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Abstract—Cloud computing theoretically offers its customers
unlimited cloud resources. However, the scalability of software
services is often limited by their underlying architecture. In
contrast to current scalability analysis approaches, we make work
parameters, quality thresholds, as well as the resource space
explicit in a conceptually consistent set of equations. We propose
two scalability metric functions based on these equations. The
resource scalability metric function describes the relation between
the capacity of the multi-tier cloud software service and its use
of cloud resources, whereas the cost scalability metric function
replaces cloud resources with cost. We validate using the Cloud-
Store application. CloudStore follows the TPC-W specification,
representing an online book store. We have experimented with
21 different public Amazon Web Service configurations and two
private OpenStack configurations.

I. INTRODUCTION

With the growing complexity of cloud software services
and their unpredictably increasing workload, the scalability
of these software services becomes critical. We refer to scal-
ability as “the ability of a service to increase its capacity by
consuming more resources in the resource space.”, extending
the definition by Lehrig et al. [1]. By resource space, we
mean the set of possible resource configurations. The term
service refers to typical multi-tier, session-based software-as-
a-service (SaaS) applications, and resources are infrastructure-
as-a-service (IaaS) offerings.

Cloud computing providers theoretically offer their cus-
tomers unlimited resources [2]. However, scalability is also
determined by the control and data flow. Architectures and
implementations can lead to 1) under-provisioning together
with SLO (Service Level Objectives) violations, like high
response times or low throughput, resulting in dissatisfied
customers, or 2) over-provisioning and low utilization of
resources, leading to high costs [3].

We propose a conceptually consistent set of equations cap-
turing the influencing factors of observable cloud service scal-
ability. In contrast to current scalability analysis approaches,
these equations make work parameters, quality thresholds,
as well as the resource space explicit. We select capacity
as the base metric to describe the scalability of a service
and propose a measurement method that resulted in reliable
measurement values. Based on the equations, we propose two
scalability metric functions. The resource scalability metric
function describes the relation between the capacity of the
cloud software service and its use of cloud resources. This
metric is applicable with one type of cloud resources, for
example the size of app VM instances. When more types of
cloud resources are added, we use the cost scalability metric
function that illustrates the relation between the capacity of

a cloud software service and its cost of cloud resources. The
proposed metric functions allow for investigating the impact
of work parameters, as well as of quality thresholds on service
scalability.

With empirically obtained scalability metric functions, a
deployment controller knows in advance how many customers
the service can handle within SLO-bounds for all evaluated
configurations of allocated resources and in addition can
decide which configuration is more cost-efficient. The deploy-
ment controller can also in an informed way select the layer
to scale and whether to scale vertically or horizontally.

We empirically evaluate our scalability metric functions
using CloudStore [4], an implementation of the TPC-W spec-
ification [5]. CloudStore is deployed on the public Amazon
Web Services (AWS) [6] as well as on a private OpenStack [7]-
based environment.

We conducted 53 measurements with 21 different AWS
configurations. Most AWS measurements and 20 OpenStack
measurements were conducted by XLAB. 6 AWS measure-
ments were done at the University of Würzburg. SINTEF
repeated some AWS measurements with similar results.

In Sec. II, we specify relevant scalability parameters. Our
two scalability metric functions are described in Sec. III. The
measurement plan is introduced in Sec. IV. In Sec. V we
describe our experiment setup. Measurements are discussed in
Sec. VI. In Sec. VII, we consider related work. Conclusions,
limitations and further work are offered in Sec. VIII.

II. SERVICE SPECIFICATION

Fig. 1 describes how users invoke load and work. Op-
erations with quality metrics and thresholds are offered by
services. The services are deployed on resources. Using equa-
tions, in this paper we describe the essence of factors influ-
encing service scalability. Possible extensions to the equations
are outlined. The notation is illustrated with examples from
CloudStore.
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Fig. 1. Essential service scalability concepts [8].



A. Operations

An operation defines a unique way of interacting with a
service. It corresponds to a request class in the context of
queuing networks. Service s has #op operations:

ops = (os,1, · · · , os,#op) (1)

For each operation i, os,i represents the probability of the
corresponding operation. The probabilities of all the operations
represent the operation mix and sum to 1:

∑#op
n=1 os,n = 1.

CloudStore (cs) has 14 operations. We use the TPC-W
Browsing Mix [5, p. 98]:

opcs = (0.29, 0.11, 0.11, 0.21, 0.12, 0.11, 0.02, 0.0082,

0.0075, 0.0069, 0.0030, 0.0025, 0.0010, 0.0009) (2)

B. Load

Load describes how often the operations in a service are
invoked. With a constant number of users, we have a closed
system which is specified by the number of users (N), in
addition to the think time (Z):

lcs = (N,Z) (3)
A variable number of users corresponds to an open system.

For an open system, we use arrival rate, λ:
los = (λ) (4)

We consider CloudStore to be a closed system. Load is
specified by the number of virtual users (VU). The think time
in CloudStore is a constant value of seven seconds, i.e., a
virtual user can at most make a new request every seven
seconds.

C. Work

Work characterizes the amount of data to be processed,
stored or communicated by a service. The values of each of
the #wp work parameters for service s are:

wps = (ws,1 , · · · , ws,#wp) (5)
In TPC-W, there are at least three work parameters: 1)

number of books, 2) number of customers and 3) size of
images. For image sizes, we always use the values in the
TPC-W specification [5, pp. 11]: 45% 5KB, 35% 10KB, 15%
50KB, 4% 100KB, and 1% 250KB. In addition, things like
average number of books in the shopping cart are hard-coded
in the TPC-W specification. Therefore, the work characteriza-
tion could easily be elaborated. We normally use the following
values for the number of books and customers:

wpcs = (10 000, 288 000) (6)
We have now specified global work parameters for a com-

plete service, but work parameters may also apply to specific
operations. If this is required, we may distinguish between
global and operation specific work parameters, using the
following notation: ws,n = (wos,n,0 ,wos,n,1 , · · · ,wos,n,#op)
Global work parameters are then specified as for a dummy
operation 0. The value of wos,n,m is the value of the work
parameter m for operation n.

Work parameters might be subject to change over time due
to side effects of executed operations. In CloudStore, this is not
the case for the number of books, but the number of customers

is related to the load since new customers are registered
with the Customer Registration operation. Therefore, what we
specify for the number of customers is the initial value.

D. Quality Metrics and Thresholds

A quality metric defines how we measure a certain quality
and is a key part of an SLO (Service Level Objective). We
assume one metric for all operations. Quality thresholds (QTs)
describe the border between acceptable and non-acceptable
quality for a given metric. All #op operations have a quality
threshold as specified by the parameters qs,n:

qts = (qs,1, · · · , qs,#op) (7)
In CloudStore, we use the 90 percentile response time as our

quality metric. The values for each of the quality thresholds,
in seconds, are described in [5, p. 104]:

qtcs = (3, 5, 5, 3, 3, 10, 3, 3, 3, 5, 3, 3, 3, 20) (8)
All 14 operations must obey the quality threshold. There-

fore, if one of the 14 operations has more than 10% SLO
violation, the quality metric is violated.

Instead of a single metric, we can use #met different
metrics. Then qs,n = (qms,n,1 , · · · , qms,n,#met) represents
the quality thresholds for all metrics for each operation n.

E. Cloud Resources

Public cloud providers like Amazon Web Services (AWS)
can basically be scaled across three dimensions: (1) Instance
type, optimized for a given work profile, e.g.: compute or
storage optimized. There may also be several generations of
each instance type. (2) Instance (t-shirt) sizes for each instance
type, like small, medium, large. (3) Number of instances.

For AWS we specifically focus on Elastic Computing Cloud
(EC2) and the Relational Database Services (RDS). With more
load, there are basically two scaling options: a larger instance
type or size (vertical scaling) or more instances (horizontal
scaling). EC2 offers horizontal auto-scaling. Vertical scaling
of EC2 instances currently requires manual work. For RDS,
neither horizontal nor vertical scaling can be done on the fly.

A service is deployed on #vmg different cloud virtual
machine (VM) groups. A VM group consists of homogeneous
resources and has a vendor, an instance type, an instance size
and number of instances:

vi = (vendor , type, size, inst) (9)
A VM group can be considered as a tier in a distributed

service architecture. Number of instances in a group are used
for horizontal scaling, while vendor, instance type and instance
size can be used for vertical scaling.

As an example, ( Amazon, EC2, m3, medium, 4 ) describes
a group of 4 instances at Amazon EC2 of size m3.medium.

All the VM groups required by a service are as follows:
vmgs,d = (v1, · · · , v#vmg) (10)

We use the term deployment configuration when we specify
a set of cloud resources. We use the index d to represent
a specific deployment configuration for service s. During a
scalability analysis, the deployment configurations are subject
to be altered in an exploratory or systematic way.



In CloudStore, we focus on changing the size and number of
instances in the application VM group and size of the instance
in the DB VM group.

F. Configuration Parameters

Configuration parameters are used to tune the cloud re-
sources for a service and are independent of any load- or
work-related parameters. These parameters may, for example,
represent sizes of software resources like pools or buffers.
Formally, each service s has #cp configuration parameters:

cps,d = (as,d,1 , · · · , as,d,#cp) (11)

The optimal value for some configuration parameters may
depend on the deployment configuration. Therefore, d is an
index. For example, this is the case for the connection pool
size in CloudStore. However, the allocation size for garbage
collection does not depend on the deployment configuration.
Also implementation-related parameters like version numbers
should be specified here to increase reproducibility, especially
for third party.

G. Formal Service Specification

When we combine all above, we get a formal specification
for service s:

servs = (ops,wps, lcs, qts, vmgs,d, cps,d, δ) (12)

We specify the operation mix, ops, work parameters, wps,
the load, lcs, the quality thresholds, qtk, the deployment for
all the VM groups, vmgs,d, and the configuration parameters,
cps. The last term δ represents factors which we have not
included in the model, but which still determine the scalability
of a service. Some of these factors may be in control of a
service consumer. Other factors may be outside of the control
of the service consumer and manipulated by providers of cloud
resources. A measure of δ is confidence intervals (see Table I).

III. SCALABILITY METRIC FUNCTIONS

We first introduce resource space in Sec. III-A and capacity
in Sec. III-B. The resource scalability metric function is
described in Sec. III-C. The cost scalability metric function
in Sec. III-E depends on cost as described in Sec. III-D.

Our usage of the term metric function mf (x) = y is that
it maps a set of deployment configurations x as input to
a metric value y. We define the deployment configurations
for two metric functions and a way how the y-values can
empirically be obtained. For simplicity, we sometimes use
“function” instead of “metric function”.

A. Resource Space

The set of #rc cloud deployments which is explored for
service s is the resource space. The resource space is defined
using the cloud resources required by a service in Eq. 10:

rcs = {vmgs,1, · · · , vmgs,#rc} (13)

For our CloudStore measurements, the resource space is the
type, size and number of instances used for the application VM
group, and type and size for the DB VM group.

B. Capacity Metric

We do several clarifications when defining capacity: Firstly,
we use a fixed operation mix so that we consider the load on
the average operation. Secondly, for closed load we fix the
think time. Thirdly, we fix the work parameters. The capacity
becomes the highest load fulfilling the quality thresholds. More
formally, the capacity caps,d for a given service s with a given
deployment d now becomes:

caps,d = f(ops,wps, qts, vmgs,d, cps,d, Zs) (14)
The scalability range for service s with a given resource

space, is between the lowest and highest capacity in the
resource space.

C. Resource Scalability Metric Function

The resource scalability of a service s is represented by
corresponding capacities for all the deployments d in the
resource space rcs:

∀d ∈ rcs, [vmgs,d, caps,d] (15)
Normally, to limit the number of dimensions, the operation

mix, the work parameters and the quality threshold are kept
constant during a scalability analysis. Most configuration
parameters are also fixed, but some depend on the deployment
d. For sensitivity checks, operation mix, work parameters, and
QTs can be altered for a limited subset of the resource space.

vmgs,d gives complete information of a deployment con-
figuration d for service s. When vmgs,d can be represented
by a single number, the capacities of the configurations in the
resource space can be illustrated by a two-dimensional graph.
This is shown in Fig. 3, where the resource space consists
of {1, 2, 4, 6, 8, 10, 16, 32} resource units. See Sec. VI-C for
more discussion on the resource scalability metric function.

D. Cost

The cost of service s for a given configuration d, depends on
the cost of the used VM instances in the #vmg VM groups:

cs,d =

#vmg∑
i=1

cinst(vd)× inst i(vd) + cuse(servs) (16)

In this equation, for each VM group i, cinst(vd) returns
the cost of a particular instance type and instance size in
configuration d. inst i(vd) returns the number of instances used
for VM groups i in configuration d. Cost is then the sum of
the costs for all VM instances in configuration d.

For PaaS and SaaS, cost usually depends on several ele-
ments in the service specification, servs, e.g. work, load or
quality thresholds. This is specified by the term cuse(servs).
Cost can also depend on internal properties of the service,
for example, number of payment operations required; factors
which depend on cuse(servs) in more or less complex ways.
To account also for these factors in a PaaS or SaaS context,
the only viable option may be to measure the cost. Note that
the cost of using several instances is linear with respect to the
number of instances used. There is also a clear relationship
between the cost of different instance sizes. Looking at Ama-
zon EC2 [9], the number of vCPUs (virtual CPUs) as well as



GB of memory double when we go to the next size. Also for
the cost the relation is about the same. Instance storage and
the number of connections do not share this simple pattern.

One drawback of using cost as a measure, is that it may vary
because of cost modifications and regardless of changes in the
instance types, sizes or number of instances. This drawback
becomes smaller when we use relative and not absolute costs.

E. Cost Scalability Metric Function

In Sec. III-C, we discuss how the capacity of a given
deployment configuration depends on specific values for op-
eration mix, work parameters, configuration parameters and
for quality thresholds. For cost scalability, we measure the
capacities caps,d and compute the costs cs,d for all the #rc
configurations in the resource space rc:

∀d ∈ rcs, [cs,d, caps,d] (17)
When operation mix, work parameters and QTs are fixed,

these tuples can then be presented in a figure as shown later in
Fig. 4. In this figure cost is on the x-axis and capacity on the
y-axis, but the axes may of course be reversed. Configurations
that are too expensive relative to their delivered capacity can
be excluded. We introduce eff representing the set of cost-
efficient configurations for service s for the #rc configurations
within the resource space rc:

∀ α ∈ eff s {¬ ∃ i ∈ eff s |
[caps,i > caps,α) ∧ (cs,i < cs,α)]} (18)

Eq. 18 expresses that for a cost-efficient configuration α
there does not exist another cost-efficient configuration i with
a higher capacity and a lower cost.

IV. MEASUREMENT PLAN

We now describe our scaling scenario for CloudStore. For
AWS deployment, we describe three scenarios. The resource
space for primary scenario using public AWS deployments is
described in Sec. IV-A. We are also interested in the sensitivity
of two selected work parameters and the quality threshold
values and cover those in the secondary scenario described
in Sec. IV-B as well as the tertiary scenario in Sec. IV-C. The
resource space for these two scenarios is a condensed version
of the resource space for the primary scenario. Sec IV-D
describes our private OpenStack scenario. Finally, we describe
detailed guiding principles for conducting the measurements
in Sec IV-E

A. Primary AWS Scenario

We limit the resource space to present one comprehensive
scenario of cloud deployment configurations. Several cloud
resources exist, which are not included in our resource space.
At the overall level, we focus on AWS and do not consider
Microsoft or Google cloud services. At the next level, we use
general purpose processing Amazon EC2, and not memory
optimized instance types. We use the m3 instance type; the
best general app VM instance when we started in 2014. We
use the relation 1 m3.2xlarge = 2 m3.xlarge = 4 m3.large =
8 m3.medium which all have the same cost of $ 0.585±0.001

per hour [10]. Accordingly, we primarily use 1, 2, 4, or 8
instances. For database VM, we use the db.m3 instance type.
We focus on the instance sizes large, xlarge as well as 2xlarge.
To simplify naming we use 8.M:2XL for a configuration with
8 m3.medium app VMs and 1 db.2xlarge DB VM. The app
VMs appear in front of the database back end VMs.

In our primary scenario, we are interested in the cost scala-
bility using the work parameters wpcs = (10 000, 288 000) in
Eq. 6, for number of books and customers, respectively. We
use the quality thresholds in Eq. 8.

B. Secondary AWS Scenario

In this secondary scenario, we explore the sensitivity to
changes both in the number of books as well as in the
number of customers. We measure only a few different cloud
configurations and not the full resource space. We focus on
twice as many books: wpcs = (20 000, 288 000), as well as
twice as many initial customers: wpcs = (10 000, 576 000).

C. Tertiary AWS Scenario

Quality thresholds in Eq. 7 may change as a result of
altered customer preferences and market situation. A simple
option is to scale all quality thresholds by the same amount by
multiplying the quality metric vector with a given normalized
quality threshold scaling constant, t, defined as:

t~qs = (tqs,1, · · · , tqs,#op) (19)
In this tertiary scenario, we use t = 0.5 so that all response

time quality thresholds were halved. Similarly to the second
AWS scenario, we will only investigate a few configurations
in this tertiary scenario.

D. CloudStore Scenario on OpenStack

In a different deployment context, we use an OpenStack-
based private cloud environment. Our objectives with these
measurements are to estimate the impact of performance
variability in a public context compared to a controlled cloud
environment [11] and to demonstrate the reproducibility of the
measurement method itself. The work parameters and QTs are
identical to the AWS measurements in the primary scenario.

We conduct 10 measurement repetitions for each of two
sizes for the app VM group (1) with 2 vCPU and 7.5
GB of RAM and (2) with 4 vCPU and 15 GB. For both
configurations, we use one instance with 4 vCPUs and 15
GB for the database VM. In this way, we can look at the
consequences of adding a more powerful app VM instances.

E. Detailed Measurement Principles

We follow an exploratory approach and try to get an
overview with as few measurements as possible, both because
they are costly, but also because the manual effort takes time.
This is done by utilizing feedback during measurements, so
that if an instance type and size clearly are not utilized, it
does not make sense to add more instances of this type and
size (horizontal scaling). We also do not have to explore the
whole resource space, as it is most important to establish the
upper bound on capacity regardless of the configuration. We



also try to exploit the most expensive instance fully. For small
configurations, this is clearly the DB VM instance. For larger
configurations, it starts to be the app VM instance.

We already know that the cloud resources have significant
performance variability [11]. Therefore, a very accurate and
costly systematic measurement setup with binary search is
not required. We use the faster linear search where we can
roughly determine the capacity of a configuration with a single
measurement. For some cost optimal measurements, we should
do more measurements so that confidence intervals can be
established. We stop repeating measurements if a 10% relative
error is smaller than the confidence intervals, and we can be
sure that a pair of configurations is likely to have different
mean values by using Student-t-tests.

Since scalability (in contrast to elasticity behavior) is a
steady-state measure, we measure with automatic provisioning
(i.e. auto-scaling) turned off. To get reproducible measure-
ments we strive for avoiding caching effects as far as possible.
Deploying and filling the databases is therefore done for each
new measurement.

V. EXPERIMENT SETUP

This section describes our experiment setup for scaling
CloudStore deployed on public AWS resources and on pri-
vate OpenStack resources. We also describe the CloudStore
architecture and distributed load generation.

A. CloudStore Architecture

Fig. 2 represents a simplified view of the relation between
the services when CloudStore [4] is deployed on AWS. In
this figure, there are two types of links between the services.
Both links describe the use of services, but the filled link
also describes deployment. We use a distributed version of
the workload generator JMeter [12] to simulate the load of
a given number of virtual CloudStore users. JMeter instances
are deployed on EC2 in a different AWS availability zone than
CloudStore or in case of OpenStack on individual hardware.
AWS services S3 and CloudFront are used to obtain VM
images.

CloudStore is implemented using the Spring framework, and
deployed on Tomcat. Ngnix is used as a web proxy in front of
Tomcat. The CloudStore app VM instances communicate with
the MySQL database deployed on AWS RDS via Hibernate,
using a JDBC driver. Both Tomcat and Ngnix are deployed
on the same AWS EC2 instances. CloudStore has a payment
service and for this, we have made a response time generator.
This response time generator [13] is deployed on the PaaS
Heroku [14].

CloudStore is deployed on OpenStack with the same soft-
ware and configurations as we use on AWS. A MySQL
database is installed and configured in an OpenStack VM.
Instead of using CloudFront and S3 services, we hosted static
content (images) on Chef, an OpenStack solution for object
storage. The Payment service is deployed on Heroku.

Distributed
JMeter

CloudStore
App VM

Payment VM

EC2 RDS Image VM,
CloudFront, S3 Heroku

Database VM

Fig. 2. CloudStore deployed on AWS.

B. Configuration Parameter Values

There is a limit to the number of concurrent connections
for each database instance. For db.m3.large the default value
is 600, for db.m3.xlarge it is 1 200 and for db.m3.2xlarge it
is 2 400 connections. For best performance, these connections
should be evenly distributed to the app VM instances. Accord-
ingly, this parameter depends on the deployment configuration.
Maximum number of connections in each app VM instance is
specified in maxPoolSize in Hibernate.

C. Load Generation

We used JMeter [12] as a load generator, and evaluated
configurations one by one. For finding the capacity limit we
used linearly increasing load for 16 minutes. Depending on
the expected capacity, we configure JMeter to reach between
5 000 and 20 000 virtual users. The capacity was defined as
the load just before we experienced the first SLO violations.

Assume JMeter was configured to reach a maximum load
of 14 000 virtual users after 16 minutes. Further assume that
the last minute satisfying the SLO was the minute between
12 and 13 minutes with an average of 12.5/16 ∗ 14 000 =
10 938 virtual users (VU). With 7 seconds think time (and
zero response times) the maximum number of requests at 12.5
minute was:

#requests =
14 000 ∗ 60

7

12.5

16
= 93 750 (20)

In some measurements, a marginally higher load might
again satisfy the SLO, but this was ignored. This approach
rests on the assumption that the capacity with a linearly
increasing load is the same as the capacity with a stable
load. This assumption is confirmed by our own measurements
with stable load, as well as by Kossmann et al. [15]. With
this assumption, we also consider CloudStore to be a closed
system, even though we linearly increase the load.

VI. RESULTS

Actual measurements from the CloudStore [4] implementa-
tion are used to illustrate our scalability functions. This section
describes the results and discusses them, before outlining the
time required to conduct these measurements.

A. Results on Amazon

Table I shows the 49 CloudStore measurements on Amazon
with 10 000 books and 288 000 customers described in Eq. 6
as well as with normal quality thresholds, shown in Eq. 8.
The first column characterizes the deployment, initially with



TABLE I
AMAZON MEASUREMENTS ORDERED AFTER COST.

Instances Cost Cap. # Conf. UApp UDB

M:L 0.27 563 1 75 6
2.M:L 0.35 1 125 1 85 14
3.M:L 0.42 1 625 1 68 17
M:XL 0.47 563 1 87 3

2.M:XL 0.55 1 125 1 71 5
4.M:XL 0.69 2 250 1 74 12
XL:XL 0.69 3 406 6 ± 155 66 18
6.M:XL 0.84 3 438 1 75 20
M:2XL 0.86 563 1 76 2

2.M:2XL 0.93 1 094 1 69 3
8.M:XL 0.98 5 313 1 93 33
2.XL:XL 0.99 9 313 4 ± 1 021 89 55
4.M:2XL 1.08 938 1 99 3
6.M:2XL 1.22 3 500 1 81 10
8.M:2XL 1.37 4 500 1 80 14
2XL:2XL 1.37 6 219 4 ± 450 58 15
10.M:2XL 1.52 5 500 1 66 15
4.XL:XL 1.57 10 302 6 ± 582 44 71

4.XL:2XL 1.96 10 938 1 21 69
2.2XL:2XL 1.96 13 039 8 ± 764 56 38
4.2XL:2XL 3.13 11 709 6 ± 1 102 25 58

the number of application instances, then with the application
size (M, L, XL, 2XL) and finally with the database size (L, XL,
2XL), e.g., 2.2XL:2XL has two m3.2xlarge app instances as
well as one db.m3.2xlarge DB instance. The second column is
the overall cost for the app VM instances and the database VM
instance. All costs were recorded in February 2017 for Ireland
with MySQL, and are measured in $ per hour [10]. Capacity
in column three is measured in terms of maximum number
of virtual users (VU) which fulfill the quality thresholds for
all the CloudStore operations. The sixth and seventh columns
are the average % of CPU utilization for the app and the DB,
corresponding to the measured capacity.

To get a feeling for confidence intervals, some of the
measurements in Table I were repeated. In this case the values
in column three Table I represents the average capacity. The
number of repetitions is shown in column four and two-
sided confidence intervals for the repeated measurements in
column five. We use 90% confidence intervals and Student
t-distribution, e.g., with 90% probability, the capacity for
configuration 2.2XL:2XL is between 12 275 and 13 803.

With work parameter values of wpcs = (10 000, 288 000),
used until now, configuration 4.XL:XL has a capacity of
10 302. In our secondary scenario, we double the number of
books to wpcs = (20 000, 288 000) and the capacity reduces
to 2 250 VU. When doubling the number of customers to
wpcs = (10 000, 576 000), capacity becomes 4 500 VU. In
both these cases, we used two measurements, so that we in
total got 49+2+2 = 53 CloudStore measurements on AWS.

In our tertiary scenario, we halve the quality thresholds (see
Eq. 19) for all operations for the two configurations XL:XL
and 4.2XL:2XL. In both configurations, we used the original
work parameters wpcs = (10 000, 288 000). As a result, the
capacity did not change. This tertiary scenario did not require
new measurements, just recalculation of old measurements.
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Fig. 3. Resource scalability for some CloudStore configurations.

B. Results on OpenStack

On OpenStack, we did 10 measurements for two different
configurations as described in Sec. IV-D, and computed 90%
confidence intervals. With a 2 vCPU, capacity was 1488±61.
App and DB VM group’s average utilization were 6%±0.24%
and 48% ± 1.29%, respectively. With 4 vCPU, capacity was
1563±102. App and DB VM group’s average utilization were
6%± 0.39% and 22%± 0.51%, respectively.

C. Resource Scalability

Fig. 3 plots resources on the x-axis versus capacity on the y-
axis for the 10 configurations with db.m3.2xlarge as a database
VM. For the app VM instances, we use the relation 1 m3.-
2xlarge = 2 m3.xlarge = 4 m3.large = 8 m3.medium which all
have the same cost of $ 0.585±0.001 per hour [10]. The x-axis
in Fig. 3 represents the number of m3.medium. In two cases,
we have two competing configurations with the same cost,
namely 8.M and 2XL both with 8 app resources, and 4.XL
and 2.2XL with 16 app resources. In both cases, it seems like
the largest app instance has the best capacity.

The continuous line in Fig. 3 shows the maximum capacity
for a given number of base unit resources. With a larger
resource space, either because of more AWS configurations or
because of configurations from other vendors, we would have
got more dots in this figure. As a result, the graph could also
change; not because of a change in CloudStore, but because
of a more fine-grained procedure for evaluating the empirical
function.

In line with Eq. 18, Fig. 3 also shows how configurations
below the horizontal line are not cost-effective, i.e., configu-
ration 4M, 8M, 10M, 4:XL and 4.2XL.

In this example, there is only one type of resource unit,
namely the size of app VM instances. If we also included a
DB (database) VM instance, we get two types of resource
units, giving a three-dimensional graph, where the number
of resources for these two resource units becomes the x-
and y-axis and where the z-axis becomes their corresponding
capacity. Another solution is to normalize the size of these
resources [16]. We can then still use a two-dimensional graph.
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Fig. 4. Cost Scalability for all CloudStore configurations

In cloud computing, cost is an obvious normalizing factor, and
in this case, the combined cost for both resource types could
be the x-axis while the capacity is the y-axis. We refer to this
as cost scalability, which is illustrated in the next section.

D. Cost Scalability

Based on the tuples in Eq. 17, Fig. 4 plots the cost on the x-
axis versus the capacity on the y-axis for all the 21 CloudStore
AWS configurations shown in Table I. Like in Fig. 3, the
continuous line in Fig. 4 shows the maximum capacity, but
now for a given cost. Again, we see that some configurations
are not cost-effective, e.g., configuration M:2XL. Based on
Fig. 4, we can also get a feeling for how linear scalability is
for certain capacity ranges. For example, CloudStore scales
approximately linearly up to 13 000 virtual users, with one
exception: we see that configuration 2.XL:XL is particularly
good. For a cost of $0.99 per hour, it delivers a capacity of
9 313 virtual users. This gives a cost of 0.0106 cent per virtual
user per hour.

E. Discussion

In Table I, several measurements are limited by a saturated
CPU in the app VM instances. An expensive, but poorly
utilized database VM does not contribute to a cost-efficient
configuration, e.g., compare configuration M:2XL to 6.M:XL,
where the latter costs less but delivers a far better capacity.

Confidence intervals are relatively broader for CPU utiliza-
tions compared to capacities. When we increase work param-
eters, each request of an operation demands more resources to
be processed. Increasing the two work parameters, for books
and customers, have a drastic effect on capacity, especially
for the number of books where capacity drops to one fifth.
The results for halving of the response times indicate that
when we hit the capacity limit, then queues are building up

rapidly, especially when we use the strongest configuration
4.2XL:2XL, close to CloudStore’s maximum capacity.

According to our measurements, the capacity of CloudStore
is limited to 13 039 virtual users for configuration 2.2XL:2XL.
In this configuration neither the (average) app nor DB VM
CPU seems to be a bottleneck. The (average) app VM instance
CPU has the highest utilization, but adding more app VM
instances in configuration 4.2XL:2XL actually reduces the
capacity, even though the CPU utilization is approximately
halved. Based on the repeated measurements, a Student-t-
Test results in a probability of 96% for the hypothesis that
configuration 4.2XL:2XL to exhibits smaller capacity than
configuration 2.2XL:2XL.

We would like to clarify that the capacity limit in the
CloudStore implementation is the result of its use of under-
lying AWS resources and not a result of shortcomings in the
measurement set up itself. We tried to tune several Tomcat,
Ngnix and Linux network configuration parameters as well
as connection pooling parameters in both the app and DB
VM instances. None of these parameters resulted in a higher
capacity, although some of the parameters affected some mea-
surements. This points us to an inherent scalability problem
in the relational database. The number of RDS connections
could be ruled out since doubling them using 2xlarge instead
of xlarge as the RDS instance, does not significantly increase
the number of virtual users. We see from the MySQL slow
query log that when we reach the capacity, the query response
time increases dramatically. Possible causes could be database
locking issues, Hibernate transaction handling or RDS/MySQL
configuration issues like number of writer threads.

F. Time to Run the Experiments

The time required to experiment, including starting the
CloudStore application and distributed JMeter, depends on:
1) number of app VM instances, 2) number of virtual users to
be simulated by JMeter instances, 3) the number of books
and customers in the database as well as 4) the scenario
duration. Deploying and filling the database for CloudStore
with wpcs = (10 000, 288 000) and with four app VM
instances take approximately 30 minutes. To avoid caching
effects, deploying and filling the databases must be done for
each new measurement. After this, it takes approximately 20
minutes to deploy the distributed JMeter on eight instances of
m3.xlarge (each JMeter instance with m3.xlarge can handle
approximately 2 000 virtual users). In addition, we linearly
increase the load during 16 minutes. We also need time to
clean up and generate graphs. This is automated using a script,
and does not take more than a few minutes. In summary, one
experiment takes approximately five quarters of an hour.

VII. RELATED WORK

Our two scalability metric functions center around capacity,
and evaluate how capacity changes as a result of altering the
cloud resources. This understanding of scalability is supported
by the scalability definition in the systematic literature review
by Lehrig et al. [1]: ”Scalability is the ability of a cloud



layer to increase its capacity by expanding its quantity of
consumed lower-layer services.” Our two scalability functions
operationalize and detail Lehrig’s scalability definition. The
functions relate scalability to work, load, quality thresholds
and resource space.

Lehrig lists Tsai et al. [17] as the only validated scalability
metric for cloud computing. Our cost-related scalability func-
tion is basically similar to the metric by Tsai et al. However,
we consider different operations with individual quality thresh-
olds explicitly, and also differentiate between work and load.
Moreover, our way of presenting cost scalability in Fig. 4 has
not been done by Tsai. Our resource scalability function as
well as our concept of resource space are new.

Bondi’s [18] concept of load scalability is close to our
scalability functions, but ours are richer since we explicitly
consider work, load, quality thresholds as well as configuration
variables and deployments. We also apply our scalability
functions in a cloud computing context where cost is explicit.

Kossmann, Kraksa, and Loesing [15] compare the capacity
for a TPC-W application deployed on three different cloud
services: Amazon AWS, Google AppEngine, and Microsoft
Azure. As the number of users increase they observe through-
put that satisfies the quality thresholds. In contrast to our work,
they do not scale work parameters or quality thresholds. Their
focus is on the database VM group, while the app VM group
is not explicit. This means that they do not consider how the
capacity varies when the number of app VMs is scaled.

VIII. CONCLUSIONS, LIMITATIONS & FURTHER WORK

The results demonstrate that our proposed scalability metric
functions allow detailed insights like identification of cost-
efficient resource configurations for a given capacity. We
demonstrate that repeated measurements allow for compu-
tation of confidence intervals with a reasonable size that
underline differences between configurations.

CloudStore is a typical, three-tier session-based enterprise
application, and our equations capture the essence of scalabil-
ity for this type of applications. Other types of systems may
have further factors influencing scalability.

According to Erl [2], service quality metrics should be
quantifiable, repeatable, comparable and easily obtainable. We
claim that both the resource scalability as well as the cost
scalability metric functions fulfill these characteristics as they
are based on capacity as defined earlier, assuming a properly
defined SLO. Concerning how easy these scalability metric
functions are to obtain, Sec. VI-F gives indications.

Our feedback-driven explorative measurement process is not
specified formally. We scale the bottleneck resources first.
However, identifying new bottleneck resources usually require
human interpretation. In a new configuration, configuration
parameters shall ideally be tuned again. Manually, this is
impossible, due to the large effort involved. Similarly, it is
also a question if we have selected the best cloud resources in
our resource space, since exploring all cloud resources is not
feasible time- and cost-wise.

Automated resource space exploration can give more mea-
surements without increasing the manual work and may also
simplify finding optimal values of the plentiful configuration
parameters.

We focus on empirical scalability evaluation in this article,
but the scalability concepts are general and also applicable
for an analytical or model-based simulation approach that
may enable early architectural decision. With a model of the
deployed application, we are then no longer limited to cloud
resources that are actually deployed and measured. Resource
space exploration may also be automated.

Finally, a conceptually consistent specification of the in-
fluencing factors for scalability is useful, e.g. for handling
scalability in agile development [8].
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