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Resource demands are crucial parameters for modeling and predicting the performance of software systems.
Currently, resource demand estimators are usually executed once for system analysis. However, the monitored
system, as well as the resource demand itself, are subject to constant change in run-time environments. These
changes additionally impact the applicability, the required parametrization as well as the resulting accuracy
of individual estimation approaches. Over time, this leads to invalid or outdated estimates, which in turn
negatively influence the decision-making of adaptive systems.

In this paper, we present SARDE, a framework for self-adaptive resource demand estimation in continuous
environments. SARDE dynamically and continuously tunes, selects, and executes an ensemble of resource
demand estimation approaches to adapt to changes in the environment. This creates an autonomous and
unsupervised ensemble estimation technique, providing reliable resource demand estimations in dynamic
environments. We evaluate SARDE using two realistic data sets. One set of different micro-benchmarks
reflecting different possible system states and one data set consisting of a continuously running application
in a changing environment. Our results show that by continuously applying online optimization, selection
and estimation, SARDE is able to efficiently adapt to the online trace and reduce the model error using the
resulting ensemble technique.

CCS Concepts: • Computing methodologies → Learning paradigms; Model development and analysis;
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1 INTRODUCTION

Timely and precise resource demand estimates are a crucial input to auto-scaling mechanisms [2]
or performance modeling techniques [36, 69] used for elastic resource provisioning. Therefore, it
has been shown that statistical estimation of resource demands is a valid and useful tool to realize
precise elastic cloud resource management [2, 92]. A resource demand(or service demand [79])
is the average time a unit of work (e.g., request or transaction) spends obtaining service from a
resource (e.g., CPU or hard disk) in a system over all visits, excluding any waiting times [48, 59].
Unfortunately, measuring resource demands during system operation is not feasible in most realistic
systems [79] due to instrumentation overheads and possible measurement interference. Therefore,
a number of approaches for resource demand estimation have been proposed over the years, using
di�erent statistical estimation techniques (e.g., linear regression [8, 72] or Kalman �lters [88, 98])
and based on di�erent modeling approaches from queueing theory.

When selecting an appropriate approach for a given scenario, a user has to consider di�erent
characteristics of the estimation approach, such as the expected input parameters, con�guration
settings, its accuracy and its robustness to measurement anomalies. The accuracy of the di�erent
approaches is heavily dependent on factors like, including but not limited to, system load, workload
type, deployment structure, internal state, and monitoring granularity [79]. Additionally, Spinner
et al. [79] show that no single approach is optimal in all scenarios. This is in accordance with
the no-free-lunch theorems for machine learning [93] and optimization [94], stating that any two
algorithms are equivalent when their performance is averaged across all possible problems.

First steps towards solving the above issues focus on combining di�erent estimation approaches
into a single usable tool [80], optimizing con�guration parameters based on measurement data [27,
29], and recommending the most promising approach using machine learning [30]. However,
existing work focuses on one-time estimation and optimization, ignoring the impacts of system
change. As modern software paradigms like DevOps and elastic cloud operations become increas-
ingly popular, timely and precise resource demand estimations get increasingly complex as more
and more variables are continuously subject to change and estimates have to be continuously
updated. For example, any auto-scaler is constantly changing the deployment structure of the
considered software system. In addition, the applied workload is never truly constant in any online
application. In consequence, the considered environment is both unknown at design time, and
constantly evolving during operation time [10]. As the system and measurement data are changing,
the best-suited estimation approach is also subject to change. It is therefore impossible for any
human user to continuously select, parameterize and supervise resource demand estimators during
system operation.

Therefore, in this paper, we introduceSARDE, a framework for continuous,Self-Adaptive
ResourceDemandEstimation.SARDEis able to operate, parameterize and select multiple dif-
ferent resource demand estimations in a continuous manner and adapts autonomously to changes
in its environment in form of the system under study. This work focuses on combining and interlac-
ing the di�erent building blocks in order to create an adaptable and robust framework that can be
applied in any continuous environment without requiring expert knowledge. To that end,SARDE

(i) continuously estimates resource demands,
(ii) continuously selects the best-suited estimation approach,
(iii) continuously learns and adapts the selection strategy in order to adapt to changing environ-

ments, and
(iv) continuously tunes the parameters of individual approaches based on online observations.
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To summarize,SARDEworks as a fully autonomous, situation-aware, and self-adaptive ensemble
resource demand estimation approach.SARDEutilizes the above techniques to improve the perfor-
mance of current state-of-the-art approaches without the need for human supervision or expert
knowledge. We already presented one application forSARDEin previous papers [55, 56], where we
integrate adaptive monitoring probes into continuous integration and deployment pipelines. Our
approach can be used to constantly update or improve a performance model of a running application.
Therefore,SARDErepresents a signi�cant step forward towards our vision of self-aware perfor-
mance models [28], but also towards the vision of autonomic and self-aware computing [41, 45, 82]
in general, as the techniques we introduce � although focused on the area of resource demand
estimation � can also be transferred to other areas of research. The source code of the proposed
approach is available online1. In addition, we published the code for constructing and analyzing
the experimentation data set2, and also published a replication package as a CodeOcean capsule3.

The remainder of this work is structured as follows. We discuss the progress of the area of
resource demand estimation in Section 2 and then motivate the idea behindSARDEin Section 3.
Following, we introduce the general overview ofSARDEin Section 4 and explain the concepts
in more detail in Section 5. Section 6 presents our methodology for evaluating the framework,
while Section 7 presents the obtained results. We discuss these insights in Section 8, and analyze
the threats to validity in Section 9 and the limitations of our approach in Section 10. Finally, we
conclude the paper in Section 11.

2 RELATED WORK

In this section, we will discuss the related work on the topics of resource demand estimation,
algorithm optimization, and algorithm selection in self-adaptive systems.

2.1 Resource Demand Estimation

As resource demands are a crucial parameter for many modeling approaches, the topic of estimating
resource demands received a lot of attention in recent years and many di�erent authors proposed
respective approaches. Spinner et al. [79] present a literature survey covering the most promi-
nent approaches. However, concerning the evaluation of the di�erent approaches, most works
unfortunately only cover a selected set of one or two approaches.

The �rst experiments are presented by Rolia and Vetland [72, 73] using linear regression tech-
niques. Paci�ni et al. [64], Casale et al. [12, 13], and Stewart et al. [83] extend these works by
investigating limitations of linear regression in resource demand estimation and the impact of
di�erent factors. The performance of Kalman Filters for resource demand estimation is researched
by Zheng et al. [98, 99] and Kumar et al. [47]. Kraft et al. [46] and Sharma et al. [74] both compare
least-squares regression with their maximum likelihood estimation and independent component
analysis approach, respectively.

The only works aiming at combining a set of di�erent approaches are the Filling-the-Gap tool
by Wang et al. [90] and the LibReDE tool by Spinner et al. [81]. Filling-the-Gap [90] provides and
compares implementations of the complete information method [65], Gibbs sampling with queue
lengths [88], a maximum likelihood estimator based on a Markov chain representations [65], a
maximum likelihood estimator using a �uid approximation [65], a regression-based approach [65],
utilization-based regression [96], and utilization-based optimization [53].

1Available at https://github.com/jo102tz/LibReDE-SARDE
2Available at https://github.com/jo102tz/LibReDE-SARDE-data
3Available at https://doi.org/10.24433/CO.8429465.v2
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Similarly, the publicly available tool LibReDE (Library for ResourceDemandEstimation) [81]
o�ers open source implementations of currently eight di�erent estimators:

� Service Demand Law (SD) [8]
� Approximation with response times (RT) [8]
� Least-squares regression using queue-lengths and response times (RR) [46]
� Least-squares regression using utilization law (UR) [72]
� Kalman Filtering using utilization law (WF) [88, 89]
� Kalman Filtering using response times and utilization (KF) [47, 98]
� Recursive optimization using response times (MO) [57]
� Recursive optimization using response times and utilization (LO) [53]

The results of Spinner are furthermore published in a respective study [79]. However, apart
from our previous works [27, 29, 30] incorporated intoSARDE, there exists no work on automatic
and systematic evaluation targeting at performance optimization of resource demand estimation
approaches for a given target scenario, since previous approaches only do manual testing and
develop rules of thumb for a chosen small set of parameters (see the above-mentioned articles [12,
13, 47, 79, 98, 99]). Similarly, we are not aware of any techniques that use the acquired information
to develop automatic selection algorithms as we propose in this work.

As LibReDE4 is a publicly available ready-to-use implementation of di�erent resource demand
estimation approaches, our implementation ofSARDEbuilds upon the LibReDE tool and uses the
listed approaches as base estimators.

2.2 Algorithm Optimization in Self-adaptive Systems

Although no works with a focus on resource demand estimation have been proposed, the idea of
continuously adapting and optimizing a system in a changing environment is not new. For example,
the communities of self-aware, self-adaptive, self-organizing, or self-* systems tackle challenges
of monitoring, managing, and optimizing complex intelligent systems in continuously changing
environments [45].

As such, the ideas presented in this paper and incorporated intoSARDEhave been successfully
applied to other domains. For example, Porter et al. [67] present Rex, a development platform that
is also able to apply online learning and optimization based on a linear bandit model. Others de�ne
self-organization or self-assembly to achieve a similar goal [22, 44, 71]. Fredericks et al. [23, 24]
present an overview of di�erent optimization techniques in self-adaptive systems. They divide
works into techniques using probabilistic, combinatorial, evolutionary, stochastic, or mathematical
optimization. Additionally, D'Angelo et al. [17, 18] present a survey and a taxonomy for online
learning of collective self-adaptive systems. If we interpret our single estimators as individual
agents,SARDE's estimators could classify as fully altruistic, non-autonomous agents with full
knowledge access. While the task of choosing the best estimator can be seen as a combinatorial
optimization problem [61, 66], the presented techniques for parameter optimization fall in the
category of mathematical optimization [11, 20, 51, 75]. The proposed hyper-parameter tuning is
also a common topic in machine learning. Therefore, a set of algorithm con�guration approaches,
like Sequential Model-based Algorithm Con�guration (SMAC) [37], or Stepwise Sampling Search
(S3) [62, 63] have been proposed, as well as analysis and visualization tools [3]. A sub-�eld is also
Neural architecture search (NAS) [21, 38], where the goal is to automatically �nd neural network
architectures; these techniques could also be applied in future work.

However, while all of the presented approaches demonstrate the feasibility of applying the
proposed techniques in practice, none of these works focuses on the area of resource demand

4LibReDE: Available for download at http://descartes.tools/librede.
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estimation. Therefore, our contribution in respect to this �eld is to demonstrate and verify the
applicability of continuous algorithm optimization in the speci�c domain of continuous resource
demand estimation.

2.3 Algorithm Selection in Self-adaptive Systems

An orthogonal �eld in the context of continuous optimization is algorithm selection [4, 42]. Al-
gorithm selection [70] (closely related to the �eld of hyper-heuristic selection [9, 77] or meta-
learning [78, 84]) is de�ned as choosing from a set of algorithms the best for a speci�c problem
instance and has found many application areas in prior research [4, 26, 35, 52, 54, 68, 95].

However, the creation and selection of features for selection is a critical task in�uencing the
performance [4, 42]. Hence, by tailoring our features to the speci�c task at hand, we can provide
better results than generic optimization and selection frameworks. The application inSARDEis
di�erent from most of the proposed techniques as it o�ers the possibility to perform selection on
continuously incoming data streams, which currently only a few works consider [42, 84, 85]. In
addition,SARDEprovides an application for online algorithm selection [1, 19, 25]. Both areas have
been identi�ed as speci�c research challenges by prior works [42].

Again, as no works concentrate on resource demand estimation, the focus of this work is to
demonstrate the feasibility of continuous algorithm selection in our speci�c domain. However,
similar to the previous section, many of the proposed techniques can be applied to our task as well
in order to further improve the results presented in this work.

Fig. 1. Motivating example showing the estimation error of di�erent estimators over time.

3 MOTIVATING EXAMPLE

In order to illustrate and motivate the idea behindSARDE, Figure 1 shows the error (calculated as
described in Section 6.2) of the continuously updated estimation using all available approaches
over time. Details on the used system and workload are included in Section 6.1.2.

Envision that during estimation, continuous monitoring streams of throughputs, response times,
and resource utilizations are collected. For illustration purposes, imagine that during the �rst
interval, a CPU utilization of 80% is measured, while 20, 40, and 5 requests of the respective
workload classes are measured. In the second interval, the utilization drops to 60%, as 30, 20, and
10 requests were processed. The task of the resource demand estimators is now to calculate the
resource demand of each workload class, based on this set of coarse-grained measurements.

We observe that over the course of 3 hours, the performance of each estimator is massively
in�uenced by the type and amount of monitoring data available, as well as the underlying character-
istics of the system. As a result, service demand law (pink) starts as the best estimator, followed by

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.
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utilization regression (brown). However, the accuracy of utilization regression starts to decline after
a while, and in fact, continues to have the worst estimation performance of all available approaches.

In total, four of six available estimators exhibit to be the best estimator at least once during our
three hour experiment. Additionally, it is not clear in advance which estimator will perform how
well, especially as some estimators also have the tendency to be very unstable. Hence,SARDEacts
as an ensemble estimator able to combine the best from all estimators and compensate for the
weaknesses of the other approaches. In other words, the aim ofSARDEis therefore to successfully
learn and adapt to the changing performance of the estimators in order to be able to always select
the best approach for each scenario. In addition to that, we observe that some approaches are very
susceptible to changes in their parameter settings [29]. Therefore, by adapting these parameters to
the applied scenario,SARDEcould even improve the performance beyond the current best method
without the need for human supervision or expert knowledge.

Fig. 2. High-level overview of theSARDEapproach.

4 OVERVIEW

This section gives a high-level overview ofSARDEas illustrated in Figure 2. More details on the
implementations and communication of the components can be found in Section 5.

First,SARDEcomprises two running databases: One containing monitoring streams from the
system under study, another storing the sequence of resource demand estimations made over time.
Next to the databases,SARDEcontinuously runs the estimation engine, performing periodic re-
source demand estimations based on the continuously updated monitoring streams. The estimation
engine o�ers di�erent con�guration interfaces, like the speci�c approach to use or the parameter
settings of the individual approaches. The resulting estimations are then stored in the resource
demand database. From there, external processes (e.g., an auto-scaler [2] or a performance model
extractor [87]) can retrieve the latest resource demand estimations. On top of that,SARDEconsists
of two interacting feedback loops:OptimizationandSelection.

The optimization process deals with parameter tuning (e.g., the aggregation interval or the
monitoring window) of the individual approaches. To that end, monitoring data from the system
as well as the corresponding resulting estimations are utilized. The optimization then speci�cally
tailors the parameters of each available estimation approach to the speci�c system under study in
order to minimize the resource demand estimation error.

The selection process utilizes the same data as the optimization process. Instead of optimizing
the parameters for all approaches, however, the selection process �ts a machine learning model

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.
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predicting which approach to select for a given situation. This is done based on speci�c features of
the monitoring data, like e.g., the average CPU utilization, or based on properties of the system,
like e.g., the number of servers or workload classes. Based on these features, the selection process
can then select the best-suited estimation approach for the given situation.

As the optimized parameter settings in�uence the performance of the individual approaches, these
settings have to be considered while training the machine learning model and are therefore directly
fed into the selection process. The selection itself interacts only indirectly with the optimization, as
the process has an impact on the resulting resource demand estimations in the resource demand
database, which is in turn an input to the optimization loop. In addition to utilizing the historical
data, both processes perform additional computations and resource demand estimations in order to
explore the space of all possible con�gurations.

Fig. 3. Conceptual flowchart of the di�erentSARDEprocesses.

5 APPROACH

In this section, we describe the two feedback loops presented in Section 4 and how communication
between them is organized in more detail. As both the optimization process and the selection process
interact with the estimation engine as shown in Figure 2, synchronization and communication is
required. In order to keep all sub-systems ofSARDEup-to-date, we introduce a set of semaphore
artifacts. These artifacts can only be written by one respective process but may be read by all other
processes. This way, it can be ensured that the di�erent feedback loops do not block each other
during execution while using the most recent version.

Figure 3 depicts the �ve di�erent activities running in parallel: (1) monitoring, (2) parameter
optimization, (3) selection model training, (4) approach selection, and �nally (5) resource demand
estimation. In the following, we will discuss each of the individual processes in more detail.

5.1 Monitoring

As the required resource demand estimation approaches require both system- and application-level
monitoring, the monitoring engine has to monitor application-level metrics (like throughput and
response time per workload class) and system-level metrics (e.g., average CPU-utilization per
instance) live from the running system. These monitoring streams are then stored in a database
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and each entry is assigned a corresponding time-stamp. The gathered data can then be fed into the
remaining four processes, each of which requires the information as input.

5.2 Optimization

As explained in Section 2, di�erent resource demand estimation approaches o�er several parameters
to be tuned. Additionally, some parameters like, e.g., the aggregation interval of the monitoring
data (step size) or the measurement window to consider (window size) can be tuned for all ap-
proaches. This is done by analyzing the estimation error of individual estimation approaches via
cross-validation on the monitoring data gathered on the system. A con�gurable search algorithm
then applies di�erent parameter settings and searches for a (near-)optimal con�guration of those
parameters for each of the available approaches. Although simple, the optimization still bears many
challenges, as the number of di�erent possible con�gurations rises exponentially with the number
of parameters, and as the time available for optimization is limited. The challenge is therefore to
utilize an algorithm that is able to �nd a good parameter con�guration using a small number of
exploration runs.

The applied self-tuning algorithm is generally abstract and works for any generic parameter
providing a minimum and a maximum value. The Stepwise Sampling Search (S3) (also referred to
as Iterative Parameter Optimization [63]) was developed by Noorshams et al. [62] in the context of
regression model optimization. Here, we utilize this algorithm in order to optimize the parameters
of our resource demand estimation techniques. This adaptation was already presented in our prior
work [29].

The S3 algorithm can be con�gured by three hyper-parameters: The number of splits per pa-
rameter: , the number of exploration points considered per iteration=, and the maximum number
of iterations9<0G . Noorshams et al. [63] show that the total complexity of the algorithm is given
by O¹9<0G � = � ¹: ¸ 2º; º, where; is the number of parameters that are optimized simultaneously.
Therefore, S3 o�ers good control over the trade-o� between run-time and solution quality by tuning
its hyper-parameters. Additionally, it is possible to optimize an arbitrary number of parameters
simultaneously. This is important as inter-parameter in�uences, i.e., one parameter value in�u-
encing the optimal value of the other can be taken into account. However, it has to be noted that
the number of parameters to be simultaneously optimized heavily in�uences the computational
complexity. Note that S3 is just one possible search algorithm. Technically, all algorithms focusing
on modeling or optimizing con�gurable software systems [31�33, 76, 97] are applicable as well.

Although this step can be executed o�ine using a large trace database, the optimization is usually
more e�ective when optimizing for a speci�c kind and type of system. Additionally, as the system
under study evolves and/or the amount of available monitoring data increases, the parameters need
to be adapted continuously. Therefore, the process is periodically re-triggered. However, depending
on the chosen algorithm, this process can be very time-consuming, running for multiple hours or
even days for huge systems. Therefore, the execution is triggered rather seldom.

5.3 Training

The third step is the process of training the estimation approach selector. The selection process
in Figure 2 is split into two activities as the selection itself is executed far more frequently than
the training of the selection model. During the training phase, a model is learned which is able to
predict the best suitable approach for the given estimation problem. This model is then stored as
the Selection Model, which is used by the actual selection process.

5.3.1 Problem Formalization.The problem of selecting the best algorithm for a speci�c problem
instance was also formulated by Rice [70] as thealgorithm selection problem. Based on this work,
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Smith-Miles [78] formalized the following four components for modeling a selection problem: (i)
the problem space, (ii) the feature space, (iii) the algorithm space, and the (iv) performance space. In
this work, we can translate this to the task of selecting the best-suited resource demand estimation
approach as follows:

� The problem space%represents the measurement traces available for estimation,
� the feature space� contains the characteristics of each trace, as described in Section 5.3.3,
� the algorithm space� is the set of available resource demand estimators, and
� the performance space. represents the mapping of each algorithm to the estimation error.

For a given measurement trace? 2 %with characteristics5¹?º 2 � , the objective is to �nd a
selection mapping( ¹5¹?ºº into the algorithm space� , such that the selected algorithmU 2 �
minimizes the performance mapping~¹U¹?ºº 2 . . The task of the model learning is to �nd the
function ( , mapping each possible trace characteristic to the selected algorithm, while the actual
selection process (see Section 5.4) is executing( ¹5¹?ºº.

5.3.2 Data set.Note that the training procedure itself can be done either online or o�ine. This
decision mainly in�uences what data is available during the training phase to extract knowledge
from.

O�ine training. We refer to o�ine training as training that is performed once, using a variety
of systems and con�gurations. Based on this set, one can apply all available approaches to the
di�erent training sets and use the feedback from those runs to determine which approach is
best suited for the speci�c problem instance. This information, together with a set of descriptive
features is then given to a machine learning algorithm, which learns a model from all training sets,
extrapolating the relationship between the di�erent features and the best-suited approach. We call
this resulting model the selection model. This approach was proposed and partially evaluated in our
prior works [30]. Naturally, the accuracy of this approach highly bene�ts from an increasing amount
of training data and a high similarity of the training systems to the current problem instance.

Online training.O�ine training has the disadvantage of being trained before being applied to
the system under study. Therefore, in online training, we continuously monitor the current system
and the performance of the di�erent approaches, as these can also serve as training samples for
our selection model [42]. Furthermore, the performance of the individual approaches changes if
the optimization process described in Section 5.1 adapts the parameter settings of the respective
approaches. If so, the training must be repeated for the newly found parameterization, which can
be cost-intensive for the o�ine data set. However, online learning has the disadvantage that the
trained model is prone to over-�tting to a speci�c system and cannot adapt very well to changes in
the con�guration or the structure of the system under study. This is due to the drastic reduction of
training data in comparison to the larger data set used in o�ine training.

Hybrid training.As a consequence, we introduce hybrid training, a combination of both o�ine
and online training in this work. The idea of hybrid training is to utilize the training data sets as
applied in o�ine training, but iteratively adding online data from the system under study to the
data set and periodically re-triggering the training process. Therefore, the training process is able
to adapt to the feedback of the running system, while also maintaining robustness towards major
changes of the respective system.

5.3.3 Features.Another central aspect of all machine-learning-based approaches is the feature set
used for training. This section contains the list of features we extract from each monitoring trace.
These features capture certain characteristics of the input traces that we deem useful for judging
which algorithm would be most suitable for estimating that respective trace.
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The machine learning algorithms are heavily dependent on those features and a careful selection,
as well as the right amount, is crucial for a satisfactory outcome. Since machine learning algorithms
try to distinguish between di�erent classes of traces, too many features can actually be harmful.
A tracerefers to one training example of our data set. A trace usually consists of a set of a time
series, e.g., of the CPU utilization of each resource, the response time, and the arrival rate of each
request of the respective workload classes. The CPU-utilization measures the average utilization
of the CPU for a certain interval, the response time contains the response time of each request
and the arrival rate holds the number of incoming requests for a certain interval. These traces are
then given to the estimation approaches for their estimations. For each trace, we want to create a
feature representation~ that captures the characteristics of this trace.

Next to the time series itself, we have some general meta-information about the traces, including
the number of resources (e.g., number of CPUs and/or CPU cores) and the number of di�erent
workload classes. For example, Spinner et al. [79] showed that the number of workload classes
has a direct impact on the performance of the estimators. This meta-information is therefore also
added to the feature set.

Another big impact on the performance of estimators is the utilization of the system [79]. It is
therefore useful to include information about the average utilization of the available resources as
well as the minimum and the maximum utilization. Therefore, it seems reasonable also to extract
statistical information about the time series of each trace.

However, it does not seem useful to average this information overall resources. Especially, since
di�erent workload classes are known for stressing each resource di�erently. We, therefore, de�ne a
set of statistical features to extract utilization information for each individual resource, together
with information about the arrival rate and response times of each workload class, and concatenate
them to one feature vector~.

The extracted statistical features for a time series) = ¹31• ” ” ” •3=º consisting of an ordered set of
data points are as follows:

� The number of data points:= = j) j
� The arithmetic average:) = 1

=
Í =

8=138.

� The geometric average:̂) =
�Î =

8=138
� 1

= .

� The standard deviation:f =
q

1
=

Í =
8=1¹38 � ) º2.

� The quadratic average or root mean square:Grms =
q

1
=

Í =
8=132

8”
� The minimum value:) <8= = min)
� The maximum value :) <0G = max)

� The kurtosis, a measure for the tailedness of the graph of) (see [91]): : =
1
=

Í =
8=1¹38� ) º4

� 1
=

Í =
8=1¹38� ) º2

� 2 � 3.

� The skewness, a measure for asymmetry (see [40]):B=
1
=

Í =
8=1¹38� ) º3

h 1
=� 1

Í =
8=1¹38� ) º2

i 3•2 .

� The 10th percentile:; = %10¹) º
� The 90th percentile:D= %90¹) º

This results in a total of eleven statistical measures. Given that these are calculated for each
resource and twice for each workload class (for arrival rates and response times), and add in the
meta-information about the number of resources and workload classes available, the total number
of features amounts toj~j = 2 ¸ 11� A¸ 22� F , with Abeing the number of resources andF being
the number of workload classes in the training set.
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One advantage of the selected features is that they are fairly easy and fast to compute. In addition,
most of the features are standard statistical measures that are easy to comprehend as a user.
Exceptions might be the kurtosis and the skewness metrics; however, those are common metrics
in time series analysis [40, 91] and are therefore included, because all traces are time series. In
previous works, we also experimented with other and more features [30], including the correlations
and the co-variances between the traces, the variance in�ation factor, and information about the
statistical distributions. While it might seem useful to include further features into the training,
these features are costly to calculate and therefore greatly increased the required selection time [30].
As the respective features did not signi�cantly impact the prediction accuracy, we decided to settle
on the �nal feature list presented above. We also excluded any feature probing techniques [39, 43]
as we consider the performance impact too high. Additionally, removing any more features from the
above list negatively in�uenced the selection results, while o�ering only an insigni�cant run-time
advantage.

5.3.4 Labels.After acquiring the feature vector per trace, one can execute all resource demand
estimators on the given trace and then use the resulting estimation error as labels in order to train
a machine learning algorithm. A selection engine can then be built by training di�erent regression
models, each predicting the error of individual estimators and then choose the one with the best
expected error [4]. However, in the following, we work with a classi�er-based approach. In order
to do so, we compare the error values of each estimator in order to label each feature set with the
value of the best algorithm. During the selection, the predicted label of the classi�er can be viewed
as the approach expected to perform best. This way, only one classi�er model needs to be trained
and executed, which saves computation time during online execution.

What remains is the determination of the estimation error of each approach during training.
If available, the real estimation error can be used, if the training set contains a set of arti�cial
or speci�cally monitored traces. However, this will not be feasible for many traces, for example,
during online training. As the real resource demand is per de�nition unknown toSARDE, we have
to rely on the internal error calculation based on cross-validation. The validation error used in this
work is explained in more detail in Section 6.3.

5.4 Selection

After the training process produced an accurate selection model, the selection process analyses the
type and structure of the monitoring streams and uses the provided selection model to make an
informed decision about which approach to use for estimation. Simply put, the acquired machine
learning model is utilized and its prediction for the best-suited estimator is applied. This process
was deliberately split from the training process, as this process can use the same selection model
multiple times in order to update the selected approach based on changes in the system or the
monitoring streams.

Figure 4 illustrates an exempli�ed timeline, visualizing the �ve processes running in parallel.
While monitoring is a continuous process, the estimation is executed quite frequently, with the more
computationally expensive procedures running slower and fewer iterations. Note that this is just an
exemplary con�guration, the actual intervals ofSARDEcan be tuned by the user. Furthermore, the
arrows of the respective colors show, how the results of the particular process in�uence the other
running processes. We observe that for example, a �nished training process updates the selection
model used for the next selection process that has not started yet. This model is then used until it
gets updated by a subsequent training iteration. Similarly, the output of the selection process, the
selected approach to use for estimation, is applied for all subsequent estimation runs as long as the
selection is not updated. It is furthermore shown, how the optimization results in�uence the next
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Fig. 4. Exemplified timeline visualization.

training process. After a successful optimization, the optimization results take a while to come into
e�ect at the actual estimation, as the estimation uses the old parameterization until the training
with the new parameterization is �nished and the newly parameterized approaches are selected for
estimation. This has the advantage of protecting the continuous estimation from negative e�ects
by a disadvantageous optimization run, as the training process is able to double-check and �lter
the respective approaches if necessary. However, the cost of this approach is the delay between a
�nished optimization and its parameterization coming into e�ect.

5.5 Estimation

The most frequent process is the actual estimation process. Its frequency mainly depends on the
variability of the system and the monitored traces, as well as the quality of the estimated resource
demands itself. Upon execution, the estimation process loads the approach selected by the selection
process and updates it with the optimized parametrization by the optimization process, if available.
Then, the estimation is executed on the newest monitoring data. Note that, as depicted in Figure 4,
multiple subsequent estimation executions might be performed using the same approach. This
is on purpose, as the monitoring data is updated between those executions, which impacts the
estimation result. To that end, all process executions always utilize the most recent monitoring
data available at the start of each process.

6 EVALUATION

In this section, we evaluate and analyze the performance ofSARDEconcerning various aspects. To
this end, we pose ourselves the following research questions:

RQ1What is the gain of continuously repeating the estimation?
RQ2What is the impact of applying optimization, selection, and both combined to the repeated

estimation?
RQ3What is the overhead of applying these techniques?

In the following, we will describe and analyze the experiment series we conducted in order to
answer these questions.

6.1 Experiment Setup

We designed two di�erent experiments to validate the accuracy of our approach. First, we applied
a common data set in Section 6.1.1 consisting of a set of micro-benchmarks executed on a system
and already applied in a variety of previous studies [27, 29, 30, 79]. Second, we extend this analysis
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by adding a long-term measurement trace from a realistic application, described in more detail in
Section 6.1.2.

6.1.1 Micro-benchmark data sets.This data set consists of a set of measurements obtained by
executing micro-benchmarks on a real system. A set of 210 traces, each with approximately one hour
run-time, was collected. The micro-benchmarks generate a closed workload with exponentially
distributed think times and resource demands. The think times themselves were set to �t the
targeted load level of each speci�c experiment. As mean values for the resource demands, we
selected 14 di�erent subsets of the base set [0.02s; 0.25s; 0.5s; 0.125s; 0.13s] with a varying number
of workload classes� = f 1; 2; 3g and target load levels* = f 20%; 50%; 80%g. The subsets were
arbitrarily chosen from the base set. This way, we can ensure that the resource demands are not
linearly growing across workload classes. Additionally, the subsets intentionally contained cases
where two or three workload classes had the same mean resource demand.

6.1.2 Realistic Application.In addition to the micro-benchmark data sets, we conducted a long-
term study of a realistic, containerized application measured on a real system. However, in order to
evaluate the accuracy of the approach, it is necessary that we know the exact resource demands to
be estimated. Therefore, we developed a synthetic application that o�ers three di�erent services
via a REST API that perform a prior de�ned load for each service call. For the following of this
section, the �rst workload class (WC1) performs an exponentially distributed load with a mean of
0.01s, the second workload class (WC2) performs an exponentially distributed load with a mean of
0.03s, and the third workload class (WC3) performs a normally distributed load with a mean of
0.005s and a standard deviation of 0.001.

In order to evaluate the adaptability of the individual approaches in comparison toSARDEwith
respect to di�erent in�uence factors, we varied both the load intensity and the distributions of the
individual workload classes. Figure 5 depicts the load intensity, i.e., the number of requests per
second of each workload class as a stacked line chart. The load is intentionally noisy and strongly
varies over time. Additionally, the relative share of the di�erent workload classes changes. As the
di�erent workload classes each have di�erent resource demands, the resulting utilization curve is
non-obvious.

In order to re�ect a realistic cloud setup, we deployed the application inside an Ubuntu 18.04
Virtual Machine (VM) associated with 1 pinned CPU core and 4 GB RAM running on an HPE
ProLiant DL160 Gen9 server equipped with an Intel® Xeon® CPU E5-2640 v3 @ 2.60GHz and 32
GB RAM total RAM, using a KVM hypervisor. The load driver generating the REST requests was
situated on another host in the same cloud in order to isolate the performance behavior and also
include the network overhead per request.

6.2 Evaluation Metrics

In this section, we describe the metrics we use during our evaluation ofSARDE. We focus mainly
on execution time and estimation accuracy. All execution times were measured using the publicly
available Java implementation ofSARDE1 and version 1.1 of the underlying LibReDE engine5 by
relying on the internal time measurement. All reported experiment times were conducted on a
Windows 10 machine using an Intel® Core® i7-6600U CPU @ 2.60 GHz and 16 GB RAM.

For accuracy, we evaluate the estimation errorn� per approach by averaging the relative estima-
tion error of each workload class:

5This is also the version endorsed by SPEC research. Available at https://research.spec.org/tools/overview/librede.html
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Fig. 5. Server utilization and throughput of the di�erent workload classes of our monitored application over
time.
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� • (1)

where� is the number of workload classes,~� 2 is the resource demand estimate for workload
class2, and� 2 is the real resource demand of class2.

6.3 Configuration

There are several generic and con�gurable parts of theSARDEapproach described in Section 5. In
this section, we describe the speci�c con�gurations that we applied for the presented evaluation.

First, we concentrate on the estimation of the resource demand error. As all evaluations and
optimizations performed bySARDErely on the internal estimated error, it is crucial that the applied
error validation closely resembles the actual resource demand error. Recall, thatSARDEdoes not
have the real resource demands available for validation as they are naturally unknown toSARDE
during operation. Therefore,SARDEcalculates the estimated validation errorn+ using the estimated
relative response time errorn' and the estimated absolute utilization errorn* . This error is then
used for all internal validation processes. The two error functions are de�ned as follows:

n' =
1
�

�Õ

2=1

�
�
�
�

~' 2 � ' 2

' 2

�
�
�
� •

n* =

�
�
�
�
�

�Õ

2=1

¹- 2 � ~� 2º � *

�
�
�
�
�
•

(2)

with � being the number of workload classes,' 2 the average measured response time of workload
class2 over all resources,~' 2 the predicted average response time using Mean Value Analysis [5]
based on the estimated resource demands,- 2 the measured throughput of workload class2, ~� 2 the
estimated resource demand of workload class2, and* the average measured utilization over all
resources.

Using both errors, we can compute the compound validation errorn+ as a weighted sum ofn'
andn* :

n+ =
1
2

min¹1• n* º ¸
1
2

min¹3• n' º” (3)

Note that we bound the utilization error at 1 and the response time error at 3. This is necessary,
since both errors are e�ectively unbounded, and therefore might dominate the other error during
the validation. The values are chosen, as during capacity planning response time errors are usually
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acceptable to be higher than utilization errors [58, 60]. Apart from that, bothn* andn' are currently
weighted 1:1. However, this con�guration could be adapted if a user is more interested in minimizing
the respective error value.

For the online analysis of the realistic application, we use an estimation interval of 70 seconds, a
selection interval of 170 seconds, a training interval of 700 seconds, and an optimization interval
of 1000 seconds in order to keep a reasonable amount of repetitions for each activity during the
experiment. Based on our results in Section 7.1.1 we applied a random forest classi�er as the
selection algorithm. Concerning the S3 optimization algorithm, we use 5 splits, 4 exploration points,
and 5 iterations for single parameter optimizations. For multi-parameter optimizations, we need
to rely on 1 split, with 2 exploration points, and 2 iterations in order to reduce the algorithmic
complexity.

7 RESULTS

In this section, we present the results obtained from the experiments outlined in the previous
section. First, Section 7.1 focuses on the analysis of the selection process, while Section 7.2 analyses
the performance of the optimization algorithm. Finally, we put both aspects together and analyze
the performance in Section 7.3.

7.1 Selection

This section presents results concerning the selection of the best-suited estimation approach.
The �rst section compares di�erent selection algorithms with each other using our set of micro-
benchmark experiments. Then, we analyze the performance of continuous training and selection
over time in our realistic application.

7.1.1 Micro-benchmarks.To compare the di�erent selection algorithms with each other, we uti-
lize the set of micro-benchmarks as they represent a wide variety of di�erent scenarios in their
characteristics. Therefore, we can get a holistic analysis of the performance of each selection
algorithm.

We include a Decision Tree (DT) [7], AdaBoost [34], Random Forest (RF) [6], Logistic Regression
(LogReg) [15], Support Vector Machine (SVM) [14], and Neural Network (NN) algorithm. The neural
network is a sigmoid perceptron consisting of two fully connected inner layers, an input layer,
as well as an output layer for the selection. We used 100 neurons in total and applied the back-
propagation algorithm based on the least-squares error for learning. For all algorithms, we relied on
the implementations provided by the SMILE [50] library. For a fair comparison, all algorithms were
used in their default parameterization. Furthermore, we add a random classi�er always choosing
a random approach as a baseline. We split the 210 available scenarios into 168 training and 42
validation traces. The machine learning algorithms were trained with the 168 training sets and
Table 1 shows their performance on the 42 remaining validation sets.

Table 1. Comparison of di�erent selection approaches using the micro-benchmark set.

Algorithm Random DT AdaBoost RF LogReg SVM NN

Avg. estimation error 43.5% 22.5% 19.8% 17.9% 25.0% 18.0% 18.0%
Hit-rate 16.7% 52.4% 66.7% 71.4% 42.9% 59.5% 59.5%
Train time � 211.1s 241.1s 533.0s 305.6s 262.3s 243.2s
Avg. estimation time 1.4s 1.1s 2.0s 2.1s 1.5s 1.5s 13.4s
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The �rst line of Table 1 shows the average resource demand estimation error on the 42 remaining
traces when applying the respective selected approach. We observe that�as expected�the random
classi�er has the worst performance; the decision tree and logistic regression algorithm also fall
behind. However, AdaBoost, Random Forest, SVM, and NN all perform comparatively. Random
Forest has the best accuracy, with an average estimation error of 17.9%. This is impressive if you
consider that the average minimum error of all approaches (and therefore the de-facto perfect
result) is 17.6%. Therefore, the performance of the approaches chosen by random forest is just 0.3%
worse than the theoretical optimum. These results are in line with the hit rate, i.e., the relative share
of scenarios in which the algorithm selects the best approach. Again, Random Forest outperforms
all other approaches with a hit rate of almost 72%, while a random classi�er baseline achieves only
16.7%.

When analyzing the training time, we observe that all approaches take between 4 and 10 minutes
for completing the training with a training corpus of 168 traces. Here, random forest takes the longest
time for training (almost 10 minutes), while all other approaches terminate within 4 - 5 minutes.
However, considering the large amount of the training set (168 measurement hours), we �nd a
training time of 10 minutes more than acceptable for online use. Similarly, the average estimation
time (including feature extraction, selection, and the estimation process itself) is su�ciently fast.
Most approaches �nish between 1 and 2.5 seconds, only the NN approach requires up to 15 seconds
of estimation time. As typical estimation windows are usually in the range of several minutes,
these time scales are more than su�cient. One interesting observation is that the random baseline,
despite the lack of an actual selection, is not the fastest of the approaches. This undermines our
observation that the most dominant time factor for the average estimation time is in fact not the
selection algorithm itself (excluding NN), but the estimation time of the selected approach.

Based on our results, for the remainder of this paper, we concentrate on the Random Forest
algorithm with a parameterization of �ve trees (ntrees ), two features per node decision (mtry), a
maximum leaf node size of one (nodeSize), applying the Gini splitting criterion (rule ) and using
feature sampling with replacement (subsample).

7.1.2 Realistic application.Following the broad analysis of multiple validation scenarios, we now
analyze the performance of the random forest selection for our realistic application. For this, we look
at the continuous training and selection of the algorithm over time. Figure 6 shows the estimation
error for every approach over time. The activities are depicted in the time diagram in the top
of Figure 6. The red bars indicate time and duration of training phases, the orange bars indicate
selections accompanied by an abbreviation of the chosen approach and the blue bars indicate the
regularly repeated estimations of all approaches.

In each training phase, the chosen selector algorithm (Random Forest in this case), was trained
on all available o�ine traces from the previous section, plus the additional experience from the
currently running trace (hybrid training). Therefore, the �rst trained model only has the micro-
benchmark data set available as training data set. The second one has the micro-benchmark set,
plus the �rst 700seconds of experiment time, and so on. As we had a maximum of three di�erent
workload classes (A= 3) and one resource (F = 1) in the training set, the feature vector~ had a
length j~j of 57for training (compare Section 5.3.3.

We observe that the estimates, as well as the corresponding accuracy of each individual approach,
are massively changing during the experiment. There is therefore a good rationale for continuously
repeating the resource demand estimations, and simultaneously for changing the applied approach
(see Section 3). This also answers our �rst research question (RQ 1).

Additionally, we observe that theSARDEapproach (blue) jumps between di�erent respective
approaches. WhileSARDEneeds a while to learn and adapt to the current trace (before 2000), it

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.



785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

SARDE: A Framework for Continuous and Self-Adaptive Resource Demand Estimation 1:17

Fig. 6. Results showing the real error of running the selection over time.

then is able to predict and select among the best performing approaches until the environment
changes and the approach decreases in accuracy (starting at 6000). In reaction to this development,
another approach is chosen at around 8000 until its performance decreases as well.

Table 2. Overview on the quality of selected approaches using the realistic application.

Approach Average Rank Accuracy (%) Accuracy Loss (%)

ServiceDemandLaw 2.02 11.52 3.11
ResponseTimeApproximation 5.47 35.04 26.63
ResponseTimeRegression 3.69 27.94 19.53
WangKalmanFilter 2.94 18.74 10.33
UtilizationRegression 3.64 23.84 15.43
KumarKalmanFilter 3.21 15.17 6.91

SARDE 2.82 16.88 8.64
Random 3.08 18.49 10.15

In the following, we will analyze Table 2 for more detail on the selection results. Table 2 shows
the average rank of each selection approach, together with its average total accuracy loss, i.e., the
average di�erence of the relative estimation error of the given approach in comparison with the
current best approach. We observe that Kumar Kalman Filter and Service Demand Law both have
relatively low ranks and a small accuracy loss in comparison to other approaches. The response
time approximation has a particularly high accuracy loss, as its performance is consistently worse
than any of the other approaches.

SARDEis able to achieve an average rank of 2.82 with only 8.6% of accuracy loss towards
the theoretical optimum. Compare this with a baseline approach of the random classi�er, which
achieves an average rank of 3.08 together with an accuracy loss of 10.2%. Note that it is not possible
to simply choose service demand law as the best approach for example, as the knowledge about the
performance of the individual approaches is not known prior to execution. Instead, the self-adaptive
features of the selection approach ofSARDEenable it to constantly monitor the performance of
the individual approaches and switch between the most promising approaches. Therefore,SARDE
is able to learn from and adapt to a scenario without any prior knowledge or training for that
environment.
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