
Bachelor Thesis

Performance and Security Influ-
ence of Augmenting DDoS Pro-
tection Systems using SDN and
NFV

Lukas Beierlieb
Department of Computer Science
Chair for Computer Science II (Software Engineering)

Prof. Dr.-Ing. Samuel Kounev
First Reviewer

M.Sc. Lukas Iffländer
First Advisor

Submission
16. January 2018 www.uni-wuerzburg.de

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Wuerzburg, 16.01.2018

. .
(Lukas Beierlieb)

v

Deutsche Zusammenfassung

Cyberangriffe stellen eine große Gefahr für die moderne, technologisierte Gesellschaft dar.
Distributed Denial of Service-Angriffe sind in der Lage die Erreichbarkeit beliebiger Di-
enste im Internet zu verhindern ohne auf Sicherheitslücken im Zielsystem angewiesen zu
sein. Heutzutage sind, unter anderem wegen dem Internet of Things, mehr Geräte an das
Internet angeschlossen als je zuvor, was die Gefahr großer DDoS-Attacken noch erhöht.

Teilweise belasten existierende Verteidigungsansätze den Server, der den zu schützenden
Dienst anbietet, direkt, teilweise ist der Schutzmechanismus auf einem anderen System
untergebracht. In diesem Fall muss aber der ganze Netzwerkverkehr des Anwendungs-
Servers von diesem verarbeitet und weitergeleitet werden.

Es gibt diverse Möglichkeiten diese Abschwächungstaktiken zu verbessern, im einfachsten
Fall mit schnellerer Hardware. Ein anderer Ansatz ist die Verlagerung in den Bereich
der Internetanbieter, sodass Attacken erkannt und verhindert werden können, bevor sie
ihr Ziel überhaupt erreichen. Diese Arbeit präsentiert einen neues Konzept zur Bekämp-
fung von SYN-Flut-Angriffen, das durch Verwendung der modernen Netzwerktechnologien
SDN und NFV einerseits den Anwendungsserver nicht belastet und andererseits das Vertei-
dungssystem nicht mit Paketen akzeptierter TCP-Verbindung unnötig stört, indem diese
direkt zum Dienst durchgeleitet werden. Darauf aufbauend wurde zusätzlich eine Net-
zwerküberwachung entwickelt, die Nutzer mit ungewöhnlich hoher Bandbreitennutzung
einschränkt.

Der Inhalt dieser Arbeit besteht aus einer Einführung in die technischen und konzep-
tionellen Grundlagen, einem Überblick über existierende Lösungen, der Vorstellung des
entwickelten Ansatzes, sowie dessen Implementierung, Validierung und Evaluation.

v

Contents

1 Introduction 1

2 Background 3
2.1 Distributed Denial of Service Attacks . 3

2.1.1 Service Crashing . 3
2.1.2 Network Occupation . 3
2.1.3 Other Resource Occupation . 4

2.2 Software Defined Networking . 5
2.3 OpenFlow . 6
2.4 Network Function Virtualization . 7

3 Related Work 9
3.1 Existing Implementations in the Linux Kernel 9

3.1.1 SYN Cookies . 9
3.1.2 SYNPROXY . 10

3.2 Related Papers . 11
3.2.1 VFence . 11
3.2.2 VGuard . 11
3.2.3 StateSec . 12

4 Approach 15
4.1 SYN Flood Defense . 15
4.2 HTTP Flood Defense . 17

5 Implementation 19
5.1 Kernel Modification . 19
5.2 DPDK Application . 21
5.3 Python Application . 34

6 Evaluation 37
6.1 Testbed Architecture . 37
6.2 Behavior Validation . 41
6.3 SYN Flood Defense Performance . 46
6.4 Influence on Quality of Service . 47

7 Conclusion 51

Bibliography 53

Appendix 55

vii

1. Introduction

Cyber attacks are a major threat to our society. Lloyd’s CEO Inga Beale values the cost
of cyber attacks at $400 billion every year [llo15]. One group of such cyber attacks are the
so called Distributed Denial of Service attacks, consisting of up to thousands and millions
of attackers. These attacks have been a problem in IT security for a long time and still
are an ubiquitous threat today.

The main problem with DDoS attacks lies in the fact that there is no definite defense
against them, as they do not necessarily depend on security vulnerabilities, but can rely
on brute force - which is in this case network bandwidth. An arms race has developed
between attackers, trying to increase their bot nets in size to generate higher bandwidth
attacks, and service providers, improving their mitigation countermeasures to withstand
those attacks.

Existing work presents approaches that have realized ways to counter attacks locally on
the defended server [Edd07], as well as using a dedicated protection server [syn]. However,
this either creates additional load for the used server or all traffic has to be routed via the
additional server, creating a new target for attack and thus an additional potential bottle
neck.

There a multiple ways to achieve better protection results, e.g. by running existing meth-
ods, but with faster hardware or by moving the defense systems from local networks to
the internet service provider space, mitigating attacks even before they reach their tar-
get. This bachelor thesis introduces a defense mechanism operating locally in the victim’s
network and utilizing the modern network architecture paradigms Software Defined Net-
working and Network Function Virtualization. Since this thesis is embedded in the context
of security of cloud services for Internet of Things (IoT) devices, where communication
via REST APIs is common, the developed defense mechanism is oriented towards HTTP
and TCP based attacks. We propose a new approach against SYN flood attacks, that puts
no additional load on the application server, but also takes burden of the defense system
by rerouting packets of established connections directly to the server. To the best of our
knowledge, this is the first work to introduce this concept, from us named TCP Handshake
Remote Establishment And Dynamic rerouting using SDN (THREADS). Along with that,
a network monitoring mechanism that throttles clients with abusive bandwidth usage has
been developed.

For the evaluation of our proposed mechanism we lay out a testbed consisting of attackers,
valid clients, a server, as well as the introduced security VNF and a SDN controller in a

1

2 1. Introduction

realistic network structure. The server and the security VNF are deployed inside an SDN
enabled network. We perform behavior validation and performance tests under various
conditions.

The remainder of this thesis is structured as follows: After the introduction in this chapter
we introduce the technical background for our approach in Chapter 2. In Chapter 3 a
brief overview of the related work is given. Then, our approach and its enhancements over
existing solutions are explained in Chapter 4. The actual implementation is described in
Chapter 5. Validation and performance evaluation are described in Chapter 6 and Chapter
7 concludes this thesis.

2

2. Background

2.1 Distributed Denial of Service Attacks

DoS stands for Denial of Service [HR06], an IT security threat that eliminates or reduces
a service’s availability to its clients, typically only as long as it is active. DDoS attacks
are Distributed DoS attacks, i.e. there is not a single attacker but many. The following
sections introduce common forms of DDoS attacks and discuss their respective relevance
for this thesis.

2.1.1 Service Crashing

An obvious way of preventing a service from serving clients is to stop it from running.
In this case, the service will not be accessible even after the end of the active attack
until the service is restarted. While this type of attack is very effective, it is not always
applicable, because there has to be a vulnerability that allows crashing the service partially
or completely and that has to be exploitable for the attacker, who is usually limited to
reaching the service with network packets.

The Ping of Death attack is a classical implementation of this type. RFC 791 defines
the maximum size of an IPv4 packet as 65535 bytes [P+81a]. A malformed ping packet
exceeding this size sent from the attacker usually will not be sent as a whole (e.g. because
of Ethernet’s 1500 maximum transmission unit) but as multiple fragments. If the kernel
of the system receiving the packets assumes everybody else respects the standard and
never checks actual packet sizes, a buffer overflow can happen by assembling a oversized,
fragmented packet, effectively crashing the whole operating system.

This type of attack is not considered further, as protection either happens by removing the
bugs or by using an Intrusion Prevention System (IPS), which scans for harmful packets
and prevents them from reaching their actual target.

2.1.2 Network Occupation

Network occupying attacks on the other hand can be successful on every target, indepen-
dent of the software they are running. As the name implies, the attacker or - most of the
time - the attackers send so many packets to the victim that his link to the Internet is
saturated. Consequently, there is no link capacity left to transmit packets from legitimate
clients to the target and the Internet Service Provider (ISP) has to drop the packets be-
fore they even reach the target network. Which types of packets are used for this does not

3

4 2. Background

matter, there just have to be enough. Also, with this attack not only single services are in
danger. If spam packets saturate important links inside the Internet infrastructure, whole
parts of it can be rendered unreachable. ”Reddit, Twitter, Etsy, Github, SoundCloud,
Spotify and many others were all reported as being hard to reach by users throughout the
attack, which lasted about two hours.” [dyn]

The defense system developed in this work is positioned in the local network, thus it cannot
offer protection against link saturation.

2.1.3 Other Resource Occupation

Besides network link capacity, there are other resources necessary to serve client requests,
e.g. processing time, memory or storage capacity. This type classifies attacks which do
not exhaust network links - therefore packets sent from legitimate clients can actually
reach their destination - but allocate most part of another resource, preventing the client
requests from being processed and answered.

That such an attack does not have to involve a flood of packets is demonstrated by the
Slow Loris attack. In this case, the amount of open connections a web server can handle
at the same time is the resource that is consumed. The attack consists of opening up
many connections and keeping them open for as long as possible by only sending packets
just before the connection times out. If the server doesn’t configure limits for concurrent
connections from a single IP or minimum bandwidth requirements, a single attacker can
easily occupy a server, even with small bandwidth.

HTTP floods aim to send a server so many requests that not all of them - together with
legitimate requests - cannot be processed. Therefore, attacks usually do not request easy
tasks like static web pages but rather requests that are expensive for the service to answer,
e.g. those with dynamic content creation or many database requests. With IoT cloud
services as the context of this thesis and HTTP based REST services being common in
this field, the defense system proposed is designed to mitigate HTTP floods.

The other attack type we focus on is the TCP SYN flood [Edd07]. To understand it, some
information about the Transmission Control Protocol (TCP), as defined in RFC 793, is
required. ”TCP is a connection-oriented, end-to-end reliable protocol designed to fit into
a layered hierarchy of protocols” [P+81b]. For applications using TCP as an underlying
transport protocol, this means they do not have to work with individual packets, but
have to explicitly open and close connections and data is perceived as a stream of bytes
flowing from one connection end to the other. Those byte streams have two important
properties: Everything that has been sent has to arrive on the other side and it has to
arrive exactly in order. This behavior is not automatically fulfilled, because the protocol
splits the information stream into segments and sends them individually. On the way,
packet loss might occur or some packets might overtake earlier sent ones. To solve these
problems, each packet also contains a sequence number in its packet header, which increases
with every byte sent so far. Together with the sequence number, every packet has an
acknowledgement number, telling the other connection end up to which sequence number
it its received packets already. When a packet is not acknowledged after some timeout, it
is resent, preventing packet loss. Also, packets received in the wrong order can easily be
reordered using their sequence numbers. Though, it would be problematic to send the first
packet like this, because it would not be determinable whether it really is the first packet,
carrying an initial sequence number (ISN), or if it is not and the sequence number should
actually follow up previously sent, lost packets. Therefore, before any data is sent over a
TCP connection, both sides transmit their ISN before any data is sent. This is called the
TCP three-way handshake, which is realized as shown in Figure 2.1. One connection end
(from now on called the server) is actively listing for new connection requests. The other

4

2.2. Software Defined Networking 5

Figure 2.1: TCP handshake Figure 2.2: SYN flood

party (further on called the client) requests a connection by sending a SYN packet to the
server. SYN is an abbreviation for ”synchronize”, i.e. the sequence number of the packet is
the client’s ISN for this connection. The server responds to this with an SYN-ACK packet.
”synchronize”, because it tells the client which sequence number the server is going to use
and ”acknowledge”, because the server acknowledges having received the previous SYN
packet. In the third step, the client confirms the server’s choice of ISN with an ACK
packet. With both ISNs known to both ends, data packets can now be safely transmitted,
increasing the sequence number for every byte sent. TCP SYN floods exploit the fact that
all the information about a connection has to be stored in a transmission control block
(TCB) in a data structure referred to as the backlog. While it is possible to fill up the
backlog with established connections, similar to what Slow Loris attack does, this requires
the attacker to use his actual IP address as the source address of the packets, because he has
to be able to receive the SYN-ACK packet in order to fully establish the connection with an
ACK packet. With that, a simple limit for concurrent connections that one source can open
can prevent an attack if the attacker count is low. Also, the attacker can be identified if he
is using his actual IP address. However, not only fully established connections’ TCB are
stored in the backlog, already half-open connections’ are. These are created when a SYN
packet is received and they become established connections when the ACK packet arrives
later. This allows the attacker to send SYN packets with arbitrary source addresses, thus
hiding his identity and avoiding connection limits, while still occupying the servers backlog,
resulting in legitimate SYN packets not being able to be handled. Figure 2.2 illustrates this
for one attacker who sends SYN packets with spoofed source address, to which the server’s
SYN-ACK responses are transmitted. Multiple existing countermeasures are described in
the Related Work chapter, sections 3.1.1, 3.1.2 and 3.2.1.

2.2 Software Defined Networking

Traditional networks consist of interconnected packet forwarding devices like routers and
switches. All the control logic that is necessary for a device’s operation is built into the
device itself and configuration changes have to be executed via proprietary interfaces.
The significant drawback of such a design is its inflexibility. With all the control logic
distributed between all the network devices, configuration changes require access to every
involved instance, each with possibly and different interface and access protocol. Given, for
the time when network participants also were very static that was not much of a problem,
but with today’s virtualized cloud infrastructure, which is highly dynamic, networks have
to be flexible as well.

Software Defined Networking (SDN) [JP13] is a network paradigm, achieving exactly that.
The distributed controlling intelligence is removed from individual devices and centralized

5

6 2. Background

in SDN controllers, which are forming the network’s control plane. The traditional devices
are replaced with ”dumb” counterparts which have a standardized interface to allow being
remote controlled from the control plane. As now their only task is forwarding packets as
they are told to do, they are called the data plane. Protocols designed for controller-device
communication are called Southbound APIs. While this design already allows on the fly
modification and cooperation between devices, SDN goes even further. Northbound APIs
define communication protocols between the control plane and the applications that are
using the network.Thus, SDN controllers are not limited to using information collected
from the forwarding devices to decide on network configuration, but they are also able to
dynamically react to the demands the applications using the network have.

An example utilizing those functionalities is dynamic function chaining. Instead of having
a fixed order in which packets traverse some network functions like firewalls or intrusion
detection systems, SDN enables the possibility to have the functions report runtime statis-
tics to a SDN controller, who then in real time evaluates the information, decides on a
traverse order and configures the network to realize the planned packet flow. It is also
possible to add and remove functions on demand.

Not important for this thesis and thus not further discussed are the west- and eastbound
APIs, which are interfaces for communication between SDN control planes or between
SDN and traditional networks.

Figure 2.3: SDN Layers

2.3 OpenFlow

OpenFlow [MAB+08] is a southbound API, a protocol defining communication between
OpenFlow enabled switches and OpenFlow controllers. An OpenFlow switch’s behavior is
defined by its flow table. Each flow in this table consists of three parts:

• Match: Here, multiple criteria can be used to define which packets belong to the
flow. Criteria are IPv4 source and destination address, protocol type, TCP/UDP
source and destination port, MAC addresses, etc.

• Action: This defines what happens with an incoming packet that match the flow’s
criteria. Possible actions are sending the packet as is out on one ore more ports,
packet modification before forwarding, sending the packet to the controller, etc.

• Stats: The stats contain information about the amount of packets and bytes that
were matched by the flow.

6

2.4. Network Function Virtualization 7

Alongside these, each flow has additional properties, e.g. to resolve what happens when
multiple flows match a packet, each flow has a priority, so the action of the highest prior-
itized flow is executed. Hard timeouts define a maximum life time, after which flows are
removed, while soft timeouts specify a duration in which no matches have to happen in
order to remove the flow.

2.4 Network Function Virtualization

Network functions work with packets that are not addressed to them but that have to
pass them in order to reach their actual destination. Their functionalities differ greatly
- switches, routers, load balancers, firewalls, intrusion detection and protection systems
and network monitoring devices are network functions. Because high throughput, high
efficiency and low latency are often demanded, they were usually implemented as Applica-
tion Specific Integrated Circuits (ASIC). While application tailored hardware devices meet
previously mentioned demands, they have some drawbacks rendering them undesirable for
modern, dynamic network infrastructure. Virtual Network Functions (VNF) [JP13] have
the same functionality as their hardware counterparts but are implemented as software
running in Virtual Machines (VM) on Commercial off-the-shelf (COTS) hardware.

This has several advantages: ASICs are expensive to develop and produce, especially
because they are usually low production volume and have to be tested and validated
as much as possible because mistakes cannot be fixed afterwards. Software for COTS
hardware is easier and faster to develop, no production is necessary, keeping costs down.
For production use they have be well tested, too, but fixes and updates are possible later.
Another advantage is the flexibility in deployment. ASICs, as physical devices, have to
placed in a physical location and connected to power and data cables. If the devices
functionality is not needed, the hardware cannot be used for other purposes - or if the
devices cannot satisfy demands, even only temporarily, more devices have to be bought.
VNFs on the other hand are very flexible, they can be started by spinning up a VM on
a server with available resources, can be shut down when they are not needed, allowing
the resources to be used by other programs or VMs, can be migrated to another server for
improved positioning, and if one instance is not enough to handle demand, more can be
spun up.

While VNFs are not capable of the same performance figures as dedicated hardware,
some developments improved virtualization and packet processing to a more competitive
level. One of those key technology is PCI passthrough. Usually hypervisors either emu-
late hardware devices for their hosted VMs or rely on paravirtualization techniques. Both
approaches induces a processing overhead and with possible throughputs of multiple mil-
lion packets per second every slowdown is noticeable. PCI passthrough allows to unbind
actual devices from the host and provide VMs direct access to them. Apart from Net-
work Interface Cards (NIC), this technology is used to supply computational heavy VMs
with GPUs [WYK+14]. However, as hardware devices are usually not built to be used
by multiple machines, i.e. one device is either controlled by the host or by a single VM.
This problem is solved by Single Root - I/O Virtualization (SR-IOV) [DYL+12]. Devices
supporting this technology combined with the correct driver can pretend to be multiple
devices. This way it can be directly used by multiple VMs, sharing its resources between
them. Still, if the VNF is not a purpose built operation system like clickOS [MAR+14],
the VM’s kernel remains between the VNF application and the NIC. The kernel can be
bypassed by giving the application’s process direct access to the device. This is similar
to PCI passthrough in case of a Type 2 hypervisor, where the VM is a userspace process
and has direct device access. With VMs, the driver is running in the virtualized OS.
Standalone applications with hardware access have to implement their own device driver.

7

8 2. Background

Parts of this thesis are implemented using userspace drivers, thus more information is
contained in Section 5.2. Even with fast hardware access from virtualized environments,
actual processing is still happening on COTS hardware with general purpose CPUs. Field
Programmable Gate Arrays (FPGA) are freely configurable hardware. They are almost as
fast ASICs, but their behavior can be changed by overwriting their configuration, which
allows VNFs to dynamically offload suited tasks to hardware processing [KSS14].

8

3. Related Work

This chapter will start with explaining two mechanisms from the Linux kernel that exist to
mitigate TCP SYN flood attacks and then follow it up with scientific papers about DDoS
defence strategies.

3.1 Existing Implementations in the Linux Kernel

3.1.1 SYN Cookies

Section 2.1.3 points out that the critical resource in SYN flood attacks are connection
entries in the TCP backlog. SYN cookies [Edd07] are a fully TCP standard compatible way
of eliminating the need for backlog entries for half-open connections. Half-open connections
store source and destination addresses and ports, the clients ISN, as well as the own ISN
and requested TCP options like Maximum Segment Size (MSS), Selective ACK (SACK)
or window scaling [Bor12]. This is necessary to check if a received ACK packet belongs to
previous SYN and SYN-ACK packets and if the client received the server’s ISN correctly.
The idea of SYN cookies is to store this information not locally but encode it into the
SYN-ACK packet and retrieve the information from the ACK response. Figure 3.1 shows
the TCP header’s to content.

Figure 3.1: TCP header [tcp]

9

10 3. Related Work

Source and destination port values are determined by connection. The acknowledgement
number has to be the client’s sequence number from the SYN packet plus 1. Data offset
has to describe the headers size and flags have to be SYN and ACK. While window size
can be chosen freely, its value has a big impact on following connection throuhgput, thus
should be set as usual. The checksum is calculated from the rest of the header’s fields.
Any value can be used for the urgent pointer as it is only interpreted when the URG flag
is set. One one hand, this allows to encode 16 bit of information into it, on the other
this is of no use because the client ignores the data and does not transmit it back in his
ACK packet. The same is true for the padding at the header’s end, which additionally
is supposed to consist of zeros. This leaves the sequence number and possibly options as
potential information storage.

SYN cookies use the 32 bit sequence number. There are no regulations for the choice of
ISN except that it should increase over time. For security concerns, it also should not be
predictable. The default Linux kernel ISN generation routine is described in Section 5.1
and shown in Listing 5.1. With SYN cookies, sequence numbers are composed as follows:

Bits Content

31 to 27 Time counter

26 to 24 Client’s MSS size

23 to 0 Hash value of connection properties

The time counter is used to fulfill the increasing ISN requirement and calculated by
unix time >> 6 (mod 32), resulting in a 5 bit number increasing every 64 seconds.

MSS stands for Maximum Segment Size [Pos83] and amounts to 536 bytes by default. The
MSS option allows the choice of different values. The client uses the option in the SYN
packet to tell the server the maximum size of TCP segments he wishes to receive. The
server replies with his MSS choice in the SYN-ACK response and usually saves the client’s
value in the newly created TCB. Because SYN cookies want to prevent to local memory
to be used, it is efficiently stored in the ISN by choosing eight MSS values together with
an 3 bit encoding beforehand, choosing the biggest size which is smaller than the client’s
choice and putting the size’s code into the ISN.

The previously discussed 8 bits are predictable, so the leftover 24 bits have to ensure that
the sequence number cannot be guessed by anybody else, while allowing the server to verify
with the acknowledge number of an ACK packet whether the packet is a valid response to
a SYN-ACK packet or if it is spoofed. This is realized by calculating a hash of client’s and
server’s IP addresses and ports, as well as the time counter and another, secret number.
The secret prevents predictability. When an ACK packet is received, the server calculates
the hashes for the last few values of the time counter. If one of them matches, a TCB is
created. All the necessary (addresses, ports, client sequence number, client MSS) can be
extracted from the ACK packet.

3.1.2 SYNPROXY

SYNPROXY [syn] is a Netfilter1 module and supposed to mitigate TCP SYN floods, too.
Netfilter is ”a set of hooks inside the Linux kernel that allows kernel modules to register
callback functions with the network stack” (from their website). When a packet passes
a hook, all registered modules are executed. SYNPROXY utilizes this functionality to
prevent SYN packets from directly reaching the networking stack, where a TCB would
be allocated and a SYN-ACK would be sent as response. Instead, the module drops

1netfilter.org

10

netfilter.org

3.2. Related Papers 11

the SYN packet after it impersonated the kernel and sent a manually crafted SYN-ACK
packet. Rather than using local memory, the connection state is stored in the packet
itself, similar to previously mentioned SYN Cookies. On arrival of an ACK packet, it is
checked if it belongs to a valid handshake. If this is the case, for the client it looks now
like the connection is successfully established. The server on the other hand does not even
know yet that a connection was requested. Therefore, the SYNPROXY module has to
impersonate the client and execute a handshake with the server, opening the connection
for him.

While both ends know about the connection by now, they cannot directly communicate
with each other, because the ISN the module chose when impersonating the server is only
in 1 of 232 cases the same as the one the server will choose in the second handshake. To fix
this, the module has to modify the server’s sequence and the client’s acknowledge numbers
in every subsequent packet.

The overhead of intercepting and modifying every packet is reduced in the synsanity2

module by matching the ISN choices of the module and the network stack. As it cannot
influence the ISN the kernel will use, the only way is to predict in the module which
number the network stack would use. This is done by exactly copying the kernel function
and using the same secret for calculating SYN Cookie sequence numbers.

3.2 Related Papers

3.2.1 VFence

The same principle as the SYNPROXY iptables module, but implemented with VNFs
outside of the target’s kernel is VFence [JYR+16]. Figure 3.2 displays how a network
topology with integrated VFence can look like. The agents are responsible of filtering
ingress traffic based on a whitelist containing allowed address/port combinations. When
a SYN packet is received, the agent use a mechanism similar to SYN cookies to generate a
sequence number and sends out back SYN-ACK packet. On arrival of a valid ACK packet,
the agent performs a handshake with the server and adds the connection information to its
whitelist, allowing following traffic being forwarded. Whitelist entries are removed when
a FIN packet is detected or a timeout expires. To enable scalability, not a single VNF
has to handle all the traffic, but traffic is distributed over multiple VNFs via a dispatcher.
As the whitelist of each agent is different, packets of one connection have to always be
forwarded to the same. It is the dispatcher’s job to balance the load as equal as possible
across the agents, as well as handle addition and removal of agents when scaling. VFence’s
evaluation proved its effectiveness, maintaining low packet dropping rate and low response
delay, while with no defense mechanism in place almost all packets are dropped and end-
to-end increases drastically.

3.2.2 VGuard

Another NFV based DDoS protection approach is VGuard [FM15], however, it does not
focus on mitigating SYN floods, but on attacks based on large traffic that occupies network
or CPU resources. The VGuard system consists of two VNFs arranged in a service chain.
Incoming traffic is filtered by a firewall VNF first and then passed to the DDOS VNF.
Its purpose is distributing the traffic across two tunnels, both ending at the protected
service. One is meant to transport traffic of trusted sources reliably, the other to separate
suspicious traffic. To assign connections to the tunnels correctly, every connection has
a priority value between 0 and 1. Connections known to be malicious have a priority

2https://github.com/github/synsanity

11

https://github.com/github/synsanity

12 3. Related Work

Figure 3.2: VFence example topology [JYR+16]

value of 0 and are not forwarded at all. Trusted connection have priority 1 and are sent
to the high-priority tunnel. For all other, the priority value reflects how suspicious the
connection is. They tunnel assignment depends on the current utilization, as well as the
other connections and their priorities. Experimental testing with the system yielded the
result that even under DDoS attack trusted connections’ quality of service is guaranteed.

3.2.3 StateSec

StateSec [BNR+17] utilizes an existing, entropy-based DDoS detection algorithm and im-
plements it with stateful SDN [BBCC14], resulting in a more efficient and scalable solu-
tion. As described in Section 2.2, SDN is about having simple data plane switches based
on modifiable forwarding rules. The intelligence managing the rules resides completely
in the controller. Practically though, this separation causes communication overhead and
possibly congestion of the link between switch and controller when the controller monitors
a lot of traffic information. An introduced mechanism to offload functionality from the
controller into the SDN switch and thus unburden controller and the connecting network
is stateful SDN. Figure 3.3 shows how incoming packets are processed inside the switch.

Figure 3.3: StateSec switch architecture [BNR+17]

Firstly, packet information is compared against keys from the State table. A key could
be the packet’s source IP address, for example. For every key that matches, the state
associated with the key is added to the packet’s meta information. The next step is pretty
much the normal SDN behavior, with the difference that it is possible for flows to match
to states saved in the meta data and that a set state action exists, that can modify a
key’s associated state. With this, the controller has less monitoring work to do, while it
remains in full control over the switch’s behavior. Packets that are found to be suspicious
by the monitoring state machine are matched with high priority flows which apply actions

12

3.2. Related Papers 13

like dropping, queuing or forwarding to other devices like Intrusion Detection Systems.
Evaluation showed monitoring precision and detection accuracy increased, while control
plane occupation decreased.

13

4. Approach

The context of this thesis is the development of a SDN/NFV security framework for pro-
tecting cloud services of IoT devices. The attack types which the DDoS protection system
defends against are chosen accordingly. A common way for IoT devices to communicate
with their cloud services is via Representational State Transfer (REST) APIs, which rely on
HTTP requests. HTTP in turn typically uses TCP as its transport layer protocol. There-
fore, the two attacks picked for this work are the TCP SYN flood as well as the HTTP
flood. Detailed information about the mitigation strategies follow in the next sections.

4.1 SYN Flood Defense

With SYNPROXY (Section 3.1.2) a ”Man in the Middle” technique which prevents mali-
cious SYN packets from reaching their actual target was introduced. Variations have been
described with synsanity and VFence. The key differences of the variants are:

• Type of middleman: The middleman has to be able to see, modify and drop pack-
ets of the connection and should remain unnoticeable for the endpoints. SYNPROXY
and synsanity are modules in the server’s kernel, while VFence utilizes VNFs.

• Server ISN handling: The middleman has to decide which ISN it sends to the
client before the server knows about the connection at all. Using a number different
from the server’s later, actual choice requires translating sequence and acknowledge
numbers of every packet. One way to match the numbers is predetermining the
server’s choice, which limits the middleman to something inside of the server’s kernel,
since from outside it ISNs should not be predictable.

Because this thesis is about enhancing DDoS protection with the SDN and NFV paradigms,
the main functionality will be implemented in a VNF. This is shown in the network topol-
ogy in Figure 4.1 As said before, being outside of the server’s kernel means there is no
possibility of predicting which ISN the server will be using. With translating numbers in
every packet not offering an interesting alternative, a different method has been chosen:
When impersonating the client to open the connection at the server, the middleman simply
tells the server which ISN it chose to sent to the client. The server then does not calculate
its own, unpredictable ISN but adopts the given one. Matching sequence numbers estab-
lished, client and server could communicate without any on-the-way packet modification -
if the network configuration allowed for that. A typical, static network can not by default

15

16 4. Approach

Figure 4.1: Abstract network topology

Figure 4.2: Sequence diagram of connection establishment

route packets to the VNF and suddenly change its behavior and send some packets directly
to the server. Though, Software Defined Networking enables such network capabilities.

In Figure 4.2 the connection establishment process is visualized in a sequence diagram. It
starts off, of course, with the client sending a SYN packet, addressed to the server. The
network does not deliver to the server, though, instead the VNF receives the packet. It
replies with a manually crafted SYN-ACK packet that looks like it comes from the server
itself. The VNF is free to choose any sequence number for the server ISN. The packet
is received by the client, who acknowledges it with an ACK packet. Again, the network
routes it to the VNF. At this point, the client assumes the connection is established, but
the server does not know anything about the connection and the network does not allow
direct client-server communication. The order in which those two are informed about the
new connection matters. If the server is uninformed but the client sends data packets,
which can happen since for the client the connection looks established, and the network
does already route them to the server, it will reply with TCP reset packets, probably
closing the connection on client side. Thus, the client transmits all necessary connection
details to the server, e.g. client IP address and port, client ISN, the server ISN chosen by
the VNF. After that, the network is configured to allow direct communication for packets
which are originating from or addressed to the client’s address and port.

16

4.2. HTTP Flood Defense 17

All of that informing about established connections and dynamic network route changes
would not be very useful, if they only moved the bottleneck of too many half-open con-
nections from the server to the VNF. The idea is that a network function dedicated to
handling many fake SYN packets can handle an attack better than a portion of the ker-
nel that is not necessarily hardened against specific attack types. More details about the
performance advantages are explained in detail in the implementation section.

4.2 HTTP Flood Defense

The SYN flood protection mechanism makes sure only fully established connections can
reach the server. This does not prevent an attacker from occupying other necessary re-
sources by opening many legitimate connections and consuming bandwidth and processing
time. To defend against at least some subtypes of this attack type, the second defence
mechanism makes use of the fact that each individual connection to the server is known in
the network and that it also can monitor statistics like packet or byte count. By requesting
those statistics in frequent intervals, aggregating the byte count for each IP address and
comparing it to the values of the last interval, it can be determined how much traffic was
caused by each IP address. Not yet suspicious addresses that exceed a configured threshold
are put on a blacklist. Addresses on the list that fall back below the threshold are removed
from the list. The threshold has to be set dependent on what bandwidth is considered un-
usual and abusive for the kind of application running on the server. Connections of as evil
considered addresses are forcefully traffic limited by the network in order to leave band-
width remaining for not suspicious clients. This is realized with a Quality of Service (QoS)
mechanism called queuing. The inner working of the SDN switch is displayed in Figure
4.3. Queues are used for egress traffic shaping. Instead of sending outgoing packets out
directly, they are enqueued in a queue of the output port. Now, packets can be retrieved
from the queue and sent while meeting configured policies like maximum bandwidth us-
age. To prevent clients with excessive data rates from using up all available bandwidth, for

Figure 4.3: SDN switch

both involved switch ports - the one to the clients and the one to the server - two queues
exist. Queue 0 does not impose any constraints, while queue 1 has a maximum bandwidth
limitation that is lower than the overall transmission rate. By default the forwarding rules
that allow direct client-server communication append the packets to queue 0 of the port
that has to output the packet. When the VNF puts an IP address on its blacklist it also
prompts the switch to modify all forwarding rules associated with that address to enqueue

17

18 4. Approach

them to queue 1. Similarly, an address removed from the blacklist triggers a modification
of its rules to append to queue 0, again.

18

5. Implementation

The implementation consists of three parts. The first to be described will be a modification
of the Linux kernel, that has to be running on the server. The other two are applications
running on the VNF. The reason for two communicating applications realizing the VNF’s
behavior instead of single program is that two different tasks have to be taken care of. One
job is low-level processing of SYN, SYN-ACK and ACK packets, which is very performance
critical, because the more SYN packets can be handled per time interval, the more effective
is the protection against SYN floods. The language chosen for this is C, making use of the
DPDK library for low-level networking. The other task is mostly communication with the
SDN controller over its REST API, thus via HTTP requests. In C, this is rather laborious
and since it is not as performance critical, Python3 has been chosen, because it offers the
simple to use requests library for HTTP requests. The only communication happening
between the two programs running on the VNF is the DPDK application informing the
Python application about new connections, for which a named pipe is sufficient.

Figure 5.1: VNF overview

5.1 Kernel Modification

The goal of the kernel modification is to allow to remotely open TCP connections at the
server with the possibility to tell the kernel which ISN it has to use. This allows the VNF

19

20 5. Implementation

to inform the server about connections it already established with clients. The efficient
way to implement this would be to introduce a new protocol and add packet handler
functions for packets of this protocol. On arrival of such a ”New TCP Connection” packet,
that contains all necessary information about the connection, the handler would execute
everything that also happens in the normal three way handshake, e.g. TCB and socket
allocation, resulting in a TCP connection. While all the code to do this should be able
to be looked up in the SYN and ACK packet handlers, it would be too much effort for
this thesis to gather everything together. The approach taken modifies the existing code
responsible for generating ISNs for SYN-ACK packets. Before the modification itself is
explained, the default kernel behavior is introduced.

Listing 5.1: from net/core/secure_seq.c

u32 s e cu r e t cp s eq (be32 saddr , be32 daddr ,
be16 sport , be16 dport)

{
u32 hash ;

n e t s e c r e t i n i t () ;
hash = siphash 3u32 ((f o r c e u32) saddr , (f o r c e u32) daddr ,

(f o r c e u32) spor t << 16 | (f o r c e u32) dport ,
&n e t s e c r e t) ;

return s e q s c a l e (hash) ;
}

Listing 5.1 shows the function that is used to calculate ISNs. First, it calculates a hash
of the given source address, destination address, source port and destination port, to-
gether with a secret. According to RFC 793, the choice of ISN should grow over time
and ”cycle . . . approximately every 4.55 hours”[P+81b], which is what the seq scale(u32)
function takes care of. This function is called from two places, both located in net/

ipv4/tcp_ipv4.c. Once it is called in the function tcp v4 connect(. . .) to calculate the
ISN for SYN packets. The other, for this work interesting call, happens in the function
tcp v4 init seq(. . .), shown in Listing 5.2.

Listing 5.2: from net/ipv4/tcp_ipv4.c

stat ic u32 t c p v 4 i n i t s e q (const struct s k bu f f ∗ skb)
{

return s e cu r e t cp s e q (ip hdr (skb)−>daddr ,
ip hdr (skb)−>saddr ,
tcp hdr (skb)−>dest ,
tcp hdr (skb)−>source) ;

}

It is called when the kernel is waiting for connection requests and a SYN packet is received,
to calculate the ISN that is going to be sent in the SYN-ACK response. The function’s
parameter is a pointer to a sk buff, the data structure used in the kernel to store all
information about a packet. When the function is actually called, this will point to the SYN
packet that the SYN-ACK using the returned ISN will be a response to. The only thing
happening here is calling the secure tcp seq(. . .) function with the necessary parameters
extracted from the SYN packet’s sk buff and forwarding the returned value.

This function is ideal to implement the desired behavior, as it has full access to the contents
of the SYN packet and the returned value will be used directly as the ISN. The approach
taken is that SYN packets containing exactly four bytes of payload will cause the ISN to
be those four bytes. Normal SYN packets, which do not have any payload, are still causing
the default ISN calculation to be used. Listing 5.3 displays the modified version of the
tcp v4 init seq(. . .) function

20

net/core/secure_seq.c
net/ipv4/tcp_ipv4.c
net/ipv4/tcp_ipv4.c
net/ipv4/tcp_ipv4.c

5.2. DPDK Application 21

Listing 5.3: from modified net/ipv4/tcp_ipv4.c

stat ic u32 t c p v 4 i n i t s e q (const struct s k bu f f ∗ skb)
{

struct tcphdr ∗ tcph ;
unsigned char ∗ pay load s tar t , ∗payload end ;
tcph = tcp hdr (skb) ;
pay l oad s ta r t =

(unsigned char ∗) ((unsigned char ∗) tcph + (tcph−>do f f ∗ 4)) ;
payload end = s k b t a i l p o i n t e r (skb) ;

i f (payload end − pay l oad s ta r t == 4)
return cpu to be32 (∗ ((u32 ∗) pay l oad s ta r t)) ;

return s e cu r e t cp s e q (ip hdr (skb)−>daddr ,
ip hdr (skb)−>saddr ,
tcp hdr (skb)−>dest ,
tcp hdr (skb)−>source) ;

}

After declaring the local variables that are going to be used, the function tcp hdr trans-
lates the given sk buff pointer to a pointer to start of the TCP header of the packet.
The pointer to the start of the payload is calculated by offsetting the pointer to the TCP
header by the size of the TCP header. The size is not fixed, but can be looked up in
the header’s doff field (data offset). This value is multiplied by 4 because it specifies the
header size as the amount of 32 bit words and the used unsigned char pointer is only
moved by 8 bit per increment. With that, the address where the payload starts is known.
The address to the payload end is stored directly in the sk buff, because it also is the end
of the whole packet. Subtracting the addresses from each other reveals the payload size in
bytes. As describe before, if the payload is four bytes long, it will be used as the sequence
number. The bytes cannot necessarily be used directly, because the network byte order is
Big-Endian and for example every x86 and x86 64 processor uses Little-Endian byte order.
The cpu to be32 macro ensures that, independent of the platform, the sequence number
will be in Big-Endian order, which is used in the network. For payload lengths different
from four bytes, the default routine for ISN generation is executed instead.

The amount of kernel code changed and added is very low, but this comes with a drawback.
The connection creation still relies on the TCP handshake implementation of the kernel,
thus a full handshake is necessary between VNF and server. The VNF cannot get away
with sending a single packet to the server after it completed a handshake with a client,
it can only send a SYN packet with the server’s ISN in the payload and has to react the
SYN-ACK response packet with another ACK packet to finally open the connection at the
server. The duration of the time slice in which the client thinks the connection is open
and possibly already sends data and the server cannot accept these packets is increased,
though, latency between VNF and server usually should be very low.

Running with this modification is only safe when all SYN packets come from trusted
sources, as it allows for predictable sequence numbers. With the defense system in place,
the only arriving SYN packets are those generated by the DDoS protection VNF or po-
tentially from clients who established a connection through the VNF beforehand and have
their flow not removed yet.

5.2 DPDK Application

As mentioned in Section 2.4, network functions operate on packets that are not addressed
to them and they are not only interested in the packet data but also the protocol headers.
This means, even though the VNF is only needs to processes TCP packets, it cannot use

21

net/ipv4/tcp_ipv4.c

22 5. Implementation

sockets of the type SOCK STREAM, like the applications which send and receive TCP
packets do. For explanation, the main events on the in-kernel way of a received TCP
to the process that owns the socket the packet is addressed to is described: The network
interface card (NIC) receives the packet, transfers it to main memory and notifies the CPU
via an interrupt about the arrival. The interrupt handler checks the ethertype, recognizes
it as an IPv4 packet and calls the IPv4 receive handler. There is checked whether the
destination address matches with the local address. If this was not the case, depending
on configuration, the packet would either be dropped or forwarded elsewhere. Since the
addresses for the example packet match and the next inner protocol is TCP, the TCP
receive handler is called. It implements the protocol rules like sending an ACK packet as
response or reordering out of order received packets. Also, the target socket is determined
via the destination port number and the packet’s payload is copied to its receive buffer.
When the application issues, for example, a recv system call on this socket, data from the
socket buffer is copied into the process’s memory. This shows clearly that the VNF cannot
use stream sockets for its purpose. There is however a different kind of socket family,
called the packet sockets.

Listing 5.4: Opening packet sockets

int fd1 = socket (AF PACKET,SOCKDGRAM, htons (ETH P IP))
int fd2 = socket (AF PACKET,SOCKRAW, htons (ETH P ALL))

Listing 5.4 demonstrates the creation of two packet sockets. The difference between them
is that the file descriptor fd1 would represent a socket that receives packets without
the Ethernet header (because of SOCK DGRAM) and would only receive IP packets
(packet type ETH P IP). The socket that fd2 represents receives the whole packet, viz.
including the Ethernet header (SOCK RAW), of every packet that is sent or received
(ETH P ALL). Packet sockets are commonly used in packet sniffing applications like
tcpdump1 or Wireshark2.

However, packet sockets and the packet processing system of the Linux kernel they rely
on start to struggle with packet rates beyond a few hundred thousand packets per second.
One reason is the interrupt based communication with the NIC. Every time an interrupt
signals a packet arrival, one CPU core has to save its current state, execute the handler
function and restore back to its previous state. To reduce this overhead under heavy
load, the New API (NAPI) [Sal05] was added to the Linux kernel. With NAPI, interrupts
are enabled by default. When a packet is received and the interrupt is handled, further
interrupts are disabled. Meanwhile, the kernel polls the network card for new packets until
either there are no more packets or a time limit exceeds. Then, interrupts are re-enabled.

There is another source of overhead when using packet sockets. The process retrieves
packets from the kernel by system calls like the recv system call. This already requires
a switch from user mode to kernel mode and the switch back on the system call return,
but additionally every single byte of the packet has to be copied from the socket buffer
in memory into the process memory. The same goes for sending, the packets have to be
copied from user space to kernel space, before they can be sent by the NIC driver. At the
time of writing the Meltdown bug became known. The Kernel Page Table Isolation (KPTI)
implemented in the Linux kernel to prevent it from being exploitable, puts additional cost
to executing system calls.

While there are multiple approaches to get rid of those overhead causes - Snabb [PNFR15],
netmap [Riz12], PF RING [D+04] to name just a few[GEW+15] - the Intel Data Plane

1http://www.tcpdump.org/
2https://www.wireshark.org/

22

http://www.tcpdump.org/
https://www.wireshark.org/

5.2. DPDK Application 23

Development Kit (DPDK) [Int15] has been chosen for this work. DPDK is a C library pro-
viding utilies for fast packet processing. In the Programmer’s Guide [Int14] the principles
of implemented features are explained, while the sample applications and the documen-
tation3 provide information how to utilize them. DPDK’s capabilities are demonstrated
by multiple projects, e.g. DPDKStat [TMMR16], which is able of analysing traffic at
40Gbit/s on commodity hardware. In the following, only the subset of DPDK that was
used in this work will be explained.

The most important feature are the userspace, poll-mode drivers DPDK provides for many
NICs4. To understand how this works, it is necessary to know how a driver running on
the CPU communicates with the NIC (in case of a PCI/PCIe device). With I/O mapped
peripherals, there is a device address space, separate from the memory address space. This
means one address can refer to a valid memory cell and a valid device register at the same
time, thus the CPU needs distinct instructions for making it clear which address space is
referred to. In contrast, with memory mapped I/O, memory and device registers share the
same address space, both can be accessed with the same set of read and write instructions.
An abstract architecture is displayed in Figure 5.2. The CPU uses logical addresses in
its instructions, these are translated into physical addresses in the Memory Management
Unit (MMU). Depending on whether the address is mapped as I/O or as memory, the
associated hardware handles the respective read or write request. In this case, the CPU

Figure 5.2: Memory and I/O access

always acts as the bus master, instructing somebody to else to do something. If this was
the only mode of operation, transporting larger chunks of data - e.g. a network packet -
from a device into main memory would require a CPU core to actively copy the data. This
is not the case though, a peripheral device can also become the bus master and transfer
data directly from or to main memory, which is called Direct Memory Access (DMA).
Not only are DMAs faster than CPU driven copying, the CPU can also execute other
instructions concurrently. A NIC driver’s job now generally is allocating memory; part of
it as an area where the NIC can write received packets to via DMA. Another part is used
to setup the RX queue, a ring buffer containing pointers into the previously mentioned
area, telling the NIC where it should actually copy each packet to. If the queue is empty,
the network card has to drop received packets. There also exists a TX queue, containing
addresses at which packets are stored in memory, that are supposed to be sent out. When
the NIC retrieves an address from the queue, it copies the referenced packet into its device
memory and physically sends it. The driver also has to inform the NIC where the queues
are located in memory, as well as register an interrupt handler that reacts to the interrupts
generated by the device - when a packet was successfully copied to RAM and now has to
be processed by the network stack, as well as when a packet has been successfully sent, so
the memory containing the packet can be freed and used for other purposes. So, in order
to have a driver run in userspace, it has to be able to write to the addresses the device

3https://dpdk.org/doc
4http://dpdk.org/doc/nics

23

24 5. Implementation

is mapped to. The MMU, as well as logical and physical addresses have been mentioned
previously, this is now followed up with an explanation about virtual memory.

With virtual memory, each process can use the full address space. This means each address
can be used by multiple processes at the same time and an address is only unambiguous
when it is clear which process it belongs to. To project the virtual address spaces into the
actual, physical address space, the virtual address spaces are divided into pages, typically
with a size of 4 KB. Each process has a page table, where for every page is saved whether it
is present in physical memory and if, at which physical address. Handling memory access
like this has many advantages. Processes are separated from each other, which, for one,
provides increased security, since one process cannot modify another process’s memory,
but also allows each process to freely choose the addresses it uses without checking if the
memory area is already in use by somebody else. However, this does not restrict shared
memory between cooperating processes, as pages from different pages can be mapped to
same physical addresses. Also, a page does not necessarily have to be present in memory
when it is not needed. Therefore, when more pages are present than can be fitted in the
RAM, they can be swapped out to storage devices and swapped back in when a process tries
to access them. This even enables programs to use more memory than the machine has
RAM. The disadvantage is performance. For every memory access, the physical location
has to be determined and if it the page is swapped out, the whole page has to be fetched
from a slower storage device before it can be accessed. To prevent having to querying a
page table for every memory access and making use of the principle of locality, the MMU
has a cache for page translations, called the Translation Lookaside Buffer (TLB).

Now, to give a process access to a NIC’s memory mapped I/O registers, one or multiple
pages have to be mapped to the registers’ physical addresses. Also, there should not be
a conventional kernel driver in place, also trying to access the device. For this reason,
NICs that are supposed to be used by DPDK applications have to be bound to either the
uio pci generic, uio igb or vfio driver. UIO stands for Userspace I/O system, developed
explicitly for userspace drivers. The uio igb driver is a DPDK-compatible kernel driver for
Intel NICs, while VFIO, short for Virtual Function IO, is used when a IOMMU is used.
Without IOMMU, DMAs are issued by the devices with physical addresses, allowing them
access to the full RAM. IOMMUs realize virtual memory for peripheral devices, providing
security and isolation on performance cost. All these drivers provide functionality for map-
ping the devices registers to userspace and disable or remap interrupts. In case of DPDK
userspace drivers, interrupts are not needed because - as said before - they are poll-mode
drivers. This means, device communication happens only on request from the application.
The driver change can be done manually or with DPDK’s dpdk-devbind utility. Listing
5.5 shows the process of loading the uio pci generic driver module, unbinding an Intel I211
NIC from its default igb driver and binding it to UIO.

Listing 5.5: Binding NIC to uio pci generic

. / u s e r t o o l s /dpdk−devbind . py −−s t a tu s

Network dev i c e s using DPDK−compatible d r i v e r
==
<none>

Network dev i c e s using ke rne l d r i v e r
===================================
0000 : 2 6 : 0 0 . 0 ’ I211 Gigabit Network Connection 1539 ’ i f=enp38s0 drv=igb

Other Network dev i c e s
=====================
<none>

24

5.2. DPDK Application 25

modprobe u i o p c i g e n e r i c
. / u s e r t o o l s /dpdk−devbind . py −−f o r c e −b u i o p c i g e n e r i c 26 : 0 0 . 0
. / u s e r t o o l s /dpdk−devbind . py −−s t a tu s

Network dev i c e s using DPDK−compatible d r i v e r
==
0000 : 2 6 : 0 0 . 0 ’ I211 Gigabit Network Connection 1539 ’ drv=u i o p c i g e n e r i c

Network dev i c e s using ke rne l d r i v e r
===================================
<none>

Other Network dev i c e s
=====================
<none>

Additionally to binding NICs to a compatible kernel driver, DPDK has another require-
ment. To minimize page table lookups, hugepages are used. Compare to the default 4 KB
pages, hugepages with 2 MB or even 1 GB page sizes require smaller page tables and the
TLB will usually have a higher hit-rate. To allocate hugepages, the kernel has to support
them. 1 GB pages have to be allocated at boot time, but 2 MB pages can be allocated in
run time. To make hugepages accessible, they also have to be mounted into the filesystem.
However, systemd automatically mounts them at /dev/hugepages.

Listing 5.6: Allocating hugepages

echo 1024 > / sys / ke rne l /mm/hugepages /hugepages−2048kB/nr hugepages
mkdir /mnt/huge
mount −t huge t l b f s nodev /mnt/huge

When a DPDK application is started, it has to be specified which CPU cores it is supposed
to run on. Of course, when the application starts, it consists of only a single thread. The
core this thread is executed on is typically called the master core. The main thread can
start additional threads and specify on which of the other cores, the so called slave cores,
the thread is supposed to run. Usually, the Linux scheduler can move threads from one
core to another. This however comes with a performance penalty, as the thread loses its
content in the core-specific L1 and L2 caches. To prevent this, the main thread is bound
to the master core and each thread started on a slave core is bound to the respective core.
Bound to a core means that the Linux scheduler will schedule a thread always on the that
core.

For thread communication, DPDK offers an efficient ringbuffer implementation, that can
handle multi-consumer and multi-producer accesses without use of a lock. A ringbuffer is
a FIFO data structure. Another common FIFO data structure is the linked list, which has
the advantage of allocating as much memory as needed and grow theoretically infinitely,
whereas a ringbuffer has a fixed size and always allocates the memory it needs when it is
full. However, because everything is already allocated, operations on a ring are typically
faster than on a list, where memory has to be dynamically allocated for new elements or
freed when a element is removed. Furthermore, the ringbuffer is a continuous chunk of
memory, while a linked list theoretically can be scattered across the whole address space,
possible affecting caching efficiency.

With the prerequisites covered, the following will explain the implementation of the TCP
handshake man-in-the-middle application. First of all, to remember to which client SYN-
ACK packets have been sent, a variation of SYN cookies are used to store all necessary
connection information in the sequence number of the SYN-ACK packet. To clarify that no
state has to be saved in the application at all, the Mealy machine in Figure 5.3 shows that
the virtual state a connection is in can be determined with only the content of the packet

25

/dev/hugepages

26 5. Implementation

Figure 5.3: Mealy machine of the virtual state of a connection

that is processed right now. A connection is identified by the client’s IP address/port
combination. As long as no SYN packet with this combination is received, the connection
remains in the unknown state. The arrival of the SYN packet triggers transition into
the next state, which expresses that the connection is half opened with the client, while
server and network are still unaware. The transition also executes an action, which is
the transmission of a SYN-ACK packet back to the client. The next transition happens
on arrival of an ACK packet with the IP/port combination and the correct SYN cookie
acknowledgement. At this point the connection with the client is established. Thus, the
next action has to be establishing the connection with the server. This can not happen in
one step because of how the kernel modification from Section 5.1 works. The first step is
to send a SYN packet to the server, with the ISN that the server has to use in the payload.
All necessary information to create this SYN* packet can be extracted from the ACK
packet. The server replies with a SYN-ACK packet, triggering a transition with the action
of sending an ACK packet to fully establish the connection at the server. Accordingly, the
new state is called established with both, client and server. Now, without any condition -
so technically this is still is part of handling the server’s SYN-ACK packet - the network
gets informed about the new connection. Until now, no state had to be saved anywhere,
every information necessary was extractable from the packet that was currently processed.
And from now on, the DPDK application does not receive any more packets from the
connection, as the network is reconfigured to route the packets directly between server
and client. After some time the TCP connection will be closed, or the client just stops
sending packets. Then, the server will delete the TCB it has for the connection, the flows
in the network reach their timeout and the connection state switches back to unknown.
This finite state machine points out that multiple cores can process packets in parallel
without having to worry about any saved state that has to be accessed synchronized. One
way to achieve this would be to run the same loop on every available core: Try to receive
packet from NIC, if packet successfully received, process the packet. If a response packet
has to be sent, instruct the NIC to send it, and continue asking for more received packets.

26

5.2. DPDK Application 27

This approach has the advantage that there is absolutely no communication between the
processing threads. However, it is not always possible to realize this. Previously, when
explaining NIC driver functionality, it was mentioned that the driver and NIC communicate
information about received and supposed to be sent packets via the RX queue and TX
queue. It is not safe to call a DPDK driver to, for example, poll the RX queue of a NIC for
new packets from multiple cores simultaneously. Some NICs do support having multiple
RX and TX queues and distributing received packets between them, as well as fetching
packets to sent from multiple TX queues. In the kernel, this can eliminate a single core
limiting network performance, which can happen, because the interrupts for a queue have
to be executed on the same core every time. Since every queue has its own interrupt, the
different interrupt handlers can be distributed over multiple cores. This is call Receive Side
Scaling (RSS). Not all NICs support this, though, like the virtio virtualized NIC, that was
used for developing this application. Thus, an approach with only one responsible thread
per nic was necessary.

The chosen architecture is visualized in Figure 5.4. The RX core is responsible for con-

Figure 5.4: Architecture of the DPDK Application

tinuously using the DPDK driver to poll the NIC’s RX queue. Every packet fetched liked
this is enqueued to the RX ring. Similarly, the TX core always checks if the TX ring is
empty and if it is not, dequeues packets and instructs the driver to send them. All other
cores are processing cores. They try to dequeue packets from the RX ring - due to the
DPDK’s ring buffer implementation this is threadsafe - and processes them. Whenever
they have to transmit packets, they just enqueue them to the TX ring. As described in
the Approach (4.1, the DPDK application offloads the REST requests to the SDN con-
troller to a Python3 application over a named pipe. Luckily, writing to a pipe is an atomic
operation as long the pipe’s buffer is not full, so the processing threads can issue writes

27

28 5. Implementation

without synchronizing with other threads.

The first thing to do in the main function of a DPDK application is to initialize the
Environment Abstraction Layer.

int r e t = r t e e a l i n i t (argc , argv) ;

The parameters specified are the parameters of the main function. This way the function
can parse DPDK specific command line arguments, e.g. which cores should be used, how
much memory should be claimed or if virtual network interfaces should be created. If
the return value is −1, something in the initialization failed. Otherwise, the return value
specifies how many of the arguments have been DPDK arguments. The application can
then parse the remaining, however this application does not support any additional pa-
rameters. With the EAL set up, the rte lcore count() allows to check if enough cores
are available. DPDK calls them more accurately lcores, logical cores, since one physical
core appears as multiple logical cores when utilizing Simultaneous Multithreading (SMT)
techniques like Intel’s Hyperthreading. Another detail that was expressed inaccurate until
now is that packets are stored in RX queues or ring buffers, when they actually reside
somewhere in memory and are never copied around. The only thing put on any ring
buffers are pointers to packets. With that said, the next thing to be done is allocating
a memory pool in which the actual packet contents are stored. This is done with the
rte pktmbuf pool create(. . .) function. mbuf is an abbreviation for message buffer,
the struct DPDK uses to store packets, similar how the Linux kernel uses sk buff. Besides
some other arguments, it takes as arguments how many mbufs should fit into the pool
and how large one mbuf is allowed to be. Also one parameter specifies on which NUMA
socket the pool should be created. NUMA stands for Non-Uniform Memory Access, indi-
cating that not all memory accesses are equal. This is the case on systems with multiple
processor sockets. For a core accessing memory it is faster when talking to RAM directly
connected to the local CPU socket than when accessing memory connected to a remote
socket, as the data additionally has to be transported through processor interconnects.
This application is not developed with NUMA support in mind, therefore the constant
SOCKET ID ANY is used.

Next step is setting up the NIC. With rte eth dev count() the amount of available NICs
is queried and only if it is exactly one the application continues with setting this one up,
which requires multiple function calls.

r t e e t h d ev c on f i g u r e (0 , 1 , 1 , &por t con f) ;

u i n t16 t nb rxd = RX QUEUE SIZE ;
u in t16 t nb txd = TX QUEUE SIZE ;
r t e e t h d ev ad j u s t nb rx t x d e s c (0 , &nb rxd , &nb txd) ;
r t e e th rx queue s e tup (0 , 0 , nb rxd , r t e e t h d e v s o c k e t i d (0) , NULL,

mbuf pool) ;
r t e e th tx queue s e tup (0 , 0 , nb txd , r t e e t h d e v s o c k e t i d (0) , NULL) ;

r t e e t h d e v s t a r t (0) ;

r t e e th promi s cuous enab l e (0) ;

The rte eth dev configure(. . .) call configures the NIC with ID 0 - which has to be the
only existing NIC - to have one RX queue and one TX queue. The additional port configu-
ration contains information like Maximum Transmission Unit (MTU). RX QUEUE SIZE
and TX QUEUE SIZE are previously defined values, like 256, representing the the RX
and TX queue sizes preferred by the application. These values might not be supported
by the NIC, though. The rte eth dev adjust nb rx tx desc(. . .) call makes sure these
values are within NIC specification. The following two lines create RX and TX queue

28

5.2. DPDK Application 29

for device ID 0 and queue ID 0. rte eth dev socket id(0) returns the NUMA socket
the NIC is connected to, ensuring it has fast access to the queues. Finally, because the
driver needs to fill the RX queue with empty mbufs, which the NIC can write received
packets to, it needs a pointer to a mbuf pool. The last two lines enable the device for the
poll-mode driver calls and put it in promiscuous mode, which means the NIC does not
ignore packets with a destination MAC address different from the card’s address, but also
delivers them to the driver. This is necessary, because none of the packets that will be
received is specifically targeted for the application, they are only received because of the
switch’s configuration.

Packets can now be sent and received, but the communication between networking cores
and processing cores is still missing. For this purpose two rings are created.

r i n g r x = r t e r i n g c r e a t e (” r i n g r x ” , RX RING SIZE , SOCKET ID ANY, 0) ;
r i n g t x = r t e r i n g c r e a t e (” r i n g t x ” , TX RING SIZE , SOCKET ID ANY, 0) ;

This is straight forward, the function needs a unique name for the ring, the size, the NUMA
socket and some flags, which can change the default behavior for single or concurrent
accesses. Since this will be done manually anyway, no flags are used. The return value is
used to reference the ring in enqueue and dequeue operations and thus has to be stored.
Another communication device is the named pipe that is used to transmit information to
the Python application, therefore has to be opened with WRITE permission.

pipe new conn = open (pipe new conn name , OWRONLY) ;

The only thing left now is to call a function, that generates a cryptographically secure
number, which will be used for sequence number generation. The getrandom system call,
which delivers such numbers, has been added to the Linux kernel in version 3.17 and a
wrapper function was added to glibc 2.25. If those are availbable at compile time, they
are used. However, the testing environment offered only older versions, in which case a fix
number is used, as this does not affect performance, but the predictablity of ISNs. Finally,
with everything else set up, the each lcore is told which function it has to execute.

unsigned l c o r e i d ;
RTE LCORE FOREACH SLAVE(l c o r e i d) {

i f (l c o r e i d != 1)
r t e ea l r emot e l aunch (proce s s ing core ma in , NULL, l c o r e i d) ;

}

r t e e a l r emot e l aunch (tx core main , NULL, 1) ;
rx core main () ;

DPDK provides a macro to iterate over the lcore IDs of all slave cores. This is used to start
the processing core main(. . .) on every slave lcore, except for one, on which afterwards
the tx core main(. . .) is launched. The master core does not have any initialization left
to do and executes the rx core main(), which is shown in the next listing.

struct rte mbuf ∗ bufs [NIC BURST SIZE] ;
u in t16 t nb rx , nb rx to r ing ;
for (; ;) {

nb rx = r t e e t h r x bu r s t (0 , 0 , bufs , NIC BURST SIZE) ;
i f (nb rx > 0) {

nb rx to r ing = r t e r i n g sp enqueue bu r s t (r ing rx ,
(void ∗const ∗) bufs , nb rx , NULL) ;

int i ;
for (i=nb rx to r ing ; i<nb rx ; i++)

r t e pktmbu f f r e e (bufs [i]) ;
}

}

29

30 5. Implementation

In an endless loop, the function polls the RX queue 0 of NIC with ID 0 with the function
rte eth rx burst(. . .). For efficiency reasons, the driver will not try to fetch only a single
packet from the RX queue, but up to NIC BURST SIZE. This increases throughput
by reducing per packet overhead, but also increases latency. The pointers to the packets
are written into the bufs array and the amount of received packets is returned. If the
number is greater than zero, the packets have to be transferred to processing cores via the
RX ring. The rte ring sp enqueue burst(. . . function puts the received packets on the
ring. The sp portion of the name stands for Single Producer. This function can only be
used because no other thread also enqueues packets to the ring. The return value is the
number of packets actually enqueued - this can be lower than the specified amount when
the ring becomes full. To avoid loosing pointers to still allocated packets and thus leaking
memory, it is essential to free the not enqueued mbufs in their packet pool. The function
of the TX core looks similar to the RX core’s one:

struct rte mbuf ∗ bufs [NIC BURST SIZE] ;
u in t16 t nb tx , nb tx f romr ing ;
for (; ;) {

nb tx f romr ing = r t e r i n g s c d equ eu e bu r s t (r ing tx ,
(void ∗∗) bufs , NIC BURST SIZE , NULL) ;

i f (nb tx f romr ing > 0) {
nb tx = r t e e t h t x bu r s t (0 , 0 , bufs , nb tx f romr ing) ;
int i ;
for (i=nb tx ; i<nb tx f romr ing ; i++)

r t e pktmbu f f r e e (bufs [i]) ;
}

}

Here, the TX ring is constantly checked for enqueued packets. Again, the Single Consumer
variant can be used, as no other thread will consume packets from this ring. If more than
zero packets where dequeued, they are sent using the driver function rte eth tx burst(. . .).
If packets are taken from the ring, but failed to sent, they have to be freed in their pool,
too.

The function that is running on the processing cores looks even simpler.

struct rte mbuf ∗ bufs [RING BURST SIZE] ;
int nb rx ;
for (; ;) {

nb rx = rte r ing mc dequeue bur s t (r ing rx ,
(void ∗∗) bufs , RING BURST SIZE , NULL) ;

i f (nb rx > 0) {
proc e s s packe t s (bufs , nb rx) ;

}
}

In an endless loop, the RX ring is polled for packets. Because there are potentially more
than one processing cores trying to consume packets simultaneously, the dequeue function
that is safe for Multi Consumer scenarios has to be used. Whenever packets are retrieved,
they are processed in the process packets(. . .) function. This function iterates over each
provided packet pointer. To access packet contents, a pointer to the begin of the packet
could be used together with pointer arithmetic to access any location in the packet. How-
ever, this approach is not very intuitive and thus error prone and difficult to comprehend.
A more comfortable way is shown in the next listing.

struct e ther hdr ∗ e ther h = rte pktmbuf mtod (bufs [i] , struct e ther hdr ∗) ;
struct ipv4 hdr ∗ ip h = (struct ipv4 hdr ∗) (e the r h +1);
struct tcp hdr ∗ tcp h = (struct tcp hdr ∗) (ip h +1);

First, the rte pktmbuf mtod(. . .) macro is used to retrieve the address at which the
packet contents begin for the current packet mbuf. It also directly casts it to an pointer to

30

5.2. DPDK Application 31

a struct ether hdr. This struct allows easy access to the fields of the Ethernet header
and looks like:

struct e ther hdr {
struct e ther addr d addr ;
struct e ther addr s addr ;
u in t16 t e the r type ;

} a t t r i b u t e ((packed)) ;

The packed attribute makes sure that the struct is not optimized in the compiler, but is
layed out exactly as defined in the source code. This is necessary in order for the struct
fields to exactly match the byte positions of the packet content. The first six bytes of the
Ethernet header are the destination MAC address, here realized with struct ether addr
which is a byte array of size six. It is followed by the source address, also 6 bytes. Then
the two byte ether type defines what the next inner protocol is. The next lines make
IPv4 and TCP header accessible. To find the starting address of the IP header, to the
starting address of the Ethernet header the size of the Ethernet header is added. This
address is the first byte that is not part of the Ethernet header, thus the first byte of the
next header. This address is then casted to a struct ipv4 hdr pointer. Same thing for
the TCP header, starting address of IP header plus size of it is the starting address of the
next header. Right now, the only thing known about the packet is that it has to be an
Ethernet packet. The VNF only has to handle TCP packets, thus the header structs are
used to make sure the packet has to be processed further.

i f (r t e be t o cpu 16 (ether h−>e the r type) != ETHER TYPE IPv4
| | (ip h−>v e r s i o n i h l & 0 x0f) != 5
| | ip h−>nex t p ro to id != IPPROTO TCP

) {
r t e pktmbu f f r e e (bufs [i]) ;
continue ;

}

First the ether type has to have the value that indicates an IPv4 packet. the macro
rte cpu to be 16(. . .) is used to make sure the byte order of the two values match.
There are two ways of ordering bytes. With little-endian order, the first byte is the least
significant one, with big-endian order, the most significant comes first. The byte order
used in network packets is big-endian. Some processors, including every x86 CPU, use
little-endian, though. Therefore, the two byte ether type read from the packet has to be
converted into the CPU’s byte order to correctly compare with a value in the CPU’s byte
order. The advantage of using a macro for this is that it can be differently defined for
different CPU architectures. On CPU using little-endian the macro flips the bytes, on
systems with big-endian, nothing is done. After ensuring the packet is an IP packet, the
IP header length is inspected. If the IP header includes options, the TCP header would
start at the wrong address, as the actual IP header is bigger than the struct ipv4 hdr.
In the current code, packets with IP options are not processed. The header length is
stored in the version ihl field, because version number and IP header length (ihl) are
only four bit each, but the smallest addressable unit is one byte. As we read only a single
byte from the header, byte order is irrelevant. To extract the header length the logical
AND operator is applied with 0x0f, setting the four higher bits, which contain the version
number, to zero. The value left is the header size, in 4 byte words. Header length without
options is 5*4 byte=20 byte. Finally, the next protocol inside the IP header is encoded in
the next proto id field and should indicate a TCP packet. If one of these tests failed,
the packet will not be further processed. Instead its mbuf is freed and the next packet
is inspected. If the tests passed, the packet is a TCP packet without IP options, which
means the header structs casted on earlier are valid to use.

31

32 5. Implementation

The TCP packets can be differentiated by their flags. The two for this work relevant ones
were already introduced, those are SYN and ACK. Together with others, e.g. the FIN and
RST flags, they are represent by a single bit each in the tcp flags field. Following code
shows how a SYN-ACK packet is checked for.

i f (tcp h−>t c p f l a g s == (TCP FLAG SYN | TCP FLAG ACK)
&& mac addr equal (ether h−>s addr , server mac addr)) {
re sp = proce s s synack packe t (bufs [i] , pipe new conn) ;
bufs [r e s p i++] = resp ;

}

Additionally to checking if SYN and ACK are set and all other FLAGS are unset, it is
necessary to make sure the packet really comes from the server. The mac addr equal(. . .)
function simply compares if the two six byte long arrays and returns whether they are
equal. The process synack packet(. . .) function is two tasks to take care of. For one, it
has to send an ACK packet back to the server and it has to write information about the
new connection over the pipe to the Python application. Instead of freeing the SYN-ACK
packet and allocating a new one from the memory pool, the received packet is overwritten.
Still, the function returns the address of the mbuf that should be sent. To prepare the
packet correctly, amongst other things, MAC addresses, IP addresses and ports have to
be switched. Also, sequence and acknowledge numbers have to be set correctly. The
new sequence number is simply the acknowledge number of the old packet. The new
acknowledge number is the old sequence number incremented by one, which is not as
trivial because of, again, byte order.

u in t32 t ack = r t e cpu to be 32 (r t e be to cpu 32 (tcp h−>s en t s eq) + 1) ;
tcp h−>r ecv ack = ack ;

The sequence number is taken from the old packet in big-endian order. After transforming
it to CPU byte order, it can be incremented. To put it back into the packet correctly, it
has to be transformed back to network byte order. Another interesting detail are the TCP
and IP checksums. Luckily, DPDK offers functions to easily determine them.

ip h−>hdr checksum = 0 ;
tcp h−>cksum = 0 ;

tcp h−>cksum = rte ipv4 udptcp cksum (ip h , tcp h) ;
ip h−>hdr checksum = rte ipv4 cksum (ip h) ;

For the checksums to be calculated correctly, the checksum fields themselves have to be
manually set to zero. rte ipv4 udptcp cksum(. . .) needs the IP and TCP header and
returns the TCP checksum. The IP checksum does only depend on field of the IP header.
The packet is now correctly modified and could be sent by returning the address of the
mbuf, but before the new connection information has to be written to the named pipe.

wr i t e (connpipe , (const void ∗)&new conn info , s izeof (new conn info)) ;

new conn info is a struct containing the IP address und port of the client.

struct {
u in t32 t ip addr ;
u in t16 t port ;

} a t t r i b u t e ((packed)) new conn info ;

This is also the reason for the MAC address check. Without it, attackers could simply
send SYN-ACK packets and in turn the VNF would flood the switch with rules for fake
connections. The function returns the mbufs address, indicating it has to be transmitted.

When the packet processing loop detects a packet with only the SYN flag set, a call to
the process syn packet(. . .) is issued. It rewrites the packet to a SYN-ACK packet,

32

5.2. DPDK Application 33

with the special part being the generation of the sequence number. This variant of SYN
cookies works by applying a one-way function to source/destination IP addresses and
ports, together with a slowly increasing timestamp and a secret number. Currently, all
these values are summed up and fed to DPDK’s CRC hash function. It is not implied
that this algorithm produces unpredictable results, but was used because of its simple
implementation and the focus of this work was on getting everything around working, not
finding a secure way of hashing. This simple approach also means that no TCP options
are supported.

For ACK packets it is not sufficient to check for only the ACK flag set, since also every
following data packet will have the ACK flag set. A possible scenario would be an incoming
ACK packet, followed by multiple data packets, that reach the DPDK application because
the network is not yet reconfigured. The client has not received any data from the server,
thus the acknowledge number used in the data packets will be the same as the one in the
ACK packet. The expected number is calculated from address/port information and of
course, for every packet it is correct, so the application will send multiple SYN packets
to the server. To prevent this, the payload length of every ACK packet is determined
and only packets with length zero are processed. It is possible for a later packet to look
exactly like the ACK packet, but only when the server sends data to the client first and
the client acknowledges it without sending payload himself. However, if that is the case,
those packets will never reach the VNF, since the network has to be reconfigured for that
to even happen.

u in t16 t packe t l en = r t e be to cpu 16 (ip h−>t o t a l l e n g t h) ;
u i n t 8 t i p h l e n = (ip h−>v e r s i o n i h l & 0 x0f) ∗ 4 ;
u i n t 8 t t cp h l en = (tcp h−>da t a o f f & 0 xf0) >> 2 ;
i f (packe t l en − (i p h l e n + tcp h l en) == 0) {

re sp = proce s s ack packe t (bufs [i]) ;
i f (re sp != NULL)

bufs [r e s p i++] = resp ;
}
else

r t e pktmbu f f r e e (bufs [i]) ;

The payload length is calculated with the formular size of ip packet−size of ip header−
size of tcp header. If it is zero, the packet is processed. Different to the other cases, the
processing function might not have to send a packet - if the acknowledge number is invalid.
Then, the process ack packet(. . .) function returns a null pointer. When it returns
another pointer it is handled like usual. Now, the first thing the processing function does
is calculating the expected acknowledge number for the current and previous timestamp.
If one matches, the ACK package is with a high probability not an attack packet. Then, a
SYN packet is prepared to be sent to the server. The speciality here is that the sequence
number the server should use has to be stored in the payload.

u in t32 t ∗payload = (u in t32 t ∗) (tcp h +1);
∗payload = r t e cpu to be 32 (packe t i sn) ;

The starting address of the packet payload is determined like the addresses of the headers.
The pointer type used is 32 bit, because the sequence number, that has to be written using
this pointer, is four bytes big.

When the process packets(. . .) function processed its burst of packets, the response pack-
ets are put on the TX ring. Again, this can happen from multiple threads simultaneously,
so the threadsafe enqueue variant has to be used.

r t e r ing mp enqueue burs t (r ing tx , (void ∗const ∗) bufs , r e sp i , NULL) ;

From there, the TX core can consume them and instruct the NIC to send them out. With
that, the complete behavior of the DPDK application is explained.

33

34 5. Implementation

5.3 Python Application

The Python3 application is responsible of two tasks. It has to read from the named pipe,
which the DPDK application writes information about new connections and transform
them into REST requests that are sent to the SDN controller to enable rerouting for the
new connection. The other task consists of requesting flow statistics from the controller,
again via REST requests, analyze them and instruct the controller to redirect suspicious
IP addresses’ flows through a throttled queue. A class diagram of the application can
be seen in Figure 5.5. All the program logic resides in the Connection Manager. The

Figure 5.5: Python3 application’s class diagram

Abstract Rest Requests is an abstract class that is the communication interface be-
tween Connection Manager and the SDN controller. In development and testing the
Ryu controller was used, thus the only implementation of the abstract class right now is
the Ryu Rest Requests class.

When the application is started, an instance of the Ryu Rest Requests is created. The
constructor needs quite a bit of information about the network, as well as some config-
uration parameters. The Ryu Rest Requests constructor just calls the constructor of
Abstract Rest Requests with the same parameters.

de f i n i t (s e l f , extern port name , vnf port name , server port name ,
s e rve r i p addr , r e s t addr , conn so f t t imeout , conn hard t imeout) :

s e l f . extern port name = extern port name
s e l f . vnf port name = vnf port name
s e l f . s e rver port name = server port name
s e l f . s e r v e r i p add r = s e r v e r i p add r
s e l f . r e s t addr = re s t addr
s e l f . c onn so f t t imeout = conn so f t t imeout
s e l f . conn hard t imeout = conn hard t imeout
s e l f . setup ()

It has to be known which ports of the SDN controller are connected to the server, the
VNF, and the router that external packets come from. Also necessary is the IP address of
the server and, of course, the IP address and port with which the SDN controller can be
reached. The timeout values are used in the connection rerouting flows to prevent them
of existing forever. After all the arguments are saved, the setup() method is executed,
which is the one implemented by Ryu Rest Requests. The Ryu Controller can control
multiple SDN switches, so most REST requests have to specify which switch is targeted.
The application expects that there is exactly one switch available and the first thing the
setup() method does is getting the Datapath ID (DPID), by which the switch is identified,
using the get switch id() method.

re sponse = reque s t s . get (’ http :// ’ + s e l f . r e s t addr + ’ / s t a t s / sw i t che s ’) . t ex t
parsed = json . l oads (re sponse)

i f l en (parsed) != 1 :
return −1

return s t r (parsed [0])

34

5.3. Python Application 35

Issuing a REST request to /stats/switches returns a JSON encoded array of the existing
DPIDs, which is expected to be of size 1. The DPID of the switch is returned on success.
Also, the names of the ports of server, VNF and extern, are known, but in flows only
port numbers can be used. The get port no(port name) method can translate this
by retrieving port information with a REST request to /stats/portdesc/DPID, finding
the port with the given name and returning its port number. With all the necessary
information acquired, the default flows, shown in the following table, can be created.

Priority Match Action

0 in port: server output: extern
0 in port: extern output: server
1 in port: server, TCP output: VNF
1 in port: extern, TCP output: VNF
1 in port: VNF output: extern
2 in port: VNF, ip dst: serverIP output: server

The first two flows are used to still allow DHCP or ARP packets to be sent between the
server and the gateway to extern. With completely static network configuration at the
hosts, these flows are not necessary. The third and fourth flow redirect all TCP packets
from server and extern to the VNF. The response traffic from the VNF is handled in the
last two rules. Typically it is sent to the gateway, except when the destination IP address
is the server’s address. To demonstrate how flows are created via REST requests, the next
listing shows the creation of the sixth flow.

data = { ’ dpid ’ : s e l f . sw i t ch id ,
’ p r i o r i t y ’ : 2 ,
’match ’ : {

’ i n po r t ’ : s e l f . vnf port no ,
’ e th type ’ : 0x0800 ,
’ i pv4 ds t ’ : ’ 1 9 2 . 1 68 . 0 . 1 0 ’

} ,
’ i n s t r u c t i o n s ’ : [

{
’ type ’ : ’APPLY ACTIONS ’ ,
’ a c t i on s ’ : [

{
’ port ’ : s e l f . s e rve r por t no ,
’ type ’ : ’OUTPUT’
}

]}
]}

r eque s t s . post (’ http :// ’ + s e l f . r e s t addr + ’ / s t a t s / f l owentry /add ’ ,
data=json . dumps(data))

Now, the Ryu Rest Requests object is created and set up. Next, a object of Connec-
tion Manager is instantiated. The constructor requires the Abstract Rest Requests
object and two threshold values, used for the HTTP flood defense, which will be explained
shortly.

After instantiating all the objects, an additional thread executing the monitoring()
method is started. This will be looked at after the actions of the main thread are ex-
plained. At this point, the named pipe is opened with READ permission. From there, the
main thread continuously tries to read from the pipe.

while True :
c = os . read (pipe new conn , 6)

i f l en (c) == 0 :

35

/stats/switches
/stats/portdesc/DPID

36 5. Implementation

pr in t (”Pipe c losed , e x i t i n g ”)
conn mgr . c leanup ()
sys . e x i t ()

ip addr = s t r (c [0]) +’ . ’+ s t r (c [1]) +’ . ’+ s t r (c [2]) +’ . ’+ s t r (c [3])
port = int . f rom bytes (c [4 : 6] , ’ b ig ’)

connection manager . add connect ion (ip addr , port)

In the DPDK application section was explained that client IP address and port are written
to the pipe, which sums up to six bytes per new connection. Therefore, it is always tries to
read six bytes. If the returned byte array is of length zero, however, the pipe was closed,
because the DPDK application terminated. The Python application also terminates after
calling the cleanup() method which deletes all flows on the switch. Otherwise, address
and port are parsed and the add connection(. . .) method is called, which checks if the
client IP is known to be suspicious. If it is, the new flows have to use the throttled
queues (queue 1), else the flows are allowed to use the not throttled queues (queue 0).
The actual code for creating the flows is found in the add connection(ip addr, port,
queue) method.

Prio Match Action

10 in port: server, ip dst: clientIP, port dst: clientPort queue: 0|1, output: extern
10 in port: extern, ip src: clientIP, port src: clientPort queue: 0|1, output: server

These flows ensure that traffic from the server that is addressed to valid client is directly
sent to the gateway and incoming traffic from that client can directly reach the server, in
both directions either through queue 0 or queue 1. Additionally, the flows have soft and
hard timeouts as specified when creating the Ryu Rest Requests object.

That is everything that happens on the main thread. The monitoring() method that is
executed by the additional thread is very simple. In an endless loop it first sleeps for a fixed
amount of time, then calls the Connection Manager’s object’s monitor connections()
method. That method begins with retrieving current flow statistics from the controller
using the get stats per ip(), which returns a dictionary where for every IP address that
has connection rerouting flows the amount of flows as well as the total byte and packet
count of these flows is stored. Using the same statistics saved from the last method ex-
ecuting, the traffic caused by each IP address in the monitoring interval is determined.
If an IP address is in the throttling list, but the amount of traffic from the last inter-
val is lower than the threshold specified when the constructor was called, the address is
removed from the list. If an IP address that is not on the list exceeds the threshold,
it is added to the list. Whenever an address is added or removed from the list, all the
flows have to modified to now enqueue packets to the other queue. This is done with
the requeue connections(ip addr, queue) method. The Ryu Rest Requests’ im-
plementation of this utilizes a flow modification request of the Ryu controller. Finally, the
current statistics are stored, so the next execution of the method can compare the new
statistics with them.

To prevent inconsistent states when monitor connections() and add connection(. . .)
are executed simultaneously, at the beginning of each function a lock is acquired and at
the function end the lock is released.

36

6. Evaluation

6.1 Testbed Architecture

To comfortably develop and evaluate the proposed defense system a virtual testbed con-
sisting of QEMU/KVM virtual machines, Linux bridges and an Open vSwitch instance
has been designed. The topology is displayed in Figure 6.1. When the approach was ex-
plained, Figure 4.1 already pointed out that the internal network has to contain the to be
protected server and the VNF, which are - together with a gateway router to the Internet
- all connected to a SDN switch, which in turn is controlled by a SDN controller. For the
switch the Open vSwitch has been chosen, running natively on the host machine. The
Open vSwitch instance is called intn, for internal network. To simulate accesses from the
Internet, a second network, the extn (external network) exists, featuring one client, that is
supposed to test service availability with legitimate requests. Trying to deny this availabil-
ity is the task of the attackers, whose count can be configurable on testbed launch. The
host machine, as participant of both networks, is responsibly for routing between them.
However, intn and extn are supposed for data only, so there is yet another network for con-
trolling and managing the VMs, the mgmtn. Alongside the host machine accessing VMs
with this network, it is also used for the REST requests the VNF has to issue to the SDN
controller. In the development phase, sometimes additional programs have to installed in
VMs, so the host is able to allow them Internet access by setting up NAT using iptables.
In contrast, when SYN packets with spoofed IP addresses are used to attack the server,
SYN-ACK responses are not supposed to be routed out to the Internet, which is also real-
ized with iptables rules. Bash scripts have been developed to automate VM creation and
provisioning from just a Ubuntu ISO image, launching the VMs with a configured amount
of attacker machines and setting up the networking between them, stopping the testbed
and cleaning everything up, as well as executing attacks and measurements.

The script for creating the virtual machines requires the path to an Ubuntu installation
image. If this is successfully provided, a virtual disk image is allocated and a VM is booted
with disk image and installation image attached. The installation processes has to be done
manually by the user, configuring hostname, username and password as required by the
script, as well as make sure SSH is installed. After Ubuntu is installed on the disk image,
the script takes over. After booting the machine, SSH is used to change the networking
configuration to be able to handle two interface, which will be the case later. Also, the
sudo configuration is altered so that it doesn’t require password verification, otherwise
executing remote root commands would be difficult. After the machine is shut back down,

37

38 6. Evaluation

Figure 6.1: Testbed Topology

38

6.1. Testbed Architecture 39

the actual testbed entities are created. To save memory, the base image is not copied
once for every machine, but the VMs’ hard drives are overlays with the just created image
as base. In the following, it is explained which provisioning steps are necessary for the
different VMs, apart from changing the hostname to something that makes each VM easily
recognizable.

Server For providing a service the Apache2 web server is installed. To accept established
connections from the VNF, the server also has to run a kernel with the modification
from Section 5.1 built in. Therefore, the packages necessary for kernel compilation
are installed, kernel sources are downloaded, the modification is applied and the
kernel is compiled and installed.

VNF The VNF needs to compile and run the DPDK application. The source code is
located in a git repository and so is the DPDK framework, thus git and compilation
packages are installed first. After that, the DPDK repository is cloned and compiled,
variables for compiling application are added to the .bashrc file and hugepages are
allocated. The are tools for constantly binding NICs to DPDK compatible kernel
drivers, however they did not work in the Ubuntu VM. Finally, the VNF application
is cloned and python is installed to run the non-DPDK part of the VNF.

Controller On the Controller VM the SDN controller Ryu has to be installed:

$ sudo apt −y i n s t a l l python3−pip
$ pip3 i n s t a l l ryu

The simple installation and the well documented REST module were the reasons
Ryu was chosen as the SDN controller.

Client The client needs to install tools required for evaluation, namely hping3 and iperf.

Attacker To execute SYN flood attacks, the packet generation tool hping3 is installed on
the attacker disk image.

Starting each VM by hand and configure networking between them is very tedious, so a
launch script exists, which automates that process. For extn, mgmtn and for the connection
to the SDN controller conventional Linux bridges are used.

ip l i n k add name mgmtn type br idge
ip l i n k s e t dev mgmtn up
ip addr add 172 . 16 . 0 . 1 /24 dev mgmtn

When a bridge is created, it appears as a network interface. The host participates in the
network by enabling the interface and giving it an IP address. Later, the interfaces that
the VMs are connected with are added to the bridge and communication is possible. The
same procedure is possible with the OVS bridge.

ovs−v s c t l add−br intn
ip l i n k s e t dev intn up
ip addr add 192 . 168 . 0 . 1/24 dev intn

However, the bridge interface itself is a special port in an OVS bridge. It does not have a
port number, but rather is known as the LOCAL port. The problem with that is that it is
not possible for flows to address different queues of the LOCAL port, which is essential for
the HTTP flood defense mechanism. To give the host access to the bridge without using
the bridge interface itself a veth pair is used. It consists of two network interfaces, which
are connected with each other via virtual Ethernet, hence the name. One end is attached
to the OVS bridge, the other end is enable and configured with an IP address by the host.

39

.bashrc

40 6. Evaluation

ovs−v s c t l add−br intn
ovs−v s c t l set−c o n t r o l l e r intn tcp : 1 9 2 . 1 6 8 . 1 . 1 2 : 6 6 3 3
ip l i n k add i n t n a c c e s s type veth peer name i n t n a c c e s s o v s
ovs−v s c t l add−port intn i n t n a c c e s s o v s
ip l i n k s e t intn up
ip l i n k s e t i n t n a c c e s s up
ip l i n k s e t i n t n a c c e s s o v s up
ip addr add 192 . 168 . 0 . 1/24 dev i n t n a c c e s s

The second line tells the bridge how to reach the SDN controller, the third creates a veth
pair. One interface is named intn access, which will be used by the host, the other is
named intn access ovs and is used as a port of the OVS bridge.

The virtual machines do not have a static IP configuration, they acquired their network
information with DHCP. Static configuration would work just as well for all the VMs
except the attackers, because the number of attackers is variable and the same disk image
is used for each one. To supply the correct IP addresses, dnsmasq, a DHCP and DNS
server is started with a configuration that maps the MAC addresses of the devices to
their respective IP addresses, as well as supply information like network mask and default
gateway dependent over which bridge a request is received. With the network preparation
finished, the VMs can be booted up.

qemu−system−x86 64 −enable−kvm −cpu host −smp $SERV CPU −m $SERV MEM
−net nic , model=v i r t i o , macaddr=AA: 0 0 : 0 0 : 0 0 : 0 0 : 0 0
−net tap , i fname=serv0 , s c r i p t=no , downscr ipt=no
−net nic , model=v i r t i o , macaddr=AA: 0 0 : 0 1 : 0 0 : 0 0 : 0 0 , vlan=1
−net tap , i fname=serv1 , s c r i p t=no , downscr ipt=no , vlan=1
. . / d i sk images / s e r v e r . qcow2 &> /dev/ nu l l &

This command launches the server VM with two network interfaces. The principle is
similar to veth pairs, one end is the NIC of the VM, the other end is an network interface
visible for the host. virtio devices are paravirtualized NICs, offering lower overhead than
emulating real NICs to the VM and they are also supported by DPDK. By specifying which
MAC adddress should be used, the DHCP service can identify the device and deliver the
matching IP, as explained. For the server example, the host will see the two interfaces
serv0 and serv1. Every attacker VM that has to be started needs its own disk image.
These are obtained by create overlays over the provisioned attacker image. When the
VMs are started with their respective overlay, the MAC addresses and interface names are
incremented for every machine to make them distinguishable.

To be able to reach the DHCP service, the host ends of the VM’s NICs have to be added to
the bridges they belong to. This listing demonstrates added the server’s second interface
to the management network:

ip l i n k s e t se rv1 up
ip l i n k s e t dev serv1 master mgmtn

Similarly, the data interfaces of VNF and server are added to the OVS bridge with the
respective OVS command. Additionally, the queues for the OVS ports to host and server
have to be created.

ovs−v s c t l s e t port se rv0 qos=@newqos −− \
−−id=@newqos c r e a t e qos type=l inux−htb \

other−c on f i g :max−r a t e =100000000000 \
queues :0=@queue0 \
queues :1=@queue1 −− \

−−id=@queue0 c r ea t e queue other−c on f i g :max−r a t e =10000000000 −− \
−−id=@queue1 c r ea t e queue other−c on f i g :max−r a t e =200000000

40

6.2. Behavior Validation 41

Queue 0, for the non abusive connections, has such a high bandwidth limit that it is
practically not throttled. Queue 1, however, is here limited to using 200 Mbit/s. Lastly,
another script is invoked to enable Internet connectivity for the VMs and the attacker
count is saved to a file, so that other scripts like the stopping script have a simple way of
determining how many attackers exist.

The networking script is used to enable and disable VM Internet access by setting appro-
priate iptables rules. In both cases it is necessary to know which host network interface is
connected to the Internet. With the ip route command the default gateway interface is de-
termined, which is assumed to be the correct one. With no additional rules, packets from
VMs are actually sent out over this default gateway, responses cannot come back, though,
since the source address is a internal, local network address. To make it work, the host
has to change the source address of packets routed to the default gateway, masquerading
them as if they were sent be the host himself. When response packets come back, the
destination address, which of course is the hosts external address, has to be changed back
to the actual senders internal IP address before routing it to him. With iptables, this
needs just one command:

i p t a b l e s −t nat −A POSTROUTING −o $NIC −j MASQUERADE

For completely blocking Internet access, rules have to be installed that drop every packet
routed to the default gateway. Setting this up is a single command as well:

sudo i p t a b l e s −A FORWARD −o $NIC −j DROP

The script responsible for stopping the testbed connects to every VM via SSH and issues
a shutdown command. The file created by the launch script, that contained the attacker,
is used to determine how many attackers have to be powered off. Cleaning up after all
machines stopped running consists of deleting the attackers’ overlay disk images, removing
all the bridges and queues, stopping the DHCP service and deleting the attacker count
file.

The machine all the following measurement have been performed on featured a AMD
Ryzen 7 1700 eight-core processor with SMT enabled and clock speeds up to 3.65 GHz
and 32 GB of memory running at 2933 MHz.

6.2 Behavior Validation

To validate that the kernel modification functions as expected, SYN packets with four
bytes of payload have to be sent to a machine running the patched kernel. The packet
generator hping3 is able to construct such packets. The payload can either be generated
by hping3 itself or read in from a file. To make the portion of interest more recognizable,
0x01234567 will be used.

echo −n −e ’ \x01\x23\x45\x67 ’ > payload
hping3 −−count 1 −−syn −−dest−port 80 −−data 4 −− f i l e payload 192 . 1 68 . 0 . 1 0

The -n option of echo prevents the program of appending a newline character after the
specified text. -e causes the interpretation of escaped characters. An escaped x indicates
that the following are supposed to be treated as the hexadecimal representation of a byte,
not as individual characters, which would be one byte each, values according to the ASCII
table. The output is redirected into a file called payload, which will contain the four
specified bytes after the command is executed. With that, hping3 can send one TCP
packet with the SYN flag set and four bytes of payload which are read in from the file
to the server’s port 80, where the Apache2 webserver is listening for SYN packets. The
packet was generated on the first attacker (10.0.0.30), on whose NIC also packets were

41

payload

42 6. Evaluation

Figure 6.2: Wireshark capture: SYN packet

Figure 6.3: Wireshark capture: SYN-ACK packet

42

6.2. Behavior Validation 43

captured with Wireshark. Figure 6.2 displays the TCP details of the generated SYN
packets. Important to see here is that the payload of the packet is four bytes long and
indeed contains 0x01234567. Details of the SYN-ACK packet that the server replied with
can be inspected in Figure 6.3. The sequence number displayed in the packet analysis
is not of much use, because it is displayed as a decimal number. However, the in the
hexdump of the packet the sequence number is also highlighted and it is 0x01234567, as
expected.

Testing the SYN flood defense mechanism consists of establishing a TCP connection from
the client with the server and checking transmitted packets, as well as the created flows
in the switch. To open up a connection to the server, the client executes a wget command
to retrieve a webpage from the web server running on the server’s port 80. Packets were
captured at the client’s data NIC and the server’s data NIC, but they were not captured
by the VM’s themselves, the physical host is also able to monitor the packets using his
network interfaces connected to the VMs’ NICs, client0 and serv0. This approach has the
advantage that the timestamps of captured packets use the same reference clock - the hosts
clock. If capturing was done by each VM, their clocks might not be perfectly in sync. A
screenshot showing the captures of both interfaces with every packet of the website access
is contained in the Appendix, Figure .1. For clarity, the relevant information of important
packets has been extracted into the following table.

iface ∆time [µs] source dest flags datalen [byte]

client0 - 10.0.0.20 : 55510 192.168.0.10 : 80 SYN 0
client0 369 192.168.0.10 : 80 10.0.0.20 : 55510 SYN,ACK 0
client0 77 10.0.0.20 : 55510 192.168.0.10 : 80 ACK 0
client0 122 10.0.0.20 : 55510 192.168.0.10 : 80 ACK 193
serv0 11 10.0.0.20 : 55510 192.168.0.10 : 80 SYN 4
serv0 98 192.168.0.10 : 80 10.0.0.20 : 55510 SYN,ACK 0
serv0 1212 10.0.0.20 : 55510 192.168.0.10 : 80 ACK 0

client0 195971 10.0.0.20 : 55510 192.168.0.10 : 80 ACK 193
serv0 91 10.0.0.20 : 55510 192.168.0.10 : 80 ACK 193

The connection establishment begins with the client sending a SYN packet to the server.
The packet never reaches the server’s NIC, but still, 369µs later a SYN-ACK packet comes
back, which thus has to be sent by the VNF. However, the packet looks like it comes from
the server and the client completes the handshake with the ACK packet. For the client
the connection looks established, so just 122µs later it sends the HTTP GET request,
which is 193 bytes long and fits in a single TCP packet. The server has not received any
packets yet and because the server is informed about new connections before the network
is reconfigured, the packet will still be routed to the VNF, where it will be dropped. The
VNF starts informing the server about the connection 11µs later, with a SYN packet
which forces the server’s kernel to use a specific ISN. Looking at the packets’ hexdump,
the payload of this SYN packet is the same as the sequence number of the SYN-ACK
packet the client received, exactly how it should be. The SYN-ACK packet sent by the
server does use the payload as sequence number, this has already been tested when the
kernel modification was evaluated. Until the VNF fully establishes the connection with
the ACK packet, 1212µs pass. The reason for this increased delay is probably that the
VNF does not receive the packet, generate and immediately send the response, like it does
with the other packets, but before sending the response, the information about the new
connection is written to the pipe, to the Python application, which apparently takes it
around 1ms to do. Around 196ms later, the client retransmits the GET requests and this

43

44 6. Evaluation

time it is directed to the server, where it is received after 91µs. All further data packets
of the connection are handled the same.

Alongside the packet captures, the existing flows have been monitored, by saving the
output of the ovs-ofctl dump-flows command every second. The first flow dump containing
the flows for the connection is shown in the following listing. Flow cookie, byte count and
idle age of flows are not included for better visibility.

NXST FLOW rep ly (xid=0x4) :
durat ion =0.921 s , n packets=3, i d l e t imeou t =10, p r i o r i t y =10, tcp , i n po r t =1,

nw src =10 .0 . 0 . 20 , t p s r c =55510 a c t i on s=set queue : 0 , output : 2
durat ion =0.918 s , n packets=1, i d l e t imeou t =10, p r i o r i t y =10, tcp , i n po r t =2,

nw dst =10 .0 . 0 . 20 , tp ds t=55510 a c t i on s=set queue : 0 , output : 1
durat ion =126.038 s n packets=2, p r i o r i t y =2, ip , i n po r t =3,nw dst =192 .168 .0 .10

a c t i on s=output : 2
durat ion =126.051 s n packets=1, p r i o r i t y =1, tcp , i n po r t=1 ac t i on s=output : 3
durat ion =126.047 s n packets=1, p r i o r i t y =1, tcp , i n po r t=2 ac t i on s=output : 3
durat ion =126.060 s n packets=3, p r i o r i t y =0, i n po r t=1 ac t i on s=output : 2
durat ion =126.055 s n packets=3, p r i o r i t y =0, i n po r t=2 ac t i on s=output : 1
durat ion =126.042 s n packets=1, p r i o r i t y =1, i n po r t=3 ac t i on s=output : 1

The third up to the eighth flow are the default flows, they are always active. The first
two flows belong to the newly established connection. There are no existing flows for the
client’s IP address, thus it cannot be considered suspicious of using too much bandwidth
yet and queue 0 is used, in both directions. The configuration used in this example does
not specify a hard timeout, but an soft or idle timeout of ten seconds, which means that
if no packet matched the flow for ten seconds, the flow is removed. A ten second hard
timeout would destroy the flow ten seconds after its creation, regardless whether or not
packets were recently matched.

The HTTP flood prevention’s throttling mechanism is validated with iperf, a tool that
measures the maximum throughput between two hosts. For the testing scenario, the
VNF was configured to analyze flow statistics every second, requeuing connections to the
throttled queue, when they exceeded 50 Mbit/s of traffic and requeuing connections back to
queue 0, when causing less than 10 Mbit/s of traffic. iperf was running in server mode on
the server and as client on an attacker VM. After the client part established a connection
with the server part, it sends as much data as possible over that TCP connection. For a
run with the duration of ten seconds all packets at the server’s NIC have been captured
with Wireshark, which is able to produce IO graphs, showing how many packets were
captured in some time interval. The graph in Figure 6.4 shows the packet rate of each
ten millisecond interval. The connection starts at around 0.61 seconds, maximum link
capacity utilization is reached very quickly. The defense system reaction shows effect at
second 1.74, from where the packet rate varies between 300 and 320 packets per 10 ms. It
is hard to tell the bandwidth from the IO graph, since the packet sizes differ. The client,
trying to send as much as possible, sends packets with maximum segment size of 536,
which results in A Ethernet packet size of 590 bytes, while the server only acknowledges
receiving the data, thus its packet size is 54 bytes. Also, there are less acknowledgement
packets than data packets. iperf states to have transmitted 194 Mbyte in the ten seconds,
which translates into an average bandwidth of 163 Mbit/s. The difference to the expected
100 Mbit/s is caused by the non throttled beginning. Therefore, measurements from 10s to
100s, with 10s steps, have been run. The results are visualized in Figure 6.5. The smaller
the share of the unthrottled beginning becomes, the more the bandwidth approaches the
targeted 100 MBit/s, with some fluctuation caused by different beginning phase lengths,
which happen because of the monitoring checking statistics only every second.

44

6.2. Behavior Validation 45

Wireshark	IO	Graphs:	wireshark_serv0_20180112162019_qnE95p

0 1.5 3 4.5 6 7.5 9
Time	(s)

0

450

900

1350

1800

2250

2700

Pa
ck
et
s/
10

	m
s

Figure 6.4: IO Graph of a throttled connection

20 40 60 80 100

80
10

0
12

0
14

0
16

0

time [s]

B
W

 [M
bi

t/s
]

Figure 6.5: iperf results

45

46 6. Evaluation

6.3 SYN Flood Defense Performance

This section evaluates how effective the defense system can resist against SYN flood attacks
and compares them to an existing mitigation mechanism, the kernel SYN cookies, for
reference. At first though, the impact of SYN floods against an unprotected server is
determined. The attack consists of running hping3 on the host, generating SYN packets
with a predetermined waiting interval.

hping3 − i u1000 −S −q −p 80 −−rand−source 192 . 1 68 . 0 . 1 0

u1000 implies that 1000µs should be waited between two packets. Or the other way
around, a rate of ideally 1000 packets per second. After the generation was started, ten
seconds are waited before starting measuring service availability, which is done by the
client VM. In 0.5s intervals, 50 SYN packets are send to the server and response packets
are captured. For this test, the server got four logical CPUs assigned, together with 2 GB
of RAM. The results for different attack rates are visualized in Figure 6.6. At 10 packets

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●●
●

●

1 2 5 10 20 50 100

0
10

20
30

40
50

attack interval [ms]

S
Y

N
s

an
sw

er
ed

 (
of

 5
0)

Figure 6.6: SYN flood impact without defense

per second, all of the client’s SYNs are processed. The number drops with increasing
attack rate, with 1ms attack delay, the service is practically unavailable for the client.
This calculates to a theoretical rate of 1000 packet/s, however sending packets does not
happen in zero time, so the more packets are sent, the more the actual packet rate varies
from the specified waiting interval. The actual packet rate has been determined by running
hping3 with the timeout command, that is instructed to stop the packet generation after
10 seconds. Because hping3 prints the amount of sent packets on termination, the packet
rate of 1ms delay can be calculated to be around 930 packet/s.

The same methodology should have been used to determine how many packets the SYN
cookies can withstand. However, even with the smallest usable delay of 1ms, every single

46

6.4. Influence on Quality of Service 47

of the client’s 50 SYN packets has been responded to. The attack rate with 1ms interval
has been measured to be around 225,000 packet/s. hping3 has the –flood option, which
sends packets as fast as possible, which amounted to 375,000 packet/s on the test system.
With that attack rate burdening the server, the client tried sending 50 SYN packets ten
times. The average amount of answered packets was 35, the lowest 28 and the maximum
42. However, it is not possible to tell if the packets were dropped at the busy server or
somewhere on the way between client and server.

The VNF DDoS defense system was tested in three different configurations. One time,
the DPDK application had three cores assigned, thus one was polling the network card,
one was processing packets and the other was sending packets. In the other configurations
six and eight cores were available, so four, respectively six cores were processing packets.
Again, ten runs consisting of 50 SYN packets each, have been run on the client, while the
host was flooding. Results, together with the SYN cookie values are listed in the following
table.

SYN cookies VNF 3 cores VNF 6 cores VNF 8 cores

Run 1 30 29 27 25
Run 2 37 34 22 23
Run 3 30 34 17 28
Run 4 41 25 37 27
Run 5 35 30 26 21
Run 6 38 29 27 25
Run 7 42 31 26 24
Run 8 27 29 23 30
Run 9 35 25 31 28
Run 10 35 34 24 26

AVG 35 30.2 26 25.7
MIN 28 25 17 21
MAX 34 34 37 30

Apparently the VNF did a bit worse than the SYN cookies. What is surprising however,
is that more processing cores on average had inferior performance than a single core. This
may indicate that the ringbuffer use for thread communication is preventing scalability. Or
the networking in between might be the bottleneck and fluctuations were more favorable
for the SYN cookies and lower core counts. Anyway, the results are not very meaningful
and satisfactory, further testing with predictable packet generation and networking will be
required.

6.4 Influence on Quality of Service

Because the time that is needed to inform server and network after a successful handshake,
the first few packets of the client might be dropped, because they are still routed to the
VNF and dropped there. This can even be seen in the validation example, Section 6.2.
To measure its influence, the client accesses the Apache2 Ubuntu Default Page using curl,
which can output the total loading time needed. Different packet transmission delays
from the client to the server are considered as well and realized with netem, emulating the
respective delay on every packet the client sends. The page is loaded 10 times for every
delay and the average is used for plotting. Results for enabled DDoS protection and direct
connection between client and server can be found in Figure 6.7. While the load times
increase linearly with the delay for direction connections, with the VNF in between, delay
increases have slightly more influence. In Section 6.2, the retransmission of the first data

47

48 6. Evaluation

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

delay [ms]

lo
ad

 ti
m

e
[m

s]

direct
with VNF

Figure 6.7: Page access timing results

packet happened after around 200 ms, which matches these results, showing 216 to 401
milliseconds longer page load times.

The increasing impact of delay with DDoS protection enabled probably was not because
of the packet loss of the initial data, but rather because no TCP options are supported
by the VNF. Many options, like MSS or window scaling, were introduced to support high
bandwidth, high ping scenarios. With available bandwidth being very high, the direction
connection with its enabled options is probably still faster, even with only moderate delays.
To test bandwidth limitations more thoroughly, iperf was used again to determine max-
imum bandwidth for both cases. The throttling threshold of the HTTP flood protection
has been set to 10 GBit/s to prevent it from interfering. Like in the previous measure-
ment, the delay is applied to packets transmitted by the client. The graph in Figure 6.8
demonstrates the impact of missing TCP options. Without additional emulated delay,
the bandwidth with enabled VNF is not too far off the direct connection, but with just 5
ms more the bandwidth drops from 814 Mbit/s to merely 76 MBit/s. From there it falls
further to only 2 Mbit/s with 100 ms delay. The direction connections are also affected
by the delay, the decline is less step, though. Up to 35 ms it is still able to transport more
than 200 Mbit/s (with VNF: 13 Mbit/s). Even at 100 ms the throughput still amounts to
79 Mbit/s.

Overall, the DDoS protection in its current form noticeably degrades quality of service
with its simple implementation of SYN cookies which does not support any TCP options.
This effect could be lessened by using a more sophisticated cookie generation algorithm,
like the one used in the Linux kernel. Another technique, also used with kernel SYN
cookies, is on demand use. Thus, the VNF in a non-attack situation only monitors and
forwards packets, checking how many SYN-ACK packets remain unanswered. When an

48

6.4. Influence on Quality of Service 49

0 20 40 60 80 100

0
20

0
40

0
60

0
80

0
10

00

delay [ms]

ba
nd

w
id

th
 [M

bi
t/s

]

direct
with VNF

Figure 6.8: Bandwidth measurement results

attack is observed, the VNF changes to remote handshake behavior. In the end, in an
attack scenario it is preferable to serve connections with inferior quality of service than
not serve them at all.

49

7. Conclusion

This chapter concludes the thesis and presents the most important findings. Cyber attacks
are a major threat to the infrastructure modern society is based on. One group of cyber
attacks are the DDoS attacks with thousands and millions of attackers. In this work, we
focused on mitigation of the effect of these attacks.

We introduced the required technical background, giving an overview of typical DDoS
attacks. Furthermore the concept of Software Defined Networking was introduced with the
example of the OpenFlow standard. Then, the possibilities offered by Network Function
Virtualization were described.

Next, available related work was reviewed. An overview was given for the existing imple-
mentation in the Linux kernel, as well as other papers dealing with DDoS attacks.

Then, we introduced our approach of dealing with TCP SYN floods, as well as HTTP
floods using a security VNF in a SDN enabled network. SYN requests are routed to
the VNF until a connection has been established successfully, after which they are being
rerouted to the actual target server using the SDN features. HTTP flood attacks are
countered by splitting traffic into two different queues inside the network. Applications
with a suspicious amount of traffic are sent via a bandwidth limited queue, while other
connections with clients deemed benign are sent over an unrestricted queue, ensuring their
Quality of Service.

The implementation was divided into three parts. First, we modified the Linux kernel
to be able to force it to use specific sequence numbers for TCP connections. Second, we
implemented an application inside the DPDK framework, realizing the handshake with the
client and, in case of success, with the server, thus protecting the server from spoofed SYN
requests. Third, a Python application realizes the communication of the security VNF
with the SDN controller, alongside the analysis of flow statistics for the defense against
HTTP floods.

Finally, we presented the evaluation of our approach. Therefore, we introduced a testbed
consisting of a miniaturized realistic network environment. Machines to represent valid
clients, attackers, the security VNF, an SDN controller and the application server are put
in place. The network on the service side is SDN enabled. We performed a behavior
validation, showing our approch works as designed. Next, we executed performance tests
for the SYN flood defense, indicating promising performance, comparable with established

51

52 7. Conclusion

in-kernel protection features, proving our system as a valid alternative to competing so-
lutions. Also, influence on connection’s Quality of Service was examined, disclosing a
noticeable impact, that however may be a worthy trade in heavy attack scenarios.

Future work may deal with the evaluation of the proposed approach in a larger environ-
ment, which should provide more comprehensible results. Furthermore, the introduction of
further multi-threading to improve the performance for high load situations and its effect
on the scalability is to be evaluated. Next, the approach could be integrated in a solution
for intelligent function chains for security environments, reporting the number of attacks
to a central instance to facilitate automatic reconfiguration based on models of the traffic,
as well as the security appliances. For better reusability, the modification changes to the
kernel could be converted into a separate module and introduced to the mainline kernel
source.

52

Bibliography

[BBCC14] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “Openstate: programming
platform-independent stateful openflow applications inside the switch,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 2, pp. 44–51, 2014.

[BNR+17] J. Boite, P.-A. Nardin, F. Rebecchi, M. Bouet, and V. Conan,“Statesec: State-
ful monitoring for ddos protection in software defined networks,” 2017.

[Bor12] D. Borman, “Tcp options and maximum segment size (mss),” 2012.

[D+04] L. Deri et al., “Improving passive packet capture: Beyond device polling,” in
Proceedings of SANE, vol. 2004. Amsterdam, Netherlands, 2004, pp. 85–93.

[DYL+12] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan, “High performance
network virtualization with sr-iov,” Journal of Parallel and Distributed Com-
puting, vol. 72, no. 11, pp. 1471–1480, 2012.

[dyn] [Online]. Available: http://www.bbc.com/news/technology-37728015

[Edd07] W. M. Eddy, “Tcp syn flooding attacks and common mitigations,” 2007.

[FM15] C. J. Fung and B. McCormick, “Vguard: A distributed denial of service attack
mitigation method using network function virtualization,” in Network and Ser-
vice Management (CNSM), 2015 11th International Conference on. IEEE,
2015, pp. 64–70.

[GEW+15] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle, “Com-
parison of frameworks for high-performance packet io,” in Architectures for
Networking and Communications Systems (ANCS), 2015 ACM/IEEE Sym-
posium on. IEEE, 2015, pp. 29–38.

[HR06] M. Handley and E. Rescorla, “Rfc 4732: Internet denial-of-service considera-
tions,” 2006.

[Int14] D. Intel, “Programmers guide,” 2014.

[Int15] ——, “Data plane development kit,” 2015.

[JP13] R. Jain and S. Paul, “Network virtualization and software defined networking
for cloud computing: a survey,” IEEE Communications Magazine, vol. 51,
no. 11, pp. 24–31, 2013.

[JYR+16] A. Jakaria, W. Yang, B. Rashidi, C. Fung, and M. A. Rahman, “Vfence: A
defense against distributed denial of service attacks using network function
virtualization,” in Computer Software and Applications Conference (COMP-
SAC), 2016 IEEE 40th Annual, vol. 2. IEEE, 2016, pp. 431–436.

[KSS14] C. Kachris, G. Sirakoulis, and D. Soudris, “Network function virtualization
based on fpgas: A framework for all-programmable network devices,” arXiv
preprint arXiv:1406.0309, 2014.

53

http://www.bbc.com/news/technology-37728015

54 Bibliography

[llo15] “Lloyd’s CEO: Cyber attacks cost companies $400 billion every
year,” 01 2015. [Online]. Available: http://fortune.com/2015/01/23/
cyber-attack-insurance-lloyds/

[MAB+08] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, and J. Turner,“Openflow: enabling innovation in campus net-
works,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 2,
pp. 69–74, 2008.

[MAR+14] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici, “Clickos and the art of network function virtualization,” in Pro-
ceedings of the 11th USENIX Conference on Networked Systems Design and
Implementation. USENIX Association, 2014, pp. 459–473.

[P+81a] J. Postel et al., “Rfc 791: Internet protocol,” 1981.

[P+81b] ——, “Transmission control protocol rfc 793,” 1981.

[PNFR15] M. Paolino, N. Nikolaev, J. Fanguede, and D. Raho, “Snabbswitch user
space virtual switch benchmark and performance optimization for nfv,” in
Network Function Virtualization and Software Defined Network (NFV-SDN),
2015 IEEE Conference on. IEEE, 2015, pp. 86–92.

[Pos83] J. Postel, “Rfc 879: The tcp maximum segment size and related topics,” In-
ternet Engineering Task Force (IETF), 1983.

[Riz12] L. Rizzo, “Netmap: a novel framework for fast packet i/o,” in 21st USENIX
Security Symposium (USENIX Security 12), 2012, pp. 101–112.

[Sal05] J. H. Salim, “When napi comes to town,” in Linux 2005 Conf, 2005.

[syn] [Online]. Available: https://rhelblog.redhat.com/tag/synproxy/

[tcp] [Online]. Available: http://telescript.denayer.wenk.be/˜hcr/cn/idoceo/tcp
header.html

[TMMR16] M. Trevisan, M. Mellia, M. Munafò, and D. Rossi, “Dpdk-stat: 40gbps statis-
tical traffic analysis with off-the-shelf hardware,” Technical report, 2016.

[WYK+14] J. P. Walters, A. J. Younge, D. I. Kang, K. T. Yao, M. Kang, S. P. Crago,
and G. C. Fox, “Gpu passthrough performance: A comparison of kvm, xen,
vmware esxi, and lxc for cuda and opencl applications,” in Cloud Computing
(CLOUD), 2014 IEEE 7th International Conference on. IEEE, 2014, pp.
636–643.

54

http://fortune.com/2015/01/23/cyber-attack-insurance-lloyds/
http://fortune.com/2015/01/23/cyber-attack-insurance-lloyds/
https://rhelblog.redhat.com/tag/synproxy/
http://telescript.denayer.wenk.be/~hcr/cn/idoceo/tcp_header.html
http://telescript.denayer.wenk.be/~hcr/cn/idoceo/tcp_header.html

Appendix

55

56 7. Appendix

Figure .1: Complete packet captures at client and server

56

	Contents
	1 Introduction
	2 Background
	2.1 Distributed Denial of Service Attacks
	2.1.1 Service Crashing
	2.1.2 Network Occupation
	2.1.3 Other Resource Occupation

	2.2 Software Defined Networking
	2.3 OpenFlow
	2.4 Network Function Virtualization

	3 Related Work
	3.1 Existing Implementations in the Linux Kernel
	3.1.1 SYN Cookies
	3.1.2 SYNPROXY

	3.2 Related Papers
	3.2.1 VFence
	3.2.2 VGuard
	3.2.3 StateSec

	4 Approach
	4.1 SYN Flood Defense
	4.2 HTTP Flood Defense

	5 Implementation
	5.1 Kernel Modification
	5.2 DPDK Application
	5.3 Python Application

	6 Evaluation
	6.1 Testbed Architecture
	6.2 Behavior Validation
	6.3 SYN Flood Defense Performance
	6.4 Influence on Quality of Service

	7 Conclusion
	Bibliography
	Appendix

