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Abstract—The critical component in any IoT application is
the communication between devices. This must not only function
smoothly, but also be secured. An important step in securing
IoT communication is its encryption. However, in order for IoT
devices to encrypt their communication with each other, they
must first agree on appropriate cryptographic keys. In practice,
the generation and distribution of such keys is usually managed
by a central authority. However, this centralized approach has the
disadvantages that (i) a central authority must be trusted, (ii) the
central authority represents a single point of failure, and (iii) the
central authority may be far away and thus communication with
it takes a long time. To overcome these drawbacks, distributed
group key agreement approaches have also been proposed. Since
these distributed approaches were not originally developed for
IoT devices, their performance on such devices is unknown.
Therefore, in this work, we investigate the performance of a
distributed group encryption scheme on IoT devices. To this end,
we have built a measurement environment for distributed group
encryption schemes and compare centralized and distributed
group encryption schemes for IoT.

Our measurements show that under perfect network condi-
tions, the distributed approach performs worse than the central-
ized approaches in terms of time and memory requirements.
However, our measurements also show that the distributed
approach allows a group of 5 members to agree on a key in
less than a minute. Thus, the distributed method can be used for
small IoT groups if agreeing on a key is not time-sensitive.

Index Terms—Distributed Group Encryption Scheme, Perfor-
mance Analysis, IoT

I. INTRODUCTION

In 1999, Kevin Ashton coined the term Internet of Things
(IoT) during a presentation at Procter & Gamble [1]. Since
then, more and more devices and machines have been com-
municating more effectively thanks to ever smaller, cheaper,
and more powerful components and sensors. Nowadays, a
vast network of connected devices collect and analyze data
and perform tasks on their own. This network enables many
new applications in various domains such as health care,
sports, or transportation. One use case from transportation
that benefits from the ever-increasing efficiency of IoT is
platooning. In a so-called platoon, a group of vehicles drives
in a coordinated manner at short intervals behind each other.
This short headway can be safely maintained because the
vehicles communicate with each other and can thus accelerate

or brake simultaneously. Consequently, the platoon’s vehicles
consume less fuel to maintain traffic flow and due to reduced
air resistance.

The essential but also the most critical element in many
IoT applications is the smooth communication between the
devices. In the case of platooning, communication provides
the exchange of various information and commands between
vehicles to coordinate the platoon. Since a hacker could hack
into the platoon and cause property damage or even endanger
human lives through accidents, it is therefore crucial that
the communication between the vehicles or generally the
communication between IoT devices is encrypted. Another
challenge is that due to the flexibility and mobility of IoT
devices, IoT devices do not need to know each other before-
hand. Therefore, IoT devices must spontaneously agree on a
key for encryption/decryption. To tackle this problem, various
procedures have been presented in the literature. One approach
is the use of a central entity that specifies a key. However, this
approach has several problems: (i) A IoT device must trust a
central entity; (ii) The central entity may be unreachable (for
an IoT device); (iii) The distance between IoT devices and the
central instance can be too great so that communication and
thus group generation takes longer.

To avoid relying on a single central authority and thus
circumventing its disadvantages, a distributed approach to
agreeing on a key is required. Consequently, different dis-
tributed methods have been presented in the literature. How-
ever, these (and the centralized) procedures were not designed
for IoT; therefore, their performance on IoT devices is almost
unknown. Analogously to our previous papers [2] and [3],
where we determined the performance of centralized schemes
on IoT devices, we now want to investigate the performance
of the distributed scheme proposed by Kim et al. [4] on IoT
devices.

More specifically, our contributions are:

• A IoT typical measurement environment for the dis-
tributed group encryption scheme, proposed by Kim et
al, including workloads and metrics.

• A performance analysis of the distribute scheme [4],
proposed by Kim et al., in an Iot scenario.
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3. Member 4. Member

Fig. 1. Illustration of the concept of Kim et al’s. [4] scheme, which consists
of arranging the group members in a tree that is kept up to date by the group
members.

• A performance comparison of centralized and distribute
group encryption schemes in an IoT scenario.

The remainder of this paper is structured as follows. In
Section II, we present the concept of the distributed group
encrpytion scheme proposed by Kim et al. We then present
our evaluation environment for the distributed scheme in Sec-
tion III, including a measurment set up, metrics and workloads.
In Section IV, we present the performance analysis of the
distributed scheme proposed by Kim et al. and compare this
scheme with centralized schemes. Finally, we highlight the
novelties of our contributions by comparing them with related
work in Section V and summarize our paper in Section VI.

II. BACKGROUND

In this section, we introduce the group management opera-
tions of the scheme developed by Kim et al. [4]. Specifically,
we present (i) the general concept of the scheme developed by
Kim et al., (ii) the initial creation of a group consisting of n
members, (iii) the addition and (iv) the revocation of members
of this group.

(1) Fundamental Concept: The basic idea of the scheme
proposed by Kim et al. [4] is that the members of a group
arrange themselves in a tree structure, which allows them
to compute a common group key. This tree is kept up-to-
date by the group members themselves, i.e. when adding
or removing group members, each group member has to
update its own individual tree. The update of the tree in
case of a new or removed member will be discussed in the
following subsections, here we show how the group members
can calculate the group key on the basis of a concrete tree.
Such an exemplary tree is illustrated in Figure 1, showing
that (1) the members of the group form the leaves of the
tree and (2) each node has a key K<l,v> and a blinded key
BK<l,v>. Here, l represents the depth of the respective node
in the tree and v represents the position of the node at depth v.
A group member chooses its key Kl,v itself and can compute
its blinded key BK<l,v> by f(K<l,v>), where the function
f is defined in Equation 1. The exponentiation base α and
the prime number p in the function f are predetermined and
publicly known. A group member can calculate the key K and
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Fig. 2. Illustration of the successive addition of 2 new group members to a
group that initially consists of only one member.

hence BK of its parent node using Equation 2. This requires
the group member to know the key K of the left child of the
parent node and the blinded key BK of the right child of the
parent node. Since the ultimate goal of each group member is
to calculate the key of the root of the tree K<0,0>, each group
member must know all the corresponding keys on its way to
the root, or have the information to calculate them. (Note: This
is always ensured by the way members are added or removed).
The root key K<0,0> and a hash function h allow the group
members to subsequently compute the group key kgroup as
follows: kgroup = h(K<0,0>). The group key kgroup can then
be used to encrypt or decrypt messages to or from the group.

f(x) = αxmod p (1)

K<l,v> = (BK<l+1,2v+1>)K<l+1,2v>mod p (2)

(2) Initial Group Creation: Creating a group with n mem-
bers begins with the first member acting as the sponsor and
creating the initial key tree, as shown in Figure 2a. The
remaining members are then added individually to the tree
and thus to the group. The process of adding a group member
is described below.

(2) Member Addition: Adding a new group member starts
with the new group member generating its key K and comput-
ing its blinded key BK from it. Then the new group member
broadcasts a join request to the existing group containing
its BK. Then the existing members of the group determine
the insertion point for the new member in the key tree,
distinguishing two cases: (1) the tree is balanced and (2) the
tree is not balanced. In the case of a balanced tree, the new
member is added to the root. If the tree is not balanced,
the shallowest rightmost node where the insertion does not
increase the height of the tree is selected. These two cases are
also illustrated in Figure 2b and Figure 2c , where Figure 2b
contains the case of an unbalanced tree and Figure 2c contains
the case of a balanced tree. Updating the keys in the tree is
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now handled by the rightmost leaf in the subtree rooted at the
insertion node, which is also called the sponsor. For this, the
sponsor calculates the needed keys k and blinded keys BK
and broadcasts the calculated BKs to the new member and the
old members of the group. Thus, all the old group members
and the new member have all the keys they need to calculate
the group key kgroup for the updated group.

(3) Member Revocation: Removing a member starts with
the member to be revoked broadcasting a leave request con-
taining its blinded key BK to the other group members. Then
the remaining group members update their key tree structures
by removing the revoked member node and replacing its
former parent node with the former sibling node of the node
to be removed. Such a tree update for an example removal
process is also illustrated in Figure 3. Updating the keys in
the new key tree is again done by the so-called sponsor. In
this case the sponsor is the right most node rooted at the
leaving members sibling node. Analogous to adding a new
group member, the sponsor computes for itself all keys and
blinded keys for the new tree structure and broadcasts the
blinded keys to the remaining group members. In this way
all group members have again all needed information for the
calculation of the group key.

III. EVALUATION ENVIRONMENT

Now that we have shown how the distributed scheme works,
we present the evaluation environment in which we evaluate
the performance of the scheme. For this purpose, we present
(1) a measurement setup, (2) metrics, and (3) workloads for
the distributed group encrypion scheme.

A. Measurement Setup

Analogously to our previous papers [2], [3], [5], [6] and
[7] we use a EPS microcontroller as the hardware for the
realization of an IoT scenario. More specific, we use the
ESP8266, a widely used microcontroller in various IoT sce-
narios such as data centre temperature monitoring [8], smart
home automation [9] or garbage level monitoring in big cities
[10]. The ESP8266 is a so-called System-on-a-Chip and a 32-
bit microcontroller from Espressif Systems. It has the ability
to establish a 2.4 GHz Wi-Fi connection, a 80 MHz dual-
core CPU and 64 kB RAM. A ESP8266 represents one group
member and for our measurements we used up to 5 ESP8266s,
as shown in Figure 4. Also shown in Figure 4. is a Raspberry
Pi 3B+ running an MQTT broker that allows the ESPs to
communicate with each other. As software for the realization
of the MQTT broker we used the Mosquitto Broker in version
1.5.7. The reason why we decided to have the ESPs commu-
nicate via an MQTT broker is that MQTT is one commonly
applied protocol for the realization of IoT communication [11].
However, in order for the ESPs to communicate via the broker,
they themselves require an MQTT client implementation, for
which we use the Async MQTT client [12]. In addition, we use
on the ESPs the gmp-ino library [13], a port of the gmp library,
to perform the calculations necessary for the distributed group
encryption scheme.

B. Workload Pattern

In terms of workloads, we focus on the group management
operations that provide the corresponding keys for encrypting
the group communication. The reason why we do not consider
group communication as a workload is that group encryption
schemes are typically used to distribute a key that is then
used in combination with an additional and significantly faster
symmetric encryption scheme such as AES. Therefore, we
do not consider the encryption and decryption of the actual
group communication as a workload of the distributed group
encryption method, but only the generation of the group key.
Therefore, we consider the addition and removal of group
members as workload and define them as follows. Thereby
we distinguish between sponsor and non-sponsor.

(1) Addition and (2) Revocation of a Group Member:
The sponsor/non-sponsor group members of a group with m
members performs the necessary calculations to update its key
trees and group key after a member is added or removed from
this group n times in a row.

C. Metrics

In order to evaluate the performance of the distributed group
encryption scheme, we consider as metrics the time required to
perform group management operations and the storage space
required. Regarding times, we consider the average time it
takes to (i) add a member to the group ta, and (ii) revoke
a member from the group tr. Thus ta can be exemplary
calculated using Equation 3, where n stands for the number of
addition operations performed and tai

for the time of the i-th
addition operation. As accuracy, we use the standard deviation
of the measured quantities. Analogously tr can be calculated.

ta =
1

n

n∑
i=1

tai
(3)

In addition to the required times, we also take into account
the average memory requirements. Specifically, we consider
the average memory requirements for storing the temporarily
required information for updating the key tree and recalculat-
ing the group key. As a measure of accuracy we again use the
standard deviation of the measured sizes as an error.

IV. PERFORMNANCE EVALUATION

In this section, we first present the performance analysis of
distributed scheme [4] in our IoT testbed and then compare it
centralized schemes.

A. Performance Analysis of the Scheme [4] in an IoT Use
Case

We start the performance analysis of the distributed system
on the basis of adding members. To do this, we first consider
the time it takes the sponsor to update the key tree to add a
new member to the group. The times required by the sponsor
to update the key tree can be seen in Figure 5, showing that
(i) the required time depends on the height of the sponsor in
the tree and (ii) the greater the sponsor’s height in the tree, the
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Fig. 3. Illustration of the revocation of a member from a group with four members

Fig. 4. Measurement setup for up to 5 group members, each realized using
an ESP8266

greater the time required. After the sponsor updates the key
tree, it broadcasts it to the other group members via MQTT
so that they can calculate the new group key from the updated
key tree.

Fig. 5. Time needed by the sponsor to update the key tree, depending on the
height of the sponsor in the tree

The total time required to add a new group member, i.e., the
time required for the sponsor to compute the new key tree, the
subsequent broadcasting of the new tree, and the computation
of the new group key by all group members is illustrated in

Figure 6. More precisely, Figure 6 shows the times needed
to add the second, third, fourth and fifth member to a tree
with initial only one member. Thereby it can be seen that
the time needed increases with the number of already existing
members.

Fig. 6. Total time required to add a new group member, i.e., the time required
for the sponsor to compute the new key tree, the subsequent broadcasting of
the new tree, and the computation of the new group key by all group members

The time required to remove a member is almost identical
for adding a member. The only difference is how the sponsor
has to modify the underlying tree structure differently in order
to subsequently compute the new key tree. However, the time
required for this is so marginal that we could not measure
it within our measurement accuracy. Thus, the time required
by the sponsor again depends only on its height in the tree
and corresponds to the times for adding members shown in
Figure 5. Analogously, the total time required to remove a
member is the same as the total time required to add a member
in Figure 6.

Finally, we consider the memory requirements for temporar-
ily storing the new key tree generated by the sponsor. We have
measured this as an example for the case when 4 new members
are successively added to an initial group consisting of only
one member. The size of the key tree, which is generated
and broadcast by the sponsor after each addition, can be
seen in Figure 7. In this figure, we can see that the memory
requirements of the key tree increase linearly with the number
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of existing members in the group.

Fig. 7. Memory requirements of the key tree, which the sponsor broadcasts
after sequentially adding four new members in an initial group with only one
member

B. Performance Comparison of the Distributed Scheme [4]
with Centralized Schemes

In order to better classify the previously presented perfor-
mance of the distributed system, we now compare it with the
performance of centralized procedures. We use as comparison
schemes the centralized schemes SKDC and the scheme
proposed by Nishat et al., whose performance we have already
analyzed in [3] and [2]. The performance of these two schemes
was measured once on an ESP32, which acted as hardware
for a group member, and on a commercially available laptop,
which acted as the central instance.

The performance measurements showed that in case of the
scheme proposed by Nishat et al., that the group members
had to temporarily store almost 20 Bytes per existing group
member. If we compare these values with the memory require-
ments of the distributed scheme [4], we see that Nishat could
manage 38, 64, 90 and 116 members respectively with the
memory required by the distributed scheme for 2,3,4 and 5
members respectively. In case of SKDC, on the other hand,
the group members had to temporarily store only 16 Bytes,
regardless of the group size. Thus, two statements can be made
with regard to the temporary memory requirements. First, the
two centralized schemes require significantly less temporary
memory than the distributed scheme. Second, the centralized
scheme SKDC supports, in contrast to the distributed scheme
[4] and scheme proposed by Nishat et al., arbitrarily large
groups in terms of memory requirements. Nevertheless, it
should not be forgotten at this point that the distributed scheme
is generally applicable to IoT and has been shown to support
up to 5 members in terms of temporary memory requirements
(although even more members would have been possible). In
terms of the platooning use case described at the beginning,
this would mean that the distributed scheme would support at
least 5 cars driving behind each other in a platoon.

Finally, we consider the time required for a group member
to join an existing group. In the distributed method, it takes
3.96 seconds, 8.14 seconds, 11.81 seconds and 12.71 seconds
for the second, third, fourth, and fifth members to join the

group, respectively, see Figure 6. The centralized schemes
SKDC and the scheme proposed by Nishat et al. schemes,
on the other hand, required time under 3 seconds for up
to 1000 members. (Note: Since these statements are based
on measurements using the ESP32 and not the ESP8266,
we repeated the measurements on the ESP8266. These mea-
surements confirmed that the statements also have validity
for the case when the ESP8266 is used as hardware for
the group members and not the ESP32). Thus, the statement
that the centralized schemes are significantly better than the
distributed scheme is also valid with regard to the calculation
times. However, three facts must not be forgotten here. First,
the centralized schemes require a trusted third party, also
called a central authority, which takes on the main burden
of the calculations for them. However, this also means that
the group members must be able to communicate with this
central instance. This may not always be the case, as in the
platooning example, when the vehicles that want to form a
platoon drive through a tunnel or through an area with poor
Internet connection. Second, all the measurements performed
were under perfect network conditions, with the devices in
close proximity to each other, see e.g. Figure 4. This scenario
is a more realistic assumption for the distributed scheme in
the platooning case, where cars drive close to each other,
than in the case of centralized schemes, where the central
instance can be located far away in a cloud. Accordingly, in
centralized schemes, network effects and transmission times
can still significantly increase the required times. And third,
the distributed scheme allows 5 members to form a group in
under 40 seconds, which is an acceptable duration in the case
of a platoon, for example, in which cars want to ride close
together in a group over long distances.

In summary, our performance analyses show that, under op-
timal network conditions, the distributed scheme [4] performs
worse than the centralized schemes SKDC and Nishat in
terms of required times and memory requirements. Never-
theless, the distributed scheme allows the creation of small
groups as long as the use case allows the creation time to
be in the seconds or minutes range. However, the distributed
scheme does not require a central instance for this and is less
dependent on network effects. Therefore, we plan to extend
our work in the future to include a performance analysis of
the schemes in different network situations.

V. RELATED WORK

In this section, we review related work and highlight the
novelty of our contribution. The literature regarding the eval-
uation of the performance of encryption schemes in IoT use
cases can be divided into the following four areas: (1) 1-to-
1 encryption, (2) surveys, (3) centralized schemes, and (4)
distributed procedures. For example, in [14], [15] and [16], the
authors analyze the performance of 1-to- 1 encryption schemes
in an IoT environment. Besides these practical performance
analysis of 1-to-1 encryption schemes in the IoT environment,
practical performance analysis of group or n-to-n encryption
schemes in the IoT environment also exist in the literature.
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These mainly focus on centralized schemes, as we have also
done in [2] and [3], for example. In addition to conventional
group encryption schemes, attribute-based encryption schemes
have also been evaluated on IoT devices ( [17], [18] and [19])
, which are in principle also centralized group encryption
schemes, except that they additionally supports subgroups.
We differ from these works in that we analyze the practical
performance of decentralized group encryption schemes on
IoT devices.

However, the performance of distributed schemes are also
already considered in the literature. For example, in the form
of theoretical performance analyses in surveys such as [20] and
[21], but also in practical performance analysis such as [22].
These performance analysis are either theoretical estimations
using the Landau Notation or were carried out on much more
powerful hardware than is usual used in the IoT environment.
Like in [22], where the authors evaluated the performance
of the distributed scheme proposed by Kim et al. on 666
MHz Pentium III dual-processor PCs running Linux and
communicating via the Linux inter-process communication
pipe fifo. In principle, we performed a similar performance
analysis for the distributed scheme proposed by Kim et al. but
in an IoT use case. Unlike [22], our contribution thus allows
us to evaluate the performance of the Kim et al. scheme on
IoT devices, that use IoT typical communication protocols.
This provides important insights for developers looking for a
suitable scheme for an IoT use case or for researchers looking
at the performance of distributed schemes on IoT hardware.
For example, adding or removing a group member using the
distributed scheme [4] on IoT devices already takes more than
1 second and up to almost 13 seconds for group sizes below
6 members, whereas in [22] it was measured that adding and
removing members only takes under 0.5 seconds for group
sizes up to 50 members. In addition, unlike [22], we also
compare the performance of the distributed scheme proposed
by Kim et al. with centralized schemes.

VI. CONCLUSION

To ensure secure communication between IoT devices, a
centralized or distributed group encryption scheme can be
used. However, both of these approaches have not yet been
developed for IoT devices, and thus their performance on such
devices is unknown. In this work, we investigate the perfor-
mance of the distributed group encryption scheme proposed by
Kim et al. on IoT devices, analogous to our previous work [2],
[3] in which we investigated the performance of centralized
group encryption schemes on IoT devices. To this end, we
build a measurement environment for the distributed group
encryption scheme, analyze the performance of the distributed
scheme, and compare the performance of centralized and
distributed group encryption schemes in an IoT scenario. Our
results show that the distributed encryption scheme of Kim
et al. performs worse than the centralized scheme SKDC and
the centralized scheme proposed by Nishat et al. under perfect
network conditions in terms of time and memory requirements.
However, the distributed method allows a group consisting of

5 members to agree on a group key in under a minute. Thus,
while our measurements proved that the distributed scheme,
under perfect network conditions, performs worse than the
centralized schemes, they also proved that the distributed
scheme can be used for non-time-critical IoT use cases.

However, it should not be forgotten that the distributed
scheme is less dependent on network effects and thus it could
also perform better than the centralized schemes under poor
network conditions. To clarify this, we plan to compare the
performance of centralized and distributed group encryption
schemes in limited network conditions in future work our
benchmark framework [23] for Publish/Subscribe communica-
tion protocols under network limitations and our IoT network
emulator [24].

Further, we plan to integrate situation-awareness. Such a
situation-aware mechanism can switch the encryption scheme
based on the current system situation based on self-learning
decision-making, e.g., following a self-aware computing sys-
tems approach [25].
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