
Systematic Search for Optimal Resource
Configurations of Distributed Applications

André Bauer, Simon Eismann, Johannes Grohmann, Nikolas Herbst, and Samuel Kounev
University of Würzburg, Germany

Email: andre.bauer@uni-wuerzburg.de, {firstname}.{lastname}@uni-wuerzburg.de

Abstract—With the advent of the micro-service paradigm,
applications are divided into small, distributed parts. Knowl-
edge of optimal resource configurations of such applications
is required both for autonomic resource management as well
as its assessment. Due to the high-dimensional search space
of all possible configurations, the systematic measuring of the
optimal configurations is challenging. To this end, we introduce
a search algorithm based on hill-climbing for finding all optimal
configurations in a feasible time and integrate it in an existing
measuring framework. This approach enables the assessment,
comparison and optimization of autonomic resource management
approaches for micro-service applications. The evaluation shows
that our approach is able to find all optimal configurations in the
considered scenarios, while state-of-the-art multi-objective search
algorithms do not.

Index Terms—Elasticity, Benchmarking, Multi-objective
search algorithms, Pareto optimal

I. INTRODUCTION

In recent years, the micro-service paradigm has become
very popular, along with the spread of DevOps practices
and container technologies. This shift is also evident in the
software industry, where micro-services are used more often
than other software architecture models [1]. That is, prior
applications are split now into small, individual pieces that
are deployed separately. However, this paradigm introduces
complexity for resource management due to a variety of
services and their inherent possible resource configurations.
By resource configuration, we mean the number of instances
provided to each service. To counteract this complexity, au-
tonomic management systems can be used to reconfigure the
resource allocation of the application due to occurring load [2].
On the one hand, the customers pay for the resources; on
the other hand, if an application runs on fewer resources
than needed, the performance sharply drops below usability
thresholds. Consequently, it is essential that the provided
amount of resources is neither too high, nor too low. To this
end, the adaption of the autonomic management systems is
subjected to high-quality standards.

A popular measure for the quality of those adaptions is
elasticity [3]. The core idea is to compare the provided and
required resources. While the amount of provided resources
can be easily monitored, the resources necessary for a given
load can either be estimated or measured. For the measuring
approach, the BUNGEE cloud elasticity benchmark [4] can be
used. BUNGEE automatically stresses the application and de-
termines a mapping between the load intensity, i.e., concurrent

arrival rates, and the required resources. BUNGEE is limited
to applications that consist of one service. As a consequence,
we pose ourselves two research questions: (RQ1) How can we
adapt BUNGEE for the analysis of applications consisting of
multiple services? (RQ2) How can the overhead of the search
for optimal resource configurations be reduced?

Towards addressing the questions above, our contribution is
three-fold:

1) We formulate the search problem for optimal resource
configurations as a multi-objective problem and use
Pareto optimisation (Section IV-A).

2) We adapt BUNGEE and create a search algorithm based
on hill-climbing to find all optimal resource configura-
tions (Section IV-B).

3) We compare our algorithm with three state-of-the-art
approaches in three different scenarios. In contrast to
the state-of-the-art, our approach was able to find all
optimal resource configurations.

II. FOUNDATIONS

This section starts with highlighting the term elasticity.
In Section II-B, the BUNGEE cloud elasticity benchmark is
explained. Finally, the limitations of this tool are discussed.

A. Elasticity in Cloud Computing

In cloud computing, elasticity is commonly considered as a
central characteristic of the cloud paradigm [3] and is defined
as ”the degree to which a system is able to adapt to workload
changes by provisioning and de-provisioning resources in
an autonomic manner, such that at each point in time the
available resources match the current demand as closely as
possible” [5].

Figure 1 shows the underlying idea of elasticity. The green
dashed curve is the load intensity (i.e., the concurrent request
rate), the solid black curve is the minimal resource demand to
handle the load, and the dotted blue curve shows the supplied
resources. The red areas labelled with a U represent the
under-provisioning, i.e., the demand is higher than the supply.
Analogously, the yellow areas marked with O represent over-
provisioning.

B. BUNGEE

To evaluate the autonomous resource management for dif-
ferent cloud systems, user- and system-oriented metrics can
be considered. In literature, there are many approaches on

Extending Bungee Elasticity Benchmark for Multi-Tier Cloud Applications – André Bauer 1

O

U

U

O

Motivation Approach Evaluation Conclusion

0

1

2

3

4

5

6

0 4 8 12 16 20 24

R

es
ou

rc
es

Hour of Day

Load Intensity
Resource Demand
Resource Supply

Fig. 1: The core idea of elasticity: Over-provisioning (yellow
boxes) and under-provisioning (red boxes) .

how to measure the autonomous management quality at the
system level. As we want to have comparable and precise
measurements among different systems, we suggest to use
the BUNGEE Cloud Elasticity Benchmark [4] as it considers
general and cloud-specific benchmark requirements as stated
in the work of Huppler et al. [6], [7] and Folkerts et al. [8].

1) Cloud Elasticity Benchmark: The working principle is
depicted in Figure 2. On the left side, the system under
test (SUT) is depicted. It contains the cloud that hosts the
applications and the scaling controller. On the right side,
the experiment controller (BUNGEE) with its four phases is
illustrated:

1) System Analysis: The benchmark analyses the system
under test (SUT) concerning the performance of its
underlying resources and its scaling behaviour. That is,
a discrete mapping function is generated, which deter-
mined for each load intensity the associated minimum
amount of resources required to meet the service level
objectives (SLOs).

2) Benchmark Calibration: The results of the analysis
are used to adjust the load intensity profile injected on
the SUT in a way that it induces the same resource
demand on all platforms.

3) Measurement: The load generator exposes the SUT
to a varying workload according to the adjusted load
profile. The benchmark extracts the actual induced re-
source demand and monitors resource supply changes
on the SUT.

4) Elasticity Evaluation: Elasticity metrics are computed
and used to compare the resource demand and resource
supply curves concerning different elasticity aspects.

2) System Analysis: In general, the system analysis works
by exposing the system to a specific workload (load intensity)
and checking whether all SLO are fulfilled. That is, BUNGEE
obtains the resource demand for a specific request rate. More
precisely, the system analysis maps the load intensity and
the resource demand by executing a binary intensity search
for all resource amounts starting with one resource unit and
increasing the number of resources, until the maximum load

System
Under
Test

Cloud System

Elasticity Mechanism

manage
observe

Experiment Controller

sends
requests

monitors resource
supply

1. System Analysis

2. Benchmark Calibration

3. Measurement

Load
Generator Benchmark

4. Elasticity
Evaluation

Fig. 2: BUNGEE Cloud Elasticity Benchmark.

does no longer increase or until the maximum number of
resources is reached. The binary search is done by evaluating
whether the SLO is violated for a starting load intensity
and by then iteratively doubling or halving the load intensity
until upper and lower bounds for the load intensity are found
that are narrow enough. During each load intensity test, the
application is stressed for 3 minutes with a constant request
rate. Based on this information, the demand and supply curves
can be evaluated. For the load generation, Apache JMeter1 is
used, with a plugin2 that allows sending requests at specific
timestamps. The timestamps are automatically generated from
load-profiles that are modelled using the Descartes Load
Intensity Model (DLIM) [9].

C. Limitation and Assumptions

The benchmark is restricted to horizontal scaling, and it
is assumed that all services are deployed on homogeneous
physical resources. Further, the original version of BUNGEE
only supports applications which consists of one service, and
the assumption is that all resources belong to the same service.

For applications with one service, there is only a limited
number of possible resource configurations where the binary
intensity search has to be applied. In contrast, an applica-
tion with multiple services has at maximum

∏
ni possible

resource configurations (ni is the maximum allowed number
of resources for service i). So, it would take a long time to
apply the binary intensity search for each configuration.

III. RELATED WORK

Existing work related to this paper can be divided into
elasticity metrics, approaches to measure the elasticity of a
system, and configuration analysis approaches.

Over the years, a number of elasticity metrics based on
the observed system response time have been proposed [10]–
[13]. These metrics analyse how well an elastic system can
keep an application available. However, these metrics do not
account for over-provisioning and therefore favour systems
that use more resources than necessary. Cost-based elasticity
metrics rate the elasticity of a system from an economical
perspective [8], [14]. The cost is calculated as a combination of
the cost of resources and penalties for service-level agreement

1https://jmeter.apache.org/
2https://github.com/andreaswe/JMeterTimestampTimer

violations. However, these approaches tie the elasticity of a
system to a specific cost model. Herbst et al. proposed a set
of elasticity metrics, which calculate how much autonomic
resource management deviates from the behaviour of an om-
niscient, theoretically optimal behaviour [5]. Based on this
deviation, the timing, stability and accuracy aspects of an
elastic system are quantified. These metrics are widely used
in academia and endorsed by the SPEC Research Group [5].
Therefore, we focus on this set of elasticity metrics in this
work.

The quality of automatic resource management is measured
with the elasticity. A common approach is to evaluate the
elasticity of such a management system by simulating its
behaviour (simulation-based approaches are surveyed in [15]).
Every simulation has to make assumptions about the behaviour
of the application and therefore favours elasticity approaches
that use the same set of assumptions as the simulation. Another
approach is to measure the elasticity metrics through an
intensive search. In a previous publication, we introduced
BUNGEE, a framework for benchmarking the elasticity of
cloud platforms [4]. A different benchmark that measures
elasticity is the SPEC CloudTMIaaS 20163. To the best of
our knowledge, there is currently no approach that allows
measuring the widely used elasticity metrics [5] for a micro-
services on a real system.

The performance of an application depends on the un-
derlying hardware, its parameterisation and the current load
level. Measuring the performance of every combination of
these influencing factors is infeasible. Therefore, a number of
approaches have been proposed that use statistical inference
or machine learning models to infer the performance of
unmeasured configurations from a set of exploratory measure-
ments [16]–[19]. Research in this area focuses on measurement
point selection techniques and the applicability of differ-
ent statistical inference or machine learning models. These
approaches aim to predict the performance of all possible
configurations and therefore tolerate a degree of inaccuracy.
To calculate elasticity metrics, accurate measurements of the
performance of only the ideal configurations are required.

IV. APPROACH

In this section, we first formulate the problem of how to find
optimal resource configurations. Afterwards, our approach for
finding these configurations is explained.

A. Problem Formulation

The first phase of BUNGEE is the system analysis in
which a mapping between load intensity and optimal resource
configuration is determined. By resource configuration, we
mean the number of instances provided to each service.
For applications consisting of one service it is sufficient to
find the maximum load intensity for all possible resource
configurations due to the small number of configurations. For
applications containing multiple services however, as already

3https://spec.org/cloud iaas2016/

noted in Section II-C, the approach of measuring each possible
configuration would lead to a infeasible long measurement
time in which the application cannot be used.

In the original version, the intensity-demand-mapping is
used to find the smallest resource configuration that can handle
a load intensity (i.e., a number of requests per second). For
the use case of distributed micro-services however, it is not
obvious how to define if one resource configuration should be
considered smaller than another one. As an example, imagine
an application consisting of three services: While it is clear
that c1 = (1, 1, 1) is smaller than c2 = (2, 2, 2), it is not clear
if c3 = (3, 1, 1) could be seen as smaller than c4 = (1, 2, 2).
The problem with the comparison of c3 and c4 is that the first
services of c3 has more resources than the first services of c4,
while the second and third service has fewer resources.

Our approach is not to compare configurations per service
but to consider the total amount of running resources per
configuration. This also makes sense from a practical perspec-
tive, under the assumption that resources of all services are
approximately equally expensive. Then, only the total number
of resources is essential and fewer resources are preferred both
by the user of a cloud service and the provider.

With this notion of which resource configurations are
smaller than other configurations, we can now decide which
configurations are optimal and should be part of the intensity-
demand-mapping. But when is a resource configuration con-
sidered optimal? A resource configuration with maximum load
l is optimal (I) if there is no smaller configuration that can
handle l and (II) no equally sized configuration that can han-
dle load intensity higher than l. The second condition ensures
that if r resources are needed for a load level, then a most
performant configuration with r resources is chosen. With this
definition, it can be the case that multiple configurations are
optimal, if they have equal size, have the same load processing
capabilities, and all other smaller or equal sized configurations
have smaller maximum load intensity. To this end, the function
demand(intensity) can be written as a function that maps
load intensity to sets of configurations, because there can be
multiple configurations that are optimal for a load level:

demand : R+ → P(set of possible configurations,)

with P being the powerset (i.e., the set of all subsets of a set).

B. System Analysis Search Concept

One possible way to perform the search for optimal resource
configurations is to model the problem as a multi-objective
search problem and to use appropriate algorithms. They can
be used for search problems where there are multiple objective
functions and the desired output is a so-called Pareto set.
In this set, a solution is considered to be Pareto optimal if
and only if there is no other solution, which is equally good
or better in all objective functions and better in at least one
objective function.

To this end, objective functions are designed so that the
Pareto set is the set of all configurations that are part of the

intensity-demand mapping. This can be done with a first objec-
tive function that prefers smaller resource configurations and a
second objective function that favours higher maximum load
intensity. The algorithms typically try to either minimise or
maximise all objective functions at once. Hence, the objective
functions cannot be chosen in a way in which lower values
are better for one function while higher ones are better for
the other function. However, this problem can be overcome
by using the inverse value 1/f(x) of an objective function f .

In result, the objective functions for the resource configu-
ration r = (r1, . . . , rn) for n services with maximum load l
could be set to the inverse size of the configuration f1(r, l) =
1/

∑n
i=1 ri and the maximum load f2(r, l) = l. This means

that there is no configuration with an equally good objective
f1 respectively f2 and better objective f2 respectively f1. In
other words, finding the Pareto set is equivalent to finding the
configurations for the intensity-demand-mapping.

Another way to find the optimal resource configuration is
the use of local search algorithms. To this end, we developed a
search algorithm based on hill-climbing that (i) stores multiple
current states like a local-beam-search algorithm and (ii) can
be configured to continue the search even if the direct neigh-
bours are not better than the current nodes. The neighbours of
a configuration are the set of configurations that can be created
by adding one resource to one of the services.

The pseudo-code for our adapted hill-climbing algorithm
called multi-hill-climbing is shown in Algorithm 1. The
parameter maxDepth controls how often the algorithm will
expand all neighbouring nodes, even if no node was found that
is better than the best current node. The parameter activeNodes
determines, how many of the nodes found during an iteration
are added to the set of possible solutions and further expanded
in the next iteration. A value of activeNodes = 1 means, the
algorithm will only continue with the best node, with a value
of n, the algorithm will continue with the best node and the
(n − 1)-best nodes. Both parameters are not changed during
during the search.

V. EVALUATION

In this section, we first introduce the measured scenarios and
cloud environment. Afterwards, the algorithms in competition
are highlighted. In Section V-D, we investigate how the search
parameters influence our approach. Finally, we compare our
approach against the state-of-the-art.

A. Cloud Environment and Scenarios

The experiment setup consists of multiple components: the
benchmark application, a load balancer, and the load generator.
Our experimental environment uses CloudStack4 for managing
virtualised KVM-server hosts in a cluster of identical servers
(HP DL160 Gen9 with eight physical cores @2.4Ghz and
32GB). Three of them are reserved for the application and
three additional servers to host the load balancer (Traefik5),
the CloudStack management system, and BUNGEE. For the

4CloudStack: https://cloudstack.apache.org/
5Traefik: https://traefik.io/

Algorithm 1: Multi-hill-climbing
Input: a config. problem, maxDepth, activeNodes
Result: a set of resource configurations

1 solutions← ∅
2 current← makeSet(smallest resource config.)
3 while current 6=nil do
4 solutions← solutions ∪ current
5 current← findNextBestPoints(current)
6 solutions← non-dominated configs. in solutions
7 return solutions
8

9 function findNextBestPoints(current)
10 bestScore← best load intensity in current
11 neighbours← expand(current) // neighbours

of current (incl. current)

12 for depth = 1 to maxDepth do
13 bestPoints← activeNodes-many points from

neighbours sorted by load intensity
14 if no node in bestPoints is better than

bestScore then
15 neighbours← expand(neighbours)
16 else
17 return bestPoints
18 return nil

evaluation, we use up to 12 virtual machines (Debian 4.9.110
with 2 vCPUs and 8 GB) on which the application is deployed.

V
al
id
a�

o
n

Data

UI

Fig. 3: Measured load-intensities of the application.

The stressed benchmark application represents a lightweight
micro-service application with three different services: (i) UI
service, (ii) validation service, and (iii) data service. The
application is written in Java and is deployed on a Tomcat
server (v8.5). The load generator requests data by sending
HTTP requests to the UI service. The UI forwards each
request to the validation service for checking its validity.
After that, the request is redirected to the data service. This
service provides the requested data and sends the response
to the UI for rendering the content. The measured maximal

https://cloudstack.apache.org/
https://traefik.io/

capable load intensity of the application is depicted in Figure 3
where blue colours mean lower load intensities and red colours
mean higher load intensities. Each axis shows the amount of
instances per service.

To test the system analysis in a big scale, we simulate an
application with the following formulas: the maximum load
intensity for the i-th service with ri resources was modelled
with an equation such as:

maxloadi(ri) = (ri · xi)
pi

The overall performance of the application with configura-
tion (r1, . . . , rn) is then modelled as the performance of the
least performant service:

maxload(r1, . . . , rn) = min
i=1,...,n

maxloadi(ri)

To be comparable with the application, we simulate three
services and set the following parameters for scenario Simula-
tion I and Simulation II: xI = (10, 15, 8), pI = (0.9, 1, 0.95),
xII = (4, 2, 8) and pII = (0.9, 0.8, 0.5). These configurations
are set to be a convincing model that could also realistically
come from a real-world application: Some services act as
bottlenecks that have to be scaled before other services can
be scaled. Further, if the resource configurations are sorted
by their maximum load, a conspicuous pattern emerges: each
configuration is identical to its predecessor except for one
service, where the resources have increased.

B. Algorithms in Competition

Different genetic algorithms for multi-objective problems
are discussed in [20], [21], [22]. These algorithms are all
specialised genetic algorithms using selection, crossover and
mutation operations allowing the approximation of the popu-
lation to the Pareto optimal set. In this evaluation, we focus
on NSGAII [23], SPEA2 [24], and IBEA [25] as they were
most often used in comparisons such as in [21].

As these algorithms depend on their hyper parameters, we
use for each algorithm different configurations and report in
the following only the best results. We change the parameters:
crossover- and mutation-probability (cp, mp) and distribution-
index (cdi, mdi), the maximum number of iterations (mi), and
the population size (ps). In other words, each algorithm can
be characterized by the vector p = (cp, cdi,mp,mdi,mi, ps).
That is, the vectors are pN = (0.0, 20.0, 1.0, 20.0, 2000, 20)
for NSGAII, pS = (0.0, 20.0, 1.0, 20.0, 200, 40) for SPEA2,
and pI = (0.1, 10.0, 1.0, 20.0, 1000, 30) for IBEA.

C. Investigation of the Parameters

As mentioned in Section IV-B, we developed a search
algorithm called multi-hill-climbing and add two parameters
maxDepth and activeNodes. Hence, we investigate how the
parameters influence the search performance of the algorithm.
To this end, we change both parameters while searching the
optimal resource configuration for the application. Table I
shows the percentage of found optimal configurations, the
ratio between configurations that are claimed as optimal (false
positive) and optimal configurations (true positive), and the

number of visited resource configurations while changing both
parameters. While activeNodes is set to one, the algorithm
continues the search in each step from the best node. That
is, the algorithm may not find all optimal configurations as
the next optimal solution may not be a direct neighbour
of the current optimal configuration. In Table I, this effect
occurs and the algorithm only finds 25% of the optimal
resource configurations. Further, it can be seen that with
increasing maxDepth, the number of visited configurations
increases. In a nutshell, the choice of the parameters for the
multi-hill-climbing algorithm has a significant impact on its
performance: if the values of maxDepth or activeNodes are
chosen too low, then the algorithm does not find all optimal
configurations. At the same time, the number of searches can
increase if higher values for the parameters are used.

maxDepth activeNodes Found Wrong/Found Visited

1 1 0.25 0.0 13.0
2 1 0.25 0.714 25.0
1 2 1.0 0.0 25.0
2 2 1.0 0.0 28.0
3 2 1.0 0.0 29.0
3 3 1.0 0.0 32.0

TABLE I: Investigation of the influence of the parameters.

D. Experiment Results

We compare the search of our multi-hill-climbing algorithm
MHC (maxDepth is set to 1 and activeNodes to 2) with
the multi-objective algorithms IBEA, NSGAII and SPEA2.
To this end, we conduct real-world experiments with the
application (64 possible resource configurations) and simulate
two further applications (each 1000 possible resource config-
urations). Each measurement is repeated 100 times, and the
averages are reported in Table II. For each experiment, the
percentage of found optimal configurations, the ratio between
configurations that are claimed as optimal (false positive)
and optimal configurations (true positive), and the number
of visited resource configurations are listed. For example,
the SPEA2 algorithm finds in the Simulation I 90.1% of the
optimal configurations, reports no wrongly classified optimal
configuration, and measured 216.12 out of 1000 configura-
tions. In contrast, our approach is able to find all optimal
configurations, has no false positives, and only visited 116
configurations. Across all scenarios, our approach finds all
optimal configurations, while the other algorithms find at most
90.1%, 98.5% and 82.2%. Also, our approach has no false
positives while the other algorithms have a low number of
false positives and our approach also has fewer visits.

VI. FUTURE WORK

Although our approach is able to find the optimal resource
configurations, there is still the challenge of how to rate a
unknown, non-optimal configuration: As our approach and
general multi-objective optimization approaches only mea-
sures a small subset of the vast configuration space, it is
impossible to compare a non-optimal resource configuration

Simulation I Simulation II Application

Name Found Wrong/Found Visited Found Wrong/Found Visited Found Wrong/Found Visited

MHC 1 0 116.0 1 0 60.0 1 0 25.0
IBEA 0.513 0.002 138.34 0.677 0.004 150.24 0.828 0.012 33.0
NSGAII 0.65 0.015 145.15 0.742 0.003 144.39 0.798 0.01 30.84
SPEA2 0.901 0 216.12 0.985 0 209.13 0.779 0.004 43.49

TABLE II: Comparison between the search algorithms.

that are not measured to an optimal resource configuration.
As part of our future work, we are looking into estimating
the performance of unseen configurations based on currently
measured configurations. This estimation will enable the com-
parison across autonomic resource management algorithms
that do not achieve optimal resource configurations.

VII. CONCLUSION

Nowadays, with the micro-service paradigm, applications
are split into small pieces and are deployed distributed. In
the context of automatic resource management, this paradigm
poses the challenge of finding the optimal resource configura-
tions due to the vast search space of all possible configurations.
In this article, we tackle the problem of finding the optimal
resource configurations in such an environment. To this end,
we extend the system analysis of BUNGEE by introducing a
search algorithm based on hill-climbing. In the evaluation, our
approach is able to find all optimal configurations and outper-
forms state-of-the-art multi-objective search algorithms. The
knowledge of these optimal configurations enables to quan-
tify, compare and optimise autonomic resource management
approaches for a micro-service application using established
elasticity metrics.

ACKNOWLEDGMENTS

The authors would like to thank Marcus Wilhelm for his
contribution of the experimental evaluation.

REFERENCES

[1] M. Viggiato and more, “Microservices in practice: A survey study,”
arXiv preprint arXiv:1808.04836, 2018.

[2] A. Bauer, N. Herbst, S. Spinner, A. Ali-Eldin, and S. Kounev,
“Chameleon: A Hybrid, Proactive Auto-Scaling Mechanism on a Level-
Playing Field,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 4, pp. 800 – 813, April 2019.

[3] D. C. Plummer and more, “Study: Five Refining Attributes of Public
and Private Cloud Computing,” Gartner, Tech. Rep., 2009.

[4] N. R. Herbst, S. Kounev, A. Weber, and H. Groenda, “BUNGEE: An
Elasticity Benchmark for Self-Adaptive IaaS Cloud Environments,” in
Proceedings of the 10th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems (SEAMS 2015), May 2015.

[5] N. Herbst and more, “Quantifying Cloud Performance and Depend-
ability: Taxonomy, Metric Design, and Emerging Challenges,” ACM
Transactions on Modeling and Performance Evaluation of Computing
Systems (ToMPECS), vol. 3, no. 4, pp. 19:1–19:36, August 2018.

[6] K. Huppler, “Performance Evaluation and Benchmarking.” Berlin,
Heidelberg: Springer-Verlag, 2009, ch. The Art of Building a Good
Benchmark, pp. 18–30.

[7] K. Huppler, “Benchmarking with your Head in the Cloud,” in Technology
Conference on Performance Evaluation and Benchmarking. Springer,
2011, pp. 97–110.

[8] E. Folkerts and more, “Benchmarking in the Cloud: What It Should,
Can, and Cannot Be,” in Selected Topics in Performance Evaluation
and Benchmarking, ser. LNCS, 2012, vol. 7755.

[9] J. v. Kistowski, N. R. Herbst, and S. Kounev, “Modeling variations
in load intensity over time,” in Proceedings of the Third International
Workshop on Large Scale Testing, ser. LT ’14. New York, NY, USA:
ACM, 2014, pp. 1–4.

[10] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing, “How is the weather
tomorrow?: Towards a benchmark for the cloud,” in Proceedings of
the Second International Workshop on Testing Database Systems, ser.
DBTest ’09. New York, NY, USA: ACM, 2009, pp. 9:1–9:6.

[11] B. F. Cooper and more, “Benchmarking cloud serving systems with
ycsb,” in Proceedings of the 1st ACM Symposium on Cloud Computing,
ser. SoCC ’10. New York, NY, USA: ACM, 2010, pp. 143–154.

[12] T. Dory, B. Mejı́as, P. Roy, and N.-L. Tran, “Measuring elasticity
for cloud databases,” in Proceedings of the The Second International
Conference on Cloud Computing, GRIDs, and Virtualization. Citeseer,
2011, pp. 37–48.

[13] M. Becker, S. Lehrig, and S. Becker, “Systematically deriving qual-
ity metrics for cloud computing systems,” in Proceedings of the 6th
ACM/SPEC International Conference on Performance Engineering, ser.
ICPE ’15. New York, NY, USA: ACM, 2015, pp. 169–174.

[14] S. Islam, K. Lee, A. Fekete, and A. Liu, “How a consumer can measure
elasticity for cloud platforms,” in Proceedings of the 3rd ACM/SPEC
International Conference on Performance Engineering, ser. ICPE ’12.
New York, NY, USA: ACM, 2012, pp. 85–96.

[15] A. V. Papadopoulos and more, “Peas: A performance evaluation frame-
work for auto-scaling strategies in cloud applications,” ACM Trans.
Model. Perform. Eval. Comput. Syst., vol. 1, no. 4, pp. 15:1–15:31,
Aug. 2016.

[16] M. Faber and J. Happe, “Systematic adoption of genetic program-
ming for deriving software performance curves,” in Proceedings of the
3rd ACM/SPEC International Conference on Performance Engineering.
ACM, 2012, pp. 33–44.

[17] Q. Noorshams, D. Bruhn, S. Kounev, and R. Reussner, “Predictive
performance modeling of virtualized storage systems using optimized
statistical regression techniques,” in Proceedings of the 4th ACM/SPEC
International Conference on Performance Engineering, ser. ICPE ’13.
New York, USA: ACM, 2013, pp. 283–294.

[18] D. Westermann, J. Happe, R. Krebs, and R. Farahbod, “Automated infer-
ence of goal-oriented performance prediction functions,” in Proceedings
of the 27th IEEE/ACM International Conference on Automated Software
Engineering. IEEE, 2012, pp. 190–199.

[19] E. Thereska, B. Doebel, A. X. Zheng, and P. Nobel, “Practical per-
formance models for complex, popular applications,” SIGMETRICS
Performance Evaluation Review, vol. 38, no. 1, pp. 1–12, 2010.

[20] R. Marler and J. Arora, “Survey of multi-objective optimization methods
for engineering,” Structural and Multidisciplinary Optimization, vol. 26,
no. 6, pp. 369–395, 2004.

[21] C. von Lücken, B. Barán, and C. Brizuela, “A survey on multi-objective
evolutionary algorithms for many-objective problems,” Computational
Optimization and Applications, vol. 58, no. 3, pp. 707–756, 2014.

[22] A. Zhou and more, “Multiobjective evolutionary algorithms: A survey
of the state of the art,” Swarm and Evolutionary Computation, vol. 1,
no. 1, pp. 32–49, 2011.

[23] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
Nsga-ii,” in International conference on parallel problem solving from
nature. Springer, 2000, pp. 849–858.

[24] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength
pareto evolutionary algorithm,” TIK-report, vol. 103, 2001.

[25] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective
search,” in International Conference on Parallel Problem Solving from
Nature. Springer, 2004, pp. 832–842.

	Introduction
	Foundations
	Elasticity in Cloud Computing
	BUNGEE
	Cloud Elasticity Benchmark
	System Analysis

	Limitation and Assumptions

	Related work
	Approach
	Problem Formulation
	System Analysis Search Concept

	Evaluation
	Cloud Environment and Scenarios
	Algorithms in Competition
	Investigation of the Parameters
	Experiment Results

	Future Work
	Conclusion
	References

