
Chapter 14
Metrics and Benchmarks for Self-Aware
Computing Systems

Nikolas Herbst, Steffen Becker, Samuel Kounev, Heiko Koziolek, Martina Maggio,
Aleksandar Milenkoski and Evgenia Smirni

Abstract In this chapter, we propose a list of metrics grouped by the MAPE-K
paradigm for quantifying properties of self-aware computing systems. This set of
metrics can be seen as a starting point towards benchmarking and comparing self-
aware computing systems on a level-playing field. We discuss state-of-the art ap-
proaches in the related fields of self-adaptation and self-protection to identify com-
monalities in metrics for self-aware computing. We illustrate the need for bench-
marking self-aware computing systems is with the help of an approach that uncovers
real-time characteristics of operating systems. Gained insights of this approach can
be seen as a way of enhancing self-awareness by a measurement methodology on
an ongoing basis. At the end of the chapter, we address new challenges in reference
workload definition for benchmarking self-aware computing systems, namely load
intensity patterns and burstiness modeling.

Nikolas Herbst
University of Würzburg, Germany, e-mail: nikolas.herbst@uni-wuerzburg.de

Steffen Becker
Technical University Chemnitz, Germany,
e-mail: steffen.becker@informatik.tu-chemnitz.de

Samuel Kounev
University of Würzburg, Germany e-mail: samuel.kounev@uni-wuerzburg.de

Heiko Koziolek
ABB Ladenburg, Germany e-mail: heiko.koziolek@de.abb.com

Martina Maggio
Lunds Universitet, Sweden e-mail: martina.maggio@control.lth.se

Aleksandar Milenkoski
University of Würzburg, Germany,
e-mail: aleksandar.milenkoski@uni-wuerzburg.de

Evgenia Smirni
College of William and Mary, Williamsburg, VA, USA e-mail: esmirni@cs.wm.edu

431

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

432 Herbst et al.

14.1 Introduction

Beyond the need for methodologies to assess self-awareness of a computing system,
as discussed in Chapter 15, we see an increasing demand for comparisons of self-
aware systems on a level-playing field. Established domains in information tech-
nology usually come with a set of key-performance indicators or metrics, standard
scenarios and measurement rules that taken together form a benchmark. For exam-
ple, benchmarks of the Standard Performance Evaluation Corporation (SPEC) like
for CPUs, virtualization technology, or enterprise applications enable comparisons
and decision making. Our expectation is a growing number of self-aware comput-
ing systems that may exhibit similarities in their goals, features and application
domains. We see this as the major reason, why benchmarking of self-aware com-
puting systems will become more important in the course of the next years not only
to design and improve such systems, but also to reliably compare and select them.

A benchmark usually consists of three major building blocks: The first building
block is a set of reliable and intuitive metrics that can be combined to a single-valued
score. The second building block is the workload definition as an exact definition of
the work that is to be performed by the system under test together with a definition
of the load profile over time. The third building block is a well-defined measurement
methodology (also known as run rules) that assure repeatable measurements.

As a starting point towards the benchmarking of self-aware computing systems,
we propose in Section 14.2 an initial set of metrics grouped by the MAPE-K
generic control loop. The MAPE-K control loop consists of (i) monitor, (ii) ana-
lyze, (iii) plan and (iv) execute phases with a central knowledge repository and can
be seen as a special case of the self-aware learning and reasoning loop (as defined
in Chapter 1). In Section 14.3, we review the state-of-the-art in two related fields,
self-adaptation and self-protection, identifying commonalities with benchmarking
applied to self-aware computing system properties. In Section 14.4, we sketch an
approach to illustrate how a benchmark can help to improve and better understand a
self-aware computing system. In this case, this is achieved by continuously uncover-
ing real-time characteristics of the underlying operating system. In Section 14.5, we
explain how two new challenges in defining reference workloads can be addressed
to build a self-aware computing system benchmark. We focus on modeling load
profiles and realistic burstiness.

14.2 Metrics for Self-Aware Systems

Existing performance metrics, such as response time or throughput, are not sufficient
for benchmarking self-aware computing systems as they do not capture all relevant
aspects of self-awareness. Existing benchmarks and metrics often focus on a subset
of these aspects (designed, e.g., to evaluate self-adaptive, self-protecting aspects)
or use domain-specific refinements of a broader set of metrics that could be suited
for self-aware computing systems. In order to make a first step towards closing this

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

14 Metrics and Benchmarks for Self-Aware Computing Systems 433

gap, we went through a process to identify potential candidates of metrics suited
to benchmark self-aware computing systems. Those metrics can then be used to
quantitatively evaluate, compare, or analyze self-aware computing systems.

The process we went through was threefold. On the one hand, we identified and
adopted existing metrics from systems closely related to self-aware computing sys-
tems. In particular, we investigated metrics from self-adaptive computing system
evaluation and included them, if suited. Second, we used the MAPE-K reference
architecture and used it both as a grouping, as well as inspiration for new metrics.
Note that this does not mean in any way that the metrics can only be applied to com-
puting systems implemented in the MAPE-K style. The resulting metrics are meant
to be general. Finally, we used the definition of a self-aware computing system given
in Chapter 1. We went through all aspects of it and tried to come up with metrics
designed to quantify these aspects for any given self-aware computing system.

Goal	Fulfillment Monitor Analyze Plan Execute
Proportion	of	time	the	
is	in	a	goal	fulfillment	

state

Levels	of	self-
awareness

Number	of	input	
sources	utilized

Proportion	of	„correct“	
decisions	made	per	

time	unit

Proportion	of	time	the	
system	in	an	oscillating	

state
Duration	/	amount	of	
goal	violations	per	time

Number	of	monitored	
internal	and	external	

properties

Sophistication	of	the	
learning	mechanism

Sophistication	of	the	
reasoning	processes

Duration	of	an	
adaptation	action

Severity	of	goal	
violations

Granularity	/	precision	
of	sensing	the	
environment

Accuracy	of	the	
learned	models	w.r.t	

reality

“Precision	and	recall”	
of	the	selected	

adaptation	actions

Correctness	of	the	
adaptation	actions

Level	of	goal	fulfillment Size	/	length	of	the	
historically	stored	

properties

Duration	of	altering	the	
learning	process	upon	

changing	goals

Extent	/	granularity	of	
traceability	for	
reasoning

Monitoring	frequency
Monitoring	overhead
Completeness	of	the	
collected	and	required	

information
Number	of	required	
user	inputs	per	time	
(“user-in-the-loop”)

Table 14.1: Metric candidates overview

In the following, we illustrate the resulting list of suggestions for metrics address-
ing different parts of self-aware computing systems. These suggestions are intended
as ideas to influence the development of upcoming benchmarks for self-aware com-
puting systems. Table 14.1 provides an overview of all metrics we identified.

14.2.1 Goal Fulfillment

An initial set of metrics aims at quantifying the extent to which a self-aware com-
puting system is able to fulfill its goals over time. The following candidates have
been identified:

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

434 Herbst et al.

Proportion of time the system is in a goal fulfillment state: This metric indicates
the percentage of the time the system fulfills its goals. The closer this metric is to
100%, the better the system adapts to changing conditions.
Duration / amount of goal violations per time: This metrics capture the overall
amount of goal violations over the system’s runtime and the durations of time inter-
vals the system spent in a state where at least one goal is violated.
Severity of goal violations: This metrics captures for example 60% video quality
in an adapting video codec, or 10000 Euros unnecessarily spent for renting servers.
Level of goal fulfillment: This metrics captures, for example, the time in which an
autonomous car manages a given track, or the resource efficiency of a cloud infras-
tructure. This metric captures in addition to pure goal fulfillment cases in which a
goal can be fulfilled to different degrees.

14.2.2 Quality of the Information Collection (Monitor Phase)

The following metrics aim at quantifying the information needs of a self-aware
computing system, i.e., the amount of monitoring required for executing its self-
awareness functionality.
Levels of self-awareness: This metric classifies the computing system’s self-awareness
level (cf. Chapter 1), however, this might be hard to measure empirically. (aware-
ness of self, internal state; awareness of goals; awareness of self-awareness).
Number of monitored internal and external properties: As an example, a re-
sult could be that the computing system uses seven performance counters. The more
external properties the computing system needs to track the more complex and time-
consuming the monitoring would normally be.
Granularity / precision of sensing the environment: The metric captures the pre-
cision used to sense the environment. Higher precisions require better sensors but
the measurements need more storage space. For example, a system could use a res-
olution in the range of milliseconds to capture points in time.
Size / length of the historically stored properties: For an example system, the met-
ric could indicate that the collected monitoring data of the last two years is stored
and analyzed. The more data is saved, the better the system can reason about its
past. However, also the storage requirements increase.
Monitoring frequency: This metric captures the rate at which measurement and
monitoring data is collected from the environment (e.g., measurement values per
minute).
Monitoring overhead: The metric quantifies the time spent by the system for per-
forming monitoring tasks in contrast to executing other system functions.
Completeness of the collected and required information: The degree to which
the data made available to the system about its environment is complete, or can be
used to derive all required information. Especially important for systems that obtain
data about their environment from unreliable sensors.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

14 Metrics and Benchmarks for Self-Aware Computing Systems 435

Number of required user inputs per time (user-in-the-loop): How often the sys-
tem asks the user for environment data or advice on next steps. The lower this metric
is, the more autonomously the system acts.

14.2.3 Quality the Learning Process (Analyze Phase)

The following set of metrics aim to quantify the system’s ability to analyze and
learn from its observations.
Number of input sources utilized: The metric evaluates how many of the available
information sources are actually used in the learning process. It can be defined as
number models or views used divided by the total number.
Sophistication of the learning mechanism: This metric captures the effort the sys-
tem spends on learning. Usually, more effort leads to better behavior, e.g., duration
of the evolutionary algorithm (in order to find better solutions, potentially including
time-bounds). This metric would to be specified differently depending on the kind
of applied learning algorithm.
Accuracy of the learned models w.r.t reality: This captures how representative the
learned models are of the real-life entities/phenomena they abstract. For example,
the amount of real world states identified by a hidden Markov model or the degree
to which a surface explored by a robot matches the real surface. Note that this metric
assumes full knowledge of the modeled entities/phenomena.
Duration of altering the learning process upon changing goals: This metric cap-
tures the time the learning algorithm takes until it picks up changed system goals
and starts to adapt accordingly.

14.2.4 Quality of the Reasoning Process (Plan Phase)

The following metrics aim to capture the planning process of a self-aware comput-
ing system, i.e., its ability to propose actions that lead to better goal fulfillment.
Proportion of correct decisions made per time unit: The mean number of objec-
tively correct decisions the system makes per per unit of time. This metric assumes
that the software designers can specify the correct behavior for all situations that
arise during the benchmark.
Sophistication of the reasoning: This metric quantifies how smart the system is
able to reason. Possible values can be the number of evaluated alternatives for adap-
tations or the number of surprising positive findings.
Precision & recall of the selected adaptation actions: How many different adapta-
tion alternatives are considered? How many of them are reasonable ones? The con-
cept of precision & recall is for example employed for benchmarking self-protecting
systems as discussed in Sec. 14.3.2.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

436 Herbst et al.

Extent / granularity of traceability for reasoning: This metric captures the extent
to which a self-aware computing system is able to “explain” its decisions. It can ei-
ther be binary (is able / is not able to present rationale) or could be defined as degree
to which one is able to reproduce the decisions made by the system.

14.2.5 Measure the Adaptation Actions (Execute Phase)

The following metrics quantify the performance of the system in executing adapta-
tions.
Proportion of time the system in an oscillating / unstable state: The proportion
of time the system spends alternating between two or more states while the envi-
ronment is in a stable state. This metric is related to a jitter metric that has been
proposed in the context of elastic cloud systems and describes the number of miss-
ing or superfluous adaptations over time (see Sec. 14.3.1).
Duration of adaptation actions: The time an adaptation action takes, e.g., 5 min to
start a new server or 5 sec to turn the robot into another direction. This can approx-
imated by measuring the durations in sub-optimal states as done for elastic cloud
systems (see Sec. 14.3.1).
Correctness of the adaptation actions: This metric captures how successful adap-
tations are. It can be defined as the failure rate of adaptations. This metric also
relates to a metric proposed earlier in the context of elastic clouds, namely the aver-
age amount of over-/under-provisioned resources (see Sec. 14.3.1).

14.2.6 Summary

The presented metrics are a starting point for developing of new metrics and bench-
marks for evaluating the level of self-awareness a system exhibits. They do not pro-
vide a formal definition of what to measure and several of them are domain-specific,
i.e., they need to be refined for a concrete self-aware computing system. Further-
more, they have not yet been extensively validated to make sure that they can be
used to adequately characterize self-awareness aspects. In addition, aggregate met-
rics need to be defined to summarize the different sub-metrics producing an overall
self-awareness score. This is required to allow easy comparisons of different self-
aware computing systems in standardized benchmarks. It is still an open question,
how to define weights for the various sub-metrics when aggregating them to pro-
duce a single value. Finally, while some metrics are easy to determine and already
pretty clear in their definition, other metrics represent dynamic properties. For those
metrics, we need a methodology how to define a representative workload and set up
a representative environment in which we execute the system to be evaluated.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

14 Metrics and Benchmarks for Self-Aware Computing Systems 437

14.3 On the State-of-the-Art in Quantifying Self-Adaptation and
Self-Protection

The previous section outlined our proposed metric candidates for characteriz-
ing self-aware systems. As indicated, several of these metrics are inspired or
adapted from the related fields self-adaptation and self-protection. In this section,
we describe the state-of-the-art in these two field in detail. In the context of self-
adaptation, elasticity of compute clouds is taken as an example. In the context of
self-protection, intrusion detection systems (IDSes) are considered.

14.3.1 Quantifying the Quality of Self-Adaptation

The system property of self-adaptation is seen in many different fields of appli-
cations like autonomous robots and more. Self-adaptation in the context of elastic
resource provisioning in compute cloud resource provisioning is currently a highly
discussed topic in academia and industry, and therefore in the following we use it as
an example of a self-adaptation property.

When we talk about elasticity in the context of compute clouds, we refer to the
definition given in [17] as follows:

Elasticity is the degree to which a system is able to adapt to workload changes
by provisioning and de-provisioning resources in an autonomic manner, such
that at each point in time the available resources match the current demand as
closely as possible.

Several metrics for elasticity have been proposed during the last years:
(i) The “scaling latency” metrics in [26] or the “provisioning interval” in [8] capture
the time to bring up or drop a resource. This duration is a technical property of an
elastic environment independent of the demand changes and the elasticity mecha-
nism itself that decides when to trigger a reconfiguration. Thus, these metrics are
insufficient to fully characterize the elasticity of a platform.
(ii) The “reaction time” metric in [24] can only be computed if a unique mapping
between resource demand changes and supply changes exists. This assumption does
not hold especially for proactive elasticity mechanisms or for mechanisms that have
unstable (alternating) states.
(iii) The approaches in [2, 9, 10] characterize elasticity indirectly by analyzing re-
sponse times for significant workload changes or for SLO compliance. In theory,
perfect elasticity would result in constant response times for varying workload inten-
sity. In practice, detailed reasoning about the quality of platform adaptations based
on response times alone is hampered due to the lack of relevant information about
the platform behavior, e.g., information about the amount of provisioned surplus re-
sources.
(iv) Cost-based metrics are proposed in [11, 21, 41, 42] quantifying the impact of
elasticity by comparing the resulting provisioning costs to the costs for a peak-load

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

438 Herbst et al.

static resource assignment or the costs of a hypothetical perfect elastic platform. In
both cases, the resulting metrics strongly depend on the underlying cost model, as
well as on the assumed penalty for under-provisioning, and thus they do not support
fair cross-platform comparisons.

We select a set of metrics for two core aspects of elasticity accuracy and timing.
For these metrics, the optimal value is zero corresponding to a perfectly elastic plat-
form. The following assumptions must hold in order to be able to apply the selected
elasticity metrics to compare a set of different platforms: the existence of an auto-
nomic adaptation process, the scaling of the same resource type, e.g., CPU cores or
virtual machines (VMs), and that the respective resource type is scalable within the
same ranges, e.g., from 1 to 20 resource units.

The set of metrics evaluates the resulting elastic behavior as observed from the
outside and are thus designed in a manner independent of distinct descriptions of
the underlying hardware, the virtualization technology, the used cloud management
software, or the employed elasticity strategy and its configuration. As a conse-
quence, the metrics and the measurement methodology are applicable in situations
where not all influencing factors are known. All metrics require two discrete curves
as input: the demand curve, which defines how the resource demand varies during
the measurement period, and the supply curve, which defines how the actual amount
of resources allocated by the platform varies.

In the following, we describe the metrics for quantifying the accuracy aspect and
a set of metrics for quantifying the timing aspect as proposed in [18]

14.3.1.1 Accuracy

The under-provisioning accuracy metric accuracyU , is calculated as the sum of areas
between the two curves (∑U) where the resource demand exceeds the supply nor-
malized by the duration of the measurement period T , as visualized in Figure 14.1.
Similarly, the over-provisioning accuracy metric accuracyO is based on the sum of
areas (∑O) where the resource supply exceeds the demand.

Under-provisioning: accuracyU [resource units] =
∑U
T

Over-provisioning: accuracyO [resource units] =
∑O
T

Thus, accuracyU and accuracyO measure the average amount of resources that
are under-/over-provisioned during the measurement period T . Since under-provision-
ing results in violating SLOs, a customer might want to use a platform that does
not tend to under-provision at all. Thus, the challenge for providers is to en-
sure that enough resources are provided at any point in time, but at the same
time distinguish themselves from competitors by minimizing the amount of over-

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

14 Metrics and Benchmarks for Self-Aware Computing Systems 439

time resource demand resource supply

re
so

ur
ce

s

T

U2

O1

U1

U3 O3

O2

A1 A2 A3 B1 B2 B3

Fig. 14.1: Illustrating example for accuracy (U, O) and timing (A, B) metrics.

provisioned resources. Considering this, the defined separate accuracy metrics for
over-provisioning and under-provisioning allow providers to better communicate
their elasticity capabilities and customers to select the provider that best matches
their needs.

14.3.1.2 Timing

We characterize the timing aspect of elasticity from the viewpoint of the pure pro-
visioning timeshare, on the one hand, and from the viewpoint of the induced jitter
accounting for superfluous or missed adaptations, on the other hand.

Provisioning Timeshare

The two accuracy metrics allow no reasoning as to whether the average amount
of under-/over-provisioned resources results from a few big deviations between de-
mand and supply or if it is rather caused by a constant small deviation. To address
this, the following two metrics are designed to provide insights about the ratio of
time in which under- or over-provisioning occurs.

As visualized in Figure 14.1, the following metrics timeshareU and timeshareO
are computed by summing up the total amount of time spent in an under- (∑A) or
over-provisioned (∑B) state normalized by the duration of the measurement period.
Thus, they measure the overall timeshare spent in under- or over-provisioned states:

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

440 Herbst et al.

Under-provisioning: timeshareU =
∑A
T

Over-provisioning: timeshareO =
∑B
T

Jitter

Although the accuracy and timeshare metrics characterize important aspects of elas-
ticity, platforms can still behave very differently while producing the same metric
values for accuracy and timeshare. An example is shown in Figure 14.2.

resource demand resource supply

re
so

ur
ce

s

(a) Platform A

resource demand resource supply

re
so

ur
ce

s

(b) Platform B

Fig. 14.2: Platforms with different elastic behaviors that produce equal results for
accuracy and timeshare metrics

Both platforms A and B exhibit the same accuracy metrics and spend the same
amount of time in under-provisioned and over-provisioned states, respectively.
However, the behavior of the two platforms differs significantly. Platform B trig-
gers more unnecessary resource supply adaptations than Platform A.

The jitter metric captures this instability and inertia of elasticity mechanisms.
Low stability increases adaptation overheads and costs (e.g., in case of instance-
hour-based pricing), whereas a high level of inertia results in a decreased SLO com-
pliance.

The jitter metric compares the number of adaptations in the supply curve ES
with the number of adaptations in the demand curve ED. If a platform de-/allocates
more than one resource unit at a time, the adaptations are counted individually per
resource unit. The difference is normalized by the length of the measurement pe-
riod T :

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

14 Metrics and Benchmarks for Self-Aware Computing Systems 441

Jitter metric: jitter
[

#adaptations
time

]
=

ES−ED

T

A negative jitter metric indicates that the platform adapts rather sluggish to changes
in the demand. A positive jitter metric means that the platform tends to oscillate like
Platforms A (little) and B (heavily) as in Figure 14.2. High absolute values of jitter
metrics in general indicate that the platform is not able to react on demand changes
appropriately. In contrast to the accuracy and timeshare metrics, a jitter value of
zero is a necessary, but not sufficient condition for a perfect elastic system.

14.3.1.3 An Elasticity Benchmarking Concept

This paragraph shortly sketches an elasticity benchmarking concept as proposed
in [17] and its implementation called BUNGEE1 in [18]. The generic and cloud
specific benchmark requirements as formulated by Huppler [19, 20] and Folkerts et
al. [11] are considered in this approach. Figure 14.3 shows the four main steps of
the benchmarking process explained in the following:

Benchmark

Benchmark
Calibration

System
Analysis

Measurement
Elasticity
Evaluation

Fig. 14.3: Activity diagram for the benchmark workflow

1. Platform Analysis: The benchmark analyzes a system under test (SUT) with
respect to the performance of its underlying resources and its scaling behavior.

2. Benchmark Calibration: The results of the analysis are used to adjust the load
intensity profile injected on the SUT in a way that it induces the same resource
demand on all compared platforms.

3. Measurement: The load generator exposes the SUT to a varying workload ac-
cording to the adjusted load profile. The benchmark extracts the actual induced
resource demand and monitors resource supply changes on the SUT.

4. Elasticity Evaluation: The elasticity metrics are computed and used to com-
pare the resource demand and resource supply curves with respect to different
elasticity aspects.

The results of an exemplary benchmark run are plotted in Figure 14.4 and the
computed elasticity metrics are shown in Table 14.2.

1 BUNGEE Cloud Elasticity Benchmark: http://descartes.tools/bungee

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

442 Herbst et al.

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

0

250

500

A
rr

iv
al

 R
at

e
[1

/s
]

0
2
4
6
8

10

R
es

ou
rc

e
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e

[m
s]

load intensity demand supply waiting time service time

Fig. 14.4: Resource demand and supply curves for an exemplary benchmark run on
a public cloud

Table 14.2: Metric results for an exemplary benchmark run

accO
[#res.]

accU
[#res.]

tsO
[%]

tsU
[%]

jitter[
#adap.

min

]
1.053 0.180 51.9 8.1 -0.033

14.3.2 Quantifying the Quality of Self-Protection

We consider self-protection as a distinct property of self-aware systems. Under self-
protection, we understand continuous system protection against malicious activities
(e.g., intrusion attempts, resource exhaustions) by performing actions countering
these activities in real-time; that is, self-protection may be understood as one of
the high-level goals that a self-aware system may have (see Chapter 1). A typi-
cal self-aware system performs actions countering malicious activities by utilizing
common security mechanisms, such as intrusion detection and prevention systems,
access control systems, performance isolation mechanisms for preventing deliberate
resource exhaustions, and so on. In this section, we provide an overview of metrics
for quantifying properties of intrusion detection systems, which often play a key
role when it comes to self-protection. We also discuss the relevance of the consid-
ered metrics in the context of self-protection.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

14 Metrics and Benchmarks for Self-Aware Computing Systems 443

14.3.2.1 Quantifying Properties of Intrusion Detection Systems

Intrusion detection is a key enabling technology for self-protection. This is because
the timely and accurate detection of intrusion attempts (i.e., security breaches) en-
ables timely reaction in order to stop an on-going attack, or to mitigate the impact
of a security breach.

We distinguish between two categories of metrics for quantifying properties of
intrusion detection systems (IDSes): performance-related and security-related met-
rics. By performance-related metrics, we refer to metrics that quantify the non-
functional properties of an IDS under test, such as attack detection delay, capacity,
or resource consumption. By security-related metrics, we refer to metrics that quan-
tify the attack detection accuracy of an IDS, such as true and false positive rate.2

Because of their relevance when it comes to self-protection, we focus on metrics
that quantify the attack detection delay as well as on security-related metrics that
express the false positive rate.

Attack detection delay. The attack detection delay (also known as ‘attack de-
tection and reporting speed’) is typically evaluated in the context of IDSes coupled
with attack-response mechanisms (see, e.g., the work of Sen et al. [39]). Given that
attack-response mechanisms perform actions countering attacks detected by IDSes,
the fast detection and reporting of attacks by an IDS is crucial for the timely preven-
tion of attacks, which, in turn, is crucial for effective self-protection.

The attack detection delay can be quantified as the time needed for an IDS to is-
sue an alert after an attack has occurred. However, the way in which attack detection
delay is quantified may depend on the type of employed IDS. For instance, the attack
detection delay is often considered in the context of distributed IDSes. A distributed
IDS is a compound IDS consisting of multiple intrusion detection sub-systems (i.e.,
nodes) possibly deployed at different sites that communicate to exchange intrusion
detection-relevant data, for example, attack alerts. Each node of a distributed IDS
typically reports an on-going attack to the rest of the nodes when it detects the at-
tack. The immediate detection and reporting of attacks by each IDS node is crucial
for the timely detection of coordinated attacks (i.e., attacks targeting multiple sites
in a given time order). Therefore, the attack detection speed in the context of dis-
tributed IDSes is typically evaluated by measuring the time needed for an IDS to
converge to a state in which all its nodes are notified of an on-going attack, as done
by Hassanzadeh et al. [16] and Sen et al. [39].

Attack detection accuracy. The benefits of evaluating IDS attack detection ac-
curacy are manifold. For instance, one may compare multiple IDSes in terms of
their attack detection accuracy in order to deploy an IDS that operates optimally
in a given environment, thus reducing the risks of a security breach. The secu-
rity research community has developed multiple metrics for quantifying the at-
tack detection accuracy, such as the basic metrics false and true positive rate. The
false positive rate α = P(A|¬I) quantifies the probability that an alert generated
by an IDS is not an intrusion, but a regular benign activity; the true positive rate

2 We refer the reader to Chapter 22 for in-depth discussions on these metrics.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

444 Herbst et al.

1−β = 1−P(¬A|I) = P(A|I) quantifies the probability that an alert generated by
an IDS is really an intrusion.3 There are also composite metrics, that is, metrics that
combine the basic metrics in order to enable the analysis of relationships between
them, such as a ROC (Receiver Operating Characteristic) curve [28], and the metrics
developed by Gaffney and Ulvila [12] and Gu et al. [13].

The measure of false positive rate is important when it comes to evaluating the
attack detection accuracy of an IDS employed as part of a system featuring self-
protection — such an IDS may exhibit high false positive rate and cause the trig-
gering of many unnecessary actions countering attacks (e.g., shutting down targeted
network services or sub-systems), which may have negative effects. For example,
the system may incur high performance costs or become unavailable to users mis-
takenly labeled as users performing malicious activities. We now discuss the com-
posite ‘expected cost’ (Cexp) metric developed by Gaffney and Ulvila [12]. This
metric is a representative cost-based metric. Under cost-based metrics, we under-
stand metrics designed to quantify costs, such as performance or financial costs,
incurred by a system performing actions countering activities labeled as malicious
by an IDS. Cost-based metrics characterize the impact of the false positive rate and
are therefore relevant in the context of this work.

Gaffney and Ulvila combine ROC curve analysis with cost estimation by asso-
ciating an estimated cost with each IDS operating point (i.e., an IDS configuration
that yields given values of the true and false positive rates). A ROC curve is a two-
dimensional depiction of the accuracy of a detector as it plots true positive rate
against the corresponding false positive rate. Gaffney and Ulvila introduce a cost
ratio C = Cα/Cβ , where Cα is the cost of an IDS alert when an intrusion has not
occurred, and Cβ is the cost of not detecting an intrusion when it has occurred. To
calculate the cost ratio, one would need a cost-analysis model that can estimate Cα

and Cβ .
Cexp for a given IDS operating point can be calculated as Cexp = Min(CβB,(1−

α)(1−β))+Min(C(1−β)B,α(1−B)).4 This formula can be obtained by analyz-
ing (i.e., “rolling back”) a decision tree whose leaves are costs that may be incurred
by an IDS (i.e., Cα and Cβ). For more details on the analytical formula of the ‘ex-
pected cost’ metric, we refer the reader to [12].

Using Cexp one can identify an optimal IDS operating point (i.e., an IDS configu-
ration that yields optimal values of both the true and false positive detection rate) in
a straightforward manner. The identification of an optimal IDS operating point is a
common goal of IDS evaluation studies. A given operating point of an IDS is consid-
ered optimal if it has the lowest Cexp associated with it compared to the other operat-
ing points. In Figure 14.5, we depict a ROC curve annotated with the minimal Cexp
for an IDS such that 1−β is related to α with a power function (i.e., 1−β = αk).
In Figure 14.5, we depict values of 1− β such that α = 0.005,0.010,0.015, and
k = 0.002182. We obtain the values of α and k from the work of Gaffney and Ul-

3 A denotes an alert event (i.e., an IDS generates an attack alert); I denotes an intrusion event (i.e.,
an attack is performed).
4 1− α = 1− P(A|¬I) = P(¬A|¬I); β = 1− P(A|I) = P(¬A|I); B is the base rate (i.e., prior
probability that an intrusion event occurs — P(I)).

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

14 Metrics and Benchmarks for Self-Aware Computing Systems 445

0.4 0.6 0.8 1 1.2 1.4 1.6

·10−2

0.97

0.98

0.99

1

False positive rate (α)

T
ru
e
p
os
it
iv
e
ra
te

(1
−
β
)

[Cexp = 0.016]

Fig. 14.5: Quantifying costs using the expected cost metric

vila [12]. Further, we assume a base rate B = 0.1 and a cost ratio C = 10 (i.e., the
cost of not responding to an attack is 10 times higher than the cost of responding to
a false alert).

Because of the negative effects that IDSes exhibiting high false positive rates
may have, the research and industrial communities have designed IDS false alert
filters. A typical false alert filter detects false alerts issued by an IDS and blocks
their delivery. For instance, the de-facto standard network-based IDS Snort [37]
features suppression of alerts.5 Besides technical benefits, false alert filters bring
usability-related benefits; that is, they reduce the cognitive overhead incurred on IT
security officers who deal with IDSes on a daily basis, an issue acknowledged by
many researchers (e.g., Komlodi et al. [23]). Meng et al. [29] have proposed a cost-
based metric called ‘relative expected cost’ (Crec), which enables the quantification
of costs incurred by IDSes that use false alert filters. Crec is based on the ‘expected
cost’ metric (Cexp) [12], however, in contrast to Cexp, Crec quantifies costs associated
with the accuracy of an IDS’s false alert filter at classifying alerts as true or false.
Values of Crec can be associated with each IDS operating point on a ROC curve.
We refer the reader to the work of Meng et al. [29] for more details on the ‘relative
expected cost’ metric.

Cost-based metrics require cost-analysis models for estimating costs, such as Cα

and Cβ . However, such models can be difficult to construct in practice since they
assume the availability of parameters that might not be easy to measure (e.g, man-
hours). Further, cost-based metrics are not objective — they quantify of the attack
detection accuracy of an IDS based on a subjective measure (i.e., cost). However,
cost-based metrics may be of significant value when the relationships between the
different attack detection costs (e.g., cost of missing an attack, cost of a false alert)
can be estimated and when such estimations would be considered as sufficiently
accurate by the IDS evaluator for a particular IDS evaluation study. For instance,
given a statement such as “a false alarm is three times as costly as a missed attack”,
a cost-based metric would be crucial to identify an optimal IDS operating point.

5 See, for example, http://manual.snort.org/node19.html#SECTION00343000000000000000.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

446 Herbst et al.

Open challenge. Many modern environments exhibit self-adaptivity, a trait of
self-awareness (see Chapter 1), in terms of on-demand provisioning of resources to
computing nodes with respect to changes in the workload intensity. An example is a
virtualized Cloud environment that has elastic properties; that is, the hypervisor gov-
erning the environment may provision on-demand (i.e., hotplug) CPU and memory
resources to virtual machines (VMs). With the increasing adoption of virtualization
technology, the practice has emerged to deploy IDSes in virtualized environments.
For instance, a network-based IDS, such as Snort [37], deployed in a designated,
secured VM may tap into the physical network interface card used by all VMs.
Therefore, it can monitor the network activities of all guest VMs at the same time
while being isolated from, and transparent to, potential malicious VM users.

Existing metrics for quantifying IDS attack detection accuracy are defined with
respect to a fixed set of hardware resources available to the IDS. Their values express
the properties of the IDS for a specific hardware environment in which the IDS
is expected to reside during its lifetime [15]. However, many modern virtualized
environments (e.g., Cloud environments) have elastic properties; that is, resources
can be provisioned and used by VMs, on-demand during operation. Elasticity may
have an impact on the measured attack detection accuracy of an IDS deployed in
a virtualized environment. For example, the measured attack detection accuracy of
a network-based IDS under test may depend on the number of dropped packets by
the IDS in the time intervals when attacks have been performed. Large amounts of
dropped packets in such intervals due to lack of resources may manifest themselves
as low IDS attack detection accuracy.

Based on the above, we believe that the use of conventional metrics may lead to
inaccurate measurements in cases where the on-demand provisioning of resources to
the VM where an IDS under test resides has significant impact on the IDS’s attack
detection accuracy.6 This, in turn, may result in the deployment of misconfigured
or ill-performing IDSes in production environments, increasing the risk of security
breaches. We argue that novel metrics and measurement methodologies for mea-
suring the attack detection accuracy of IDSes deployed in virtualized environments
are needed. Such metrics and methodologies should take into account the behavior
of a given IDS under test as its operational environment changes. As a result, they
would allow to quantify the ability of the IDS to scale its attack detection efficiency
as resources are allocated and deallocated during operation. Metrics for quantifying
IDS attack detection accuracy that take elasticity of virtualized environments into
account are discussed in detail in Chapter 22.

14.4 Enhancing self-awareness by benchmarking

In some context, self-awareness may be used mainly to dimension the system. The
knowledge of some relevant properties (like the latency of a job for real-time sys-

6 Under conventional metrics, we understand existing IDS attack detection accuracy metrics, which
do not take elasticity of virtualized environments into account.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

14 Metrics and Benchmarks for Self-Aware Computing Systems 447

tems) guides the choice of the hardware to be used for a specific task. This is es-
pecially crucial where, for space limitations, the amount of computing capacity that
can be inserted into the physical space is limited.

In the automotive domain, for example, processors take care of multiple jobs at
the same time. Some of these jobs are high priority ones, like the cruise control.
Some other jobs have lower priority, like the entertainment system. Obtaining the
awareness of how much computing capacity is needed for each of the required tasks
can simplify the resource allocation and the entire design process. Applications can
be packed in the same physical cores, to save space and minimize the amount of
necessary hardware. While the system is running, the same awareness can guide
scheduling and resource allocation decisions, minimizing energy and performance
loss.

14.4.1 Unveiling the Real-Time Properties of Schedulers

The design principles that are followed when developing resource management
techniques in operating systems include simplicity, low overhead/memory footprint
and efficiency. Operating systems schedulers are usually developed following these
principles and guidelines. Once a scheduler is developed, its performance is tested
with a set of benchmarks. However, these benchmarks usually check the functional-
ity of the schedulers and the correctness of their behavior from a functional point of
view, while the ability to provide real-time guarantees is rarely properly quantified.

The real-time community has put a great effort in developing efficient schedul-
ing algorithms and, more in general, resource management policies to respond to
a broad variety of application models, types of execution platforms, etc. Unfortu-
nately, a large share of these results remains confined to the theory and is not imple-
mented into operating systems. In fact, operating system developers are resistant to
the adoption of real-time methods and algorithms, mostly because general purpose
operating systems must function in a more complex scenario than the one abstracted
in real-time models, while real-time scheduling algorithms tend to respond to spe-
cific problems and needs.

In an attempt to close the gap between these two worlds (the implementation side
and the theoretical algorithm side), one can basically follow two strategies: (1) sim-
plifying the development of schedulers and providing tools that reduces the imple-
mentation burden; (2) abstracting relevant quantities that can describe the behavior
of schedulers based on the execution of real tasks. This latter solution unveils the
real-time properties of tasks when they are executed on top of the real implementa-
tion of scheduling policies. In turn, this introduces self-awareness in the system. The
developer now has more information about the execution of tasks and is provided
with relevant data that can be used to design the system (for example for hardware
dimensioning).

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

448 Herbst et al.

rt-muse7 in an application-independent tool that takes as input a model of
a multi-threaded application, where each thread is constructed by basic elements,
called phases and produces as output an analysis of what happens when the threads
are executed on a real Linux platform.

Phases can be selected from a library that includes pure computation, resource
locking and memory usage. The tool is also extensible, the effort to create new
phases (possibly needed to capture application-specific behaviors) is minimal. The
results of the experiments are reproducible, as the tool relies only on tools that are
integrated in the Linux kernel. rt-muse records execution traces of the benchmark
application. The recorded traces are analyzed, providing both per-thread metrics and
aggregated features such as the bandwidth and the delay of the computing capac-
ity given to the application. The analysis is based on plugins, each one providing
some desired real-time feature. The usage of plugins enables both the configuration
of the analysis procedure and the development of additional analysis methods. Cur-
rently, rt-muse supports three types of analysis. The runmap analysis is aimed
at providing migration-relevant information and execution maps, unveiling how the
computing resources are utilized. The statistical plugin approximates the empirical
data about the execution times of the threads with probability distributions. The sup-
ply analysis produces abstractions of the computing capacity based on the concept
of a supply function [3, 25].
rt-muse executes the multi-threaded program directly on the hardware and

transfers the data via a UDP network connection, to avoid generating logging over-
head on the machine that is executing the threads.

The tool was used to discover interesting facts about the behavior of Linux
scheduling classes. In Linux terms, SCHED OTHER is the standard algorithm in
Linux, called Completely Fair Scheduler (CFS). The main advantage of using this
algorithm is to enforce fairness among the running threads. Threads that have the
same characteristics should receive an approximately equal amount of CPU. A set
T = {τ1, . . . ,τ6} of 6 threads was run using rt-muse. All the τi threads have the
same characteristics. Their job is composed by one single phase φi,1 which simply
executes some mathematical instructions. In other words, every thread executes a
certain number of mathematical operations for each job and jobs are run one after
the other without stopping. The scheduling parameters of all the threads belonging
to T are the same: the threads affinity mask contains three CPUs, [1,2,3], avoid-
ing the execution on CPU #0. The experiment lasted 100 seconds and rt-muse
was recording the start time of each job. Ideally, one would expect that six threads
with the same characteristics, running on three cores, would receive similar budgets,
possibly obtaining each half of a CPU.

Table 14.3 reports the amount of CPU α ′i that is used by each thread as esti-
mated by the tool and the delay in executing the thread δ ′i . The last three columns
correspond to the share of consumed CPU.

The allocated computing capacities α ′i are almost all equal to each other, except
α ′6 which is noticeably larger than the others. A possible explanation could be in the

7 https://github.com/martinamaggio/rt-muse/

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

14 Metrics and Benchmarks for Self-Aware Computing Systems 449

CPUUSAGE CPUSHARE

τi α ′i δ ′i #1 #2 #3
τ1 0.412 0.591 0.062 0.614 0.324
τ2 0.410 1.314 0.191 0.332 0.476
τ3 0.409 1.398 0.009 0.440 0.551
τ4 0.413 1.839 0.159 0.302 0.539
τ5 0.413 0.684 0.109 0.545 0.346
τ6 0.567 3.985 0.834 0.062 0.104

Table 14.3: Threads scheduled by SCHED OTHER.

longer time τ6 executed over the same CPU. Although other interfering operating
system threads could be easily accommodated on CPU #0, which is not used by the
set T , still the overall delivered bandwidth is α ′∗ = 2.641862, quite less than the
full 3 CPUs dedicated to T .

From this experiment a developer would learn that the Completely Fair Sched-
uler in Linux is in fact not that fair among threads and that to enforce real-time
guarantees on the computation capacity offered to the threads it is better to use real-
time scheduling policies like SCHED RR and SCHED FIFO. In subsequent exper-
iments with the tool, however, it was discovered that despite both SCHED RR and
SCHED FIFO, timing properties, they do not enforce any type of fairness among
the threads and the push/pull migration system that they use has quite many de-
fects [27].

14.5 Addressing the Challenges in Defining Reference
Workloads for Benchmarking Self-Aware Computing
System Properties

Benchmarking is a critical step for effective capacity planning and resource provi-
sioning, and consequently may guide the design of self-aware systems. An effective
benchmark should evaluate the system responsiveness under a wide range of client
demands from low to high, but most benchmarks are designed to assess the sys-
tem responsiveness under a steady client demand. If systems are provisioned for
steady peak loads to avoid the deleterious effects of sudden workload surges, they
consistency suffer from low resource utilizations [4], which results in ecosystems
that are energy inefficient and wasteful. In addition, system behavior under high yet
steady client demand may actually be very different than under varying or bursty
conditions [30,32]. Because of its tremendous performance implications, variability
and burstiness must be accounted in the design of self-aware systems and must be
incorporated into benchmarking.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

450 Herbst et al.

Burstiness in workloads can be broadly defined as workload surges that occur
aperiodically, with various frequencies, and (usually) short duration. In cloud com-
puting, for example, virtual machine (VM) workloads have been observed to be
highly bursty [5, 31, 44]. For a typical web server, burstiness can be an outcome of
the flash crowd effect, where a web page linked by a popular blog or media site
suddenly experiences a huge increase of the number of hits. Consider also the case
of an auction site (e.g., eBay) where users compete to buy an object that is going to
be soon assigned to the customer with the best offer, but also in e-business sites as
a result of special offers and marketing campaigns. Generally, if variability or even
burstiness in the workload is observed, it can be catastrophic for performance, lead-
ing to dramatic server overloading, uncontrolled increase of response times and, in
the worst case, service unavailability [30–32].

Standard benchmarks lack the ability to produce a representatively varying load
profile with burstiness because user arrivals are defined by a Poisson process, i.e.,
they are always assumed to be independent of their past activity and independent
of each other. Exponential inter-arrival times are incompatible with the notion of
burstiness for several reasons:
Temporal locality: intuitively, under conditions of burstiness, arrivals from different
sources cannot happen at random instants of time, but they are instead condensed
in short periods across time. Therefore, the probability of sending a request inside
this period is much larger than outside it. This behavior is inconsistent with classic
distributions considered in performance engineering of web applications, such as
Poisson, hyper-exponential, Zipf, and Pareto, which all miss the ability of describing
temporal locality within a process.
Variability of different time scales: Variability within a traffic surge is a relevant
characteristic for testing peak performance degradation. Therefore, a benchmarking
model for burstiness should not only create surges of variable intensity and duration,
but also create fluctuations within a surge. This implies a hierarchy of variability lev-
els that cannot be described by a simple exponential distribution and instead requires
a more structured arrival process.
Lack of aggregation: In standard client-server benchmarks each thread on the client
machines uses a dedicated stream of random numbers, thus inter-arrival times of dif-
ferent users are always independent. This is indeed representative of normal traffic,
but fails in capturing the essential property of traffic surges: users act in an aggre-
gated fashion which is mostly incompatible with independence assumptions.

In the following subsections, we shortly outline an approach to model variable
load profiles and present a methodology that addresses the above points and provides
a seamless way to incorporate burstiness into benchmarks.

14.5.1 Modeling of Load Intensity Patterns

Many modeling approaches include concepts to define workload intensity by attach-
ing this information to modeled workload scenarios. Examples can be found in the

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

14 Metrics and Benchmarks for Self-Aware Computing Systems 451

SPE approach by [40] and in UML-SPT [34]. UML-SPT supports scenarios with
open and closed workloads that are parameterized by specifications of arrivals (oc-
currence patterns), or a population with a think times distribution (external delay).
The allowed attribute values include the definition of probability distributions and
different arrival patterns—namely bursty, bounded, and periodic. Other approaches
to be mentioned in this context are the CSM [36] and MARTE [35].

We conclude from reviewing the above-mentioned approaches, that a load inten-
sity profile definition is a crucial element to complete a workload characterization.
The observed or estimated arrival process of transactions (on the level of users,
sessions or requests/jobs arrivals) needs to be specified. As basis to specify time-
dependent arrival rates or inter-arrival times, the extraction of a usage model should
provide a classification of transaction types, that are statistically indistinguishable
in terms of their resource demanding characteristics.

A Load Intensity Profile is an instance of an arrival process. A workload that con-
sists of several types of transactions is then characterized by a set of load intensity
profile instances.

Load intensity profiles are directly applicable in the context of any open work-
load scenario with a theoretically unlimited number of users, but are not limited to
those [38]. In a closed or partially closed workload scenario, with a limited number
of active transactions, the arrival process can be specified within the given upper
limits and zero. Any load intensity profile can be transformed into a time series
containing arrival rates per sampling interval.

W
or

kl
oa

d
Un

its

Time

 + / × + / × + / × + / ×

 + / ×

Seasonal

Trends &
Breaks

Overlaying
Seasonal

BurstNoise

 + / ×
 + / ×

Fig. 14.6: Elements of Load Intensity Profiles as proposed in [22]

For a load profile to be representative for a given application domain it has to
be a mixture of (i) one or more (overlaying) seasonal patterns, (ii) long term trends
including trend breaks, (iii) characteristic bursts and (iv) a certain degree of noise.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

452 Herbst et al.

These components can be combined in an additive or multiplicative manner over
time as visualized in Figure 14.6.

At early development stages, load intensity profiles can be estimated by domain
experts by defining synthetic profiles using statistical distributions or mathematical
functions. At a higher abstraction level, the Descartes Load Intensity Model (DLIM)
allows to descriptively define the seasonal, trend, burst, and noise elements in a
wizard-like manner [22]. DLIM is supported by a tool-chain named LIMBO [1].

A good starting point for a load intensity profile definition at the development
stage is to analyze the load intensity of comparable systems within the same domain.

We identify the following open challenges in the field of load profile description
and their automatic extraction:

• Seasonal patterns may overlay each other (e.g., weekly and daily patterns) and
change in their shape over time. Current load profile extraction approaches do
not fully support these scenarios.
• Based on meta-knowledge or clustering techniques, seasonal patterns can be by

classified and extracted into separate models, e.g., a model for ordinary work-
ing days, for public holidays, and for weekends, which would result in more
accurate load profile extraction.

14.5.2 Markov Arrival Processes for Modeling Burstiness

A Markov arrival process (MAP) can be seen as a simple mathematical model of
a time series, such as a sequence of interarrival times, for which we can accurately
shape distribution and correlations between successive values. Correlations among
consecutive think times are instrumental to capture periods of the time series where
think times are consecutively small and thus a surge occurs, as well as to determine
the duration of the surge.

We use a class of MAPs with two states only, one responsible for the generation
of “short” inter-arrival times implying that users arrive in closely spaced arrivals,
possibly resulting in surges, while the other is responsible for the generation of
“long” interarrival times associated to periods of normal traffic. In the “short” state,
interarrival times are generated with mean rate λshort , similarly they have mean rate
λlong < λshort in the “long” state. In order to create correlation between different
events, after the generation of a new interarrival time sample, our model has a prob-
ability pshort that two consecutive times are short and a different probability plong of
two consecutive think times being both long. The values of pshort and plong shape
the correlations between consecutive interarrival times and are instrumental to de-
termine the duration of the traffic surge. The two probabilities pshort and plong are
independent of each other.

In order to gain intuition on the way this model works, we provide the following
pseudo code to generate a sample of nt interarrival time values Z1, Z2, . . ., Zn, . . .,
Znt from a MAP parameterized by the tuple (λlong, λshort , plong, pshort):

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

14 Metrics and Benchmarks for Self-Aware Computing Systems 453

function: MAP sample(λlong, λshort , plong, pshort , nt)
/* initialization in normal traffic state */
active state = “long”;
for n = 1,2, . . . ,nt
/* generate sample in current state */

Zn = sample from exponential distribution
with rate λactive state;

/* update MAP state */
r = random number in [0,1];
if active state =“long” and r ≥ plong

active state = “short”;
else if active state =“short” and r ≥ pshort

active state = “long”;
end

end

Figure 14.7 summarizes the traffic surge model described above. Note from the
pseudo code that the problem of variability of different time scales is solved ef-
fectively in MAPs by the fact that, if the MAP is in a state i, then the samples are
generated by an exponential distribution with rate λi associated with state i. This cre-
ates fluctuations within the traffic surge. The probability of arrivals inside the traffic
surge is larger than outside it, thanks to the state change mechanism that alters the
rate of arrival from λlong to λshort .

NORMAL
TRAFFIC

TRAFFIC
SURGE

1 - plong

1 - pshort

long think times short think times

pshortplong

λlong λshort

Fig. 14.7: Model of traffic surges based on regulation of interarrival times

Summarizing, we propose to generate interarrival times in such a way to period-
ically enter into a state “short” that facilitates the formation of burstiness because
here users have smaller interarrival times and thus submit requests more often. The
parameterization of the MAP requires only to assign λshort and λlong < λshort to
describe the interarrival times respectively during flash crowds and normal user
activity periods, together with the probabilities pshort and plong of consecutive in-
terarrival times being both short or both long, respectively. Once that these four
parameters have been set up, the benchmark can generate interarrival time samples
using the above pseudocode. For more details on MAPs, we direct the interested
reader to [6, 7].

Yet, the problem that is not solved is the quantification of burstiness. The index of
dispersion as a regulator of the intensity of traffic surges. The index of dispersion I

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

454 Herbst et al.

is a measure of burstiness in networking and service engineering [14, 30]. Consider
a sequence of values (e.g., think times, inter-arrival times, service times) with vari-
ability quantified by the squared-coefficient of variation (SCV), where the difference
in magnitude between consecutive values is summarized by the lag-k autocorrela-
tions8 ρk. Assuming that SCV and ρk do not change over time, then the index of
dispersion is the quantity I = SCV (1+2∑

∞
k=1 ρk). For finite length sequences, this

value can be estimated accurately, without resorting to an infinite summation, using
the methods outlined in [14]. The index of dispersion I has the fundamental prop-
erty that it grows proportionally with both variability and correlations, thus can be
immediately used to identify burstiness in a workload trace.

When there is no burstiness, the value of I is equal to the squared coefficient-of-
variation of the distribution, e.g., I = SCV = 1 for the exponential distribution, while
it grows to values of thousands on bursty processes. Thus, a parameterization of I
spanning a range from single to multiple digits can give a good sense of scalability
between workloads with “no burstiness” and workloads with “dramatic burstiness”,
for examples of workloads and their index of dispersion, we direct the interested
reader to [31].

Now the question becomes: how should the MAP process be parameterized in
order to regulate burstiness using the index of dispersion as a measure? We present
here a case study that considers a closed system and show how to determine a
parameterization (λlong, λshort , plong, pshort) that produces a sequence of surges in
the traffic. We assume that the user gives the desired values of the mean interarrival
time E[Z] (typically, in closed systems terminology, this value can be considered as
the mean user “think time” before a request is sent to the system and of the (desired)
index of dispersion I. Again, using typical closed-system terminology, we assume
that we have N circulating users in the system. For example, for a typical web server,
N corresponds to the maximum number of client connections. One needs to also
consider the average service demand E[Di] of each server i that can be estimated
from utilization measurements [43]. This measure is important to provide, because
the purpose of the benchmark is to keep the average system utilization to less than
100%, i.e., the system is never in over-saturation.

A MAP can fully define the think/interarrival time distribution other than the
mean E[Z] starting by the following parameterization equations:

λ
−1
short =(∑i E[Di])/ f , (14.1)

λ
−1
long = f max(N(∑i E[Di]),E[Z]]). (14.2)

Here, f ≥ 1 is a free parameter, N is the maximum number of client connections
considered in the benchmarking experiment, ∑i E[Di] is the minimum time taken
by a request to complete at all servers, and N(∑i E[Di]) provides an upper bound
to the time required by the system to respond to all requests. Eq. (14.1) states that,
in order to create surges, the think times should be smaller than the time required

8 Recall that the lag-k autocorrelation coefficient is a normalized measure of correlation between
random variables Xt and Xt−k, with position in the trace differing by k lags. For a trace with mean
µ and variance σ2, ρk = E[(Xt −µ)(Xt−k−µ)]/σ2,k ≥ 1.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

14 Metrics and Benchmarks for Self-Aware Computing Systems 455

by the system to respond to requests. Thus, assuming that all N clients are simul-
taneously waiting to submit a new request, one may reasonably expect that after
a few multiples of λ

−1
short all clients have submitted requests and the architecture

has been yet unable to cope with the traffic surge. Conversely, (14.2) defines think
times that on average give to the system enough time to cope with any request,
i.e., the normal traffic regime. Note that the condition λ

−1
long ≥ f E[Z] is imposed to

assure that the mean think time can be E[Z], which would not be possible if both
λ
−1
short > λ

−1
long > E[Z] since f > 1 and in MAPs the moments E[Z],E[Z2], . . . are

E[Zk] =
plong

plong + pshort
λ
−k
short +

pshort

plong + pshort
λ
−k
long. (14.3)

The above formula for k = 1 implies that E[Z] has a value in between of λ
−1
short and

λ
−1
long, which is not compatible with λ

−1
short ≥ λ

−1
long ≥ f E[Z]. According to the last

formula, the MAP parameterization can always impose the user-defined E[Z] if

plong = pshort

(
λ
−1
long−E[Z]

E[Z]−λ
−1
short

)
, (14.4)

condition which we use in the modified TPC-W benchmark to impose the mean
think time.

In order to fix the values of pshort and f in the above equations, we first do a
simple search on the space (pshort ≥ 0, f ≥ 1) where at each iteration we check the
value of the index of dispersion I and lag-1 autocorrelation coefficient ρ1 from the
current values of pshort and f . We stop searching when we find a MAP with an I
that is within 1% of the target user-specified index of dispersion and the lag-1 auto-
correlation is at least ρ1 ≥ 0.4 in order to have consistent probability of formation
of surges within short time periods9. The index of dispersion of the MAP can be
evaluated at each iteration as 10 [6, 7, 33]:

I = 1+
2 pshort plong(λshort −λlong)

2

(pshort + plong)(λshort pshort +λlong plong)2 , (14.5)

while the lag-1 autocorrelation coefficient is computed as

ρ1 =
1
2
(1− plong− pshort)

(
1− E[Z]2

E[Z2]−E[Z]2

)
, (14.6)

where E[Z2] is obtained from (14.3) for k = 2. We direct the reader to [31] for a
case study that illustrates how to generate arrival processes with various degrees of
burstiness within the TPC-W benchmark.

9 The threshold 0.4 has been chosen since it is the closest round value to the maximum autocorre-
lation that can be obtained by a two-state MAP.
10 Note that Eq. (14.5) slightly differs in the denominator from other expressions of I, such as those
reported in [14], because here we consider a MAP that is a generalization of an MMPP process.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

456 Herbst et al.

14.6 Conclusion and Open Challenges

In this chapter, we proposed a set of metrics for describing self-aware computing
system properties and grouped them by the MAPE-K paradigm. This set of metrics
can be seen as a first step towards building benchmarks for self-aware computing
systems, consisting of a well-defined measurement methodology (run rules), repre-
sentative workloads and metrics.

The central remaining challenge is to properly evaluate the behavior of self-aware
systems with this set of metrics, in other words to build a level-playing field for fair
comparisons of self-aware system properties. This includes the challenges to de-
fine reference systems/behavior, and design measurement processes for repeatable
and fair results. Ideas on how these challenges could be tackled can be found in
related areas of research like self-adaptive systems, autonomic computing and simi-
lar. Starting from Section 14.3.1, we presented central aspects from related areas that
may become relevant for benchmarking self-aware computing systems. As a more
philosophical outlook and discussion on how self-aware system properties can be
assessed, we refer the reader to Chapter 15.

References

1. LIMBO: Load Intensity Modeling Framework. http://descartes.tools/limbo,
2015.

2. Rodrigo F Almeida, Flávio RC Sousa, Sérgio Lifschitz, and Javam C Machado. On Defining
Metrics for Elasticity of Cloud Databases. In Proceedings of the 28th Brazilian Symposium
on Databases, 2013.

3. Enrico Bini, Marko Bertogna, and Sanjoy Baruah. Virtual multiprocessor platforms: Specifi-
cation and use. In Proceedings of the 2009 30th IEEE Real-Time Systems Symposium, pages
437–446, 2009.

4. Robert Birke, Mathias Björkqvist, Lydia Y. Chen, Evgenia Smirni, and Ton Engbersen.
(big)data in a virtualized world: volume, velocity, and variety in cloud datacenters. In Pro-
ceedings of the 12th USENIX conference on File and Storage Technologies, FAST 2014, Santa
Clara, CA, USA, February 17-20, 2014, pages 177–189, 2014.

5. Robert Birke, Andrej Podzimek, Lydia Y. Chen, and Evgenia Smirni. State-of-the-practice in
data center virtualization: Toward a better understanding of VM usage. In 2013 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Budapest,
Hungary, June 24-27, 2013, pages 1–12, 2013.

6. Giuliano Casale, Eddy Z. Zhang, and Evgenia Smirni. Kpc-toolbox: Best recipes for automatic
trace fitting using markovian arrival processes. Perform. Eval., 67(9):873–896, 2010.

7. Giuliano Casale, Eddy Z. Zhang, and Evgenia Smirni. Trace data characterization and fitting
for markov modeling. Perform. Eval., 67(2):61–79, 2010.

8. Dean Chandler, Nurcan Coskun, Salman Baset, Erich Nahum, Steve Realmuto Masud Khand-
ker, Tom Daly, Nicholas Wakou Indrani Paul, Louis Barton, Mark Wagner, Rema Hariharan,
and Yun seng Chao. Report on Cloud Computing to the OSG Steering Committee. Technical
report, April 2012.

9. Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st ACM symposium
on Cloud computing, SoCC ’10, pages 143–154, New York, NY, USA, 2010. ACM.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

14 Metrics and Benchmarks for Self-Aware Computing Systems 457

10. Thibault Dory, Boris Mejı́as, Peter Van Roy, and Nam-Luc Tran. Measuring Elasticity for
Cloud Databases. In Proceedings of the The Second International Conference on Cloud Com-
puting, GRIDs, and Virtualization, 2011.

11. Enno Folkerts, Alexander Alexandrov, Kai Sachs, Alexandru Iosup, Volker Markl, and Cafer
Tosun. Benchmarking in the Cloud: What It Should, Can, and Cannot Be. In Raghunath
Nambiar and Meikel Poess, editors, Selected Topics in Performance Evaluation and Bench-
marking, volume 7755 of Lecture Notes in Computer Science, pages 173–188. Springer Berlin
Heidelberg, 2012.

12. John E. Gaffney and Jacob W. Ulvila. Evaluation of intrusion detectors: a decision theory
approach. In Proceedings of the 2001 IEEE Symposium on Security and Privacy, pages 50–
61, 2001.

13. Guofei Gu, Prahlad Fogla, David Dagon, Wenke Lee, and Boris Skorić. Measuring intrusion
detection capability: an information-theoretic approach. In Proceedings of the 2006 ACM
Symposium on Information, computer and communications security (ASIACCS), pages 90–
101, New York, NY, USA, 2006. ACM.

14. R. Gusella. Characterizing the variability of arrival processes with indexes of dispersion. IEEE
JSAC, 19(2):203–211, 1991.

15. Mike Hall and Kevin Wiley. Capacity verification for high speed network intrusion detection
systems. In Proceedings of the 5th International Conference on Recent Advances in Intrusion
Detection (RAID), pages 239–251, Berlin, Heidelberg, 2002. Springer-Verlag.

16. Amin Hassanzadeh and Radu Stoleru. Towards Optimal Monitoring in Cooperative IDS for
Resource Constrained Wireless Networks. In Proceedings of 20th International Conference
on Computer Communications and Networks (ICCCN), pages 1–8, August 2011.

17. Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. Elasticity in Cloud Computing:
What it is, and What it is Not (short paper). In Proceedings of the 10th International Confer-
ence on Autonomic Computing (ICAC 2013). USENIX, June 2013.

18. Nikolas Roman Herbst, Samuel Kounev, Andreas Weber, and Henning Groenda. BUNGEE:
An Elasticity Benchmark for Self-adaptive IaaS Cloud Environments. In Proceedings of the
10th International Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems, SEAMS ’15, pages 46–56, Piscataway, NJ, USA, 2015. IEEE Press.

19. Karl Huppler. Performance Evaluation and Benchmarking. chapter The Art of Building a
Good Benchmark, pages 18–30. Springer-Verlag, Berlin, Heidelberg, 2009.

20. Karl Huppler. Benchmarking with Your Head in the Cloud. In Raghunath Nambiar and Meikel
Poess, editors, Topics in Performance Evaluation, Measurement and Characterization, volume
7144 of Lecture Notes in Computer Science, pages 97–110. Springer Berlin Heidelberg, 2012.

21. Sadeka Islam, Kevin Lee, Alan Fekete, and Anna Liu. How a Consumer Can Measure Elas-
ticity for Cloud Platforms. In Proceedings of the 3rd ACM/SPEC International Conference on
Performance Engineering, ICPE ’12, pages 85–96, New York, NY, USA, 2012. ACM.

22. Jóakim V. Kistowski, Nikolas Herbst, Daniel Zoller, Samuel Kounev, and Andreas Hotho.
Modeling and extracting load intensity profiles. In Proceedings of the 10th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS ’15,
pages 109–119, Piscataway, NJ, USA, 2015. IEEE Press.

23. Anita Komlodi, John R. Goodall, and Wayne G. Lutters. An Information Visualization Frame-
work for Intrusion Detection. In CHI ’04 Extended Abstracts on Human Factors in Computing
Systems, page 1743, New York, NY, USA, 2004. ACM.

24. Michael Kuperberg, Nikolas Roman Herbst, Joakim Gunnarson von Kistowski, and Ralf
Reussner. Defining and Quantifying Elasticity of Resources in Cloud Computing and Scalable
Platforms. Technical report, Karlsruhe Institute of Technology (KIT), 2011.

25. Hennadiy Leontyev, Samarjit Chakraborty, and James H. Anderson. Multiprocessor exten-
sions to real-time calculus. Real-Time Syst., 47(6):562–617, December 2011.

26. Zheng Li, L. O’Brien, He Zhang, and R. Cai. On a Catalogue of Metrics for Evaluating
Commercial Cloud Services. In Grid Computing (GRID), 2012 ACM/IEEE 13th International
Conference on, pages 164–173, Sept 2012.

27. Martina Maggio, Juri Lelli, and Enrico Bin. Analysis of os schedulers with rt-muse. In
RTSS@Work (Real-Time Systems Symposium Demo Session), 2015.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

458 Herbst et al.

28. Roy A. Maxion and Kymie M.C. Tan. Benchmarking anomaly-based detection systems. In
Proceedings of the International Conference on Dependable Systems and Networks (DSN),
pages 623–630, 2000.

29. Yuxin Meng. Measuring intelligent false alarm reduction using an ROC curve-based approach
in network intrusion detection. In IEEE International Conference on Computational Intelli-
gence for Measurement Systems and Applications (CIMSA), pages 108–113, July 2012.

30. Ningfang Mi, Giuliano Casale, Ludmila Cherkasova, and Evgenia Smirni. Burstiness in multi-
tier applications: Symptoms, causes, and new models. In ACM/IFIP/USENIX 9th Interna-
tional Middleware Conference (Middleware’08), Leuven, Belgium, 2008. The prelimilary pa-
per appeared in the HotMetrics 2008 Workshop.

31. Ningfang Mi, Giuliano Casale, Ludmila Cherkasova, and Evgenia Smirni. Injecting realistic
burstiness to a traditional client-server benchmark. In Proceedings of the 6th International
Conference on Autonomic Computing, ICAC 2009, June 15-19, 2009, Barcelona, Spain, pages
149–158, 2009.

32. Ningfang Mi, Qi Zhang, Alma Riska, Evgenia Smirni, and Erik Riedel. Performance impacts
of autocorrelated flows in multi-tiered systems. Perform. Eval., 64(9-12):1082–1101, 2007.

33. M. F. Neuts. Structured Stochastic Matrices of M/G/1 Type and Their Applications. Marcel
Dekker, New York, 1989.

34. Object Management Group, Inc. UML Profile for Schedulability, Performance, and
Time (SPT), version 1.1. http://www.omg.org/spec/SPTP/1.1/, 2005.

35. Object Management Group, Inc. UML profile for MARTE: Modeling and Analysis of Real-
Time Embedded Systems, version 1.1. http://www.omg.org/spec/MARTE/1.1/,
2011.

36. Dorin Bogdan Petriu and C. Murray Woodside. An intermediate metamodel with scenarios
and resources for generating performance models from UML designs. Springer Software and
System Modeling (SoSym), 6(2):163–184, 2007.

37. Martin Roesch. Snort - Lightweight Intrusion Detection for Networks. In Proceedings of the
13th USENIX conference on System Administration (LISA), pages 229–238. USENIX Associ-
ation, 1999.

38. Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. Open versus closed: A caution-
ary tale. In Proceedings of the 3rd conference on Networked Systems Design & Implementa-
tion (NSDI ’06), pages 18–18. USENIX Association, 2006.

39. Jaydip Sen, Arijit Ukil, Debasis Bera, and Arpan Pal. A distributed intrusion detection system
for wireless ad hoc networks. In 16th IEEE International Conference on Networks (ICON),
pages 1–6, 2008.

40. Connie U. Smith and Lloyd G. Williams. Performance Solutions: A practical guide to creating
responsive, scalable software. Addison-Wesley, 2002.

41. Christian Tinnefeld, Daniel Taschik, and Hasso Plattner. Quantifying the Elasticity of a
Database Management System. In DBKDA 2014, The Sixth International Conference on Ad-
vances in Databases, Knowledge, and Data Applications, pages 125–131, 2014.

42. Joe Weinman. Time is Money: The Value of “On-Demand”, 2011. (accessed July 9, 2014).
43. Qi Zhang, Ludmila Cherkasova, and Evgenia Smirni. A regression-based analytic model for

dynamic resource provisioning of multi-tier applications. In Fourth International Conference
on Autonomic Computing (ICAC’07), Jacksonville, Florida, USA, June 11-15, 2007, page 27,
2007.

44. S. Zhang, Z. Qian, Z. Luo, J. Wu, and S. Lu. Burstiness-aware resource reservation for server
consolidation in computing clouds. IEEE Trnascations on Parallel and Distributed Systems,
to appear 2015.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

