
Addressing Shortcomings of Existing DDoS Protection Software
Using Software-Defined Networking
Lukas Iffländer, Stefan Geißler, Jürgen Walter,

Lukas Beierlieb, Samuel Kounev

{firstname.lastname}@uni-wuerzburg.de
Würzburg University, Würzburg, Germany

Abstract
DDoS attacks are becoming increasingly frequent and
violent. A typical type of attack is the TCP SYN
flood, inhibiting a server from opening new TCP con-
nections. Current countermeasures to this attack in-
troduce inefficiencies by either reducing computing
resources on the service host or creating new net-
work bottlenecks. In this work, we present a novel
approach to mitigate TCP SYN flood attacks using
software-defined networking. We perform an initial
evaluation of a proof-of-concept implementation that
exhibits performance measures close to existing coun-
termeasures while circumventing their inefficiencies.

1 Introduction
Network security is essential to provide reliable
services on the web. Distributed-Denial-of-Service
(DDoS) attacks regularly interrupt services and cause
considerable financial damage to service providers.
Moreover, attacks are becoming more frequent and
complex [8].

A widespread attack is the TCP SYN flood, which
exploits the TCP three-way handshake. By sending
countless requests with forged IPs, the TCP backlog
is filled with half-open connections. Establishing new,
benign connections is consequently no longer possible.
The existing solutions SYN cookies and SYNPROXY
offer ways to protect against these attacks. However,
SYN cookies create additional load on the actual ser-
vice host, and SYNPROXY requires the routing of
active connections over the proxy host.

In this work, we present a solution using Software-
defined Networking (SDN) and Network Function Vir-
tualization (NFV) to circumvent these limitations.
After describing our approach and its prototype im-
plementation, we perform an initial evaluation. Pre-
liminary results show the validity of the proposed
mechanism as well as promising results regarding at-
tack mitigation performance.

The remainder of this paper is structured as fol-
lows: In Section 2 we describe the TCP SYN flood
attack and the already existing defenses. Next,
Section 3 describes our approach, accompanied by

Figure 1: SYN Flood Attack Pattern.
the corresponding implementation in Section 4. We
present preliminary results in Section 5 and provide
an overview of the related work in Section 6. Finally,
we conclude the paper in Section 7.

2 SYN Floods and Existing Defenses
TCP uses a three-way handshake to establish con-
nections. A SYN packet by the client is answered with
a SYN-ACK packet by the server which replies with
an ACK packet. The completion of these steps con-
cludes the establishment of a new connection and is
necessary to exchange the Initial Sequence Numbers
(ISNs) for server and client.

TCP SYN Floods exploit the fact that the trans-
mission control block (TCB) stores all the information
about a connection in a data structure referred to as
the backlog. However, the backlog does not only store
fully established connections. Instead, half-open con-
nections are stored as well, once the SYN packet is re-
ceived. This property allows an attacker to send SYN
packets with arbitrary source addresses, thus hiding
his identity and avoiding connection limits, while still
occupying the servers backlog, resulting in legitimate
SYN packets not being able to be handled. Figure 1
illustrates this for an attacker that sends SYN packets
with spoofed source addresses, to which the server’s
SYN-ACK responses are transmitted. The Linux ker-
nel provides the two following well-known defense ap-
proaches.

SYN Cookies eliminate the need for half-open con-
nections in the backlog. To this end, SYN Cookies



Client VNF Server Network

SYN
SYN-ACK

ACK new connection

new connection

data
data

Figure 2: Connection Establishment Process.

encode the required information (client ISN, maxi-
mum segment size, ...) into the SYN-ACK packet.
After receiving the ACK response, SYN cookies de-
code this information from the received packet. To
prevent spoofing ACK responses the connection prop-
erties are hashed together with a secret number and a
counter increasing with time. On reception of an ACK
packet, the server calculates the hashes for the last val-
ues of the time counter. Only if the packet matches,
a TCB addition to the backlog occurs. SYN cookies,
therefore, prevent the backlog from overflowing but
requires additional computing resources for the hash-
ing. Thus, using SYN cookies diverts resources from
the actual service running on the host.

SYNPROXY acts as a middleman between clients
and a server. Clients negotiate a connection with the
SYNPROXY instead of the server. If an ACK packet
successfully opens a connection, the SYNPROXY ne-
gotiates a new TCP connection with the server. Since
server and client are extremely unlikely (1 in 232) to
have the same ISN, all further traffic has to travel
via the SYNPROXY where sequence and acknowl-
edge numbers are modified to match the numbers of
the other party. The existing SYNPROXY solution
has two major drawbacks. First, the detour creates
a significant overhead which can make the proxy a
bottleneck network-wise. Second, the approach is not
stateless since the proxy has to store open connec-
tions.

3 Approach
In our approach, we improve the ideas behind SYN
Cookies and SYN PROXY using Software-defined
Networking (SDN) and Network Function Virtualiza-
tion (NFV). SDN separates the data plane of a net-
work from the control plane, allowing for application-
specific traffic routing. NFV describes the realiza-
tion of network functions as software running on top
of COTS (commercial off-the-shelf) hardware, as op-
posed to dedicated, specialized hardware components.

Connection establishment, as usual, starts off with
a client sending a SYN packet to the server. Instead of

Figure 3: Architecture of VNF Protection Module.

delivering it to the server, the network per default for-
wards the packet to our new VNF, which then replies
with a SYN-ACK packet using the same methodology
used in SYN cookies. This packet looks like it origi-
nates from the server. If the client then replies with
a correct ACK message the VNF establishes the con-
nection to the server. The VNF encodes the ISN for
the server to use in the payload of the SYN packet.
The connection establishment completes with a SYN-
ACK from the server and an ACK from the VNF.
Next, the network is reconfigured to no longer send
traffic for the established connection to the VNF but
instead to the server. Finally, the client and the server
can directly exchange data. Figure 2 depicts this con-
nection establishment process.

Using this approach has many advantages com-
pared to existing solutions. Separation of service host
and protection is possible, similar to SYNPROXY,
but established connections no longer have to pass
through the additional machine but are instead sent
directly to the server, eliminating the proxy as a pos-
sible network bottleneck. The VNF itself is stateless.
This property in combination with the separation of
the service and the protective environment allows for
the addition of more VNFs if required. Thus, the pro-
tection system becomes independently scalable with-
out the need to modify the server, as would be the
case with SYN cookies.

4 Implementation
In this work, we have realized a prototype of this sys-
tem. Figure 3 shows the architecture of our proto-
type implementation. Incoming traffic is analyzed by
an Intel DPDK1 application, which also handles the
connection establishment with clients and the server.
This application reports newly established connec-
tions to a Python application responsible for deriving
the required REST request for the SDN controller to
modify the network accordingly. The request is then
handed to the kernel network stack and sent to the
server.

1https://www.dpdk.org/

2

https://www.dpdk.org/


External
Network 

SDN-enabled 
Switch 

VNF

Service 
Host 

SDN 
Controller 

Figure 4: Test Bed Network Topology.

5 Preliminary Results
We have performed a preliminary evaluation to val-
idate the feasibility of our approach. Figure 4 de-
scribes the test bed including an SDN-capable switch
between the external network and our server, the ser-
vice host. We connect our DDoS Protection VNF to
this gateway switch, which is configured by a regular
SDN controller.

Table 1 shows the fraction of established TCP con-
nections for different protection settings while be-
ing unattacked and during a SYN flood attack us-
ing hping3. At each experiment, we try to estab-
lish 50 TCP connections with the server which was
repeated 50 times. Without protection, the attack
completely disables the server, blocking new connec-
tions. In contrast, our prototype allows establishing
60% connections on average. While this is still short
of the 70% connections possible using SYN cookies,
these are promising results for a first prototype.

6 Related Work
Related research can be divided into SDN-based
DDoS protection and other security mechanisms [3,
4, 5], and NFV to improve network security [1, 2, 6].

Mousavi and St-Hilaire [4] evaluate the impact of
DDoS attacks on controller resources. Their proposed
protection mechanism is based on the entropy of des-
tination addresses and can detect attacks within the
first 500 arriving packets. Lim et al. [3] propose a
controller application to detect DDoS attacks simi-
lar to our proposal. However, their centralized and
controller application based approach puts additional,
potentially malicious, load towards a crucial element
of every software-based network. Wang et al. [5] eval-
uate the usability of SDN to improve DDoS protection
in cloud environments. DaMask is an anomaly-based
thread detection system that has been shown to have
a detection rate of up to 89%. However, the applica-
tion of DaMask is limited to cloud environments and
requires changes to existing infrastructures.

Efforts such as FRESCO [1] and AvantGuard [2]
aim at providing frameworks for the rapid design of
security mechanisms. VFence [6] is a scalable agent-
based approach to detecting and mitigating DDoS at-
tacks in softwarized networks using TCP connection

no attack SYN flood attack
protection all without SYN VNF
mode modes protection cookies (new)
connectivity 100% 0% 70% 60%

Table 1: Fraction of Established TCP Connections.

establishment spoofing, similarly to our approach.
However, VFence, similar to SYNPROXY, has two
limitations: i) the traffic is always transported over
the VNFs and ii) the VNFs are stateful.

7 Conclusion
DDoS attacks are becoming increasingly frequent and
violent. In this work, we presented a new approach
to protect against TCP SYN flood attacks using SDN
and NFV. Our SDN-enabled network temporarily for-
wards traffic to a security VNF that handles the TCP
handshake and subsequently triggers flow reconfigura-
tion in order to forward traffic to the actual server. We
briefly describe the VNF implementation and show
promising results with successful connection rates sim-
ilar to existing solutions while circumventing ineffi-
ciencies of related approaches. In the future, we plan
to extend our prototype into a ready-to-use solution
and integrate it into our attack-aware function man-
agement system [7].

References
[1] S. W. Shin et al. “Fresco: Modular composable secu-

rity services for software-defined networks”. In: 20th An-
nual Network & Distributed System Security Symposium.
NDSS. 2013.

[2] S. Shin et al. “Avant-guard: Scalable and vigilant switch
flow management in software-defined networks”. In: Pro-
ceedings of the 2013 ACM SIGSAC conference on Com-
puter & communications security. ACM. 2013, pp. 413–
424.

[3] S. Lim et al. “A SDN-oriented DDoS blocking scheme
for botnet-based attacks”. In: Ubiquitous and Future Net-
works (ICUFN), 2014 Sixth International Conf on. IEEE.
2014, pp. 63–68.

[4] S. M. Mousavi and M. St-Hilaire. “Early detection of
DDoS attacks against SDN controllers”. In: Computing,
Networking and Communications (ICNC), 2015 Interna-
tional Conference on. IEEE. 2015, pp. 77–81.

[5] B. Wang et al. “DDoS attack protection in the era of cloud
computing and software-defined networking”. In: Com-
puter Networks 81 (2015), pp. 308–319.

[6] A. Jakaria et al. “Vfence: A defense against distributed
denial of service attacks using network function virtual-
ization”. In: Computer Software and Applications Con-
ference (COMPSAC), 2016 IEEE 40th Annual. Vol. 2.
IEEE. 2016, pp. 431–436.

[7] L. Iffländer et al. “The Vision of Self-aware Reordering of
Security Network Function Chains”. (Vision Paper). In:
Proceedings of the 2018 ACM/SPEC International Con-
ference on Performance Engineering. ICPE ’18. Berlin,
Germany: ACM, 2018, pp. 1–4.

[8] A. Networks. Insight into the Global Threat Landscape.
[Online; accessed 30. Aug. 2018]. July 2018.

3


	Introduction
	SYN Floods and Existing Defenses
	Approach
	Implementation
	Preliminary Results
	Related Work
	Conclusion

