
www.uni-wuerzburg.de
Submission
27. May 2020

Simon Eismann M.Sc.
Second Advisor

Johannes Grohmann M.Sc.
First Advisor

Prof. Dr.-Ing. Samuel Kounev
First Reviewer

Martin Sträßer
Department of Computer Science
Chair of Computer Science II (Software Engineering)

Predicting Performance
Degradations of Microservice
Applications

Master Thesis

Ich versichere, die vorliegende Masterarbeit selbstständig und unter ausschließlicher Ver-
wendung der angegebenen Literatur verfasst zu haben. Darüber hinaus versichere ich,
die Arbeit bisher oder gleichzeitig keiner anderen Prüfungsbehörde zur Erlangung eines
akademischen Grades vorgelegt zu haben.

I hereby declare that the thesis submitted is my own unaided work. All direct or indirect
sources used are acknowledged as references. This paper was not previously and is not
simultaneously presented to another examination board.

Würzburg, 27. May 2020

. .
(Martin Sträßer)

Abstract

In recent years, a clear trend in the development of large-scale software systems and web
applications has evolved. The so-called microservice architecture splits a large application
in a set of microservices, which are clear-scoped and small-scaled programs. By doing
this, the development process is simplified and also several benefits in operation and main-
tenance are created. However, new risks and challenges arise concurrently. One of the
main upcoming challenges in this area is the performance evaluation and prediction, espe-
cially the prediction of performance degradations. Such declines can cause, for example,
increased response times of websites and hence might influence the user experience and
lead to violations of service level objectives.

In this thesis, we present a new approach for the prediction of performance degradations
in microservice applications. Therefore, we identify the number of incoming requests
as one of the most important causes of impaired performance metrics and use modern
time series forecasting techniques to estimate the future load. Besides the load intensity
itself, the distribution of the requests across the application topology has a big influence
on the application performance. In order to understand and model the connections and
dependencies between several microservices of one application, we extract architectural
information from monitoring and tracing data at runtime. We summarize this information
in a request propagation model, which is able to predict arrival rates for all microservices
and their endpoints. Furthermore, we gather response times and other performance metrics
of different microservices at runtime. These data serve as a basis for the training of the
performance inference model, a machine-learning-based regression model, which calculates
a performance prediction from estimated load intensities and architectural information.
To enable a comprehensible output of the models, we use a traffic-light system to rate
the predicted state of a microservice. In this work, we describe the theoretical aspects,
present a generic architecture for realization, and provide a concrete implementation of
this approach using open-source software.

In our evaluation, we use realistic workloads and two state-of-the-art microservice test ap-
plications. We define and perform measurements in five test scenarios, in which different
application states and degradation sources are simulated. The results show that the models
are able to learn the performance behavior and architectural dependencies of the appli-
cations quickly and without prior knowledge. The predictions are characterized by high
accuracies of more than 95%. Depending on the test scenario, up to 72% of the measured
performance degradations are predicted correctly. Moreover, the models are able to keep
their prediction quality nearly constant even with higher prediction horizons. The advan-
tages of our approach are that it is not application-specific, does not need prior knowledge,
produces comprehensible results, and can be extended easily. A weakness of the current
version is the strong dependence on the load forecast. This reliance can be reduced in
future works by including and modeling more influencing factors for the performance from
different sources.

v

vi

There are two main contributions of this thesis. First, we propose a new abstract model
for predicting performance degradations of microservice applications and a generic archi-
tecture for its realization. Second, we develop a concrete implementation of this model
and perform a detailed evaluation, in which we point out the conceptual strengths and
weaknesses of the approach.

vi

Zusammenfassung

In den letzten Jahren hat sich ein klarer Trend in der Entwicklung von großen Softwa-
resystemen und Webanwendungen entwickelt und etabliert. Die sogenannte Microservice-
Architektur teilt die Anwendung in verschiedene Microservices, kleinere Programme mit
klar definierten Funktionen und Verantwortlichkeiten. Dies vereinfacht den Entwicklungs-
prozess und bietet auch zahlreiche Vorteile im Betrieb und der Wartung der Anwendung.
Gleichzeitig entstehen aber auch neue Risiken und Herausforderungen. Eine der zentra-
len neuen Herausforderungen ist die Leistungsbewertung und -vorhersage der Anwendung,
insbesondere die Vorhersage von Leistungseinbrüchen. Solche Einbrüche können sich z.B.
in gestiegenen Antwortzeiten einer Webseite ausdrücken und damit Einfluss auf die Kun-
denzufriedenheit nehmen oder Vertragsverletzungen verursachen.

In dieser Arbeit stellen wir einen neuen Ansatz vor, um Leistungseinbrüche speziell in
Microservice-Anwendungen vorherzusagen. Dazu haben wir die anliegende Last auf ei-
nem Microservice als einen der Hauptgründe für steigende Antwortzeiten identifiziert und
verwenden moderne Methoden der Zeitreihenvorhersage um die Last in zukünftigen Zeit-
intervallen abzuschätzen. Neben der Lastintensität an sich, spielt auch die Verteilung der
Last auf die verschiedenen Komponenten eine Rolle. Um den Zusammenhang zwischen den
Microservices innerhalb einer Anwendung zu verstehen, extrahieren wir automatisch, auf
Basis von gemessenen und verfolgten Nutzeranfragen, architekturelle Eigenschaften der
Anwendung. Diese Informationen fassen wir in einem request propagation model zusam-
men, welches in der Lage ist, eine Vorhersage für die Ankunftsraten für alle Microservices
und deren Endpunkte zu erstellen. Weiterhin erfassen wir, zur Laufzeit des Programms,
Antwortzeiten und weitere Leistungsmaße von verschiedenen Microservices. Diese Daten
dienen als Grundlage für das Training des performance inference models, einem Modell,
welches auf maschinellem Lernen und Regressionsalgorithmen basiert und aus Lastinten-
sitäten und architekturellen Informationen eine Leistungsvorhersage erstellt. Um eine ein-
fach verständliche Ausgabe der Ergebnisse zu ermöglichen, bewerten wir den Zustand eines
Microservices mit einem Ampelsystem. Wir beschreiben die theoretischen Grundlagen des
Ansatzes, stellen eine generische Architektur zur Umsetzung vor und erstellen eine kon-
krete Implementierung mit Schnittstellen zu frei verfügbarer Software.

In unserer Auswertung verwenden wir realitätsnahe Lasten und zwei aktuelle Microservice-
Anwendungen zum Testen unseres Ansatzes. Wir definieren und führen Messungen in ins-
gesamt fünf Testszenarien und Experimenten durch, in denen unterschiedliche Zustände
der Anwendungen und Fehlerquellen simuliert werden. Die Ergebnisse zeigen, dass unsere
Modelle auch ohne Vorwissen in der Lage sind, schnell das Leistungsverhalten und die
architekturellen Eigenschaften der Anwendungen zu erlernen. Die Vorhersagen sind ge-
kennzeichnet durch eine hohe Vorhersagegenauigkeit von über 95%. Weiterhin werden je
nach Szenario bis zu 72% der Leistungseinbrüche vorhergesagt. Darüber hinaus sind die
Modelle in der Lage, auch über größere Zeiträume, Vorhersagen mit annähernd gleich-
bleibender Qualität zu treffen. Die Stärken unseres Ansatzes liegen vor allem darin, dass
er anwendungsunabhängig und ohne Vorwissen angewendet werden kann, erweiterbar ist
und nachvollziehbare Resultate erzeugt. Eine Schwäche der bisherigen Version ist die zu

vii

viii

große Abhängigkeit von der Lastvorhersage. Diese kann in zukünftigen Arbeiten reduziert
werden, indem noch mehr Leistungsmerkmale der Anwendung und Eigenschaften der An-
fragen von verschiedenen Quellen erfasst und modelliert werden. Die Hauptbeiträge dieser
Arbeit sind zweigeteilt. Einerseits konzipieren wir ein abstraktes Modell zur Leistungsvor-
hersage in Microservice-Anwendungen und eine generische Architektur zur Umsetzung des
Ansatzes. Auf der anderen Seite stellen wir eine konkrete Implementierung des Modells vor
und machen eine detaillierte Auswertung, in der konzeptionelle Stärken und Schwächen
des Ansatzes herausgestellt werden.

viii

Contents

1. Introduction 1

2. Foundations 5
2.1. Microservices and Containers for Application-Level Virtualization 5
2.2. Machine Learning . 7

2.2.1. Overview . 7
2.2.2. Selected Algorithms . 8

2.3. Tools . 9
2.3.1. Pinpoint Monitoring . 10
2.3.2. HTTP Load Generator . 11
2.3.3. AWS GluonTS Time Series Forecasting 11

3. Related Work 13
3.1. Machine Learning for Performance Prediction in

Component-Based Software Systems . 13
3.2. Online Application Failure Prediction . 14
3.3. Performance Prediction of Microservices . 15
3.4. Modeling User Behavior for Software Performance Estimation 16
3.5. Microservice Demo Applications . 17

3.5.1. TrainTicket . 17
3.5.2. Other Demo Applications . 19

4. Approach 21

5. Implementation 33
5.1. The PPP Framework . 33
5.2. Description of Components . 34
5.3. Evaluation Modes . 43

6. Evaluation 45
6.1. Technical Setup . 45
6.2. Test Scenarios . 47
6.3. Evaluation Metrics . 48

7. Results 53
7.1. Scenario 1: Periodic Load . 53
7.2. Scenario 2: Load Peaks on a Frontend Service 64
7.3. Scenario 3: Load Peaks on a Backend Service 70
7.4. Scenario 4: Study with Realistic Workload 74
7.5. Scenario 5: Study with Second Application 80
7.6. Summary and Discussion . 84

8. Conclusion and Outlook 87

ix

x Contents

List of Figures 89

List of Tables 90

Acronyms 93

Bibliography 95

Appendix 99
A. Parameters of Machine Learning Models . 101
B. Rating Schemes and Thresholds (TrainTicket) 103
C. Rating Schemes and Thresholds (Teastore) 106

x

1. Introduction

In recent years, a new architectural style for the development of large-scale software sys-
tems and web applications has been established successfully. The so-called microservice
architecture [1][2] uses a set of clear-scoped and small-scaled applications (microservices)
to realize a larger overall functionality. This is contrary to traditional monolithic applica-
tions, which decompose the application into namespaces or packages, classes, and functions
only. This centrality is both a curse and a blessing at the same time. One key advantage of
a centralized architecture is the fast communication and data exchange between two com-
ponents as they can be often realized using in-process calls and so happen independently
of a network connection or protocol. The main disadvantage is that the whole application
including all components has to be installed on one (virtual) machine. This leads to a
large maintenance overhead on the one hand, as also small updates need a full rebuild
and redeployment, and limited scalability on the other hand, as for a higher load a new
(virtual) machine with the complete application has to be provided. In contrast to this,
microservices are loosely coupled software parts, which can be developed, deployed and
scaled independently.

Nevertheless, this new architectural style introduces also new challenges. One of the most
important in practice is thereby the application performance evaluation and prediction,
in particular the prediction of performance degradations. Such degradations can influence
the user experience and lead to violations of service level objectives. In a centralized
architecture, the application typically runs on a dedicated server, where influences of other
applications or network parameters can be neglected. In contrast to this, microservice
applications are typically deployed on multiple hosts and in diverse environments. This
leads to the fact that the performances of different microservices can vary significantly and
the performance prediction is impeded.

It is well-known that the load intensity has a huge influence on the application perfor-
mance. However, in microservice applications, the load distribution across the different
microservices and their instances has to be considered in addition to this. For example, if
many users request the functionality of one single service at the same time, the performance
of this service might decrease significantly, while other services are not fully utilized. This
fact has not been targeted extensively in previous research. Moreover, most of the state-of-
the-art approaches require prior knowledge or lack explainability of their results, e.g., [28]
and [32]. In this work, we propose a new performance prediction model and framework
for microservice applications, which tackles these problems. The approach is based on
two kinds of models. The request propagation model captures the dependencies between

1

2 1. Introduction

the microservices of one application and predicts the load distribution across the service
instances. The performance inference model is a machine-learning-based regression model,
which generates performance predictions and ratings from load forecasts and architectural
information. The approach is extensible, comprehensible, and application-agnostic. More-
over, it does not require prior knowledge and works on monitoring data, which can be
gathered by nearly all state-of-the-art application performance management tools. In the
evaluation, we use TrainTicket [43] and Teastore [48], two recent microservice benchmark
applications, and design five test scenarios, which simulate different application states and
degradation sources.

There are two main contributions of this thesis. First, we propose a new abstract model
for predicting performance degradations of microservice applications and a generic archi-
tecture for its realization. Second, we develop a concrete implementation of this model
and perform a detailed evaluation, in which we point out the conceptual strengths and
weaknesses of the approach. The following research questions (RQ) and goals outline the
subfields of this work and introduce the most important milestones and aims of this thesis.

Goal 1. Acquire and process performance and tracing data from a microservice applica-
tion.

RQ1.1. Which performance metrics should be chosen to represent the state of a microser-
vice?

RQ1.2. Which tools can be used for load forecasting and measuring application perfor-
mance?

RQ1.3. How can the outputs of these tools be integrated into a prediction framework?

Goal 2. Design and implement a novel performance prediction framework for microservice
applications, which creates explainable and comprehensible results.

RQ2.1. How can different user behaviors and their influence on the application be mod-
eled?

RQ2.2. How can the performance of single services be assessed using predicted user be-
haviors and topological information?

RQ2.3. Which output representation to choose, so that the results are readable and
interpretable by humans?

Goal 3. Evaluate the framework on a suitable microservice demo application.

RQ3.1. Which microservice demo applications are suitable and available for the evalua-
tion?

RQ3.2. Which metrics can be used for evaluating the proposed framework?

RQ3.3. What are the possible test scenarios and user workflows for the evaluation?

RQ3.4. Which influences have forecasting and monitoring intervals on the prediction
power?

Goal 4. Evaluate the framework on a second application and compare the results.

RQ4.1. Which changes are needed to apply the framework to another application?

RQ4.2. How does the complexity of the application influence the prediction power?

RQ4.3. What are the strengths and weaknesses of the approach and how could its perfor-
mance be increased in future work?

2

3

The remainder of this thesis is structured as follows. In Section 2, we describe the founda-
tions of this work and introduce important terms and the deployed tools. In Section 3, we
analyze related publications and name similarities and differences between these papers
and our work. Section 4 describes the conceptual and theoretical view of our approach,
while a concrete implementation is introduced in Section 5. In Section 6, we explain the
methodology of our evaluation and the technical setup. Section 7 presents and discusses
the results of the evaluation in detail. Finally, Section 8 completes this work and draws
conclusions.

3

2. Foundations

In this chapter, we describe the foundations and basic knowledge required to understand
the remainder of this thesis. Therefore, Section 2.1 describes background information
on microservices, their characteristics, and deployment. Section 2.2 presents the most
important terms and algorithms in the fields of machine learning. Section 2.3 wraps up
this chapter and describes the open-source tools used in this work.

2.1. Microservices and Containers for Application-Level Vir-
tualization

Large-scale applications with a monolithic architecture are characterized by large main-
tenance overheads and limited scalability. The microservice architecture overcomes these
mitigations, as the services can be deployed independently of each other. The communica-
tion between the components is often realized via lightweight HTTP resource APIs, e.g.,
Representational State Transfer (REST). As a consequence of this, the whole application
is not restricted to a single implementation technology, which for example means, that the
services can be developed using different programming languages. On the one hand, this
leads to a more flexible and faster development, as activities can be parallelized easily. On
the other hand, simpler maintenance is achieved as well as increased interchangeability
and failure resistance compared to monolithic applications. Moreover, microservices are
better scalable in large-scale and cloud applications. In particular, the services can be
scaled independently of each other. Figure 2.1 shows a simple online shop, which consists
of several components, e.g., for payment and data management. If we choose the microser-
vice architecture shown on the right side, we could start new instances of the user account
service, as we observe or predict many users who need to log in or register. If we choose
the monolithic architecture, we would need to replicate the whole application for scaling.
All in all, microservices should have the following properties [2]:

• The services provide and require well-defined interfaces.

• Their internal behavior can be treated as a black-box.

• They are independently deployable and independent of implementation technologies.

• The services contain all their dependencies.

• They are stateless as best practice.

5

6 2. Foundations

Data Management

Payment

Items

User Account

User Interface

(a) Monolithic Architecture

User
Interface

User
Account

Items

Payment

Data
Manage

ment

(b) Microservice Architecture

Figure 2.1.: Different Online Shop Architectures

The characteristics of microservices automatically lead to the question of how microser-
vices can be deployed. Following the argumentation from above, they need a lightweight
deployment. Traditional virtual machines have a lot of overhead, e.g., for configuration
and start-up. They usually use a guest operating system (OS) with a hypervisor for vir-
tualization. In contrast to this, application-level virtualization is based on one OS kernel,
which is shared among different applications or containers, as Figure 2.2 shows. By doing
this, the overhead is reduced.

A container normally comprises a runtime environment (RE), all binaries, as well as all
dependencies or libraries. For a lightweight integration of these containers in the develop-
ment process, two kinds of tools are required. First, a build automation and dependency
management system, e.g., Apache Maven1 or Gradle2, is needed, as these tasks are non-
trivial for real-world applications. Second, a container system, e.g., Linux Containers
(LXC)3 or Docker4, has to define how to create, start, and manage containerized appli-
cations. Additionally, in large-scale applications, a container management software, e.g.,
Kubernetes5 or Docker Swarm6, can be used, e.g., for scaling tasks as well as starting and
stopping larger groups of containers.

In this work, we use Docker containers for application virtualization and provide templates
for Docker Compose for a deployment on a single machine and Docker Swarm for a deploy-
ment on multiple hosts. A Swarm cluster consists of several computing nodes, which can
be either managers or workers. After the initialization of the cluster by a manager, nodes
can join or leave the cluster easily. If we start an application with different services on a
manager node, the service instances are split across the nodes in the swarm automatically.
It is possible to set several options related to deployment and runtime via configuration
files, such as deployment constraints, service replicas, and restart policies. Another impor-

1https://maven.apache.org/
2https://gradle.org/
3https://linuxcontainers.org/
4https://www.docker.com/
5https://kubernetes.io/
6https://docs.docker.com/engine/swarm/

6

https://maven.apache.org/
https://gradle.org/
https://linuxcontainers.org/
https://www.docker.com/
https://kubernetes.io/
https://docs.docker.com/engine/swarm/

2.2. Machine Learning 7

Server

Host OS

Hypervisor

Guest OS Guest OS

Dependencies Dependencies

App App

VM VM

(a) Virtual machines

Server

Host OS

Container Engine

Runtime
Environment

Runtime
Environment

Dependencies Dependencies

App App

Container Container

(b) Containers

Figure 2.2.: Different Deployment Options

tant feature of Docker is the possibility to set resource constraints for deployed services.
Thereby, the CPU and RAM usage of containers can be limited. REST requests are routed
and processed using an internal domain name system (DNS) server.

2.2. Machine Learning

In this section, we describe background information on machine learning. In the first
paragraph, we provide an overview of important terms in this field and describe regression
problems in a more detailed way. In the second paragraph, we introduce selected machine
learning algorithms and describe their characteristics.

2.2.1. Overview

Machine Learning (ML) [4] is a subset of artificial intelligence and is widely used in many
research fields. For prediction tasks as in our work, machine learning algorithms try to
predict an output y from a given input x, where x and y can be both one- or multi-
dimensional quantities. The function or dependency between x and y is learned during
the training phase. There are three different forms of machine learning. In supervised
learning, a set of input values with their corresponding correct output values is provided
during the training phase. In contrast to this, unsupervised learning techniques do not
provide reference outputs during training. Finally, reinforcement learning (RL) aims to
determine the best action to execute in a given scenario. The quality of an action is rated
by a reward function. An RL algorithm learns suitable actions for each situation via trial
and error and does not use predefined training examples in general. Additionally, machine
learning problems can be categorized by the form of output or solutions to calculate.
An ML problem, which has a finite number of discrete solutions or solution classes, is
called a classification problem. In contrast to this, a problem with continuous numeric
solution values is called a regression problem. In this work, we use regression algorithms to
predict continuous performance metrics of microservices. As a consequence, we describe
fundamental concepts of regression problems in the following paragraph in a more detailed
way.

7

8 2. Foundations

In a multi-dimensional regression problem, which is solved via supervised learning tech-
niques, a set of input vectors x ∈ Rm and corresponding output vectors y ∈ Rn is used as
the training set. The aim of the training is, to learn the relationship y = f(x) : Rm → Rn.
Thereby, the type of the function f(x) can be unknown or restricted in advance. For ex-
ample, in linear regression problems, f has to be a linear function. After the training, the
output of a previously unseen input is predicted by using the learned dependency. How-
ever, in real-world applications, there is a statistical prediction uncertainty. One reason
for this is that the learned dependency function f is usually an approximation of the real
dependency between x and y. Additional uncertainty is added, if x contains measured
or predicted values itself and is therefore subject to measurement or prediction errors
respectively.

A major challenge of ML-based prediction algorithms is generalization, which refers to
the ability to predict (nearly) correct outputs across a large range of (previously unseen)
inputs. If the algorithm models the (noisy) training inputs too well, the prediction quality
for new input values decreases. This problem is called overfitting. In contrast to this,
underfitting means that the algorithm performs badly on both training and test data.
Underfitting normally requires the change of the algorithms hyperparameters or the use
of a different approach.

2.2.2. Selected Algorithms

There are a lot of ML algorithms, which are suitable for both classification and regression
problems. These include linear models, neural networks, (sparse) kernel methods, graphical
models, and mixtures [4]. In the following, the discuss four algorithms, which are often used
in the analyzed literature for prediction tasks, and therefore interesting for our approach,
in a more detailed way.

The k-nearest neighbors algorithm is one of the most comprehensible machine learning
algorithms and has shown effectiveness in many problem scenarios. Given a set of training
vectors x1, x2, ..., xn and their outputs y1, y2, ..., yn, the output yn+1 of a new input vector
xn+1 needs to be predicted. Therefore the k nearest points in the neighborhood of xn+1

are selected. The distance between two input vectors can be computed using a norm,
e.g., the euclidean norm. k determines the number of neighbors to be consulted for the
prediction and must be set appropriately. A low value of k means that the predicted
output is strongly geared to the training set or historical data. Contrary to this, a high
value of k means that also points with a higher distance to xn+1 influence the prediction.
From all selected neighbors of xn+1, the values of the corresponding outputs are averaged,
which creates the prediction for the new input. The advantage of this procedure is that it
produces explainable results, as it uses a simple type of learning from the past. Moreover,
the algorithm performs well on balanced data. However, it is obvious that the quality of the
result depends strongly on the choice of the hyperparameter k. Furthermore, the efficiency
and speed of the algorithm decrease significantly with large and multi-dimensional datasets.

The Naive Bayes algorithm is widely used for classification tasks and can be applied to re-
gression problems as well [5]. The algorithm is based on a conditional probability model.
Given an input vector x = (x1, x2, ..., xn), an output y is chosen, which maximizes the
conditional probability P (y|x1, x2, ..., xn). This decision technique is called maximum a
posteriori (MAP) decision rule. The Naive Bayes approach assumes, that all n entries
(features) of the input vector x are statistically independent variables. This assumption
does not often hold in real-world applications but is sometimes a sufficient approxima-
tion. With this assumption the conditional probability P (y|x1, x2, ..., xn) can be written
as shown in Equation 2.1, where α denotes a scaling factor.

8

2.3. Tools 9

P (y|x1, x2, ..., xn) =
1

α
· P (y) ·

n∏
i=1

P (xi|y) (2.1)

Naive Bayes is an ML algorithm, which works best with supervised learning, as the prob-
abilities P (xi|y) can be learned during training. One of the advantages of this approach is
that in classification problems the correct output is chosen, whenever the correct class is
more probable than all other classes and even if the independence assumption is wrong [6].
However, it is shown, that Naive Bayes has performance problems when dealing with con-
tinuous input values and unbalanced outputs [7][8]. Based on the Naive Bayes approach,
many advanced regression techniques evolved, like the Bayesian linear regression.

Decision trees [4] aim to combine various prediction models and can be used for both
classification and regression problems. The value range of the input vector x is split into
several regions and, depending on the actual value of x at a certain time, the correspond-
ing model is selected for predicting the output. For example, in a regression problem, we
can assign a constant output value or vector to a specific region of the input values. This
approach is easy to understand by humans, as one can determine the traversal through a
decision tree for specific input. However, a single decision tree is sensitive to its training
data and a small change of these results in different trees and therefore different predic-
tions. The Random Forest algorithm [9] tries to prevent this overfitting by combining the
predictions of multiple decision trees. Therefore, a single tree makes its decision based on
m randomly selected features out of the n total features in the input vector. After the
evaluation of all trees, the final output of the Random Forest algorithm is calculated by
averaging the outputs of every single tree. All in all, this procedure leads to a powerful
and high accuracy mechanism and the randomization elements prevent overfitting.

Another wide-spread approach for classification tasks are Support Vector Machines (SVM)
[10]. If SVMs are applied to regression problems, we speak of Support Vector Regression
(SVR) [11]. The basic aim of SVMs is to separate the input data into different classes
using hyperplanes, such that the distance (margin) from the closest data point to the
separating plane is maximized. An easy example is to split a two-dimensional dataset
into two classes by choosing that linear function which maximizes the margin. If the
dataset is not linearly separable, the input space is transformed into a higher-dimensional
feature space using a kernel function. This procedure is called the kernel trick. Popular
mappings are linear or polynomial functions as well as radial basis functions [12]. To
choose the best separating hyperplane, the SVM has to solve an optimization problem,
usually by utilizing computationally efficient quadratic programming algorithms. SVMs
are able to find guaranteed optimal solutions, as the optimization problem is of convex
nature. Moreover, SVMs are implemented in nearly every ML framework and offer many
extensions such as transductive SVMs for semi-supervised learning.

2.3. Tools

In the following, we describe the open-source tools used in this work as they play a major
role in the evaluation process. First, Section 2.3.1 introduces the Pinpoint monitoring
tool, which we use to gather monitoring data from our microservice applications. Second,
Section 2.3.2 describes the HTTP load generator, while the time series forecasting library
GluonTS is introduced in Section 2.3.3.

9

10 2. Foundations

Figure 2.3.: Server Map of Pinpoint

2.3.1. Pinpoint Monitoring

Pinpoint [13] is an open-source application performance management (APM) tool for mon-
itoring applications written in Java or PHP7. The gathered data make it possible to obtain
the application topology as well as request metrics and call stacks. For Java applications,
the binary needs to be started with the Pinpoint agent attached using the javaagent flag.
The source code of the application itself does not need to be modified, as the Pinpoint
agent uses bytecode instrumentation for monitoring. The agents’ settings can be adjusted
using a configuration file, which specifies sampling rates, monitored metrics, and more.
The agent and service use custom names for identification. All agents send their data to
the Pinpoint Collector, which processes the data and saves them into an Apache Hbase8

database. Therefore, the IP address of the machine hosting the Collector needs to be
specified in the configuration file of each agent. The Pinpoint Web UI finally reads and
visualizes the collected data.

Figure 2.3 shows the starting screen of the Pinpoint Web UI. This view delivers a rough
overview of all collected data. In the left part of the picture, the server map is displayed,
which visualizes the instrumented microservices and the connections between them. The
label of each edge in the graph represents the number of requests sent in the last interval
from the origin to the destination node. The interval length can be adjusted with the
control button on top of the server map, in this case, the requests of the last five minutes
are displayed. In the right part of the picture, an overview of the performance data for a
selected service is shown. Moreover, one can obtain the chronological sequence of response
times and occurred exceptions. Besides of that server map view, Pinpoint provides the
transaction view, where metrics and call stacks of single requests can be queried and
analyzed. Furthermore, Pinpoint collects monitoring data from the JVMs, such as heap
usage. Beyond the graphical user interface, Pinpoint provides the Web API, where all
the described data can be queried as JSON objects. Additionally, the functionality of
Pinpoint can be extended by adding further endpoints as plugins. We use Pinpoint and
the Web API in particular to gather and query the monitoring data of Java microservices.
We describe this process as well as the transaction view more detailed in Chapter 5.

7This section refers to Pinpoint version 1.8.4, which is the release used in this work.
8https://hbase.apache.org/

10

https://hbase.apache.org/

2.3. Tools 11

2.3.2. HTTP Load Generator

HTTP Load Generator [14] is a tool for generating HTTP requests to simulate varying
load intensities. Hence, it can be used for testing web or microservice applications. The
generator itself is a Java application, which can be used in two different modes. In the
loadgenerator mode, the application generates and sends new HTTP requests to a specific
target. In the director mode, multiple load generator instances can be coordinated. The
director sends instructions to a dedicated port where the generators listen to. Therefore,
the director needs the IP addresses of every generator at startup time. As an additional
parameter, the load generator receives a CSV file, which contains the desired load intensity
over time and hence specifies the duration of the experiment as well. Moreover, the number
of threads that are used for load generation can be specified. Thereby, each thread can
be interpreted as a single user that has its own usage context with respect to the test
application. As a result, a user pool with a flexible size evolves. For each thread, the
associated cookies are saved and reused for each request, which is important, for example
when testing applications with a login mechanism.

By default, the director would assign the task to generate a new request to every thread in
turns. This behavior can be changed by setting the randomize-users flag. If this option
is chosen, the thread, which generates the next request, is picked pseudo-randomly from
the user pool. On the one hand, this keeps the load reproducible and, on the other hand,
creates some entropy in the types of incoming requests at the test application. The load
generator works with synchronous communication within one user context, which enables
the possibility to perform a certain request based on the response of a previous one. In
order to prevent deadlocks in cases of overloads or service failures, a request timeout can
be set at which requests are dropped. Moreover, the load generator produces configurable
logging output and a statistical summary, where successful and failed requests are listed.

One of the most important parameters for the load generator is the request definition
script, which specifies the targets and payloads for the requests. This LUA script typically
contains the base URL (e.g., http://myapp.test) and the two routines onCycle and
onCall. The behavior of a single user is modeled as a cycle. We define n states or request
types and traverse them in a fixed order for every user. After the traversal, the cycle is
restarted automatically. The routine onCycle is called whenever a new cycle is started
and typically sets or resets all variables needed in the next traversal. The routine onCall

computes the next URL and HTTP request type (GET or POST) for the next request to
be sent. As a part of this work, we added support for specifying JSON payloads in
the request definition script, which can be sent when performing a POST request. As a
parameter, onCall receives the current call number, which is a positive integer. As an
example, one can imagine a simple load script for a website, where the first call performs
the user login (e.g., a POST request to http://myapp.test/login) and the second call is
used to display shopping items (e.g., a GET request to http://myapp.test/items). After
a user has performed these two requests, his cycle is restarted. We use the HTTP load
generator in our evaluation to generate requests for our test applications. A detailed
description of the load scenarios is given in Section 6.2.

2.3.3. AWS GluonTS Time Series Forecasting

GluonTS [15] is a Python library for time series modeling and forecasting published by
Amazon Web Services (AWS) in 2019. It is focused on deep-learning-based models but
provides probabilistic models and components as well. Moreover, functions and tools for
datasets and plotting are included. GluonTS is built around the deep learning framework
Apache MXNet9 and is available as open-source software10. We use estimators from the

9https://mxnet.apache.org/
10Download available at: https://github.com/awslabs/gluon-ts

11

https://mxnet.apache.org/
https://github.com/awslabs/gluon-ts

12 2. Foundations

GluonTS library in this work as load and performance forecasters. GluonTS is a state-of-
the-art time series library and has been used in other previous studies as well, e.g., [16]
and [17]. It offers powerful models and tools for time series forecasting and is easy-to-use.
We describe the used estimators, their settings, and performance later in this work.

12

3. Related Work

As mentioned earlier, our aim in this work is to develop an online performance degradation
prediction system based on machine learning for applications composed of microservices.
As a consequence, the related work splits into several groups as pictured in Figure 3.1.
In Section 3.1, we describe earlier approaches and findings for performance or failure pre-
diction in component-based software systems, which use machine learning techniques. In
Section 3.2, we analogously describe related work in the fields of online failure prediction,
whereas Section 3.3 reviews publications, which target performance prediction for appli-
cations composed of microservices. Section 3.4 summarizes publications, which describe
ways to model user behavior and include these models for performance estimation or pre-
diction. Finally, Section 3.5 describes some microservice test applications, which are used
for the evaluation of several performance algorithms.

3.1. Machine Learning for Performance Prediction in
Component-Based Software Systems

Becker et al. [18] name seven general requirements for performance prediction methods
of component-based software: accuracy, adaptability, compositionality, scalability, analyz-
ability, cost-effectiveness, and universality. The use of machine learning is a possibility
to investigate and learn complex dependencies, especially in case they are unknown at
design time. As a consequence, machine learning is a prediction technique, which is both
adaptable and universal, as it can be used for different applications. This universality is
also an important requirement for our work, whereas scalability and cost-effectiveness play
minor roles in the conception phase.

Matsunaga and Fortes [19] evaluate the applicability of multiple machine learning algo-
rithms on the prediction of resource consumption by different applications. More precisely,
the authors use classification trees, support vector machines, and the k-nearest neighbors
algorithm to predict execution times, disk, and memory consumptions. It is shown, that
all of the mentioned approaches deliver competitive results on the evaluated applications.
Moreover, it is concluded, that as much information or attributes as possible should be
used as inputs for the ML algorithms if sufficient computing resources are available. This
leads to better results and less relevant information will have a minor influence on the
prediction automatically.

Andrzejak and Silva [20] use different classification algorithms to predict performance
degradation in SOA applications caused by software aging. Similar to the work by Mat-

13

14 3. Related Work

Our
Approach

[Section 4]

Machine Learning
for Performance

Prediction in
Component-

Based Software
Systems

[Section 3.1]

Performance
Prediction of
Microservices

[Section 3.3]

Online Failure
Prediction

[Section 3.2]

Figure 3.1.: Research Fields Influencing Our Approach

sunaga et al. mentioned above, it is shown that decision trees, Bayesian methods, and
support vector machines can be applied to this problem and produce statistically signifi-
cantly good results. The authors point out that competitive results can be archived even
with small training sets and affordable computational costs. Hassan et al. [21] provide
a taxonomy for ML algorithms and some statistical estimators. Moreover, they list im-
portant evaluation metrics in the fields of performance prediction. Bianchini et al. [22]
point out that machine learning techniques are a promising and powerful approach in
performance and resource management tasks in modern cloud systems.

3.2. Online Application Failure Prediction

Grohmann et al. [23] propose a taxonomy for the prediction of service level objective
(SLO) failures. They divide papers in this research area up by the prediction target,
time horizon, and applied modeling type. Salfner et al. [24] summarize findings in the
fields of online prediction of software failures in their review. A taxonomy on online
failure prediction methods as well as an overview of common metrics is provided. They
characterize the aim of online failure prediction as the inference of possible failures in the
near future based on recent measurement data from the system at runtime. In contrast to
this, the root cause analysis tries to identify the reason for a failure, which occurred in the
past. The authors define the term proactive fault management as the process of gathering
measurement data, predicting future failures, and performing preventive actions. This last
step is not targeted in this work, as we still assume a human in the work chain, which
decides on possible actions. However, our proposed output format provides indications,
which action could prevent performance degradations.

HORA [25] is an online software failure prediction tool, which combines traditional failure
predictors and software architecture models. As a result, the algorithm is able to approach
failure propagation throughout the application. Therefore, two different types of models
are used: an architecture dependency model and a failure propagation model. Time
series forecasting is utilized to predict the breakdown of a component. As a result, the
failure probabilities of each component are calculated. To deduce the influence of possible
component failures on other components, Bayesian inference and tables are used. It is

14

3.3. Performance Prediction of Microservices 15

shown, that this approach creates a higher true positives rate than mechanisms without
architectural knowledge. However, the use of Bayesian tables is a simplified model to
failure propagation, which is not practical in production environments as it cannot model
the influence of replicas, different deployments, circuit breakers, and similar accurately. In
contrast to this, our approach is resistant to such factors.

Zhang et al. [26] present OPred, an online performance predictor for service-oriented sys-
tems. They divide their approach into four steps. In the first step, performance monitoring,
useful performance data are acquired from all relevant nodes and services. Second, in the
records sharing phase, all obtained data are collected in a performance center, which so
gains global knowledge about the system and its components. In the third step, the service
failure prediction, an offline evolutionary algorithm and an online incremental algorithm
are combined to learn a time-aware latent feature model. In the last step, the system
performance prediction, the overall system performance is calculated by combining infor-
mation about the service compositions and the response times of each service. Therefore,
different formulas are used for simple sequences of services, branches, loops, or similar.
It is shown, that OPred is able to generate good results evaluated in a realistic online
shopping scenario. In contrast to this mechanism, our approach is able to work completely
online and uses machine learning techniques for performance prediction. Moreover, we use
explicit models for both request and failure propagation.

3.3. Performance Prediction of Microservices

Bao et al. [27] provide a performance model and description for microservices. The authors
model the overall request processing time of a microservice as a composition of three
parts: the request caching time, the execution time of the business process triggered by the
request, and the processing time of transactions to a backend database or of I/O operations.
Moreover, hardware features, such as the available RAM or CPU cores, are identified as
additional influencing factors for the microservice performance. Jindal et al. [28] present
the tool Terminus, which analyzes the resource consumption of microservices and tries to
both maximize the overall application performance and minimize the resource consumption
by changing the deployment configuration. The authors introduce the metric microservice
capacity, which represents the maximum number of requests, which a microservice can
process without violating any service-level objectives (SLO). To evaluate the performance
of a single service, a sandboxing strategy is used. Therefore, calls initiated by the evaluated
service are interrupted and redirected to dummy services, which respond in near-constant
time. In contrast to this, in our approach, the performance of one single service does not
have to be measured under special conditions. Similar to our work, the performance is
predicted using a regression model, the Theil-Sen estimator [29][30].

Du et al. [31] design an anomaly detection system for container-based microservices.
Therefore, realtime performance data are acquired using monitoring agents and sent to
a data processing module that uses supervised machine learning for anomaly detection.
Different ML algorithms, such as k-nearest neighbors, support vector machines, Naive
Bayes, and random forest are tested. During the training phase, a load generator simulates
user requests and, after labeling the acquired performance data, a classification model is
created. To simulate realistic anomalies in the system, a fault injection module is used,
which can create high CPU consumption, memory leak, network package loss, or high
network latency. After evaluation of a virtual IP multimedia subsystem, the authors
conclude that all algorithms except support vector machines perform equally well and the
k-nearest neighbors algorithm is especially well suited in scenarios with only one service.

Seer [32] is an online cloud performance debugging system that uses deep learning for
performance prediction. Performance data of deployed microservices are acquired through

15

16 3. Related Work

RPC-level and distributed tracing. Seer is trained to recognize communication patterns
between microservices and patterns over time, e.g., resource consumption or the number
of requests. The basic principle is that the performance in the near future can be inferred
using old data and deep learning. The architecture of the neural network contains both
convolutional and recurrent layers. The authors evaluate their approach both on the
DeathStarBench benchmark suite (see Section 3.5) and a real-world cloud application.
They were able to archive high accuracies with their approach in both scenarios. In
contrast to Seer, our mechanism does not use deep neural networks as the results are less
explainable.

Microscope [33] uses causality graphs to identify root causes for failures in microservice ap-
plications. First, network parameters and SLO metrics for each service are measured and
processed by a monitoring unit. In the dependency graph, two types of interactions are
defined: communicating service dependency and non-communicating dependency. Com-
municating service dependency means that one service directly sends requests to another.
In contrast to this, non-communicating service dependency means that the performance
of one service influences another service even if they do not exchange messages with each
other. An example of a non-communicating dependency are two services, which share
common resources, e.g., in case they are deployed on the same physical host. To build the
dependency graph, the authors utilize a parallelized version of the PC algorithm [34].

Whenever a service is ranked as abnormal, the cause inference algorithm is triggered. This
algorithm is based on traversals across the dependency graph. For example, a service is
identified as a root cause candidate, if all of its neighbors are still rated as normal. To sort
all the candidates and identify the most probable root cause, the correlation between the
SLO metrics of the frontend and the candidate service is calculated. The authors evaluate
their approach on the SockShop benchmark (see Section 3.5) and are able to archive both
high precision and recall. Other root case localization algorithms for microservices based
on call or dependency graphs are [35] and [36]. In contrast to these works, we utilize
load forecasting to predict future performance degradations. We model the dependency
between two services as functions and approximate these dependencies using regression
algorithms. We explicitly consider the number of incoming requests to a microservice as a
causal trigger for performance degradations. Possible root causes are implicitly pinpointed
in our output representation. An explicit algorithm can be integrated as an extension as
well as possible performance degradations caused by co-located services.

3.4. Modeling User Behavior for Software Performance Esti-
mation

Modeling and prediction of user behavior have always been a field of interest for web service
researchers and many companies both for economical and technical reasons. A popular
way to model user behavior are so-called Customer Behavior Model Graphs (CBMG) [37].
These contain different states of a customer as nodes and each edge between two nodes is
associated with a transition probability between two states. The most common application
of CBMGs is the prediction of the next request a user performs on a website. This
information can then be further used for workload predictions and performance estimation
of web servers. It has been shown that such graphs can be analyzed efficiently using Markov
chains [38]. Almeida et al. [39] point out that CBMGs are indeed suitable as a workload
model for web services and can be combined with queueing networks (QN) for performance
prediction.

Roy et al. [40] use such a combination of CBMGs and QNs for a capacity planning
process of component-based software systems. In a later work [41], this approach has been

16

3.5. Microservice Demo Applications 17

extended to autoscaling applications in cloud environments. In contrast to these works,
we do not use Customer Behavior Model Graphs or queueing networks. Nevertheless, the
graphical representation of our request propagation model introduced in Chapter 4 looks
fairly similar to those of the CBMGs. However, CBMGs model the user behavior in order
to predict future user requests while our approach tries to model the communication and
requests between different microservices of one application. For our evaluation, we defined
a fixed sequence of requests every user performs. However, in future work, CBMGs might
be included to design more realistic workloads for evaluation on the one hand, and to
improve the workload forecasting on the other hand.

3.5. Microservice Demo Applications

In order to evaluate algorithms and mechanisms for performance prediction in the fields of
microservice applications, researchers need demo applications or benchmarks. Industrial
software is often closed-source and therefore not available to researchers as well as often
too complex for the actual aim. Demo applications should replicate the behavior of real-
world software as closely as possible on the one hand, but on the other hand should be
comprehensible, observable, and simpler than software in production environments. Ader-
aldo et al. [42] point out twelve requirements for microservice benchmarks classified into
three categories. Moreover, the authors evaluate the conformity of four demo applications
to these requirements. In the following, we describe TrainTicket [43], which is the main
benchmark used in this work to evaluate our approach. Afterward, we describe other
relevant microservice demo applications from the literature.

3.5.1. TrainTicket

Overview. TrainTicket1 is a microservice-based application, which simulates the web-
site of a railway company. The system contains two different roles: administrator and
customer. The administrator is able to configure and manage user accounts, bookings,
train connections, prices, and much more. To access the management interface, the user
has to login through a dedicated webpage. Customers can search for train services, buy
tickets, and manage their bookings. All in all, a complete workflow from searching and
buying train tickets to check-in at the railway station can be simulated. Pre-configured
user accounts, train services, and bookings are created at application start-up. The default
track network is shown in Figure 3.2 and can be extended with additional connections and
stations by the administrator. TrainTicket also contains some built-in tools for tracing
individual requests.

Architecture and Implementation Technologies. The TrainTicket application con-
sists of 42 microservices. 38 of them are implemented in Java using the Spring Framework2

and 21 use MongoDB3 databases as data storages. The remaining services are implemented
in Python, Node.js, and Go. The user interface is provided by an NGINX4 web server. The
services communicate using HTTP requests and REST endpoints. Figure 3.3 shows the
connections between all services obtained by a source code analysis as a graph. Each node
represents one service, an edge from service A to service B means that A sends requests to
B. Blue nodes represent Java services, which can be instrumented using Pinpoint, while

1We use the version dated 30 Aug 2019, source code available at [44]
2https://spring.io/
3https://www.mongodb.com/
4https://www.nginx.com/

17

https://spring.io/
https://www.mongodb.com/
https://www.nginx.com/

18 3. Related Work

Shanghai
Nanjing

Shijazhuang

Taiyuan

Xuzhou

Jinan

Beijing

C H I N A

(a) Interregional Trains

Shanghai

Jiaxing

Hangzhou

Zhenjiang

Wuxi

Nanjing

Suzhou

(b) Local Trains in the Shanghai-Nanjing
Region

Figure 3.2.: Pre-Configured Rail Network of the TrainTicket Demo Application

Figure 3.3.: TrainTicket Application Topology

red services are implemented in other languages. The user interface and its calls5 are dis-
played in green. On the one hand, we observe a strong linkage between the components.
On the other hand, we identify different roles within the application. For example, while
the verification code service can be seen as a backend service, as it is only called by other
services and does not depend on other instances, the rebook service is only called from the
web UI and depends on many other services. In the application version used in this work,
both the news and the ticket office service are not connected to the core application but
can be called via HTTP requests.

Deployment Variants. The built microservice executables run inside Docker containers.
TrainTicket already delivers default Docker files for each service. At runtime, the web-
server, all services, and all connected databases run inside dedicated container instances.
The user can choose between a local deployment on one machine using Docker Compose
and a distributed deployment. Therefore, configuration files for Docker Swarm and Ku-
bernetes as container orchestrators are provided. We describe our evaluation setup and
deployment in Section 6.1.

5Note, that only calls initiated either by the default or admin UI are shown. Calls from test or bench-
marking interfaces are omitted.

18

3.5. Microservice Demo Applications 19

Discussion. We use TrainTicket as our main demo application, as it has beneficial
characteristics for our use case. First, the application is designed for distributed deploy-
ment and provides different blueprint files, which reduce the configuration effort. Second,
TrainTicket is a comprehensible application, where each service has a clear scope and re-
sponsibility. It uses modern implementation technologies and is still actively developed
and supported. As the vast majority of services are implemented in Java, Pinpoint is the
only monitoring tool we have to use to gather data from almost the whole application.
The extent of the application with more than 40 business logic services is the largest in
the analyzed literature and offers a lot of possibilities for our evaluation. Nevertheless, we
can vary the complexity at any time by executing different call chains, as each service can
be called via REST separately. By doing this, we can start analyzing single services and
then enlarge our scope. TrainTicket has been used for different studies before, for example
in the fields of model-driven engineering [45] and fault analysis and debugging [46][47].

3.5.2. Other Demo Applications

Since the trend of using microservices has emerged, open-source demo applications have
been developed. However, these programs usually function rather as technology demon-
strators than as benchmarks for performance evaluations. These include inter alia IBM’s
Acme Air6 and Spring Cloud Demo applications7. SockShop8 is a microservice demo appli-
cation, which has been used in many previous studies, also for performance investigations
[33]. Similar to TrainTicket, SockShop supports also different container orchestration tools
and provides pre-built Docker images. Nonetheless, all of the mentioned applications have
in common, that they consist of only a few microservices. In the following, we describe
two recent reference applications in a more detailed manner.

Teastore [48] is an open-source microservice benchmark, which has been developed for
performance studies explicitly. It consists of different services, where each service has own
characteristics related to its performance. Similar to SockShop, it simulates an online shop,
where a customer can buy tea and related equipment. The authors show the usability of
TeaStore in three different contexts: performance modeling, cloud resource management,
and energy efficiency analysis. The application supports container orchestration tools and
contains built-in tools for performance studies and pre-built container images. The main
difference to TrainTicket is the complexity of the business logic. Compared with more
than 40 TrainTicket services, TeaStore consists of only five components. However, the
lower number of services makes it easier to replicate the whole application, which is well
suited for scaling and load balancing studies. We use the TeaStore for a minor part of our
evaluation studies. We describe the setup and application in Section 6.2 further.

DeathStarBench [49] is a benchmark suite with multiple microservice reference applica-
tions. All of them are characterized by a modular and extensible design. The authors state
that one of the main goals of DeathStarBench is to analyze the effects of microservices on
different levels, from hardware implications to the application as a whole and scalability
issues. Similar to TrainTicket, the services are developed using different programming
languages and open-source frameworks and provide interfaces for tracing tools. All in all,
the topologies and characteristics of five applications are described, from which two are
available as source code yet. In contrast to TrainTicket, the implementations and frame-
works are more diversified, as each application uses microservices in at least six different
programming languages. As a result, it is more difficult to monitor all services, as different
monitoring tools might be needed.

6https://github.com/acmeair
7https://github.com/spring-cloud-samples
8https://microservices-demo.github.io/

19

https://github.com/acmeair
https://github.com/spring-cloud-samples
https://microservices-demo.github.io/

4. Approach

In microservice applications, a single user request usually causes a sequence of internal
calls. We assume that many microservice performance metrics, such as the response time,
depend on the number of incoming requests within a time interval. Our idea is to predict
the user requests and their propagation through the application. Using this information, we
infer the performance of the microservices. Our approach is split into eight steps, whereof
six represent the core functionality and the last two are possible extensions. Figure 4.1
provides an overview of our approach. In the first step, the model structure extraction, we
collect and analyze gathered monitoring data to extract connections between the services
and identify communication patterns. These data are the basis for our request propaga-
tion model, which is built in an iterative way. In step three, we utilize load forecasting to
predict the user requests in the next prediction interval. Afterward, we predict how these
user requests propagate on all microservices of the application. As a result, we obtain
the arrival rates for every service. These features function as inputs for our performance
inference model. In step six, we predict performance metrics and provide state ratings
for every service by iteratively stepping through the application topology. As optional
extensions, we propose root cause reporting for predicted performance degradations and
self-improvement, which aims to identify causes for wrong predictions and adjusts predic-
tion models, if necessary. In the following, we describe these eight steps in a more detailed
fashion. A simple example of the calculations made by the approach is provided at the
end of this chapter.

Model
Structure
Extraction

Learn
Propagation

Model

Load
Forecasting

Request
Propagation

Learn
Performance

Model

Performance
Inference

and Rating

Root Cause
Reporting
[Optional]

Self-
Improvement

[Optional]

Figure 4.1.: Approach Overview

21

22 4. Approach

Terminology and Fundamental Definitions. Before we describe our approach in more
detail, we introduce some important terms, which will be used in the remainder of this
work. In the following, the term service represents an application component, which has
a clear-scoped functionality. Deployment properties do not play any role on this abstract
level and are not considered here, which means that in practice, a service can consist of one
or multiple instances, for example. A service always consists of one or multiple endpoints.
An endpoint is an interface of a service, which can be assessed by other services or by a
user. In the fields of microservice applications, these endpoints can be REST endpoints.
The differentiation between different endpoints of one service gives us the possibility to
consider multiple workload classes for one service. This is important for a good perfor-
mance prediction and will be discussed later in more detail. As mentioned earlier, the
application topology plays an important role in our approach. A service can have differ-
ent roles within an application. A backend service is a service, which does not call other
services and responds to incoming requests only. A frontend service is a service, which
is called by the user and therefore initializes the processing of user requests. However, a
frontend service can also be called by other services as well.

Model Structure Extraction. In this first step of our approach, monitoring and tracing
data of the application are gathered and processed. These data serve as training samples
for our prediction models. Our approach works based on two kinds of training data. In
order to extract the application topology, we need information about the internal requests,
which are made to process an incoming user request. This information might be available
in the form of call stacks or call trees, which are generated by many state-of-the-art mon-
itoring frameworks. Additionally, measured performance values for every service must be
available. Depending on the availability, more metrics, which influence the service perfor-
mance, can be measured optionally.

Request Propagation Model. The extracted data from the previous step are used as
inputs for the request propagation model, which describes how many additional internal
inter-service calls are needed to process an incoming user request. We visualize this model
with the propagation matrix D.

D =

d0,0 d0,1 · · · d0,s−1

d1,0 d1,1 · · · d1,s−1
...

...
...

...
ds−2,0 ds−2,1 · · · ds−2,s−1

ds−1,0 ds−1,1 · · · ds−1,s−1

Each entry di,j : Rmi → Rmj in D represents a function, which maps incoming requests at
service i to a number of calls of service j initiated by service i. Obviously, every propagation
function returns zero for all inputs smaller or equal to zero because we assume that, if
service i receives no requests, it does not call any other service j. More clearly spoken,
it is a representation of the application topology and describes how incoming requests are
propagated through the application. Both the input and the output of a function di,j are
vectors. The dimensionality is thereby determined by the variable ma, which represents
the number of endpoints of service a. As a consequence, our model is able to assess both
incoming requests per service and the distribution across its endpoints. This is useful for
performance prediction, as different endpoints might have different performance metrics,
e.g., considering response times, an HTTP POST request might take longer to process than
a GET request. The matrix D has s2 entries overall, where s represents the number of
(monitored) services in the application. An example topology and a corresponding matrix

22

23

representation is given at the end of this chapter. Note, that in this step deployment
information is neither needed nor considered.

To build this model in an iterative way, we initialize all functions di,j in a way that the
output is always the null vector, which represents no dependency between the services
i and j. After an observation interval, we update those functions di,j , where a request
between service i and j has been recorded. By doing this in the following observation
intervals as well, we build a representative model of the application topology step by step.
We expect that the model will converge against a steady state after a certain time, as all
communication patterns have been observed. If the matrix does not change significantly
over multiple time steps, it might be practical to turn the model updates off.

Special Request Propagation Model Instances. In the following, we describe some
selected instances of the request propagation model. Thereby, we use the characteristic of
the model that is a representation of the application topology. An application topology can
be visualized as a directed graph, where each node represents a service, and an edge from
node A to node B means service A sends requests to service B. Our request propagation
model has nearly the same graph representation. The only difference is that the edges are
the propagation functions. Consequently, we can describe paths in this graph by composite
functions. For example, a path fromA overB to C can be written as the composite function
dA,C = dB,C ◦ dA,B. We hereby use the default definition of the composition operator ◦1.
The first important type of request propagation models are acyclic models. A request
propagation model is acyclic, if no path di,i = di,j ◦ dj,k ◦ ... ◦ dz,i exists, where not at
least one component function is the null function. In other words, if we draw the topology
graph and omit all edges, which are null functions in the request propagation model, the
resulting graph must be acyclic. Analogously, a request propagation model is cyclic, if at
least one path di,i = di,j ◦ dj,k ◦ ... ◦ dz,i exists, where none of the component functions is
the null function. The second important type of request propagation models are regular
models. A request propagation model is regular, if the sequence

di,i(x)n = di,i ◦ di,i ◦ ... ◦ di,i︸ ︷︷ ︸
n times

converges to zero for n ∈ N tending to infinity, every cycle di,i and every input vector
x. Such models represent topologies, where cycles exist but no infinity loops. This means
that after a certain time no requests are sent through the cycle anymore, if no new requests
enter the cycle. Every acyclic model is also regular. In addition to this, request propaga-
tion models can be distinguished by the types of the propagation functions. For example,
a request propagation model is linear, if every propagation function di,j : Rmi → Rmj has
the form di,j(x) = ci,j · x, where ci,j ∈ Rmj×mi is a constant matrix.

Load Forecasting. In general, user requests are the root cause of transactions between
microservices. As a consequence, we need load forecasting to predict the number of user
requests in the next prediction interval. The result of this forecast is visualized by the
list U , where each entry ui ∈ Rmi represents the number of user requests to the mi end-
points of service i. As s services exist within the application, U contains s lists and s ·m
numerical entries overall, where m is the sum over all mi. If no load forecasts with that
granularity are available, a simple workaround is proposed. If forecasts for every service
are available, but no distribution across the endpoints, the requests can be equally or ar-
bitrarily distributed across the endpoints. However, the possibility to model user requests

1Let f and g be functions, then the composite function g ◦ f is defined as g ◦ f = g(f(x))

23

24 4. Approach

Table 4.1.: Variables Used in the Request Propagation Algorithm

Name Type Description

s Non-zero integer Number of services

mi Non-zero integer Number of endpoints of service i

m Non-zero integer Sum of all mi

M List (Size: s) Ordered set of all mi

U List of Lists Predicted user requests in the next prediction interval

(Size: s) for each service

ε Non-negative real Hyperparameter, lower bound for request values

value

xi List (Size: mi) Total number of incoming requests to service i per

endpoint in the next prediction interval

X List of Lists Ordered set of all xi
(Size: s)

x̄i List (Size: mi) Number of requests to service i per endpoint to

forward in the current iteration of the algorithm

X̄ List of Lists Ordered set of all x̄i
(Size: s)

x̂i List (Size: mi) Number of requests to service i per endpoint generated

in the current iteration of the algorithm

X̂ List of Lists Ordered set of all x̂i
(Size: s)

0a List (Size: a) List, which contains a zero entries

to specific endpoints, enables us better debugging and testing capabilities and preserves
the generality of our model.

Request Propagation Algorithms. Given the service dependencies captured by D and
the predicted user requests U , we want to predict how the requests are forwarded through
the application. Depending on the model type, different algorithms might be used here.
We first describe an iterative algorithm, which works with any regular request propagation
model, and hence can be seen as a universal algorithm. Algorithm 1 shows the proposed
iterative algorithm, while Table 4.1 shows all used variables. In the following, we describe
the proposed algorithm and its properties in a more detailed way.

The request propagation algorithm takes the user request list U , which has been generated
in the previous step, as an input and returns the request list X, which contains the total
number of predicted incoming requests in the next prediction interval for all services and
endpoints. The list X can be seen as the sum of the user requests U and generated internal
calls. Hence, at the beginning of the algorithm, the values of U are assigned to X. The
while loop then calculates the internal calls iteratively. The list X̄ represents the requests,
which need to be forwarded in the current iteration of the algorithm, and gets the values of
U at the beginning as well. The while loop terminates if there are no requests to forward.

24

25

Algorithm 1: Request Propagation Algorithm

Input: Propagation matrix D, user requests U , threshold ε, no. of services s,
endpoint list M

1 X← U ;
2 X̄← U ;
3 while not all numerical entries in X̄ equal 0 do

4 X̂← 0s;

5 Set all entries x̂i in X̂ to 0mi ;
6 foreach x̄i in X̄ do
7 if x̄i 6= 0mi then
8 foreach di,j in i-th row of D do
9 x̂j ← x̂j + di,j(x̄i);

10 end

11 end

12 end

13 X← X+ X̂;

14 X̄← X̂;
15 Set all numerical entries in X̄ lower than ε to 0;

16 end
17 return X;

In the inner loops, the propagation functions di,j are called for each service i, which has
incoming requests to forward, and all target services j. The newly generated internal
requests are stored in the temporary support list X̂, which gets filled with zeros at the
beginning of each iteration (line 4 and 5). After iteration over all services, the newly
generated requests X̂ are added to the total numbers of requests X and need to be for-
warded in the next iteration. Hence, X̄ gets the value of X̂. Note that, the requests do
not have to be integers, as a service can also call another service with a probability of
only 80% or similar. This leads to the fact, that the functions di,j can both receive and
output any positive value. To prevent an infinite loop, the algorithms hyperparameter ε is
used. It represents a lower bound, which is applied to X̄, and all numerical entries which
are smaller than ε will be set to 0. This guarantees, that at some point there will be no
requests to forward and the loop will end. One advantage of the algorithm is the ability
to handle cyclic topologies as long as cycles generate fewer requests than received in one
iteration. This fits our definition of regular request propagation models and is a natural
assumption, as the application itself would fall to an infinity loop in such a case. Another
advantage is that the algorithm can be parallelized easily, as the only synchronized calls
are the commutative addition in line 13 and the assignment in line 14. In the proposed
version of the algorithm, the resulting list X represents the total number of requests for
every service and endpoint. There is no information about the arrival rate course within a
prediction interval, so it is assumed that the service performance depends only on the total
number of incoming requests in a prediction interval. This is a valid assumption in partic-
ular for small-sized intervals, where the variations of the arrival rate can be neglected. For
larger intervals, the arrival rate might be replaced by arrival rate distributions in order to
integrate information about the load variations within a prediction interval.

For special instances of the request propagation model, more efficient algorithms might be
used to calculate the resulting request list X. As an example, we consider linear acyclic
models. As defined earlier, every propagation function di,j(x) within a linear model can
be written in the form of di,j(x) = ci,j · x with a constant matrix ci,j . If we now construct
the composition dj,k ◦ di,j of two linear propagation functions di,j and dj,k, a new function

25

26 4. Approach

di,k(x) = ci,k · x emerges, which is still a linear propagation function. This can be proven
by the following equivalent transformation:

di,k(x) = dj,k ◦ di,j | Definition of function composition

= cj,k · (ci,j · x) | Associative property

= (cj,k · ci,j) · x | Substitution: ci,k = cj,k · ci,j
= ci,k · x

If a service i receives calls from multiple origins, the total number of incoming requests
is the sum of all inbound request flows. Hence, the vector of incoming requests xi can
be written as the sum of multiple linear propagation functions. We further know that
the resulting request list X is the sum of the user requests U and the internal calls, while
every internal call is originated by a user request. From these properties follows that every
vector xi is a linear superposition of the entries ui of the user request list U . With that, we
are able to calculate every xi with a single matrix multiplication. For complex application
topologies, this can bring some numerical advantages because the iterative calculations
from Algorithm 1 are summarized. Additionally to this, the parallelization is more simple.
We waive a more detailed description of this and other request propagation algorithms as
we use only the described universal algorithm in our evaluations.

Performance Inference Model. As mentioned before, we assume that the performance
Q̃i ∈ Rmi×r of a service i is dependent on the number of incoming requests to the service.
We obtain these requests from the request list X calculated in the previous step. To
describe the performance, we use r metrics, e.g., average response time or the number of
exceptions. These metrics are calculated for allmi endpoints of service i. As a consequence,
the service performance matrix Q̃i of service i has mi · r entries overall. We assume that
for each service i there is a performance function qi : Rmi+r·zi → Rmi×r which maps the
requests list xi ∈ Rmi and r · zi additional input values to the service performance Q̃i. We
define the list Q, which contains all s performance functions.

Q =

q0
q1
...
qs

For considering additional dependent factors on the service performance, we consider the
position of the service in the topology graph. We define zi as a variable, which represents
for a given service i the sum of all endpoints of all services, which receive calls from service
i. A backend service only responds to incoming requests. As a consequence, for a backend
service b the value zb equals 0. We assume, that its performance Q̃b only depends on the
number of incoming requests xb. As a consequence, the performance function qb maps mb

input values to r ·mb performance metrics. For all other services i, which are no backend
services, we assume that their performance Q̃i depends on the performance measures of
all endpoints, which receive calls from service i. An overview of all variables used for
performance inference is given in Table 4.2.

We want to approximate the performance functions by using supervised machine learning
and choose r performance metrics, which are measurable. Moreover, we can gather the
request list X by using simple request tracing. As a consequence, we are able to train

26

27

Table 4.2.: Variables Used for Performance Inference

Name Type Description

r Non-zero integer Number of performance metrics

zi Integer Sum of all endpoints of all services called

by service i

qi Function Maps incoming request list and additional parameters

(Rmi+r·zi → Rmi×r) to performance metrics for service i

Q List (Size: s) Ordered set of all pi

Q̃i Matrix Predicted performance values of service i

(Dimension: mi × r)

regression models, which approximate the performance function list Q. Therefore, it is
possible to use one common or different prediction models for each performance metric.
It is likely that the performance functions change over a time period, therefore we aim to
update Q on a regular basis using measured performance data. Possible extensions, like
deployment information, might be included in this model in future work.

Performance Inference Algorithm. We propose an iterative algorithm to calculate
the performance Q̃i for each service i, which starts with the backend services and goes
through the whole application topology. Therefore, we identify all backend services in the
first step. In our model, a service i is a backend service if and only if the i-th row of D
contains only null functions. This means, i does not send any calls to any other service.
As mentioned earlier, the performance of these backend services does only depend on the
request list X, which we obtain from the request propagation algorithm. In the next
step, we select those services i, where all dependent services have assigned performance
matrices, and predict their metrics. This procedure is repeated until all services have
assigned performance matrices. As a possible implementation feature, the calculation of
the performance metrics can be parallelized.

Finally, the performance Q̃i for every service i is rated using a three-grade system, which is
described in Table 4.3. The categorization of the service performance into different classes
can be found also in a recent journal article by Bianchini et al. [22]. In our case, the system
administrator defines target ranges for every performance metric and every endpoint in
advance, which determine the rating. In this step, a simple extension is possible, which
takes deployment dependencies into account. We propose an heuristic h(xhost, Q̃host) for
every host, which depends on all request lists xhost of all services deployed on the host and
their performance matrices Q̃host. If this heuristic is used, we define a fourth grade, which
represents a potential service performance degradation caused by an overloaded host. Such
a performance degradation of service i can be especially caused by too many requests to
the host (network overload) or by another faulty service j deployed on the same host as i,
which, e.g., consumes all computing resources.

The proposed version of the performance inference algorithm does not support cyclic
topologies. However, it can be applied to such topologies as well by adding heuristics
to resolve a cyclic dependency. A possible heuristic is to ignore the dependency di,j , which
generates the fewest calls for a given input list X. This means, more roughly spoken, that
the performance of a service i does not depend significantly on a service j, which is called
by i only infrequently. Another possibility to resolve cycles is to apply contraction, which

27

28 4. Approach

Table 4.3.: Service Performance Ratings

Name Meaning Recommended Action

GREEN No performance degradation expected, None

all performance metrics in desired range

YELLOW No performance degradation expected, Further observations

but some metrics are close to their limits

RED Performance degradation expected, some Identify root cause,

or all performance metrics out of desired create new instance etc.

range

(Optional) BLUE Performance degradation probable, host Change deployment

is overloaded

means that all services in the cycle are summarized to one macroservice. This might be
a suitable option if all services in a cycle provide similar functionalities. An option to
minimize the probability of cycles is to replace the services by their endpoints. Thereby,
cycles, which exist between different endpoints of two services, are resolved. An example
of this approach is given in Chapter 6. The following steps summarize the performance
inference algorithm:

1. Identify all backend services

2. Predict the performance matrices of all backend services

3. Create a list L of all services, for which all dependent services have performance
matrices assigned

4. Predict performance matrices of all services in L

5. Repeat step 3 and 4 until all services have performance matrices

6. Rate the predicted state of all services (Optional: with deployment heuristic)

Root Cause Reporting (Extension). In this step, the root cause for a performance
degradation is reported to an administrator. Even if this step is optional, the basic version
of our approach gives a rough idea of the root cause implicitly. If the performance ratings
are calculated, a human can identify root cause candidates, if the application topology is
known (see also [33]). For example, a service is a root cause candidate if its rated red but
all dependent services are rated green. This means, that the failure is likely to be caused
by that service. However, we do not propose an explicit algorithm to identify the root
cause for performance degradations.

Self-Improvement (Extension). By comparing the forecast performance and request
matrices with actually measured values, we can assess the prediction quality at runtime.
A mechanism could be included, which identifies causes of prediction errors (e.g., request
propagation, load forecasting, etc.). In a second step, the prediction technique or under-
lying model could be changed to achieve a better prediction result.

Example. We want to demonstrate our approach on a plain example. Figure 4.2 shows a
simple application topology. The three boxes represent one service each and are numbered

28

29

Service 0

Service 1

Service 2

2

3

1

USER

Figure 4.2.: A Simple Request Propagation Model

from 0 to 2. We assume, that each service has only one endpoint. This means, that the
value mi equals 1 for every service i and each input xi can be represented using a scalar.
Moreover, each entry di,j : R → R in D is an one-dimensional mapping. The numbers
on the edges shown in Figure 4.2 mean, that one incoming request on service 0 creates
two calls to service 1 and three calls to service 2. One possible propagation matrix, which
represents these relationships using linear functions is:

D =

 0 2x0 3x0
0 0 0
0 0 0

In this case, d0,1 and d0,2 are set, while all other functions are set to 0, which means
that no other dependencies are known. In the next step, we assume that our forecasting
mechanism predicts two requests to service 0 and no other requests in the next prediction
interval. This means that the user request list U is given by:

U =

 2
0
0

In the next step, we forward the user requests through our application. Therefore, the
values of U are assigned to the request list X first. In the first iteration, we generate 2 · 2
requests to service 1 and 2 · 3 requests to service 2. In the second iteration, no further
requests are generated, which means that the algorithm terminates with the following
result:

X =

 2
0
0

︸ ︷︷ ︸

U

+

 0
4
6

︸ ︷︷ ︸

X̂Iteration 1

+

 0
0
0

︸ ︷︷ ︸

X̂Iteration 2

=

 2
4
6

As a performance metric, we use the average response time in milliseconds (ms). As this
is the only metric we use, the performance Q̃i ∈ R of a service i is a scalar. For simplicity,
we assume that for every service the response time increases linearly with the number of
incoming requests in the prediction interval. The performance of service 0 is additionally
dependent on the performances of service 1 and 2. These relationships are gathered in the
performance function list Q:

29

30 4. Approach

Table 4.4.: Classification Table for Performance Rating

Service Green Yellow Red Predicted Response Time Result

0 < 200 ms < 250 ms ≥ 250 ms 150 ms Green

1 < 40 ms < 60 ms ≥ 60 ms 30 ms Green

2 < 40 ms < 60 ms ≥ 60 ms 40 ms Yellow

Q =

 20 + 5x0 +max(2Q̃1, 3Q̃2)
10 + 5x1
10 + 5x2

In the first iteration, the performance inference algorithm calculates the performance mea-
sures of all backend services. In this case, services 1 and 2 are backend services, as their
respective rows in D contain only null functions. In the second iteration, the performance
of service 0 is determined. The final result Q̃ is displayed in Eq. 4.1. Table 4.4 shows
the rating rules for this example. By applying these rules to the predicted response times,
both service 0 and service 1 get green ratings, while service 2 is assigned a yellow rating.

Q̃ =

 Q̃0

Q̃1

Q̃2

 =

 150
30
40

 (4.1)

Summary and Discussion. The approach relies on two fundamental models, which in-
fluence the prediction power of the algorithm: the request propagation model, an extended
application topology, and the performance inference model. In the first phase, predicted
user requests are forwarded through the application. In the second phase, the performance
of each service starting with the backend services is determined. The described mechanism
is a general approach, which has several extension points and the models make no require-
ments on the prediction technique, which means that the way how to build D and Q is
neither prescribed nor restricted. This enables the possibility to evaluate different predic-
tion models. Moreover, the approach makes no critical assumptions about the application
and does not need prior knowledge. Furthermore, the output is readable and interpretable
by humans and the algorithm produces explainable results. We choose a comprehensive
three-grade rating system, which can be adjusted to the use case. For example, the yellow
rating can be used as a buffer, which takes the accuracy of the framework on a specific
application into account. Each rating includes an implicit recommendation for possible
degradation prevention actions. Another advantage of the algorithm is that it requires
only common measurable quantities and can be implemented lightweight and fast, which
is necessary to work within online environments. More strengths and weaknesses of the
approach are discussed in Chapter 7.

Reference Architecture. In the last paragraph of this chapter, we introduce a reference
architecture for the realization of our approach. This architecture is an enhancement of
the approach of Mueller [50]. The previously described models are universal and abstract.
Hence, an important requirement for the architecture is flexibility and extendability. An
implementation must be able to support different types of request propagation models,
performance inference models, and forecasting techniques, for example in order to enable
self-improvement mechanisms. An overview of the proposed architecture is given in Fig-
ure 4.3. One central component is the core, which coordinates and configures all other

30

31

Control and Configuration Interface

Core

Provider

M
o

n
it

o
ri

n
g

an
d

 T
ra

ci
n

g
D

at
a

Data Storage Model Storage Predictor

P
red

ictio
n

s an
d

 State R
atin

gs

Propagation
Trainer

Performance
Trainer

Load
Forecast
Trainer

Control FlowData Flow

Figure 4.3.: Reference Architecture

components. It might also manage the integration of new components. The core processes
all control commands at the start and runtime of the framework and should be able to
start or stop the prediction process. The core receives the commands via a control and
configuration interface.

All other components work as a pipeline, which transforms monitoring and tracing data
to performance predictions and service state ratings. At the beginning of this pipeline,
the provider component processes monitoring data and brings them into a defined format.
In practice, multiple instances or implementations might be needed to support different
monitoring systems and data formats. Similarly, it remains open whether the monitoring
data represent realtime measurements or recorded traces. This leaves the possibility to use
the approach online or offline open. The provider sends transformed monitoring data to
a data storage. This storage is used by other components to extract model training data.
As an example, the load forecaster uses the load statistics and courses to predict the load
in the next prediction intervals and sends its forecasts to the predictor component.

The monitoring data are also used for the training of the request propagation and per-
formance inference models. Therefore, we suggest the usage of two separate trainer com-
ponents. This increases the exchangeability and enables individual configurations. For
example, it could be useful to train the models at different intervals. The trained models
are persisted in a model storage. This storage enables the possibility to analyze and even-
tually reuse past models. The last component in the pipeline is the predictor component.
It computes performance predictions and state ratings based on the recent request propa-
gation model, load forecasts, and performance inference model. More detailed descriptions
of the components and their implementations are given in the next chapter.

31

5. Implementation

This chapter focuses on the implementation and realization of the described theoretical
approach. Therefore, Section 5.1 delivers an overview of the implemented framework PPP
(Propagation Performance Prediction), while Section 5.2 provides a detailed description of
each component and its configuration options. Finally, Section 5.3 introduces the operation
modes of the PPP framework, which facilitate the evaluation process of this work.

5.1. The PPP Framework

The PPP framework consists of ten components overall, which are implemented as mi-
croservices and run inside dedicated Docker containers. We provide configuration files
both for a local and distributed deployment. Figure 5.1 shows the components of the PPP
framework. The design is an enhancement of the architecture proposed in the approach
of Mueller [50]. In the following, we summarize the main functionalities and operation of
the implemented software.

To gather monitoring data of the test application, we instrument all or some of its microser-
vices by attaching Pinpoint agents at startup. These agents send data to the Pinpoint
Collector, which processes the data and saves them into an Hbase database. By using the
Pinpoint Web API, we can query all monitoring data and use them in our framework. The
workflow of PPP can be split into data querying and processing (provider component),
model generation and training (performance and propagation trainer), data prediction
(predictor and load forecaster), coordination and controlling (core) and data persistence
(propagation, performance, model and prediction persistor). Inter-service communication
within the PPP framework is realized by a Docker network and payloads are formatted
using the JSON standard. As shown in Figure 5.1, the provider component receives the
data from Pinpoint and divides them into performance and propagation data. These data
are used by the trainer components to train the associated models. We decided to separate
the performance and propagation data flows as far as possible, to increase configuration
options and enable easier debugging. The degree of this separation is also dependent on
the format of the monitoring data and consequent preprocessing steps. We describe related
issues in Section 5.2.

The trained models are stored in databases and used by the predictor to make predictions
according to the proposed method from Chapter 4. The resulting predictions are stored
into databases as well and compared with the measured data for the evaluation. The

33

34 5. Implementation

Application

Pinpoint APM

PPP Framework

Service A Service B Service C Service D Service E

Agent Agent Agent Agent

Web API CollectorHbase DB

Provider

Propagation
Trainer

Performance
Trainer Models

Predictions

Propagation Data

Performance Data

Predictor

Load
Forecaster

Core

Figure 5.1.: Overview and Data Flows

predictor additionally needs the forecast of the user requests U , which is calculated by
the forecaster component. In this work, we use Telescope as our forecasting tool. Note
that both forecaster and provider components can be easily substituted in case an other
forecasting mechanism or APM tool is used.

5.2. Description of Components

In the following section, we describe the functionality and interaction of all components in
the framework in a more detailed way. Therefore, we illustrate outputs and intermediate
results on the example shown in Figure 5.2. Here, we observe an incoming user request at
endpoint A of service A in our monitoring interval. This request creates 24 new requests
from service A to endpoint B of service B. We assume, that no other data have been
monitored in the same interval.

Core. The core component takes the role as the central coordinator of the PPP frame-
work. Its major responsibility is the initiation of actions executed by other components,
like gathering new monitoring data, requesting a performance prediction, and retraining
of models. Moreover, the core processes and forwards the framework configuration. It

Service A Service B241

USER

Method A Method B

Figure 5.2.: Running Example in this Chapter

34

5.2. Description of Components 35

Table 5.1.: Core Configuration Parameters

Name Type Runtime Change Description

intervalSize Non-zero integer No Length of monitoring interval

in milliseconds

requestDelay Non-zero integer No Threshold for communication

and processing time of Pinpoint

evaluationMode String No See Section 6.1

startTime Integer No Start time of trace if evaluation

mode is replay

endTime Integer No End time of trace if evaluation

mode is replay

provides the endpoints start and stop for starting and stopping the framework. As an
input, the start mechanism needs a JSON-formatted configuration object. This object
contains all settings for the framework, including parameters for the core itself and other
services. A central configuration parameter for the core is the size of the monitoring inter-
val. The provider is contacted with that frequency and requests all monitoring data from
Pinpoint from the previous interval. Moreover, the predictor is contacted concurrently and
predictions are made for future intervals. The core supports different evaluation modes,
including the replay mode, which allows analyzing recorded traces. Therefore, start and
end times can be provided in the configuration. The evaluation modes are described in
Section 5.3. All configuration parameters which affect the core are listed in Table 5.1.

For the communication with different components, the core manages multiple threads,
which are activated if a message must be sent. The core provides an endpoint reportEr-
ror, where all other services can report unexpected failures, which creates a central logging
mechanism. These error descriptions are the only messages, which the core receives from
other services. The core does not forward or receive any monitoring or forecasting data.

Provider. The provider is responsible for requesting and processing the monitoring data
gathered by Pinpoint. As an input, the provider receives the interval from which mon-
itoring data should be transmitted. This information is forwarded to the Pinpoint Web
API. First, the provider requests all service and agent information, including names, start
times, and other stats. A knowledge base is built incrementally containing the information
of the agents and services. Second, performance and tracing data need to be requested.
In Pinpoint version 1.8.4, the interface transactionInfo provides that functionality. It
requires a transactionId as an input. If a user sends a request to a service monitored
by a Pinpoint agent, this request is labeled with such an ID. It contains the agent name,
its start time, and a sequence number, which represents an incrementing positive inte-
ger. These entries are divided by the hat character ^. For example, the first user request
to the agent named agent1 and started at timestamp 100 would be labeled with the
transactionId agent1^100^1. The next user request to this agent would receive the id
agent1^100^2 and so on. All inter-service calls initiated by that user request are labeled
with the same transactionId. The provider uses caching to save both the agent informa-
tion and last sequence number, which accelerates the request process. In future work, a
plugin for Pinpoint, which provides an interface where all transactionIds generated within
a specific interval, could be developed, which would speed up this process even further.

35

36 5. Implementation

Figure 5.3.: Transaction View and Call Tree of Pinpoint

This kind of labeling enables the possibility to build a call tree for each user request. In
the Pinpoint Web GUI, such a call tree can be visualized by using the transactionView.
An example of that view is shown in Figure 5.3. The call tree contains all information
that is needed to build our performance and propagation models, including performance
metrics like response times and exceptions. Moreover, the start and end time of the
time spent processing the user request is available. We say that a user request and its
associated internal calls belong to the monitoring interval [a; b] if the start time of its call
tree is bigger than a and smaller or equal b. This definition ensures that the statistics
and gathered data represent the true state of the application in this interval. We hereby
assume that the monitoring interval is larger than the processing time of all or most user
requests. If this assumption is violated to a significant extent, statistics and training
data get distorted. This is because the processing of the user request consumes computing
resources in future monitoring intervals and therefore influences performance metrics. This
relationship is not recorded in the data of these intervals, which influences the training
data of our performance models.

In the next step, the provider extracts the relevant information on the response of trans-
actionInfo and calculates the performance metrics. For example, the inter-service calls
are filtered and average response times are calculated. An example output of the provider
is shown in Listing 5.1. It is shown that this output contains both propagation and per-
formance data. The separation of these data is done by the performance and propagation
persistors, which receive these data frames from the provider. The Pinpoint Web URL
must be set as a parameter in the system configuration. Moreover, the user of the frame-
work can specify a set of regular expressions, which shorten and filter the monitored appli-
cation URLs. For example, we usually want to remove the parameters of a GET request
if they are specified as URL extensions, e.g., in http://example.com/getNumber?x=2, we
want to remove the parameter x. If we do not perform this step, we would record separate
statistics and performance metrics for each different parameter x. This solution is obvi-
ously very application-specific. Problems occur especially in cases when no simple regular
expression can be designed. In future work, this problem can be targeted, e.g., by an
additional preprocessing step before training, where knowledge from different monitoring
intervals can be included.

36

5.2. Description of Components 37

Table 5.2.: Provider Configuration Parameters

Name Type Runtime Change Description

pinpointWebHost Hostname or Yes Network address of Pinpoint

IP Address Web

pinpointWebPort Non-zero integer Yes Port number of Pinpoint Web

methodShortener Set of Strings No Set of regular expressions

to filter endpoint names

1 {

2 "userRequests": {

3 "serviceA:/endpointA": 1

4 },

5 "transactions": {

6 "serviceA:/endpointA serviceB:/endpointB": {

7 "number": 24,

8 "averageResponseTime": 7.25, ...

9 },

10 "user serviceA:/endpointA": {

11 "number": 1,

12 "averageResponseTime": 232, ...

13 }

14 },

15 "from": 1581001986984,

16 "to": 1581002006984

17 }

Listing 5.1: Example Output of Provider Component

Performance Persistor. The performance persistor manages access to a connected
database, which stores the training data for the performance inference model. In the
PPP framework, all databases use the database management system CouchDB1. This is a
document-oriented NoSQL system, which allows to store and query JSON-formatted doc-
uments without a large configuration overhead. At the start-up time of the performance
persistor, the connection to the database is established and all tables are initialized. More-
over, the so-called design document is transmitted, which defines the functions for storing
and querying a document. The component also provides interfaces for emptying and recre-
ating all tables.

The main responsibility of the performance persistor is the extraction and processing of
the performance data contained in traces sent by the provider component. First, all trans-
actions are grouped by their destination endpoint because we assume that the caller of an
endpoint does not influence the endpoint’s performance metrics. Second, the performance
metrics for every endpoint, such as average and maximum response time, are calculated.
Afterward, the resulting performance trace is saved into the database. The resulting doc-
ument for our running example is shown in Listing 5.2.

1https://couchdb.apache.org/

37

https://couchdb.apache.org/

38 5. Implementation

1 {

2 "performanceValues": {

3 "serviceB:/endpointB": {

4 "number": 24,

5 "averageResponseTime": 7.25, ...

6 },

7 "serviceA:/endpointA": {

8 "number": 1,

9 "averageResponseTime": 232, ...

10 }

11 },

12 "from": 1581001986984,

13 "to": 1581002006984

14 }

Listing 5.2: Example Performance Trace

Propagation Persistor. The propagation persistor is the counterpart of the perfor-
mance persistor and is responsible for extracting and processing the propagation data
from incoming provider traces. Moreover, it stores the user request time series, which are
mandatory for the load forecaster service. It contains the same interfaces for initializing,
accessing, and managing the connected database. The propagation persistor removes the
performance data from the provider trace and focuses on the connections between the
services. For every endpoint, the number of incoming and outgoing requests as well as the
destination endpoint for every outgoing request is determined. Again, we assume that the
caller of an endpoint does influence neither the performance metrics nor the propagation
behavior. Therefore, the amount of incoming requests is sufficient to save and the caller
endpoint does not need to be reported. The resulting propagation trace also contains an
entry named user, which contains all user requests and has zero incoming requests, and
time stamps, which are used for querying the trace. An example propagation trace is
shown in Listing 5.3.

1 {

2 "propagationValues": {

3 "serviceB:/endpointB": {

4 "incoming": 24,

5 "outgoing" : {}

6 },

7 "serviceA:/endpointA": {

8 "incoming": 1,

9 "outgoing": { "serviceB:/endpointB": 24 }

10 },

11 "user": {

12 "incoming": 0,

13 "outgoing": { "serviceA:/endpointA": 1 }

14 }

15 },

16 "from": 1581001986984,

17 "to": 1581002006984

18 }

Listing 5.3: Example Propagation Trace

38

5.2. Description of Components 39

Table 5.3.: Forecaster Configuration Parameters

Name Type Runtime Change Description

timeSeriesSize Non-zero integer No Maximum length of time

series to be used for load

forecasting

autoInterpolation Boolean No Determines whether

linearly interpolated

values should be inserted

interpolationMargin Fractional number No Determines in which

cases interpolation is

applied

The propagation persistor also supplies the data needed in the load forecaster component.
The persistor uses caching so that the database does not have to be queried every time
a load forecast has to be made. The user requests are therefore saved in a separate data
structure, which represents a time series containing the incoming user requests to a spe-
cific endpoint. The maximum length of this time series can be configured in the system
configuration. Some load forecasters require nearly equidistant data points in the time se-
ries. To ensure this even in cases when some data points are lost, we automatically insert
linearly interpolated data points if two consecutive data points are too far apart. Via the
system configuration, the minimum distance as a factor of the monitoring interval can be
configured. Moreover, this step can be deactivated completely as well. All configuration
parameters for the user request time series are summarized in table 5.3.

Load Forecaster. The load forecaster has the task to predict the incoming user requests
for every endpoint for the next intervals. The number of values to predict is determined
by the predictor’s forecast horizon. The forecaster receives the measured time series as an
input from the propagation persistor. As mentioned before, we use GluonTS as our load
forecaster. The GluonTS Python library and its dependencies are installed at the build
time of the load forecaster image. The output of the load forecaster is a mapping, where
the forecast values are assigned to their respective endpoints. The predictor component
queries this information before executing the request propagation algorithm.

Propagation Trainer. The propagation trainer uses a set of propagation traces from
different monitoring intervals to create a propagation model. The time interval from which
training data are consumed during training can be adjusted in the system configuration.
This is useful because the propagation behavior can change over time and long past values
should not influence the resulting model. If the trainer module does not receive any
training data, the training process is suspended.

As the first step, the received propagation traces are converted into a directed graph,
where each node is a specific endpoint and an edge from A to B means that A sends
requests to B. An edge from A to B is also associated with the propagation function
da,b. A propagation function is characterized by a set of parameters ψ and an expression
(ψ, x) → y, which represents the calculation specification, how the output y is calculated
from given parameters and input x. In the current implementation, every propagation
function di,j is modeled as a linear function in the form di,j(x) = c · x, where c is non-
zero positive number. This parameter represents the number of requests, endpoint i sends

39

40 5. Implementation

to j per incoming request at endpoint i. During the training process, the parameter c
for every edge in the graph is trained. We hereby calculate the arithmetic average of c
of all monitoring intervals. The following example illustrates this process. In the first
monitoring interval, we observe one incoming request at endpoint i. This request creates
six requests from endpoint i to endpoint j. In this case, c would be equal to 6. In the second
monitoring interval, we observe three incoming requests at endpoint i and 12 requests sent
from i to j. In this interval, c would be 12/3 = 4. If we now take the average of these two
intervals, the resulting parameter c, which would appear in the model would be equal to 5.
This form of averaging is sensitive against outliers, which is good for our usage scenario,
especially when we want to detect changing communication patterns over time. Other
forms of propagation functions can be specified if needed.

The result of this process is a connected graph, which contains a node named user from
which all nodes can be reached. The propagation model tries to predict the internal calls
caused by user requests. Hence, the user himself does not play any role in the propagation
model and we delete this node and all outgoing edges. The resulting graph can now be
interpreted as a dependency graph, where an edge from A to B means A’s performance
depends on B. For every node, we collect the targets of its outgoing nodes and save them
into a dependency map. This dependency map is mandatory for the performance trainer
to calculate the training vectors and thus transmitted to this component.

After this transmission, we examine whether the dependency graph contains any cycles.
If the graph is acyclic, we utilize a dependency resolution algorithm to retrieve an ordered
list of all endpoints. At the beginning of this list, all endpoints with no incoming edges
appear, which means that they are only called by the user. The total incoming requests
of these endpoints can be calculated first in the request propagation algorithm. At the
end of this list, those endpoints, which do not send requests to other services appear. In
the performance inference algorithm, this list can be reversed to calculate the performance
metrics. This is why this list is named calculationOrder and by providing this list, we
shorten the runtime of the predictor component. If the graph contains cycles, we cannot
calculate such a list. Note that we did not observe any cycles on this level in any of our
test applications. We do also expect these cycles to appear only in very exceptional cases
in practice too, as two endpoints of different microservices should not call each other. On
the contrary, the case, where two services call different endpoints of each other, does not
cause any problems here, as every endpoint is modeled as an independent node in the
graph.

If these processing steps are done, the resulting model is submitted to the model persis-
tor. The model is labeled with a timestamp, which represents the time when the last
training data have been recorded. Moreover, the resulting model contains the dependency
functions, the calculation order for acyclic graphs, and a list of all endpoints, which are
contained in the model. The JSON-formatted propagation model for our running example
is shown in listing 5.4.

Model Persistor. The model persistor service manages access to a connected CouchDB,
where propagation and performance inference models are stored in separate tables. The
persistor provides interfaces for saving and querying these models individually or in pairs.
For evaluation and debugging purposes, models can also be queried by their timestamp.
As the predictor wants to use the most recent models during normal operation, we keep
both the most recent propagation and performance model cached. Moreover, the latest
timestamp of the models can be queried separately to ensure that every model instance
is only transmitted once. The model persistor has the responsibility that the predictor
always receives two consistent models, which means that all endpoints and services in the

40

5.2. Description of Components 41

performance model are also covered in the propagation model and vice versa. If no valid
pair of models is available, no model instance will be transmitted and the predictor will
suspend the prediction.

1 {

2 "nodes": ...,

3 "functions": [

4 {

5 "source": "serviceA:/endpointA",

6 "target": "serviceB:/endpointB",

7 "function": {

8 "type": "Linear",

9 "parameters": "24.0"

10 }

11 },

12],

13 "calculationOrder": [

14 "serviceA:/endpointA",

15 "serviceB:/endpointB"

16],

17 "dependencyMap": {

18 "serviceA:/endpointA": [

19 "serviceB:/endpointB"

20],

21 "serviceB:/endpointB": []

22 },

23 "time": 1581002006984

24 }

Listing 5.4: Example Output of Propagation Trainer

Performance Trainer. The performance trainer transforms a set of performance traces,
which are queried from the performance persistor, and a dependency map, which is calcu-
lated as the first step in the propagation trainer, to a performance model. As mentioned
before, we consider the prediction of performance metrics as a regression problem as we
aim to predict continuous metrics like response times. We assume that the performance
of an endpoint i is dependent on the number of requests to the endpoint itself and all
other endpoints of the same service, as well as on the performance metrics of all end-
points, which receive requests from i. The performance trainer receives the dependency
relations for every endpoint from the propagation trainer in the form of a dependency map
as shown in listing 5.4. Hence, the training process is started as soon as a dependency map
is received. This guarantees that for each propagation model an associated performance
model is created and consistent predictions can be made.

As the first step in the training process, the sample vectors are created. An example
training vector for an endpoint, which belongs to a service with n endpoints and depends
on z endpoints from other services, looks like:

(
x︸︷︷︸

no. of requests
to endpoint

x2 x3 ... xn︸ ︷︷ ︸
no. of requests

to other endpoints of same service

p1 p2 ... pz︸ ︷︷ ︸
performance of dependent

endpoints

)

41

42 5. Implementation

Table 5.4.: Trainer Configuration Parameters

Name Type Runtime Change Description

retrainInterval Non-zero integer Yes Retraining interval in

milliseconds for propagation and

performance model

dataInterval Non-zero integer Yes Time interval in minutes,

which determines the data to be

used for training

metric String Yes Name of performance metric

to be predicted

modelConfig Configuration Yes Type and parameters for the

machine learning model to be

used for performance predictions

The order of the features is saved in the performance model to guarantee valid predictions.
We prepare these kinds of sample vectors for every endpoint and every monitoring interval
and use them for the training of the machine learning model. In the current version of
the PPP framework, we support those four algorithms, which are also mentioned in [20],
namely Bayesian, random forest, k nearest neighbors (KNN), and support vector regression
(SVR). For this purpose, we use the model implementation from the wide-spread Python
library scikit-learn2. The model type and settings, as well as the metric to predict, can
be set in the system configuration. Table 5.4 shows all parameters for the trainer compo-
nents, while all model settings are named similarly to the associated parameters specified
in the scikit-learn documentation3. If the training process is completed for all endpoints,
the resulting models are serialized as strings to be transmitted to the model persistor. The
predictor can deserialize the models to use them for prediction. The performance model
receives the same timestamp as the associated propagation model. An example output of
the performance trainer is shown in Listing 5.5.

1 {

2 "performanceModels": {

3 "serviceA:/endpointA": { "\"py/object \"... },

4 "serviceB:/endpointB": { "\"py/object \"... }

5 },

6 "services": {

7 "serviceA": ["serviceA:/endpointA"],

8 "serviceB": ["serviceB:/endpointB"]

9 },

10 "time": 1581002006984

11 }

Listing 5.5: Example Output of Performance Trainer

2https://scikit-learn.org/
3See documentations for classes sklearn.svm.SVR, sklearn.neighbors.KNeighborsRegressor,
sklearn.linear_model.BayesianRidge and sklearn.ensemble.RandomForestRegressor

42

https://scikit-learn.org/

5.3. Evaluation Modes 43

Table 5.5.: Predictor Configuration Parameters

Name Type Runtime Change Description

forecastHorizon Non-zero integer Yes Forecast horizon for performance

and load forecast prediction as a

factor of the monitoring interval

epsilon Positive number Yes ε value of the request

propagation algorithm

Predictor. The predictor component uses associated propagation and performance mod-
els as well as a load forecast to predict the performance metrics for every endpoint and
service of the monitored application. The forecast horizon is specified by a configuration
parameter. To calculate the predicted values in accordance with the procedure presented
in Chapter 4, the load forecast is requested from the associated component as the first
step. Afterward, the predictor controls whether a new pair of models has been generated.
If so, the models are queried from the model persistor. After a validity check of the mod-
els and forecasts, the request propagation algorithm is executed. The hyperparameter ε is
specified in the predictor configuration, which is described in Table 5.5. As a result of this
algorithm, we retrieve a list where all endpoints and services are mapped to their predicted
number of requests within the next forecasting interval. This list serves as an input to the
performance inference algorithm. By using the precomputed calculation order for acyclic
topologies, we guarantee that the performance metrics can be determined iteratively. The
current implementation does not support cyclic topologies, as they are not evaluated in
this work. Possible approaches are discussed in Chapter 4. As a result of the performance
inference algorithm, we retrieve the predicted performance values for the next monitoring
intervals. For evaluation purposes, the predictions are stored together with the load fore-
cast and calculated internal requests into a data structure which is labeled with the time at
which the predictions were made. In production environments, the services would be now
rated based on the predicted performance metrics according to a user-specified scheme. We
execute this rating during the evaluation step to test different rating schemes on the same
results. Our rating procedure is described in Chapter 6. The predicted values are finally
transmitted to the prediction persistor, which stores the values for evaluation permanently.

Prediction Persistor. The prediction persistor is the main interface used for the eval-
uation in this work. The component has the responsibility to store all predictions made
by the predictor component. It provides an interface where all predictions sorted by the
time at which they were calculated can be queried. These values are compared with the
measured performance values stored in the performance persistor during the evaluation of
the framework.

5.3. Evaluation Modes

The PPP framework supports different execution modes in order to facilitate the evaluation
process. An overview of these modes is shown in Table 5.6. In the live mode, every
component of the PPP framework, Pinpoint as well as the test application is running. In
this scenario, the performance and tracing data of the application are gathered by Pinpoint
in real-time. This information are queried, processed, and persisted in regular intervals by
the provider. The performance and propagation models are created and the predictions
are computed in parallel. This mode is in particular intended to be used in scenarios

43

44 5. Implementation

Table 5.6.: Evaluation Modes and Active Components

Mode Active Components

Test Pinpoint Core Databases Provider Trainer Predictor

Application

Live X X X X X X X

Record X X X X X

Replay X X X X

where predictions need to be done online and available at runtime. For the evaluation
process in this work, this mode comes with some disadvantages. First, we can train and
evaluate only one type of performance model at the same time, which makes it hard to
compare different approaches and find the best one. Moreover, there is an increased risk
that an arbitrary error propagates through the framework and results in failures of single
components or anomalous data, which finally causes the experiment to be invalid. Last
but not least, we need a high amount of computing resources to guarantee that the test
application, Pinpoint, and our framework do not influence each other and still have enough
resources to work properly. For those reasons, we decided to split the evaluation process
into several steps.

In the record mode, measurement data are recorded and processed but neither models nor
predictions are created. Hence, the predictor, load forecaster, and trainer components of
the PPP framework are not active in this mode and do not need to be deployed. Only the
provider, core, and database components are mandatory. In this setting, Pinpoint gathers
performance and tracing data from the test application and the provider queries and parses
them. This has the advantage that we save a significant amount of computing resources
and can record a trace that can later be used for the evaluation of different model types. A
variant of the record mode is the parse mode, which enables the possibility to process data
from Pinpoint, which have been recorded in the past. Thereby, also externally recorded
traces can be used for evaluation. The counterpart of the record mode is the replay mode,
which is used for training models and creating predictions on a recorded trace. Therefore,
a starting and ending time of the trace has to be provided at the framework startup. The
trace is replayed, which means that a virtual time is used within the framework and the
models receive only training data that are known at this time. Thus, we can run different
experiments and settings on the same data and compare the performance of different
models in the same circumstances. In the replay mode, Pinpoint and the test application
are not running. The functionality of the record and the replay mode together is equal to
the live mode.

44

6. Evaluation

In this chapter, we describe how the previously described approach has been evaluated.
Therefore, Section 6.1 explains the technical setup of our experiments. Section 6.2 de-
scribes our test scenarios and workloads, while Section 6.3 introduces metrics to quantify
the quality of our approach.

6.1. Technical Setup

In this section, we describe the technical setup for our experiments. For the major part of
the evaluation, we decided to use TrainTicket as it is a state-of-the-art microservice test
application and can be monitored with Pinpoint. The complexity of our demo application
gives us a wide range of evaluation options for our approach. In the following, we describe
our evaluation setup and workflow, which is visualized in Figure 6.1. The TrainTicket
microservices are deployed on a single machine. By setting resource constraints, we limit
the maximum resource usage for every container. This is mandatory in our setting as we
want to minimize the resource sharing between the services. Moreover, we observed that
network connections are the limiting factors without setting CPU and memory constraints.
This led to problems with the monitoring agents as they were not able to transmit their
data. We assigned 0.6 cores1 and 1GB RAM to every service, in non-critical scenarios
the average CPU consumption of the services lay between 0.05 and 0.15 cores. The full
hardware and software settings for our application server are shown in Table 6.1. In
future work, we plan to deploy TrainTicket in a computing cluster. By setting deployment
constraints, we can influence the placement of the services manually and analyze different
configurations. Moreover, also the influence of service replications can be analyzed.

Those Java services, which need to be monitored, are started with an associated Pinpoint
agent. In general, all Java services can be monitored using Pinpoint. However, in some
scenarios, it could be useful to disable monitoring for specific services. Moreover, some
TrainTicket components cannot be monitored as they are not written in Java. In Figure
6.1, Service C represents such an unmonitored service. The agent can be configured as
desired for any application, e.g., by adjusting the sampling rates for regulating the mon-
itoring overhead. In our evaluation, we try to monitor every request, hence the sampling
rate is 1. However, we observed that in high load scenarios a small proportion of the
tracing information is dropped and not available for our evaluation. All other components

1The indication x cores means that x out of one second computing time of one core is the maximum,
which can be assigned to a service.

45

46 6. Evaluation

Table 6.1.: Hardware and Software Settings of the Application Server

Hardware

CPU Intel Xeon CPU E5-2640 v3

RAM 2x 16GiB DIMM DDR4 RAM

Disk 500GB HP HDD MB0500GCEHE

Software

Operating System Ubuntu 18.04.3 LTS

TrainTicket Version 30 Aug 2019, commit fa1fc90 from repository [44]

Teastore Version 1.3.7

Pinpoint Version 1.8.4

Docker Version 18.09.7

Docker Compose Version 1.23.1

Service A

Pinpoint Agent

Service B

Pinpoint Agent

Service C

Service D

Pinpoint Agent

Test Application

R
E
S
T

Pinpoint Collector

Pinpoint Hbase

Monitoring UnitLoad Generation

Load
Generator

Node 1

Node 2

Load Profile

Request
Definition

Script

Web UI

Prediction Center

Provider

Core

Predictor

Trainer

Databases

Load
Forecaster

Figure 6.1.: Evaluation Setup

of the Pinpoint monitoring system, such as the Pinpoint Collector, Web UI, and Hbase
storage run on a dedicated (virtual) machine and do not influence the test application.
Before the start-up of TrainTicket, the IP address of the monitoring machine is set in the
agent configuration. Similar to the monitoring unit, the performance prediction center will
be deployed on a dedicated host and receives data from the Pinpoint Web component.

For the generation of different load profiles and request rates, we use the HTTP load
generator described in Section 2.3. The load generator runs depending on the desired
load intensity on one or more dedicated (virtual) machines and is able to use multiple
threads on one machine to generate requests. We can vary the request definition script to
simulate different user behaviors and stimulate selected services only. In combination with
different load intensities, we are able to overload certain services and generate performance
degradations. Finally, we are able to test different setups and dependencies by varying the
placement of the services.

46

6.2. Test Scenarios 47

Login Search Book Collect

• Generate captcha
picture

• Submit login data

• Search for trains
• Mix of legal and

illegal requests

• Request contact
data

• Request assurance
options

• Request food
selection

• Book ticket
• Mix of legal and

illegal requests

• Pay order
• Collect ticket
• Check-in at station

Figure 6.2.: Workload Overview for TrainTicket

The evaluation workflow starts with the generation of different load profiles and the ex-
port of them as CSV files. We further define different realistic user behaviors in request
definition scripts (see Section 6.2). These two inputs are used as parameters for the
load generator, which sends requests to the test application. Different performance met-
rics, such as response times and the number of exceptions, are measured by the Pinpoint
agents. In our experiments, all Java services are instrumented with Pinpoint agents. The
gathered data are sent to the Pinpoint Collector, which saves the data into the database.
The Pinpoint Web UI can be used for a first plausibility assessment of the data. This
workflow and the technical setup remains nearly unchanged for the Teastore, our second
test application, which is used for a minor part of the evaluation. The Teastore application
consists of fewer microservices than TrainTicket. This allows us to increase the resource
limits. For our evaluation, we assigned 1 core and 4GB RAM to every service.

6.2. Test Scenarios

The major part of our evaluation is performed with the microservice test application
TrainTicket, which has been described in Section 3.5. TrainTicket provides a large func-
tionality in the area of online booking of train journeys, which reaches from essential
functions like user login through to vouchers and complex queries. For our experiments,
we defined a sequence of user requests, which is oriented towards real user behavior. In
the following, we describe this sequence of calls in more detail, an overview is shown in
Figure 6.2.

As the first step, we simulate the user login on the TrainTicket website. Therefore, two
requests are needed. Prior to the actual login, where the user credentials, e-mail address,
and password, are transmitted, a captcha image is generated. Before starting the exper-
iments, we create an account and credentials for every single user in the thread pool of
the HTTP load generator. This is necessary, as TrainTicket allows only one active session
per account. If a thread enters the website with the same credentials as another one, the
session of that user, which has entered the website first, is closed. After the login, the users
are searching for train connections. Therefore, we defined a pool of eight routes, where
each user picks one randomly. We further scripted that the first request of a user always
results in an empty result list, which means that no trains are found on that route. This is
possible as TrainTicket contains different train types, which operate along different routes.
On the second try, the user receives a non-empty result list, as the correct train type is

47

48 6. Evaluation

selected for his route. Moreover, the probability that a user sends an invalid request can
be specified. In this case, the customer enters an invalid station name, which leads to an
exception in a backend service. Per default, this probability is set to 0.2. If a user performs
an invalid request, he retries the call, which has again the specified failure probability. If
this parameter is small enough, every user should receive a valid result list for his route in
the long term.

In the next step, we simulate the ticket booking on the website. Therefore, several requests
have to be sent. First, the contact data of the customer is queried from a database. For
each booking, valid contact data have to be specified. Second, the user queries information
about available travel assurances. We defined that 30 percent of the customers select an
assurance for their journey. Third, the user queries the food offerings onboard his train.
We defined that the customers order food on the train if it is available on their route. This
is the case in three of our eight routes. Afterward, the actual ticket booking takes place
where all this information is transmitted. Analogously to the route query, we defined that
the first booking request fails because the train type is wrong. In contrast to the previous
scenario, no exception takes place here. The response only contains the information that
the booking has failed because the train could not be found. With the second try, every
user performs a valid booking. In order to prevent overbooking of trains in high load
scenarios, we delete the bookings for the trains periodically. After the ticket booking, the
user pays his order and it is simulated that he collects his ticket and checks in at the
station. In total, we thereby defined a realistic user behavior for that test application.

All in all, 57 endpoints across 26 microservices are used to process these user requests.
Figure 6.3 shows the resulting call graph on the service level. We observe the relations
described in our approach. Some services do not send any requests to other services, while
other components receive queries from and send requests to many other services. Moreover,
we see several cycles between different services, for example between travel2 and seat.
Figure 6.4 shows the same call graph on the endpoint level. Closely apposed nodes hereby
mean that these endpoints belong to the same microservice. The position of the services
is the same as in Figure 6.3. We can see that the described cycles disappear here, which
validates our assumption of an acyclic graph on that level. By using the randomize-

users flag of the HTTP load generator, we can now generate a realistic request mix,
which stresses the application to an adequate extent. In order to force exceptions and
performance degradations, we vary the load intensity and stimulate some single endpoints
and services directly.

A minor part of our evaluation is performed on the Teastore application. For this applica-
tion, we use a predefined load script2. This script encapsulates the behavior of a customer,
who searches for different items in the webshop but does not buy anything. This results
in the fact that the backend databases are not modified. In the following, we describe the
user requests more detailed. First, the user accesses the main page of the webshop and
then logs in with his credentials. In the second step, he searches for different random items
in the shop and adds two in his virtual shopping cart. Afterward, he accesses his profile
and finally logs out again. The detailed experimental settings are described in Chapter 7.

6.3. Evaluation Metrics

In this section, we define the metrics which are the base of our model evaluations and
comparisons. As described in Chapter 4, we use regression models to predict continuous
performance metrics. In terms of this work, we choose the average response time to

2Download available at: https://github.com/DescartesResearch/TeaStore/tree/master/examples/

httploadgenerator

48

https://github.com/DescartesResearch/TeaStore/tree/master/examples/httploadgenerator
https://github.com/DescartesResearch/TeaStore/tree/master/examples/httploadgenerator

6.3. Evaluation Metrics 49

Figure 6.3.: Service Call Graph for Described Workload

Figure 6.4.: Endpoint Call Graph for Described Workload

49

50 6. Evaluation

requests, which arrive in a dedicated measurement interval, as our performance metric.
The PPP framework supports beyond that also the metrics maximum response time and
number and proportion of exceptions. Based on the numeric values of the performance
metrics, we grade the state of an endpoint and assign one of the ratings green, yellow, or
red. In this work, this assignment is based on the average response time only. Therefore,
the response time of an endpoint under low load is considered as a base value for the green
rating class and the limits for the yellow and red ratings are set accordingly. We discuss
the influence of these limits and give recommendations on how to set them in Chapter
7. Our rating schemes for every endpoint are given in Appendices B and C. In practice,
multiple metrics might be included in the calculation of the rating and the schemes and
limits might be part of service level objectives. The PPP framework assigns the ratings
based on the predicted response times. Analogously, the measured data are labeled based
on the measured response times. Hence, we obtain a set of true and predicted labels for
every endpoint and can apply standard classification metrics. These are based on the
confusion matrix, which contains the amounts of true positives (TP), false positives (FP),
true negatives (TN) and false negatives (FN) for every rating class.

First, we define those metrics, which assess the prediction quality on the dataset of one
dedicated endpoint. In our evaluation, we have one predicted and one measured label for
an endpoint per measurement interval. Based on this set, we calculate the precision for
every rating class, which is a measure of the prediction quality. It describes the proportion
of the true positives on the set of all predicted positives. Hence, the precision reaches its
maximum value of one, if all predicted positives are true positives. Equation 6.1 shows
how to calculate the precision px for a rating class or label x.

px =
TP

TP + FP
(6.1)

In addition to the precision, the recall is another important classification metric. In con-
trast to the precision, the recall takes quantitative aspects of the results into account. It
describes the proportion of the true positives on the set of all measured positives. Hence,
the recall reaches its maximum value of one, if all measured samples of one class have been
predicted. This value is especially interesting in our use case for the red ratings, as we
can evaluate how many of the measured performance degradations we are able to predict.
Equation 6.2 shows how to calculate the recall rx for a rating class or label x.

rx =
TP

TP + FN
(6.2)

In practice, both precision and recall are of importance as one wants to predict as many
true positives as possible without generating too many false positives. In our case, we
want to predict as many performance degradations as possible, but, if we give too many
false alarms concurrently, the benefit of our approach is limited. Moreover, in our setting
a false positive rating in one class is a false negative rating in another class simultaneously.
Consequently, we need a metric that combines precision and recall. We use the F1 score,
which is the harmonic mean of precision and recall and gives equal weights to both metrics.
Equation 6.3 shows how to calculate the F1 score Fx for a rating class or label x.

Fx =
2pxrx
px + rx

=
2TP

2TP + FP + FN
(6.3)

The previously defined metrics support only binary classification. In our case, we have
three potential ratings/labels for one endpoint and measurement interval: green (G), yellow

50

6.3. Evaluation Metrics 51

(Y), and red (R). To grade the overall prediction quality of our approach on one endpoint,
we use the macro-averaged F1 score. It represents the arithmetic mean of the F1 scores for
the three labels green, yellow, and red. With this, we ensure that every rating has an equal
influence on the resulting score. This is important in our use case, as we are interested
in accurate predictions for all rating classes. Another advantage of the macro-averaged
F1 score is that it is independent of the number of samples for every label and does not
require a balanced dataset. This is suitable for our application case, as we expect both
in our evaluation and in practice imbalanced datasets. More precisely, we expect that at
an endpoint has a good response time and stays in a non-critical state most of the time.
Performance degradations are anomalies and consequently yellow and red ratings appear
seldom in the dataset. This results in an imbalanced dataset. Equation 6.4 shows how to
calculate the macro-averaged F1 score F for an endpoint based on the F1 scores FG, FY

and FR for the ratings green, yellow and red.

F =
1

3
· (FG + FY + FR) (6.4)

In our evaluation, we provide the overall accuracy value of the prediction for one end-
point in addition to the macro-averaged F1 score. The overall accuracy is a simple and
comprehensible metric, which represents the proportion of the correctly predicted states
on all predicted states independently of the rating class. For example, an accuracy of 0.6
means that 60% of all predicted labels are equal to the measured ones. In our use case, we
can further say that the framework would issue correct ratings in 60% of the time. The
accuracy reaches its maximum value of one if all predicted labels equal the measured ones.
Equation 6.5 shows how to calculate the overall accuracy A for one endpoint. Hereby, TPx

and FNx describe the true positives and false negatives of the rating class x.

A =
TPG + TPY + TPR

TPG + TPY + TPR + FNG + FNY + FNR
(6.5)

All previously described metrics are defined for the data of one endpoint only. For our
evaluation, we further need global metrics, which assess the performance of our approach
on all endpoints and thus on the application as a whole. We stick to the combination of
the accuracy, as a simple and comprehensible metric, and the macro-averaged F1 score,
which takes the results related to all rating classes into account explicitly, here as well. To
determine these measures, we first calculate the confusion matrices for all endpoints. In
the next step, we sum the values of true positives, false positives, true negatives, and false
negatives up and obtain the global confusion matrix. This matrix contains e · n samples
overall, where e is the number of endpoints and n the number of measurement intervals,
which is also the number of samples of one endpoint. Based on the global confusion matrix,
we calculate the measures analogously to the definitions above. Hence, the global (macro-
averaged) F1 score Fglobal is calculated as shown in Equation 6.6. Hereby,

∑
TPx,

∑
FPx,

and
∑
FNx represent the summed values of the true positives, false positives, and false

negatives of all endpoints.

Fglobal =
1

3
· (FG,global + FY,global + FR,global),

where Fx,global =
2
∑
TPx

2
∑
TPx +

∑
FPx +

∑
FNx

(6.6)

Analogously, the global accuracy is calculated with the following formula:

Aglobal =

∑
TPG +

∑
TPY +

∑
TPR∑

TPG +
∑
TPY +

∑
TPR +

∑
FNG +

∑
FNY +

∑
FNR

(6.7)

51

7. Results

In this chapter, we describe the results of our evaluation. All in all, we discuss five
scenarios, where four describe different workloads and their influence on the performance
of the TrainTicket application and the last one describes the results of our framework on
the TeaStore application. Each section provides a description of the scenario and discusses
different aspects of our approach. Section 7.6 points out the findings of all scenarios and
summarizes the strengths and weaknesses of our approach.

7.1. Scenario 1: Periodic Load

Scenario Description. In the first scenario, we evaluate the performance of our frame-
work on the TrainTicket application, which is stressed with a regular periodic load. The
load intensity varies from 3 requests per second (rps) up to 22 rps. In preliminary tests,
we observed that some services crash or have a response time well above ten seconds with
our hardware restrictions under a load of 24 rps. The trace for this scenario has a total
length of about 60 minutes. The peak loads occur 10 times during this period. The mea-
surement data in all scenarios are gathered and aggregated in intervals of five seconds.
Figure 7.1 visualizes the rating of all endpoints stimulated by our workload at the fourth
load peak, which appears 1345 seconds after the beginning of the trace. The positioning
of the endpoints and the grouping of the services in similar to Figures 6.3 and 6.4. We
can see that multiple endpoints and services experience performance problems and some
issue performance warnings. For this evaluation, we rate the state of an endpoint based on
its average response time only. In practice, more metrics could be included the calculate
the rating. The rating schemes and thresholds can be found in Appendix B. The rating
thresholds have been set as follows. For all endpoints which have an average response time
in the low load scenario greater or equal to 30 milliseconds, the yellow rating threshold is
about 1.5 to 2 times and the red rating threshold is about 3 times the average response
time under low load. For all other endpoints, we defined a default threshold of 40 ms for
the yellow rating and 80 ms for the red rating. Otherwise, the ranges for the different
rating classes would be too small and not practicable.

The evaluation and figures in this and the following scenarios focus on the data and perfor-
mance of the endpoint /travel/query, which has been chosen as a representative example
within the TrainTicket application. This endpoint is managed by the service ts-travel-

service and is called by the user whenever he searches for a train connection between
two cities on the website. Hence, the endpoint needs the origin and destination station,

53

54 7. Results

Figure 7.1.: Situation of All Endpoints Stimulated by the Workload

0 500 1000 1500 2000 2500 3000 3500
Time [s]

5

10

15

20

A
rr

iv
al

R
at

e
[1

/s
]

200

400

600

800

1000

1200

1400

1600

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

Figure 7.2.: Load and Average Response Time of the Endpoint /travel/query over Time

as well as the travel date as parameters. As a response, the user receives a list of train
connections that matches his input. We choose this endpoint as the running example for
our evaluation for a variety of reasons. First, this endpoint would be directly called by the
user also in real-world scenarios and would have a direct influence on the user experience.
Moreover, the function of this endpoint is easy to understand. From a software architecture
and performance point of view, it is suited for evaluating our framework as it depends on
many other services and its response time is sensitive to load variations. Furthermore, the
endpoint is stateless and no login is required to access it, which makes testing easier. The
average response time of /travel/query in a low load scenario under the given hardware
constraints varies between 250 and 300 milliseconds. With the maximum load, the average
response time increases up to 1500ms. The correlation between the load intensity and the
response time of this endpoint is shown in Figure 7.2. For this scenario, we defined that
this endpoint gets a green rating if it has an average response time up to 400ms and a
yellow rating up to 600ms. If an average response time above 600ms, which is twice the
low load response time, is measured, the endpoint gets a red rating. Given this rating
scheme, the endpoint is rated green in 534, yellow in 127, and red in 51 out of 712 total
measurement intervals.

54

7.1. Scenario 1: Periodic Load 55

0 500 1000 1500 2000 2500 3000 3500
Time [s]

−6

−4

−2

0

2

4

6

A
bs

ol
ut

e
E

rr
or

[1
/s

]

Figure 7.3.: Absolute Arrival Rate Forecast Error of the Endpoint /travel/query over
Time

Load Forecast Quality. Before assessing the quality of our performance predictions, we
want to evaluate the quality of the load forecast and how well our propagation model can
predict the number of internal calls caused by the user requests. An accurate load forecast
and request propagation are important for the performance prediction as the features for
the machine learning model are derived from them. As our load forecaster, we selected the
SimpleFeedForwardEstimator from the GluonTS library, which is based on a multilayer
perceptron model (MLP), a feedforward neural network. We choose this estimator because
it has a much lower training and prediction time than other estimators from the library,
from which the majority are based on recurrent neural networks. Moreover, it produces
results of equal quality in our cases. We use two epochs for the estimator training, this
results in a training and prediction time which is acceptable also in the live operation
mode. The estimator receives the time series of all endpoints, which received user requests,
containing all values recorded in past intervals. Given this input, the estimator calculates a
forecast for the given forecast horizon. GluonTS is a probabilistic forecaster and therefore
returns an interval, within its range the next value will be most likely. As our framework
requires a single value, we always extract the mean value of the forecast. However, in
future work, an extension could be developed, where the framework receives minimum
and maximum value of user requests to calculate a range of predicted performance values
as well.

Figure 7.3 shows the absolute errors over time for the arrival rate of the endpoint /trav-
el/query with a forecast horizon of one interval (5 seconds). We can see that the forecast
has a good quality in general and only single values have deviations of 3 rps or more to
the measured value. These high differences occur whenever the load raises or decreases
strongly before or after a peak load. In all other cases, the error sways around its optimal
value of zero. Positive and negative deviations occur equally, which means that the arrival
rate is neither constantly under- nor overestimated.

Propagation Model Quality. Given this load forecast, we evaluate how well our request
propagation model is able to predict the internal calls of the test application. Therefore,
we stick to our running example /travel/query and look at the part of the propagation
model, which contains those services and endpoints, which are called in the succession
of a user request to /travel/query. Figure 7.4 shows this model section. The blue
boxes hereby represent an endpoint. Every endpoint is part of a service, which is visual-

55

56 7. Results

ts-ticketinfo-service

queryForTravel*

queryForStationId*

ts-train-service

retrieve*

ts-route-service

queryById*
ts-seat-service

getLeftTicketOfInterval*†

ts-basic-service

queryForTravel

queryForStationId

ts-config-service

query

ts-order-service

calculate* getTicketList…

ts-station-service

queryForId*

exist

ts-price-service

query

ts-travel-service

query getRouteByTripId*getTrainTypeByTripId
1

0.98

0.98

7.85

0.98

4.94

1.97

1

1

1

0.98

0.93

0.93

1

0.93

1

2

2

1

1
1

* Endpoint is called from services
not shown in this picture
† Endpoint calls services not shown
in this picture

Figure 7.4.: Section of Propagation Model Related to a User Call to /travel/query

ized by black frames. An edge between two endpoints signalizes a request flow between
these endpoints. Each edge is labeled with the parameter c from the propagation model,
which represents the number of requests sent per incoming request at the origin endpoint.
The values in the figure are taken from the propagation model calculated 1500 seconds
after the beginning of the trace. We can see that different values of c appear in the
model. Many edges are labeled with the value one, which can be interpreted as request
forwarding. These kind of communication pattern can be seen for example between the
services ts-ticketinfo-service and ts-basic-service. In this case, the endpoints of
ts-ticketinfo-service forward every request to the endpoints of ts-basic-service

with the same name. If the parameter c is smaller than one, not every request causes a
new request to be sent. This happens due to a variety of reasons. First, the generation of
a new request can depend on a condition specified in the application logic. Examples for
this case are given by the requests sent from ts-seat-service to ts-travel-service.
The endpoints of ts-seat-service are called from another service named ts-travel2-

service as well. This service manages other train types than ts-travel-service. ts-

seat-service can distinguish the trains by their train id and calls only the service, which
is responsible for the current train type. A side effect here is that the propagation model
can also show some business values. In this example, the model states that 93 percent of
the calls to ts-seat-service are related to train types managed by ts-travel-service.
As a consequence, the users are obviously more interested in these trains. However, to
perform such an analysis, application-specific knowledge is needed. Another reason for
low values of c can be exceptions or errors, which influence the information flow as well.
For example, an exception causes that other requests, which would be sent later in the
processing of a user request, are not sent, and, as a consequence, the value of c is lowered.
Last but not least, also measurement errors or numeric deviations can influence the value
of c. For example, as described earlier, we observed during our tests that Pinpoint is
not able to trace all requests when the arrival rate is high. Such effects can also affect c
especially if c is not constant.

High values of c mean that an incoming request causes multiple new requests to be sent.
One example of this is the relationship between ts-basic-service and ts-station-

service. Here, the value of two means that every incoming request causes two requests

56

7.1. Scenario 1: Periodic Load 57

0 500 1000 1500 2000 2500 3000 3500
Time [s]

−10

−5

0

5

10

A
bs

ol
ut

e
E

rr
or

[1
/s

]

(a) Endpoint /price/query

0 500 1000 1500 2000 2500 3000 3500
Time [s]

−40

−20

0

20

40

A
bs

ol
ut

e
E

rr
or

[1
/s

]

(b) Endpoint /train/retrieve

Figure 7.5.: Absolute Errors of Arrival Rate Forecasts for Selected Backend Services

to ts-station-service. This is really reasonable in this case, as for querying a travel
always two stations have to be checked: the origin and destination station. Another ex-
ample for this phenomenon can be seen in the relationship of ts-travel-service and
ts-ticketinfo-service. We can see that for querying a travel, an average of 7.85 differ-
ent stations is queried. This could be also useful information for developers, for example,
to evaluate different search algorithms. Moreover, a significant change of this value over
time can signalize a change in the user behavior, for example, if the users request differ-
ent routes. All in all, we conclude that the propagation model contains architectural and
business information, which promotes the understanding of the application itself and the
way it is used.

In the following, we want to discuss how well the linear propagation model predicts the
load intensity on backend services with given load forecasts. Therefore, we consider the
endpoints /price/query and /train/retrieve as examples. The absolute errors of the
arrival rate predictions with a prediction horizon of one interval are shown in Figure 7.5.
The graphs have the same shape as the one in Figure 7.3. Concretely, only single values
have a high deviation from the optimal value of zero, while the majority of predictions
are near to the measured value. The high deviations occur whenever the load increases or
decreases strongly. Hence, we can see that the propagation model is able to predict the
internal calls well. However, the errors of the load forecast propagate within the model.
This can be also concluded from the analysis of the relative errors. The maximum relative
errors of the arrival rate prediction for the frontend /travel/query (75%) is nearly equal
to the relative errors of the backend services (78%). We conclude that the linear propa-
gation model is well suited for this application and workload and the prediction quality
mainly depends on the quality of the user forecast. We discuss this dependency later in
more detail. To improve the accuracy of the arrival rate prediction, minimum and maxi-
mum values might be inserted as described earlier. As a result, we would obtain a range
of arrival rates rather than a single value.

Evaluation of Different Machine Learning Models. For our performance inference
models, we tested four different machine learning model types: the k nearest neighbor
algorithm (KNN), bayesian ridge regression, support vector regression (SVR), and random
forest regression. We used the implementations provided by the Python library scikit-

learn. To optimize the hyperparameters of the algorithms, we performed a grid search.
Therefore, we split the time series into six parts with a length of about ten minutes and
execute a cross-validation based on the scheme of an out-of-sample forecast evaluation
[51]. As the scoring function and optimization metric, we use the macro-averaged F1
score, which has been described in Section 6.3. The resulting parameters and all tested

57

58 7. Results

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Arrival Rate [1/s]

200

400

600

800

1000

1200

1400

1600

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

Figure 7.6.: Average Response Time as a Function of the Arrival Rate on the Endpoint
/travel/query

configurations for every model optimized for the endpoint /travel/query are shown in
Appendix A. During the hyperparameter search, we took also time series of other endpoints
into account. However, it turned out that nearly the same optimal parameters had been
found because the training data were of similar nature.

The dependency between the average response time and the arrival rate of the endpoint
/travel/query is shown in Figure 7.6. The arrival rate to an endpoint itself is one of
the features used for predicting its performance metrics. In this scenario, this feature
is the main reason for performance degradations. This can be seen in the figure, which
foreshadows the shape of a classical latency curve. In the range up to 17 rps, the average
response time increases slowly and near linearly, while a higher arrival rate causes a much
faster increase of the average response time. Besides this, we see that the majority of
training data is located in the non-critical area below 10 rps, while only a few training
data are available in the high load area. This imbalance appears in real-world applications
as well. The problem is even more challenging for our framework and models especially at
the beginning of the traces, where no training data is available and especially none in the
critical area.

In the following, we want to evaluate the results of different machine learning models. The
models have been retrained every 60 seconds and capture the training data known at the
training time. Any pretraining or advance information was not needed and has not been
used. Moreover, we neglect any further influencing factors at runtime, for example, the
transmission delay of the models and training data. This investigation is enabled by the
replay mode of the PPP framework. Figure 7.7 shows the predicted courses of the average
response time for different model types for the endpoint /travel/query in comparison
with the measured data. Table 7.1 shows the quality of the derived ratings for every
model. Therefore, the values of the true positives (TP), false positives (FP), and false
negatives (FN) for every rating class as well as the metrics accuracy and macro-averaged
F1 score are listed. In general, we can see that all models are able to approximate the
shape and periodicity of the measured graph. Moreover, all models are not able to predict
the first increase and peak of the response time because no training data in this area is
known at this time and the load forecast is not good as well because the time series has
only data points. Similarly, we see that all models overestimate the response time shortly
after the first peak, which leads to false red ratings, and adapt their predictions after this
initialization phase.

58

7.1. Scenario 1: Periodic Load 59

t

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

500

1000

1500

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

(a) KNeighborsRegressor

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

500

1000

1500

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

(b) BayesianRidgeRegressor

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

500

1000

1500

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

(c) SVR

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

500

1000

1500

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

(d) RandomForestRegressor

Figure 7.7.: Prediction Results (red) and Measured Data (blue) for Different ML Models

The prediction of the KNeighborsRegressor is characterized by a higher noise compared to
the other model types. The reason for this is that the hyperparameter k, which determines
the number of neighbored data points consulted for prediction, has been set to two, which
is a really small value. As a result of this, the estimator is strongly oriented towards
the training data. In this case, the prediction is the average value of the two nearest
known samples. This is beneficial in our application case, as nearly equal feature vectors
yield nearly equal response times. The figure shows that the amplitudes of the peak
loads are estimated well compared to other model types. In the non-critical areas, the
prediction is really noisy at the beginning of the trace but the graph gets smoother over
time when more training data are available. An advantage of the KNN model is the small
training time and model size, which makes it applicable in live scenarios and reduces the
computation power. The overall performance metrics accuracy and F1 score show that
the KNN produces results of medium quality compared to its competitors.

The Bayesian regressor is also a relatively lightweight linear prediction model. Compared
to the KNN, the prediction graph of the Bayesian regressor is much smoother. The course
of the curve fits the one of the measured data qualitatively. However, the amplitudes
are not as prominent as the ones of the KNN or random forest prediction. Moreover, the
Bayesian regressor predicts slightly higher values of the response time than the measured in
the non-critical area. This leads to a higher number of false yellow ratings and an increased
false negative value of the green ratings. A similar effect can be seen between the yellow
and the red rating classes. The estimator issues far more performance alerts than the other
model types, which leads to an increased true positive value on the one hand but a higher
false-positive value in the red class on the other hand. All in all, this overestimation leads
to the worst accuracy in the competition. However, the macro-average F1 score is the
second-highest in this scenario. The reason for this is that the model types receive much
smaller F1 scores in the red rating class.

59

60 7. Results

Table 7.1.: Results of Different Machine Learning Models

Model Type GREEN YELLOW RED Overall Macro F1

TP FP FN TP FP FN TP FP FN Accuracy Score

k Neighbors 486 71 48 24 62 103 26 43 25 0.753 0.517

Bayesian 431 44 103 37 94 90 37 69 14 0.709 0.537

SVR 491 68 43 59 92 68 1 1 50 0.774 0.454

Random 491 71 43 32 50 95 31 37 20 0.778 0.574

Forest

The SVR receives the smallest F1 score in the competition. This is because it underes-
timates the peak response times clearly. The figure shows that it is able to predict an
increase in the response time but the amplitude is significantly smaller than the measured
value and the values of the other estimators. As a consequence, far more yellow ratings
are issued than red ones. The SVR only issues two performance alerts in this scenario,
while all other model types issue at least 68. Moreover, the SVR rates the condition of
the endpoint in 151 intervals as yellow, which is the highest number in the competition.
With this behavior, the estimator receives the second-highest accuracy in the competition
with a small distance to the highest score. The reason for this is that the majority of data
points lie in the green or yellow area and the SVR receives high true positive values in
these rating classes. However, the macro-averaged F1 score is much lower compared to
the other model types because the SVR receives a very low score in the red rating class.
All in all, this behavior is counterproductive in our use case, as the estimator is not able
to predict performance degradations and give correct alerts.

The random forest regressor performs best in this scenario. The peak response times are
estimated as well as by the KNN, but the predictions in the non-critical areas are much
less noisy. All in all, the prediction quality is balanced across all rating classes, which
leads to the best accuracy and F1 score in the competition. When using a random forest
estimator in a realtime use case, one has to be aware of an increased model size and
training time when using a large ensemble of decision trees. A good balance between the
computational effort and prediction quality has to be found. In the following, we perform
a further investigation of the results from the random forest estimator, as it makes the
most accurate predictions in this scenario. But it has also been shown, that the KNN
and Bayesian estimators can be good alternatives in use cases, where training time and
computational resources are critical factors.

The previous results refer to the endpoint /travel/query. Besides that, we analyze
the prediction quality on the application as a whole. Therefore, Figure 7.8 shows global
quality measures for all model types together with the measures of primitive classification
approaches. These measures allow us to assess the overall prediction quality of the different
model types by taking data from all endpoints into account. We see that the values for
both the unfiltered and filtered measures of our model types are greater than the ones
achieved by the primitive approaches. The high accuracy of the all green classifier, which
issues always green ratings, shows that the vast majority of measured response times are
in a non-critical area and yellow or red ratings are seldom. The reason for this lies in the
nature of the dataset. The majority of the endpoints in the application do not experience
any performance degradation in this scenario. Their average response times remain nearly
constant all the time and, so, their rating does as well. This makes the prediction task much
easier and yields a strong increase in accuracy compared to the values of /travel/query.

60

7.1. Scenario 1: Periodic Load 61

KNN Bayesian SVR Random Forest All Green Random Classifier
0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
es

0.95 0.96 0.97 0.96 0.97

0.33

0.44 0.47
0.42

0.46

0.33

0.18

0.99 0.99 0.99 0.99 0.99

0.33

0.58 0.61

0.49

0.6

0.33

0.17

Accuracy
F1 Score
Filtered Acc.
Filtered F1

Figure 7.8.: Global Prediction Quality Measures of Different Model Types

Besides that, many endpoints of the application experience only a small arrival rate most
of the time. This leads to the fact that only a few requests are included in the calculation of
the average response time. This makes the average response time prone to outliers and the
measured rating of this endpoint relates to only a few requests. Such outliers with a small
arrival rate should be ignored in practice as the rating in such cases is not meaningful.
Therefore, we change the labeling of the measured and predicted values. In all intervals,
where the measured arrival rate at an endpoint is smaller than 10 rps, the measured
rating is green independently from the measured average response time. Analogously, the
PPP framework assigns a green rating to an endpoint, if the predicted arrival rate at this
endpoint is lower than 10 rps. This can be implemented by a simple conditional statement
and is a fair adjustment also for evaluation purposes, as the models still have to predict
the arrival rate correctly. The figure shows that this adjustment causes an increase of the
accuracy, but especially of the F1 score. This shows that many of the falsely predicted
yellow and red ratings in the unfiltered case are caused by single outliers and a small
arrival rate. Hence, we conclude that the filtered global measures are more meaningful for
our evaluation. We stick to these measures in the following scenarios as well because their
datasets show similar characteristics.

However, we see that the F1 score does not rise as strongly as the accuracy compared
to the values of /travel/query. This is because the global F1 score does not take the
imbalance of the dataset into account. In our case, we have many samples and a high score
in the non-critical green rating class and a few samples and a lower score in the yellow
and red rating classes. This applies to all endpoints, which have varying response times.
Consequently, wrong predictions in the yellow or red rating class are penalized sharply
by the global F1 score. However, the global scores confirm our results from the endpoint
/travel/query qualitatively. We see that the random forest model and the Bayesian
model receive the highest F1 score in the competition. Furthermore, the SVR has a higher
accuracy but a lower F1 score compared to the random forest model. As discussed earlier,
this is because the SVR predicts nearly all of the green ratings, which are the majority
in the dataset, correctly. All in all, the high accuracy shows that our models are able to
predict the performance correctly for a large number of services and endpoints. Moreover,
they provide significantly better predictions than primitive approaches. The global scores
include results from the whole application, but nevertheless one has to take the special
role of endpoints like /travel/query into account, which are a direct measure for the user
experience as their response time is directly noticeable by a customer.

61

62 7. Results

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

500

1000

1500

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

(a) Random Forest Model with Optimal Input

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

500

1000

1500

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

(b) GluonTS Time Series Forecast

Figure 7.9.: Predictions (red) and Measured Data (blue) for Best Case Prediction and
Time Series Forecast

Table 7.2.: Theoretical Best Case vs. GluonTS Simple Forecast

Model Type GREEN YELLOW RED Overall Macro F1

TP FP FN TP FP FN TP FP FN Accuracy Score

GluonTS 473 58 61 49 75 78 28 29 23 0.773 0.599

Random 504 56 30 37 44 90 33 38 18 0.806 0.606

Forest with

optimal input

Best Case Analysis and Comparison to Time Series Forecasting. In the following,
we want to discuss how our models and framework perform in the best case. As the
optimal case, we consider the situation when the models receive an exact load forecast.
As discussed earlier, we are able to construct a better input for our propagation and
performance inference models, if we receive an accurate load forecast. We have seen in the
previous section that the random forest estimator performs best in this scenario. Hence, we
utilize the same models again, but now use the measured load instead of a load forecast
for the feature construction. This can be interpreted as a prediction with a horizon of
zero and enables the possibility to evaluate the prediction quality separated from the load
forecast quality. The results of this investigation are shown in Figure 7.9a and Table 7.2.
It is shown that this changed input leads to an increase in the accuracy of about three
percent and the F1 score rises over the value of 0.6. The remaining deviations are caused
by the fact that at the beginning of the trace only a few training data are available and
the predictions at this time have high variabilities and uncertainties. Furthermore, due to
the lack of training data the first peak of the curve can still not be predicted well.

In the following, we want to compare these prediction results to the performance of a
time series forecaster, which takes only characteristics of the time series, like trends and
seasonal patterns, for his estimations into account. Therefore, we use the SimpleFeed-

ForwardEstimator from the GluonTS library again. We use the time series of the average
response times of the endpoint /travel/query as the input for the forecaster, whose task
it is to predict always the next data point. The results of this forecast are shown in Figure
7.9b. We can see that the forecaster is also able to approximate the course of the curve
well and gives better numeric predictions than our models. However, when consulting the
metrics accuracy and F1 score, the time series forecast performs slightly worse than the
random forest model. The reason for this is that the forecaster captures the noise in the
non-critical areas, which leads to overestimations. Consequently, the estimator has more

62

7.1. Scenario 1: Periodic Load 63

false-positive yellow ratings and fewer true positive green ratings. This yields a smaller
accuracy and F1 score compared to the random forest model.

However, the time series forecaster gets a higher F1 score than all models shown in Table
7.1. Hence, it can be concluded that in this scenario our approach does not deliver the
hoped-for improvements. Moreover, it needs a higher data preprocessing effort. The
reason, that the time series forecaster performs equally well, lies in the nature of this test
case. Here, the decisive factor for performance degradations are periodically appearing
load variations exclusively. Other possible triggers for performance degradations do not
occur here. This one-dimensional relationship can be captured well by the time series
forecaster. In general, we conclude that in the current version of our framework the
prediction quality depends strongly on the load forecast. Even if we receive a really
good forecast for a specific load profile, a time series forecaster can likely make also good
performance forecasts because the time series of the load intensity and performance metrics
have equal characteristics. This behavior can be seen in Figure 7.2 also.

The full potential of our approach is developed, if a higher number of features and features
from different sources are considered in the performance inference model. Moreover, in
the test scenarios, also other factors must influence the performance significantly. Such
information or factors could be, for example, deployment information and hardware data,
which would allow us to quantify the dependencies between services deployed on the same
physical host and the influence of the hardware usage. Additionally, content information of
the requests can be useful to improve performance predictions. For example, if we analyze
and predict the parameters of a request, we would be able to model the response time and
generated internal calls of an endpoint depending on the input. A concrete use case would
be the number of items in a virtual shopping cart on a website. The more items are in
the cart the longer the generation of the invoice would take. The architecture of the PPP
framework makes the inclusion of such further dependencies easy. Another advantage of
our approach is that all of our results are explainable and interpretable. In this scenario,
our models match a higher load directly to a higher response time automatically. However,
we can see that seasonal patterns and trends of the time series, which are used by the time
series forecaster, can also be valuable inputs for the prediction. Hence, in future work, a
combination of our approach and time series forecasting could be evaluated. In this way,
both time series characteristics and reasoning based on load and other factors can be taken
into account for predicting performance degradations.

Influence of Different Prediction Horizons. In the last paragraph of this scenario,
we want to discuss the prediction quality of our approach with an increasing prediction
horizon. This is interesting for real-world use cases, in which performance degradations
should be predicted some time in advance to enable proactive acting to mitigate these
degradations. The previous investigations were made with the minimal prediction hori-
zon of one measurement interval, which is in our cases five seconds. Figure 7.10a shows
the numeric prediction results with different prediction horizons, while Figures 7.10b and
7.10c displays the evolution of the accuracy and macro-averaged F1 score with increasing
prediction horizons. Similar to the previous section, the data represent the results of the
endpoint /travel/query produced by the random forest model. In Figures 7.10b and
7.10c, the metrics of the optimal case, where the measured load is used as an input for
the models, is labeled with a prediction horizon of zero. As expected, we see that the
prediction quality decreases with an increasing prediction horizon. The numerical results
show that the measured peaks appear earlier as predicted by the model. This limits the
possibility of mitigating performance degradations in a proactive way. However, when
choosing a large prediction horizon useful information can still be retrieved. For example,
if we predict a degradation in 60 seconds, but in reality, it happens in 50 seconds, we do

63

64 7. Results

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

250

500

750

1000

1250

1500
A

vg
.R

es
po

ns
e

Ti
m

e
[m

s]
Measured 5s 30s 60s

(a) Numeric Prediction Results

0 10 20 30 40 50 60
Prediction Horizon [s]

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Accuracy

0 10 20 30 40 50 60
Prediction Horizon [s]

0.0

0.2

0.4

0.6

0.8

1.0

M
ac

ro
F1

Sc
or

e

(c) Macro-Averaged F1 Score

Figure 7.10.: Influence of the Prediction Horizon on Performance Prediction

not have an exact prediction, but we could still use the 50 remaining seconds for proactive
acting.

When analyzing the effect of an increasing prediction horizon in the current version of
the framework, we actually analyze the quality of the load forecast with an increasing
forecast horizon. The reason for this is that both the request propagation model and the
performance inference model do not consider the time horizon. This means that, if we had
an optimal load forecast, we would get the same results as shown in Figure 7.9a assuming
that the dependency between load and performance does not change significantly over
the prediction horizon. Consequently, also the prediction quality over a larger horizon
mainly depends on the load forecast quality. As discussed earlier, this dependency could
be reduced by including features from other sources. We further discuss the influence of
the prediction horizon on the prediction quality in scenario four.

7.2. Scenario 2: Load Peaks on a Frontend Service

Scenario Description. In this scenario, we want to look at the effects of a disproportion-
ately large load on a frontend service and how well we are able to predict them with our
models. Therefore, we use the TrainTicket application with the same hardware constraints
as in the previous scenario and stress it with eight requests per second constantly. More-
over, we generate a high load of 22 rps every four minutes for 30 seconds at the endpoint
/travel/query, which is only called by the user. The main difference to the first scenario
is that the load on the majority of all other services and endpoints does not increase at
these times. In real-world applications, this situation can occur, when customers change

64

7.2. Scenario 2: Load Peaks on a Frontend Service 65

Figure 7.11.: Situation of All Endpoints Stimulated by the Workload

their behavior significantly in a short time, for example, if a limited sale of a popular item
starts in a webshop. Another possible reason for a disproportionately large load on one
service in real-world applications can be denial-of-service or any other load-driven attacks.
Similar to the first scenario, the trace has a total length of about 60 minutes and all
measured data are aggregated and queried in intervals of five seconds.

Figure 7.11 visualizes the global situation of the TrainTicket application 2908 seconds after
the start of the trace, a time at which the endpoint /travel/query experiences a peak
load. As mentioned before, this endpoint belongs to the service ts-travel-service. We
see that multiple other services give performance alerts as well, as a consequence of this
large load on the frontend service. As an example, we see that the endpoints /preserve

and /preserveOther, which are called by the user when he wants to book a ticket, have
red ratings. Apart from that, other important functions of the application are not affected,
for example, the login, visualized in the upper left corner of the figure, and the payment,
displayed in the upper right corner.

In the following, we want to investigate the consequences of the large load on the frontend
for other selected endpoints. Therefore, Figure 7.12 shows the dependency between load
and average response time for three different endpoints. First, Figure 7.12a visualizes
the measured data of the endpoint /travel/query. We see the expected behavior that
whenever the load suddenly increases strongly and average response time ascends as well.
Hence, similar to the first scenario, the load on the endpoint itself is the decisive factor of
the performance degradation and we observe a direct proportionality between the arrival
rate and the response time. The foregoing stands in opposition to the measured values at
the endpoint /preserve, which are shown in Figure 7.12b. In this case, the load remains
at a constant, low level the whole time. However, we observe high peaks of the response
time. These variations can obviously not be explained by the load on the endpoint itself.
We do not see a direct dependency here. The reasons for the high response times are
weak performances of endpoints which are called by /preserve in order to process a user
request. These weak performances then again are caused directly or indirectly by the high
load on /travel/query.

An example of this relationship is given by the endpoint /travel/getTripAllDetail-

Info, which belongs to the service ts-travel-service and is called by the endpoint
/preserve. The dependency between the arrival rate and the average response time for
this endpoint is shown in Figure 7.12c. We see a behavior, which is similar to the one

65

66 7. Results

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

5

10

15

20

25

A
rr

iv
al

R
at

e
[1

/s
]

0

1000

2000

3000

4000

5000

6000

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

(a) Endpoint /travel/query

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A
rr

iv
al

R
at

e
[1

/s
]

0

1000

2000

3000

4000

5000

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

(b) Endpoint /preserve

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A
rr

iv
al

R
at

e
[1

/s
]

0

500

1000

1500

2000

2500

3000

3500

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

(c) Endpoint /travel/getTripAllDetailInfo

Figure 7.12.: Dependency Between Load and Response Time for Different Endpoints

66

7.2. Scenario 2: Load Peaks on a Frontend Service 67

observed at the endpoint /preserve. The arrival rate stays at a constant and low level,
while the response time has high variations. There are two potential reasons for the per-
formance degradations observed at this endpoint. One possible reason is, similar to the
argumentation above, that the endpoint /travel/getTripAllDetailInfo depends on ser-
vices, which have high response times. Hence, requests to these endpoints take much longer
than normal and the total response time of /travel/getTripAllDetailInfo rises as well.
For example, Figure 7.11 shows that queryForStationId of the ts-ticketinfo-service

experiences performance problems and is called by /travel/getTripAllDetailInfo. An-
other possible reason is that the endpoint belongs to the same service as /travel/query,
which experiences a high load at those times when the response time of /travel/getTri-
pAllDetailInfo rises as well. The service ts-travel-service has many active threads
at these times and, caused by the limited hardware resources, the execution time of its
routines increases. Which of the two proposed reasons is the decisive one here is not cap-
tured by the data. However, our performance inference model includes both factors in the
predictions. More precisely, we both consider the performance of the dependent endpoints
and the load of all endpoints of the same service for the performance prediction. This
means that both reasons are theoretically covered by our approach. In the following, we
want to evaluate whether our framework is able to predict the performance degradations
of the three suggested endpoints.

Quality of Performance Prediction. In this section, we want to investigate the qual-
ity of the performance prediction for the three endpoints /travel/query, /preserve and
/travel/getTripAllDetailInfo. Therefore, we tested and optimized the four model
types known from the first scenario. Similar to the previous scenario, the random forest
model performed best when considering the prediction quality on all three endpoints and
rating classes. The filtered global accuracy of the random forest model in this scenario
with a prediction horizon of five seconds amounts 98.9%, while the filtered global F1 score
is 0.576. The Tables 7.3, 7.4 and 7.5 show the rating results and metrics on the different
endpoints. Compared to the first scenario, we see that the metrics accuracy and macro-
averaged F1 score take other values. The accuracy is slightly higher, while the F1 score
is lower than in the previous scenario. The main reason for this lies in the nature of the
training and evaluation data. Especially the yellow values occur only very seldom in the
trace, for /travel/query in 82, for /preserve in 27 and for /travel/getTripAllDe-

tailInfo in 51 out of 712 total intervals. Hence, only a few training data in this rating
class are available and a single wrong prediction causes a significant decrease of the F1
score. Meanwhile, the vast majority of data points are in the non-critical green area and
many true positive arise in this rating class. Consequently, the overall accuracy increases.
Further reasons for wrong predictions are inaccurate load forecasts again. The load fore-
caster is not able to predict the timing and amplitude in the sudden strong increase of the
arrival rate accurately. To suppress this factor, the metrics for the random forest model
with optimal inputs are given in the tables.

Additionally to this, Figure 7.13 shows the numerical results of the performance prediction
of the random forest model with optimal input. We see that the models are able to predict
the increase of the response time at all three endpoints whenever the arrival rate at the
endpoint /travel/query is high. Consequently, we conclude that our approach can model
the dependencies between the different endpoints and the effects of the high load on the
frontend in this concrete scenario. We further see that the low scores for the predictions
are mainly caused by response time peaks which appear between the periodic load peaks.
These variations and alerts are not predicted by the model. We assume that these peaks
mainly have statistical reasons. The arrival rate at these times is really low, which means
that only a few requests come in the system in these intervals. This means that the average

67

68 7. Results

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

1000

2000

3000

4000

5000

6000

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

(a) Endpoint /travel/query

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

1000

2000

3000

4000

5000

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

(b) Endpoint /preserve

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

500

1000

1500

2000

2500

3000

3500

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

(c) Endpoint /travel/getTripAllDetailInfo

Figure 7.13.: Predicted (red) and Measured Performance Values (blue) for Different End-
points

68

7.2. Scenario 2: Load Peaks on a Frontend Service 69

Table 7.3.: Rating Results for Endpoint /travel/query

Model Type GREEN YELLOW RED Overall Macro F1

TP FP FN TP FP FN TP FP FN Accuracy Score

Random 507 96 45 4 18 78 46 41 32 0.782 0.504

Forest

Random 525 86 27 3 13 79 56 29 22 0.820 0.550

Forest with

optimal input

Table 7.4.: Rating Results for Endpoint /preserve

Model Type GREEN YELLOW RED Overall Macro F1

TP FP FN TP FP FN TP FP FN Accuracy Score

Random 600 40 51 1 29 26 8 34 26 0.855 0.392

Forest

Random 611 33 40 1 22 26 13 32 21 0.878 0.438

Forest with

optimal input

Table 7.5.: Rating Results for Endpoint /travel/getTripAllDetailInfo

Model Type GREEN YELLOW RED Overall Macro F1

TP FP FN TP FP FN TP FP FN Accuracy Score

Random 552 68 58 4 32 47 15 41 36 0.802 0.423

Forest

Random 550 63 60 3 41 48 20 35 31 0.804 0.447

Forest with

optimal input

response time is calculated based on the data of only a few requests. Consequently, the
outliers have a huge impact on the resulting average response time. When considering
only a few requests, statistical and random errors play a more important role compared to
intervals with a high arrival rate. In general, the task of predicting the response time for a
single or few requests is quite more difficult than predicting the average performance of a
large number of requests. Concurrently, the performance prediction of only a few requests
is less important in practice. We see that our models underestimate the response time in
these intervals. This is because the feature vectors do not differ significantly from the ones
with low response times. This means that the reason for these high response times is not
captured by our models.

Despite this, this scenario shows that considering and modeling architectural information
is important for a good performance prediction. This is the only way to understand the
interactions and dependencies between the services and endpoints. Our approach takes
these dependencies into account explicitly by including both information of the endpoints
of the same service and performance measures of the dependent endpoints. The user of our
framework can derive qualitative and quantitative statements on how overloads affect its

69

70 7. Results

application and the customer experience. We further investigate inter-service dependencies
and their effects on the performance in the next scenario, where the reason for performance
degradations is an overloaded backend service.

7.3. Scenario 3: Load Peaks on a Backend Service

Scenario Description. In this scenario, we continue the investigations regarding the
dependencies between different services, their influence on the response time and capabil-
ities of our approach to include this information to predict the performance measure. In
contrast to the previous scenario, we generate a disproportionately large load on a backend
service, which responds only to calls from other services, does not send requests itself, and
is usually not called by a user directly. As an representative example, we selected the
endpoint /train/retrieve from the service ts-train-service for our evaluations. This
endpoint receives a train number as an input and returns information about the corre-
sponding train. Under a low load, the average response time of this endpoint is only about
two milliseconds in our setup. Hence, to produce a significant performance degradation,
we need a high arrival rate. We stress this endpoint every four minutes for 30 seconds with
a load of 250 requests per second the first time and with 300 rps all other times. Moreover,
we generate constantly 8 rps, which simulate users following our behavior defined in Sec-
tion 6.2. To investigate the effects of the performance degradation at the backend service
on the user experience, we evaluate the prediction quality also on our running example
/travel/query, which depends directly and indirectly on /train/retrieve as shown in
Figure 7.4. To avoid the previously described statistical problems with low arrival rates,
we further send 8 rps to /travel/query directly to generate a bigger pool of requests in
every interval. However, the loads on the endpoint /travel/query and all other endpoints
of the TrainTicket application do not scale with the load of /train/retrieve and remain
nearly constant at all times. Similar to the previous scenarios, the trace used here as a
total length of about 60 minutes, and all measured data are aggregated and queried in
intervals of five seconds.

Figure 7.14 shows the ratings 953 seconds after the beginning of the trace of all endpoints
of the TrainTicket application stimulated by our workload. At this time, the endpoint
/train/retrieve, which is shown in the lower right corner of the figure, is stressed with a
high load of 300 rps. We see that this high arrival rate leads to a red rating. The average
response time rises from 2 ms to about 600 ms. This significant increase has obviously
also consequences for services that send requests to /train/retrieve. As an example,
we see that the endpoint /basic/queryForTravel of the service ts-basic-service gives
a performance alert. This example makes also clear, why it is useful and important to
differentiate between the different endpoints of a service. In this case, we see that the
endpoint queryForStationId of the same service is not affected by the degradation and
keeps its green rating. This is because that endpoint does not depend on /train/retrieve

and can still maintain its normal response time. Besides this, we see that also a customer
which calls /travel/query would notice the performance degradation as its response time
is in a critical area as well.

Figure 7.15 shows the arrival rates and response times of the endpoints /travel/query

and /train/retrieve in more detail. In Figure 7.15a, we see that large arrival rates at
the endpoint /train/retrieve cause a significant increase of the response times. More-
over, it is shown that the arrival rate varies at the peak times. This is because the load
generator struggled to generate a constantly high arrival rate over 30 seconds with our
resources. In Figure 7.15b, we see that the endpoint /travel/query receives an average
of nine requests per second the whole time. The arrival rate for this endpoint has only
small variations, which are caused by the dynamic number of users who search for tick-
ets. In contrast to this, the response times show huge spikes. Compared to the previous

70

7.3. Scenario 3: Load Peaks on a Backend Service 71

Figure 7.14.: Situation of All Endpoints Stimulated by the Workload

scenarios, the amplitudes of the peaks are even higher. The reason for this is that the
endpoint /train/retrieve is called multiple times via different paths in order to process
a user request to /travel/query. This can be seen in Figure 7.4 as well. Consequently, a
high response time of /train/retrieve causes multiple requests sent by /travel/query

to have a high response time as well. Hence, the total response time of /travel/query

increases by a multiple. In the following, we want to evaluate the capabilities of our ap-
proach to predict these performance degradations.

Quality of Performance Prediction. In order to assess the prediction quality of our
framework in this scenario, we test the four model types known from the previous scenarios
as bases for our performance inference models. The hyperparameters of the algorithms
are optimized for the endpoint /travel/query again and can be found in Appendix A.
The Tables 7.6 and 7.7 show the rating results for the endpoints /train/retrieve and
/travel/query. Similar to scenario two, we see high accuracies for all model types. One
reason for these high scores is the big imbalance of the datasets. We have more than 600
samples in the green rating class and only about 90 in the red one. Even fewer samples
exist in the yellow area, only 13 for /travel/query and 9 for /train/retrieve. As a
consequence of this, we see that our models are not able to make correct predictions in
this range. As discussed earlier, this lowers the macro-averaged F1 score significantly.
Besides this, we see that our models can predict slightly more than two thirds of all
performance degradations measured at these two endpoints. If we received an optimal
load forecast, we would predict an even bigger proportion, 86.5% for /travel/query and
88.9% for /train/retrieve. In general, we see that an optimal load forecast increases
the prediction quality significantly. The values in the tables display the performance of
the support vector regressor, as this model type performs best among the models when
using an optimal user forecast.

Further on, we infer from the tables that all model types perform almost equally well in
this scenario. The higher F1 score of the random forest model for the endpoint /travel/-
query is caused by the correct prediction in the yellow rating class. The reason why all
models have almost the same quality measures is situated in the underlying measurement
and training data. Figure 7.15 shows that the decisive factor for increasing response times
for both endpoints is the high arrival rate at the endpoint /train/retrieve. We see
that the arrival rate at this endpoint is either really high or low and the increases and
decreases happen in a very short time. Similarly, the response times rise and fall sharply.

71

72 7. Results

0 500 1000 1500 2000 2500 3000 3500
Time [s]

50

100

150

200

250

300

A
rr

iv
al

R
at

e
[1

/s
]

0

100

200

300

400

500

600

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

(a) Endpoint /train/retrieve

0 500 1000 1500 2000 2500 3000 3500
Time [s]

4

5

6

7

8

9

10

A
rr

iv
al

R
at

e
[1

/s
]

0

1000

2000

3000

4000

5000

6000

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

(b) Endpoint /travel/query

Figure 7.15.: Arrival Rate and Average Response Times of Different Endpoints

72

7.3. Scenario 3: Load Peaks on a Backend Service 73

Table 7.6.: Rating Results for Endpoint /train/retrieve

Model Type GREEN YELLOW RED Overall Macro F1

TP FP FN TP FP FN TP FP FN Accuracy Score

k Neighbors 561 30 40 0 3 9 66 40 24 0.896 0.538

Bayesian 552 28 49 0 8 9 69 47 21 0.887 0.535

SVR 556 28 45 0 14 9 63 39 27 0.884 0.532

Random 560 30 41 0 3 9 65 42 25 0.893 0.533

Forest

SVR with 588 16 13 0 3 9 81 12 9 0.956 0.620

optimal input

Table 7.7.: Rating Results for Endpoint /travel/query

Model Type GREEN YELLOW RED Overall Macro F1

TP FP FN TP FP FN TP FP FN Accuracy Score

k Neighbors 555 33 43 0 6 13 62 44 27 0.881 0.524

Bayesian 544 32 54 0 10 13 64 50 25 0.869 0.519

SVR 553 32 45 0 15 13 58 42 31 0.873 0.516

Random 553 34 45 1 8 12 61 43 28 0.879 0.552

Forest

SVR with 585 20 13 0 2 13 77 16 12 0.946 0.606

optimal input

Consequently, there is a firm and unambiguous boundary between the non-critical and
critical areas within the training data. All model types are able to capture this clear dif-
ferentiation. Additionally, we guarantee that the performance degradations are forwarded
through the application by using the performance of dependent services as parts of the
feature and training vectors.

The recommendation, which model to use in this scenario, depends on the use case and role
of the PPP framework. To illustrate this, we want to compare the numeric predictions of
the KNN model and the random forest model, which are shown in Figures 7.16 and 7.17.
We see that the KNeighborsRegressor often predicts higher response times than the
RandomForestRegressor. When considering the results of the endpoint /travel/query,
we see that the random forest model provides numerically better results than the KNN
model, which often overestimates the response times. Hence, if one focus of the use case
is the numeric prediction quality or the prediction of response times, which are noticed by
the users, the random forest model would be the better choice here. The main advantages
of the KNeighborsRegressor are the reduced computational effort and lower training and
prediction times. So, when taking the resource usage into account and focusing on the
predicted rating only, one might prefer the KNN model. In previous scenarios, we have
seen that the KNN model received smaller scores than the random forest model. In this
scenario, this model type benefits from the large variations of the arrival rates and response
times, as well as from the clear boundary within the training dataset. This supports the
base assumption of the KNN model, that similar feature vectors yield similar outputs. In

73

74 7. Results

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

200

400

600

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

(a) KNeighborsRegressor

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

200

400

600

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

(b) RandomForestRegressor

Figure 7.16.: Numeric Prediction Results for Endpoint /train/retrieve

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

2000

4000

6000

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

(a) KNeighborsRegressor

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

2000

4000

6000

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

(b) RandomForestRegressor

Figure 7.17.: Numeric Prediction Results for Endpoint /travel/query

such scenarios, it can be useful to set the hyperparameter k to a really small value. On
the one hand, this makes the model sensitive to outliers even if only a few of them are in
the training dataset. On the other hand, the numeric quality of the prediction decreases
as only a few data points determine the prediction.

All in all, we see that our approach is able to model the effects of a high-loaded backend
service on other services. This is also verified by the global quality measures. As an ex-
ample, the filtered global accuracy for the random forest model amounts 98.8%, while the
filtered global F1 score is 0.51. The values for the other model types are in the same range.
As discussed in scenario 2, our approach has the advantage that it considers architectural
information, which we extract automatically from tracing data, when predicting the per-
formance of a service. This enables the possibility to assess the effects of a bad-performing
service or endpoint. The global scores show that we can both determine those endpoints,
which are affected by a performance degradation, and those, which are not. This could
enable effective resource management in practice. Moreover, by looking into the arrival
rates and response times of single services, one can get indications for possible root causes.

7.4. Scenario 4: Study with Realistic Workload

Scenario Description. In the previous sections, we mainly discussed the functionality
and capabilities of our approach and the PPP framework. Therefore, we generated appro-
priate load intensity courses to highlight several effects. In practice, workloads and load
intensities are more variable and complex. In this scenario, we want to perform a first test
to evaluate whether our approach can bring a clear added value in practice. Therefore,

74

7.4. Scenario 4: Study with Realistic Workload 75

we stress the TrainTicket application with a real-world load intensity course1. The data
are taken from the Wikipedia page view statistics repository [52]. To use this trace in our
setup, we re-scaled the load intensities so that the maximum arrival rate is 22 rps. The
measurement data are again queried and aggregated in intervals of five seconds. Hence,
we generated a constant arrival rate for a duration of five seconds based on one load inten-
sity value from the re-scaled Wikipedia trace. The load is split on different endpoints of
the TrainTicket application corresponding to the user behavior defined in Section 6.2. To
avoid the statistical problems discussed in scenario two, we use a separate load generator
instance to generate the same load intensity course for the endpoint /travel/query, which
is used again as a representative example for our evaluation. The total length of the re-
sulting trace is about three hours. The hardware constraints remain unchanged compared
to the previous scenarios.

Similar to the previous scenarios, we stick to the data of our running example /trav-

el/query for evaluation and comparison purposes. The dependency between load and
response times measured at this endpoint is shown in Figure 7.18. Figure 7.18a shows the
temporal courses of the two quantities. We see that both measures increase and decrease
periodically. The amplitudes of the peaks vary over time. It is shown that between 5000
and 7000 seconds after the beginning of the trace both the arrival rates and response
times reach their maximum values. Figure 7.18b highlights the dependency between the
two quantities by eliminating the temporal dimension. It is displayed that the response
times increase with ascending arrival rates. Moreover, the number of outliers, which have
average response times over one second, rises starting from the value of 15 incoming re-
quests per second.

Quality of Performance Prediction. In this scenario, we again use the four model types
presented earlier for our evaluations. The hyperparameters have been optimized based on
the values of the endpoint /travel/query. The search space and resulting parameters can
be found in Appendix A. In contrast to the previous scenarios, the models are retrained in
intervals of five minutes and consume only data of the last 60 minutes for training. This
means that data measured early in the trace are not included after a certain time in the
training anymore. We expect that such a sliding window mechanism would be used in
practice for various reasons. First, the measurement data can require, depending on the
application size and usage, a lot of memory, and also the model training takes longer with
a rising number of samples. Especially when memory and computing resources are critical
factors, old data have to be excluded from the model training. Second, if old samples are
included in the training process, they influence the performance prediction of future values.
This can be counterproductive as the application and user behavior might have changed
over time. At which time data are considered as outdated depends on the application case.
We use the value of 60 minutes in this scenario in order to create a good ratio to the total
trace length of three hours for our evaluations.

Table 7.8 shows the rating results for the endpoint /travel/query of different model
types with a prediction horizon of five seconds. Considering the comparison between the
different machine learners, we see qualitatively equal results as in the previous scenarios.
The random forest model produces the best results in the competition based on the macro-
averaged F1 score. This model type reaches a filtered global accuracy of 99% and a filtered
global F1 score of 0.523. We see that the random forest model can predict much more red
ratings correctly than the other models. However, the proportion of correctly predicted
performance degradations is lower compared to the previous scenarios. The random forest

1Download available at: https://github.com/joakimkistowski/LIMBO/tree/master/DLIM_examples/

trace

75

https://github.com/joakimkistowski/LIMBO/tree/master/DLIM_examples/trace
https://github.com/joakimkistowski/LIMBO/tree/master/DLIM_examples/trace

76 7. Results

0 2000 4000 6000 8000 10000
Time [s]

5

10

15

20

A
rr

iv
al

R
at

e
[1

/s
]

250

500

750

1000

1250

1500

1750

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

(a) Temporal Courses of Arrival Rates and Response Times

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Arrival Rate [1/s]

250

500

750

1000

1250

1500

1750

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

(b) Response Time Values Depending on Arrival Rates

Figure 7.18.: Arrival Rates and Average Response Times of the Endpoint /travel/query

76

7.4. Scenario 4: Study with Realistic Workload 77

Table 7.8.: Rating Results for Endpoint /travel/query

Model Type GREEN YELLOW RED Overall Macro

TP FP FN TP FP FN TP FP FN Accuracy F1 Score

k Neighbors 1270 321 215 235 292 283 5 12 127 0.707 0.446

Bayesian 1031 198 454 352 553 166 0 1 132 0.648 0.418

SVR 1340 364 145 212 219 306 0 0 132 0.727 0.429

Random 1136 242 349 283 405 235 23 46 109 0.675 0.497

Forest

Random 1082 203 403 294 444 224 35 77 97 0.661 0.512

Forest with

opt. input

model predicts 17.4%, with optimal input 26.5%, of all red ratings. The prediction of
these performance degradations is even harder in this scenario than in the previous ones.
In general, as discussed earlier, we have only a few samples in the red rating class available
for training. Here, this problem is aggravated by two factors. First, as only values from
the last hour are considered for the model training, the number of available samples in
the red rating class is further lowered. Second, freshly gathered measurement data appear
with a higher delay in the models, as the retraining interval has been increased from one
to five minutes compared to the first three scenarios. Both of these factors impede the
prediction of performance degradations.

Additionally, we see that the overall accuracy is lower than the values from the previous
scenarios. The reason for this is that the load intensity fluctuates more compared to
the homogeneous artificial intensities, which have been used in the previous scenarios.
These variations lead to varying ratings as well. The state of the endpoint /travel/query
changes 641 times in the three hours recorded. This means that the endpoint remains only
between 15 and 20 seconds on average in one state. Thereby, most state changes happen
between the green and yellow ratings. The boundary between the classes is not as clear
as in the previous scenarios. This is supported by the small numeric intervals on which
the ratings are based. We use the same rating scheme for the endpoint /travel/query as
in scenario one, which means that an average response time under 400 ms is considered
as good, while a response time over 600 ms results in a red rating. We use this labeling
to ensure that enough samples exist in all rating classes. However, many samples in this
scenario are close to the boundaries of 400 and 600 ms. As a result, also small prediction
errors for these samples lead to wrong ratings. In practice, the rating schemes should be
defined appropriately for the use case. With a tight rating scheme with small intervals,
the rating captures also small increases in the response time. This could be suitable for
an application case, where the limit for the red rating is a hard limit and it is better to
be warned early. In such cases, preventive actions, like upscaling, might be performed
earlier and more often than in other use cases. For other cases, a rating scheme should
be chosen where the rating does not fluctuate too often and alerts or warnings are given
only if absolutely necessary. Here, any adaptations or other actions could be expensive
and one might consider the predictions for multiple prediction horizons before performing
an action because a short, temporary performance degradation might be acceptable. The
current version of the PPP framework predicts only the performance measures of services
and endpoints. As future work, the predictions, also with different prediction horizons,
could be used to make advice on whether to perform preventive actions for some services.

77

78 7. Results

0 10 20 30 40 50 60
Prediction Horizon [s]

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Accuracy on Endpoint /travel/query

0 10 20 30 40 50 60
Prediction Horizon [s]

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

(b) F1 Score on Endpoint /travel/query

0 10 20 30 40 50 60
Prediction Horizon [s]

0

10

20

30

40

50

T
P

(R
ed

R
at

in
gs

)

(c) Correct Red Ratings on Endpoint /trav-

el/query

0 10 20 30 40 50 60
Prediction Horizon [s]

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

(d) Filtered Global Accuracy (Blue) and F1
Score (Red)

Figure 7.19.: Prediction Quality Measures Depending on Prediction Horizon

Influence of Different Prediction Horizons. Besides the ability to predict perfor-
mance degradations, a main requirement for the PPP framework and similar tools is the
ability to them sufficient time in advance. Depending on the use case, this interval must
be large enough to perform preventive actions or at least to trigger them. We use this
trace to make a similar analysis as in scenario one, where we investigate the influence
of different prediction horizons on the prediction quality. Figure 7.19 visualizes multiple
quality measures of the random forest model and their evolution with ascending prediction
horizons. Thereby, the prediction horizon of zero seconds represents the case, when the
model receives an optimal load forecast. The Figures 7.19a and 7.19b show that both
accuracy and F1 score on the endpoint /travel/query stay nearly constant up to a pre-
diction horizon of one minute. This stands in contradiction to Figure 7.10 from scenario
one, where a significant decrease of the prediction quality occurs with an ascending predic-
tion horizon. Figure 7.19c shows the number of true positive red ratings for the endpoint
/travel/query. This metric is important in our use case as it shows how many correct
alarms have been given by our models. The accuracy and F1 score do not represent this
necessarily. The figure shows that this number sways around the value of 30. Especially
remarkable is the fact that the models are able to predict as many red ratings correctly
with a horizon of 50s as with an optimal load forecast. By taking the constant accuracy
and F1 score into account, we can infer that the prediction quality for the other rating
classes does not change significantly as well. Figure 7.19d confirms that also the global
prediction quality remains at the same level for different prediction horizons.

In scenario one, we concluded that the quality of the load forecast determines the quality
of the performance prediction of our models. This statement holds also in this scenario and
we see that the load forecaster maintains its forecast quality also for larger horizons. One
reason for this is that the load forecaster is able to use longer time series for its forecasts
for the majority of its predictions. After the first hour, the forecaster uses always time

78

7.4. Scenario 4: Study with Realistic Workload 79

Table 7.9.: Rating Results for Endpoint /travel/query (Horizon: 5s)

Model Type GREEN YELLOW RED Overall Macro

TP FP FN TP FP FN TP FP FN Accuracy F1 Score

Random 1136 242 349 283 405 235 23 46 109 0.675 0.497

Forest

GluonTS 1216 281 269 217 287 301 51 83 81 0.695 0.541

series with a length of 60 minutes for forecasting. In the previous scenarios, the forecaster
received many fewer training samples. More training data increase the forecast quality
and allows a better analysis of patterns and trends. Moreover, the load intensity courses
in this scenario do not contain sharp and abrupt increases or decreases which could lead
to large forecast errors.

With these investigations made, the question arises how well our models perform in com-
parison with the usage of a time series forecaster alone. In scenario one, we saw that
the time series forecaster performed slightly better than our models for a horizon of five
seconds. In the following, we want to analyze whether this statement holds also in this
scenario and how the prediction quality of the time series forecaster evolves compared to
our models when increasing the prediction horizon. Similar to scenario one, we use the
SimpleFeedForwardEstimator from the GluonTS library. In contrast to scenario one, we
raise the number of training epochs from 2 to 10 because of the increased number of sam-
ples. This increases the training time and iterations for GluonTS which leads to better
model parameters and predictions. Table 7.9 shows the rating results for the endpoint
/travel/query with a horizon of five seconds. We see that the time series forecaster
receives better values for both accuracy and F1 score. Hence, we conclude that for this
small horizon the time series forecaster performs better than our models and confirm the
results from scenario one.

Finally, we evaluate the performance of the time series forecaster with an increasing fore-
cast horizon and compare it to the performance of our approach in this scenario. Therefore,
Figure 7.20 visualizes different prediction quality measures of the SimpleFeedForwardEs-

timator for the endpoint /travel/query. Figure 7.20a shows the accuracy and F1 score
for different forecast horizons. In contrast to our models, the prediction quality decreases
significantly with an ascending horizon. Both measures descend up to a horizon of 35
seconds, which equals seven measurement intervals. Beyond this point, the values increase
again. But, this rise is only based on more correct predictions in the green and yellow
rating classes. This is shown in Figure 7.20b, which displays the correctly predicted red
ratings. In this figure, we see that the value decreases from 51 with a horizon of five sec-
onds to single-digit values for horizons greater than 30 seconds. Moreover, the time series
forecaster issues less correct red ratings than the random forest model for all horizons big-
ger than five seconds. Table 7.10 shows the rating results for the endpoint /travel/query
for the random forest model and the SimpleFeedForwardEstimator. It confirms that the
predictions of the time series forecaster have much lower quality scores and true positive
values for all three rating classes compared to the random forest model. Furthermore, it
is shown that the random forest model receives slightly better scores, while the time series
forecaster performs much worse, compared to the results with a horizon of five seconds
shown in Table 7.9.

All this shows that our models should be preferred for larger prediction horizons. Similar
to the time series forecaster, our models include past values of the performance into the
prediction by consuming them at training time. In contrast to the time series forecaster,

79

80 7. Results

10 20 30 40 50 60
Prediction Horizon [s]

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

(a) Accuracy (Blue) and F1 Score (Red)

10 20 30 40 50 60
Prediction Horizon [s]

0

10

20

30

40

50

T
P

(R
ed

R
at

in
gs

)

(b) Correct Red Ratings

Figure 7.20.: Prediction Quality Measures for Time Series Forecaster

Table 7.10.: Rating Results for Endpoint /travel/query (Horizon: 50s)

Model Type GREEN YELLOW RED Overall Macro

TP FP FN TP FP FN TP FP FN Accuracy F1 Score

Random 1152 271 333 239 371 279 35 67 97 0.668 0.505

Forest

GluonTS 1142 450 343 139 356 379 5 43 127 0.602 0.357

they do not take the temporal dimension into account. Instead of this, they consider one
of the main reasons for performance degradations and variations into account: the arrival
rate. The models assume that a similar arrival rate, together with the performance of
the dependent services of an endpoint, leads to similar response times. The better this
statement holds also quantitatively in practice, the better our approach works. In this
case, the models are able to infer a range from their training data, where the next values
of the performance metrics will be most likely. If more training data are available, this
range gets smaller and also the numeric prediction quality increases. Nevertheless, as dis-
cussed earlier, the prediction quality depends on the quality of the load forecast. In direct
comparison to the time series forecaster, our approach performs better for larger horizons
because the load intensity at this time, which is taken into account by our models, is more
important for the performance prediction than the temporal course of the performance
measures, which is the base of the forecast from a time series forecaster. For small pre-
diction horizons, the time series forecaster can infer accurate values for the performance
measures by taking the historical values and their evolution into account, in particular
when no abrupt change in the load intensity or performance measures take place. In
practice, the probability that the response time changes strongly is much higher when
considering long time intervals than short ones. To validate these results also in other use
cases and settings, further measurements and investigations will be made in future work.

7.5. Scenario 5: Study with Second Application

Scenario Description. In the previous sections, we claim that one of the advantages of
our approach is that it is not application-specific. In this scenario, we want to perform
an initial test on a second microservice application in order to evaluate the performance
of our approach and compare the results with the previous scenarios. Therefore, we use
the Teastore application presented in Section 3.5.2 and stress it with a periodic load,
analogous to scenario one. The maximum load intensity is 120 requests per second, while
the minimum intensity is 19 rps. We hereby simulate users, who browse for different items

80

7.5. Scenario 5: Study with Second Application 81

Figure 7.21.: Situation of All Endpoints Stimulated by the Workload

in the webshop, as described in Section 6.2. The recorded trace has a total length of
5000 seconds. The peak load occurs ten times during this period. Similar to the previous
scenarios, all measured data are aggregated and queried in intervals of five seconds.

Figure 7.21 shows the rating of all endpoints stimulated by our workload 1253 seconds after
the beginning of the trace. At this time, the Teastore is stressed with the maximum arrival
rate of 120 rps. We see that far fewer endpoints exist within the application compared
to TrainTicket. Moreover, a clear structure is visible. All user requests are sent to the
webui service, which then sends requests to different backend services. As described in
Section 6.1, we assign one CPU core and 4GB RAM to every service. We see that the
webui service is the bottleneck under these resource constraints when the application is
stressed with a large number of requests. Meanwhile, all other services do not experience
performance degradations. In contrast to the TrainTicket application, all endpoints of the
Teastore application have average response times under low load smaller or equal to 40
milliseconds. As a consequence, we use a fixed rating scheme for all endpoints. An average
response time under 80ms is considered as good and yields a green rating, while a response
time above 130ms results in a red rating. For the sake of improved clarity, we shortened
the name of the endpoints in the following paragraphs and figures. An overview of all
endpoints with their full names and response times is given in Appendix C.

As a representative example within the Teastore application, we select the endpoint /webui
for evaluation purposes. This endpoint is called whenever a user accesses the homepage of
the Teastore and consequently, its performance measures could be relevant also in practice.
Moreover, the endpoint is sensitive to load variations, as Figure 7.22 shows. Hence, it is
well-suited for our evaluation. The figure shows that starting from an arrival rate of 25 rps,
the average response time increases strongly and reaches values up to 1200 milliseconds.
However, the main reason for the performance degradation is here the total arrival rate to
the webui service, which is at this time about 100 rps. As mentioned earlier, the webui

service turns out as the bottleneck under our hardware constraints as all user requests
are processed there. Hence, all endpoints of this service experience performance problems
when stressed with a high load. In the following, we want to evaluate the prediction qual-
ity of the PPP framework in this scenario and compare the results with the previous test
cases. In the introduction, we also ask the question, which changes are needed to apply
the framework to another application. It turned out that both during the instrumentation
with Pinpoint and the use of the PPP framework no major changes had to be performed.
Only the patterns, which separate the endpoint name from its parameters, were adjusted.

81

82 7. Results

0 1000 2000 3000 4000 5000
Time [s]

0

10

20

30

40

A
rr

iv
al

R
at

e
[1

/s
]

0

200

400

600

800

1000

1200

A
vg

.R
es

po
ns

e
Ti

m
e

[m
s]

Figure 7.22.: Load and Average Response Time of the Endpoint /webui over Time

Table 7.11.: Rating Results for Endpoint /webui

Model Type GREEN YELLOW RED Overall Macro

TP FP FN TP FP FN TP FP FN Accuracy F1 Score

k Neighbors 726 91 42 0 3 0 143 39 91 0.867 0.535

Bayesian 478 8 290 0 79 0 226 211 8 0.703 0.479

SVR 495 13 273 0 62 0 221 211 13 0.715 0.480

Random 699 70 69 0 29 0 145 59 89 0.842 0.524

Forest

KNN with 725 45 43 0 0 0 189 43 45 0.912 0.918

opt. input

As discussed in Chapter 5, these patterns are only prototypical solutions and might be
replaced in future versions of the PPP framework.

Quality of Performance Prediction. Similar to the first four scenarios, we want to
evaluate the performance of the four well-known model types. The hyperparameters are
evaluated based on the data of the endpoint /webui, the search spaces remain unchanged
compared to the other test cases. The resulting parameters can be found in Appendix
A. Table 7.11 shows the rating results for the endpoint /webui with a prediction horizon
of five seconds. As shown in Figure 7.22, the response time of this endpoint is either
really low and close to its minimum or takes high values, which are bigger than ten times
the response time under low load. Consequently, only green and red ratings occur in the
trace. However, yellow ratings can still be predicted by the models, as we use regression
techniques and assign the ratings based on the predicted numeric values. A prediction
of a yellow rating is strongly penalized by the macro-averaged F1 score, as the F1 score
for the yellow rating class gets zero (see Equations 6.3 and 6.4). We have seen a similar
behavior and jumpy response times in scenario three as well. Hence, the values of the
macro-averaged F1 scores are in the same ranges. The results of the KNN model with
optimal input show that the F1 score rises significantly if no predictions in the yellow
rating class are made.

82

7.5. Scenario 5: Study with Second Application 83

0 1000 2000 3000 4000 5000
Time [s]

0

200

400

600

800

1000

1200
A

vg
.R

es
po

ns
e

Ti
m

e
[m

s]

Figure 7.23.: Measured (Blue) and Predicted (Red) Response Times of the Endpoint /we-
bui

Among the four evaluated model types, the KNN performs best just before the second-
placed random forest model. The global filtered F1 score of the KNN model is 0.535 and
the global accuracy is 0.947. Similar to previous results, the Bayesian regressor and the
support vector regressor overestimate the response time in many cases, which leads to
more false positives in the red and yellow rating classes and fewer true positives in the
green rating class. In general, we can see that the models achieve high accuracies in this
scenario. The reason for this is that almost no samples exist near the rating thresholds and
the dataset can be separated well. As discussed in previous chapters, the KNN regressor
can handle such datasets well with small computational effort. This statement is confirmed
by the results in this scenario. Similar to the previous test cases, we select a small value
of two for the hyperparameter k, which leads to the fact that the predictions are strongly
geared to the training data. This is supported by the numeric prediction results, which
are shown in Figure 7.23. We see that the first peak is not predicted correctly, considering
both timing and amplitude. The response time at the second peak is overestimated at the
beginning because the training samples from the first peak suggest a higher peak response
time. Afterward, the predicted response times under high load stabilize around the mean
peak response times.

All in all, we conclude that our results from the TrainTicket application align with the
data in this scenario. The Teastore application with our resource constraints has a dif-
ferent behavior as the TrainTicket application under periodic load and consequently, the
results from scenario one and scenario five differ significantly. In fact, we see a combination
of the results from different scenarios here. While the response times of the TrainTicket
application rise continuously with an increasing load intensity (see Figure 7.2), the mea-
surements in this test case are characterized by abruptly increasing response times, so
that the results can be compared with those from scenario three most likely. In scenario
three, we saw jumpy response times as a consequence of the degradation of a backend
service. In contrast to this, the services auth, image, recommender and persistence do
not experience performance problems in this scenario. This stands also in opposition to
scenario two, where high loads and performance degradations at a frontend service led to
problems also for other services. Our framework has no difficulties to recognize and model
this varied application behavior. The rating results and metrics are in the same range
as in previous scenarios and the explainability of the results is preserved. However, the
question of whether and how the application and topology size influences the prediction
quality can be not answered finally. Therefore, more measurements on different applica-

83

84 7. Results

tions and environments have to be performed. Nevertheless, we have shown that the PPP
framework can be applied to different applications easily without requiring major changes.

7.6. Summary and Discussion

In the previous sections, we evaluated the capabilities, pros, and cons of our approach in
five scenarios and two test applications. In the following, we summarize the main findings
of these investigations. Especially in the first three scenarios, we see that performance
degradations in microservice applications can evolve for various reasons. On the one hand,
an overload can be the decisive factor for the performance degradation of a microservice.
On the other hand, a high response time of a frontend service can be caused by perfor-
mance degradations in the backend. Both of these reasons are important in practice and
modeled within our approach. Hence, we conclude that the features, which we use for
the performance prediction, are meaningful and necessary. In particular, we observe that
it is indeed important to take architectural information for performance predictions into
account. In scenario two and three, we see that our framework is able to detect and model
different degradation sources within the application topology with short training times.
We further conclude that the models are able to learn dependencies fast and on the fly.
The PPP framework requires no prior data and has no information about the application
and its architecture at the start-up. In all scenarios, we see a fast convergence of the
prediction results and valid predictions even with few training samples.

In the following, we analyze the components of our approach in more detail. The first
important part of our prediction process is the request propagation model. In this evalu-
ation, we test an instance of the abstract model presented in Chapter 4, which uses linear
propagation functions to model the dependencies between different microservices. We ob-
serve that this linearity is a good approximation in our evaluation. The relative prediction
errors of the arrival rates increase by only three percent as compared to the user request
forecasts from GluonTS. One advantage of the linear propagation model is the low train-
ing time and effort. Additionally, this model can be used in other contexts as well besides
request propagation. In scenario one, we show that business information can be extracted
from the structure of the graph and the propagation coefficients c. In addition to this, the
model might be used for software design and testing purposes, e.g., for debugging. Within
our approach, the request propagation model contributes a large part for the explainability
of our results as it displays qualitative and partially quantitative dependencies between
the endpoints and services. The question, how the linear model performs with real user
behavior, remains open. We expect a temporarily more volatile behavior, which might
lead to larger prediction errors. However, we assume that over a long period the averaging
mechanism of the request propagation model should approximate the real values well.

The second important part of our prediction process is the performance inference model.
In this evaluation, we test four different machine learning models for this purpose. Con-
sidering the results from all five test cases, the random forest model performs best in
this competition. It offers fast converging and accurate results. The response times are
neither permanently over- nor underestimated. The k nearest neighbors model performs
well, whenever the evaluation data are very similar to the training data and the dataset
is easily separable in green and red areas. One advantage of this model type is the low
training time and effort and the fact that it produces the most explainable results within
the competition. The Bayesian regression model overestimates the response times in many
scenarios, which leads to many false alarms. In contrast to this, the support vector regres-
sor underestimates the response times in many scenarios and consequently predicts the
fewest degradations correctly. In practice, the selection of the model type depends on the
requirements, role, and usage context of our framework. Moreover, the available resources
and the numeric prediction quality might play an important role.

84

7.6. Summary and Discussion 85

When evaluating the prediction quality of the different model types, one has to be aware of
how to interpret the metrics and results. Some values might appear as relatively small or
high at first glance, but there are some effects that influence the calculation and can not be
neglected here. First, we use regression models to predict continuous performance metrics
and then assign labels based on fixed rating schemes. This leads, in particular in scenarios
one and four, where many samples exist near the rating limits, to the fact that small
numeric deviations can cause a false rating and therefore a false prediction. Moreover, all
test cases are characterized by strongly imbalanced datasets, the total number of yellow
and red rating samples are small. The proportion of green ratings, considering the ratings
from all endpoints of the application, is always well above 90 percent. Another factor,
which lowers especially the F1 score, is our threefold rating system. If we switch to a
binary classification, where the green and yellow ratings are summarized in one class, the
values would increase significantly. For example, in scenario four, the F1 score of the
random forest model would increase from 0.497 to 0.606 and the accuracy would rise from
67.5% to 92.7% without altering the results or models. In general, the metrics represent
always the results based on one specific rating scheme, when altering this scheme the
metrics will change. Moreover, the numeric results show that the models approximate
the courses of the performance metrics well and false red or yellow ratings are either just
before and just after a measured one.

In the last part of this section, we summarize the strengths and weaknesses of our approach
and the PPP framework. One benefit of our approach is that it does need prior knowl-
edge. The PPP framework extracts information about the application and its topology
automatically and brings them in an easily understandable form. The different evaluation
modes of the PPP framework allow online or offline usage. Moreover, its components can
be exchanged or extended easily. In scenario five, we show that our approach is also not
application-specific. In scenario four, we see that also for larger prediction horizons the
prediction quality is maintained. The main weakness of the current version of the ap-
proach is the strong dependency on the load forecast. In fact, all features are directly or
indirectly derived from the load forecast. Hence, errors from the user request forecast prop-
agate through the whole prediction process. We conclude that information and features
from multiple other sources should be included in the prediction process. These could be,
for example, deployment information or further statistics of the requests, e.g., parameters.
Such additional sources and features can be included easily in the PPP framework. More
strengths and weaknesses can be pointed out when evaluating the approach in practice
under realistic conditions. For a final assessment, longer traces from real-world traffic are
needed. The question, how bigger aggregation and measurement intervals influence the
prediction quality, remains open. Nevertheless, this evaluation provides a good basis for
further investigations.

85

8. Conclusion and Outlook

Performance prediction for microservice applications is a non-trivial task, as all compo-
nents have their own characteristics, dependencies, and deployment contexts. In this work,
we introduced a new approach for the prediction of performance degradation of microser-
vice applications. The approach takes the load intensity and the load distribution across
the application topology as the most important causes of performance degradations into
account. We foresee future states of microservices using machine-learning-based regres-
sion models, which predict performance metrics based on architectural information and
load forecasts. We examined the theoretical aspects and presented a reference architecture
for the realization of the approach. With the Propagation Performance Prediction (PPP)
framework, we designed a concrete implementation, which is characterized by high extensi-
bility and flexibility. In our evaluation, we used realistic workloads and two state-of-the-art
microservice applications. We designed and performed measurements in five test scenarios,
which simulate different application states and degradation courses. All in all, we conclude
that our approach is suitable for the performance prediction of different microservice ap-
plications. The results show that the models are able to learn the performance behavior
and architectural dependencies of the applications quickly and without prior knowledge.
The predictions are characterized by high accuracies of more than 95% when taking the
whole application into account. Depending on the test scenario, up to 72% of the measured
performance degradations are predicted correctly. Moreover, the models are able to keep
their prediction quality nearly constant even with higher prediction horizons.

Taking all results into account, we conclude that our approach is versatilely applicable.
In particular, it is configurable, extensible, and application-agnostic. This is especially
important for real-world use cases. For example, our framework can give an overview of
the application state and possible performance issues for a service or cloud provider, which
manages several microservice or containerized applications. By doing this, actions, which
prevent performance degradations, can be recommended or triggered. Another benefit of
our approach is the explainability of the results. Every step in the prediction process is
comprehensible and the output is easily interpretable. In addition to this, we have shown
that also simple machine learning approaches, like the k nearest neighbors algorithm, can
be used for performance prediction. This is especially interesting in use cases, where only
limited resources are available. A further advantage of our approach is that it does not
require prior knowledge and can work based on realtime or recorded data. This opens the
possibility to use it online or offline.

87

88 8. Conclusion and Outlook

The main weakness of the current version is the strong dependence on the load forecast.
Whenever the load forecast is not good, the performance inference and request propagation
model can not generate a good prediction. Another limitation of the current approach is
that only performance degradations, that are caused directly or indirectly by an overloaded
service, can be predicted. In practice, other factors might cause high response times of
microservices and other degradations, for example, varying network conditions. Both
of these limitations can be overcome by including more performance-relevant features
from different sources. By doing this, the full potential of our approach can be realized.
Such additional features could be, for example, deployment information and hardware
measures or more detailed information about the requests, e.g., their parameters. The
PPP framework and its modular architecture offer possibilities to integrate such additional
features easily.

In our evaluation, we illustrated that time series forecasters can generate predictions of
equal quality compared with our models at least for small forecast horizons. Considering
this, we conclude that the temporal course of the performance metrics can be another
good feature that could be included in the prediction process. This would increase the
numeric prediction quality in particular. A further possible enhancement would be the
use of performance metric ranges instead of single values. Thereby, we would receive a
load forecast consisting of a minimum and maximum arrival rate and would generate, for
example, a minimum and maximum response time. By doing this, we can include a measure
of prediction uncertainty and confidence. Furthermore, several additional extension points
of our approach have been described in this work. For example, our approach could be
extended by a root cause localization algorithm, which names possible failure sources.
This enables also the possibility to make explicit recommendations on how to prevent
future degradations. Moreover, also self-improvement mechanisms might be used to vary
the prediction models depending on their prediction quality. From a technical point of
view, more interfaces for other monitoring tools and load forecasters can be developed. By
doing this, more data formats can be supported, and also a detailed evaluation in a real-
world environment is simplified. In terms of such an evaluation, further investigations,
for example on the influences of monitoring intervals, request sampling processes, and
real-world user behaviors on the prediction quality might be performed.

Nevertheless, we reached our pre-defined goals in this thesis. We presented a new abstract
model for the prediction of performance degradations in microservice applications and per-
formed a comprehensive evaluation. Therefore, we designed and developed an extensible
framework, that can and will be used in future works.

88

List of Figures

2.1. Different Online Shop Architectures . 6
2.2. Different Deployment Options . 7
2.3. Server Map of Pinpoint . 10

3.1. Research Fields Influencing Our Approach 14
3.2. Pre-Configured Rail Network of the TrainTicket Demo Application 18
3.3. TrainTicket Application Topology . 18

4.1. Approach Overview . 21
4.2. A Simple Request Propagation Model . 29
4.3. Reference Architecture . 31

5.1. Overview and Data Flows . 34
5.2. Running Example in this Chapter . 34
5.3. Transaction View and Call Tree of Pinpoint 36

6.1. Evaluation Setup . 46
6.2. Workload Overview for TrainTicket . 47
6.3. Service Call Graph for Described Workload 49
6.4. Endpoint Call Graph for Described Workload 49

7.1. Situation of All Endpoints Stimulated by the Workload (Scenario 1) 54
7.2. Load and Average Response Time of the Endpoint /travel/query 54
7.3. Absolute Arrival Rate Forecast Error of the Endpoint /travel/query . . . 55
7.4. Section of Propagation Model Related to a User Call to /travel/query . . 56
7.5. Absolute Errors of Arrival Rate Forecasts for Selected Backend Services . . 57
7.6. Average Response Time as a Function of the Arrival Rate on the Endpoint

/travel/query . 58
7.7. Prediction Results and Measured Data for Different ML Models 59
7.8. Global Prediction Quality Measures of Different Model Types 61
7.9. Predictions and Measured Data for Best Case Prediction and Time Series

Forecast . 62
7.10. Influence of the Prediction Horizon on Performance Prediction 64
7.11. Situation of All Endpoints Stimulated by the Workload (Scenario 2) 65
7.12. Dependency Between Load and Response Time for Different Endpoints . . 66
7.13. Predicted and Measured Performance Values for Different Endpoints 68
7.14. Situation of All Endpoints Stimulated by the Workload (Scenario 3) 71
7.15. Arrival Rate and Average Response Times of Different Endpoints 72
7.16. Numeric Prediction Results for Endpoint /train/retrieve 74
7.17. Numeric Prediction Results for Endpoint /travel/query 74
7.18. Arrival Rates and Average Response Times of the Endpoint /travel/query 76
7.19. Prediction Quality Measures Depending on Prediction Horizon 78
7.20. Prediction Quality Measures for Time Series Forecaster 80

89

90 List of Figures

7.21. Situation of All Endpoints Stimulated by the Workload (Scenario 5) 81
7.22. Load and Average Response Time of the Endpoint /webui 82
7.23. Measured (Blue) and Predicted (Red) Response Times of the Endpoint /webui 83

90

List of Tables

4.1. Variables Used in the Request Propagation Algorithm 24
4.2. Variables Used for Performance Inference 27
4.3. Service Performance Ratings . 28
4.4. Classification Table for Performance Rating 30

5.1. Core Configuration Parameters . 35
5.2. Provider Configuration Parameters . 37
5.3. Forecaster Configuration Parameters . 39
5.4. Trainer Configuration Parameters . 42
5.5. Predictor Configuration Parameters . 43
5.6. Evaluation Modes and Active Components 44

6.1. Hardware and Software Settings of the Application Server 46

7.1. Results of Different Machine Learning Models 60
7.2. Theoretical Best Case vs. GluonTS Simple Forecast 62
7.3. Rating Results for Endpoint /travel/query 69
7.4. Rating Results for Endpoint /preserve . 69
7.5. Rating Results for Endpoint /travel/getTripAllDetailInfo 69
7.6. Rating Results for Endpoint /train/retrieve 73
7.7. Rating Results for Endpoint /travel/query 73
7.8. Rating Results for Endpoint /travel/query 77
7.9. Rating Results for Endpoint /travel/query (Horizon: 5s) 79
7.10. Rating Results for Endpoint /travel/query (Horizon: 50s) 80
7.11. Rating Results for Endpoint /webui . 82

A.1. Parameters of Machine Learning Models - Part I 102
A.2. Parameters of Machine Learning Models - Part II 102
B.1. Rating Schemes for all TrainTicket Endpoints used in this Work - Part I . . 103
B.2. Rating Schemes for all TrainTicket Endpoints used in this Work - Part II . 104
B.3. Rating Schemes for all TrainTicket Endpoints used in this Work - Part III . 105
C.1. Rating Schemes for all Teastore Endpoints Used in this Work 106

91

Acronyms

API Application Programming Interface

CPU Central Processing Unit

CSV Comma-Seperated Values

FN False Negative

FP False Positive

HTTP Hypertext Transfer Protocol

JAR Java Archive

JSON JavaScript Object Notation

JVM Java Virtual Machine

KNN K Nearest Neighbors

ML Machine Learning

RAM Random Access Memory

REST Representational State Transfer

RPS Requests per Second

SLO Service-Level Objectives

SVM Support Vector Machines

SVR Support Vector Regression

TN True Negative

TP True Positive

UI User Interface

93

Bibliography

[1] J. Lewis, “Micro services - java, the unix way.” 33rd Degree Conference 2012 Krakow,
Poland, 2012.

[2] J. Lewis and M. Fowler, “Microservices.” Online Article, March 2014.

[3] A. Sriraman and T. F. Wenisch, “my suite: A benchmark suite for microservices,” in
2018 IEEE International Symposium on Workload Characterization (IISWC), pp. 1–
12, Sep. 2018.

[4] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[5] E. Frank, L. Trigg, G. Holmes, and I. H. Witten, “Technical note: Naive bayes for
regression,” Machine Learning, vol. 41, pp. 5–25, Oct 2000.

[6] I. Rish, “An empirical study of the naive bayes classifier,” tech. rep., 2001.

[7] G. H. John and P. Langley, “Estimating continuous distributions in bayesian classi-
fiers,” in Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelli-
gence, UAI’95, (San Francisco, CA, USA), pp. 338–345, Morgan Kaufmann Publishers
Inc., 1995.

[8] J. D. M. Rennie, L. Shih, J. Teevan, and D. R. Karger, “Tackling the poor assumptions
of naive bayes text classifiers,” in Proceedings of the Twentieth International Confer-
ence on International Conference on Machine Learning, ICML’03, pp. 616–623, AAAI
Press, 2003.

[9] L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32, Oct. 2001.

[10] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,
pp. 273–297, Sep 1995.

[11] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Support vector
regression machines,” in Proceedings of the 9th International Conference on Neural
Information Processing Systems, NIPS’96, (Cambridge, MA, USA), pp. 155–161, MIT
Press, 1996.

[12] J. Vert, K. Tsuda, and B. Schölkopf, A Primer on Kernel Methods, pp. 35–70. Cam-
bridge, MA, USA: MIT Press, 2004.

[13] “Pinpoint - leading open-source apm.” https://naver.github.io/pinpoint/. Ac-
cessed: 2019-11-26.

[14] “Http load generator.” https://github.com/joakimkistowski/

HTTP-Load-Generator. Accessed: 2020-05-17.

[15] A. Alexandrov, K. Benidis, M. Bohlke-Schneider, V. Flunkert, J. Gasthaus,
T. Januschowski, D. C. Maddix, S. Rangapuram, D. Salinas, J. Schulz, L. Stella,
A. C. Türkmen, and Y. Wang, “Gluonts: Probabilistic time series models in python,”
2019.

95

https://naver.github.io/pinpoint/
https://github.com/joakimkistowski/HTTP-Load-Generator
https://github.com/joakimkistowski/HTTP-Load-Generator

96 Bibliography

[16] I. Ilic, B. Gorgulu, and M. Cevik, “Augmented out-of-sample comparison method for
time series forecasting techniques,” in Advances in Artificial Intelligence (C. Goutte
and X. Zhu, eds.), (Cham), pp. 302–308, Springer International Publishing, 2020.

[17] D. Salinas, H. Shen, and V. Perrone, “A copula approach for hyperparameter transfer
learning,” 2019.

[18] S. Becker, L. Grunske, R. Mirandola, and S. Overhage, “Performance prediction of
component-based systems,” in Architecting Systems with Trustworthy Components
(R. H. Reussner, J. A. Stafford, and C. A. Szyperski, eds.), (Berlin, Heidelberg),
pp. 169–192, Springer Berlin Heidelberg, 2006.

[19] A. Matsunaga and J. A. B. Fortes, “On the use of machine learning to predict the
time and resources consumed by applications,” in 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, pp. 495–504, May 2010.

[20] A. Andrzejak and L. Silva, “Using machine learning for non-intrusive modeling and
prediction of software aging,” in NOMS 2008 - 2008 IEEE Network Operations and
Management Symposium, pp. 25–32, April 2008.

[21] F. Hassan, S. Farhan, M. A. Fahiem, and H. Tauseef, “A review on machine learning
techniques for software defect prediction,” Technical Journal, vol. 23, no. 02, pp. 63–
71, 2018.

[22] R. Bianchini, M. Fontoura, E. Cortez, A. Bonde, A. Muzio, A.-M. Constantin,
T. Moscibroda, G. Magalhaes, G. Bablani, and M. Russinovich, “Toward ml-centric
cloud platforms,” Commun. ACM, vol. 63, p. 50–59, Jan. 2020.

[23] J. Grohmann, N. Herbst, A. Chalbani, Y. Arian, N. Peretz, and S. Kounev, “A
Taxonomy of Techniques for SLO Failure Prediction in Software Systems,”Computers,
vol. 9, no. 1, 2020.

[24] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure prediction methods,”
ACM Comput. Surv., vol. 42, pp. 10:1–10:42, Mar. 2010.

[25] T. Pitakrat, D. Okanovic, A. V. Hoorn, and L. Grunske, “An architecture-aware
approach to hierarchical online failure prediction,” in 2016 12th International ACM
SIGSOFT Conference on Quality of Software Architectures (QoSA), pp. 60–69, April
2016.

[26] Y. Zhang, Z. Zheng, and M. R. Lyu, “An online performance prediction framework
for service-oriented systems,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 44, pp. 1169–1181, Sep. 2014.

[27] L. Bao, C. Wu, X. Bu, N. Ren, and M. Shen, “Performance modeling and work-
flow scheduling of microservice-based applications in clouds,” IEEE Transactions on
Parallel and Distributed Systems, vol. 30, pp. 2114–2129, Sep. 2019.

[28] A. Jindal, V. Podolskiy, and M. Gerndt,“Performance modeling for cloud microservice
applications,” in Proceedings of the 2019 ACM/SPEC International Conference on
Performance Engineering, ICPE ’19, (New York, NY, USA), pp. 25–32, ACM, 2019.

[29] P. K. Sen, “Estimates of the regression coefficient based on kendall’s tau,” Journal of
the American statistical association, vol. 63, no. 324, pp. 1379–1389, 1968.

[30] H. Theil, “A rank-invariant method of linear and polynomial regression analysis,” in
Henri Theil’s contributions to economics and econometrics, pp. 345–381, Springer,
1992.

96

Bibliography 97

[31] Q. Du, T. Xie, and Y. He, “Anomaly detection and diagnosis for container-based mi-
croservices with performance monitoring,” in Algorithms and Architectures for Parallel
Processing (J. Vaidya and J. Li, eds.), (Cham), pp. 560–572, Springer International
Publishing, 2018.

[32] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and C. Delimitrou, “Lever-
aging deep learning to improve the performance predictability of cloud microservices,”
2019.

[33] J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint performance issues with causal
graphs in micro-service environments,” in Service-Oriented Computing (C. Pahl,
M. Vukovic, J. Yin, and Q. Yu, eds.), (Cham), pp. 3–20, Springer International Pub-
lishing, 2018.

[34] M. Kalisch and P. Bühlmann, “Estimating high-dimensional directed acyclic graphs
with the pc-algorithm,” J. Mach. Learn. Res., vol. 8, pp. 613–636, May 2007.

[35] P. Wang, J. Xu, M. Ma, W. Lin, D. Pan, Y. Wang, and P. Chen, “Cloudranger: Root
cause identification for cloud native systems,” in 2018 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 492–502, May
2018.

[36] L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “MicroRCA: Root Cause Localiza-
tion of Performance Issues in Microservices,” in IEEE/IFIP Network Operations and
Management Symposium (NOMS), (Budapest, Hungary), Apr. 2020.

[37] D. A. Menascé, V. A. F. Almeida, R. Fonseca, and M. A. Mendes, “A methodology
for workload characterization of e-commerce sites,” in Proceedings of the 1st ACM
Conference on Electronic Commerce, EC ’99, (New York, NY, USA), p. 119–128,
Association for Computing Machinery, 1999.

[38] K. Mark and L. Csaba, “Analyzing customer behavior model graph (cbmg) using
markov chains,” in 2007 11th International Conference on Intelligent Engineering
Systems, pp. 71–76, June 2007.

[39] V. A. F. Almeida, “Capacity planning for web services techniques and methodol-
ogy,” in Performance Evaluation of Complex Systems: Techniques and Tools (M. C.
Calzarossa and S. Tucci, eds.), (Berlin, Heidelberg), pp. 142–157, Springer Berlin
Heidelberg, 2002.

[40] N. Roy, A. Dubey, A. Gokhale, and L. Dowdy, “A capacity planning process for
performance assurance of component-based distributed systems,” in Proceedings of
the 2nd ACM/SPEC International Conference on Performance Engineering, ICPE
’11, (New York, NY, USA), p. 259–270, Association for Computing Machinery, 2011.

[41] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud using predictive
models for workload forecasting,” in 2011 IEEE 4th International Conference on Cloud
Computing, pp. 500–507, July 2011.

[42] C. M. Aderaldo, N. C. Mendonça, C. Pahl, and P. Jamshidi, “Benchmark require-
ments for microservices architecture research,” in 2017 IEEE/ACM 1st International
Workshop on Establishing the Community-Wide Infrastructure for Architecture-Based
Software Engineering (ECASE), pp. 8–13, May 2017.

[43] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao, “Benchmarking mi-
croservice systems for software engineering research,” in Proceedings of the 40th In-
ternational Conference on Software Engineering: Companion Proceeedings, ICSE ’18,
(New York, NY, USA), pp. 323–324, ACM, 2018.

97

98 Bibliography

[44] “Trainticket git repository (fork of sealabqualitygroup).” https://github.com/

SEALABQualityGroup/train-ticket. Accessed: 2020-04-06.

[45] D. Di Pompeo, M. Tucci, A. Celi, and R. Eramo, “A microservice reference case study
for design-runtime interaction in mde,” 2019.

[46] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault analysis and de-
bugging of microservice systems: Industrial survey, benchmark system, and empirical
study,” IEEE Transactions on Software Engineering, pp. 1–1, 2018.

[47] X. Zhou, X. Peng, T. Xie, J. Sun, W. Li, C. Ji, and D. Ding, “Delta debugging mi-
croservice systems,” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, pp. 802–807, ACM, 2018.

[48] J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann, and S. Kounev,
“Teastore: A micro-service reference application for benchmarking, modeling and re-
source management research,” in 2018 IEEE 26th International Symposium on Mod-
eling, Analysis, and Simulation of Computer and Telecommunication Systems (MAS-
COTS), pp. 223–236, Sep. 2018.

[49] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu,
B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy, C. Colen, F. Wen,
C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu, J. Padilla, and
C. Delimitrou,“An open-source benchmark suite for microservices and their hardware-
software implications for cloud and edge systems,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, (New York, NY, USA), pp. 3–18, ACM, 2019.

[50] P. Mueller, “Developing a framework for dynamic performance predictions in con-
tainerized environments.” unpublished practical work (german), 2019.

[51] C. Bergmeir, M. Costantini, and J. M. Beńıtez, “On the usefulness of cross-validation
for directional forecast evaluation,” Computational Statistics & Data Analysis, vol. 76,
pp. 132–143, 2014.

[52] “Wikimedia dumps page count repository.” https://dumps.wikimedia.org/other/

pagecounts-raw/. Accessed: 2020-05-02.

98

https://github.com/SEALABQualityGroup/train-ticket
https://github.com/SEALABQualityGroup/train-ticket
https://dumps.wikimedia.org/other/pagecounts-raw/
https://dumps.wikimedia.org/other/pagecounts-raw/

Appendix

99

A. Parameters of Machine Learning Models 101

A. Parameters of Machine Learning Models

All tested configurations1:

• KNeighborsRegressor

– n_neighbors = {1-10, 20, 30}
– weights = {uniform, distance}
– p = {1, 2}

• BayesianRidgeRegressor

– n_ iter = {200, 300, 500}
– tol = {1E-2, 1E-3, 1E-4}
– alpha_1 = {0.1, 0.01, 1E-3, 1E-4, 1E-6, 1E-9}
– alpha_2 = {0.1, 0.01, 1E-3, 1E-4, 1E-6, 1E-9}
– lambda_1 = {0.1, 0.01, 1E-3, 1E-4, 1E-6, 1E-9}
– lambda_2 = {0.1, 0.01, 1E-3, 1E-4, 1E-6, 1E-9}

• SVR

– kernel = {rbf, linear, poly, sigmoid}
– gamma = {scale, auto}
– tol = {1E-2, 1E-3, 1E-4}
– C = {0.1, 0.5, 1, 2, 10}
– epsilon = {0.01, 0.1, 0.2}

• RandomForestRegressor

– n_estimators = {1, 5, 10, 20}
– criterion = {mse, mae}
– max_depth = {None, 2, 5, 10}
– min_samples_split = {2, 5}
– min_samples_leaf = {1, 2}

1All parameters are named as defined by the scikit-learn documentation (version 0.22.2)

101

102

T
ab

le
A

.1.:
P

aram
eters

of
M

ach
in

e
L

earn
in

g
M

o
d
els

-
P

art
I

M
o
d

el
T

y
p

e
K
N
e
i
g
h
b
o
r
s
R
e
g
r
e
s
s
o
r

B
a
y
e
s
i
a
n
R
i
d
g
e
R
e
g
r
e
s
s
o
r

P
a
ra

m
eter

n
_
n
e
i
g
h
b
o
r
s

w
e
i
g
h
t
s

p
n
_
i
t
e
r

t
o
l

a
l
p
h
a
_
1

a
l
p
h
a
_
2

l
a
m
b
d
a
_
1

l
a
m
b
d
a
_
2

S
cen

ario
1

2
d
ista

n
ce

1
200

1E
-4

1E
-3

1E
-3

1E
-3

1E
-3

S
cen

ario
2

4
u

n
ifo

rm
2

200
1E

-4
1E

-3
1E

-3
1E

-3
1E

-3

S
cen

ario
3

1
u

n
ifo

rm
1

200
1E

-4
1E

-3
1E

-3
1E

-3
1E

-3

S
cen

ario
4

5
u

n
ifo

rm
2

200
1E

-4
1E

-3
1E

-3
1E

-3
1E

-3

S
cen

ario
5

2
u

n
ifo

rm
1

200
1E

-4
1E

-3
1E

-3
1E

-3
1E

-3

T
ab

le
A

.2.:
P

aram
eters

of
M

ach
in

e
L

earn
in

g
M

o
d
els

-
P

art
II

M
o
d

el
T

y
p

e
S
V
R

R
a
n
d
o
m
F
o
r
e
s
t
R
e
g
r
e
s
s
o
r

P
a
ra

m
eter

k
e
r
n
e
l

g
a
m
m
a

t
o
l

C
e
p
s
i
l
o
n

n
_
e
s
t
i
m
a
t
o
r
s

c
r
i
t
e
r
i
o
n

m
a
x
_
d
e
p
t
h

m
i
n
_
s
a
m
p
l
e
s
_
s
p
l
i
t

m
i
n
_
s
a
m
p
l
e
s
_
l
e
a
f

S
cen

a
rio

1
lin

ea
r

sca
le

0
.01

2
0.01

20
m

a
e

10
5

2

S
cen

a
rio

2
lin

ea
r

sca
le

0
.01

0.5
0.01

10
m

se
10

2
2

S
cen

a
rio

3
lin

ea
r

sca
le

0
.01

0.1
0.01

5
m

a
e

N
o
n

e
5

2

S
cen

a
rio

4
lin

ea
r

sca
le

0
.01

0.5
0.01

10
m

se
10

5
1

S
cen

a
rio

5
lin

ea
r

sca
le

0
.01

10
0.01

10
m

se
N

o
n

e
2

2

102

A. Parameters of Machine Learning Models 103

B
.
R
a
ti
n
g
S
ch

e
m
e
s
a
n
d

T
h
re
sh

o
ld
s
(T

ra
in
T
ic
k
e
t)

T
a
b
le

B
.1

.:
R

at
in

g
S
ch

em
es

fo
r

al
l

T
ra

in
T

ic
ke

t
E

n
d
p

oi
n
ts

u
se

d
in

th
is

W
or

k
-

P
ar

t
I

S
er

v
ic

e
E

n
d

p
oi

n
t

R
es

p
on

se
T

im
e

L
ow

er
b

ou
n

d
L

ow
er

b
ou

n
d

w
it

h
lo

w
lo

ad
[m

s]
ye

ll
ow

ra
ti

n
g

[m
s]

re
d

ra
ti

n
g

[m
s]

ts
-a

ss
u
ra

n
ce

-s
er

v
ic

e
ge

tA
ll
A

ss
u
ra

n
ce

T
y
p

e
3

40
80

ts
-b

as
ic

-s
er

v
ic

e
q
u
er

y
F

or
S
ta

ti
on

Id
5

40
80

q
u

er
y
F

or
T

ra
ve

l
25

40
80

ts
-c

on
fi

g
-s

er
v
ic

e
q
u
er

y
3

40
80

ts
-c

on
ta

ct
s-

se
rv

ic
e

fi
n
d

C
on

ta
ct

s
8

40
80

ge
tC

on
ta

ct
sB

y
Id

8
40

80

ts
-e

x
ec

u
te

-s
er

v
ic

e
co

ll
ec

te
d

15
40

80

ex
ec

u
te

15
40

80

ts
-f

o
o
d
-m

ap
-s

er
v
ic

e
ge

tF
o
o
d

S
to

re
sO

fS
ta

ti
on

2
40

80

ge
tT

ra
in

F
o
o
d
O

fT
ri

p
3

40
80

ts
-f

o
o
d
-s

er
v
ic

e
cr

ea
te

F
o
o
d
O

rd
er

5
40

80

ge
tF

o
o
d

25
40

80

ts
-i

n
si

d
e-

p
ay

m
en

t-
se

rv
ic

e
p

ay
25

40
80

ts
-l

o
g
in

-s
er

v
ic

e
lo

gi
n

15
40

80

ts
-n

ot
ifi

ca
ti

on
-s

er
v
ic

e
or

d
er

ca
n
ce

l
su

cc
es

s
15

40
80

ts
-o

rd
er

-o
th

er
-s

er
v
ic

e
ge

tO
rd

er
In

fo
F

or
S

ec
u
ri

ty
3

40
80

ca
lc

u
la

te
5

40
80

cr
ea

te
10

40
80

fi
n

d
A

ll
3

40
80

ge
tB

y
Id

3
40

80

103

104

T
a
b
le

B
.2

.:
R

atin
g

S
ch

em
es

for
all

T
rain

T
icket

E
n

d
p

oin
ts

u
sed

in
th

is
W

ork
-

P
art

II

S
erv

ice
E

n
d

p
oin

t
R

esp
on

se
T

im
e

L
ow

er
b

ou
n

d
L

ow
er

b
ou

n
d

w
ith

low
load

[m
s]

yellow
ratin

g
[m

s]
red

ratin
g

[m
s]

ts-o
rd

er-o
th

er-serv
ice

getT
icketL

istB
y
D

ateA
n

d
T

rip
Id

5
40

80

m
o
d
ify

O
rd

erS
tatu

s
5

40
80

q
u

ery
F

orR
efresh

15
40

80

ts-o
rd

er-serv
ice

g
etO

rd
erIn

foF
orS

ecu
rity

3
40

80

ca
lcu

late
5

40
80

create
10

40
80

fi
n

d
A

ll
3

40
80

getB
y
Id

3
40

80

getT
icketL

istB
y
D

ateA
n
d
T

rip
Id

5
40

80

m
o
d
ify

O
rd

erS
tatu

s
5

40
80

q
u

ery
F

orR
efresh

15
40

80

ts-p
ay

m
en

t-serv
ice

p
ay

8
40

80

ts-p
reserve-o

th
er-serv

ice
p
reserv

eO
th

er
400

700
1000

ts-p
reserve-serv

ice
p
reserve

400
700

1000

ts-p
rice-serv

ice
q
u

ery
3

40
80

ts-ro
u
te-serv

ice
q
u

ery
B

y
Id

2
40

80

ts-sea
t-serv

ice
getL

eftT
icketO

fIn
terval

75
125

200

getS
eat

50
100

150

ts-secu
rity

-serv
ice

ch
eck

15
40

80

ts-sso
-serv

ice
fi
n

d
B

y
Id

3
40

80

log
in

5
40

80

verify
L

ogin
T

oken
3

40
80

104

A. Parameters of Machine Learning Models 105

T
ab

le
B

.3
.:

R
at

in
g

S
ch

em
es

fo
r

al
l

T
ra

in
T

ic
ke

t
E

n
d
p

oi
n
ts

u
se

d
in

th
is

W
or

k
-

P
ar

t
II

I

S
er

v
ic

e
E

n
d

p
oi

n
t

R
es

p
on

se
T

im
e

L
ow

er
b

ou
n

d
L

ow
er

b
ou

n
d

w
it

h
lo

w
lo

ad
[m

s]
ye

ll
ow

ra
ti

n
g

[m
s]

re
d

ra
ti

n
g

[m
s]

ts
-s

ta
ti

o
n

-s
er

v
ic

e
ex

is
t

2
40

80

q
u

er
y
B

y
Id

B
at

ch
2

40
80

q
u

er
y
F

or
Id

2
40

80

ts
-t

ic
ke

ti
n

fo
-s

er
v
ic

e
q
u
er

y
F

or
S
ta

ti
on

Id
8

40
80

q
u

er
y
F

or
T

ra
ve

l
30

70
12

0

ts
-t

ra
in

-s
er

v
ic

e
re

tr
ie

ve
2

40
80

ts
-t

ra
ve

l-
se

rv
ic

e
ge

tR
ou

te
B

y
T

ri
p

Id
5

40
80

ge
tT

ra
in

T
y
p

eB
y
T

ri
p

Id
5

40
80

ge
tT

ri
p
A

ll
D

et
ai

lI
n
fo

20
0

35
0

55
0

q
u

er
y

(S
ce

n
ar

io
1+

4)
25

0
40

0
60

0

q
u

er
y

(S
ce

n
ar

io
2+

3)
25

0
60

0
10

00

ts
-t

ra
ve

l2
-s

er
v
ic

e
ge

tR
ou

te
B

y
T

ri
p

Id
5

40
80

ge
tT

ra
in

T
y
p

eB
y
T

ri
p

Id
5

40
80

ge
tT

ri
p
A

ll
D

et
ai

lI
n
fo

20
0

35
0

55
0

q
u

er
y

(S
ce

n
ar

io
1+

4)
25

0
40

0
60

0

q
u

er
y

(S
ce

n
ar

io
2+

3)
25

0
60

0
10

00

ts
-v

er
ifi

ca
ti

on
-c

o
d
e-

se
rv

ic
e

ge
n
er

at
e

8
40

80

ve
ri

fy
2

40
80

105

106

C
.
R
a
tin

g
S
ch

e
m
e
s
a
n
d

T
h
re
sh

o
ld
s
(T

e
a
sto

re
)

T
ab

le
C

.1.:
R

atin
g

S
ch

em
es

for
all

T
eastore

E
n

d
p

oin
ts

U
sed

in
th

is
W

ork

E
n

d
p

o
in

t
(S

h
ort

N
am

e)
E

n
d
p

o
in

t
(L

on
g

N
am

e)
a

R
esp

on
se

T
im

e
L

ow
er

b
ou

n
d

L
ow

er
b

ou
n
d

w
ith

low
load

[m
s]

yellow
ratin

g
[m

s]
red

ratin
g

[m
s]

/
a
u
t
h
/
c
a
r
t
/
a
d
d

/
t
.
d
.
t
.
a
u
t
h
/
r
e
s
t
/
c
a
r
t
/
a
d
d
/
<
P
A
R
A
M
S
>

3
80

130

/
a
u
t
h
/
u
s
e
r
a
c
t
i
o
n
s
/
i
s
l
o
g
g
e
d
i
n

/
t
.
d
.
t
.
a
u
t
h
/
r
e
s
t
/
u
s
e
r
a
c
t
i
o
n
s
/
i
s
l
o
g
g
e
d
i
n

<
1

80
130

/
a
u
t
h
/
u
s
e
r
a
c
t
i
o
n
s
/
l
o
g
i
n

/
t
.
d
.
t
.
a
u
t
h
/
r
e
s
t
/
u
s
e
r
a
c
t
i
o
n
s
/
l
o
g
i
n

15
80

130

/
a
u
t
h
/
u
s
e
r
a
c
t
i
o
n
s
/
l
o
g
o
u
t

/
t
.
d
.
t
.
a
u
t
h
/
r
e
s
t
/
u
s
e
r
a
c
t
i
o
n
s
/
l
o
g
o
u
t

<
1

80
130

/
i
m
a
g
e
/
g
e
t
P
r
o
d
u
c
t
I
m
a
g
e
s

/
t
.
d
.
t
.
i
m
a
g
e
/
r
e
s
t
/
i
m
a
g
e
/
g
e
t
P
r
o
d
u
c
t
I
m
a
g
e
s

2
80

130

/
i
m
a
g
e
/
g
e
t
W
e
b
I
m
a
g
e
s

/
t
.
d
.
t
.
i
m
a
g
e
/
r
e
s
t
/
i
m
a
g
e
/
g
e
t
W
e
b
I
m
a
g
e
s

<
1

80
130

/
p
e
r
s
i
s
t
e
n
c
e
/
c
a
t
e
g
o
r
i
e
s

/
t
.
d
.
t
.
p
e
r
s
i
s
t
e
n
c
e
/
r
e
s
t
/
c
a
t
e
g
o
r
i
e
s

2
80

130

/
p
e
r
s
i
s
t
e
n
c
e
/
c
a
t
e
g
o
r
y

/
t
.
d
.
t
.
p
e
r
s
i
s
t
e
n
c
e
/
r
e
s
t
/
c
a
t
e
g
o
r
i
e
s
/
<
P
A
R
A
M
S
>

<
1

80
130

/
p
e
r
s
i
s
t
e
n
c
e
/
o
r
d
e
r
s
/
u
s
e
r

/
t
.
d
.
t
.
p
e
r
s
i
s
t
e
n
c
e
/
r
e
s
t
/
o
r
d
e
r
s
/
u
s
e
r
/
<
P
A
R
A
M
S
>

2
80

130

/
p
e
r
s
i
s
t
e
n
c
e
/
p
r
o
d
u
c
t
s

/
t
.
d
.
t
.
p
e
r
s
i
s
t
e
n
c
e
/
r
e
s
t
/
p
r
o
d
u
c
t
s
/
<
P
A
R
A
M
S
>

<
1

80
130

/
p
e
r
s
i
s
t
e
n
c
e
/
u
s
e
r
s

/
t
.
d
.
t
.
p
e
r
s
i
s
t
e
n
c
e
/
r
e
s
t
/
u
s
e
r
s
/
<
P
A
R
A
M
S
>

<
1

80
130

/
p
e
r
s
i
s
t
e
n
c
e
/
u
s
e
r
s
/
n
a
m
e

/
t
.
d
.
t
.
p
e
r
s
i
s
t
e
n
c
e
/
r
e
s
t
/
u
s
e
r
s
/
n
a
m
e
/
<
P
A
R
A
M
S
>

2
80

130

/
r
e
c
o
m
m
e
n
d
e
r
/
r
e
c
o
m
m
e
n
d

/
t
.
d
.
t
.
r
e
c
o
m
m
e
n
d
e
r
/
r
e
s
t
/
r
e
c
o
m
m
e
n
d

1
80

130

/
w
e
b
u
i
/
c
a
r
t

/
t
.
d
.
t
.
w
e
b
u
i
/
c
a
r
t

28
80

130

/
w
e
b
u
i
/
c
a
r
t
A
c
t
i
o
n

/
t
.
d
.
t
.
w
e
b
u
i
/
c
a
r
t
A
c
t
i
o
n

5
80

130

/
w
e
b
u
i
/
c
a
t
e
g
o
r
y

/
t
.
d
.
t
.
w
e
b
u
i
/
c
a
t
e
g
o
r
y

40
80

130

/
w
e
b
u
i
/
l
o
g
i
n

/
t
.
d
.
t
.
w
e
b
u
i
/
l
o
g
i
n

6
80

130

/
w
e
b
u
i
/
l
o
g
i
n
A
c
t
i
o
n

/
t
.
d
.
t
.
w
e
b
u
i
/
l
o
g
i
n
A
c
t
i
o
n

9
80

130

/
w
e
b
u
i
/
p
r
o
d
u
c
t

/
t
.
d
.
t
.
w
e
b
u
i
/
p
r
o
d
u
c
t

40
80

130

/
w
e
b
u
i
/
p
r
o
f
i
l
e

/
t
.
d
.
t
.
w
e
b
u
i
/
p
r
o
f
i
l
e

15
80

130

at
.
d
.
t

=
t
o
o
l
s
.
d
e
s
c
a
r
t
e
s
.
t
e
a
s
t
o
r
e

106

	Contents
	1 Introduction
	2 Foundations
	2.1 Microservices and Containers for Application-Level Virtualization
	2.2 Machine Learning
	2.2.1 Overview
	2.2.2 Selected Algorithms

	2.3 Tools
	2.3.1 Pinpoint Monitoring
	2.3.2 HTTP Load Generator
	2.3.3 AWS GluonTS Time Series Forecasting

	3 Related Work
	3.1 Machine Learning for Performance Prediction in Component-Based Software Systems
	3.2 Online Application Failure Prediction
	3.3 Performance Prediction of Microservices
	3.4 Modeling User Behavior for Software Performance Estimation
	3.5 Microservice Demo Applications
	3.5.1 TrainTicket
	3.5.2 Other Demo Applications

	4 Approach
	5 Implementation
	5.1 The PPP Framework
	5.2 Description of Components
	5.3 Evaluation Modes

	6 Evaluation
	6.1 Technical Setup
	6.2 Test Scenarios
	6.3 Evaluation Metrics

	7 Results
	7.1 Scenario 1: Periodic Load
	7.2 Scenario 2: Load Peaks on a Frontend Service
	7.3 Scenario 3: Load Peaks on a Backend Service
	7.4 Scenario 4: Study with Realistic Workload
	7.5 Scenario 5: Study with Second Application
	7.6 Summary and Discussion

	8 Conclusion and Outlook
	List of Figures
	List of Tables
	Acronyms
	Bibliography
	Appendix
	A Parameters of Machine Learning Models
	B Rating Schemes and Thresholds (TrainTicket)
	C Rating Schemes and Thresholds (Teastore)

