW2→S5 526 548 505 528 454 517 578 578
S3→SW3 524 551 495 538 419 484 578 578

Scenario #3D (think time 20ms)
S2→SW1 631 640 579 652 702 764 675 675
SW2→S5 639 648 583 640 689 752 675 675
S3→SW3 416 426 575 648 657 728 675 675

Scenario #3E (think time 10ms)
S2→SW1 686 941 882 941 914 942 978 1074
SW2→S5 482 506 884 939 883 909 978 1074
S3→SW3 615 941 882 941 914 942 978 1074

as previously described in discussion in Section 7.2.2. Uperf provided more stable
network load in scenario #3E, as it generates minimal additional CPU load and
thus can saturate network better than SBUS. For that reason, I use Uperf as the
reference model for prediction accuracy validation.

OMNeT++INET . The OMNeT++INET model predicted the throughput with the
lowest average relative prediction error 7.4% (calculated as the relative difference
between the mid points of confidence intervals). However, in scenario #3D,
OMNeT++ reported the highest inaccuracy of 19% mispredicting the throughput
maximally by 117 Mbps for the link SW2→S5. In scenario #3E, OMNeT++ accurately
provided the maximum achievable capacity of the network and thus minimized
the prediction error below 3%.

QPN models. The QPN models performed identically in low-load scenarios (#3A–
#3D). The average prediction errors for the DNI-QPN model are usually below
10% (with maximal error of 13.5% in scenario #3B), whereas for miniDNI-QPN
below 11.4% (maximum of 17.8% for scenario #3E). The differences between the
two QPN models appear first when the network gets saturated. In scenario #3E,
the model generated from the miniDNI overestimates the measured throughput by
about 130Mbps reporting higher throughput than achievable in the practice.
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(a) Link S2→SW1.
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(b) Link SW2→S5.
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(c) Link S3→SW3.

Figure 7.5: Scenarios #3A–#3E: relative prediction errors. Solid line compares two
reference measurements using SBUS and Uperf.

Discussion

In this part of validation, I generated three predictive models for solving the
DNI model. I analyzed the prediction accuracy of the generated models in five
scenarios that represent different intensity of incoming camera pictures. I observe
improvement in the stability and accuracy of predictions—compared against the
results presented in Section 7.2.2—mainly thanks to manual calibration of the
traffic model and lessons learned from the previous validations.
Despite the different model solving methods, the predictive models generated

from the DNI model provided accurate performance predictions with prediction
errors below 20%. The prediction errors depend on the applied predictive model
and the scenario. OMNeT++INET provided the lowest average prediction error,
however the predictions contained outliers (e.g., in scenario #3D). The DNI-QPN
model (obtained from transforming the full DNI model) provided the most stable
results prediction error below 10% (with an exception of maximal error of 13.5%
in scenario #3B). The miniDNI-QPN model performed identically to the DNI-QPN
model for unsaturated network. The prediction error rose in scenario #3E up to
19% overestimating the available capacity by about 130Mbps.

As discussed in the previous experiments, the calibration of the DNI models
plays important role for delivering accurate predictions. Moreover, the semantic
gaps between the predictive models need to be taken into consideration—only
OMNeT++INET supports modeling of the TCP, whereas both QPN models simulate
the traffic similar to the User Datagram Protocol (UDP). The prediction errors
may be also affected by the reference measurement procedure, as well as by
the differences in measuring performance by the solvers. I have investigated
the inaccuracies of the performance predictions and formulate the following
observations and challenges.

TCP Configuration. The first challenge is the TCP protocol configuration. Among
the generated predictive models, only OMNeT++INET is able to mimic the behavior
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of the TCP protocol. TCP relies on multiple fine-grained parameters that influence
the performance, however, I do not model the values of these parameters in
DNI. OMNeT++INET uses a larger set of parameters for the simulation than is
supported in the transformation. This modeling gap was discussed in Section 7.2.2.
To increase the prediction accuracy the missing simulation parameters should be
provided manually.

DNI Calibration. The calibration of the traffic patterns is done manually based
on the level of protocol traces. Manual calibration procedures are error prone and
the errors usually cumulate when the network is under high load.
The duration of the generation delay depends on the respective software im-

plementation and differs for SBUS and Uperf. In case of a single threaded
implementation (e.g., in case of SBUS), the generation delay may take significant
time. For example: for one megabyte message, the generation of a message
takes about 7ms on average, whereas the transmission 8ms (for not loaded 1Gbps
network interface). The generated predictive models represented the transmission
delay properly, whereas the message generation delay was added manually to
the traffic workload specification. This was the main incentive for introducing
the softwareLayersDelay parameter to the EndNode entity in the next versions of
the DNI meta-model (the parameter was not present in the model at the time
of experiments). Thus, current implementation of the DNI meta-model provides
more support for modeling software-related delays. The precise calculation of the
generation delay requires the available throughput to be known beforehand. This
causes the fine model calibration challenging. The issue will be fully covered after
the integration of the DNI and DML solvers that is planned as a future work.

Reference Measurements. The measurement of reference values impacts the
width of confidence intervals (as discussed in Section 7.2.2). The performance
simulators, on the other hand, are less affected by the performance metric update
frequency. OMNeT++INET provides the programmer full control over the statistics,
so the issue of infrequent update of statistics affects the predictions minimally (only
in scenarios with infrequent data transmissions). SimQPN run multiple simulations
of the provided model and the statistics are provided by the simulation core. This
minimizes the measurement errors.

Steady-state analysis of QPN. SimQPN conducts analysis in a steady state, which
is reached after a warm-up period. This may extend the duration of the simulation
as there is additional time required to reach the steady state. The steady-state
analysis provides a cumulative statistics gathered during the complete experiment.
This does not allow to analyze the temporal behavior of network in highly dynamic
scenarios, unless the model is specially crafted to represent only an interesting
fragment of a scenario.
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QPN for miniDNI. The miniDNI meta-model abstracts numerous details. Despite
the abstractions, proper traffic calibration plays an important role. Although the
traffic patterns are not reflected in miniDNI, the DNI-to-miniDNI transformation
uses the original DNI traffic profile to flatten the traffic and present it as average
data volume transmitted over a given time period. Thus, errors caused by the
imprecise DNI calibration may propagate to the QPN model over the miniDNI
model.

7.3 Performance Prediction of SDN-based Networks
In this section, I evaluate the prediction accuracy of predictive models obtained
in the flexible performance prediction approach for SDN-based data center net-
works. The approach leverages DNI models instantiated from the DNI meta-model
(described in Chapter 4) and obtains predictive models using model transforma-
tions (presented in Chapter 5). For each DNI model, I generate two predictive
models using the DNI-to-OMNeT++generic and DNI-to-QPN model transforma-
tions. The generated models are solved with OMNeT++generic and SimQPN solvers
respectively.
As evaluation scenarios, I use various data center configurations that vary in

terms of: network hardware, SDN configuration, SDN controller applications,
load-balancing, deployment of VMs onto servers, traffic profiles, and deployment
of applications. In three scenarios, I evaluate the prediction accuracy by comparing
the predictions against reference measurements in a real testbed. Two additional
scenarios demonstrate the capabilities of the transformations and solvers—that is,
no reference measurements on the real hardware are provided. I use Cloud file
backup as a case study for generating network traffic. The case study is presented
in Section 7.3.1.
The evaluation presented in this section is focused on prediction accuracy

provided by the generated predictive models. Building and calibration of the
DNI models is discussed separately for each scenario. Note, that the evaluation
quantitatively compares prediction accuracies of selected model solving techniques.
The evaluation of solving performance of various solvers is presented in Section 7.4.

7.3.1 Case Study: Cloud Files Backup
For the evaluation scenarios in this section, I use the Cloud file backup case study
that leverages the L7sdntest software [Sto16]. The Cloud file backup represents a
scenario, in which clients request distributed file resources from servers.

There are two types of actors in this case study: servers and clients. The servers
host various files in a distributed manner. A single file resource is identified by
its ID. The data is interpreted as a backup snapshot but can be treated as any
other identifiable regular file (e.g., a video or an archive). The file resources are
redundantly located on the servers, so that a request of a client may be handled
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by one or more servers and thus provide the resources from an optimal network
location.

Typical scenario consists of a client issuing a request, in which it specifies the files
to download. A single client request may contain a list of files as well. The server
addressed by the client replies by transmitting the requested files in a batch. The
client may also specify that the requested files should be delivered by transmitting
each file one-by-one by specifying the duration of a pause between consecutive
transmissions. The duration of the pause may be specified deterministically, as
well as exponentially distributed. An example of a client request may look as
follows: “request files ID: {1, 7, 18}, each every 5 seconds”. L7sdntest uses TCP as
transport protocol.
The file uploads can be examined as well by reversing the roles of client and

server. In fact, the L7sdntest software implements each client and server in an
unified way, so that each client has the functionalities of a server and vice versa.
The naming of client and server is used for clarity based on the currently assigned
role to the application component.

I use the L7sdntest software mainly for network benchmarking purposes. It has
similar features to Uperf [upe12], but additionally supports centralized experiment
controller, signaling, and SDN-based load balancing. The added value of L7sdntest
(when compared against state-of-the-art solutions) consist of three SDN-specific
features, that are currently under active development:

1. Each client may signal to the SDN controller informing it about the planned
requests. The signaling may be transmitted over a separate network con-
nection (out-band) or using the experimental network (in-band). The client
signals to the controller, so that the controller can prepare the network to
optimally handle the request, for example, reroute it to the least loaded
server.

2. Each server may inform the SDN controller about its current working con-
ditions, for example, disk or CPU load. This allows the SDN controller to
optimize the routing of the network based on the current load of servers.

3. The SDN controller can manage the flow tables of the SDN switches. This
allows to manipulate the contents of the SDN flow tables in a proactive
fashion, that is, before (or shortly after) the traffic arrives to the switch.
This functionality allows, among others, to load-balance the system without
requiring a separate load-balancer server that would need to be queried for
each request.

Furthermore, L7sdntest provides a central experiment controller (separate from the
SDN controller) for controlling complex experiments. The experiment controller
manages the experiments by executing the following tasks: transmit the experiment
configuration file to each client and server; assign the roles (client or server) to
each application component; start and stop the experiments; run batch experiments
in which a single scenario is repeated multiple times; query all network devices for
SNMP statistics regarding the traffic; and gather the measurements data for further
processing. In contrast to this, Uperf works only on a defined pair of servers
where each pair needs to be configured manually. The measurements gathered
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by Uperf represent only the amount of data transmitted and received by the end
points ignoring the state of the network devices between the end points.

Moreover, in selected scenarios, I use Iperf [ipe16] as an alternative tool for
measuring the performance of the reference network. According to its authors,
“Iperf is a tool for active measurements of the maximum achievable bandwidth on IP
networks. It supports tuning of various parameters related to timing, protocols, and
buffers. For each measurement it reports, among others, the maximal throughput,
packet loss, and other parameters depending on configuration.” Iperf is used in
scenarios, where L7sdntest cannot be applied, for example: if SNMP monitoring is
unavailable (e.g., scenario #5B), or I validate network misconfiguration, so that the
switches cannot be accessed from the experiment controller.
The L7sdntest tool allows to create realistic service provisioning scenarios and

investigate the behavior of heterogeneous SDN switches under various load levels.
The current support of SNMP and OpenFlow can enrich the experiments by
providing monitoring the load of network interfaces, cumulative throughputs,
and per-flow behavior control. The SDN-based load balancing was demonstrated
in [Sto16] for Hewlett-Packard (HP) switches running the ProVision operating
system. The support for other SDN switches is currently under active development.

7.3.2 Hardware Testbed and Experiment Setup
The validation experiments are conducted in a representative data center. The
environment is presented in Figure 7.6. The experimental testbed includes the
following elements:

• Three types of heterogeneous SDN-enabled switches: two HPE 5700, four
HP 5130 (all run under control of the Comware switch operating system), and
HP 3500 (running under control of the ProVision switch operating system).
The switches HP 3500 and HP 5130 represent top-of-the-rack (ToR) switches
and able to connect up to 24 servers each.

• Two separate VLANs: one for measurements and experiment control (VLAN 1)
and second for the experiment network (VLAN 100). In selected scenarios,
VLAN 100 runs under SDN control.

• An SDN controller deployed in node C16. Depending on the scenario, I use
Ryu [Tea14] or HP SDN VAN Controller [HP13].

• Nine commodity servers, each equipped with four-core CPU, 32GB of memory,
and 1Gbps Ethernet network interfaces. Eight servers are connected to the
HP 5130’s (each switch connects two servers) and one is connected to the
HP 3500 switch. All servers are connected to the experiment VLAN and the
production VLAN using separate network interfaces. The connection runs
over a Cat6 Ethernet cable.

• Four 10Gbps links connecting the HPE 5700 switches to the HP 5130
switches (SW4x). The connections run over the ten gigabit SFP+ DAC copper
cables. The two HPE 5700 switches are connected with each other using
copper quad small form-factor pluggable direct attach cable (QSFP+ DAC)
with maximum bandwidth of 40Gbps.
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• A separate experiment controller server (C00) that stores the experiment
scenarios and manages the L7sdntest software deployed on the servers. The
experiment controller gathers the statistics from all switches by polling the
data over SNMP using the production VLAN.

The servers used in this part of validation differ from those used in Section 7.2.
Servers C10-C17 are HP DL160 Gen9 with Intel E5-2630v3 CPU (8 cores), 32GB
Memory, and two 1Gbps network cards, whereas C36-C39 are HP DL360 Gen9
Server with Intel E5-2640v3 CPU (8 cores), 32GB RAM, and four 1Gbps network
cards.
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Figure 7.6: Experimental testbed used for SDN experiments. The gray links
(connected to SW10) are disabled by Spanning Tree Protocol (STP) if not stated
otherwise.

For each experiment conducted in the following scenarios, the experiment
controller gathers and processes the performance data to serve as a reference
for the prediction accuracy study. The SNMP counters data are polled every
second during the experiment for each switch, network interface, and transmission
direction. An experiment consist of at least 30 repetitions of an experiment scenario.
Single repetition of an experiment scenario takes approximately between 3 and
60 minutes, depending on the scenario. The measured data consist of a time
series where for each second an average throughput is calculated. Then, for all
experiment repetitions, the so called, warm-up and cool-down periods are removed
and the average throughput in each second is calculated. This yields a single
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time series representing the average situation on the monitored network interface.
Finally, the average steady-state throughput is calculated including such statistics
as confidence intervals and percentiles.
This measurement procedure is accurate for steady-state scenarios where the

momentary average throughput is stable or represents a repetitive pattern. Never-
theless, the full data set is available for detailed analysis of scenarios with dynamic
throughput fluctuations and temporal workload spikes.

7.3.3 Modeling
The DNI models are built mainly manually according to the procedure presented
in Section 7.2.2. The standard modeling steps include:

1. building the network topology including nodes, links, and network interfaces;
specifying performance for each element of the structure according to the
vendor data sheet or tailored measurements (discussed in detail in respective
scenarios);

2. specifying and deploying communicating applications on the end nodes;
3. adding traffic sources to communicating applications and specifying traffic

workloads (with either manual calibration or with help of the approach
presented in Section 6.2);

4. modeling network protocols using standard payloads and overheads;
5. specifying paths and routes in the network according to current VLAN and

routing configuration.
Additionally, in this part of validation, I represent SDN-specific elements using

the modeling abstractions introduced in Section 4.2. This includes the following
steps:

1. For each SDN node, I add the SDN IType aspect and specify three perfor-
mance descriptions: (1) for non-SDN mode, (2) for hardware SDN mode, and
(3) for software SDN mode. Each description applies to different forwarding
mode of the switch: non-SDN, using hardware flow table, or software flow
table respectively. A controlled experiment or an estimation is required if
no performance specifications for hardware or software forwarding modes
is provided by the hardware vendor. A simple method for estimation of
forwarding delays is proposed in Section 6.3, whereas more sophisticated
methods were surveyed by Spinner et al. in [SCBK15a].

2. An SdnController is deployed onto an EndNode.
3. For each SDN controller, a default an SdnControllerApplication is deployed.

I install a standard learning switch application possibly in multiple versions
(e.g., L2 learning switch, L3 learning router, broken switch) depending on
scenario. All versions of the SdnControllerApplication are similar and are
described with the PerformanceSdnApplication entity. The response delay
of the PerformanceSdnApplication is measured using controlled experiments
and calibrated manually (analogically to the calibration of node forwarding
delays presented in Section 6.3).
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4. Each SDN node becomes an openFlowEndPoint for communication with the
SDN controller. A dummy CommunicatingApplication is deployed to serve
as openFlowEndPoint.

5. Additional Directions are added for paths between each SDN node and the
SDN controller assigned to the node.

6. For each triple of: {SDN node, flow, SDN controller application} an Sd-
nFlowRule is added to the NetworkConfiguration. Probability parameters
of SdnFlowRules are set arbitrarily based on the scenario (usually one of the
probabilities is defined as 1.0 and rest as 0.0) or calibrated according to the
procedure presented in Section 6.3.

7. For scenarios with load balancing (scenario #7 and #8), the probability param-
eter of the Direction objects are set arbitrarily or based on measurements
from a controlled experiment.

The DNI models are then transformed using two model transformations that are
focus of this section: DNI-to-QPN and DNI-to-OMNeT++generic. Scenario-specific
modeling steps and calibration techniques are discussed in the sections of the
respective scenarios.

7.3.4 Scenario #4: Upgrading Hardware to SDN
In scenario #4, I investigate the influence of the network hardware setup on the
network capacity. I analyze three cases. In scenario #4A, the network handles
three flows of client requests operating non-SDN switches. Each client represents
one user who issues a request to a predefined server to download file resources.
Then, the number of users is increased gradually to analyze the maximal capacity
of the network in terms of the maximal number of customers that can be served
without exceeding the network capacity.

Next, in scenario #4B, I analyze the impact of the network upgrade, which consist
of enabling SDN mode on the switches. First, I enable SDN on all switches and
preinstall the flow rules into the hardware flow tables before the experiment starts.
The flow rules match the Internet Protocol (IP) addresses of the customers and
direct the flows to the respective ports. Next, I change the SDN rules configuration
and redefine the flow rules, so that the matching is conducted based on the L2
Media Access Control (MAC) addresses of the flows. This forces the switch to
operate in the SDN software forwarding mode. I analyze the influence of the
reconfiguration on the capacity of the network in terms of the number of users.
Finally, in scenario #4C, I increase the number of clients and differentiate the

size of the requested file resources. I compare the network behavior and capacity
for non-SDN and SDN hardware (i.e., using the hardware flow table) forwarding
modes.

Scenario #4A: Predicting non-SDN Network Capacity

In scenario #4A, I assume three client applications deployed on servers C39,
C38, and C17. The clients request files from predefined servers: C10, C12, and
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C36 respectively. The clients request 100 times the same resource of size 20MB,
where each request is issued every 5 seconds. The breaks between requesting the
resources are deterministic. The communication pattern is presented in Figure 7.7,
where each gray arrow represent the reply of a server to the respective client.
Each server reacts to the client requests immediately and starts transmission of the
requested resource. The three pairs of servers communicate simultaneously and
share the network infrastructure between each other.
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SW42 SW43

C17
C36

C37
C38

SW35

C39
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10
C11
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SW41
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Figure 7.7: Scenario #4A: Flows of server replies (denoted by arrows).

For each communicating pair, I increase the number of users gradually starting
from one and observe the capacity of the switch interfaces. I investigate the
network capacity for 1, 5, 10, 15, 20, 25, 30, and 35 users. Confidence intervals are
calculated for a significance level of α = 0.05.

Scenario #4A: Results

In this scenario, I measure prediction accuracy of two predictive models: OM-
NeT++generic and QPN. Based on the obtained predictions, I observe that the
network reaches its maximal capacity at the level of about 25− 30 users. Through-
put does not increase beyond the maximum of 942Mbps for 30 and 35 users. The
measurements of reference throughput are obtained using SNMP-based monitoring
procedures implemented in L7sdntest software according to the presented measure-
ment procedure. The results are stable and the size of confidence intervals do not
exceeds 60Mbps. The measured and predicted throughput on a selected network
interface (SW35→C39) is presented in Figure 7.8a, whereas the relative prediction
error in Figure 7.8b. The predictions are given as averages, whereas the reference
measurements as confidence intervals.

Both generated predictive models provided very good performance prediction
accuracy. OMNeT++generic delivered predictions with lower error (maximally 3%)
than SimQPN (maximally 5.2%). The maximal absolute prediction error was below
40Mbps for SimQPN and 20Mbps for OMNeT++generic. For the case of 1 − 25
users, both solvers underestimated the throughput, whereas for fully saturated
network, the predictions were overestimating the measured capacity by maximally
14Mbps.
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Figure 7.8: Scenario #4A: Network throughput measured on link SW35→C39.

Scenario #4B: Upgrading the Switches to SDN

In this scenario, I reconfigure the switches to work in SDN mode and compare
the prediction accuracy for SDN-based network. The SDN switching is based on
flow rules that match the IP addresses of the traffic flows. I assume proactive flow
insertion, so the flow rules are inserted by the SDN controller before the arrival of
the traffic. I use the experiment setup presented in scenario #4A.
Next, I measure the differences in the performance of the reference network

setups operating in non-SDN and in hardware SDN modes. I assert that all flow
rules are inserted into hardware flow tables of the respective switches and the
table capacity is not exceeded. To analyze the performance in SDN hardware
mode, I adapt the DNI models by adding the respective SdnFlowRules and setting
their probabilities to probabilityHardware=1.0, whereas the other probabilities are
set to 0.0.
Finally, I model the next SDN reconfiguration, where the flow tables are con-

figured to match the incoming traffic based on the L2 MAC addresses instead of
IP addresses (which in fact represents routing). This forced the SW35 switch to
install the rules into the software flow table. The rest of the switches installed the
new rules in the hardware tables. Thus, for the switch SW35, I investigate the
offered network capacity in the SDN software mode. The other switches contain
only hardware flow tables, so their performance in SDN software mode cannot
be analyzed. The software SDN forwarding mode is modeled in DNI by setting
the probabilities of respective SdnFlowRules to probabilitySoftware=1.0, whereas the
other probabilities are set to 0.0.
Each DNI node of IType SDN was described with one (or two for SW35)

additional performance descriptions. The official vendor data sheets do not include
the performance of SDN, so I conducted a series of controlled experiments to
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investigate their performance. The forwarding performance and other performance-
relevant characteristics of the switches have been published in [RSKK16].

Scenario #4B: Results

Similarly to scenario #4A, I observe low prediction errors for both analyzed
solvers. The predictions for SDN hardware mode provide almost identical capacity
prediction. The network gets saturated for 30 users and offers maximum throughput
of about 942Mbps. The generated predictive models provide high accuracy with
maximum prediction errors of 5% for SimQPN and 2.5% for OMNeT++generic
respectively. The measured and predicted throughputs on the network interface
SW35→C39 are presented in Figure 7.9a, whereas the relative prediction error in
Figure 7.9b. Predictions are given as averages, whereas the reference throughput
as confidence intervals.
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Figure 7.9: Scenario #4B: Network throughput measured on link SW35→C39. The
switches operate in SDN hardware forwarding mode.

Based on the obtained predictions, I observe almost identical reference perfor-
mance for native (non-SDN) and SDN hardware forwarding modes. I analyze the
differences in offered throughput performance between the reference measurements.
The results for throughput are presented in Figure 7.10a, whereas the relative
differences between throughputs (for average throughput and the bounds of the
confidence intervals) in Figure 7.10b.

The results presented in Figure 7.10 confirm that there is no significant difference
in performance between the native and SDN hardware mode for the analyzed
switches. The maximum relative deviation of offered throughput does not ex-
ceed 1%, however the bounds of confidence intervals differ up to 7% for the
measurement with 5 users. The deviations generally stem form the measurement
errors.
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Figure 7.10: Comparison of reference throughputs for non-SDN (scenario #4A)
and SDN hardware modes (scenario #4B).

Figure 7.10 depicts measurements for switch SW35, however the measurements
obtained for other switches are similar. Other performance characteristics of the
analyzed switches are presented in [RSKK16].

Software SDN forwarding mode. In the next experiment, I reconfigure the SDN
switches to forward the incoming traffic based on MAC addresses instead of IP
addresses. This forced the SW35 switch to install the rules into the software
flow table, whereas the other switches installed the rules in the hardware flow
tables. For such configuration, I investigate the capacity of the network in terms of
maximal number of the users that can be served without overloading the network.
Setting the SDN forwarding mode to software caused a drastic drop of the

offered throughput. The switch SW35 was able to deliver maximally 62Mbps of
throughput which corresponds to 6.5% of the maximal throughput in the SDN
hardware mode.
There are two main factors that contribute to the observed performance drop.

First, the switch operating system limits the maximum switching capacity to 10 000
packets per second. This limit is configurable and can be set to lower values,
however for the maximum setting, the switch consumes almost 90% of its CPU
resources (as presented in [RSKK16]).
Second, the software flow table is usually implemented using general-purpose

synchronous dynamic random-access memory (SDRAM), so the lookup procedure
consumes additional time to find a matching rule in the flow table. This incurs
additional forwarding delay that needs to be estimated empirically.
In Figure 7.11, I depict the throughput measurements of the HP 3500yl switch

operating in the SDN software mode under various settings of the switching
capacity limit. Additionally, I depict performance predictions for arbitrarily selected
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values of forwarding delay. Moreover, I present the prediction of the maximal
theoretically achievable throughput of 118Mbps (for no forwarding delay) assuming
the data payload size of 1500 bytes.
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Figure 7.11: Measurement (and exemplary QPN-based prediction) of HP 3500yl
performance in SDN Software mode for different settings of switching capacity.
Excerpted from [RSK16].

In scenario #4B, I modeled the configuration of SW35 in DNI by specifying the
softwareSwitchingPerformance object. I set the switchingCapacityPPS parameter
to 10 000 packets per second. This represents the maximal switching capacity
offered by the switch operating system. I estimated experimentally the forward-
ingDelay in SDN software mode to 90µs. Additionally, I analyze the performance
for forwardingDelays set to 76µs (as estimated using the method presented in
Section 6.3). I depict the measured and predicted throughputs (measured on the
network interface SW35→C39) in Figure 7.12a, whereas the relative prediction
errors in Figure 7.12b. Predictions are given as averages, whereas the reference
throughput as confidence intervals.
Despite the drastic performance degradation, the predictive models provided

accurate predictions and estimated the maximal network capacity to handle the
traffic workload of a single user. OMNeT++generic simulation predicted the average
throughput accurately wit maximal prediction error below 4% (for forwarding delay
90µs). SimQPN performed similarly, however the prediction error reached about
6% for a single user. The alternative method for calibrating the forwarding delay
resulted in higher inaccuracies and the prediction error for OMNeT++ reached 11%.
This is still considered as acceptable prediction accuracy under the assumption
that the forwarding delay was calculated a priori using an analytical formula.

Scenario #4C: Diversified Resource Requests

In scenario #4C, I assume that multiple users request the resources of diversified
sizes: r1 = 1000, r2 = 100, and r3 = 10MB respectively (selected arbitrarily). The
deployment of clients and severs, as well as the flows of file transfers (server
replies) are presented in Figure 7.13. Each set of file resources is requested by
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Figure 7.12: Scenario #4B: Network throughput measured on link SW35→C39. The
switches operate in the SDN software forwarding mode.

a single user. The consecutive resources are requested every 5 seconds until 100
requests are served. I configure the switches to operate in the SDN hardware
mode. The SDN part of the DNI model is built analogically to the model presented
in scenario #4B.
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Figure 7.13: Scenario #4C: Experimental testbed and file transfer flows.

For the network capacity analysis, I selected representative network links de-
scribed in the following format: “A→ • B”. This means, that I measure the
throughput on the receiving side (marked as •) of the link connecting the nodes
A and B. The results obtained in scenario #4C are presented in Table 7.5.

In the experiments, both solvers provided accurate performance predictions. For
the first time, the QPN model provided more accurate predictions compared to
OMNeT++generic. For the fully saturated links (i.e., SW42 • → C17, SW00 → •
SW43, SW43 • → C38), the relative prediction error was below 1%. The link SW00
→ • SW42 was lightly loaded and the relative error was higher, however the
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Table 7.5: Scenario #4C: Measured and predicted network capacity.
Reference QPN Relative OMNeT Relative

Measured port Mbps Mbps error % Mbps error %
lCI uCI avg lCI uCI

SW42 • → C17 917 941 927 0.2 948 954 2.4
C36 → • SW42 788 814 924 15.4 945 954 18.6

SW00 → • SW42 153 161 160 1.9 136 193 4.8
SW00 → • SW43 911 945 924 0.4 945 954 2.3
SW43 • → C38 911 942 924 0.3 945 954 2.5

absolute error was below 10Mbps. OMNeT++generic overestimated all predictions
by slightly exceeding the maximum network capacity at the data level by up to
25Mbps.

An interesting phenomenon is observed for the link C36 → • SW42. Both solvers
overestimated the throughput reporting full link utilization. This observation
was expected and is caused by TCP used by the L7sdntest software, whereas the
support for TCP is not available in the predictive models.

In the reference scenario, the capacity of the link SW42 • → C17 was exceeded
by three flows: C10-C17, C37-C17, and C36-C17. The two former flows require in
total about 160Mbps of throughput, whereas the latter consumes full capacity of
a 1Gbps network interface (see, for example, SW00 → • SW43). As a result, the
limited capacity of SW42 • → C17 provided less capacity than required by the
three aggregated flows.
In such situations, TCP congestion control informs the sender to decrease the

transmission rate to avoid packet losses and retransmissions. The predictive models,
however, do not implement the congestion control algorithms, so in the simulation
the node C36 was limited only by the throughput of the network interface (1Gbps).
This lead to excessive queueing on the SW42 and possibly packet losses caused
by the overrun of the SW42 transmitting queue. In fact, such situation could be
observed for case studies based on UDP. Thus, for similar scenarios with TCP, the
OMNeT++INET solver shall be used (with awareness of its limitations as presented
in Section 7.2.2). Unfortunately, OMNeT++INET does not support SDN currently.

7.3.5 Scenario #5: Physical and Virtual Nodes
In scenario #5, I introduce server virtualization on node C13 and modify the
services deployment to obtain new configuration of flows. The server C13 becomes
a Xen [BDF+03] hypervisor that hosts two virtual machines C13a and C13b. Each
virtual machine is assigned with four CPU cores and 8GB memory. I redeploy
L7sdntest services to leverage the high bandwidth of the 10Gbps small form-factor
pluggable (SFP+) links between the switch SW00 and switches SW4x. Additionally,
I configure a new flow of file resources that connects the virtual machines C13b
and C13a to investigate the influence of the hypervisor on the network capacity. I
diversify the sizes of file resources as in scenario #4C, that is: r1 = 1000, r2 = 100,
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and r3 = 10MB. Each user requests 100 copies of a resource, each every five
seconds. The testbed configuration used in scenario #5 is presented in Figure 7.14.
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Figure 7.14: Scenario #5: Experimental testbed and file transfer flows.

I follow the same measurements procedure as described in scenario #4 (presented
in Section 7.3.4) for all flows traversing a physical switch. Unfortunately, the SNMP
implementation in the Xen hypervisor (node C13) cannot provide stable reports
from virtual interface byte counters. For this reason, I measure flow C13b-C13a
separately using iperf [ipe16] to estimate the maximal capacity of the VM-to-VM
connection. Therefore, I divide this scenario into #5A and #5B. Scenario #5A
contains all flows but the C13b-C13a, whereas scenario #5B measures the isolated
maximal network capacity of the flow C13b-C13a.

Modeling

The modeling of the server virtualization consisted of defining the VMs, a virtual
switch (a bridge running on the hypervisor), and virtual links connecting the VMs
to the hypervisor bridge. I assume that the links and the VM network interfaces
have infinite capacity. This resulted in setting the bandwidth of links and network
interfaces to 1000Gbps in both predictive models (as an approximation of infinity).
The maximal bandwidth of the virtual hypervisor bridge was specified using
forwarding delay. The value of forwarding delay was estimated using a controlled
experiment and set to 1μs for the iperf workload.

The precise estimation of forwarding delays is challenging. It is difficult to mea-
sure the delays at the microsecond level without dedicated equipment. Moreover,
the delays incurred in the hypervisor strongly depend on the configuration and
utilization of the physical host and the VMs deployed on it.

The assignment of insufficient resources to a VM (in terms of CPU cores or
memory) may also affect the transmission bandwidth at the respective VM. For
example, deployment of L7sdntest software components onto the VMs utilized more
CPU resources and caused about 10% of internal network performance degradation.
Larger degradations were observed by under-provisioning of CPU or memory
resources. Thus, a DNI model is incapable of precise modeling of the influence
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of computing performance on the network unless the integration of performance
prediction with DML is used. The results obtained for scenario #5B assume that
the DNI model was calibrated under repeatable constant level of computing load
on node C13.

Results

The prediction results obtained in scenarios #5A and #5B are presented in Table 7.6.
In scenario #5A, I observe prediction accuracy similar to scenario #4C. Both
predictive models delivered predictions with low errors. SimQPN solver performed
better than OMNeT++generic and provided up to 2% more accurate predictions.
Absolute prediction error of the high-bandwidth link (SW41→ SW00) was low
and did not exceed 40Mbps on average.

Table 7.6: Scenario #5: Measured and predicted network capacity.
Reference QPN Relative OMNeT Relative

Measured port Mbps Mbps error % Mbps error %
lCI uCI avg lCI uCI

Scenario #5A (no flow C13b → C13a)
SW41 • → SW00 1834 1888 1848 0.7 1879 1924 2.2
SW00 • → SW41 171 196 192 4.9 163 232 7.9
SW41 • → C12 152 174 176 7.8 154 208 11.0
SW41 • → C13 18 22 16 19.6 14 19 17.4
SW00 • → SW40 920 941 924 0.7 940 962 2.2
SW00 → • SW43 917 944 924 0.7 938 961 2.1
SW43 • → C38 917 942 924 0.6 945 954 2.2

Scenario #5B (flow C13b → C13a with iperf )
C13b → • C13 11052 11149 17040 54 16823 17987 57
C13 • → C13a 11052 11149 10878 2.0 9999 10256 8.8

Anomalies can be observed for three of the monitored network interfaces. The
flows sharing the path SW00 → SW41 → C12 and C13 consumed less network
resources than predicted by the models. The total consumption of capacity on
the link SW00 → SW41 is expected in theory as maximally 192Mbps. Despite
the ideal prediction of SimQPN, the reference measurements provided larger
confidence intervals and thus the average is reported below the expected 192Mbps.
OMNeT++generic, however, measured higher variation of the average consumed
capacity and thus the prediction is provided with higher accuracy error. This
phenomenon propagates further to the links SW41→ C12 and SW41→ C13, so
higher prediction errors are observed. Note that the absolute prediction errors
are low and do not exceed 25Mbps and 5Mbps for links SW41 → C12 and
SW41→ C13 respectively.
Despite the challenging calibration procedure, the performance predictions in

scenario #5B returned accurate results with 2% and 8.8% prediction error for
SimQPN and OMNeT++generic respectively. The flow C13b→ C13, however, was
affected by the TCP-UDP modeling gap, that is, the predictive models analyze
the traffic in an UDP-fashion, whereas the reference communication runs over

192



7.3 Performance Prediction of SDN-based Networks

TCP and the throughput of the flow is limited by congestion control algorithms
according to the bandwidth of a bottleneck resource.

7.3.6 Scenario #6: SDN Switch Misconfiguration

In scenario #6, I assume that an error in SDN flow rule configuration causes all
switches to misinterpret the rules located in the flow tables and forward all traffic
via the SDN controller. In this way, I indirectly examine the performance of the
SDN controller in handling excessive packet-in traffic.

Each switch can be configured to execute a default action if no rule in the
flow tables can be matched. There are three available default actions: (1) forward
to controller, (2) drop packet, or (3) broadcast to all but incoming ports (as in
non-SDN switches). In this scenario, I configure the switches to execute the first
action. Additionally, I modify the SDN controller application to return the flow-mod
messages that do not install any rules in the flow tables. Instead, the switch is
instructed to forward each packet directly to the proper outgoing port.

To demonstrate such behavior, I assume that two servers—C12 and C38—are
communicating via network path containing three switches with SDN support:
SW41, SW00, SW43. Next, I enable SDN on switch SW41, whereas the other
switches work in native mode. In this scenario, Ryu SDN controller is connected
directly to SW41 over a dedicated network link. I configure node C38 to represent
a single user requesting a 20MB resource from C12 every five seconds. The
testbed configuration used in this scenario is presented in Figure 7.15.
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SW43

C38

C16
SDN Controller

SW
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SW43W41W41SW

SDN 
misconfiguration

Figure 7.15: Scenario #6: Experimental testbed and file transfer flows.

Unfortunately, in this scenario, L7sdntest could not establish a stable connection
between the client and the server. The software requires stable network conditions
to conduct batch experiments. Note, that in each of 30 experiment repetitions, the
software handles 100 consecutive file transfers and reports an experiment failure if
any of the experiment repetition fails. For this reason, I used Iperf to emulate the
user behavior for this scenario.

Modeling

In this scenario, I build the DNI model similarly as in the previously presented
SDN scenarios. The modeling consists of defining a flow between nodes C10 and
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C38 with respective SdnFlowRule. The parameter probabilityController is set to 1.0.
The modeling of a SdnControllerApp faces similar challenges to the calibration
of forwarding delay of the SDN switch working in SDN software mode (as
presented in Section 7.3.4). I empirically estimate the per-packet processing delay
of SdnControllerApp to 8ms.

Results

The reference measurements obtained in this scenario originate from three various
iperf settings. First, I run default iperf command that measures the maximal
capacity of the network connection. Second, I switch the transport protocol to UDP
and measure the available bandwidth. This however, does not allow iperf to send
more data than 1Mbps unless the receiving side confirms successful receptions.
This mechanism is implemented internally by iperf and does not refer to any of
UDP features. Finally, I force iperf to send maximally 32Mbits of data without
waiting for the confirmation of the receiving side.

All three types of reference workloads are compared against the prediction
results provided by SimQPN and OMNeT++generic. I use the same DNI model for
all three reference measurements. The results are presented in Table 7.7.

Table 7.7: Scenario #6: Measured and predicted network capacity.
Reference QPN Relative OMNeT Relative

Measured port Mbps Mbps error % Mbps error %
avg avg lCI uCI

Reference: default TCP iperf
C12 → • SW41 1.24 32.00 2481 27.12 38.60 2550

SW43 • → C38 1.24 1.39 12 2.14 2.70 95
Reference: default UDP “iperf –udp”
C12 → • SW41 1.03 32.00 3007 27.12 38.60 3090

SW43 • → C38 1.03 1.39 35 2.14 2.70 135
Reference: modified UDP “iperf –udp -b 32000000”
C12 → • SW41 32.00 32.00 0 27.12 38.60 2.6

SW43 • → C38 2.19 1.39 57.5 2.14 2.70 10.5

Reference: default TCP. In this scenario, I observe unusual behavior of the
network. The average bandwidth of the path connecting node C10 and C38 is low
and does not exceed 1.3Mbps of stable traffic throughput. The measurements of the
available capacity with iperf running in TCP mode provided flattened representation
of the network that was relatively correctly represented by the predictive models.
Both SimQPN and OMNeT++generic overestimated the throughput on link C12→
SW41 due to the differences between TCP and UDP—the applied prediction
mimics UDP more closely than TCP, thus the prediction error is high and should
not be compared to the reference measurements directly (similarly to scenarios
#4C and #5B).
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The analysis of the capacity of link SW43→ C38 is not affected by the TCP-UDP
gap. For that link, the relative prediction errors are high as the models cope
with low throughputs. SimQPN solver mispredicted the capacity by 12%, whereas
OMNeT++generic by 95%. This corresponds to an absolute error of 0.15Mbps and
1.18Mbps respectively.

Reference: default UDP. Similar situation was observed for the second reference
measurement. The maximal non-interrupted transfer measured by iperf limited
the throughput to 1.03Mbps. According to the documentation [ipe16], in its
next internal iteration, iperf tried to transmit data with 2Mbps but it returned to
the throughput of 1Mbps due to high packet losses. The relative and absolute
prediction errors were higher, however they cannot be taken directly as reliable
results without further analysis of the situation.

Reference: modified UDP. The third reference measurement represented the
expected behavior of the network in terms of bottleneck location and performance.
Note, that the DNI model used in this scenario was built to closely represent the
expected behavior.

To measure the reference performance, I force iperf to send at least 4 megabytes
of data per second (32Mbps) and increase the data rate by another 32Mbps if
no packet drops occur. This allowed the traffic to arrive to SW41 at the full
generation rate of 32Mbps. Then, the switch SW41 forwarded each packet to
the SDN controller by issuing a packet-in message. After approximately 8ms, the
controller replied with flow-mod containing the decision regarding the forwarding
of the packet (the decision has not been stored in the flow table). As a result, each
packet was delayed by at least 8ms (plus additional network interface processing
delays) and forwarded to the destination in C38.
At the receiving end-point, iperf reported maximal throughput of 2.19Mbps

with 130ms jitter and packet loss rate of 92%—24 948 datagrams were lost out of
27 223 sent in total over ten seconds. The interface packet counters of the switch
SW41 confirm this measurement reporting approximately ten times more packets
received from C12 than forwarded to SW00.

The difference between the throughputs reported by the default and the modified
configurations of iperf stem from its internal behavior regarding timeouts. Iperf
measures the performance at the receiver side until the sender side notifies it
that the experiment ends. However, the notification is significantly delayed by the
switch and the SDN controller, so it arrives to the receiver later (possibly after
several attempts caused by losses). This additional delay causes that an additional
part of datagrams queued at the SDN controller arrive to the receiver and are
included in the statistics. In this measurement, the receiving side of iperf reported
arrival of 3.19MB in 11.7 seconds what results in average throughput of 2.19Mbps.

For this reference traffic, the utilized network capacity has been ideally predicted
by SimQPN, whereas OMNeT++generic mispredicted it with 2.6% relative error
(0.86Mbps absolute error). The relative prediction errors on link SW43 → C38
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were higher—57% relative and 0.8Mbsp absolute error for SimQPN, whereas for
OMNeT++generic 10.5% relative and 0.23Mbps absolute.

7.3.7 Scenario #7: Network Load-balancing with ECMP

In this scenario, I demonstrate the load balancing capabilities based on Equal-
Cost Multi-Path Routing (ECMP) [TH00, CWO+12] for the generated predictive
models. I do not provide reference values and thus do not evaluate the prediction
accuracy against the measurements conducted on real hardware. However, the
selected scenarios represent realistic configurations used in big data centers in
practice [RBP+11].

Note that SDN-enabled switches are not required for the ECMP scenarios if the
devices implement ECMP directly. Nevertheless, SDN can be used to implement
similar behavior for SDN-enabled switches that do not provide support for ECMP.

In ECMP routing, I assume that there are multiple paths between two switches
supporting ECMP. The switches are configured to automatically load-balance the
traffic between the redundant links. An example is presented in Figure 7.16.

SW-A

C-A

SW-B

C-B

A SW-Bcb
a

Figure 7.16: Scenario #7: Exemplary testbed. The values of a, b, c, and load
balancing ratios are defined in the Table 7.8 for respective sub-scenarios.

Modeling

In this scenario, I model a single Flow between two applications deployed on
nodes C-A and C-B. The network load balancing is defined by specifying the value
of the probability< 1.0 parameter of respective Direction objects. An example is
presented in Figure 7.17, where the link connecting switches SW-A and SW-B is
load-balanced in a 50/50 ratio.

Results

I assume three sub-scenarios for evaluation of predicted network capacity between
SimQPN and OMNeT++generic. In scenario #7A, the servers are connected to
the switches over a = 1Gbps links, whereas switches share two b, c = 10Gbps
connections. The link bandwidths are defined as: a = 10Gbps, b = 6Gbps, c =
8Gbps for scenario #7B, and a, b, c = 10Gbps for scenario #7C. Moreover, scenario
#7C assumes load balancing with weights 70/30, whereas the rest uses 50/50.
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Figure 7.17: DNI model for the ECPM scenario.

The values are selected arbitrarily to represent wide variety of possible realistic
configurations. I assume that the application deployed on node C-A transmits a
5GB file every second and 100 files are transferred during the experiment. The
prediction results are presented in Table 7.8.

Table 7.8: Scenario #7: Predicted network capacity.
OMNeT QPN Relative

Measured port Mbps Mbps difference %
lCI uCI

Scenario #7A: a=1Gbps, b,c=10Gbps, ratio 50/50
C-A → • SW-A 925 957 924 1.8

SW-A.1 • → SW-B.1 467 479 456 3.6
SW-A.2 • → SW-B.2 462 479 468 0.6

Scenario #7B: a=10Gbps, b=6Gbps, c=8Gbps, ratio 50/50
C-A → • SW-A 9113 9602 9240 1.3

SW-A.1 • → SW-B.1 4556 4800 4632 1.0
SW-A.2 • → SW-B.2 4557 4802 4608 1.5

Scenario #7C: a,b,c=10Gbps, ratio 70/30
C-A → • SW-A 9113 9602 9240 1.3

SW-A.1 • → SW-B.1 6380 6722 6473 1.2
SW-A.2 • → SW-B.2 2733 2880 2768 1.4

Scenario #7A. In this scenario, the predicted throughput is limited by link
C-A→SW-A and drops from 40Gbps to the maximal data throughput of about
940Mbps. The solvers execute ECMP load balancing at the message level (one mes-
sage has size of 5GB), whereas in reality, the devices balance the communications
at the level of packets or TCP connections. The predicted share of bandwidth
between links SW-A.1 and SW-A.2 closely approximates the defined share ratio of
50/50. The relative difference between the throughputs provided by the predictive
models is low and do not exceed 3.6%. SimQPN underestimates the maximal
theoretically available data throughput by about 16Mbps.
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Scenario #7B. In this scenario, I eliminate the bottleneck by replacing the 1Gbps
link with a 10Gbps SFP+ one. Moreover, the redundant links between switches
SW-A and SW-B have been also replaced. They offer now maximally 6Gbps and
8Gbps respectively. The relative difference between the predicted throughputs
remains below 2%. The impact of unequal bandwidths on the load-balancing links
has no influence on predicted throughput unless the capacity of a slower link is
not exceeded.

Scenario #7C. In this scenario, I assume equal 10Gbps bandwidth for all links.
The weights of the load-balancing algorithm are changed to simulate a 70/30
share between the redundant links. The relative difference between predicted
throughputs remains below 2%. Despite the message-based load-balancing and
high data volumes in a message, the load balancing ratio in the predictions matches
the modeled ratio of 70/30.

7.3.8 Scenario #8: Server Load-balancing as Network Function
In this scenario, I demonstrate the modeling features of DNI and of the generated
predictive models. Similarly to scenario #7, I do not provide reference values mea-
sured on real hardware. Although L7sdntest supports SDN-based load balancing
for selected switches, the feature is currently under active development and it
does not allow to conduct stable measurements with the assumed scenario setup.
The scenario selected for demonstration represents realistic configurations used in
nowadays data centers in practice [KK12].
In this scenario, I assume that six users request a file resource from server

C37 every 5 seconds. The client components are deployed on nodes C10 − C36
and communicate with C37 over SDN-based network. Switch SW43 implements
load-balancing, which is controlled from the SDN controller that is deployed on
C16. Node C38 mirrors C37. SDN controller monitors the load on servers C37 and
C38 and instructs switch SW43 to modify the flow rules to balance the distribution
of requests in a round-robin fashion. The users are not aware of load balancing as
the switch transparently modifies the requests on-the-fly. The experimental testbed
and the configuration of reply flows are presented in Figure 7.18.

Modeling

In this scenario, I model traffic patterns that are not known a priori. It is not
known beforehand whether a request will be redirected by SW43 and thus from
where the reply will originate. DNI is unable to model such scenario completely
due to the lack of support for modeling closed workloads. The prediction however,
can be divided into two phases, so that the complete traffic information is available.

In the first phase, I model the requests issued by the users and the behavior of
the load balancing algorithm. As a result, the mapping of user requests to the
destination servers is obtained. Next, I model the reply flows knowing precisely
the source node and starting time of each reply flow. This allow to overcome the
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Figure 7.18: Scenario #8: Testbed and reply flows.

limitations of DNI and predict the performance of the network. I describe the
modeling steps for both phases in the following.

Request phase. For each client application (deployed on nodes C10 − C36), I
add a DNI Flow and set its respective source application in the client node. For
each flow, there are two destination applications deployed on nodes C37 and
C38. This means that the requests may be load-balanced in an intermediate node.
Next, I define the node where the load balancing takes place by specifying the
probability parameter in the respective Direction objects. I build two direction
objects that reference the same flow and node, but different network interfaces
(parameter via). Moreover, for each Direction, I specify the probability based
on the load balancing ratios. In this scenario, I use round-robin load balancing,
so both probabilities are set to 0.5. The modeling is presented graphically in
Figure 7.19; there are two Direction objects specified for flow f1 and node SW43.
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Figure 7.19: DNI model for SDN load-balancing scenario—request phase.
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Reply phase. The modeling of the reply phase leverages the information from
the request phase. A Flow is build for each pair of communicating applications,
so that every server can respond to every client. The mapping of server replies to
clients is obtained from the request phase, based on the end node where a request
arrived. For example, if a request req1 from node C10 arrived to server C38 in
the first phase phase, a reply flow from C38 to C10 is built in the second phase.

Moreover, each reply flow is configured to start in a defined moment that
matches the arrival time of the respective request. The file transfer is delayed
by adding a WaitAction at the beginning of each traffic Workload. The value of
the delay assigned to the WaitAction is equal to the request arrival time and
increased by the value of softwareLayersDelay for each EndNode. For example, if a
request req21 from node C13 arrived to server C37 in the 32nd second in the first
phase, the reply workload from C37 to C13 will be delayed by 32 seconds plus the
softwareLayersDelay of node C37 (counting from the beginning of the experiment).

The modeling is presented graphically in Figure 7.20. There are 12 Flow objects,
each for a pair of potential sender and receiver—six client applications (on nodes
C10− C36) and two server applications (on nodes C37 and C38).
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Figure 7.20: DNI model for SDN load-balancing scenario—reply phase.

Results

To demonstrate the prediction capabilities, I consider four simulation runs. I solve
four models for arbitrarily selected size of the requested resources for the reply
phase: 50, 100, 160, 200 megabytes respectively. First, I transform the DNI model
representing the request phase into both predictive models. I do not include the
prediction results for this phase. Instead, I analyze the output of OMNeT++generic
to extract the mapping of flows to the destination nodes and their arrival times.
This data is used as an input for the reply phase, where I analyze the predictions
delivered by both solvers. I build and transform five DNI models in total: one for
request phase and four for the reply phase, each for four file resource sizes. The
prediction results are presented in Table 7.9 and in Figure 7.21 for a selected link.

The relative difference between delivered predictions is low and does not exceed
2%. Both predictive models equally distribute the load between nodes C37 and
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C38 in the request phase, thus the imbalance in reply phase is also low—maximally
7Mbps variation. For the file resources of size 100MB and higher, the models took
advantage of the 10Gbps bandwidth of the link SW43− SW00. This allowed to
increase the network capacity and double the maximal throughput at the network
bottleneck (C37/C38→ SW43).

Table 7.9: Scenario #8: Predicted bandwidth on selected network interfaces in the
reply phase.

OMNeT QPN Relative OMNeT QPN Relative
Measured port Mbps Mbps diff. % Mbps Mbps diff. %

lCI uCI lCI uCI
File resource size 50MB File resource size 100MB

SW00 • → SW40 140 189 164 0.5 293 365 327 0.5
SW00 • → SW41 143 186 163 1.0 297 361 326 1.1
SW00 • → SW42 145 184 163 1.0 298 359 326 0.8
SW43 → • SW00 435 553 489 0.9 923 1048 979 0.7
C37 → • SW43 214 280 244 1.3 455 531 487 1.1
C38 → • SW43 214 280 246 0.5 456 532 491 0.5

File resource size 160MB File resource size 200MB
SW00 • → SW40 483 566 524 0.1 578 673 633 1.2
SW00 • → SW41 486 567 521 1.1 580 672 629 0.5
SW00 • → SW42 484 561 521 0.3 572 666 630 1.8
SW43 → • SW00 1529 1608 1566 0.2 1843 1878 1892 1.7
C37 → • SW43 754 813 779 0.5 929 948 946 0.8
C38 → • SW43 761 819 786 0.5 918 942 946 1.8
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Figure 7.21: Scenario #8: Network throughput and difference between predictions
for link C37→ SW43.

The summary of the SDN-based evaluation scenarios is provided in Section 7.7.
The analysis of the SDN hardware performance was published in [RSKK16],
whereas the DNI-to-QPN transformation (with support for SDN) was published
in [RSK16].
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7.4 Flexibility of Performance Prediction
In this section, I evaluate the flexibility of the performance prediction process
focusing on the duration of the solving. Based on a DNI model, multiple predictive
models are obtained and each of them can be solved by at least one solver. In
Section 5.6.2, I presented a method for selecting an optimal predictive model and
its solver based on the limitations and features of the DNI model transformations.
Here, I extend this analysis by evaluating solving times of obtained models. By
offering multiple simulation models in parallel, I provide flexibility in trading-off
between the modeling accuracy and the simulation overhead.
I evaluate the solving times in two parts. First, in Section 7.4.1, I evaluate

solvers for non-SDN DNI models. This includes models generated by three
transformations: DNI-to-OMNeT++INET, DNI-to-QPN, miniDNI-to-QPN that are
solved with two solvers: OMNeT++INET and SimQPN. Next, in Section 7.4.2, I
evaluate the prediction methods that support SDN-based networks. This includes
two transformations: DNI-to-QPN and DNI-to-OMNeT++generic that are solved
using SimQPN and OMNeT++generic solvers respectively.
Note that due to the limitations of the QPN-to-LQN transformation, I do not

include analysis for the Layered Queueing Network (LQN) models. A separate
analysis of QPN-to-LQN transformation and three LQN solvers is presented in
Section 7.6.

7.4.1 Model Solving Time for non-SDN DNI Models
Along with evaluation of performance prediction accuracy in Section 7.2.3, I
evaluated the performance of the generated simulation models, that is, the time
needed to solve them. Depending on the situation, a less precise but quickly
obtained result may be more valuable than precise but late predictions.
I examine the simulation duration in two scenarios. Firstly, in scenario #9, I

varied the traffic intensity for the prediction accuracy scenario. The results of
simulation time measurements presented in Section 7.4.1 refer to the experiment
described in Section 7.2.3. Secondly, in scenario #10, I varied the size of the
network by new adding servers, whereas the traffic intensity was constant.

Measurements and Environment

The duration of simulations are measured using the GNU time command on a
non-virtualized server with Intel Xeon E3-1230 CPU, 16GB RAM, running under the
control of 64-bit Ubuntu Linux 12.04 operating system. I compile OMNeT++INET
in the release mode (make MODE=release) and exclude the TCL library (NO_TCL=1
./configure). Simulations are run in the command line mode (cmdenv) without
graphical overlay to enable repeatable conditions and automated measurement
procedure. Measurements for SimQPN were conducted for solver version 2.1
running on top of Java in version 1.6.0_81.
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Several simulation durations for OMNeT++INET are estimated due to long
simulation times. The estimation is conducted as follows. Firstly, I measure
wall-clock time required to simulate 30 simulation-seconds of the experiment time
(OMNeT++ parameter: sim-time-limit). During this simulation period, I observe
the internal metric of OMNeT++ called simulation-seconds per second that describes
the performance of the simulation. Secondly, I estimate the duration of the full
simulation using extrapolation based on the real SBUS experiment duration and the
measured duration for 30 simulation-seconds. For selected simulation runs, I verify
the estimations by simulating the complete experiment length. The verification
shows, that the estimations are precise—the estimation error does not exceed 1%.

Scenario #9: Scaling Traffic Intensity

In this scenario, I assume the network configuration and topology as presented in
Section 7.2.3 in Figure 7.4. To recall, I deploy the camera components and the LPR
components and configure the communication between the components according
to the following plan: S2→VM4.1, S2→VM5.1, S3→VM6.1, and S3→VM5.1. I
increase the picture generation rate by decreasing the think time between sending
consecutive pictures to: 100, 50, 35, 20, and 10ms respectively. In the experiment,
each camera sends 5000 pictures, each of size 2.5MB.

The simulation durations are presented in Table 7.10 and depicted in Figure 7.22.
Table 7.10 additionally presents the durations of the original experiment for
reference.

Table 7.10: Scenario #9: model solution duration (in seconds) for growing traffic
intensity.

Think time SBUS (real) OMNeT 30s OMNeT full QPN DNI QPN mDNI
100ms 1136 92 666 17 3
50ms 670 175 3908 31 3
35ms 528 234 4118 48 3
20ms 416 351 4867 73 3
10ms 348 519 6020 222 3

The OMNeT++INET simulations execute slower than the QPNs—up to 100
minutes for 10ms think time. I observe exponential growth of the simulation time
for OMNeT++INET and QPN for growing traffic intensity. The miniDNI QPN
model is insensitive to the traffic intensity and offers constant simulation time of 3
seconds. The exponential growth of simulation duration for OMNeT++INET and
SimQPN is caused by the increasing number of events/tokens in the simulation
model. The miniDNI QPN model abstracts the traffic patterns in the transformation
and thus maintains constant number of tokens and constant simulation time.

Scenario #10: Scaling Network Size

In scenario #10, I investigate the influence of the network size on the simulation
duration. I assume a classical dumbbell topology with two directly connected
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Figure 7.22: Scenario #9: model solving duration (in seconds) for growing traffic
intensity.

switches and respective number of servers connected to each of the switches.
I increase the number of servers connected to each switch while the traffic
characteristics remain the same. Each node is configured to transmit a single
1.6MB picture per second. The experiment is ends when each node has finished
the transmission of 5000 pictures. I generate 6 DNI models containing 5, 10, 20,
30, 40, and 50 nodes for each switch, that is, 10, 20, 60, 80, and 100 end nodes
in total respectively. The simulation durations are presented in Table 7.11 and
depicted in Figure 7.23. Additionally, in the column Transformation, I present the
total time of running the five model-to-model transformations. The code of the
transformations was not performance-optimized so the transformation durations
can be further reduced as a part of future work.

Table 7.11: Scenario #10: transformation and model solving duration (in seconds)
for growing network size.

Number of nodes OMNeT 30s OMNeT full QPN DNI QPN mDNI Transformation
2 × 5 35 2953 21 5 25

2 × 10 65 5484 56 13 67
2 × 20 127 10716 183 36 149
2 × 30 195 16453 376 72 277
2 × 40 262 22106 630 122 446
2 × 50 334 28181 884 182 692

In scenario #10, I observe linear growth of simulation time for OMNeT++INET,
which is caused by the linear growth of the number of events in the simulation
engine. This observation confirms the results obtained by Weingartner et al.
in [WvLW09]. Similar dependency can be observed for miniDNI-QPN where the
number of tokens grows linearly with respect to the number of nodes. The DNI-
QPN model experiences exponential growth of the simulation duration. Despite
the linear nature of the OMNeT++INET run duration, the DNI-QPN outperforms
the full length run of OMNeT++INET by the factor of 30. In scenario #10, the
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Figure 7.23: Scenario #10: model solving duration (in seconds) for growing network
size.

miniDNI-QPN model is solved on average 300 times faster than the respective full-
length OMNeT++INET simulation. Moreover, miniDNI-QPN requires four times
less simulation time than the respective DNI-QPN model.

7.4.2 Solving Time and Memory Consumption for SDN-based
DNI Models

During evaluation of performance prediction accuracy using scenarios from Sec-
tion 7.3, I evaluated the performance of the generated simulation models, that is,
the time needed to solve them.
I examine the simulation duration in for all SDN-based prediction scenarios

(see Section 7.3). Based on scenario #4A and #4B, I evaluate the solving times
for a constant network configuration and growing number of users. For scenarios
#4C–#8, I evaluate solving times for various network setups including SDN and
load balancing. Additionally to the solving time, I investigate solvers memory
consumption.

Measurements and Environment

The duration and memory consumption of simulations are measured using the
GNU time command on a non-virtualized server with Intel Xeon E5-2640v3 8-core
CPU, 32GB RAM, running under the control of 64-bit Ubuntu Linux 14.04 LTS
operating system. Memory consumption is estimated by measuring minor page
faults. According to Linus Torvalds, each minor page fault truthfully estimates
4KB of consumed memory. The analysis for OMNeT++generic is conducted twice.
First measurement is run for packet-level simulation (assumptions: dataPayload
modeled as 1480B, packetOverhead as 64B), whereas in second run, I arbitrarily
assume 100 times bigger dataPayload and packetOverhead to demonstrate simulation
performance at a coarser level (denoted in the results as big packet).
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Each measurement is repeated at least 10 times (30 times for most scenarios)
due to long simulation durations in some cases. I compile OMNeT++generic in
the release mode (make MODE=release) and exclude the TCL library (NO_TCL=1
./configure). Simulations are run in the command line mode (cmdenv) without
graphical overlay to enable repeatable conditions and automated measurement
procedure. Both solvers utilize a single CPU core. Measurements for SimQPN
were conducted for solver version 2.1 running on top of Java in version 1.8.0_91.

Solving Time
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Figure 7.24: Simulation time required to solve scenarios #4A and #4B.

The results of solving time measurements are presented in Figure 7.24 for
scenarios #4A and #4B. For SimQPN, the non-SDN models (scenario #4A) were
solved up to six times faster than the SDN models (scenario #4B). The performance
of the SimQPN simulation depends on the number of tokens and their colors.
SDN scenarios modeled in QPN contain more tokes, as for each flow and each
SDN switch, additional flows are generated for the communication of the switch
with the SDN controller. Even if the scenario does not actively involve the SDN
controller, the additional flows are generated and thus make the models bigger.
These results show that there is potential for optimization of the generated QPN
models in order to solve them in a shorter time. Such optimization would require
to analyze if a token of a given color can be ever produced and if not, the
respective firing modes can be removed from transitions.
The normally configured OMNeT++generic simulator (i.e., with normal packets

size) perform identically for SDN and non-SDN setups. This is caused by the
differences between the solvers; SimQPN analyzes the complete model as it is,
whereas OMNeT++ is a discrete event simulation. The unscheduled events do not
influence the performance of the simulation in OMNeT++.

The solving with normally configured OMNeT++generic is slower than SimQPN
for scenario #4A but faster than SimQPN for scenario #4B (for majority of cases).
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The OMNeT++ simulation with 100 times larger packets (denoted as big packet)
outperforms the rest of the solvers. This is caused by drastic reduction of the
events in the simulation engine, as every message is converted into smaller number
of packets. Such configuration, however, influences the granularity of the reported
results. For dataPayload of 150KB, it is difficult to investigate the performance
of the network for small traffic volumes, as every message smaller than 150KB
will be treated as a message of size 150KB. For the rest of scenarios (#4C–#8), I
present the results in Table 7.12. For scenario #8 the duration of the reply phase
was measured.

Table 7.12: Model solving duration (in seconds) for SDN scenarios.
SimQPN OMNeT++generic OMNeT++generic big packet

Scenario min average max min average max min average max
#4C 51 60 67 4744 4821 5012 63 63 63
#5A 26 32 36 6083 6295 6741 81 82 85
#5B 8 9 10 1646 1704 1773 16 16 17
#6 5 6 7 126 128 131 1 1 1

#7A 4 4 5 900 918 1002 101 104 108
#7B 4 4 5 2449 2527 2595 107 108 110
#7C 7 7 8 2450 2520 2613 102 102 103

#8 50MB 78 103 133 1024 1041 1060 10 10 10
#8 100MB 80 106 190 2048 2093 2182 20 21 21
#8 160MB 78 107 125 3221 3285 3417 32 33 34
#8 200MB 72 128 195 4076 4085 4093 40 40 42

Here, SimQPN outperforms both versions of OMNeT++generic for scenarios #4C,
#5, and #6. Interesting results are observed for scenarios #7 and #8. In scenario
#7, SimQPN benefited form the ECMP load balancing because no SDN controller
was involved and thus no overhead from additional tokens was incurred. OM-
NeT++generic however, was affected by high memory consumption that extended
the simulation time over 100 seconds. The memory consumption of both solvers is
analyzed in the following section.
For scenario #8, the situation was opposite. QPN model contained the SDN

part of the network (as load-balancing was implemented in SDN) and thus the
simulation took longer to complete (although no SDN controller was queried
during solving) than the OMNeT++generic with large packets modification. The
modified OMNeT++generic was able to cut down the simulation times to less than
40 seconds thanks to the reduced number of larger packets. The unmodified
OMNeT++ was the slowest and ran 10 to 30 times longer than SimQPN.
It is important to mention that the simulations were compared in terms of

time-to-result. Internally however, OMNeT++generic conducts a single simulation
run, whereas SimQPN repeats the simulation multiple times until the configured
stopping criterion is reached. Additionally, SimQPN requires to simulate so-
called warm-up period to bring the model to steady state. I demonstrated how
the OMNeT++generic solver can be tuned using larger packets to minimize the
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simulation time; similarly, the stopping criteria of SimQPN can be adapted (based
on scenario) if less accurate results are acceptable.

Memory Consumption

In this section, I analyze the memory consumption of both solvers. The memory
requirements play important role in solving as insufficient physical memory causes
swapping and thus extends the solving time or even may not return a result due
to error if the virtual memory size (physical+swap) is exceeded. The memory
consumption measurements are presented in Figure 7.25 for scenarios #4A and
#4B, whereas for scenarios (#4C–#8), I present the results in Table 7.13.
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Figure 7.25: Memory consumption during solving scenarios #4A and #4B.

The consumption of memory for SimQPN is stable. Even for high number of
users and network nodes, the simulation does not exceed 4.5GB. The more tokens
and more colors are used in the model, the more memory is consumed. Moreover,
the memory consumption varies depending on a run up to 500MB. This is caused
by Java Virtual Machine (JVM) that manages the memory using garbage collector
to clean up the no longer used memory for Java applications.

OMNeT++ (both: modified and unmodified version) consumes less memory
than SimQPN for scenarios where the network capacity is not saturated. However,
for saturated networks, OMNeT++generic queues the excessive traffic what causes
excessive memory consumption—up to 6GB for scenarios #4A and #4B with
simulated 35 users. The modified version of OMNeT++generic is also affected by
queueing (exponential shape of the curve in Fig. 7.25) but to less degree.

High memory consumption and the simulation of UDP-like behavior of unmodi-
fied OMNeT++generic required to implement the interface queues using drop-tail
queue. The queues were configured to drop excessive traffic if the utilization of the
queue reached 5 · 106 packets. This may cause distortions in the measurements of
throughput, so careful selection of warm-up and cool-down periods (i.e., the periods
in which no measurements are taken) was required for the accuracy analysis.
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The influence of the limited queue capacity have more impact on the memory
consumption for the measurements that are presented in Table 7.13.

Table 7.13: Solver memory consumption (in megabytes) during solving of SDN
scenarios.

SimQPN OMNeT++generic OMNeT++generic big packet
Scenario min average max min average max min average max

#4C 1626 2131 2665 6093 6096 6103 281 281 281
#5A 668 791 901 4199 4207 4217 254 254 254
#5B 706 811 919 4671 4671 4671 51 51 51
#6 583 667 810 1044 1044 1044 6 6 6

#7A 589 669 758 3430 3437 3442 1376 1376 1376
#7B 536 647 787 26089 26092 26095 1093 1093 1093
#7C 547 636 790 26104 26109 26112 1093 1093 1093

#8 50MB 961 1323 1719 100 104 111 8 8 8
#8 100MB 931 1310 1723 176 179 185 8 8 8
#8 160MB 1128 1320 1773 543 571 724 11 11 11
#8 200MB 1086 1241 1667 2023 2035 2047 26 26 26

The excessive memory consumption of OMNeT++generic affected all scenarios
containing bottlenecks and high transmission rates (scenarios #4C–#7C). Interesting
situation can be observed for scenarios #7A–#7C (with ECMP load balancing).
In scenario #7A, I observe a single bottleneck (of 1Gbps) between the sender
node C10 and the switch SW40. The frequent transmission of large file every
second causes the network interface queue of the sender node to overflow which
limited the memory consumption to about 3.4GB. For scenarios #7B and #7C,
the sender queue was no longer limiting the transfer (in scenario #7B and #7C,
the bottleneck link was replaced from 1Gbps to 10Gbps one). The high volume of
data was transferred to switch SW40 that implemented load balancing. However,
the internal queue of the switch does not implement the drop-tail behavior and it
accumulated the traffic until the interfaces of the switch could transmit it to the
next node. Despite applying the drop-tail behavior to the queues in the network
interfaces, the internal switch queue consumed up to 26GB of memory. This did
not cause swapping, however the simulation duration was significantly increased.
The modified version of OMNeT++generic confirms this behavior as the memory
consumption results for scenarios #7A–#7C are much higher than in the other
observed scenarios.

7.4.3 Discussion
Based on results presented in Section 7.2.3 (prediction accuracy analysis) and 7.4.1
(analysis of solving time), I show that abstraction of selected details in network
performance models can lead to only minor prediction accuracy degradation but
may significnatly accelerate the performance analysis.

I summarize, the solving time analysis in Figure 7.26. I present the dependency
between absolute prediction error and solving time in Figure 7.26a. The figure
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presents the average prediction accuracy with respect to the solving time for the
three analyzed solvers. Additionally, I depict the minima, maxima, and the bounds
of confidence intervals (see explanation in Fig. 7.26b). Based on the experiments
presented in Section 7.2.3, I observe that the QPN models obtained form the
miniDNI models deliver the highest prediction errors but the solving time is the
shortest among the analyzed solvers. The QPN models obtained form the DNI
models are solved longer but the predictions more accurate. The OMNeT++INET
is the slowest solver, however, its accuracy is the highest.
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Figure 7.26: Flexibility of performance prediction for non-SDN scenarios.

For the SDN-based networks, I analyzed two solvers: SimQPN and OM-
NeT++generic. Based on the evaluation conducted in Section 7.3, I observe that
both predictive models provide good prediction accuracy with average relative
prediction error about 5% for SimQPN and 3% for OMNeT++generic. The solvers
vary in terms of solving time and resource consumption. They use a single CPU
core for simulation, however both can be extended to run in parallel. With one
exception, SimQPN solves the investigated models faster than OMNeT++generic—
with speed-up between about 3 and 630. This results in similar absolute prediction
errors—see Figure 7.27.
The figure presents the summarized results (scenarios #4–#6) after excluding

the predictions affected by the TCP–UDP gap. SimQPN delivers more accurate
predictions in shorter time, however, the difference between in the average absolute
prediction accuracy is insignificant. For complex SDN-based network models,
OMNeT++generic may provide shorter time-to-result with maximal speedup of 2,
however at the cost of increased memory consumption—up to twice as much
as SimQPN (see Fig. 7.27b). For extreme cases, when heavily-loaded network is
analyzed, OMNeT++generic may cause packet losses due to high memory utilization
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(up to 26GB in scenario #7). However, for large-scale scenarios, OMNeT++generic
may be tuned to simulate the traffic with coarser granularity which allows to cut
down the solving time by the factor of up to 200 and the memory consumption
by the factor of up to 180.
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Figure 7.27: Flexibility of performance prediction for SDN scenarios.

7.5 Traffic Model Extraction
In this section, I evaluate a secondary contribution of this thesis: the approach to
traffic model extraction based on the Multi-Scale Decomposition (MSD) algorithm.
The accurate modeling of traffic plays important role in optimizing the prediction
accuracy as presented in Sections 7.2 and 7.3. On the other hand, the compactness
of the DNI model speeds up the simulation as shown in Section 7.4. The evaluation
of the MSD approach is conducted concerning the trade-off between both factors:
accuracy and compactness of the obtained DNI model. The evaluation presented
in this section was developed in cooperation with Viliam Šimko and published
in [RSS+16].
In Section 6.2.3, I presented the extraction and optimization method using

selected publicly available traces from online repositories to demonstrate the
features of the approach. In this section, I evaluate the proposed approach using
traces from the robot telemaintenance case study. The traces include mainly two
types of network traffic: small control instructions or sensor readings and large
flows of video streams from cameras that observe the work of a robot. The case
study is described in section 7.5.1.
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7.5.1 Robot Telemaintenance Case Study

The Industry 4.0 initiated by German government (similarly to the Industrial Internet
framed in the USA) comprises, among others, the introduction of the Internet to
the manufacturing process. In the research project MainTelRob [ASF+15], different
industry 4.0 approaches have been investigated for telemaintenance of a plant in a
working production line [CA11]. Figure 7.28 depicts the project setting.

Network

Expert

Facility 
technician Facility 

Telemaintenace
service center

Customer 
production site

(a) Scenario overview.

Expert Facility 
technician

Facility 

(b) Network topology.

Figure 7.28: Robot telemaintenance case study. The remote expert and the local
facility technician supervise the production facility.

The consumer production site consists of a six-axis Cartesian industrial robot,
a two-component injection molding system, and an assembly unit. The plant
produces plastic parts for electric toothbrushes. On the upper half of Figure 7.28a,
there is a telemaintenance center from which an engineer—the expert—provides
technical expertise to the local repair personnel—the facility technician. Next to
the plant, the facility contains telemaintenance equipment: a computer, multiple
cameras for video streaming, and an maintenance access device (e.g., a mobile
tablet). The center and the facility are connected over the Internet. The main
prerequisite is to provide the expert with a accurate overview about the situation
in the facility. This insight can be offered by a specifically orchestrated combination
of services: remote access to machinery data in combination with video streaming
and communication services, for example, text chat and Voice-over-IP (VoIP). In
addition, a visual augmented reality (AR) overlays inserted into the camera pictures
or video view are used to provide guidance.

7.5.2 Traffic in the Telemaintenance Case Study

For the presented scenario, the proposed extraction method delivered insight in the
patterns of the data exchange between the components of the system. Although the
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main goal of the proposed method is to use the extracted models for performance
prediction, here, the robot operator can observe the patterns of traffic to investigate
anomalies. The analysis of the data exchange patterns may be used (additionally
to the performance prediction) for the following purposes: (1) analyzing compact
representation of control signals for debugging purposes (instead of, e.g., analyzing
textual wireshark traces), (2) understanding the data exchange for network capacity
planning.

The traces have been captured in a data center from where the devices were
controlled. I have recorded tcpdump traces from the server that acts as a switch
(see Fig. 7.28b). The server was replacing a typical data center switch to enable the
traces collection. In a real environment however, the switches provide a monitoring
mirroring port, which mirrors the complete traffic and forwards it to a server for
analysis and debugging purposes. I capture the traffic traces from a 15 minutes
monitoring period, which results in about 6.4GB of traffic traces.

7.5.3 Evaluating Model Compactness and Extraction Errors
I evaluate the model extraction accuracy by computing the relative errors for each
pair of time intervals in the extracted model instance and the original trace. I
stress, that the maximal model accuracy and the size of the extracted model are the
trade-offs and the extracted model should not tend towards one of these extremes
but provide a flexible means to select the required accuracy and size based on
the application scenario. For the evaluation of the size of the extracted models, I
assume that the original trace represents as many DNI transmitActions as many
lines the original tcpdump file contains.

For evaluation, I selected 69 representative traffic traces from the robot telemain-
tenance scenario. Average trace contains about 22 000 data samples. The traces
were captured within a 15-minute measurement period. For each trace, I picked
arbitrary parameters of the MSD extraction algorithm (smoothing 0, maximal num-
ber of clusters 25, cut-off for clustering 0.1, and intervals reduction parameter to
0.0004). I repeated the analysis of the 69 files 30 times and collected the following
metrics:

1. median of relative error; the error was calculated between the original and
extracted trace for every second (the aggregation function over one-second
bins was sum)

2. mean relative error,
3. relative error of the total data transmitted in a trace,
4. compression of the modeled signal (it requires only x% of generators of the

original signal).
I calculate the 5th, 50th, and 95th percentiles for all metrics and present the results
in Table 7.14. I divide the analyzed traces into four types based on the values of
the obtained metrics.

Trace type 1. To the first type, I account the traces with the three relative errors
lower than 10%. There are 43 traces of this type what shows that the proposed
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Table 7.14: Results for the 69 analyzed traces divided into four groups.
Trace
type

Traces
Relative median

error %
Relative mean error

%
Relative total data

error %
Compressed to %

percentile percentile percentile percentile
.05 .50 .95 .05 .50 .95 .05 .50 .95 .05 .50 .95

1 43 0 0 2.9 0 0.1 8.4 −1.2 0 1.7 0.4 0.8 2.3
2 13 0 0 7.5 12.6 16.4 36.7 −4.4 1.5 6.6 1.6 7.8 15
3 11 13.5 21.8 32.4 13 17.1 23 0 0.3 2.6 0.8 1.6 13.3
4 2 0.8 1.2 1.7 24.1 26.1 28.2 10.9 11.7 12.5 8.1 10.9 13.7

Trace types affected by extraction errors: 1) no error, 2) shifted peaks, 3) extraction parameters, 4) other.

method can extract models of the most traces with good accuracy and good
compression—the extracted models are 40 to 200 times smaller than original
(compressed to 0.4%–2.3% of the original size).

Trace type 2. The traces assigned to the second type are characterized with good
values of relative median error and relative total data error but higher values of
the relative mean error. I investigated the discrepancies among the traces and the
extracted models. The higher mean error rates are caused mainly by shift in a
extracted signal—a workload peak shifted in time doubles the error: first because
a real peak is not discovered and second because an artificial peak is produced
whereas no peak exists in a real signal. An example of the described situation
is depicted in Figure 7.29, where the x-axis represents time and the y-axis the
volume of data in bytes over a second. Few peaks of type 2 were also influenced
by non-ideal set of extraction parameters of extracted model (see trace type 3).

Figure 7.29: Example of a trace of type 2. Reference in dark gray and extracted
model in red.

Trace type 3. The traces of the third type are characterized by low errors of
relative total data error but higher relative median and mean. I name this type
“extraction parameters” as the parameters of the extraction and optimization process
were not ideal for the traces (note, I select parameter values arbitrarily). The higher
errors are caused mainly by two factors: time-shifted peaks and outliers in the
extracted signal caused by lower fit of the extracted model. I selected one trace
affected by lower quality extraction and depicted it in Figure 7.30). I observe,
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that the extraction was generally correct, but there are several periods where the
data is not generated although the original trace behaves differently. This low
extraction accuracy is caused by the fixed set of parameters selected for the method.
One could optimize the accuracy by fine tuning the algorithm parameters or use
less optimization for the compression. Although the median and mean errors
vary from 13% to 30% the total amount of transmitted data is accurate and the
compression ratio is good and varies between 7 and 125. Comparing the traces
of type 2 against type 3, I observed that the ratio of time-shifted peaks to lower
quality of extraction is higher in type 2; in type 3 the situation is opposite: there
are more cases of lower quality extraction.

Figure 7.30: Example of a trace of type 3. Reference in dark gray and extracted
model in red.

Trace type 4. The traces of type four do not fit to any other type. In this
experiment, the relative mean error and total data error are above the arbitrarily
selected 10% threshold. The relative median error is low and the compression
ratio vary from 7 to 12. There were only two traces of type 4 in the dataset. I
depicted a selected trace of type 4 in Figure 7.31). The errors are mainly caused
by outliers introduced by suboptimal selection of extraction method parameters. I
observe that the main shape of data trace was extracted correctly.

Figure 7.31: Example of a trace of type 4. Reference in dark gray and extracted
model in red.
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7.6 Transformation QPN-to-LQN and LQN Solvers

In this section, I evaluate the prediction accuracy and the nonfunctional proper-
ties of the LQN predictive models obtained in the QPN-to-LQN transformation
presented in Section 5.5.2. The transformation is considered as a secondary contri-
bution of this thesis. The transformations was published in [MRSK16] and later
extended by Müller in [Mü16].

In contrast to previously presented model transformations, the QPN-to-LQN
transformation is unable to transform the QPN models obtained from transforming
the DNI models because the transformation it depends on the patterns in QPN
model and there may exist multiple patterns representing a single construct,
e.g., a loop. Moreover, the partial support of QPN models in the QPN-to-LQN
transformation is caused by the nature of both modeling formalisms—QPN is
more general than LQN. Due to that, some QPN scenarios cannot be represented
by the LQN formalism.

Thus, to evaluate the QPN-to-LQN transformation, I use two QPN models as
examples. Example #1 is a simple QPN model that serves as a toy-example.
The model presented as example#2 was published in [KB03] and represents
SPECjAppServer2001 [SPE02]—Java Enterprise Edition (Java EE) server application
benchmark.

7.6.1 Example #1: Simple QPN Model

First example of a QPN model contains three queueing places as depicted in
Figure 7.32. Each queueing place has a separate queue with deterministic processing
time. The execution is looped to represent a closed workload with no think time.

I transformed it into LQN that is graphically represented in Figure 7.33. Transi-
tion t1 was recognized as firing first based on the initial marking of the start place.
Transition t4 is not represented in LQN as it serves only to model the closed
workload.

start qp1 qp2 qp3t2t1

Q2: 
determ. 5

Q3: 
determ. 20

Q1: 
determ. 12

t4

t3

Figure 7.32: Example #1 QPN represen-
tation.

client_entry
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[0]

client_task

CPU_2_call
[0]

CPU_3_call
[0]

CPU_1_entry
[12]

CPU_1_task {inf}
CPU_1*

(1)

CPU_2_entry
[5]

CPU_2_task {inf} CPU_2*

CPU_3*

CPU_3_entry
[20]

CPU_3_task {inf}

(1)

(1)

Figure 7.33: Example #1 LQN represen-
tation.

The example was solved using four solvers: SimQPN for QPN, and LQNS [FMW+09],
LQSIM [FMW+09], LINE [PC13] for LQN. In this experiment, I show that the
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transformation works correctly for simple QPN models. I examine the utilization
of queueing places/processors and throughput. The results are presented in
Table 7.15.

Table 7.15: Example #1: processor utilization and throughput.
Solver Utilization Throughput

CPU1 CPU2 CPU3 CPU1 CPU2 CPU3

SimQPN 0.324 0.135 0.541 0.0270 0.0270 0.0270
LINE 0.32432 0.13513 0.54054 0.027027 0.027027 0.027027
LQNS 0.32432 0.13513 0.54054 0.027027 0.027027 0.027027
LQSIM 0.32585 0.13768 0.53646 0.02738 0.02791 0.0277

The prediction of utilization and throughput was almost identical for all exam-
ined solvers. Taking the SimQPN’s prediction as a reference, LQSIM solved the
model with the highest error mispredicting the utilization by maximally 3%.
I expected higher inaccuracy for LINE because the solving using fluid limits

approximation is expected to work better for bigger models and provide higher
errors for small. This issue seems to have been addressed by the authors of LINE
as the results for small models are also good. I investigate a more complex model
in the second example.

7.6.2 Example #2: SPECjAppServer2001
The system represented in this example is based on a Java Enterprise Edition (Java
EE) server application benchmark (SPECjAppServer2001) [SPE02]. The application
is modeled after a business consisting of four domains: customer domain (customer
orders and interactions), manufacturing domain (“just in time” manufacturing
operations), supplier domain (interactions with suppliers) and corporate domain
(customer, product and supplier domain). The workload is claimed to be big
and complex enough to represent a real-world enterprise system [SPE02]. In this
scenario, the model is focused on the customer domain including four transaction
types: NewOrder, ChangeOrder, OrderStatus and CustomerStatus. The system is
deployed on two separate machines, one hosting the application logic and the
other running a relational database. Besides the physical resources of the two
machines (CPU and disk subsystem of the database), the model contains also
logical resources, such as, the thread-pool of the application server, the connection
and the process pool of the database server. A complete description of the model
and its validation on a real system can be found in [KB03].
The transformed LQN model is depicted in Figure 7.35. The reference layer

was selected based on transition t1 and queueing place Client. The place Client
represents the think time of the closed workload (parameter Z = 200 in clien_7
task in the LQN) and the initial population of clients set to 80 (parameter [80] in
clien_7 task in the LQN). Next, there are three layers that represent three nested
critical sections that are limited by the thread pool, database connection pool,
and database process poll. Once the activity DBS-I_2 finishes, the process starts
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Figure 7.34: QPN representation of example #2. WLS stands for WebLogic Server,
and DBS for a database server. Excerpted from [KB03].

again. I have examined prediction of utilization and throughput. The results are
presented in Table 7.16.

Table 7.16: Example #2: processor utilization and throughput for 80 clients.
Solver Utilization Throughput

DBS-CPU DBS-I/O WLS-CPU DBS-CPU DBS-I/O WLS-CPU
SimQPN 0.757 0.171 1 0.014 0.014 0.014
LINE 0.75714 0.17142 1 0.0142857 0.0142857 0.0142857
LQNS 0.75742 0.17149 1.00013 0.0142934 0.0142934 0.0142877
LQSIM 0.75525 0.17508 0.9828 0.01459 0.01425 0.01404

I assume SimQPN predictions as a reference. The utilization results show that
the WLS-CPU is the bottleneck of the modeled system. All solvers reported nearly
100% utilization. LQNS overestimated the utilization, probably due to a rounding
error, whereas LQSIM reported the utilization as 1.8% lower than the other solvers.
The predicted throughput is affected by the bottleneck resource and is similar
for all the solvers. LINE and LQNS overestimated the throughput by up to 2%
relatively, whereas LQSIM reported up to 4% higher throughput than the reference.

7.6.3 Analysis of Solving Time and Memory Consumption
Additionally to the performance prediction accuracy, I investigated the solving
time of the four examined solvers. I examined the LQN model from example #2.
I varied the number of customers in the clien_7 layer and solved the model for 1,
10, 40, and 80 clients. Then, I scaled up the modeled system and increased the
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Figure 7.35: LQN representation of example #2.

quantities of the resources 2, 4, 8, 16, and 32 times with respect to the following
configuration: 100 clients, 40 database connection pool size, 30 database processes,
and 60 WLS threads. I denote these setups as 100× {2, 4, 8, 16, 32} respectively.

I executed the four solvers in Windows 7 virtual machine running on VirtualBox
with assigned two CPUs and 4GB memory. Solving times of LQNS and LQSIM
were measured using GNU time command and included such activities like starting
the solver, reading input file, solving the model and writing output. The execution
time of LINE was measured in the java code of the solver as LINE source code is
[publicly available. SimQPN reports the running wall-clock time directly in the
results. The time measurements for LQNS and LQSIM may a contain constant
additive error because the time command includes also the initiation of the solver
in the measurement. The results are presented in Table 7.17.

Table 7.17: Solving times of four solvers for varying number of clients in exam-
ple #2.

Clients: SimQPN LINE
LQNS

(linearizer)
LQNS

(exact MVA)
LQSIM

1 0.48s 0.44s 0.03s 0.05s 06.49s
10 0.51s 0.54s 0.09s 0.94s 1m28.95s
40 1.09s 0.63s 0.06s 1.35s 2m49.89s
80 1.26s 0.72s 0.06s 3.75s 4m05.62s

100× 2 1.12s 0.96s 0.07s 9.67s 6m56.36s
100× 4 2.54s 1.34s 0.10s 2m7.01s 12m23.42s
100× 8 7.15s 2.09s 0.15s 10m8.00s 36m08.91s

100× 16 12.98s 3.54s crash∗ crash∗ 100m50.59s
100× 32 45.78s 6.37s crash∗ crash∗ 219m22.36s

∗ out of memory (> 4GB)

In this experiment, I expect the analytical solvers (LINE and LQNS) to out-
perform the simulations (SimQPN and LQSIM). The expectation was confirmed
experimentally, as LQSIM was the slowest of the solvers and needed 4 minutes
to solve the case with 80 clients and about 3.5 hours to evaluate the 100 × 32
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scenario. SimQPN uses batch mean method which observes the simulation in the
steady-state (i.e., after so-called warm-up period). The simulation stops when
required precision is reached. The SimQPN’s solving time is low, although for
big model instances, I observe a non-linear growth. LINE have outperformed the
simulators and achieved linear growth of the solving time. Similar observation
holds for LQNS which solved the models in linear time and was about 10 times
faster than LINE. Unfortunately, LQNS requires much more memory to solve
bigger models. During the solving of the 100 × 16 and 100 × 32 models, LQNS
terminated immediately after the start due to insufficient of memory (reported
error: std::bad_alloc).

Regarding the memory consumption, LQSIM uses a constant amount of memory
during the simulation—about 75MB, 150MB, and 300MB for 100× 8, 100× 16, and
100× 32 scenario respectively. LQNS consumes memory very fast and is unable
to solve bigger models in the given configuration of the experimental machine.
SimQPN has larger memory footprint due to Java virtual machine, however it
scales good and can effectively handle simulations with up to several million
tokens on a machine equipped with 16GB memory (for comparison, I observed
≈ 7300 tokens in experiment #2 for the 100×32 model). LINE uses Matlab libraries
for computation, so there exists a memory footprint as well. It is difficult to
observe precise memory consumption for LINE due to short solving times. More
experiments are needed to provide an insight into memory complexity of LINE,
however, I expect low consumption as LINE uses analytical methods.

7.7 Summary
In this chapter, I evaluated the primary and secondary contributions of this thesis,
that is: novel modeling abstractions for virtualized network infrastructures in the
form of the DNI meta-model, flexible model solving with model transformations,
traffic model extraction (secondary contribution), and the transformation to lay-
ered queueing networks (secondary contribution). I evaluated the contributions
according to the requirements specified in Section 1.2.1 and the goals specified in
Section 7.1.

The evaluation was conducted in a realistic context of a data center network using
two representative case studies. The first case study—SBUS-PIRATES—represents a
distributed system of road traffic monitoring where pictures of cars are transmitted
to the data center for further processing. The second case study—Cloud file backup—
represents distributed cloud backup scenarios where file resources are stored on
multiple mirror servers and the users may request to download or upload a file
batch at anytime.
In the SBUS case study, I evaluated the modeling capabilities and prediction

accuracy for native (non-SDN) data center networks. I used 11 scenarios in total to
evaluate the modeling and performance prediction of four predictive models. The
evaluation showed that the DNI approach allows to capture the most important
performance influencing factors and provide accurate performance predictions

220



7.7 Summary

with prediction error up to 20% for uncalibrated models and 10% for partially
calibrated models depending on the solving technique. Moreover, the changes
in the experiment scenarios were correctly reflected in the predictions for all
investigated cases. This confirms that the DNI approach provides support for
what-if performance analysis in the data center network context. Moreover,
the evaluation showed the importance of the model calibration using run-time
measurements; this was a direct incentive to provide an approach to traffic model
extraction, which I evaluates as a secondary research contribution.
The Cloud file backup case study served as source of 14 scenarios in total for

evaluation of the modeling capabilities and prediction accuracy for SDN-based data
center networks. In this context, I evaluated two predictive models obtained using
two new model transformations: DNI-to-OMNeT++generic and DNI-to-QPN. The
evaluation confirmed that calibrated DNI model can deliver prediction accuracy
with errors below 4% depending on the modeling granularity and selected solver.

Moreover, I demonstrated that the DNI models can accurately represent SDN-
specific network features. I showed how various SDN configurations impact the
performance of the network. The SDN-specific network features cover: hardware
and software flow tables in SDN switches, the SDN controllers, the ECMP-based
load balancing, and the load balancing that shares the context of SDN with NFV.
I observed, that the performance of a switch operating in non-SDN and SDN
hardware mode is indistinguishable. Moreover, the misconfiguration of SDN—both,
regarding the forwarding using software flow table and via the SDN controller—
caused significant performance degradation. Nevertheless, such scenarios can
be predicted correctly with the absolute prediction error not exceeding 10Mbps.
The load-balancing does not decrease the prediction accuracy, and even for high
throughputs, the relative prediction errors are lower than 3%. The ratios of
weighted load-balancing algorithms are reproduced by the predictive models
correctly with less than 1% deviation. The evaluated scenarios confirm that DNI
can represent network features that have the strongest influence on the network
performance.

During the evaluation of performance prediction accuracy, I measured and
analyzed the nonfunctional properties of the solvers that solved the transformed
predictive models. I analyzed the solving time and resource consumption (memory
and CPU cores) to provide an insight in the cost of solving. This allows to
tailor the prediction performance process according to the user’s needs and the
evaluated scenario. I showed that using less accurate predictive models may lead
to small performance prediction degradation (of about 4%) whereas the solving
time may be shortened by the factor of up to 300. Moreover, the analysis of
memory consumption allows to suggest an optimal solver for the user based on the
resources available for solving. I formulated a set of recommendations regarding
the selection of the feasible solvers based on the nonfunctional requirements of the
user. Additionally, in Section 7.4.3, I presented an example of a DNI model that
leverage the modeling flexibility of DNI where different modeling granularities
(e.g., packet sizes) may lead to the savings of solving time and memory resources.
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As a secondary research contribution, I addressed the problem of deterministic
analysis of the network traffic traces for performance modeling purposes. I provided
a flexible algorithm MSD for extracting traffic profiles from any time series (e.g.,
tcpdump traces). I showed that the extracted traffic models can be optimized to
reduce the size of the model but sill accurately model the characteristics of the
original trace. I showed that the model with reduced size can be as small as
about 0.5% of the original while still accurately representing the original traffic
characteristics (relative errors can be as low as 0.1%). The parametrized extraction
causes that the procedure is flexible with respect to the demanded level of detail
in the extracted models. The extraction process may be tuned to balance between
extraction accuracy (more details in the model) and compactness of the extracted
model (less details in the model). Furthermore, the extracted model in form of the
traffic generator is not bound to DNI and may be used for general traffic analysis
purposes.

The QPN-to-LQN transformation aimed at bridging the gap between simulation
models and analytical solving methods. Unfortunately, the application of LQNs
in DNI context is limited due to the limitations of the solvers currently available
for the LQN formalism. The analysis of the nonfunctional properties of three
investigated LQN solvers opens promising possibilities for future solving of the
DNI models with good prediction accuracy (based on the investigated examples),
short solving times, and low resource consumption of the solvers.
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Concluding Remarks
This chapter summarizes the contributions of this thesis and describes possible
directions of future work.

8.1 Summary
In this thesis, I proposed the Descartes Network Infrastructure (DNI) approach to
flexible run-time performance prediction in data center networks. In the flowing, I
summarize the main contributions and their benefits.
To address the shortcomings of existing work (presented in Chapter 3), I

proposed the network performance abstractions for virtualized data center net-
works for run-time use. The modeling abstractions are presented in form of the
Descartes Network Infrastructure (DNI) meta-model—a new modeling language
for performance modeling of modern data center networks.
The novel data center network modeling performance abstractions include:
(a) the DNI meta-model—a new approach for a medium-detailed descriptive

modeling of data center networks, including modeling entities capable of
representing SDN-based networks (Sections 4.1 and 4.2),

(b) the miniDNI meta-model—a minimal version of the modeling language for
the coarsest modeling granularity (Section 4.3.2),

(c) the network deployment meta-model that serves as an integration interface
for integration between the DNI and Descartes Modeling Language (DML)
meta-models (Section 4.4.5).

The DNI modeling formalism captures system behavior at run-time and offers
different modeling granularities in order to represent a system at the required
level. By offering flexible medium-detailed modeling granularity, the modeling
formalism abstracts too fine details and focuses on the relevant performance-
influencing factors. The DNI meta-model has a generic character and is not bound
to a defined network technology or a protocol. The meta-model offers flexibility
by allowing to specify the system using different ways according to available data
and user needs.
For coarse modeling of data center networks, I proposed the miniDNI meta-

model, which provides a solid basis for coarse performance prediction and allows
to abstract most details. The miniDNI meta-model is a minimal version of the DNI
modeling language. Modeling with miniDNI can be applied for extreme cases
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where a minimum amount of information about the modeled system is available.
The minimal modeling language defines a lower boundary of the modeling
granularity, for which feasible performance predictions with low accuracy can
be delivered. Moreover, a DNI model can be automatically transformed to its
miniDNI equivalent using the provided model transformation.
The DNI meta-model provides generic modeling entities to support the ma-

jority of existing and future network technologies including Software-Defined
Networking (SDN) and Network Function Virtualization (NFV). The formalism
provides generic support for NFV and medium-detailed support for SDN. The
medium-detailed support for SDN supports novel prediction scenarios (e.g., using
software SDN forwarding tables), at the same time abstracting the factors that
have minor influence on the overall system performance.
The proposed DNI network deployment model allows to connect the DNI

and DML meta-models. It allows mapping the network models onto software
architecture-level descriptive models, so that a complete data center landscape
can be modeled. The integration with DML allows capturing behaviors from the
computing and software domain, which is not included in DNI model directly.
The examples of such behaviors include: software bottlenecks, server virtualization
and middleware overheads. The integrated descriptive models offer a richer view
over the system and are prepared for future integration of transformations and
solvers. The contributions described above were published in [RZK13, RKZ13,
RK14a, RKTG15, RSK16].
DNI models have a descriptive nature, that is, they store information about

the network infrastructure, however, without providing any means to predict the
network performance under different conditions. To enable performance prediction,
I provided a flexible way to transform a DNI model into multiple predictive
models using model-to-model transformations.

Each model transformation (or a chain of multiple transformations) contributed
in this thesis enables solving of a DNI model by generating a predictive model.
The predictive models vary in size and complexity depending on the amount of
data abstracted in the model and the transformation process.

I contributed six model transformations that transform DNI models into various
predictive models based on the following modeling formalisms: (a) OMNeT++
simulation, (b) Queueing Petri Net (QPN), (c) Layered Queueing Network (LQN).
For these formalisms, multiple predictive models are generated (i.e., models having
different levels of detail): (a) two for OMNeT++, (b) two for QPNs, and (c) two
for LQNs. Moreover, some predictive models can be solved using multiple solvers
leading to up to ten different automated solving methods for a single DNI
model. In evaluation, I focused mainly on the OMNeT++ and QPN predictive
models as the applicability of the LQN formalism for data center networks is
limited.

The main incentive for supporting various modeling formalisms is the difference
in their characteristics, which is a prerequisite for the flexibility of the approach.
Discrete-event simulation allows modeling the performance at a relatively fine-
granular level including, for example, protocol-level details and the traffic at the
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packet level. QPNs abstract low-level protocol information and support modeling
of queueing and synchronization effects. The proposed set of available model
transformations (and thus predictive models) is by no means exhaustive. The
approach does not limit the amount and type of model transformations, so the set
of supported transformations can be further extended.
The DNI solvers contributed in this thesis are evaluated in terms of solving

times and the accuracy of network capacity prediction. The network capacity is
expressed as the maximum possible network traffic that can be sustained, that
is, the amount of consumed network bandwidth (or throughput). Despite the
validation focuses on network throughput, the solvers deliver other performance
metrics as well, for example: end-to-end transmission delays, packet losses. Future
integration of the DNI and DML solvers will enable deeper insight into data center
performance. Currently, pure network point-to-point delays (e.g., port-to-port
latency) have limited applications in the context of a complex data center, where
usually the end-to-end processing time of a service is more interesting than a
low-level switch-to-switch latency.
The predictive models obtained using contributed model transformation were

evaluated in terms of prediction accuracy and the resources (time, CPU, memory)
required for the solving process. This allowed to characterize the nonfunctional
properties of the solvers and thus provide a variety of solving methods that
interpret a DNI model in different ways. For most of the evaluated DNI models,
multiple solvers can be applied in parallel, so the user can select the most
appropriate result. To support the user in selection of a feasible solving method, I
proposed a solver recommendation method that suggest a set of feasible solvers
based on the user requirements concerning the features modeled in DNI. The
contributions regarding model transformations and flexible solving process were
published in [RSK16, RKTG15, RK14a, RKZ13].

To build a DNI model manually, a modeler needs to acquire data about the
network. This includes: topology, configuration and traffic. Some of this informa-
tion may cumbersome to obtain and model in DNI manually. Mainly the traffic
profiles are difficult to extract manually due to the high amount of data transmitted
over the network in a short period. Fortunately, traffic models can be extracted
automatically from traffic traces. Therefore, as a secondary contribution of this
thesis, I provided methods for supporting the user in the modeling process by
semi-automated extraction of the network traffic part of a DNI model.
In the proposed approach, the traffic profiles are represented as time-series

of the data volume for a network interface. They contain only model-relevant
data in the form of simplified time series. The new traffic profile abstraction and
optimization method—called Multi-Scale Decomposition (MSD)—allows to balance
between the size of the traffic model and the compactness of the extracted traffic
profiles. The approach was published in [RSS+16].

The DNI approach was evaluated in a realistic context of a data center network
using two representative case studies. The first case study—SBUS-PIRATES—
represents a distributed system of road traffic monitoring, in which pictures of cars
are transmitted to the data center for further processing. The second case study—
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Cloud file backup—represents distributed backup scenarios, where file resources
are stored on multiple mirror servers and the users may request to download or
upload a file batch at anytime.
In the SBUS case study, I evaluated the modeling capabilities and prediction

accuracy for native (non-SDN) data center networks. I used 11 scenarios in total to
evaluate the modeling and performance prediction of four predictive models. The
evaluation showed that the DNI meta-model allows capturing the most important
performance influencing factors and provide accurate performance predictions
with prediction error up to 20% for uncalibrated models and 10% for calibrated
models depending on the solving technique. The changes in the modeled scenarios
were correctly reflected in the predictions for all investigated cases. This confirms
that the DNI meta-model is suitable for run-time what-if performance analysis in
data center network context. Moreover, the evaluation showed the importance of
the model calibration using run-time data.
The Cloud file backup case study served as source of 14 scenarios in total for

evaluation of the modeling capabilities and prediction accuracy for SDN-based
data center networks. There were two predictive models evaluated in this context.
The evaluation confirmed that calibration improves the prediction accuracy pro-
viding low prediction errors (below 4% depending on the modeling granularity
and selected solver). Moreover, I demonstrated how DNI model can represent
SDN-specific network features and how various SDN configurations impact the
performance of the network. The SDN-specific network features cover: hardware
and software flow tables in SDN switches, SDN controllers, and load balancing
scenarios that share the context with NFV. The evaluated scenarios confirm that
DNI can properly represent network features that have the strongest influence on
the network performance.
During the evaluation of performance prediction accuracy, I measured and

analyzed the nonfunctional properties of the solvers that solved the transformed
predictive models. I analyzed the solving time and resource consumption (memory
and CPU cores) to provide an insight in the cost of solving. This allows tailoring
the prediction performance process according to the user needs. I showed that
using less accurate predictive models may lead to small performance prediction
degradation (of about 4%), whereas the solving time may be shortened by the
factor of up to 300. Moreover, the analysis of memory consumption allows
suggesting an optimal solver based on the resources available for solving. I
formulated a set of recommendations regarding the selection of the feasible
solvers based on the nonfunctional requirements of the user. Additionally, I
presented examples of the DNI models that leverage the flexibility at the level
of DNI model, where different modeling granularities may lead to the savings of
solving time and memory resources. The results of the evaluation were published
in [RKZ13, RK14a, RKTG15, RSK16]. Evaluation results obtained in the Cloud file
backup have not been published yet.

The DNI approach is the first approach that flexibly bridges the gap between
the high-level black-box performance models and the fine-grained, low-level
network simulations. I filled this gap by proving different gray-box models
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that capture the internal system structure. This allows to investigate various
system reconfigurations at different granularities simultaneously benefiting from
the variety of solving times without interrupting the operation of the modeled
system. The DNI approach provides benefits to the users by enabling the impact
analysis of changes in: (a) the network structure, (b) the network configuration,
and (c) the workload profile and intensity. Considering the benefits, the approach
proposed in this thesis provides a solid basis for analysis and management of data
center network resources in an automated resource management process that may
reconfigure the system dynamically to adapt to the future expected conditions.

8.2 Open Challenges and Directions for Future Work
The results of this thesis offer a great potential for further research. In the
following, I propose the possible directions of future work dividing them (similarly
to the contributions) into research (primary and secondary), and technical.

8.2.1 Primary Research Directions
Integration of Solving Methods for DNI and DML

As presented in Section 4.4, the model solvers (i.e., transformations and resulting
predictive models) for DML and DNI are separate and their integration is a
challenging task. The complexity stems mainly from the wide scope of the
integrated model—the automatically generated performance model would need to
cover all system components: software, middleware, servers, virtualization, and
network. The generated instances of predictive models (e.g., queueing networks or
QPNs) may be too big to be solved in a reasonable time. To tackle this issue, I
sketch potential approaches to solve the integrated models: iterative solving and
modular solving.
The idea of iterative solving is to generate the predictive models for DML and

DNI separately and then run the solving iteratively, so that the output of one
model is used as input to the other and vice-versa. The iterative solution is
repeated until the predicted performance metrics are stable. The iterative approach
is presented conceptually in Figure 8.1a.
The modular solving approach assumes that the DML model is solved once,

however the solving process of DML can be interrupted calling the DNI solver
whenever the network behavior needs to be predicted for a given system state. The
DNI solver provides network performance metrics back to the DML solver, and
the solving is continued until the stopping-criterion of the DML solver is reached
and the performance metrics are returned. Figure 8.1b depicts the modular solving
approach.
The differences between modular and iterative solving can be summarized as

follows. In the iterative solving approach, DML and DNI are solved separately
multiple times and their partial solutions are used as in each subsequent iteration
to refine the model parameters until the prediction accuracy converges. The models
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are solved multiple times until the required accuracy (or other stopping criterion)
is reached. In the modular solving approach, I assume that I build a single
DML model where all instances of LinkingResource are replaced with small DNI
models. In fact, there is only one “solving” process, however, in that process, the
DNI solver is called multiple times.

DNI

Computing layer

Network layer

Output

DMLDML

Network bandwidth 
and delaysTraffic/workloads

Data center 
performance

Traffic/workloads

Data center 
performance

…

(a) Iterative.

Computing layer

Network layer

Output

DML

Data center 
performance

Linking-Resource

DNI

Linking-Resource

DNI

(b) Modular.

Figure 8.1: Approaches to integrate DML and DNI model solving.

Fully integrated models would in fact provide a single language to describe
complete data center landscape and increase the accuracy of performance prediction
as the two models complement each other. Moreover, thanks to the flexibility of
DNI and the tailored solving of DML [Bro14a], the integrated models may be
tuned to put more focus on the computing part for computing-intensive workloads
or on the networking part in traffic-heavy scenarios.

Complete integration of DNI and DML is expected to benefit from the more
accurate prediction of network throughput and will also enable other performance
metrics like, for example, end-to-end service response time. Additionally, DML
complements DNI by providing the support for modeling the computing part of
SDN controller applications and complex network functions deployed on a NFV
node.

Another open challenge concerns the automatic extraction and fine tuning of the
model parameters. It is generally desired that models are prefilled automatically
and the modelers make relatively small corrections (with respect to building the
model from scratch). Extraction and calibration of models is usually challenging
(e.g., as shown in [RKTG15]), however calibration of two or more integrated models
opens new questions that need to be addressed. Examples of such questions may
include: (1) Are the network overheads already included in the DML model?
(2) Is it possible to measure software and network overheads separately? (3) May
calibration of DNI cause decalibration of DML and vice-versa?

Model-based Data Center Network Management using DNI

The topic of this thesis suggest directly the purpose for future applications of the
DNI approach—network capacity management. The network capacity management
is stated as one of the application areas of the approach (see Section 1.4). The
approach can be used to analyze multiple network configurations and select
the optimal one based on the forecast of traffic, optimization time horizon, and
goals. Development of an autonomic performance-management framework for data
centers is another example of possible future research directions.
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The vision of Self-Aware Computing Systems [KKMZ17] assumes that the systems
are able to “learn models capturing the knowledge about them selves and their
environments (...) on an ongoing basis and reason using the models (for example,
predict, analyze, consider, plan) enabling them to act based on their knowledge
and reasoning (...) in accordance with higher-level goals, which may also be subject
to change.” DNI fits into this vision delivering the methods and tools to store
the knowledge about the data center network and provide reasoning in form of
performance prediction. Moreover, the models can be extracted at run-time to
support the processes of online resource management in data centers [SFK+17].

Quality of Service in Networks

Providing world-wide access to a Quality of Service (QoS)-Internet is still an open
challenge. However, in many private networks, delivering quality guarantees in
terms of guaranteed bandwidth, prioritization of traffic flows, and fairness play
important role nowadays. Internet of Things (IoT) may is example of application
area where QoS in networks should not be neglected [ŚTN15, ŚJB+12].

Thanks to its generic character, DNI can support multiple application scenarios,
including IoT. However, currently, the performance is modeled per device (physical
or virtual) and not on a per-flow basis. Despite the possibility of modeling a set
of virtual nodes (e.g., each handling a single traffic flow), providing the native
support for per-flow QoS policies (e.g., fair scheduling, traffic prioritization, per-
class bandwidth management) would greatly extend the applicability of DNI in
the context of Future Internet (FI) and Next Generation Networks (NGN) and their
application areas.

8.2.2 Secondary Research Directions
Automated Extraction of Complete DNI Models

In Section 6.1, I provided concepts of methods for automated extraction of complete
DNI models from a running system. Further analysis of monitoring data sources
and implementation of extraction tooling would drastically decrease the amount of
work needed to build a DNI model. Such extraction suite would change the role
of a human operator form the modeler to a supervisor, who eventually correct
and calibrate the extracted models. This would provide an important milestone
towards application of DNI in autonomic modeling, management, and analysis of
self-aware computing and networking systems.

Traffic Model Extraction

I see several possible directions to improve the traffic model extraction approach
presented in Section 6.2. First is the improvement of the automatic selection of
extraction parameters, so that more traces can be analyzed with lower extraction
errors. Second, the approaches to automatic model extraction should be compared
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against the manual-built models crafted by humans. In such evaluation, the human-
caused errors could be compared with the imperfections of the MSD extraction
algorithm. Such evaluation is challenging and time consuming (mainly due to
the involvement of the human factor), however the results would provide deeper
insight of the model building process. Finally, the proposed approach was tailored
(but not limited) to extract traffic models in a DNI-friendly format. The scope
could be extended and the extraction of other traffic models could be added.

Optimization of the Transformations and Predictive Models

As presented in Section 7.4, the model transformations and the predictive models
that they produce are not always optimal in term of size and their solving time.
The transformations were built with focus on the functionality and correctness,
however they were not optimized for performance. Moreover, the generated
predictive models represent full information included in DNI (according to the
level of abstraction implemented in the transformation). Yet, the complete set of
information is not always needed to conduct tailored performance prediction. For
example, the analysis of utilization of a selected networking device does not require
to simulate the complete network, but only the traffic that directly influences the
analyzed device.

Providing an approach to selectively ignore parts of the predictive model would
decrease the solving time and consumption of resources needed for solving.
The optimizations conducted at the transformation level would decrease the
transformation time as well. Moreover, the tools for optimization of the predictive
models (e.g., QPNs) could be applied to manually-built models as well providing
the improvements to wider community.

Support for Analytical Predictive Models

DNI supports currently an arbitrarily selected set of model transformations and
predictive models. Providing further model transformations would contribute
towards the flexibility of the prediction. Especially, the support for analytical
solving methods could be extended to support the state-of-the-art methods for
analytical network performance prediction.

Support for Further Performance Metrics

The set of supported performance metrics can be extended as well to support, for
example, end-to-end communication delays, packet losses, and jitter. In fact, the
currently available predictive models deliver some of these metrics by default. Yet,
they have not been evaluated for prediction accuracy in this context. Integration
of DNI and DML should allow to predict the end-to-end delays. Measurements
of further reference metrics would allow judge about the prediction accuracy
delivered by DNI for those metrics.
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Support for Closed Workloads

The support for modeling of closed workloads can be added to the DNI meta-
model and the model transformations. As shown in scenario #8 in Section 7.3.8,
the current support for closed workloads require to split the analysis into at least
two separate steps: request and reply. This makes the analysis of closed workloads
cumbersome, so providing a native support for closed workloads would extent the
usability and applicability of the approach even more.

Modularization of Model Transformations

A DNI model can be transformed into with various predictive models. This however
requires a separate transformation for each of them. While the transformations
differ greatly in some aspects, for example, the configuration of the solver, other
parts (e.g., the calculation of the performance parameters) are similar. It would
therefore be reasonable to encapsulate parts of the transformations into reusable
modules and extract them as independent units [SZC16]. Such modularization
would improve the maintainability of the transformation code and limit the work
required for developing new transformations to implementing only the parts that
are specific for the output model. The modularization could be achieved, for
example, using the Reuseware tool [HHJZ09].

8.2.3 Technical Directions
Further work on providing DNI tooling and an encapsulation of its components
into a unified software product concerns mainly two directions. First, is related
to the integration of DNI and DML. It is natural that the integrated approach
should be available as a single framework, where the user can freely choose form
the available modeling entities, transformations, solving methods, and tools for
analysis of the results. Implementation of such a unified framework would widen
the audience of the approach, as more users would be able to use it without
manual installation and configuration procedure that is required currently.

Furthermore, the components of the approach could be wrapped and provided
as web services to the users (i.e., prediction-as-a-service), so that the installation
and maintenance of the software is shifted to the provider, while the users are
offered a well defined application programming interface (API) to submit their
models for solving and performance analysis.

231





List of Figures
1.1 Division of the performance model space into analytical and simula-

tion models. Models with high level of detail (gray-striped area) are
out of scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 DNI Approach: areas, contributions, and focus. . . . . . . . . . . . . 13
1.3 Core benefit of the DNI approach: DNI supports a range of models

with different modeling granularities without requiring expertise in
each of them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Categorization of generic data center network virtualization techniques. 24
2.2 Comparison of typical forwarding pipelines of classical (non-SDN)

and SDN devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Related work divided into domains and relations between them. . . 42

4.1 Root of the DNI meta-model. . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Core of the DNI meta-model: Entities. . . . . . . . . . . . . . . . . . . 51
4.3 In the DNI meta-model, Dependencies are used to model numeric

values and functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 DNI meta-model of network structure. . . . . . . . . . . . . . . . . . . 53
4.5 Example of various Node IPositions combinations: a) intermediate,

b) end, c) end+intermediate (receiver), d) end+intermediate (sender),
and e) end+intermediate (forwarder). . . . . . . . . . . . . . . . . . . . 54

4.6 Relation between NetworkInterface and NetworkProtocol in the
DNI meta-model. Dotted entities originate from the NetworkConfig-
uration part of the DNI meta-model (presented in Section 4.1.3). . . 55

4.7 DNI meta-model of network traffic. . . . . . . . . . . . . . . . . . . . . 56
4.8 Example of the DNI model presenting the workload. Depicted using

the UML object diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.9 DNI meta-model of network configuration. Entities in dotted boxes

represent the entities form the other parts of the DNI meta-model. 58
4.10 Example presenting a fragment of a DNI instance using both: unof-

ficial graphical notation and object diagram elements. The Direction
d defines that half of the traffic from App1 to App2 should be routed
via port p1 on node N2. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.11 Meta-model of network structure with SDN entities included (in
gray). Dotted entities represent other parts of DNI. . . . . . . . . . . 60

4.12 Flow diagram for forwarding in a DNI Node. . . . . . . . . . . . . . 61
4.13 Flow diagram for processing a packet-in request in an SDN controller. 62

233



List of Figures

4.14 The DNI meta-model of network traffic with SDN entities included
(in gray). The dashed entity PerformanceSdnApplication is a sim-
plified representation of software component performance description
that can be modeled using DML. . . . . . . . . . . . . . . . . . . . . . 63

4.15 The DNI meta-model of network configuration with SDN entities
included (in gray). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.16 Flexibility in building DNI models. . . . . . . . . . . . . . . . . . . . . 64
4.17 miniDNI meta-model with SDN entities included (in gray). . . . . . 66
4.18 Overview of DML’s structure. Excerpted from [Bro14b]. . . . . . . . 68
4.19 DML’s Resource Landscape meta-model. Updated and redrawn based

on [Hub14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.20 DML’s Resource Landscape meta-model: ConfigurationSpecification.

Updated and redrawn based on [Hub14]. . . . . . . . . . . . . . . . . 69
4.21 Assembly Context in DML. Excerpted from [Bro14b]. . . . . . . . . . 70
4.22 Different meaning of workloads in DML and DNI. . . . . . . . . . . 71
4.23 DML Example. Excerpted from [Bro14b]. . . . . . . . . . . . . . . . . 72
4.24 DML’s FineGrainedBehavior. Excerpted from [Bro14b]. . . . . . . . . 72
4.25 Service behaviors in DML. Excerpted from [Bro14b]. . . . . . . . . . 73
4.26 CallParameter in DML. Updated and redrawn based on [Bro14b]. . 73
4.27 Usage Profile Model in DML. Updated and redrawn based on [Bro14b]. 74
4.28 NetworkDeployment meta-model as extension of DML’s Deployment.

Respective parts are presented using distinguished colors. . . . . . . 75
4.29 Example DML model (from Fig. 4.23) mapped onto DNI. Mapping

presented using object diagram. . . . . . . . . . . . . . . . . . . . . . . 76
4.30 Example DML model (from Fig. 4.23) extended by defining Service

Behavior Description using CoarseGrainedBehavior. The deployment
part of the example is abstracted for brevity. . . . . . . . . . . . . . . 77

4.31 Extracting DNI Traffic Flows based on DML model. Object diagram.
Gray entities are highlighted to show the new objects with respect
to the previous step (Fig. 4.29). . . . . . . . . . . . . . . . . . . . . . . 77

4.32 Example DML model (from Fig. 4.23 and 4.30) extended by defin-
ing Usage Profile Model (presents using graphical notation based
on [BKR09]). The deployment and the Service Behavior Description
parts of the example are abstracted for brevity. . . . . . . . . . . . . . 78

4.33 Extracting DNI Traffic Workload based on DML model. Object
diagram. Gray entities are highlighted to show the new objects with
respect to the previous step (Fig. 4.31). . . . . . . . . . . . . . . . . . . 79

4.34 Extraction of the DNI traffic workload model from a DML model. . 80

5.1 Model transformations in the process of performance prediction. . . 85
5.2 Overview of models, transformations, and solvers. . . . . . . . . . . . 86
5.3 In-place transformation building FlowRoutes based on Directions.

Demonstrated using example presented formerly in Fig. 4.10. . . . . 91

234



List of Figures

5.4 Example demonstrating in-place DNI transformation removing Branches
from Workloads. Left: workload with a branch, right: two workloads
without branches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Notation used in QPN diagrams. Excerpted from [KBB+11]. . . . . . 92
5.6 Notation used in QPN transitions. . . . . . . . . . . . . . . . . . . . . . 93
5.7 QPN representation of network nodes and links. The internal struc-

ture of Node subnets is presented in Fig. 5.8. . . . . . . . . . . . . . . 94
5.8 QPN representation of DNI’s Node. Figure depicts the internal

structure of a Node subnet place. . . . . . . . . . . . . . . . . . . . . . 94
5.9 Internal structure of transitions for non-load-balanced scenario. Token

colors: t traffic, f flow-mod. . . . . . . . . . . . . . . . . . . . . . . . . 95
5.10 Internal structure of the SdnSwitching subnet place. Token colors: t

traffic, f flow-mod, p packet-in. . . . . . . . . . . . . . . . . . . . . . . 95
5.11 Internal structure of the switching, hwSdnSwitching, and swSdnSwitch-

ing subnet places. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.12 QPN representation of DNI’s SdnController. . . . . . . . . . . . . . 97
5.13 QPN representation of a Node with “60/40” load balancing for a

single flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.14 QPN representation of a Node hosting virtual nodes. . . . . . . . . . 98
5.15 QPN representation of the TrafficSource. Token colors: gray workload

execution token (WE) (workload-execution), white traffic. . . . . . . . 99
5.16 QPN representation of the a traffic workload example containing

actions: wait, transmit, loop. Token colors: gray WE, white traffic. . 100
5.17 QPN representation of the workload loop action with three iterations.

Token colors: gray WE, white traffic. . . . . . . . . . . . . . . . . . . . 101
5.18 QPN representation of the workload fork and branch actions. Token

colors: gray WE, white traffic. . . . . . . . . . . . . . . . . . . . . . . . 101
5.19 QPN representation of miniDNI Network including Links and Nodes

in mDNI-to-QPN transformation. . . . . . . . . . . . . . . . . . . . . . . 105
5.20 Internal structure of miniDNI Node subnet place including Traffic-

Source in mDNI-to-QPN transformation. . . . . . . . . . . . . . . . . . 106
5.21 Example of a top-level OMNeT++ network including modules: Stan-

dardHost (e.g., relate3), Switch (e.g., sw1), VMM (e.g., relate4). . . . . . 109
5.22 Internal structure of the custom VMM OMNeT++ module. . . . . . . . 109
5.23 Example of a top-level OMNeT++generic network. . . . . . . . . . . . 111
5.24 Internal structure of network interface in OMNeT++generic. . . . . . 112
5.25 Transformation of queueing places with: (a) single place, queue,

and color; (b) single place, queue, and two colors; (c) two places,
single queue and single color. Processing times are modeled with
the exponential distribution with a mean value defined in seconds. 118

5.26 Transformation of QPN ordinary places depending on context. . . . 119
5.27 Transformation of QPN ordinary places depending on context:

branch in workload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

235



List of Figures

5.28 Transformation of QPN transitions. QPN transition t1 contain modes
that consume and produce tokens on fire. LQNs representation is
simplified (no processors) for brevity. . . . . . . . . . . . . . . . . . . . 121

5.29 Exemplary QPN containing the fork and join pattern. . . . . . . . . . 122
5.30 Exemplary LQN containing the fork and join representation of the

QPN shown in Figure 5.29. . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.31 Example of a QPN loop representation with probabilistically modeled

number of iterations. Excerpted from [BMB+15]. . . . . . . . . . . . . 123
5.32 Example of a QPN loop representation with deterministically mod-

eled number of iterations (repetition of Fig. 5.17). . . . . . . . . . . . 123
5.33 LQN loop representation with deterministically modeled number of

iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.34 Example QPN containing a critical section. The pool contains, so

maximally three tokens can enter the subnet. . . . . . . . . . . . . . . 124
5.35 LQN representation of the critical section corresponding to the QPN

in Figure 5.34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.36 Example of QPN containing a second internal loop. . . . . . . . . . . 125

6.1 Model of a simple traffic generator. . . . . . . . . . . . . . . . . . . . . 139
6.2 A toy example: decomposition into traffic generators at different

scales and amplitudes and the corresponding instance of a DNI
traffic model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3 Four examples of typical traffic dumps (with duration of 60, 10, 10,
10 minutes respectively). X-axis represents time in seconds, y-axis
represents bytes transferred per second. . . . . . . . . . . . . . . . . . 141

6.4 Normalized kernel density plots of transferred bytes from the exam-
ple traffic dumps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.5 Overview of the extraction pipeline (rectangles represent data, ovals
represent actions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.6 Multi-scale decomposition algorithm. Rectangles represent data,
ovals represent actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.7 Example decomposition explained step-by-step. . . . . . . . . . . . . . 145
6.8 Decomposition example #1: 10 minutes of traffic without optimiza-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.9 Decomposition example #2: 10 minutes of traffic with moderate

optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.10 Differences between OFF period durations in the simulation (upper

part) and in the real system (lower part). . . . . . . . . . . . . . . . . 153

7.1 Experimental environment and network topology for SBUS-PIRATES
case study. Dashed links are used for monitoring and measurements,
solid links for experiment data traffic. . . . . . . . . . . . . . . . . . . 161

7.2 Scenario #1A: Confidence intervals for the mean throughput for
think time 50–500ms (left, experiment A) and for 5–40ms (right,
experiment B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

236



List of Figures

7.3 Scenario #1B: Confidence intervals for varying number of cameras
and think time p. For Uperf, 1st and 3rd quartiles are shown
additionally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.4 Network topology used in the experiment. Dashed links are used
for monitoring, solid links for experiment data traffic. Server S1 is
the experiment controller. . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.5 Scenarios #3A–#3E: relative prediction errors. Solid line compares
two reference measurements using SBUS and Uperf. . . . . . . . . . 176

7.6 Experimental testbed used for SDN experiments. The gray links
(connected to SW10) are disabled by Spanning Tree Protocol (STP) if
not stated otherwise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.7 Scenario #4A: Flows of server replies (denoted by arrows). . . . . . . 184
7.8 Scenario #4A: Network throughput measured on link SW35→C39. . 185
7.9 Scenario #4B: Network throughput measured on link SW35→C39.

The switches operate in SDN hardware forwarding mode. . . . . . . 186
7.10 Comparison of reference throughputs for non-SDN (scenario #4A)

and SDN hardware modes (scenario #4B). . . . . . . . . . . . . . . . . 187
7.11 Measurement (and exemplary QPN-based prediction) of HP 3500yl

performance in SDN Software mode for different settings of switching
capacity. Excerpted from [RSK16]. . . . . . . . . . . . . . . . . . . . . . 188

7.12 Scenario #4B: Network throughput measured on link SW35→C39.
The switches operate in the SDN software forwarding mode. . . . . 189

7.13 Scenario #4C: Experimental testbed and file transfer flows. . . . . . . 189
7.14 Scenario #5: Experimental testbed and file transfer flows. . . . . . . . 191
7.15 Scenario #6: Experimental testbed and file transfer flows. . . . . . . 193
7.16 Scenario #7: Exemplary testbed. The values of a, b, c, and load

balancing ratios are defined in the Table 7.8 for respective sub-
scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.17 DNI model for the ECPM scenario. . . . . . . . . . . . . . . . . . . . . 197
7.18 Scenario #8: Testbed and reply flows. . . . . . . . . . . . . . . . . . . 199
7.19 DNI model for SDN load-balancing scenario—request phase. . . . . 199
7.20 DNI model for SDN load-balancing scenario—reply phase. . . . . . . 200
7.21 Scenario #8: Network throughput and difference between predictions

for link C37→ SW43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.22 Scenario #9: model solving duration (in seconds) for growing traffic

intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.23 Scenario #10: model solving duration (in seconds) for growing

network size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.24 Simulation time required to solve scenarios #4A and #4B. . . . . . . 206
7.25 Memory consumption during solving scenarios #4A and #4B. . . . . 208
7.26 Flexibility of performance prediction for non-SDN scenarios. . . . . . 210
7.27 Flexibility of performance prediction for SDN scenarios. . . . . . . . 211
7.28 Robot telemaintenance case study. The remote expert and the local

facility technician supervise the production facility. . . . . . . . . . . 212

237



List of Figures

7.29 Example of a trace of type 2. Reference in dark gray and extracted
model in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7.30 Example of a trace of type 3. Reference in dark gray and extracted
model in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7.31 Example of a trace of type 4. Reference in dark gray and extracted
model in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7.32 Example #1 QPN representation. . . . . . . . . . . . . . . . . . . . . . . 216
7.33 Example #1 LQN representation. . . . . . . . . . . . . . . . . . . . . . . 216
7.34 QPN representation of example #2. WLS stands for WebLogic Server,

and DBS for a database server. Excerpted from [KB03]. . . . . . . . . 218
7.35 LQN representation of example #2. . . . . . . . . . . . . . . . . . . . . 219

8.1 Approaches to integrate DML and DNI model solving. . . . . . . . . 228

238



List of Tables
1.1 Denotation of the real and modeled entities used in the formal

problem description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Further notation used in the formal problem description. . . . . . . . 10

2.1 Selected key differences between QPN and LQN formalisms. . . . . 36

4.1 Comparison of the differences in modeling granularity between the
DNI and the miniDNI meta-models. . . . . . . . . . . . . . . . . . . . 67

4.2 Overlapping entities in DNI and DML—data center structure. . . . . 70

5.1 Matrix of DNI support of transformations and solvers. . . . . . . . . 87
5.2 DNI-to-miniDNI transformation rules. . . . . . . . . . . . . . . . . . . . 104
5.3 DNI-to-Omnet-INET transformation rules. . . . . . . . . . . . . . . . . 108
5.4 Key rules used in the QPN-to-LQN transformation. . . . . . . . . . . 117
5.5 Selected features of the predictive models resulting from model

transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.1 Prediction errors and goodness of fit for scenarios #1A and #1B. . . 165
7.2 Scenarios #2A and #2B: Measured and predicted bandwidth between

network nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.3 Scenario #2C and #2D: Measured and predicted bandwidth between

network nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.4 Scenarios #3A–#3E: measured and predicted throughput. All values

in mega-bits per second. . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.5 Scenario #4C: Measured and predicted network capacity. . . . . . . . 190
7.6 Scenario #5: Measured and predicted network capacity. . . . . . . . . 192
7.7 Scenario #6: Measured and predicted network capacity. . . . . . . . . 194
7.8 Scenario #7: Predicted network capacity. . . . . . . . . . . . . . . . . . 197
7.9 Scenario #8: Predicted bandwidth on selected network interfaces in

the reply phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.10 Scenario #9: model solution duration (in seconds) for growing traffic

intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.11 Scenario #10: transformation and model solving duration (in seconds)

for growing network size. . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.12 Model solving duration (in seconds) for SDN scenarios. . . . . . . . 207
7.13 Solver memory consumption (in megabytes) during solving of SDN

scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.14 Results for the 69 analyzed traces divided into four groups. . . . . . 214

239



List of Tables

7.15 Example #1: processor utilization and throughput. . . . . . . . . . . . 217
7.16 Example #2: processor utilization and throughput for 80 clients. . . 218
7.17 Solving times of four solvers for varying number of clients in exam-

ple #2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

240



Acronyms
API application programming interface.

AR augmented reality.

ARP Address Resolution Protocol.

ASIC application-specific integrated circuit.

BCAM binary content-addressable memory.

BNF Backus–Naur form.

Bps bytes per second.

CGSPN Colored Generalized Stochastic PN.

CIM Common Information Model.

COTS commercial off-the-shelf.

CPU central processing unit.

DiffServ Differentiated Services.

DML Descartes Modeling Language.

DNI Descartes Network Infrastructure.

DoS denial of service.

DSML domain-specific modeling language.

DSP digital signal processing.

DWT Discrete Wavelet Transform.

ECMP Equal-Cost Multi-Path Routing.

EMF Eclipse Modeling Framework.

EMOF Essential Meta-Object Facility.

EOL Epsilon Object Language.

241



Acronyms

ETL Epsilon Transformation Language.

EVL Epsilon Validation Language.

FCFS first come first serve.

FI Future Internet.

FIFO first in first out.

GRE Generic Routing Encapsulation.

HFSC Hierarchical Fair Service Curve.

HP Hewlett-Packard.

HPE Hewlett-Packard Enterprise.

HTB Hierarchical Token Bucket.

HUTN Human Usable Textual Notation.

I/O input/output.

IETF Internet Engineering Task Force.

IntServ Integrated Services.

IoT Internet of Things.

IP Internet Protocol.

ISO/OSI International Standard Organization/Open Systems Interconnection.

Java EE Java Enterprise Edition.

JVM Java Virtual Machine.

LLTD Link Layer Topology Discovery.

LPR license plate recognition.

LQN Layered Queueing Network.

MAC Media Access Control.

MAN metropolitan area network.

MOF Meta-Object Facility.

242



Acronyms

MOL Method of Layers.

MPLS Multi-Protocol Label Switching.

MSD Multi-Scale Decomposition.

MTU maximum transfer unit.

MVA mean-value analysis.

NFV Network Function Virtualization.

NGN Next Generation Networks.

OCL Object Constraint Language.

OMG Object Management Group.

OVS Open vSwitch.

PCM Palladio Component Model.

PN Petri Net.

Pps packets per second.

QML/CS quality-modelling language for component-based systems.

QN Queueing Network.

QoS Quality of Service.

QPME Queueing Petri Net Modeling Environment.

QPN Queueing Petri Net.

QSFP+ quad small form-factor pluggable.

QSFP+ DAC quad small form-factor pluggable direct attach cable.

RSVP Resource Reservation Protocol.

SDL Specification and Description Language.

SDN Software-Defined Networking.

SDRAM synchronous dynamic random-access memory.

SFP+ small form-factor pluggable.

SFP+ DAC small form-factor pluggable direct attach cable.

243



Acronyms

SLA service level agreement.

SNMP Simple Network Monitoring Protocol.

STP Spanning Tree Protocol.

TCAM ternary content-addressable memory.

TCP Transmission Control Protocol.

TIME Transport Information Monitoring Environment.

ToR top-of-the-rack.

UDP User Datagram Protocol.

UML Unified Modeling Language.

Uperf Unified performance tool for networking.

VLAN Virtual Local Area Network.

VM virtual machine.

VMM virtual machine monitor.

VNFs virtualized network functions.

VoIP Voice-over-IP.

VPN Virtual Private Network.

WE workload execution token.

XMI Extensible Markup Language (XML) Metadata Interchange.

XML Extensible Markup Language.

XSD XML Schema Definition.

244



Bibliography
[Ada97] A. Adas. Traffic models in broadband networks. Communications

Magazine, IEEE, 35(7):82–89, Jul 1997. [see pages 47 and 56]

[AFG+10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud computing.
Commun. ACM, 53(4):50–58, 2010. [see page 23]

[AFLV08] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A
scalable, commodity data center network architecture. SIGCOMM
Comput. Commun. Rev., 38(4):63–74, 2008. [see page 27]

[AMX15] I. Alsmadi, M. Munakami, and D. Xu. Model-based testing of sdn
firewalls: A case study. In Trustworthy Systems and Their Applications
(TSA), 2015 Second International Conference on, pages 81–88, July 2015.
[see page 30]

[ANP+13] S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder, R. Yahyapour, and
D. Simeonidou. An analytical model for software defined networking:
A network calculus-based approach. In IEEE Global Communications
Conference (GLOBECOM), pages 1397–1402, Dec 2013. [see pages 2
and 43]

[ASF+15] Doris Aschenbrenner, Felix Sittner, Michael Fritscher, Markus Krauss,
and Klaus Schilling. Teleoperation of an Industrial Robot in an Active
Production Line. In Proceedings of 2nd IFAC Conference on Embedded
Systems, Computational Intelligence and Telematics in Control (CESCIT),
2015. [see page 212]

[ASLG+14] Ali Al-Shabibi, Marc De Leenheer, Matteo Gerola, Ayaka Koshibe,
William Snow, and Guru Parulkar. Openvirtex: A network hypervisor.
In Open Networking Summit 2014 (ONS 2014), Santa Clara, CA, March
2014. USENIX Association. [see page 30]

[BAB12] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware
resource allocation heuristics for efficient management of data centers
for cloud computing. Future Generation Computer Systems, 28(5):755 –
768, 2012. Special Section: Energy efficiency in large-scale distributed
systems. [see page 1]

245



Bibliography

[Bal00] Simonetta Balsamo. Product form queueing networks. In Performance
Evaluation: Origins and Directions, pages 377–401, London, UK, UK,
2000. Springer-Verlag. [see page 34]

[Bau93a] F. Bause. Queueing petri nets-a formalism for the combined qualitative
and quantitative analysis of systems. In Petri Nets and Performance
Models, 1993. Proceedings., 5th International Workshop on, pages 14–23,
1993. [see page 92]

[Bau93b] Falko Bause. Queueing petri nets-a formalism for the combined
qualitative and quantitative analysis of systems. In Petri Nets and
Performance Models, 1993. Proceedings., 5th International Workshop on,
pages 14–23. IEEE, 1993. [see page 92]

[BBC+98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An
architecture for differentiated services. RFC 2475 (Informational), 1998.
[see page 24]

[BBE+08] Jean Bacon, Alastair Beresford, David Evans, David Ingram, Niki
Trigoni, Alexandre Guitton, and Antonios Skordylis. TIME: An open
platform for capturing, processing and delivering transport-related
data. In Proceedings of the 5th IEEE Consumer Communications and
Networking Conference (CCNC), Las Vegas, 2008. [see pages 22 and 159]

[BBE+12] M.F. Bari, R. Boutaba, R. Esteves, L.Z. Granville, M. Podlesny, M.G.
Rabbani, Q. Zhang, and M.F. Zhani. Data center network virtualization:
A survey. IEEE Communications Surveys and Tutorials, September 2012.
[see page 1]

[BBGP10] A. Bianco, R. Birke, L. Giraudo, and M. Palacin. Openflow switch-
ing: Data plane performance. In Communications (ICC), 2010 IEEE
International Conference on, pages 1–5, May 2010. [see page 43]

[BCH+11] Katherine Barabash, Rami Cohen, David Hadas, Vinit Jain, Renato
Recio, and Benny Rochwerger. A case for overlays in dcn virtualization.
In Proceedings of the 3rd Workshop on Data Center - Converged and Virtual
Ethernet Switching, DC-CaVES ’11, pages 30–37. ITCP, 2011. [see
page 25]

[BCR+09] Marco Bozzano, A. Cimatti, M. Roveri, J. Katoen, Viet Yen Nguyen,
and T. Noll. Codesign of dependable systems: A component-based
modeling language. In Formal Methods and Models for Co-Design, 2009.
MEMOCODE ’09. 7th IEEE/ACM International Conference on, pages 121–
130, July 2009. [see page 44]

[BCS09] Marco Bertoli, Giuliano Casale, and Giuseppe Serazzi. Jmt: perfor-
mance engineering tools for system modeling. SIGMETRICS Perform.
Eval. Rev., 36(4):10–15, 2009. [see page 37]

246



Bibliography

[Bd05] J.P. Britton and AN. deVos. Cim-based standards and cim evolution.
IEEE Transactions on Power Systems, 20(2):758–764, May 2005. [see
page 44]

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and
the art of virtualization. SIGOPS Oper. Syst. Rev., 37(5):164–177, 2003.
[see pages 23 and 190]

[BdMIS04] S. Balsamo, A di Marco, P. Inverardi, and M. Simeoni. Model-based
performance prediction in software development: a survey. Software
Engineering, IEEE Transactions on, 30(5):295–310, 2004. [see page 45]

[BGdMT98] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi.
Queueing Networks and Markov Chains: Modeling and Performance Evalu-
ation with Computer Science Applications. Wiley-Interscience, New York,
NY, USA, 1998. [see pages 34 and 36]

[BGdMT06] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S Trivedi.
Queueing networks and Markov chains: modeling and performance evalua-
tion with computer science applications. John Wiley & Sons, 2006. [see
pages 2 and 92]

[BH02] Ed Brinksma and Holger Hermanns. Lectures on formal methods and
performance analysis. chapter Process Algebra and Markov Chains,
pages 183–231. Springer-Verlag New York, Inc., New York, NY, USA,
2002. [see page 36]

[BHK12] Fabian Brosig, Nikolaus Huber, and Samuel Kounev. Modeling Param-
eter and Context Dependencies in Online Architecture-Level Perfor-
mance Models. In Proceedings of the 15th ACM SIGSOFT International
Symposium on Component Based Software Engineering (CBSE 2012), June
26–28, 2012, Bertinoro, Italy, June 2012. [see page 68]

[BHK14] Fabian Brosig, Nikolaus Huber, and Samuel Kounev. Architecture-Level
Software Performance Abstractions for Online Performance Prediction.
Elsevier Science of Computer Programming Journal (SciCo), Vol. 90, Part
B:71–92, September 2014. [see page 68]

[BK98] Falko Bause and Pieter S. Kritzinger. Stochastic petri nets: An in-
troduction to the theory. SIGMETRICS Perform. Eval. Rev., 26(2):2–3,
August 1998. [see page 35]

[BKLG14] A. Bianco, V. Krishnamoorthi, Nanfang Li, and L. Giraudo. Openflow
driven ethernet traffic analysis. In Communications (ICC), 2014 IEEE
International Conference on, pages 3001–3006, June 2014. [see page 44]

247



Bibliography

[BKR09] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The Palladio
component model for model-driven performance prediction. Journal of
Systems and Software, 82(1):3–22, 2009. [see pages 45, 73, 78, and 234]

[Blo76] Peter Bloomfield. Fourier Analysis of Time Series: An Introduction. Wiley,
1976. [see pages 146 and 147]

[BM07] Simona Bernardi and José Merseguer. Performance evaluation of
UML design with Stochastic Well-formed Nets. Journal of Systems and
Software, 80(11):1843–1865, 2007. [see page 45]

[BMB+15] Fabian Brosig, Philipp Meier, Steffen Becker, Anne Koziolek, Heiko
Koziolek, and Samuel Kounev. Quantitative Evaluation of Model-
Driven Performance Analysis and Simulation of Component-based Ar-
chitectures. IEEE Transactions on Software Engineering (TSE), 41(2):157–
175, February 2015. [see pages 2, 116, 123, and 236]

[Bro14a] Fabian Brosig. Architecture-Level Software Performance Models for Online
Performance Prediction. PhD thesis, Karlsruhe Institute of Technology
(KIT), Karlsruhe, Germany, July 2014. [see pages 37 and 228]

[Bro14b] Fabian Brosig. Architecture-Level Software Performance Models for Online
Performance Prediction. PhD thesis, Karlsruhe Institute of Technology
(KIT), Karlsruhe, Germany, July 2014. [see pages 68, 70, 72, 73, 74,
and 234]

[CA11] Soumitra Chowdhury and Asif Akram. E-Maintenance: Opportunities
and Challenges. In Proceedings of the 34th Information Systems Research
Seminar in Scandinavia (IRIS), pages 68–81, 2011. [see page 212]

[CB10] N. M. M. K. Chowdhury and R. Boutaba. A survey of network
virtualization. Comput. Netw., 54(5):862–876, 2010. [see page 1]

[CCW+12] Margaret Chiosi, Don Clarke, Peter Willis, Andy Reid, James Feger,
Michael Bugenhagen, Waqar Khan, Michael Fargano, Dr. Chunfeng
Cui, Dr. Hui Deng, Javier Benitez, Uwe Micheel, Herbert Damker,
Kenichi Ogaki, Tetsuro Matsuzaki, Masaki Fukui, Katsuhiro Shimano,
Dominique Delisle, Quentin Loudier, Christos Kolias, Ivano Guardini,
Elena Demaria, Roberto Minerva, Antonio Manzalini, Diego Lopez,
Francisco Javier Ramon Salguero, Frank Ruhl, and Prodip Sen. Network
Functions Virtualization (NFV), An Introduction, Benefits, Enablers,
Challenges & Call for Action. SDN and OpenFlow World Congress,
Darmstadt, Germany, 2012. Accessed 30.08.2016. [see pages 30 and 31]

[CDFH93] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochas-
tic well-formed colored nets and symmetric modeling applications.
Computers, IEEE Transactions on, 42(11):1343–1360, Nov 1993. [see
page 92]

248



Bibliography

[CH06] K. Czarnecki and S. Helsen. Feature-based survey of model transfor-
mation approaches. IBM Syst. J., 45(3):621–645, 2006. [see page 85]

[CPSV08] Vittorio Cortellessa, Pierluigi Pierini, Romina Spalazzese, and Alessio
Vianale. Moses: Modeling software and platform architecture in uml 2
for simulation-based performance analysis. In Steffen Becker, Frantisek
Plasil, and Ralf Reussner, editors, Quality of Software Architectures.
Models and Architectures, volume 5281 of Lecture Notes in Computer
Science, pages 86–102. Springer Berlin Heidelberg, 2008. [see page 45]

[CWD11] L. Cheng, C-L. Wang, and S. Di. Defeating network jitter for virtual
machines. In Proc. of the Fourth IEEE International Conference on Utility,
Cloud Computing, pages 65–72, 2011. [see page 25]

[CWO+12] Y. Cai, L. Wei, H. Ou, V. Arya, and S. Jethwani. Protocol Independent
Multicast Equal-Cost Multipath (ECMP) Redirect. RFC 6754, October
2012. [see page 196]

[DDSG07] Isabel Dietrich, Falko Dressler, Volker Schmitt, and Reinhard German.
SYNTONY: network protocol simulation based on standard-conform
UML2 models. In Proc. of the ValueTools ’07, pages 21:1–21:11, 2007.
[see page 46]

[DLWJ08] Wolfgang E. Denzel, Jian Li, Peter Walker, and Yuho Jin. A framework
for end-to-end simulation of high-performance computing systems.
In Proceedings of the 1st International Conference on Simulation Tools
and Techniques for Communications, Networks and Systems & Workshops,
Simutools ’08, pages 21:1–21:10, 2008. [see pages 2, 37, and 43]

[dWK05] Nico de Wet and Pieter Kritzinger. Using UML models for the
performance analysis of network systems. Comput. Netw., 49(5):627–
642, 2005. [see page 46]

[Eco10] Eclipse Modeling Framework—Interview with Ed Merks. Online,
https://jaxenter.com/eclipse-modeling-framework-interview-
with-ed-merks-100007.html, Accessed 28.08.2016, 2010. [see
pages 18 and 40]

[ER01] R. Callon E. Rosen, A. Viswanathan. Rfc 3031: Multiprotocol label
switching architecture. IETF RFC 3031, 2001. [see page 26]

[Erl09] Agner K. Erlang. The Theory of Probabilities and Telephone Conver-
sations. Nyt Tidsskrift for Matematik, 20(B):33–39, 1909. [see pages 32
and 33]

[Erl17] Agner K. Erlang. Solution of some Problems in the Theory of Prob-
abilities of Significance in Automatic Telephone Exchanges. Elek-
trotkeknikeren, 13, 1917. [see page 32]

249

https://jaxenter.com/eclipse-modeling-framework-interview-with-ed-merks-100007.html
https://jaxenter.com/eclipse-modeling-framework-interview-with-ed-merks-100007.html


Bibliography

[FAOW+09] G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi. En-
hanced modeling and solution of layered queueing networks. Software
Engineering, IEEE Transactions on, 35(2):148–161, March 2009. [see
page 35]

[FHH02] A. J. Field, Uli Harder, and Peter G. Harrison. Network Traffic
Behaviour in Switched Ethernet Systems. In MASCOTS 2002, 10th
IEEE International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems, pages 32–42, October 2002.
[see page 57]

[Fin13] Graham Finnie. Policy control & sdn: A perfect match? White
Paper, 2013. Online, Accessed: 30.08.2016, https://www.sandvine.
com/downloads/general/analyst-reports/analystreport-heavy-
reading-policy-control-and-sdn-a-perfect-match.pdf. [see
page 30]

[FM94] V.S. Frost and B. Melamed. Traffic modeling for telecommunications
networks. Communications Magazine, IEEE, 32(3):70–81, March 1994.
[see pages 33 and 47]

[FMW+09] G. Franks, P. Maly, M. Woodside, D.C. Petriu, and A. Hubbard. Layered
Queueing Network Solver and Simulator User Manual. Manual, Real-
Time and Distributed Systems Lab, Carleton Univ., Canada, 2009. [see
pages 17, 35, 115, 116, 118, 124, and 216]

[FRZ14] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn:
An intellectual history of programmable networks. SIGCOMM Comput.
Commun. Rev., 44(2):87–98, April 2014. [see pages 24 and 31]

[FWW13] Wenfei Fan, Xin Wang, and Yinghui Wu. Incremental graph pattern
matching. ACM Trans. Database Syst., 38(3):18:1–18:47, 2013. [see
page 116]

[GABF06] Arijit Ganguly, Abhishek Agrawal, P. Oscar Boykin, and Renato
Figueiredo. Wow: Self-organizing wide area overlay networks of
virtual workstations. In In Proc. of the 15th International Symposium on
High-Performance Distributed Computing (HPDC-15, pages 30–41, 2006.
[see page 26]

[GBK14] Fabian Gorsler, Fabian Brosig, and Samuel Kounev. Performance
Queries for Architecture-Level Performance Models. In Proceedings of
the 5th ACM/SPEC International Conference on Performance Engineering
(ICPE 2014), New York, NY, USA, March 2014. ACM. [see page 17]

[GGP12] Hadi Goudarzi, Mohammad Ghasemazar, and Massoud Pedram. Sla-
based optimization of power and migration cost in cloud computing.
In Proceedings of the 2012 12th IEEE/ACM International Symposium on

250

https://www.sandvine.com/downloads/general/analyst-reports/analystreport-heavy-reading-policy-control-and-sdn-a-perfect-match.pdf
https://www.sandvine.com/downloads/general/analyst-reports/analystreport-heavy-reading-policy-control-and-sdn-a-perfect-match.pdf
https://www.sandvine.com/downloads/general/analyst-reports/analystreport-heavy-reading-policy-control-and-sdn-a-perfect-match.pdf


Bibliography

Cluster, Cloud and Grid Computing (Ccgrid 2012), CCGRID ’12, pages
172–179, Washington, DC, USA, 2012. IEEE Computer Society. [see
page 1]

[GJ79] Michael R. Garey and David S. Johnson. Computers and intractability:
A guide to NP-completeness. W. H. Freeman, 1979. [see page 116]

[GLL+09] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang,
Yunfeng Shi, Chen Tian, Yongguang Zhang, and Songwu Lu. Bcube:
a high performance, server-centric network architecture for modular
data centers. SIGCOMM Comput. Commun. Rev., 39(4):63–74, 2009. [see
page 27]

[GMS07] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. Filling the
gap between design and performance/reliability models of component-
based systems. J. Syst. Softw., 80(4):528–558, April 2007. [see page 45]

[Gor78] Geoffrey Gordon. The development of the general purpose simulation
system (gpss). SIGPLAN Not., 13(8):183–198, August 1978. [see
page 37]

[GRSS12] Alexander Gouberman, Martin Riedl, Johann Schuster, and Markus
Siegle. A modelling and analysis environment for lares. In Measure-
ment, Modelling, and Evaluation of Computing Systems and Dependability
and Fault Tolerance, volume 7201 of LNCS, pages 244–248. Springer,
2012. [see page 44]

[GS08] A. Grzech and P. Światek. Parallel processing of connection streams
in nodes of packet-switched computer communication systems. Cyber-
netics and Systems, 39(2), 2008. [see pages 24 and 47]

[GSR10] Adam Grzech, Pawel Świątek, and Piotr Rygielski. Adaptive Packet
Scheduling for Requests Delay Guaranties in Packet-Switched Com-
munication Network. Systems Science, 36(1):7–12, 2010. [see page 24]

[GSTH08] Donald Gross, John F. Shortle, James M. Thompson, and Carl M.
Harris. Fundamentals of Queueing Theory. Wiley-Interscience, New
York, NY, USA, 4th edition, 2008. [see pages 33 and 34]

[GWT+08] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang,
and Songwu Lu. Dcell: a scalable and fault-tolerant network structure
for data centers. SIGCOMM Comput. Commun. Rev., 38(4):75–86, 2008.
[see page 27]

[GYG13] A. Gelberger, N. Yemini, and R. Giladi. Performance analysis of
software-defined networking (sdn). In Modeling, Analysis Simulation of
Computer and Telecommunication Systems (MASCOTS), 2013 IEEE 21st
International Symposium on, pages 389–393, Aug 2013. [see page 44]

251



Bibliography

[HBK12] Nikolaus Huber, Fabian Brosig, and Samuel Kounev. Modeling Dy-
namic Virtualized Resource Landscapes. In Proceedings of the 8th ACM
SIGSOFT International Conference on the Quality of Software Architectures
(QoSA 2012), pages 81–90, New York, NY, USA, June 2012. ACM. [see
page 68]

[Hei07] Frank Heimburger. Performance Modelling of Java EE Applications
using LQNs and QPNs. Master’s thesis, Technische Universitaet
Darmstadt, Germany, 2007. [see page 35]

[Her01] Ulrich Herzog. Formal methods for performance evaluation. In
Ed Brinksma, Holger Hermanns, and Joost-Pieter Katoen, editors, Lec-
tures on Formal Methods and PerformanceAnalysis: First EEF/Euro Sum-
mer School on Trends in Computer Science Bergen Dal, The Netherlands,
July 3–7, 2000 Revised Lectures, pages 1–37. Springer Berlin Heidelberg,
2001. [see page 36]

[HGJL15] Bo Han, V. Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. Network
function virtualization: Challenges and opportunities for innovations.
Communications Magazine, IEEE, 53(2):90–97, Feb 2015. [see page 31]

[HHAZ14] Hongxin Hu, Wonkyu Han, Gail-Joon Ahn, and Ziming Zhao. Flow-
guard: Building robust firewalls for software-defined networks. In
Proceedings of the Third Workshop on Hot Topics in Software Defined Net-
working, HotSDN ’14, pages 97–102, New York, NY, USA, 2014. ACM.
[see page 30]

[HHJZ09] Florian Heidenreich, Jakob Henriksson, Jendrik Johannes, and Steffen
Zschaler. On language-independent model modularisation. Transac-
tions on Aspect-Oriented Development, Special Issue on Aspects and MDE,
5560:39–82, 2009. [see page 231]

[HHK02] Holger Hermanns, Ulrich Herzog, and Joost-Pieter Katoen. Pro-
cess algebra for performance evaluation. Theoretical Computer Science,
274(1):43–87, 2002. [see page 36]

[HHKA14] Nikolas Roman Herbst, Nikolaus Huber, Samuel Kounev, and Erich
Amrehn. Self-Adaptive Workload Classification and Forecasting for
Proactive Resource Provisioning. Concurrency and Computation - Practice
and Experience, John Wiley and Sons, Ltd., 26(12):2053–2078, March 2014.
[see page 84]

[HHSDK14] Evangelos Haleplidis, Jamal Hadi Salim, Spyros Denazis, and Odysseas
Koufopavlou. Towards a network abstraction model for sdn. Journal
of Network and Systems Management, pages 1–19, 2014. [see page 44]

[Hil96] Jane Hillston. A Compositional Approach to Performance Modelling. Cam-
bridge University Press, New York, NY, USA, 1996. [see page 36]

252



Bibliography

[HLT09] Jens Happe, Hui Li, and Wolfgang Theilmann. Black-box performance
models: Prediction based on observation. In Proceedings of the 1st
International Workshop on Quality of Service-oriented Software Systems,
QUASOSS ’09, pages 19–24, New York, NY, USA, 2009. ACM. [see
page 33]

[HP93] Peter G. Harrison and Naresh M. Patel. Performance Modelling of
Communication Networks and Computer Architectures. Addison-Wesley,
1993. [see pages 41 and 42]

[HP13] HP. Hp SDN controller architecture. Technical report, Hewlett-Packard
Development Company, L.P., September 2013. [see page 180]

[HRX08] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: A new tcp-friendly
high-speed tcp variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, July 2008.
[see page 170]

[HsSL+14] Y. Han, S. s. Seo, J. Li, J. Hyun, J. H. Yoo, and J. W. K. Hong. Software
defined networking-based traffic engineering for data center networks.
In Network Operations and Management Symposium (APNOMS), 2014
16th Asia-Pacific, pages 1–6, Sept 2014. [see page 30]

[Hub14] Nikolaus Huber. Autonomic Performance-Aware Resource Management
in Dynamic IT Service Infrastructures. PhD thesis, Karlsruhe Institute
of Technology (KIT), Karlsruhe, Germany, July 2014. [see pages 69
and 234]

[Ing09a] David Ingram. PIRATES Data Representation. http://www.cl.cam.ac.
uk/research/time/pirates/docs/datarepr.pdf, 2009. Accessed July
11, 2013. [see page 159]

[Ing09b] David Ingram. Reconfigurable middleware for high availability sensor
systems. In Proceedings of the Third ACM International Conference on
Distributed Event-Based Systems, DEBS ’09, pages 20:1–20:11, New York,
NY, USA, 2009. ACM. [see pages 22 and 159]

[ipe16] NLANR/DAST : Iperf - the TCP/UDP bandwidth measurement tool.
Online, https://iperf.fr/, Accessed September 2016. [see pages 180,
191, and 195]

[ITU00] SDL combined with UML. ITU-T Z.109, 2000. [see page 44]

[Jac88] V. Jacobson. Congestion avoidance and control. In Symposium Pro-
ceedings on Communications Architectures and Protocols, SIGCOMM ’88,
pages 314–329, New York, NY, USA, 1988. ACM. [see pages 167
and 170]

[Jar14] Michael Jarschel. An Assessment of Applications and Performance Analysis
of Software Defined Networking. PhD thesis, May 2014. [see pages 2
and 30]

253

http://www.cl.cam.ac.uk/research/time/pirates/docs/datarepr.pdf
http://www.cl.cam.ac.uk/research/time/pirates/docs/datarepr.pdf
https://iperf.fr/


Bibliography

[JK09] Kurt Jensen and Lars M. Kristensen. Coloured Petri Nets: Modelling
and Validation of Concurrent Systems. Springer Publishing Company,
Incorporated, 1st edition, 2009. [see page 117]

[JOS+11] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia.
Modeling and performance evaluation of an openflow architecture. In
Teletraffic Congress (ITC), 2011 23rd International, pages 1–7, Sept 2011.
[see pages 2 and 43]

[Kan09] Krishna Kant. Data center evolution: A tutorial on state of the art,
issues, and challenges. Computer Networks, 53(17):2939 – 2965, 2009.
Virtualized Data Centers. [see page 1]

[KB03] Samuel Kounev and Alejandro Buchmann. Performance Modeling
of Distributed E-Business Applications using Queueing Petri Nets.
In Proceedings of the 2003 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS 2003), Austin, Texas, USA,
March 6-8, 2003, pages 143–155, Washington, DC, USA, March 2003.
IEEE Computer Society. [see pages 92, 216, 217, 218, and 238]

[KB06] Samuel Kounev and Alejandro Buchmann. SimQPN—a tool and
methodology for analyzing queueing Petri net models by means
of simulation. Performance Evaluation, 63(4-5):364–394, 5 2006. [see
pages 35, 37, 92, and 115]

[KBB+11] Samuel Kounev, Konstantin Bender, Fabian Brosig, Nikolaus Huber,
and Russell Okamoto. Automated Simulation-Based Capacity Planning
for Enterprise Data Fabrics. In 4th International ICST Conference on
Simulation Tools and Techniques, pages 27–36, 2011. [see pages 92
and 235]

[KBM+16] Samuel Kounev, Fabian Brosig, Philipp Meier, Steffen Becker, Anne
Koziolek, Heiko Koziolek, and Piotr Rygielski. Analysis of the Trade-
offs in Different Modeling Approaches for Performance Prediction of
Software Systems (Talk Extended Abstract). In Software Engineering
2016 (SE 2016), Fachtagung des GI-Fachbereichs Softwaretechnik, 23.-26.
März 2016, Vienna, Austria, Lecture Notes in Informatics (LNI), pages
47–48, Vienna, Austria, February 2016. GI. [see page viii]

[Ken53] David George Kendall. Stochastic Processes Occurring in the Theory
of Queues and their Analysis by the Method of the Imbedded Markov
Chain. The Annals of Mathematical Statistics, 24(3):338–354, 1953. [see
page 34]

[KF13] H. Kim and N. Feamster. Improving network management with
software defined networking. IEEE Communications Magazine, 51(2):114–
119, February 2013. [see page 30]

254



Bibliography

[KHBZ16] Samuel Kounev, Nikolaus Huber, Fabian Brosig, and Xiaoyun Zhu.
A Model-Based Approach to Designing Self-Aware IT Systems and
Infrastructures. IEEE Computer, 49(7):53–61, July 2016. [see pages 12,
29, and 97]

[KJ13] Dominik Klein and Michael Jarschel. An openflow extension for the
omnet++ inet framework. In Proceedings of the 6th International ICST
Conference on Simulation Tools and Techniques, SimuTools ’13, pages
322–329, ICST, Brussels, Belgium, Belgium, 2013. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engi-
neering). [see page 43]

[KK12] M. Koerner and O. Kao. Multiple service load-balancing with openflow.
In 2012 IEEE 13th International Conference on High Performance Switching
and Routing, pages 210–214, June 2012. [see pages 30 and 198]

[KKMZ17] Samuel Kounev, Jeffrey O. Kephart, Aleksandar Milenkoski, and Xi-
aoyun Zhu, editors. Self-Aware Computing Systems. Springer Verlag,
Berlin Heidelberg, Germany, 2017. [see page 229]

[KL12] J.M. Kunkel and T. Ludwig. Iopm – modeling the i/o path with a
functional representation of parallel file system and hardware architec-
ture. In Parallel, Distributed and Network-Based Processing (PDP), 2012
20th Euromicro International Conference on, pages 554–561, Feb 2012.
[see page 46]

[KMF04] Thomas Karagiannis, Mart Molle, and Michalis Faloutsos. Long-range
dependence: Ten years of internet traffic modeling. IEEE Internet
Computing, 8(5):57–64, 2004. [see page 57]

[KO01] Ingemar Kaj and Jörgen Olsén. Throughput modeling and simula-
tion for single connection tcp-tahoe. In Nelson L.S. da Fonseca Jorge
Moreira de Souza and Edmundo A. de Souza e Silva, editors, Tele-
traffic Engineering in the Internet Era, volume 4 of Teletraffic Science and
Engineering, pages 705–718. Elsevier, 2001. [see page 46]

[Kou05] Samuel Kounev. Performance Engineering of Distributed Component-Based
Systems - Benchmarking, Modeling and Performance Prediction. PhD thesis,
Technische Universität Darmstadt, Germany, December 2005. [see
page 35]

[Koz10] Heiko Koziolek. Performance evaluation of component-based software
systems: A survey. Perform. Eval., 67(8):634–658, August 2010. [see
page 45]

[KPK15] Maciej Kuzniar, Peter Peresíni, and Dejan Kostic. What You Need to
Know About SDN Flow Tables. In Proceedings of the 16th International
Conference on Passive and Active Measurement, pages 347–359, 2015. [see
pages 7, 20, and 29]

255



Bibliography

[KSG+09] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel,
and Ronnie Chaiken. The nature of data center traffic: Measurements
& analysis. In Proceedings of the 9th ACM SIGCOMM Conference on
Internet Measurement Conference, IMC ’09, pages 202–208, New York,
NY, USA, 2009. ACM. [see page 47]

[KWB03] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained:
The Model Driven Architecture: Practice and Promise. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003. [see pages 7
and 84]

[KWS+13] Xiangxin Kong, Zhiliang Wang, Xingang Shi, Xia Yin, and Dan Li.
Performance evaluation of software-defined networking with real-
life isp traffic. In Computers and Communications (ISCC), 2013 IEEE
Symposium on, pages 000541–000547, July 2013. [see page 44]

[LAD+14] Levi Lúcio, Moussa Amrani, Juergen Dingel, Leen Lambers, Rick Salay,
GehanM.K. Selim, Eugene Syriani, and Manuel Wimmer. Model trans-
formation intents and their properties. Software & Systems Modeling,
pages 1–38, 2014. [see page 85]

[LCE10] Hui Li, Giuliano Casale, and Tariq Ellahi. Sla-driven planning and
optimization of enterprise applications. In Proceedings of the First
Joint WOSP/SIPEW International Conference on Performance Engineering,
WOSP/SIPEW ’10, pages 117–128, New York, NY, USA, 2010. ACM.
[see page 1]

[LGS+15] Stanislav Lange, Steffen Gebert, Joachim Spoerhase, Piotr Rygielski,
Thomas Zinner, Samuel Kounev, and Phuoc Tran-Gia. Specialized
Heuristics for the Controller Placement Problem in Large Scale SDN
Networks. In 27th International Teletraffic Congress (ITC 2015), pages
210–218, Ghent, Belgium, September 2015. [see page viii]

[LHY12] Fei Liu, M. Heiner, and Ming Yang. An efficient method for unfold-
ing colored Petri nets. In Proceedings of the 2012 Winter Simulation
Conference (WSC), pages 1–12, 2012. [see pages 116 and 117]

[Lju01] L. Ljung. Black-box models from input-output measurements. In In-
strumentation and Measurement Technology Conference, 2001. IMTC 2001.
Proceedings of the 18th IEEE, volume 1, pages 138–146 vol.1, May 2001.
[see page 33]

[LZGS84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C.
Sevcik. Quantitative System Performance: Computer System Analysis Us-
ing Queueing Network Models. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1984. [see page 34]

256



Bibliography

[MAB+08a] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: Enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev., 38(2):69–74, 2008. [see page 4]

[MAB+08b] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev., 38(2):69–74, 2008. [see page 27]

[Mal08] Stphane Mallat. A Wavelet Tour of Signal Processing, Third Edition: The
Sparse Way. Academic Press, 3rd edition, 2008. [see page 143]

[Man65] B. Mandelbrot. Self-similar error clusters in communication systems
and the concept of conditional stationarity. IEEE Transactions on Com-
munication Technology, 13(1):71–90, March 1965. [see page 33]

[MDA04] Daniel A. Menasce, Lawrence W. Dowdy, and Virgilio A. F. Almeida.
Performance by Design: Computer Capacity Planning By Example. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2004. [see page 157]

[MIK+13] Aleksandar Milenkoski, Alexandru Iosup, Samuel Kounev, Kai Sachs,
Piotr Rygielski, Jason Ding, Walfredo Cirne, and Florian Rosenberg.
Cloud Usage Patterns: A Formalism for Description of Cloud Usage
Scenarios. Technical Report SPEC-RG-2013-001 v.1.0.1, SPEC Research
Group - Cloud Working Group, Standard Performance Evaluation
Corporation (SPEC), 7001 Heritage Village Plaza Suite 225, Gainesville,
VA 20155, USA, May 2013. [see page ix]

[MIK+16] Aleksandar Milenkoski, Alexandru Iosup, Samuel Kounev, Kai Sachs,
Diane E. Mularz, Jonathan A. Curtiss, Jason J. Ding, Florian Rosenberg,
and Piotr Rygielski. CUP: A Formalism for Expressing Cloud Usage
Patterns for Experts and Non-Experts. IEEE Cloud Computing, 2016.
To Appear. [see page vii]

[MLP+13] Y. Mei, L. Liu, X. Pu, S. Sivathanu, and X. Dong. Performance analysis
of network i/o workloads in virtualized data centers. IEEE Transactions
on Services Computing, 6(1):48–63, 2013. [see page 1]

[MOF14] OMG’s Meta-ObjectFacility, 2014. [see pages 18 and 40]

[MRSK16] Christoph Müller, Piotr Rygielski, Simon Spinner, and Samuel Kounev.
Enabling Fluid Analysis for Queueing Petri Nets via Model Transfor-
mation. Electronic Notes in Theoretical Computer Science, 327:71–91, 2016.
The 8th International Workshop on Practical Application of Stochastic
Modeling, {PASM} 2016. [see pages vii, 17, 87, 115, and 216]

257



Bibliography

[MST+05] Aravind Menon, Jose Renato Santos, Yoshio Turner, G. (John) Janaki-
raman, and Willy Zwaenepoel. Diagnosing performance overheads
in the xen virtual machine environment. In Proceedings of the 1st
ACM/USENIX International Conference on Virtual Execution Environ-
ments, VEE ’05, pages 13–23, New York, NY, USA, 2005. ACM. [see
page 1]

[MTMC99] Andreas Mitschele-Thiel and Bruno Müller-Clostermann. Performance
engineering of SDL/MSC systems. Comput. Netw., 31(17):1801–1815,
1999. [see page 46]

[MV16] Klaus Müller and Tony Vignaux. SimPy: Discrete Event Simulation
for Python. Online, 2016. Accessed 30.08.2016. [see page 37]

[MVG06] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation.
Electron. Notes Theor. Comput. Sci., 152:125–142, 2006. [see page 85]

[Mü16] Christoph Müller. Fluid Analysis of Queueing Petri Nets Models
using Model-to-Model Transformations. Master Thesis, University of
Würzburg, Am Hubland, 97074 Würzburg, Germany, April 2016. [see
pages 17 and 216]

[Net11] Juniper Networks. Network simplification with juniper networks
virtual chassis technology. Whitepaper, 2011. [see page 25]

[Omn16] INET Framework—An open-source OMNeT++ model suite for wired,
wireless and mobile networks. Online, https://inet.omnetpp.org/
Introduction.html, Accessed 14.07.2016, 2016. [see pages 2 and 107]

[ope11] Openvswitch. Online, openvswitch.org, Accessed 28.08.2016, 2011.
[see page 25]

[PAB+05] Ruoming Pang, Mark Allman, Mike Bennett, Jason Lee, Vern Paxson,
and Brian Tierney. A first look at modern enterprise traffic. In Pro-
ceedings of the 5th ACM SIGCOMM Conference on Internet Measurement,
IMC ’05, pages 2–2, Berkeley, CA, USA, 2005. USENIX Association.
[see page 140]

[Pat13] Prayson Pate. NFV and SDN: What’s the Difference? Online, 2013.
Accessed 30.08.2016. [see page 32]

[PC13] J.F. Perez and G. Casale. Assessing sla compliance from palladio
component models. In Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), 2013 15th International Symposium on, pages 409–
416, Sept 2013. [see pages 17, 115, 124, 129, and 216]

[Pet62] C. A. Petri. Kommunikation mit Automaten. Technical report, 1962.
[see page 35]

258

https://inet.omnetpp.org/Introduction.html
https://inet.omnetpp.org/Introduction.html
openvswitch.org


Bibliography

[Pid03] M Pidd. Tools for Thinking: Modelling in Management Science. John
Wiley and Sons Ltd, 2nd edition, 2003. [see page 40]

[PS06] Kostas Pagiamtzis and Ali Sheikholeslami. Content-addressable mem-
ory (CAM) circuits and architectures: A tutorial and survey. IEEE
Journal of Solid-State Circuits, 41(3):712–727, March 2006. [see page 29]

[PTC12] Arun Prakash, Zoltán Theisz, and Ranganai Chaparadza. Formal
methods for modeling, refining and verifying autonomic components
of computer networks. In Transactions on Computational Science XV,
pages 1–48. Springer, 2012. [see page 44]

[Pui03] Ramon Puigjaner. Performance modelling of computer networks.
In Proc. of the 2003 IFIP/ACM Latin America conf. on Towards a Latin
American agenda for network research, LANC ’03, pages 106–123, New
York, NY, USA, 2003. ACM. [see pages 41 and 43]

[QG14] P. Quinn and J. Guichard. Service function chaining: Creating a
service plane via network service headers. Computer, 47(11):38–44,
Nov 2014. [see page 30]

[QKW+04] Lie Qian, A. Krishnamurthy, Yuke Wang, Yiyan Tang, P. Dauchy,
and A. Conte. A new traffic model and statistical admission control
algorithm for providing qos guarantees to on-line traffic. In Global
Telecommunications Conference, 2004. GLOBECOM ’04. IEEE, volume 3,
pages 1401–1405 Vol.3, Nov 2004. [see pages 33 and 47]

[RB94] S. Shenker R. Braden, D. Clark. Integrated services in the internet
architecture: an overview. RFC 1633, 1994. [see page 24]

[RBB+11] Ralf Reussner, Steffen Becker, Erik Burger, Jens Happe, Michael Hauck,
Anne Koziolek, Heiko Koziolek, Klaus Krogmann, and Michael Kuper-
berg. The Palladio Component Model. Technical report, 2011. [see
pages 29 and 45]

[RBP+11] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Green-
halgh, Damon Wischik, and Mark Handley. Improving datacenter
performance and robustness with multipath tcp. In Proceedings of the
ACM SIGCOMM 2011 Conference, SIGCOMM ’11, pages 266–277, New
York, NY, USA, 2011. ACM. [see page 196]

[Res13] Transparency Market Research. Software Defined Net-
working (SDN) Market Global Industry Analysis, Size,
Share, Growth, Trends, and Forecast, 2012–2018. Online,
http://www.transparencymarketresearch.com/software-defined-
networking-sdn-market.html, Accessed 28.08.2016, 2013. [see
page 4]

259

http://www.transparencymarketresearch.com/software-defined-networking-sdn-market.html
http://www.transparencymarketresearch.com/software-defined-networking-sdn-market.html


Bibliography

[RH10] GeorgeF. Riley and ThomasR. Henderson. The ns-3 network simulator.
In Klaus Wehrle, Mesut Günes, and James Gross, editors, Modeling and
Tools for Network Simulation, pages 15–34. Springer Berlin Heidelberg,
2010. [see pages 1, 2, 37, and 42]

[RK96] A. Rueda and Kinsner. A survey of traffic characterization techniques
in telecommunication networks. In Electrical and Computer Engineering,
1996. Canadian Conference on, volume 2, pages 830–833 vol.2, May 1996.
[see page 33]

[RK13] Piotr Rygielski and Samuel Kounev. Network Virtualization for QoS-
Aware Resource Management in Cloud Data Centers: A Survey. PIK
— Praxis der Informationsverarbeitung und Kommunikation, 36(1):55–64,
February 2013. [see page vii]

[RK14a] Piotr Rygielski and Samuel Kounev. Data Center Network Throughput
Analysis using Queueing Petri Nets. In 34th IEEE International Con-
ference on Distributed Computing Systems Workshops (ICDCS 2014 Work-
shops). 4th International Workshop on Data Center Performance, (DCPerf
2014), pages 100–105, June 2014. [see pages viii, 16, 87, 172, 224, 225,
and 226]

[RK14b] Piotr Rygielski and Samuel Kounev. Descartes Network Infrastructures
(DNI) Manual: Meta-models, Transformations, Examples. Technical
Report v.0.3, Chair of Software Engineering, University of Würzburg,
Am Hubland, 97074 Würzburg, September 2014. [see pages ix, 15, 16,
and 87]

[RKTG15] Piotr Rygielski, Samuel Kounev, and Phuoc Tran-Gia. Flexible Per-
formance Prediction of Data Center Networks using Automatically
Generated Simulation Models. In Proceedings of the Eighth International
Conference on Simulation Tools and Techniques (SIMUTools 2015), pages
119–128, August 2015. [see pages viii, 15, 16, 87, 172, 224, 225, 226,
and 228]

[RKZ13] Piotr Rygielski, Samuel Kounev, and Steffen Zschaler. Model-Based
Throughput Prediction in Data Center Networks. In Proceedings of
the 2nd IEEE International Workshop on Measurements and Networking
(M&N 2013), pages 167–172, October 2013. [see pages viii, 15, 16, 87,
107, 160, 161, 224, 225, and 226]

[Rot09] J. Rothschild. High performance at massive scale lessons learned
at facebook. Onine, 2009. Onlin, http://video-jsoe.ucsd.edu/asx/
JeffRothschildFacebook.asx, Accessed 06.2012. [see page 27]

[RS10] Piotr Rygielski and Pawel Świątek. Graph-fold: an Efficient Method
for Complex Service Execution Plan Optimization. Systems Science,
36(3):25–32, 2010. [see page 120]

260

http://video-jsoe.ucsd.edu/asx/JeffRothschildFacebook.asx
http://video-jsoe.ucsd.edu/asx/JeffRothschildFacebook.asx


Bibliography

[RSK16] Piotr Rygielski, Marian Seliuchenko, and Samuel Kounev. Model-
ing and Prediction of Software-Defined Networks Performance using
Queueing Petri Nets. In Proceedings of the Ninth International Conference
on Simulation Tools and Techniques (SIMUTools 2016), August 2016. [see
pages vii, 15, 16, 29, 87, 150, 188, 201, 224, 225, 226, and 237]

[RSKK16] Piotr Rygielski, Marian Seliuchenko, Samuel Kounev, and Mykhailo
Klymash. Performance Analysis of SDN Switches with Hardware
and Software Flow Tables. In Proceedings of the 10th EAI International
Conference on Performance Evaluation Methodologies and Tools (ValueTools
2016), October 2016. Paper accepted for publication. [see pages vii,
29, 149, 186, 187, and 201]

[RSS+16] Piotr Rygielski, Viliam Simko, Felix Sittner, Doris Aschenbrenner,
Samuel Kounev, and Klaus Schilling. Automated Extraction of Network
Traffic Models Suitable for Performance Simulation. In Proceedings of
the 7th ACM/SPEC International Conference on Performance Engineering
(ICPE 2016), pages 27–35. ACM, March 2016. Acceptance rate (Full
Paper): 19/57 = 33%. [see pages viii, 16, 138, 211, and 225]

[RZK13] Piotr Rygielski, Steffen Zschaler, and Samuel Kounev. A Meta-Model
for Performance Modeling of Dynamic Virtualized Network Infras-
tructures. In Proceedings of the 4th ACM/SPEC International Conference
on Performance Engineering (ICPE 2013), pages 327–330, New York, NY,
USA, April 2013. ACM. [see pages viii, 15, 87, 107, and 224]

[SBPM09] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework 2.0. Addison-Wesley Professional,
2nd edition, 2009. [see page 47]

[SCBK15a] Simon Spinner, Giuliano Casale, Fabian Brosig, and Samuel Kounev.
Evaluating Approaches to Resource Demand Estimation. Performance
Evaluation, 92:51 – 71, October 2015. [see pages 33 and 182]

[SCBK15b] Simon Spinner, Giuliano Casale, Fabian Brosig, and Samuel Kounev.
Evaluating Approaches to Resource Demand Estimation. Performance
Evaluation, 92:51 – 71, October 2015. [see page 137]

[Sch09] G. Schmied. Integrated Cisco, UNIX Network Architectures. Cisco Press,
2009. [see page 25]

[Sei03] Ed Seidewitz. What models mean. IEEE Software, 20(5):26–32, Septem-
ber 2003. [see page 40]

[SFK+17] Simon Spinner, Antonio Filieri, Samuel Kounev, Martina Maggio, and
Anders Robertsson. Run-time Models for Online Performance and
Resource Management in Data Centers. In Samuel Kounev, Jeffrey O.
Kephart, Aleksandar Milenkoski, and Xiaoyun Zhu, editors, Self-Aware

261



Bibliography

Computing Systems. Springer Verlag, Berlin Heidelberg, Germany, 2017.
[see page 229]

[SGkY+09] Rob Sherwood, Glen Gibb, Kok kiong Yap, Martin Casado, Nick
Mckeown, and Guru Parulkar. Flowvisor: A network virtualization
layer. Technical report, 2009. [see page 30]

[ŚJB+12] Paweł Świątek, Krzysztof Juszczyszyn, Krzysztof Brzostowski, Jarosław
Drapała, and Adam Grzech. Supporting Content, Context and User
Awareness in Future Internet Applications, pages 154–165. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012. [see page 229]

[SJLW11] M. Zubair Shafiq, Lusheng Ji, Alex X. Liu, and Jia Wang. Characteriz-
ing and Modeling Internet Traffic Dynamics of Cellular Devices. SIG-
METRICS Perform. Eval. Rev., 39(1):265–276, June 2011. [see pages 33
and 47]

[SK03] Shane Sendall and Wojtek Kozaczynski. Model transformation: The
heart and soul of model-driven software development. IEEE Softw.,
20(5):42–45, 2003. [see page 84]

[SKM12a] Simon Spinner, Samuel Kounev, and Philipp Meier. Stochastic Model-
ing and Analysis using QPME: Queueing Petri Net Modeling Environ-
ment v2.0. In Serge Haddad and Lucia Pomello, editors, Proceedings
of the 33rd International Conference on Application and Theory of Petri
Nets and Concurrency (Petri Nets 2012), volume 7347 of Lecture Notes
in Computer Science (LNCS), pages 388–397, Berlin, Heidelberg, June
2012. Springer-Verlag. [see pages 47 and 138]

[SKM12b] Simon Spinner, Samuel Kounev, and Philipp Meier. Stochastic Model-
ing and Analysis using QPME: Queueing Petri Net Modeling Environ-
ment v2.0. In Proc. of the 33rd Int. Conf. on Application and Theory of
Petri Nets and Concurrency, pages 388–397. Springer-Verlag, 2012. [see
page 92]

[Soc05] IEEE Computer Society. IEEE 802.1Q virtual bridged local area net-
works. Technical report, IEEE, 2005. [see page 26]

[SPE02] Standard Performance Evaluation Corporation SPEC. SPEC-
jAppServer2001 Documentation. Technical report, Sep 2002. Online,
http://www.spec.org/osg/jAppServer/, Accessed 28.08.2016. [see
pages 216 and 217]

[SSHC+13] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake,
J. Finnegan, N. Viljoen, M. Miller, and N. Rao. Are we ready for
sdn? implementation challenges for software-defined networks. IEEE
Communications Magazine, 51(7):36–43, July 2013. [see pages 30 and 31]

262

http://www.spec.org/osg/jAppServer/


Bibliography

[ŚTN15] Paweł Świątek, Halina Tarasiuk, and Marek Natkaniec. Delivery
of e-health services in next generation networks. In Thanh Ngoc
Nguyen, Bogdan Trawiński, and Raymond Kosala, editors, Intelligent
Information and Database Systems: 7th Asian Conference, ACIIDS 2015,
Bali, Indonesia, March 23-25, 2015, Proceedings, Part II, pages 453–462.
Springer International Publishing, Cham, 2015. [see page 229]

[Sto16] Jonathan Stoll. SDN-basierte Lastverteilung für Schicht-7 Anfragen
(SDN Rechenzentrum Fallstudie). Bachelor Thesis, University of
Würzburg, Am Hubland, 97074 Würzburg, Germany, March 2016.
[see pages 21, 178, and 180]

[SVL01] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Virtu-
alizing i/o devices on vmware workstation’s hosted virtual machine
monitor. In Proceedings of the General Track: 2002 USENIX Annual Tech-
nical Conference, pages 1–14. USENIX Association, 2001. [see pages 23
and 25]

[SWHB06] Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. Open
versus closed: A cautionary tale. In Proceedings of the 3rd Conference on
Networked Systems Design & Implementation - Volume 3, NSDI’06, pages
18–18, Berkeley, CA, USA, 2006. USENIX Association. [see page 74]

[SWK16] Simon Spinner, Jürgen Walter, and Samuel Kounev. A Reference
Architecture for Online Performance Model Extraction in Virtualized
Environments. In Proceedings of the 2016 Workshop on Challenges in
Performance Methods for Software Development (WOSP-C’16) co-located
with 7th ACM/SPEC International Conference on Performance Engineering
(ICPE 2016), March 2016. [see page 135]

[SZC16] Rick Salay, Steffen Zschaler, and Marsha Chechik. Correct reuse of
transformations is hard to guarantee. In Pieter van Gorp and Gregor
Engels, editors, Proc. 9th Int’l Conf Model Transformations (ICMT’16),
pages 107–122. Springer International Publishing, 2016. [see page 231]

[Tay14] Martin Taylor. A Guide to NFV and SDN. White Paper, Online, 2014.
Accessed 30.08.2016. [see page 30]

[TC98] Christopher Torrence and Gilbert P. Compo. A practical guide to
wavelet analysis. Bulletin of the American Meteorological Society, 79:61–
78, 1998. [see page 147]

[Tea14] Ryu Project Team. RYU SDN Framework - English Edition Release 1.0.
2014. eBook. [see page 180]

[TGG+12] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood.
On controller performance in software-defined networks. In 2nd
Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise
Networks and Services, Berkeley, CA, 2012. USENIX. [see page 44]

263



Bibliography

[TH00] D. Thaler and C. Hopps. Multipath issues in unicast and multicast
next-hop selection. RFC 2991, 2000. [see page 196]

[upe12] Uperf A network performance tool. Online, www.uperf.org, Accessed
28.08.2016, 2012. [see pages 160 and 179]

[Var01] Andras Varga. The OMNeT++ discrete event simulation system. In
Proc. of the European Simulation Multi-conference, pages 319–324, 2001.
[see pages 1, 37, 42, and 107]

[vKHK14] Jóakim Gunnarson von Kistowski, Nikolas Roman Herbst, and Samuel
Kounev. LIMBO: A Tool For Modeling Variable Load Intensities. In
Proceedings of the 5th ACM/SPEC International Conference on Performance
Engineering (ICPE 2014), pages 225–226. ACM, 2014. [see pages 56
and 128]

[vKHZ+15] Jóakim von Kistowski, Nikolas Roman Herbst, Daniel Zoller, Samuel
Kounev, and Andreas Hotho. Modeling and Extracting Load Intensity
Profiles. In Proceedings of the 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS 2015), May
2015. [see page 47]

[VV06] Kashi Venkatesh Vishwanath and Amin Vahdat. Realistic and respon-
sive network traffic generation. In Proceedings of the 2006 Conference
on Applications, Technologies, Architectures, and Protocols for Computer
Communications, SIGCOMM ’06, pages 111–122, New York, NY, USA,
2006. ACM. [see pages 47 and 48]

[vxl11] Vxlan: A framework for overlaying virtualized layer 2 networks over
layer 3 networks. Online, 2011. [see page 26]

[WGG10] Klaus Wehrle, Mesut Günes, and James Gross, editors. Modeling and
Tools for Network Simulation. Springer Berlin Heidelberg, 2010. [see
pages 37 and 43]

[WHKF12] Dennis Westermann, Jens Happe, Rouven Krebs, and Roozbeh Farah-
bod. Automated inference of goal-oriented performance prediction
functions. In Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2012, pages 190–199, New
York, NY, USA, 2012. ACM. [see page 33]

[WN10a] G. Wang and T. S. E. Ng. The impact of virtualization on network
performance of amazon ec2 data center. In INFOCOM, 2010 Proceedings
IEEE, pages 1–9, March 2010. [see page 1]

[WN10b] Guohui Wang and T.S.E. Ng. The impact of virtualization on network
performance of amazon ec2 data center. In INFOCOM, 2010 Proceedings
IEEE, pages 1–9, March 2010. [see page 2]

264

www.uperf.org


Bibliography

[WNPM95] C.M. Woodside, J.E. Neilson, D.C. Petriu, and S. Majumdar. The
stochastic rendezvous network model for performance of synchronous
client-server-like distributed software. Computers, IEEE Transactions on,
44(1):20–34, Jan 1995. [see pages 35 and 116]

[WP98] Walter Willinger and Vern Paxson. Where mathematics meets the
internet. Notices of the American Mathematical Society, pages 961–970,
1998. [see page 33]

[WPP+05] Murray Woodside, Dorina C. Petriu, Dorin B. Petriu, Hui Shen, Toqeer
Israr, and Jose Merseguer. Performance by unified model analysis
(puma). In Proceedings of the 5th International Workshop on Software and
Performance, WOSP ’05, pages 1–12. ACM, 2005. [see page 45]

[WSK15] Jürgen Walter, Simon Spinner, and Samuel Kounev. Parallel Simulation
of Queueing Petri Nets. In Proceedings of the Eighth EAI International
Conference on Simulation Tools and Techniques (SIMUTools 2015), August
2015. [see pages 117 and 126]

[WvHK+16] Jürgen Walter, Andre van Hoorn, Heiko Koziolek, Dusan Okanovic,
and Samuel Kounev. Asking “What?”, Automating the “How?”:
The Vision of Declarative Performance Engineering. In Proceedings of
the 7th ACM/SPEC International Conference on Performance Engineering
(ICPE 2016), March 2016. [see page 17]

[WvLW09] E. Weingartner, H. vom Lehn, and K. Wehrle. A performance compar-
ison of recent network simulators. In Communications, 2009. ICC ’09.
IEEE International Conference on, pages 1–5, June 2009. [see pages 2
and 204]

[Xco16] Xcore: Modeling for Programmers and Programming for Modelers.
Online, https://wiki.eclipse.org/Xcore, Accessed 28.08.2016, 2016.
[see page 18]

[Zho10] S. Zhou. Virtual networking. SIGOPS Oper. Syst. Rev., 44(4), 2010. [see
page 25]

[Zsc09] Steffen Zschaler. Formal specification of non-functional properties
of component-based software systems: A semantic framework and
some applications thereof. Software and Systems Modelling (SoSyM),
9:161–201, 2009. [see page 45]

265

https://wiki.eclipse.org/Xcore

	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	Motivation
	Problem Statement
	Flexible Performance Prediction
	Formal View of the Problem

	Approach and Contributions
	Primary Research Contributions
	Secondary Research Contributions
	Technical Contributions

	Application Areas
	Thesis Organization

	Foundations
	Generic Data Center Network Virtualization
	Link Virtualization
	Virtual Network Appliances
	Protocol Overlaying

	Network Virtualization Technologies
	Software-Defined Networking
	Network Function Virtualization

	Performance Modeling of Networks
	Network Traffic Models
	Black-Box and Gray-Box Performance Models
	Simulation Approaches

	Run-Time and Design-Time Aspect of Performance Prediction
	Modeling Languages, Meta-Models and Descriptive Models

	Related Work
	Related Areas
	Performance Modeling of Data Center Networks (P1)
	Performance Modeling of SDN-based Networks (P2)
	Architecture-Level Modeling of Data Center Networks (A1)
	Architecture-Level Modeling of SDN-based Networks (A2)
	Architecture-Level Performance Modeling (F0)
	Architecture-Level Performance Modeling of Data Center Networks (F1)
	Architecture-Level Performance Modeling of SDN-based Networks (F2)

	Traffic Model Extraction

	Network Performance Abstractions
	Modeling Classical Networks
	Network Structure
	Network Traffic
	Network Configuration

	Modeling SDN Networks
	Processing in an SDN Node
	Network Structure
	Network Traffic
	Network Configuration

	Flexibility of Modeling
	Flexibility in Building DNI Models
	miniDNI Meta-Model

	Integration of the DNI Abstractions with Descartes Modeling Language
	Overview of Descartes Modeling Language
	Data Center Structure
	Data Center Applications
	Traffic Workload
	Network Deployment Meta-Model
	Example

	Summary

	Model Transformations and Solving
	Model Parametrization and Validity Checking
	Model Validity Checking
	Transformation Parametrization
	In-Place DNI Transformations

	Steady-State Performance Analysis with Queueing Petri Nets
	QPN Notation
	Network Topology
	Node
	Virtual Nodes
	Traffic Source
	Routing Information
	QPN Colors and Traffic Clustering

	Abstracting DNI with miniDNI and Solving with QPN
	Transformation of DNI to miniDNI
	Transformation of miniDNI to QPN

	Solving DNI with Discrete Time Simulation
	Classical Network: OMNeT++INET
	SDN-based Network: OMNeT++generic Simulation
	Limitations of OMNeT++-based Solvers and their Transformations

	Layered Queueing Networks: Transformation and Solvers
	QPN and LQN Solvers and their Limitations
	QPN-to-LQN Transformation
	Transformation Limitations

	Selection of Optimal Solver
	Differences between Predictive Models and Solvers
	Optimal Solvers for Performance Prediction

	Summary

	Extraction and Calibration of the DNI Models
	DNI Model Extraction
	Traffic Model Extraction
	Network Traffic Generator Model
	Traffic Model in DNI
	Approach based on Multi-Scale Decomposition

	DNI Model Calibration
	Summary

	Validation
	Evaluation Goals
	Modeling Capabilities
	Prediction Capabilities
	Flexibility of Performance Prediction

	Performance Prediction of Classical Networks
	Case Study: Event-oriented Message Bus
	Validation of DNI-to-OMNeT++INET Transformation
	Validation of the DNI and miniDNI QPN Transformations

	Performance Prediction of SDN-based Networks
	Case Study: Cloud Files Backup
	Hardware Testbed and Experiment Setup
	Modeling
	Scenario #4: Upgrading Hardware to SDN
	Scenario #5: Physical and Virtual Nodes
	Scenario #6: SDN Switch Misconfiguration
	Scenario #7: Network Load-balancing with ECMP
	Scenario #8: Server Load-balancing as Network Function

	Flexibility of Performance Prediction
	Model Solving Time for non-SDN DNI Models
	Solving Time and Memory Consumption for SDN-based DNI Models
	Discussion

	Traffic Model Extraction
	Robot Telemaintenance Case Study
	Traffic in the Telemaintenance Case Study
	Evaluating Model Compactness and Extraction Errors

	Transformation QPN-to-LQN and LQN Solvers
	Example #1: Simple QPN Model
	Example #2: SPECjAppServer2001
	Analysis of Solving Time and Memory Consumption

	Summary

	Concluding Remarks
	Summary
	Open Challenges and Directions for Future Work
	Primary Research Directions
	Secondary Research Directions
	Technical Directions


	List of Figures
	List of Tables
	Acronyms
	Bibliography

