
SuanMing: Explainable Prediction of Performance Degradations
in Microservice Applications

Johannes Grohmann
University of Würzburg
Würzburg, Germany

johannes.grohmann@uni-
wuerzburg.de

Martin Straesser
University of Würzburg
Würzburg, Germany

martin.straesser@uni-wuerzburg.de

Avi Chalbani
Huawei Technologies

Tel Aviv, Israel
avi.chalbani@huawei.com

Simon Eismann
University of Würzburg
Würzburg, Germany

simon.eismann@uni-wuerzburg.de

Yair Arian
Huawei Technologies

Tel Aviv, Israel
yair.arian@huawei.com

Nikolas Herbst
University of Würzburg
Würzburg, Germany

nikolas.herbst@uni-wuerzburg.de

Noam Peretz
Huawei Technologies

Tel Aviv, Israel
noam.peretz@huawei.com

Samuel Kounev
University of Würzburg
Würzburg, Germany

samuel.kounev@uni-wuerzburg.de

ABSTRACT
Application performance management (APM) tools are useful to
observe the performance properties of an application during produc-
tion. However, APM is normally purely reactive, that is, it can only
report about current or past performance degradation. Although
some approaches capable of predictive application monitoring have
been proposed, they can only report a predicted degradation but
cannot explain its root-cause, making it hard to prevent the ex-
pected degradation.

In this paper, we present SuanMing—a framework for predicting
performance degradation of microservice applications running in
cloud environments. SuanMing is able to predict future root causes
for anticipated performance degradations and therefore aims at
preventing performance degradations before they actually occur.
We evaluate SuanMing on two realistic microservice applications,
TeaStore and TrainTicket, and we show that our approach is able to
predict and pinpoint performance degradations with an accuracy
of over 90%.

CCS CONCEPTS
• Software and its engineering → Software performance; •
Computing methodologies → Machine learning approaches; •
Computer systems organization → Cloud computing.

KEYWORDS
explainability, performance prediction, forecasting, microservices

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’21, April 19–23, 2021, Virtual Event, France
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8194-9/21/04. . . $15.00
https://doi.org/10.1145/3427921.3450248

ACM Reference Format:
Johannes Grohmann, Martin Straesser, Avi Chalbani, Simon Eismann, Yair
Arian, Nikolas Herbst, Noam Peretz, and Samuel Kounev. 2021. SuanMing:
Explainable Prediction of Performance Degradations in Microservice Appli-
cations. In Proceedings of the 2021 ACM/SPEC International Conference on
Performance Engineering (ICPE ’21), April 19–23, 2021, Virtual Event, France.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3427921.3450248

1 INTRODUCTION
Microservice applications [18, 21] are increasingly seen as the main
architectural paradigm for developing medium- and large-scale
cloud applications [7]. While a microservice architecture offers
clear advantages for developing and operating an application, the
increase in the number of individual components also increases the
perceived complexity of the respective system [11]. Therefore, op-
erators and performance engineers increasingly rely on application
performance management (APM) tools to supervise the operation
of an application [9, 18]. APM tools and services, like Jaeger1, Zip-
kin2, or Pinpoint3, allow the collection, processing, and analysis of
performance metrics of cloud-based applications.

In general, such tools are limited to reactive performance man-
agement, that is, performance degradations can only be detected
and addressed after they have occurred in the system. This leads
to unavoidable quality of service degradation, negatively impact-
ing the user experience and revenue [12]. Therefore, we envision a
proactive APM tool capable of predicting performance degradations
before they actually occur.

Current approaches require either low-level hardware measure-
ments [12, 15] or application logs [5, 6, 16, 23–26] in order to deliver
their predictions, both of which cannot be assumed to be commonly
available using low-overhead cloud APM tools. Additionally, a re-
cent survey of approaches for failure prediction in online environ-
ments [13] found that no approach is able to provide a reliable
1https://www.jaegertracing.io/
2https://zipkin.io/
3https://naver.github.io/pinpoint/

https://doi.org/10.1145/3427921.3450248
https://doi.org/10.1145/3427921.3450248
https://www.jaegertracing.io/
https://zipkin.io/
https://naver.github.io/pinpoint/

explanation for the predicted performance degradation. However,
without an explanation indicating the root cause of a predicted
performance degradation, its mitigation is challenging.

In this work, we introduce SuanMing, an approach for enabling
explainable performance predictions for microservice applications
running in cloud environments. SuanMing utilizes tracing data
commonly available in APM tools to learn three different models:
(i) a forecasting model predicting the user behavior; (ii) a prop-
agation model inferring the behavior of each user request in an
application; and (iii) a performance prediction model predicting the
performance of services and back-propagating its effect on other
dependent services. Based on the model predictions, SuanMing is
able to forecast the future state of the application and provide an
explanation by pinpointing the respective root-cause service.

The contribution of this paper is two-fold:
• We introduce SuanMing, an approach for predicting perfor-
mance degradation of microservice applications based on the
propagation of internal requests and the back-propagation
of service performance, enabling the pinpointing of a root-
cause service.

• We present an abstract formalization of the involved predic-
tion tasks in order to enable a modular architecture of the
proposed approach.

Operators can use SuanMing as a plugin to their already config-
ured and running monitoring stack to augment the reactive capabil-
ities of their APM tools with a predictive and proactive component
that is able to determine—and consequentially avoid—performance
degradations before they actually occur. Due to the modular and
highly configurable approach of the framework, operators can fine-
tune the sensitivity of the approach based on their specific needs.
In contrast to related work, SuanMing requires no additional appli-
cation data for delivering predictions; all information is extracted
from the APM tool, and models are continuously updated.

In order to show the benefits of SuanMing, we conduct evalua-
tions on two representative microservice applications. We analyze
its performance on the TrainTicket [35] and the TeaStore [31] ap-
plication using both Pinpoint3 and a real-world cloud monitoring
environment running in the Huawei Cloud4.

The remainder of this paper is structured as follows: We in-
troduce the SuanMing framework in Section 2 and evaluate its
performance in Section 3. We discuss the limitations and future
work in Section 4 and summarize related work in Section 5. We
conclude the paper in Section 6.

2 APPROACH
Our approach is based on two key observations in microservice ar-
chitectures. First, we assume that the performance of micro-services
is only dependent on the type and amount of requests arriving at
each particular service instance. This is based on the assumption
that microservice designs should be mostly stateless [7, 31], and
therefore all state information is transmitted using the request itself.

Second, a service usually has a limited set of responsibilities [18,
21]. Subsequently, a single user request usually causes a sequence of
internal requests to other micro-services in order to realize complex
application behaviors. This enables us to split the prediction of
4https://www.huaweicloud.com/

large and complex applications into multiple smaller tasks that are
individually solvable as the small-scoped services have a predictable
performance behavior. The propagation of requests and its resulting
performance are also predictable by tracing request call trees. Our
idea is a divide-and-conquer approach. We first predict the user
requests and their propagation through the application. Then, we
use the fine-granular analysis of the individual services to infer
the whole application performance and additionally pinpoint the
location of the performance degradation without the need for in-
depth monitoring data.

In the following, the term service represents an application com-
ponent, which is stateless and has a clear-scoped functionality, i.e.,
a micro-service. A service always consists of one or multiple end-
points . An endpoint is an interface (or workload class) of a service,
which can be called by users or other services, e.g., REST endpoints.
User requests are requests that enter the system from outside the
monitored environment. On the contrary, standard requests are
calls that were issued by other entities (i.e., other services) from
inside the system. A backend service is a service, which does not
issue requests to services and responds to incoming requests only,
a frontend service is a service responding to user requests.

2.1 Overview
Figure 1 presents our reference architecture containing the differ-
ent components of SuanMing. The structure enables us to separate
the learning of the models and the actual prediction into parallel
executable online processes. Additionally, due to the modular struc-
ture, it is possible to modify and exchange individual algorithms
of the framework without affecting the performance of the other
components.

The Controller serves as a central synchronization component,
responsible for updating times, configurations, and activities. Next,
the Provider collects and parses incoming data, and stores it into a
uniform format using the data storage component. Subsequently,
the gathered monitoring information is fed into the Propagation
Trainer and Performance Trainer components. Both modules train a
prediction model and store it in the model storage. In contrast, the
Load Forecaster directly produces a forecast of the expected number
of incoming user requests, which is forwarded to the Predictor.
The Predictor is the central component responsible for predicting
the performance of each individual service using the load forecast
together with the trained propagation and performance models.
Finally, the Analyzer compares the predictions with the user-given
goals in order to alert and pinpoint any anticipated performance
degradation. In the following, we will explain each component in
more detail.

2.2 Provider
SuanMing requires two types of training data. First, we need in-
formation about the chain of internal requests issued to process
an incoming user request. This is required in order to extract the
application architecture as well as forecast the number of requests
arriving at every service using the propagation model.

Second, performance metrics for every service must be available
in order to train the performance models and to do predictions
on these monitored values. Depending on the availability, more

https://www.huaweicloud.com/

Controller

Provider

M
on

ito
rin

g
an
d
Tr
ac
in
g
Da

ta

Data Storage Model Storage Predictor

Predictions and State Ratings

Analyzer

Control and Configuration Interface

Data flow
Control flow

Propagation Trainer

Performance Trainer

Load Forecast

Figure 1: Architecture overview of the SuanMing framework.

metrics influencing the service performance including parameter
values, deployment, and co-locations, or hardware specifications,
can be added optionally. However, the target performance metrics —
usually response times — are required as labels for the performance
model training algorithms.

Both information is usually extractable from call traces, call
stacks, or call trees. Therefore, the required monitoring and tracing
data is obtainable in many state-of-the-art tracing tools, like Jaeger1,
Zipkin2, Pinpoint3, Dapper [27], or Kieker [29]. The current imple-
mentation supports the export formats of Zipkin, Pinpoint, and the
proprietary format used in Huawei Cloud4 (see Section 3.2).

2.3 Load Forecast
The Load Forecast component is responsible for forecasting the
number of user requests in the next prediction interval. The fore-
cast result is represented by a list 𝑈 , where each entry 𝑢𝑖 ∈ R𝑚𝑖

≥0
represents the number of user requests to the 𝑚𝑖 endpoints of
service 𝑖 . As our list 𝑆 of observable services contains 𝑠 := |𝑆 |
services, 𝑈 contains 𝑠 lists. In total, 𝑈 contains 𝑚 entries, where
𝑚 :=

∑𝑠−1
𝑖=0 𝑚𝑖 is the total number of application endpoints.

However, the problem can be simplified by isolating each request
type of 𝑈 as a univariate time series and forecasting the expected
requests independently. As there already exist many works capable
of forecasting user behavior (e.g., [2, 17, 36]) we rely on GluonTS [1]
in this work as they showed the best prediction performance in
our prior analysis. However, due to the modular approach of Suan-
Ming, this component can be seamlessly exchanged for another
forecasting approach.

2.4 Propagation Trainer
The Propagation Trainer component is responsible for learning the
propagation model describing how many additional internal inter-
service requests are needed to process an incoming user request.

2.4.1 Formalization. We formalize this using the propagation ma-
trix 𝐷 . Each entry 𝑑𝑖, 𝑗 : R𝑚𝑖

≥0 → R
𝑚 𝑗

≥0 in 𝐷 represents a function
mapping a number of incoming requests at service 𝑖 to a number of
requests to service 𝑗 sent by service 𝑖 . Both input and output of each
propagation function 𝑑𝑖, 𝑗 are vectors containing numbers greater
or equal to zero. The dimension of each vector is determined by the
variable𝑚𝑖 , which represents the number of endpoints of service 𝑖 .

Note that our model is able to assess the distribution of calls
across the different endpoints of each service. This is useful for per-
formance predictions, as different endpoints might have different
performance metrics. For example, a web-server might take longer
to show the dynamic login page, than to deliver a static index page.
In total, the matrix 𝐷 has 𝑠2 entries overall, where 𝑠 represents the
number of services in the application.

The application topology modeled by 𝐷 can also be visualized as
a directed graph, where each node represents a service and an edge
from node 𝑖 to node 𝑗 means service 𝑖 sends requests to service
𝑗 . In a graph representation, the edges between the nodes are the
propagation functions stored in 𝐷 . Consequently, we can describe
paths in this graph by composite functions. For example, a path from
𝑖 over 𝑗 to𝑘 can bewritten as the composite function𝑑𝑖,𝑘 = 𝑑 𝑗,𝑘◦𝑑𝑖, 𝑗
using the composition operator5 ◦. A propagation model is acyclic,
if no path 𝑑𝑖,𝑖 = 𝑑𝑖, 𝑗 ◦ 𝑑 𝑗,𝑘 ◦ ... ◦ 𝑑𝑧,𝑖 exists, where not at least one
component function is a null function, i.e., a function that always
returns zero. In other words, the topology graph omitting all edges
of null functions must be acyclic. Analogously, a propagation model
is cyclic, if at least one path 𝑑𝑖,𝑖 = 𝑑𝑖, 𝑗 ◦ 𝑑 𝑗,𝑘 ◦ ... ◦ 𝑑𝑧,𝑖 exists, where
none of the component functions is the null function.

Our framework assumes that all valid propagation models are
regular models. A propagation model is regular, if for every cycle
𝑑𝑖,𝑖 and every input vector 𝑥 the sequence

𝑑𝑖,𝑖 (𝑥)𝑛 = 𝑑𝑖,𝑖 ◦ 𝑑𝑖,𝑖 ◦ ... ◦ 𝑑𝑖,𝑖︸ ︷︷ ︸
n times

,

converges to zero for 𝑛 ∈ N towards infinity. Such models rep-
resent topologies, where limited cycles, but no infinite loops exist.
This means that, after a certain number of iterations, the application
always terminates. All acyclic models are regular by definition.

2.4.2 Model learning. The task of the Propagation Trainer is to
learn the propagation matrix 𝐷 using historical data. To build this
model iteratively, we initialize all functions 𝑑𝑖, 𝑗 as null functions,
representing no dependency between the services 𝑖 and 𝑗 . After
each observation interval, we update each function 𝑑𝑖, 𝑗 , where a
request between service 𝑖 and 𝑗 has been recorded. This step is
relatively straight-forward to implement, as we simply need to

5Let 𝑓 and 𝑔 be functions, then the composite function 𝑔 ◦ 𝑓 is defined as 𝑔 ◦ 𝑓 =

𝑔 (𝑓 (𝑥))

analyze the average behavior of the call tree of each request. The
model learning still continuously updates the propagation model
whenever new monitoring data becomes available in order to react
to changes in application or user behavior.

2.5 Performance Trainer
As the final learning component, the performance trainer utilizes
the information of the individual requests at each service endpoint
to predict the performance of the individual endpoints and the
resulting performance of the overall system. We assume that the
performance is mainly dependent on the number and type of incom-
ing requests to the service. This is a simplification made possible
by the assumption of statelessness of modern microservice archi-
tectures [7, 31]. If all micro-services follow this requirement and
are stateless, the performance of each request only depends on the
availability of resources, which is dependent on the number and
type of other requests arriving at the same processing resource,
and the parameters of each request itself.

2.5.1 Formalization. The performance of a service 𝑖 is described
using the performance vector 𝑝𝑖 ∈ R𝑚𝑖×𝑟 . To describe the perfor-
mance of a service or endpoint, we use 𝑟 different performance met-
rics of interest. These could be, for example, the average response
time or the number of exceptions. These metrics are calculated
for all 𝑚𝑖 endpoints of service 𝑖 . As a consequence, the service
performance vector 𝑝𝑖 of service 𝑖 has𝑚𝑖 · 𝑟 entries overall.

We obtain the requests arriving at 𝑖 from the list of requests
𝑋 calculated by the forecasting and the propagation model. Addi-
tionally, the framework allows adding additional features of arbi-
trary type 𝛼 , e.g., the number of incoming requests on co-located
or influencing services, the parameter distribution of the given
requests, the measured resource utilization, a priority vector, etc.
It is then dependent on the chosen modeling type, how the given
auxiliary information is utilized. These auxiliary metrics 𝛼 can be
forecast using the standard load forecasting component also uti-
lized for forecasting the request numbers (see Section 2.3) or other
specialized forecasting or prediction engines. As the type and num-
ber of the auxiliary features is dependent on each service, 𝛼𝑖 refers
to the set of auxiliary features for service 𝑖 . For adding additional
important factors of the service performance, we consider the posi-
tion of the service in the topology graph. We define 𝑧𝑖 as a variable,
which represents for a given service 𝑖 the sum of all endpoints of
all services, receiving calls from service 𝑖 . A backend service only
responds to incoming requests. Therefore, for a backend service 𝑏,
𝑧𝑏 = 0. We assume, that its performance 𝑝𝑏 only depends on the
number of incoming requests 𝑥𝑏 and the set of auxiliary metrics 𝛼𝑏 .
Therefore, the performance function 𝑓𝑏 maps𝑚𝑏 + |𝛼𝑏 | input values
to 𝑟 ·𝑚𝑏 performance metrics. For all other services 𝑖 , we assume
that the performance 𝑝𝑖 additionally depends on the performance
measures of all endpoints answering calls from 𝑖 . Note that we do
not make any assumptions about synchronous or asynchronous
calls. It is up to the performance function to determine the actual
impact of each influencing service.

Summarizing, for each service 𝑖 there is a performance function
𝑓𝑖 : R𝑚𝑖

≥0×R
𝑟 ·𝑧𝑖+|𝛼𝑖 | → R𝑚𝑖 ·𝑟 whichmaps the requests list 𝑥𝑖 ∈ R𝑚𝑖

≥0,
𝑟 ·𝑧𝑖 additional influencing service performances, and |𝛼𝑖 | auxiliary

Algorithm 1: Request propagation algorithm.
Input :Propagation matrix 𝐷 , user requests𝑈 ,

threshold 𝜖 , number of services 𝑠 , ordered set of
endpoints (𝑚1, . . . ,𝑚𝑠)

Output :List of total requests 𝑋 .
1 𝑋 =𝑈
2 𝑋 =𝑈
3 while not all numerical entries in 𝑋 equal 0 do
4 𝑋 = 0𝑠
5 Set all entries 𝑥𝑖 in 𝑋 to 0𝑚𝑖

6 foreach 𝑥𝑖 in 𝑋 do
7 if 𝑥𝑖 ≠ 0𝑚𝑖

then
8 foreach 𝑑𝑖, 𝑗 in 𝑖-th row of 𝐷 do
9 𝑥 𝑗 = 𝑥 𝑗 + 𝑑𝑖, 𝑗 (𝑥𝑖)

10 𝑋 = 𝑋+ 𝑋

11 𝑋 = 𝑋

12 Set all numerical entries in 𝑋 lower than 𝜖 to 0
13 return 𝑋

input values to the predicted service performance 𝑝𝑖 . We define 𝐹 to
be the list containing all 𝑠 performance functions of an application.

2.5.2 Model learning. For learning performance models, historical
training data is required. Hence, we have a training set 𝐿𝑖 , consisting
of 𝑡 individual measurement intervals for each service 𝑖 . The list
of all 𝐿𝑖 , form the set of the total training information available 𝐿.
Each scenario shows us one input of𝑚𝑖 + 𝑟 · 𝑧𝑖 + |𝛼𝑖 | performance-
relevant features, together with 𝑟 measurable performance metrics
for each of the𝑚𝑖 endpoints of service 𝑖 . Therefore, 𝐿𝑖 is a matrix
consisting of 𝑡 measurement rows, with each row containing (𝑚𝑖 +
𝑟 · 𝑧𝑖 + |𝛼𝑖 |) + (𝑟 ·𝑚𝑖) values.

Due to the formalization and the modular design of SuanMing,
we support multiple possible performance modeling and learn-
ing techniques. In this work, we will focus on black-box machine
learning algorithms as they offer the most transferable and domain-
independent performance. However, other approaches can be inte-
grated as well, should the need arise for different or more expres-
sive models. For example, we are simultaneously working on an
approach using resource demand estimation [14, 28] for queueing
theory, to model the performance of the system.

In this work, we approximate the performance functions in 𝐹

using supervised machine learning to predict the 𝑟 measurable per-
formance metrics. As a consequence, we are able to train regression
models, which approximate the performance function list 𝐹 . As the
performance functions 𝑓𝑖 might be subject to change, we update
𝐹 on a regular basis using measured performance data. Using this
black-box modeling type, the additional performance indicators
𝛼 , like deployment information or hardware specifications, can be
easily added as no semantic meaning needs to be provided. Hence,
all performance indicators that may seem relevant for the predic-
tion of any of the 𝑟 targeted performance metrics and that can be
reliably monitored can be easily integrated into the performance
predictor functions 𝑓𝑖 .

Algorithm 2: Performance inference algorithm.
Input :List of services 𝑆 , performance model 𝐹 , list of

requests 𝑋 , list of additional metrics A.
Output :Predicted application performance 𝑃 .

1 𝐹, 𝑆, 𝑋,A = resolveCycles(𝐹, 𝑆, 𝑋,A)
2 𝑃, 𝑆 ′ = ∅
3 while 𝑆 ′ ⊊ 𝑆 do
4 foreach 𝑖 ∈ 𝑆 \ 𝑆 ′ do
5 Let 𝑑𝑖 be the set of dependencies of service 𝑖
6 if 𝑑𝑖 ⊆ 𝑆 ′ then
7 𝑃𝑖 = {𝑝 𝑗 ∈ 𝑃 | 𝑗 ∈ 𝑑𝑖 }
8 𝑝𝑖 = 𝑓𝑖 (𝑥𝑖 ∪ 𝛼𝑖 ∪ 𝑃𝑖)
9 𝑃 = 𝑃 ∪ 𝑝𝑖

10 𝑆 ′ = 𝑆 ′ ∪ 𝑖

11 return 𝑃

2.6 Predictor
The Predictor is one of the main components of the SuanMing
framework. It combines the user requests forecast 𝑈 with the prop-
agation model 𝐷 and the performance prediction model 𝐹 in order
to make a prediction about the future state.

2.6.1 Request propagation algorithm. The first step is to calculate
the number of requests arriving at each service in the given time
interval, i.e., propagate the user requests through the system. Given
the service dependencies captured by 𝐷 and the predicted user
requests 𝑈 , we want to predict how the requests are forwarded
through the application. We propose an iterative algorithm that
works with any regular model 𝐷 .

Algorithm 1 takes the user request list𝑈 , which has been gener-
ated by the forecasting engine, as an input and returns the request
list 𝑋 , which contains the total number of predicted incoming re-
quests in the next prediction interval for all services and endpoints.
The list 𝑋 can be seen as the sum of the incoming user requests
𝑈 and their generated internal calls. Hence, at the beginning of the
algorithm, the values of𝑈 are assigned to 𝑋 . Then, the algorithm
iteratively calculates the resulting internal calls starting in line 3.
The list 𝑋 represents the requests, which need to be forwarded in
the current iteration of the algorithm. Once the loop terminates,
there are no more requests to forward and we can return the total
list of requests 𝑋 .

In the inner loops of lines 6 and 8, line 9 evaluates the propa-
gation functions 𝑑𝑖, 𝑗 are evaluated for each service 𝑖 and all target
services 𝑗 , if 𝑖 forwards requests. The newly generated internal re-
quests are stored in the temporary support list 𝑋 , which gets filled
with zeros at the beginning of each iteration (line 4 and 5). After
iterating all services, the newly generated requests 𝑋 are added
to the total numbers of requests 𝑋 and need to be considered for
the next iteration. Hence, 𝑋 gets set as 𝑋 . As already stated earlier,
requests do not need to be integers, as a service can also call another
service with a probability of, e.g., 80%. Therefore, functions 𝑑𝑖, 𝑗 are
defined on non-negative real numbers for input and output.

To prevent an infinite loop, the threshold parameter 𝜖 is used. It
represents a lower bound, which is applied to 𝑋 and all numerical

entries which are smaller than 𝜖 will be set to 0. This guarantees
termination of Algorithm 1 for regular propagation models and
enables it to still deal with cyclic topologies, given that they are
regular. Additionally, Algorithm 1 is easy to parallelize, as the only
synchronized calls are the commutative addition in line 10 and the
assignment in line 11. This enables a very high scalability, even for
increasing topology sizes as they can be processed independently.

However, if𝐷 is linear and acyclic, we can improve the scalability
of the request propagation algorithm even more. A propagation
model 𝐷 is considered linear, if every propagation function 𝑑𝑖, 𝑗 (𝑥)
within 𝐷 can be written in the form of 𝑑𝑖, 𝑗 (𝑥) = 𝑐𝑖, 𝑗 · 𝑥 with 𝑐𝑖, 𝑗
being a constant matrix. The composition of two linear functions
𝑑𝑖,𝑘 = 𝑑 𝑗,𝑘 ◦ 𝑑𝑖, 𝑗 is always also a linear function: 𝑑𝑖,𝑘 (𝑥) = 𝑐𝑖,𝑘 · 𝑥 .
This can be proven with the following equivalent transformation:

𝑑𝑖,𝑘 (𝑥) = 𝑑 𝑗,𝑘 ◦ 𝑑𝑖, 𝑗 | Definition of function composition
= 𝑐 𝑗,𝑘 · (𝑐𝑖, 𝑗 · 𝑥) | Associative property
= (𝑐 𝑗,𝑘 · 𝑐𝑖, 𝑗) · 𝑥

�� Substitution: 𝑐𝑖,𝑘 = 𝑐 𝑗,𝑘 · 𝑐𝑖, 𝑗
= 𝑐𝑖,𝑘 · 𝑥 □

Additionally, if a service 𝑖 receives calls from multiple origins, the
total number of incoming requests is the sum of all inbound request
flows. Hence, the vector of incoming requests 𝑥𝑖 can be written
as the sum of multiple linear propagation functions. We further
know that the resulting request list𝑋 is the sum of the user requests
𝑈 and the internal calls, while every internal call is originated by a
user request. From these properties follows that every vector 𝑥𝑖 is
a linear superposition of the entries 𝑢𝑖 of the user request list 𝑈 .
With that, we are able to calculate every 𝑥𝑖 with a single matrix
multiplication. Therefore, for linear and acyclic propagation models,
the iterative calculations from Algorithm 1 can be summarized into
𝑠 independent matrix multiplications. Depending on the size of an
application topology, this might further improve the run-time and
hence the scalability of the request propagation.

2.6.2 Performance inference algorithm. Finally, after we predicted
the number of requests at each service 𝑖 , the performance prediction
algorithm infers 𝑝𝑖 for the given state.

Algorithm 2 iteratively calculates the performance 𝑝𝑖 for each
service 𝑖 by starting with all backend services and going backwards
through the application topology. It requires the performancemodel
𝐹 = (𝑓1, . . . , 𝑓𝑠), containing all performance inference functions
learned in Section 2.5, the list of total requests for each service
X= (𝑥1, . . . , 𝑥𝑠), and the list of additional metrics for each service
A = (𝛼1, . . . , 𝛼𝑠). It is assumed that A is known using forecasting
techniques and historical measurements of the available variables
and can be treated analogously to 𝑋 .

In line 1, Algorithm 2 first ensures that the application is acyclic,
and then continues to initialize the performance vector 𝑃 and the
set of processed services 𝑆 ′. Then, it iterates through all services,
until 𝑆 ′ is no longer a proper sub-set of 𝑆 , i.e., until every service
has an associated performance prediction. For an unprocessed ser-
vice 𝑖 , we calculate the list of required performance values 𝑃𝑖 that
are necessary for processing that service’s performance prediction
function 𝑓𝑖 in line 7 based on the set of services 𝑑𝑖 that 𝑖 depends on.
In line 6, it is determined whether 𝑃𝑖 can be calculated, i.e., whether

all influencing service metrics are already available. If so, the per-
formance inference model is queried and stored in lines 8 and 9,
and the service 𝑖 is added to the list of processed services. Simi-
larly to Algorithm 1, the calculation of the individual performance
metrics is highly parallelizable for large topologies, improving the
scalability of SuanMing.

Note that for any backend service 𝑏, 𝑑𝑏 = ∅. Therefore, as ∅ ⊆ 𝑆 ′

is always true, including ∅ ⊆ ∅ in the first iteration, all backend
services are added in the first iteration of the loop, as their per-
formance only depends on the request list 𝑋 and the additional
metrics A. Hence, for acyclic graphs, Algorithm 2 is guaranteed to
terminate. For regular and other cyclic models, Algorithm 2 does
not terminate as all services of the cycle can not be calculated as
long as their influencing services are not known.

Therefore, line 1 of Algorithm 2 refers to a heuristic capable of
resolving cycles from the application model. One heuristic sets the
performance values of all services of the cycle to∞. This obviously
results in false positives; however, all affected services will be post-
processed in Algorithm 3, which is capable of solving cycles and
therefore filters the false positives. Other possible heuristics include
ignoring the dependency which generates the fewest calls for a
given input list, or to contract all affected services into one hyper-
service. While the former might reduce the prediction accuracy of
an individual service, the latter lacks the granularity to pinpoint a
specific service.

2.7 Analyzer
The final component focuses now on the analysis of the predictions
produced in the previous steps. Therefore, the main aim of this
component is to classify the severity of the predicted performance
problems and to deliver explanations for the performance prediction
in order to foster actionable insights. For example, two services 𝑎
and 𝑏 might experience a predicted performance degradations as
their response times increase. However, as service 𝑎 calls service 𝑏
in order to answer its request, its performance is only degraded due
to the increased waiting times at service 𝑎. Therefore, by addressing
the performance degradation of 𝑏, we automatically also solve the
performance problems of 𝑎.

In our case, the goal of the system operator is to define target
ranges for every performance metric of user endpoints in advance.
SuanMing is then tasked with supervising these ranges and alerting
the operator if one value is predicted to exceed its target range in
the near future. This translates into a binary classification problem.
The classification is done using the predicted performance vector 𝑝𝑖
for every service 𝑖 and comparing it to the defined target threshold
𝑡𝑖 for each of the 𝑟 performance metrics. The approach of binning
performance metrics into different classes was already shown to be
suitable for related performance problems [4].

However, as SuanMing focuses on explainable predictions, a
simple problem classification does not suffice. Therefore, if a ser-
vice is expected to perform worse than the defined threshold, the
analysis component needs to pinpoint the service responsible for
the anticipated performance problem in order to offer solutions on
how to avoid it. In order to do so, Algorithm 3 calculates and re-
turns the list of root-cause services 𝑅, responsible for the predicted
performance problem. Based on the computation of 𝑅, an operator

Algorithm 3: Root-cause inference algorithm.

Input :Predicted performance 𝑃 , performance
thresholds 𝑇 , performance model 𝐹 , list of
requests 𝑋 , list of additional metrics A.

Output :Predicted application performance 𝑃 , List of
root-cause services 𝑅.

1 𝑅 = ∅
2 foreach 𝑝𝑖 ∈ 𝑃 do
3 if not satisfies𝑡𝑖 (𝑝𝑖) then
4 Let 𝑃𝑖 be the set of predicted dependent

performance metrics of service 𝑖
5 𝑃 ′

𝑖
=
⋃

�̃� 𝑗 ∈𝑃𝑖 min𝑝 𝑗 , 𝑡 𝑗

6 if not satisfies𝑡𝑖 (𝑓𝑖 (𝑥𝑖 ∪ 𝛼𝑖 ∪ 𝑃 ′
𝑖
)) then

7 𝑅 = 𝑅 ∪ 𝑖

8 if not confident(𝑃, 𝑅) then
9 return ∅, ∅

10 return 𝑃, 𝑅

can specifically target all necessary services, e.g., by up-scaling all
services in 𝑅, in order to avoid the predicted performance problem
before it happens using minimal resource effort.

Similarly to Algorithm 2, Algorithm 3 requires the performance
model 𝐹 , the list of requests 𝑋 , and the list of additional metrics
A. In addition, Algorithm 3 requires the performance predictions
𝑃 = (𝑝1, . . . , 𝑝𝑠), i.e., the output of Algorithm 2, and the defined
performance thresholds 𝑇 = (𝑡1, . . . , 𝑡𝑠) for each service.

Algorithm 3 utilizes the helper function satisfies𝑡𝑖 (𝑝𝑖), to check,
whether a performance prediction 𝑝𝑖 of service 𝑖 violates any of
its defined thresholds 𝑡𝑖 . The function returns true, if any of the
𝑟 components in the predicted performance vector 𝑝𝑖 is higher
than its defined threshold 𝑡𝑖 , i.e., satisfies performs an element-wise
greater-than comparison.6 If a service 𝑖 is detected to violate any
of its performance thresholds 𝑡𝑖 in line 3, we calculate the all-fine
performance vector 𝑃 ′

𝑖
for service 𝑖 in line 5. This is done by low-

ering all threshold-exceeding values to the defined threshold, and
therefore simulating a normal behavior of all influencing services.
If 𝑖 still violates its threshold after all influencing services respond
normally, it is added to the list of root-cause services 𝑅 as 𝑖 itself is
responsible for the performance problem. On the other hand, if all
performance predictions in 𝑝𝑖 fall below their respective threshold
in 𝑡𝑖 after all influencing services respond within their given bound-
aries, then it can be concluded that the performance problems of 𝑖
can be fixed by fixing the performance problems of its influencing
services. Hence, 𝑖 is not considered to be a root-cause service.

After the calculation of 𝑅 is done, the Analyzer finally conducts a
confidence check of all its predictions in line 8. This step is necessary
to avoid inaccurate performance predictions, especially due to lack
of training data ormodel inaccuracies. Therefore, SuanMing enables
the Analyzer component to scrap all performed calculations based
on a configurable confidence function. If the confidence check fails,

6Without loss of generality, we assume that a threshold is always an upper bound for
what is acceptable. If a threshold is set as a lower bound, one can simply negate the
value and all of its predictions.

Algorithm 3 does not return any prediction. If the check succeeds,
Algorithm 3 returns the application performance prediction 𝑃 , as
well as the list of responsible root-cause services 𝑅.

In this paper, our confidence value is based on the accuracy of the
forecaster, as all model predictions are dependent on the forecasting
accuracy and as it gives good insight into the general model accu-
racy. We use the coefficient of variation of the output distribution
of the GluonTS [1] forecast as our measure of confidence. Hence,
in the following evaluation, SuanMing starts to deliver root causes
and ratings after the described coefficient of variation falls under
0.15. This value was chosen empirically after preliminary analysis
in our test environment. However, in future work we plan to extend
the confidence analysis to compare the respective prediction with
actual measurements from the last intervals in order to rate the
confidence of all component predictions.

As Algorithm 3 iterates over all performance predictions only
once, it is guaranteed to terminate in linear time on both cyclic and
acyclic topologies. Additionally, as all other algorithms presented
in this paper, Algorithm 3 is highly parallelizable, improving the
scalability of SuanMing.

2.8 Summary
To summarize, SuanMing relies on two fundamental models in-
fluencing the prediction power of the algorithm: the propagation
model 𝐷 and the performance inference model 𝐹 . In the first phase,
predicted user requests are forwarded through the application. In
the second phase, the performance of each service, starting with
the backend services, is determined by backpropagating the perfor-
mance through the application. These two steps are able to deliver
an accurate prediction of an arbitrary set of 𝑟 performance metrics
of interest – provided these performance metrics are captured by
the monitoring infrastructure. Combined with an accurate forecast
of the future user behavior, the models are able to predict the future
state of the system.

Based on the predicted future state, an operator is then able to
define target thresholds for every performance metric, either for all
services or for sub-set as a priority list of supervised endpoints. If
any of these priority endpoints is expected to miss its target, Suan-
Ming is able to alert the operator and deliver a list of responsible
services for an explainable performance prediction. Hence, fixing
(e.g., by adding resources) the responsible services prevents the
anticipated performance problems before they occur. If required,
even without user facing performance degradation, SuanMing can
still identify backend or intermediate services that experience per-
formance degradation.

SuanMing is designed to work lightweight and fast on top of
online cloud measurement infrastructures, does not need prior
application knowledge, is scalable for large applications, and is
able to deal with arbitrary kinds of acyclic and regular topologies.
Furthermore, SuanMing is designed as a framework offering several
extension points for the extension of all learning and prediction
modules.

3 EVALUATION
For evaluating the effectiveness and the performance of SuanMing,
we pose ourselves the following research questions (RQs):

• RQ1: How do different regression modeling approaches com-
pare for modeling the performance of an individual service?

• RQ2: Can SuanMing accurately predict the propagation of
performance degradations between different services?

• RQ3: How do different forecasting horizons affect the perfor-
mance of SuanMing?

• RQ4: Is the overhead of model training and performance in-
ference feasible for online environments?

• RQ5: Is SuanMing effortlessly portable to different applications
and monitoring environments?

All results in the context of answering these research questions
are published and can be replicated using a CodeOcean capsule7.

3.1 TrainTicket
Our first experiment to answer the formulated research questions
focuses on TrainTicket [35]. TrainTicket is a representative mi-
croservice application consisting of 42 different services concerned
with the administration, searching, and booking of train tickets.
Due to the number of services in the application and the depth of
the call chains, it is suitable for demonstrating the performance
propagation and pinpointing capabilities of SuanMing.

3.1.1 Experiment setup. We deploy each TrainTicket service in a
single docker container deployed on an HPE ProLiant DL360 Gen9
cloud server equipped with an Intel® Xeon® E5-2640 v3 CPU, 32 GB
of RAM, running Ubuntu 18.04 with Docker 18.09.7. All containers
are resource-limited in order to minimize performance interference
between the services. The SuanMing implementation is run on an
HPE ProLiant DL20 Gen9 with an Intel® Xeon® E3-1230 v5 CPU,
16 GB of RAM, and running the same Ubuntu and Docker 18.09.7
environment. The TrainTicket services are monitored using the
Pinpoint3 monitoring framework deployed on a different Virtual
Machine (VM) equipped with 2 CPU cores and 16 GB of RAM,
running on a third host machine.

Lastly, we used an additional machine for emulating users visit-
ing the TrainTicket website. We use the HTTPLoadGenerator [30]
to generate a periodically increasing and decreasing amount of
users on the system. Upon visiting the site, users log in, solve a
captcha, search for a set of possible trains on a route, reserve and
buy tickets, as well as collect and check-in the booked tickets. Our
users randomly send incomplete or faulty data when searching or
booking, in order to make the overall user behavior less predictable.
In total, 26 services and 58 service endpoints are involved in pro-
cessing the user requests. The base load varies between 3 and 22
requests per second. We set the prediction interval to five seconds,
i.e., the experiment time is divided into intervals of five seconds.
Therefore, our models generate every 5 seconds a new prediction
about the next interval, resulting in a total of 676 analysis intervals
with corresponding predictions and 700 total training intervals.
As we have 58 endpoints in the application, SuanMing trains 58
machine learning models, using at least 1 and at most 12 features,
depending on the position of the endpoint in the graph. In addition
to this relatively low base load, we now specifically overload one of
the backend services (train) with 300 requests per second in order
to evaluate how the created performance degradation propagates

7https://doi.org/10.24433/CO.8530346.v3

https://doi.org/10.24433/CO.8530346.v3

No degradation Degradation Root Cause

verification

login

assurance

order

travel

travel2

orderOther

inside_payment

execute

contacts

food
preserve preserveOther

sso

payment

seat

notification

route train

config

station

basic

price

security

ticketinfo

food‐map

Figure 2: Schematic application state at measurement inter-
val 680, i.e, 3400 seconds. Each box represents a service, an
arrow depicts user or inter-service calls.

through the application and whether SuanMing is able to correctly
predict and pinpoint the anticipated performance degradation. As
we want to evaluate how this impacts the prediction performance
on the travel service, we furthermore ensured that the load on
travel was more or less constant, during the whole experiment
(compare Figure 3).

Concerning performance metrics to measure and predict, we
focus on one single metric in this evaluation, namely the service re-
sponse time. For the front-end services preserve, preserveOther,
and travel, we define thresholds of 1500, 1500, and 600 ms as
performance thresholds. Hence, if the average response time of
preserve rises above 1.5 seconds in any given time interval, pre-
serve is considered to experience a performance degradation. The
goal of SuanMing is now to predict this degradation at least one
interval before it happens. The thresholds of all endpoints are set
to at least two times their normal response time during low load.
For fast services with response times smaller than 30 ms (except
train), we set the threshold to 110 ms. As the propagation matrix of
TrainTicket is linear, we can apply the linear propagation algorithm
discussed in Section 2.6.

3.1.2 Performance propagation. Figure 2 shows a schematic over-
view of all 26 involved service instances and their connections.
Figure 2 shows the system status during a performance degradation
at the train service (red). We observe that the performance degra-
dation propagates as expected through the application. Although
the front-end services travel, preserve, and preserveOther only
receive a very limited number of requests (8.8 requests per second),
the average response time of these services increases massively
after the backend service train decreases its performance. We ob-
serve performance degradations at several services (orange), all
of which can be avoided, by addressing the problem at the train
root-cause service (red). In the following, we analyze if SuanMing is
able to correctly predict, detect, and propagate these performance
degradations, as well as pinpoint the respective root-cause.

3.1.3 Regression analysis. For answeringRQ1, we first analyze the
performance of different regression models on the /travel/query
endpoint. We focus on /travel/query as the travel service is
the frontend endpoint and therefore relevant for user-experience.
The goal of all modeling approaches is to predict the performance

degradation at the train service and to propagate the performance
problems up to the travel service. As travel itself is not expe-
riencing a high base load, this assesses the model capabilities to
correctly propagate the performance degradation to the system.

The black line of Figure 3 shows the average response time for a
request at the /travel/query service over time, i.e., the time one
user has to wait for the response of a search for possible trains. At
the same time, the gray background curve depicts the number of
requests arriving at travel. We observe, that the observed response
time spikes are not correlated to the number of incoming requests
at travel, but are due to the poor performance of other services.

In this work, we compare four different machine learning mod-
els: (1) Random Forest Regression (RF), (2) 𝑘-Nearest Neighbor
Regression (KNN), (3) Bayesian Ridge Regression (Bayesian), and
(4) Support Vector Regression (SVR), all provided by the Scikit-learn
library [8]. All models are trained using 6-fold cross-validation us-
ing out-of-sample forecast evaluation [3] in order to optimize their
hyper-parameter settings by performing a grid-search on a set of 3
to 5 hyper-parameters to minimize the classification error.

We observe that almost all modeling approaches depicted in
Figure 3 closely resemble the anticipated load spikes. The random
forest seems to perform best, as support vector regression tends
to continuously underestimate the load spikes, Bayesian ridge re-
gression tends to overestimate the low load phases, and 𝑘-nearest
neighbor occasionally massively overshoots the predictions. How-
ever, generally, all modeling approaches are able to predict the
performance degradation at /travel/query, although the incom-
ing load intensity is relatively stable. Note that the measurement
and the prediction curves were aligned for better visibility.In a
live system, the prediction curves would rise before the measured
response time increases, as it is necessary to enable the mitigation
of the degradation.

Figure 3 additionally depicts the evolution of the regression
model over time. The dashed line at 505 seconds resembles the con-
fidence threshold to be passed for the first time. Hence, SuanMing
did not output any degradation predictions before that time, as the
model confidence was too low. This makes sense, as all SuanMing
models start without any application information or a-priori knowl-
edge and need some time to learn and adapt to the TrainTicket
application. The chosen threshold itself is also reasonable, as the
regression models are fairly inaccurate during the first experiment
phase. As the confidence is calculated based on the forecast, it is
model-agnostic and can be applied to all model types at the same
time. For the presented experiment, the threshold was passed after
101 intervals or 505 seconds.

After the confidence threshold is passed, the Random Forest
regression curve closely fits the measured performance, although
the response time fluctuates heavily between 200 ms and over 3000
ms. However, we observe that the models continuously learn and
adapt to the incoming measurements. For example, the load peak
right after 2500 is lower than anticipated, therefore, Random Forest
and 𝑘-nearest neighbor curve overshoot the expected response
time during that degradation. Following, the models adapt to these
changes and lowers its predictions for the succeeding intervals in
order to better resemble the measurements. Generally, these small
prediction errors lead to a relatively high regression error (compare
Table 1), but have only minor effects on the classification accuracy.

0 500 1000 1500 2000 2500 3000
Experiment Time [s]

0

2

4

6

A
vg

.R
es

po
ns

e
Ti

m
e

[s
] Measurement

RF
KNN
Bayesian

SVR
Confidence check

Target threshold
Arrival rate

0

10

20

30

40

A
rr

iv
al

R
at

e
[1

/s
]

Figure 3: Measured and predicted response times at /travel/query, together with the incoming request rates.

Table 1: Model accuracy comparison for the TrainTicket service.

Approach Example Endpoint /travel/query Application-Wide Overhead
sMAPE MAE (ms) TP FP TN FN Accuracy F1 Score Accuracy F1 Score Training Prediction

RF 0.271 331 63 33 481 22 0.908 0.696 0.977 0.626 6.243s 0.226s
KNN 0.282 337 64 31 483 21 0.913 0.711 0.975 0.594 3.102s 0.135s
SVR 0.290 288 64 31 483 21 0.913 0.711 0.978 0.610 17.405s 0.092s
Bayesian 0.500 357 64 38 476 21 0.902 0.684 0.955 0.484 2.915s 0.067s

Mean Regr. 0.791 558 37 287 227 48 0.441 0.181 0.931 0.203 – –
All-green – – 0 0 514 85 0.858 0.000 0.973 0.000 – –
All-red – – 85 514 0 0 0.142 0.249 0.027 0.052 – –
Random – – 46 265 249 39 0.492 0.232 0.497 0.050 – –

OptimalRF 0.198 221 75 13 501 10 0.962 0.867 0.987 0.772 – –

3.1.4 Classification analysis. In this section, we now evaluate the
performance of SuanMing in more detail to answer RQ1 and RQ2
and to analyze the cost-performance trade-off of SuanMing. Table 1
shows different regression and classification scores of different
model types summarized over the course of the whole experiment.

We report the mean absolute error (MAE) and the symmetric
mean average percentage error (sMAPE) [10] of the regression pre-
dictions at each point. As the predicted response time of each ser-
vice is then translated into a classification (healthy or not healthy)
using the defined thresholds, we further study the classification
performance of the individual approaches. We analyze true positive
(TP), false positive (FP), true negative (TN), and false negative (FN)
scores, as well as the resulting accuracy and F1 scores. Additionally,
we report the global classification metrics, i.e., the accuracy, and
the F1 score for all 58 service endpoints combined. The values re-
ported in Table 1 all refer to the intervals after the model confidence
threshold has passed, i.e., excluding the first 505 seconds.

For comparison, we added a set of different baseline approaches.
First, we add Mean Regressor (Mean Regr.), a regression approach
that always predicts the mean of all previously observed values.
The All-green, All-red, and Random approaches are classifiers that
always predict green, red, or randomly for each of the experiment
intervals. Finally, we also add a variant of the Random Forest predic-
tor that receives perfect load forecasts (OptimalRF). This approach

assumes that the given forecast is perfect (i.e., it works a-posteriori
and not online), and therefore helps at determining the impact of
the forecasting error.

In total, the used experiment contains 85 intervals experiencing
performance degradation at the /travel/query endpoint. Adding
the other endpoints, a total of 933 performance degradations were
recorded. In comparison to the total amount of intervals, this is
a relative share of 14.2% for /travel/query, or 2.7% for the total
application. This ratio is representative, as in practice performance
degradations are expected rather infrequently.

Generally, we observe that all regression algorithms depicted
in Table 1 are generally capable of capturing the performance be-
havior of /travel/query. The most notable difference is with the
Bayesian Ridge Regression, which performs poorly on the regres-
sion metrics and has a higher false positive rate than the other
approaches. While Random Forest performs best for sMAPE, Sup-
port Vector Regression shows a lower MAE and ties with 𝑘-Nearest
Neighbor for accuracy and F1 score on the /travel/query end-
point. However, when we analyze the global score, Random Forest
performs slightly better than Support Vector Regression regarding
the F1 score. As the global F1 is our main metric of interest, and as
the increased training of support vector regression speaks against
it, we will restrict to Random Forest Regression for the rest of the

analysis. These results are in line with our analysis of the regression
curves in Figure 3 and answers RQ1 and RQ2.

When comparing with the baseline approaches, we observe that
all modeling techniques consistently outperform the given baseline
techniques. While the poor performance of All-green, All-red, and
Random is expected, the Mean Regressor baseline also achieves
significantly lower scores. Note that the high accuracy of the All-
green and theMean Regressor approaches is due to the large amount
of true negative intervals in the experiment.

Finally, we observe that the performance of the Random Forest
regressor can be significantly improved by eliminating the forecast-
ing error with the optimal forecast. Although this approach is not
realistic to apply in practice, we can conclude that Random Forest
is able to correctly model the performance behavior of the system,
given the correct number of incoming requests. This shows the
benefit of the modular architecture of SuanMing, as the forecasting
engine could easily be exchanged if more accurate forecasts were
required.

3.1.5 Root-cause detection. As Random Forest is able to predict
the performance degradation at the travel service, we now ana-
lyze the list of root-cause services returned by Algorithm 3. For
the scenario shown in Figure 2, SuanMing returns a list of train,
travel, travel2, basic, and ticketinfo as problematic or root-
cause services which need to be addressed in order to solve the
performance degradations in the system. However, by halving the
inserted performance thresholds 𝑃 ′

𝑖
, the list is reduced to contain

only train. This shows that SuanMing is able to pinpoint train
as the respective root-cause service, but also identifies additional
services that require attention. We hypothesize that these inaccura-
cies are due to the lack of training samples during high load phases,
as performance degradations at train are always accompanied by
performance degradations in the shown scenario.

3.1.6 Overhead analysis. In this section, we assess the overhead of
model training and prediction in order to demonstrate the feasibility
of using SuanMing in an online environment. To that end, Table 1
additionally depicts the maximum time required for training the
regression models together and the mean prediction time per inter-
val. We analyze the maximum training time, as the time required
for training the regression models increases with the amount of
monitoring data available. The prediction time includes both the
execution of the request propagation and the performance infer-
ence for all endpoints of the service in the Predictor component
and is averaged over all predictions.

We observe that all models are able to train all regression models
in a matter of seconds and deliver predictions in less than a second.
Both timescales are assumed to be fine in an online environment,
and prediction times of less than one second are sufficiently fast
for prediction intervals of 5 seconds. We note that Bayesian Ridge
Regression is by far the fastest of all approaches. However, this is
offset by its relatively poor prediction accuracy. Therefore, while
the choice of the best-suited modeling type is up to the user, we
still recommend using the Random Forest approach. This answers
RQ4, as all assessed modeling types qualify for execution in online
environments.

Table 2: Accuracy comparison on the TeaStore experiment.

Approach /webui/main Application-wide
Accuracy F1 Score Accuracy F1 Score

SuanMing 0.826 0.816 0.913 0.693

Mean Regr. 0.520 0.681 0.802 0.574
All-green 0.486 0.000 0.857 0.000
All-red 0.514 0.679 0.143 0.251
Random 0.504 0.495 0.503 0.224

3.2 TeaStore
After we verified the capabilities of SuanMing on the TrainTicket
application, we now move on to use SuanMing in order to predict
performance degradations of a different application in a more re-
alistic testing environment. As a second application, we use the
TeaStore [31], a micro-service benchmarking application for buy-
ing tea, consisting of seven services. The users of TeaStore can
log in, browse different categories and products, add and modify
items in their shopping cart, and checkout by entering shipping and
payment information. In contrast to the previous experiment, we
now deploy TeaStore in a realistic, commercial cloud environment
(Huawei Cloud4), and feed the available cloud monitoring and trac-
ing into the SuanMing framework. Additionally, we increase the
applied load pattern in order to represent realistic daily or weekly
fluctuating workload intensities and to regularly overload the TeaS-
tore application at specific services. Therefore, over the experiment
duration of 6 hours, the workload intensity irregularly fluctuates
between 1 and 140 user requests per seconds, while the target
thresholds of the frontend service WebUI are set to 200 ms, and
for all other services are set to 100 ms. This aims at verifying that
SuanMing is not only able to deliver root-cause predictions under
lab conditions, but also deliver accurate performance degradation
predictions in a realistic cloud setting.

3.2.1 Classification performance. We evaluate SuanMing by ana-
lyzing the performance of the Random Forest modeling technique
with different baseline approaches, similar to the previous experi-
ment. Table 2 compares the classification metrics of SuanMing with
other baseline approaches, focusing on the frontend service /we-
bui/main. The shown values refer to after the confidence threshold
was passed, which was after 13 intervals or 65 seconds.

Similar to our results on the TrainTicket application, SuanMing
is able to outperform all baseline approaches in terms of accuracy
and F1. However, we notice that the accuracy is lower, while the F1
score has increased in comparison to the TrainTicket environment.
This is due to the increased number of performance degradations in
the data set, and the correspondingly rising number of true positives.
Nevertheless, SuanMing is able to achieve a global accuracy of over
91% with an F1 score of almost 0.7, which shows that the results of
SuanMing are transferable to different applications and monitoring
environments (RQ5).

3.2.2 Prediction horizon. One advantage of the SuanMing design
is that the performance prediction models are time-agnostic and
are sub-sequentially able to calculate performance predictions for
any arbitrary application state. After analyzing the performance of

0 100 200 300 400 500 600 700 800 900
Prediction Horizon [s]

0.00

0.25

0.50

0.75

1.00

Sc
or

e

Accuracy F1 Score

Figure 4: Global classification accuracy with increasing pre-
diction horizons.

single-horizon predictions, i.e., the prediction for one interval or 5
seconds into the future, we now want to focus on increasing this
prediction interval. The advantage of a higher prediction horizon is
the fact that it allows for an earlier notification for an anticipated
performance degradation and hence gives more time to address
and mitigate the predicted problem.

Figure 4 shows the global classification accuracies averaged over
the whole experiment duration for increasing prediction horizons.
We observe that the F1 score is significantly impacted by an increas-
ing horizon, while the reported accuracy stays almost constant.
This is due to the fact that most services do not experience perfor-
mance degradations, leading to a high amount of true negatives
that can be accurately predicted by SuanMing. The F1 is mainly
influenced by the predictions on the webui service as it was shown
to be the bottleneck for the TeaStore application. Overall the curve
drops almost linearly until a score of around 0.6 is reached after
around 200s. Increasing the prediction horizon to over 500 seconds
does not decrease the F1 anymore. While a performance prediction
of 600 seconds in advance is theoretically possible, the F1 drops
regularly below 0.6 for large horizons. It is then up to the user to
decide if the accuracy drop is acceptable. However, if a small drop in
prediction accuracy is acceptable, Figure 4 shows that SuanMing is
able to predict performance degradations up to 100s to 200s seconds
in advance. Generally, the prediction accuracy of large horizons
is strongly dependent on the applied workload and whether the
forecast engine is able to correctly predict the future load pattern.
Unforeseen noise or load spikes makes this task increasingly diffi-
cult. We, therefore, conclude that SuanMing is able to arbitrarily
increase the prediction horizon, but increasingly depends on accu-
rate forecasts in order to perform its predictions (RQ3).

4 DISCUSSION
As our experiment in Section 3 shows, SuanMing and the accu-
racy of its performance predictions strongly rely on the applied
forecasting technique. Due to the modular design of the SuanMing
framework, it is possible to exchange or optimize forecasting en-
gines, depending on the specific scenario or workload.

One of the main advantages of SuanMing is the high explainabil-
ity of the results compared to state-of-the-art approaches. As we
divide the prediction process into smaller steps, the root-cause pre-
diction is augmented with interim results which can be consulted
for further evaluations. In a practical use case, one can easily un-
derstand a predicted root-cause by consulting the load forecast, the
request propagation model, and the resulting performance metrics.

In future work, we furthermore want to extend the current root-
causing list by correlating predicted performance degradation with
resource usage metrics in order to deliver root-cause not only on
the service, but on the resource level. This can be done using the
auxiliary metrics also used to improve the performance model ac-
curacy. Furthermore, we plan to extend the dependency map of
our approach, by taking deployment dependencies into account.
This would also enable SuanMing to additionally detect perfor-
mance degradations caused by an overloaded host, as successfully
demonstrated by Lin et al. [22].

5 RELATEDWORK
There are several works focusing on the explanation of performance
degradation and namely root-cause analysis of cloud-hosted appli-
cations [19, 33]. Additionally, several works specifically targeting
micro-service architectures have been proposed [20, 22, 32, 34, 35].
Notably, Microscope [22] uses causality graphs to pinpoint root
causes for failures in microservice applications. In contrast to our
work, they introduce the concept of non-communicating depen-
dency in their dependency graph, e.g., via co-location. Other root
case localization algorithms for micro-services based on call or
dependency graphs were proposed by Wang et al. [32] and Wu et
al. [34]. Zhou et al. [35] present an approach for fault analysis in mi-
croservice applications using tracing tools. However, none of these
works focuses on predicting or forecasting future performance
degradations.

On the other hand, works that focus on the prediction of perfor-
mance problems require more data. For example, there exist works
utilizing machine learning techniques, to detect or predict perfor-
mance degradation of micro-service applications [12, 15]. However,
they also utilize low-level monitoring data from the operating sys-
tem or the hardware-level in order to calculate the performance pre-
dictions. While our approach is also able to utilize such additional
monitoring data using the additional metrics 𝛼 , SuanMing does not
assume more than tracing data to be available. Similarly, other ap-
proaches based on rule-based detection [6, 16, 25] or architectural
models [5, 23, 24, 26] rely on log data or other a-priori application
knowledge, which is not available using the non-intrusive tracing.

Finally, a recent survey [13] analyzed approaches for the pre-
diction of Service Level Objective (SLO) failures, of which the pre-
diction of performance degradation as we define it in this work is
a sub-set. They notice the lack of explainability in current works
and therefore identified this as a research gap for future work [13],
which is why SuanMing concentrates on delivering explainable and
actionable predictions.

6 CONCLUSION
In this paper, we present SuanMing, a framework for modeling
micro-service applications based on cloud monitoring and tracing
data. The learned models do not require any a-priori application
knowledge can be used to predict performance degradations as well
as to pinpoint the responsible root-cause service in order to avoid
the performance problem. We contribute a modular and mathemat-
ically formalized approach, that therefore enables easy adaptability
and exchangability of individual components. The corresponding
implementation is designed as a micro-service application as well.

Our evaluation shows that SuanMing is able to predict and ex-
plain performance degradations with an accuracy of over 90% on
both the TrainTicket and the TeaStore micro-service applications.
We furthermore assess that SuanMing is capable of delivering those
predictions with a reasonable overhead in a realistic cloud environ-
ment. Finally, we observe that it is possible to receive performance
degradation predictions several minutes in advance by increasing
the prediction horizon, if accompanying accuracy decreases are
acceptable. Therefore, SuanMing presents a first step towards auto-
nomically supervising micro-service applications, in order to avoid
performance degradations before they actually occur in the system.

REFERENCES
[1] Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin

Flunkert, Jan Gasthaus, Tim Januschowski, Danielle C. Maddix, Syama Ranga-
puram, David Salinas, Jasper Schulz, Lorenzo Stella, Ali Caner Türkmen, and
Yuyang Wang. 2020. GluonTS: Probabilistic and Neural Time Series Modeling in
Python. Journal of Machine Learning Research 21, 116 (2020), 1–6.

[2] Andre Bauer, Marwin Zufle, Nikolas Herbst, Albin Zehe, Andreas Hotho, and
Samuel Kounev. 2020. Time Series Forecasting for Self-Aware Systems. Proc.
IEEE 108, 7 (2020), 1068–1093.

[3] Christoph Bergmeir, Mauro Costantini, and José M. Benítez. 2014. On the use-
fulness of cross-validation for directional forecast evaluation. Computational
Statistics & Data Analysis 76 (2014), 132–143.

[4] Ricardo Bianchini, Marcus Fontoura, Eli Cortez, Anand Bonde, Alexandre Muzio,
Ana-Maria Constantin, Thomas Moscibroda, Gabriel Magalhaes, Girish Bablani,
and Mark Russinovich. 2020. Toward ML-Centric Cloud Platforms. Commun.
ACM 63, 2 (2020), 50–59. https://doi.org/10.1145/3364684

[5] Pedro Capelastegui, Alvaro Navas, Francisco Huertas, Rodrigo Garcia-Carmona,
and Juan Carlos Dueñas. 2013. An online failure prediction system for private
IaaS platforms. In Proceedings of the 2nd International Workshop on Dependability
Issues in Cloud Computing (DISCCO ’13). Association for Computing Machinery,
New York, NY, USA, 1–3.

[6] Alexander Clemm and Malte Hartwig. 2010. NETradamus: A forecasting system
for system event messages. In IEEE/IFIP Network Operations and Management
Symposium (NOMS) (2010), Yoshiaki Kiriha, Lisandro Zambenedetti Granville,
Deep Medhi, Toshio Tonouchi, and Myung-Sup Kim (Eds.). IEEE, USA, 623–630.
https://doi.org/10.1109/NOMS.2010.5488430

[7] Simon Eismann, Cor-Paul Bezemer, Weiyi Shang, Dusan Okanovic, and Andre
van Hoorn. 2020. Microservices: A Performance Tester’s Dream or Nightmare?.
In Proceedings of the 2020 ACM/SPEC International Conference on Performance
Engineering (ICPE) (ICPE’20). ACM, New York, NY, USA, 12 pages. Acceptance
Rate: 23.4% (15/64).

[8] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research 12, 85 (2011),
2825–2830.

[9] Maria Fazio, Antonio Celesti, Rajiv Ranjan, Chang Liu, Lydia Chen, and Massimo
Villari. 2016. Open Issues in Scheduling Microservices in the Cloud. IEEE Cloud
Computing 3, 5 (2016), 81–88.

[10] Benito E. Flores. 1986. A pragmatic view of accuracy measurement in forecasting.
Omega 14, 2 (1986), 93–98.

[11] Martin Fowler. 2015. Microservice Trade-Offs. https://martinfowler.com/articles/
microservice-trade-offs.html

[12] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi, and
Christina Delimitrou. 2019. Seer. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’19). Association for Computing Machinery, New York, NY,
USA, 19–33.

[13] Johannes Grohmann, Nikolas Herbst, Avi Chalbani, Yair Arian, Noam Peretz, and
Samuel Kounev. 2020. A Taxonomy of Techniques for SLO Failure Prediction in
Software Systems. Computers 9, 1 (2020), 10.

[14] Johannes Grohmann, Nikolas Herbst, Simon Spinner, and Samuel Kounev. 2017.
Self-Tuning Resource Demand Estimation. In Proceedings of the 14th IEEE Inter-
national Conference on Autonomic Computing (ICAC 2017). IEEE, USA, 21–26.

[15] Johannes Grohmann, Patrick K. Nicholson, Jesus Omana Iglesias, Samuel Kounev,
and Diego Lugones. 2019. Monitorless: Predicting Performance Degradation in
Cloud Applications with Machine Learning. In Proceedings of the 20th Interna-
tional Middleware Conference (Davis, CA, USA) (Middleware ’19). Association for
Computing Machinery, New York, NY, USA, 149–162.

[16] Xiaohui Gu, Spiros Papadimitriou, Philip S. Yu, and Shu-Ping Chang. 2008. Online
Failure Forecast for Fault-Tolerant Data Stream Processing. In 2008 IEEE 24th
International Conference on Data Engineering. IEEE, USA, 1388–1390.

[17] Nikolas Herbst, Ayman Amin, Artur Andrzejak, Lars Grunske, Samuel Kounev,
Ole J. Mengshoel, and Priya Sundararajan. 2017. Online Workload Forecasting. In
Self-Aware Computing Systems, Samuel Kounev, Jeffrey O. Kephart, Xiaoyun Zhu,
and Aleksandar Milenkoski (Eds.). Springer Verlag, Berlin Heidelberg, Germany,
529–553.

[18] Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonca, James Lewis, and Stefan Tilkov.
2018. Microservices: The Journey So Far and Challenges Ahead. IEEE Software
35, 3 (2018), 24–35.

[19] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. 2017. Performance Mon-
itoring and Root Cause Analysis for Cloud-hosted Web Applications. In Pro-
ceedings of the 26th International Conference on World Wide Web (WWW ’17).
International World Wide Web Conferences Steering Committee, Republic and
Canton of Geneva, CHE, 469–478.

[20] Anshul Jindal, Vladimir Podolskiy, and Michael Gerndt. 2019. Performance Mod-
eling for Cloud Microservice Applications. In Proceedings of the 2019 ACM/SPEC
International Conference on Performance Engineering (ICPE ’19). Association for
Computing Machinery, New York, NY, USA, 25–32.

[21] James Lewis and Martin Fowler. 2014. Microservices: a definition of this new
architectural term. https://martinfowler.com/articles/microservices.html

[22] Jinjin Lin, Pengfei Chen, and Zibin Zheng. 2018. Microscope: Pinpoint Perfor-
mance Issues with Causal Graphs in Micro-service Environments. In Service-
Oriented Computing, Claus Pahl, Maja Vukovic, Jianwei Yin, and Qi Yu (Eds.),
Vol. 11236. Springer International Publishing, Cham, 3–20.

[23] Leonardo Mariani, Mauro Pezzè, Oliviero Riganelli, and Rui Xin. 2020. Predicting
failures in multi-tier distributed systems. Journal of Systems and Software 161
(2020), 110464.

[24] Burcu Ozcelik and Cemal Yilmaz. 2016. Seer: A Lightweight Online Failure
Prediction Approach. IEEE Transactions on Software Engineering 42, 1 (2016),
26–46.

[25] Teerat Pitakrat, Jonas Grunert, Oliver Kabierschke, Fabian Keller, and Andre van
Hoorn. 2014. A Framework for System Event Classification and Prediction by
Means of Machine Learning. In Proceedings of the 8th International Conference
on Performance Evaluation Methodologies and Tools (VALUETOOLS ’14). ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), Brussels, BEL, 173–180.

[26] Teerat Pitakrat, DušanOkanović, André vanHoorn, and Lars Grunske. 2018. Hora:
Architecture-aware online failure prediction. Journal of Systems and Software
137 (2018), 669–685.

[27] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson,
Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper,
a Large-Scale Distributed Systems Tracing Infrastructure. Technical Report. Google,
Inc.

[28] Simon Spinner, Giuliano Casale, Fabian Brosig, and Samuel Kounev. 2015. Eval-
uating approaches to resource demand estimation. Performance Evaluation 92
(2015), 51–71.

[29] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. 2012. Kieker. In Proceed-
ings of the 3rd ACM/SPEC International Conference on Performance Engineering
(ICPE 2012). ACM, New York, NY, USA, 247.

[30] Joakim von Kistowski, Maximilian Deffner, and Samuel Kounev. 2018. Run-Time
Prediction of Power Consumption for Component Deployments. In 2018 IEEE
International Conference on Autonomic Computing (ICAC). IEEE, USA, 151–156.

[31] Joakim von Kistowski, Simon Eismann, Norbert Schmitt, Andre Bauer, Johannes
Grohmann, and Samuel Kounev. 2018. TeaStore: A Micro-Service Reference
Application for Benchmarking, Modeling and Resource Management Research.
In 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS). IEEE, USA, 223–236.

[32] Ping Wang, Jingmin Xu, Meng Ma, Weilan Lin, Disheng Pan, Yuan Wang, and
Pengfei Chen. 2018. CloudRanger: Root Cause Identification for Cloud Native
Systems. In Proceedings of the 18th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid ’18). IEEE Press, USA, 492–502.

[33] Jianping Weng, Jessie Hui Wang, Jiahai Yang, and Yang Yang. 2018. Root Cause
Analysis of Anomalies of Multitier Services in Public Clouds. IEEE/ACM Trans.
Netw. 26, 4 (2018), 1646–1659.

[34] Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. 2020. MicroRCA: Root
Cause Localization of Performance Issues in Microservices. In IEEE/IFIP Network
Operations and Management Symposium (NOMS). IEEE, Budapest, Hungary, 1–9.

[35] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding. 2018.
Fault Analysis and Debugging of Microservice Systems: Industrial Survey, Bench-
mark System, and Empirical Study. IEEE Transactions on Software Engineering 1,
01 (2018), 1–1.

[36] Marwin Züfle, André Bauer, Nikolas Herbst, Valentin Curtef, and Samuel Kounev.
2017. Telescope: A Hybrid Forecast Method for Univariate Time Series. In Pro-
ceedings of the International work-conference on Time Series (ITISE 2017). Springer,
Berlin Heidelberg, Germany.

https://doi.org/10.1145/3364684
https://doi.org/10.1109/NOMS.2010.5488430
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservices.html

	Abstract
	1 Introduction
	2 Approach
	2.1 Overview
	2.2 Provider
	2.3 Load Forecast
	2.4 Propagation Trainer
	2.5 Performance Trainer
	2.6 Predictor
	2.7 Analyzer
	2.8 Summary

	3 Evaluation
	3.1 TrainTicket
	3.2 TeaStore

	4 Discussion
	5 Related Work
	6 Conclusion
	References

