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Abstract—One central problem of machine learning is the
inherent limitation to predict only what has been learned —
stationarity. Any time series property that eludes stationarity
poses a challenge for the proper model building. Furthermore,
existing forecasting methods lack reliable forecast accuracy and
time-to-result if not applied in their sweet spot. In this paper, we
propose a fully automated machine learning-based forecasting
approach. Our Telescope approach extracts and transforms
features from an input time series and uses them to generate
an optimized forecast model. In a broad competition including
the latest hybrid forecasters, established statistical, and machine
learning-based methods, our Telescope approach shows the best
forecast accuracy coupled with a lower and reliable time-to-result.

Index Terms—Automatic feature extraction, Combining fore-
casts, Comparative studies, Forecasting competitions, Long term
time series forecasting, Time series

I. INTRODUCTION

As time series forecasting is an essential pillar in many
decision-making fields [1], automating the choice and configu-
ration of the most suitable method is a crucial challenge. In the
last years, different types of hybrid forecasting methods have
been presented to attack the “No-Free-Lunch Theorem” [2],
which was initially formulated for optimization problems,
but it also appears to be valid in the forecasting context.
While statistical models have their difficulties with complex
patterns, machine learning-based regressors struggle with non-
stationary data [3] to extrapolate for a forecast. From our
experience, recently presented hybrid methods are compute-
intense, difficult to automatically execute while susceptible
to tailoring to a given challenge data set. However, many
real-life scenarios where forecasting is needed have stringent
requirements on the speed of the forecasting mechanism and
the reliability (i.e., accuracy) of the provided forecasts. Also,
the end-to-end process of forecast execution from feature and
method selection, to data preprocessing, model building and
prediction, needs to be fully automated. Consequently, we pose
ourselves the following research question: RQ1: How to build
a generic forecasting approach that delivers accurate forecasts
while having a low time-to-result variance?

To achieve a low variance in forecast accuracy, the pre-
processing of historical data, and the feature handling (in-
trinsic extraction, engineering, and selection) must be done
in a sophisticated way. On the one hand, the selection of

the essential features is a decisive part. On the other hand,
transforming historical data may lead to simpler patterns that
usually allows more accurate forecasts [1]. Thus, the sub-
sequent research question arises: RQ2: How to automatically
extract and transform features of the considered time-series to
increase the forecast accuracy?

Addressing the questions above, our contribution in this
paper is two-fold: (i) We introduce a machine learning-based
forecasting method, called Telescope1, that automatically re-
trieves relevant information from a given time series. Based on
this information, our method extracts and transforms intrinsic
features from the input time series and then uses them to
generate a forecast model. We integrate different methods to
handle non-stationary data introduced by trends and multi-
plicative effects (Section II). (ii) In the evaluation, we compare
our approach to a set of 9 state-of-the-art forecasting methods
covering recent hybrid, as well as established machine learn-
ing, and statistical approaches. The results show that Telescope
achieves the lowest average forecast error while keeping the
time-to-result low and reliable (Section III).

II. TELESCOPE FORECASTING WORKFLOW

The assumption of data stationarity is an inherent limitation
for time series forecasting. Any time series property that eludes
stationarity, such as non-constant mean (trend), seasonality,
non-constant variance, or multiplicative effect, poses a chal-
lenge for the proper model building [4]. Consequently, our
approach called Telescope automatically transforms the time
series, derives intrinsic features from the time series, selects a
suitable set of features, and handles each feature separately.

In general, many systems are governed by human inter-
actions. That is, time series produced or observed by these
systems are subjected to human habits and are thus seasonal.
Therefore, Telescope is intended to handle seasonal time
series. In the unlikely case where no seasonality exists within
a time series, the forecasting method has a fallback that is
described at the end of this section. Figure 1 shows a high-
level view of the forecasting workflow for seasonal time series.
Telescope consists of three fundamental phases: (i) prepro-
cessing the time series, (ii) building a model that describes
the time series, and (iii) forecasting the future behavior of

1Telescope at GitHub: https://github.com/DescartesResearch/telescope
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Fig. 1. Telescope workflow for seasonal time series.

the time series. In Figure 1, orange, rounded boxes represent
actions, white boxes data, green hexagons the input of a phase,
and blue trapezoids the output of a phase.

Preprocessing: Telescope gets as input the Time Series
and starts with the Frequencies Estimation. That is, a peri-
odogram [5] is applied on the input time series to retrieve all
frequencies (i.e., the lengths of the periods) within this time
series. Then, Telescope iterates over the found frequencies
and matches each frequency with reasonable frequencies (e.g.,
daily, hourly, and yearly). If a frequency matches a reasonable
frequency with a tolerance, this frequency is considered. We
assume that reasonable frequencies match multiples of natural
time units. In accordance to RQ2, Telescope selects only the
most dominant frequencies. To this end, the Most Dominant
Frequencies are derived by putting the likely reasonable fre-
quencies to a set. More precisely, the threshold ≥ 50% of the
spectral value from the most dominant frequency.

As time series may have multiple seasonal patterns (such
as daily and weekly) [1], Fourier terms for each dominant fre-
quency are extracted from the input time series for modelling
the different patterns. These Fourier Terms are used as input
for the Model Building and Forecasting.

Forecasting methods, especially machine learning methods,
struggle with changing variance and multiplicity within a time
series [3]. To this end, Telescope performs a Box-Cox transfor-
mation [6] to adjust the the input time series. We integrated this
step as it reduces both variance and multiplicative effects of the
time series that leads to an improved forecast model [1], [4].
As the Box-Cox transformation depends on the transformation
parameter, this parameter is estimated by the method proposed
by Guerrero [7] and restricted to values ≥ 0.

Although most forecasting methods assume stationary time
series (i.e., the mean and variance of a time series do not
change over time) [8], many time series exhibit trend or/and
seasonal patterns. That is, in practice, time series are usually
non-stationary [9]. To tackle the non-stationarity, STL (Sea-
sonal and Trend decomposition using Loess) [10] is used to
split the Transformed Time Series with the most dominant

frequency into the components: Trend, Season, and Remainder.
Moreover, the Trend is used as input for the Forecasting phase
and the Season is used for both the Model Building and
Forecasting phase. Afterwards, the trend is removed to make
the transformed time series trend-stationary. The resulting De-
trended Time Series is used as as input for the Model Building.

Model Building: This phase gets as input from the first
phase the retrieved intrinsic features Fourier Terms and Season
of the time series as well as the De-trended Time Series. To
build a suitable forecast model that takes the available features
into account, we use machine learning. More precisely, we
apply XGBoost (eXtreme Gradient Boosting) [11] as machine
learning-based regression method. Consequently, Telescope
models how the De-trended Time Series can be described by
Fourier Terms and Season. The resulting Model is used as
input for the Forecasting phase.

Note that we exclude the Remainder and the Trend as
features to reduce the model error and later the forecast error.
On the one hand, the remainder of the time series is not
explicitly considered a feature. That is, the machine learning
method learns the remainder as the difference that is missing
to recreate the target value fully. On the other hand, as a strong
trend both increases the variance and violates stationarity,
the trend was removed during the first step to make the
time series trend-stationary. Moreover, we choose XGBoost as
machine learning method as boosting tree algorithms are time-
efficient, accurate, and easy to interpret [12] and XGBoost
outperforms other techniques from this field [11]. We excluded
other methods like Support Vector Machine, Random Forest,
or neuronal networks due to their unfeasible run-time [4].

Forecasting: This last phase gets as input the Trend,
Season, and the Fourier Terms from the Preprocessing phase
as well as the Model from Model Building phase. To forecast
the Time Series, each feature and the Trend have to be forecast
separately. As the Season and the Fourier Terms are recurring
patterns per definition, they can be merely continued. The
resulting Future Season and Future Fourier Terms are used
in conjunction with the Model during the XGBoost Prediction



to build the future de-trended time series.
To predict and assemble the future adjusted time series, the

Future Trend has to be added to the Future De-trended TS.
Since the Trend contains no recurring patterns, an advanced
forecasting method is required to forecast the Future Trend. To
this end, we apply ARIMA (autoregressive integrated moving
average) [13] as it is able to estimate the trend even from a
few points. More precisely, a non-seasonal ARIMA model is
used to forecast the Future Trend.

After the forecast of the Future De-trended TS and the
Future Trend, Telescope assembles both parts to the Future
Transf. Time Series. As the time series was adjusted with
the Box-Cox transformation, the Future Transf. Time Series
has to be re-transformed. To this end, the inverse Box-Cox
transformation with the identical transformation parameter
from the Preprocessing phase is applied to the Future Transf.
Time Series. Finally, the forecast of the original time series is
returned.

Fallback for Non-Seasonal Time Series: In the case that
Telescope has to forecast a non-seasonal time series, the
normal workflow cannot be used. The core idea of Telescope
is to detect recurring patterns within a time series and use this
information to retrieve features. That is, a non-seasonal time
series lacks recurring patterns. Further, STL also requires a
frequency to decompose the time series into the components:
trend, season, and remainder. Consequently, Telescope requires
another strategy for non-seasonal time series: first, Telescope
adjusts the time series with the Box-Cox transformation as
explained in the preprocessing phase. Then, an ARIMA model
without seasonality is determined to forecast the adjusted time
series. Finally, the forecast is re-transformed with the inverse
Box-Cox transformation.

III. FORECASTING METHOD COMPETITION

To evaluate the performance of our approach, we design
a broad forecaster competition based on 400 diverse and
recorded time series and compare the results against 9 existing
forecasting methods. Each forecasting method gets a single
time series from the data set as input. That is a major
difference to the M42 competition where the complete training
data set (i.e., all time series) is handed to the algorithms.
Before passing the time series to the methods, each time series
is split into history consisting of the first 80% values. Then,
each method uses the history to learn a model. Afterward,
each method forecasts the remaining 20% of the time series
at once with a single execution. That is, each method performs
multi-step-ahead forecast. The split of the time series allows
calculating the symmetric mean absolute percentage error
(sMAPE) [14] between the forecast and the original last
20% of the time series. Moreover, the comparison of the
forecasting methods also takes the time-to-result into account.
To evaluate the repeatability of the forecasting results and to
quantify the variance in the time-to-result measurement, the
whole forecasting procedure (i.e., receiving the time series,

2M4 competition: https://www.mcompetitions.unic.ac.cy/the-dataset/

estimating the parameters, building the model, and forecasting
the time series) is repeated ten times for each time series.

The experiments were deployed in our private cluster that
manages 8 identical hosts (HP DL160 Gen9 with 8 physical
cores @2.4 GHz (Intel E5-2630v3) and 2 × 16 GB RAM
(DIMM DDR4 RAM operated @1866 MHz)). More precisely,
the forecasts were conducted on 4 virtual machines (Ubuntu
18.04.3, 2 vcores, and 4 GB RAM) with R (V 3.4.4), C++ (V
11), or Python (V 3.6.7).

Methods in Forecasting Competition: For a fair and rep-
resentative evaluation, we compare Telescope against different
methods from different fields classified in three categories:
(i) hybrid forecasting methods – ES-RNN [15] (developed by
Uber and winner of the M4 competition in 2018), Hybrid [16],
and Prophet [17] (developed by Facebook); (ii) machine learn-
ing methods – ANN [18] (artificial neuronal network), Random
Forest [19], and XGBoost [11]; (iii) established statistical
methods – ETS [20], sARIMA [1] (seasonal ARIMA), and
tBATS [21]. Note that we use all methods out-of-the-box.
That is, there was no parameter tuning (recall “No-Free-
Lunch Theorem” [2]) and the methods were used with their
default settings. This also applies to the methods deployed in
Telescope.

Data Set: To have a sound and broad evaluation of
forecasting methods, a highly heterogeneous data set that
covers different aspects is required. Indeed, there are numerous
data sets available online. However, the M4 competition, for
instance, contains 100,000 time series, these time series have
low frequencies (1, 4, 12, and 24) and short forecasting
horizons (6 to 48 data points). Further, the median length
of a time series is 106 that is, for instance, too short for
machine learning methods to achieve comparable results [22].
Consequently, we assemble a data set containing 400 publicly
available time series that are divided into different domains:
gas, electricity, unemployment, calls, requests, stocks, sales
prices, exchange rate, birth rate, solar hours, temperature, etc.
The time series are publicly available and originate from 50
different sources, including also time series from M4. Further,
our data set covers different frequencies (1 to 3600) and
lengths (20 to 372,864).

Benchmarking Telescope: Table I shows the average
forecast errors based on sMAPE e, the average time-to-result
t, and the standard deviation of each measure for all 10
forecasting methods in competition averaged over all time
series and 10 repetitions. Note that the time-to-result for a
time series reflects the duration in which the forecast method
receives the time series, estimates the parameters, creates the
model, and performs the forecast. In the table, the best values
(the lower, the better) are highlighted in bold. The results
can be summarized as follows: (i) Telescope achieves the best
forecast accuracy (i.e., lowest forecast error on average based
on sMAPE). Furthermore, Telescope also exhibits the lowest
forecast error variability (i.e., standard deviation). Besides the
accuracy, Telescope is on average up to 4,500 times faster
than the three other most accurate methods. (ii) sARIMA has
the second-lowest average forecast error. However, sARIMA

https://www.mcompetitions.unic.ac.cy/the-dataset/


TABLE I
FORECAST ERROR AND TIME-TO-RESULT COMPARISON ON ALL TIME SERIES.

ANN ES-RNN ETS Hybrid Prophet Random Forest sARIMA tBATS XGBoost Telescope

e [%] 352.05 29.39 28.95 27.89 52.30 36.72 20.63 23.62 23.85 19.95
σe [%] 20685.90 40.93 64.57 89.76 98.78 309.97 35.63 76.00 34.67 31.35
t [s] 2.45 72.52 1.34 3452.53 17.59 6.43 2603.32 27.66 0.02 0.59
σt [s] 10.21 249.10 7.53 23087.56 215.07 25.62 25644.41 92.92 0.05 4.29

has the second slowest time-to-result and the worst time-to-
result variation. (iii) ES-RNN and Prophet are tailored either
to the M4 competition or to the Facebook traces and thus
exhibit mediocre average forecast error (as well as variation).
(iv) The machine learning methods show worse forecast errors
than statistical methods.

IV. RELATED WORK

Hybrid methods can be categorized into three groups of
approaches each sharing the same basic concept. The first
group Ensemble Forecasting computes the forecast as a
weighted sum of the values derived from applying multiple
methods [23], [24]. To increase the forecast accuracy, the
second group Forecast Recommendation builds a rule set for
estimating the assumed best forecasting method based on
analyzing specific features of the considered time series [25],
[26]. In the last group Time Series Decomposition, a time series
is decomposed into components, and forecasting methods are
applied to each component separately [17], [27].

V. CONCLUSION

This paper introduces Telescope, a forecasting method that
automatically retrieves relevant information from a given time
series, with a high forecast accuracy and a low time-to-result
variance. More precisely, this approach extracts intrinsic fea-
tures based on STL decomposition and Fourier terms. Further,
Telescope removes the trend component, which is forecast
separately, from the time series to handle non-stationarity time
series. Then, XGBoost is used for composing the forecast
components. In an extensive competition with 9 state-of-the-art
forecasting methods on 400 real-world time series, Telescope
achieves the lowest average forecast error while keeping the
time-to-result low and reliable.
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