
Local Approximation of NFV
Workloads

Master Thesis of

Norbert Schmitt

At the Department of Computer Science
Chair for Computer Science II

Software Engineering

Reviewer: Prof. Dr.-Ing. Samuel Kounev
Second reviewer: Prof. Dr.-Ing. Phuoc Tran-Gia
Advisor: M.Sc. Jóakim von Kistowski
Second advisor: M.Sc. Piotr Rygielski

Duration: April 15th, 2016 – October 14th, 2016

Julius-Maximilians-Universität Würzburg www.uni-wuerzburg.de

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Würzburg, October 9, 2016

. .
(Norbert Schmitt)

Contents

Abstract - German 1

Abstract - English 3

1. Introduction 5

2. Foundations 7
2.1. Network Function Virtualization . 7
2.2. Power Measurement and Methodology . 9

2.2.1. Measurement . 9
2.2.2. Chauffeur . 12

2.3. Performance Counters . 13
2.4. Preexisting Worklets . 14

2.4.1. Pi Worklet . 15
2.4.2. XMLValidate . 15
2.4.3. SSJ . 15

3. Related Work 17
3.1. Energy Efficiency and Benchmarking . 17
3.2. NFV Deployment . 18
3.3. Power Estimation and Performance Counters 18

4. Approach 19
4.1. Reference Workloads . 19

4.1.1. Local Workloads . 19
4.1.2. NFV Workload . 20

4.2. Workload Approximation . 20
4.2.1. Selection of Available Performance Counters 21
4.2.2. Side Effects of Triggering Performance Events 23

4.3. Regression Model . 26

5. Implementation 29
5.1. Traffic Generator and Receiver . 29

5.1.1. Architecture . 30
5.1.2. Configuration . 32

5.2. NFV Workload . 33
5.3. Linux Kernel Module . 33

5.3.1. Caching Modes . 33
5.3.2. Character Device Driver . 34

5.4. Relevant Performance Counter . 35
5.5. Performance Event Trigger Framework . 39

5.5.1. Architecture . 39
5.5.2. Configuration . 43

v

vi Contents

5.5.3. PET Build System . 45
5.5.4. Chauffeur Worklet . 47

6. Testbed Setup 49
6.1. Reference Testbed and Calibration . 49
6.2. Chauffeur Testbed . 52

7. Evaluation 53
7.1. Performance Counter Implementation . 53

7.1.1. L3 Cache Misses . 54
7.1.2. L3 Cache Hits and L2 cache misses 58
7.1.3. L2 Cache Hits . 61
7.1.4. Bytes Read from Memory Controller 61
7.1.5. Bytes Written to Memory Controller 65
7.1.6. Instructions Retired . 68
7.1.7. Context Switches . 69
7.1.8. Interrupts . 70

7.2. Performance Event Trigger Framework . 71
7.2.1. Pi Workload . 72
7.2.2. XMLValidate . 75
7.2.3. SSJ . 77
7.2.4. NFV Workload . 79
7.2.5. Lower Bound for Valid Measurements 84

7.3. Linear Regression Model . 85

8. Conclusion 89
8.1. Future Work . 90

Bibliography 93

List of Figures 99

List of Tables 101

Appendix 103
A. SUT Background Noise . 103
B. Testbed Hardware . 103

B.1. SUT . 103
B.2. Traffic Generator and Receiver . 104

C. Measurement Results of Selected Performance Counter 105
D. PET Side Effect Configuration . 120
E. Measurement Results of PET . 121
F. Linear Regression Model . 124

Acronyms 125

vi

Abstract - German

Mit dem zunehmenden Bedarf an Energie für die moderne IT Infrastruktur wird die Wahl
effizienter Geräter immer wichtiger. Die SPEC stellt für diese Zwecke standardisierte
Benchmarks bereit, die die Energieeffizienz messen. Zur Beurteilung der Energieeffizienz
sind verlässliche Messungen realer Anwendungen notwendig. Durch die zunehmende Ver-
netzung von Systemen werden zuverlässige Messungen komplexer, da Software externe
Eingaben benötigen kann um das Testsystem auszulasten. Dies kann unter anderem dazu
führen, das Komponenten ausgelastet werden die unter anderen Workloads untätig sind
und den Verbrauch reduzieren oder keinen Strom verbrauchen.

Zusammen mit dem steigenden Trend in Richtung Software Defined Networking (SDN)
und Network Functions Virtualization (NFV), der Virtualisierung dedizierter Geräte als
Softwarelösungen auf handelsüblichen Servern, erschwert die zuverlässige Messung extern
unter Last gesetzter Software zusätzlich und erhöht die Fehleranfälligkeit.

In dieser Arbeit wird deshalb das Performance Event Trigger Framework (PET) vorgestellt.
Um das Testsystem unter verschiedenen Laststufen zu betreiben und den Stromverbrauch
zu approximieren löst es Performance Events aus. Das Framework ist als Chauffeur Bech-
mark konzipiert um eine einfache Nutzung zu gewährleisten. Zuerst werden die Perfor-
mance Counter anhand der Korrelation mit dem Stromverbrauch ausgewählt und die Im-
plementierung der Auslöser vorgestellt. Jeder Auslöser wird darauf auf seine Genauigkeit
hin untersucht und in das Framework eingepflegt. Das Framework wird danach durch drei
Workloads, dem Pi Workload aus Chauffeur, XMLValidate und SSJ aus SERT, evaluiert
um die Machbarkeit und Genauigkeit der Approximation zu zeigen. Um zu zeigen das PET
auch extern unter Last gesetzte Workloads annähern kann, wird ein vierter NFV Work-
load in Form einer DPI Firewall verwendet. Zusätzlich wird ein lineares Regressionsmodell
erstellt zur weiteren Auswertung.

Es konnte im Rahmen der Arbeit gezeigt werden, dass die Näherung vonWorkloads anhand
von Performance Countern möglich ist und das PET eine durschnittliche Genauigkeit von
unter 10% erreicht.

1

Abstract - English

With the growing demand of energy in modern IT infrastructure, selecting more efficient
devices becomes more important as well. Standard benchmarks are provided by the SPEC
to measure the energy efficiency. Assessing the energy efficiency requires reliable measure-
ments of real world applications. Due to the rising connectivity between systems, reliable
measuring energy efficiency becomes difficult. Workloads relying on external input might
stress hardware components of a system which would otherwise lie dormant and reduce
their consumption or not using any power at all.

Together with the rising trend of Software Defined Networking (SDN) and Network Func-
tions Virtualization (NFV), virtualizing dedicated appliances as software running on off-
the-shelf servers, reliable measuring efficiency on externally driven workloads becomes even
more challenging and error prone.

This thesis therefore proposes the Performance Event Trigger Framework (PET). It trig-
gers performance events to approximate a workload, which normally needs external devices
to run the System Under Test (SUT) under different load levels. The framework is imple-
mented as a Chauffeur benchmark to allow for easy use. First the performance counters
that have a high correlation with power consumption are selected and an implementation
to trigger these events is presented. Each event trigger is then evaluated in terms of accu-
racy and incorporated in the final framework. The framework itself is evaluated against
three workloads, the Pi workload from Chauffeur, XMLValidate and SSJ from SERT to
show the feasibility and accuracy of the approximation. A fourth NFV workload in form
of a DPI firewall is also evaluated to show that PET can approximate externally driven
loads. A linear regression model is also used as a second mean of evaluation if PET is able
to approximate workloads.

In the course of this thesis it has be shown that approximating workloads with performance
counters works and that PET has a reasonable accuracy, with average deviation of less
than 10%.

3

1. Introduction

Efficiency is a growing concern in today’s IT infrastructure. In 2006 data centers in the
United States consumed an estimate of 61 billion kWh annually. The energy consumption
has risen to an estimated 93 billion kWh in 2013 and is projected to climb to 140 billion
kWh by 2020, according to the National Resources Defense Council (NRDC) [WD14].
With the rising amount of servers and therefore energy consumption, the demand for
network equipment will climb as well.

Reducing the power consumption and improving energy efficiency requires reliable mea-
surements of real world applications the servers are executing. With increasing connectiv-
ity and dependencies between different applications, reliably measuring energy efficiency
becomes difficult as benchmarks lack the ability to stress hardware components only used
by interconnected workloads. The workloads must be driven by external load generators.

Virtualization, a growing paradigm in IT, transferred into the networking infrastructure
with the introduction of Software Defined Networking (SDN) and later Network Functions
Virtualization (NFV) in 2013. Therefore the energy efficiency of virtualized networks has
become a considerable issue as well.

Often performance counters are used to estimate the power consumption of a system.
Also the modeling via performance counters is widely researched. Yet the current use case
scenarios for performance counter lack the ability for experimental measurements in case
a workload is dependent on external appliances.

A lot of effort has been put into making data centers more energy efficient. One aspect
is the measurement of server energy efficiency with the Server Efficiency Rating Tool
(SERT), developed by Standard Performance Evaluation Corporation (SPEC) [LTA+12].
Rating the energy efficiency through benchmarking helps to provide an aid in selecting
the most efficient server for the intended service or workload. Yet the SERT can only run
locally and not stress hardware that would otherwise be used by workloads driven through
external requests, such as a Virtual Network Function (VNF). This unused hardware could
become active in real world scenarios and influence hardware components already evaluated
for energy efficiency, which leads to a change in power consumption and hence reduced
efficiency. Rating the energy efficiency of externally driven workloads also demands a more
complex testbed as the load generators must be considered in the benchmark design. As
a consequence, measurements and setup are more time consuming and error prone.

As modern servers are working under highly variable load intensities [vKHK14] and a
server is not generally more efficient under full load [vKBB+15], benchmarking the server

5

6 1. Introduction

under different load levels is necessary for a complete energy rating. Auto calibrating
a load level aware benchmark that needs to be driven externally is challenging and not
supported by the SERT. Additionally, external power meters used for power measurements
need stable loads for higher accuracy [LT11]. Therefore the normally used workloads are
often not suitable.

A lot of work has been done in terms of energy efficiency benchmarking and modeling.
Often established benchmark suites like SPEC are used to achieve comparable results. Yet
externally driven workloads are not part of these suites. In the NFV context, benchmarking
is mostly focused on a broader scope, taking into account networks consisting of several
entities while this thesis aims to abolish the need for complex interacting systems.

Models based on performance counters work, but mostly use local workloads for valida-
tion. If the models can predict highly interconnected applications accurately needs to be
determined. Other works on performance counters only focus on the counters themselves
and their accuracy and overhead for making them available to the user and not on how
an accurate counter value can be achieved by deliberately triggering them.

To be able to measure energy efficiency of a complex workload that is request driven, the
implementation and evaluation of a local approximation is proposed. It has been shown
through models that performance counters and power consumption can be correlated. As
a result, performance counter events, generated through software implementations, will be
used to modify the counters accurately and achieve a power consumption approximation.
The proposed approach remedies the need for external load generators, making efficiency
measurements on externally driven workloads possible and simplifies the test setup. It
can also be used to validate power or efficiency models on more complex workloads. The
resulting software should be modular to make the framework extensible for future imple-
mentations of performance event triggers.

Before the proposed framework can be implemented, the correlation between the available
performance counters and power consumption are calculated and optimal counters are
selected. Multiple implementations and configurations for each counter are evaluated to
determine the accuracy of triggering events and side effects on other counters. After the
identification of the optimal implementations, the framework is created and evaluated
against reference workloads. The reference workloads consist of a simple benchmark and
workloads from the SERT as well as an externally driven workload in form of a Deep
Packet Inspection (DPI) firewall (VNF). During all measurements, power consumption
and the performance counters are measured and compared to the reference workloads.
A regression model is used as a second validation method to test if the framework can
accurately approximate externally driven workloads.

6

2. Foundations

This chapter introduces the required foundations for this thesis. First NFV is introduced
to give an overview of its components. Afterwards a short description of the SERT mea-
surement methodology is given on how measurements in this thesis are taken. This section
also contains a description of the Chauffeur power and performance benchmarking appli-
cation used as test harness. An introduction to performance counters and the IntelPCM
tool used for instrumentation is provided. The chapter finishes with an explanation of
preexisting workloads used for evaluation.

2.1. Network Function Virtualization

NFV describes the virtualization of network functions normally carried out by dedi-
cated network appliances. Using dedicated hardware has certain drawbacks as stated by
[CCW+12]. These include increasing costs of energy, decrease in hardware life cycles due
to innovation and rare skills needed to integrate and operate highly specialized equipment.

It was introduced to counter the negative aspects by performing the network functions not
on dedicated hardware but in software. The software can then be deployed more easily on
commodity hardware. Configuration of a network and its functions is faster and easier as
the software components of a NFV, the VNFs, can be remotely deployed without having
to switch out network appliances at location. This makes it suitable for a wide range of
use cases in the data and control plane as explained in [CCW+12].

The European Telecommunication Standardisation Group (ETSI) provides several use
cases that benefit from having network functions virtualized instead of dedicated devices
as stated in [ETS13].

• Network Functions Virtualization Infrastructure as a Service

• Virtual Network Function as a Service (VNFaaS)

• Virtual Network Platform as a Service (VNPaaS)

• VNF Forwarding Graph

• Virtualization of Mobile Core Network and IP Multimedia Subsystem (IMS)

• Virtualization of Mobile base station

• Virtualization of the Home Entertainment

7

8 2. Foundations

• Virtualization of Content Delivery Networks (CDNs) (vCDN)

• Fixed Access Network Functions Virtualization

According to [ETS14], NFV consists of the following components. The main parts and
interaction with each other can be seen in Figure 2.1.

1. NFVI
Network Functions Virtualization Infrastructure (NFVI) is providing computational
and virtualization resources for NFV to execute VNFs. The host for VNFs can be
any device capable of hosting a Virtual Machine (VM) but is usually a commodity
server.

2. VNF
This is the software network function that can be executed in a VM like Network
Adress Translation (NAT), load balancing or firewalling.

3. NFV Management and Orchestration
Administration tools and protocols for the NFVI as well as VNFs. It is able to deploy
new VNFs and reconfigure, migrate and monitor running Virtual Network Function
Instances (VNFIs).

4. Operation Support System (OSS)/Business Support System (BSS)
The OSS or BSS is operating and managing the supporting systems of the NFV.
Such as the physical network or SDN.

Figure 2.1.: NFV architecture as taken from [OPN]

The main component for this thesis is the VNF, in the form of a simple DPI firewall.
This specific exemplary workload is selected as it stresses the System Under Test (SUT)’s
Network Interface Cards (NICs). A NIC is a component usually not targeted by locally

8

2.2. Power Measurement and Methodology 9

running workloads. To determine the influence of externally activated hardware on the
proposed approximation, the DPI firewall is selected as request driven reference workload.

An instance of a VNF deployed by a VNF Manager is referred to as VNFI. It can either
be executed in a virtualized environment or directly on hardware. If executed virtual-
ized, then each VNFI runs in its own virtualized container. VNFs are the basic building
blocks of a NFV. A VNF can be build out of several Virtual Network Function Com-
ponents (VNFCs) as shown in Figure 2.2 or as a single entity. If a VNF is build from
multiple VNFCs, their internal interfaces do not need to be exposed. The VNF on the
other hand has a well-defined interface to other network functions which can be either
VNFs themselves or dedicated appliances. The implemented outside interface is defined
by standardization organizations like the 3rd Generation Partnership Project (3GPP) or
the Internet Engineering Task Force (IETF).

Figure 2.2.: VNF functional view, taken from [ETS14]

The requirements for a VNF deployment are described in the Virtual Network Function
Descriptor (VNFD) of which each VNF has exactly one. The VNFD also includes descrip-
tions of performance, security, reliability and other non-functional assurances as stated
in [ETS14].

2.2. Power Measurement and Methodology

This section describes how measurements are taken. It is based on Power and Performance
Benchmark Methodology [SPEb] and the Server Efficiency Rating Tool Design Document
[SPE13] by SPEC. While SERT in its entirety itself is not used in this thesis, its guidelines
on how energy efficiency is measured still apply to keep the measurements comparable
as SERT is used as regulatory standard by the United States Environmental Protection
Agency (EPA). It is also adopted by the industry like the SAP benchmark and Transac-
tion Processing Performance Council (TPC) [SAP11] [PNV+10]. Most measurements are
performed with the help of Chauffeur, which allows to automatically calibrate and run the
workload at different load levels.

2.2.1. Measurement

All measurements in this thesis follow the methodology introduced by SPEC for bench-
marks capable of graduated throughput levels. Throughput is defined as the number of

9

10 2. Foundations

transactions executed in a fixed time frame. A transaction is one work package processed
by the benchmarked workload. In case of the DPI firewall, one transaction equals one
network package inspected. Transactions must have blocking behavior to get feedback
during measurements of the number of transactions executed.

Benchmarks using graduated throughput levels request a steady state of transactions per-
formed during a fixed time period. The steady state is enforced through the benchmark
harness or the benchmark itself. The throughput levels are also referred to as load levels.

The sequence for such a benchmark is as follows, cited from [SPEb]:

1. System is made ready for measurement.

2. Harness starts environmental measurements

3. If required, initiate calibration process to determine maximum throughput

4. Compute intermediate measurement targets relative to maximum throughput

5. Iterate:

a) Harness starts benchmark segment run at throughput interval X, where X
begins at the highest target throughput and reduces each iteration until a zero-
throughput interval can be measured, to obtain an Active-Idle measurement

b) Delay as needed for benchmark synchronization and to achieve steady state

c) Harness starts power measurements

d) Harness or benchmark collects power and performance metrics.

e) Harness ends collection of performance and power measurements

f) Delay as needed for benchmark synchronization

g) Benchmark segment completes

h) Harness delays as needed for synchronization

6. Harness ends environmental measurements

7. Harness post-processes performance and power data

The basic SERT components are illustrated in Figure 2.3. The SERT test suite consists
of different benchmarks, called worklets. The worklets dispatches transactions to put
the SUT under load. These worklets are grouped together in workloads. Workloads are
designed to stress certain aspects or components of the SUT. The contained worklets are
run in a defined sequential order. All workloads together comprise the test suite and are
also run sequentially. A worklet can also have a sequence of multiple different transactions.
The transactions in a worklet sequence are executed one after another in a fixed order.

Worklets are further divided into three sequences as shown in Figure 2.4. First the warmup
sequence, secondly the no delay sequence or calibration and finally the graduated measure-
ment sequence which stresses the SUT under the defined load levels. The warmup and
calibration sequences are optional to a worklet.

Each sequence is divided into intervals. An interval is comprised of three phases. The first
phase is the pre-measurement, which lets the SUT settle for the current load level and
reduce influences of oscillating startup behaviors of certain hardware or software compo-
nents. In the next phase, measurement or recording, power measurements are taken and
the actual throughput is measured. An interval finishes with the post-measurement phase.
Each phase runs for a fixed time frame.

10

2.2. Power Measurement and Methodology 11

Figure 2.3.: SERT components, as taken from [SPE13]

Figure 2.4.: Worklet measurement execution, taken from [SPE13]

11

12 2. Foundations

SPEC allows several methods for calibrations, as long as the benchmark can be run con-
sistently over the measurements. Four options are pointed out specifically by [SPEb]. The
first three are of special interest because they allow for automatic calibration. The fourth
option is for engineering and academic environments.

• The benchmark is run once at maximum throughput. The actual resulting through-
put is used as maximum.

• The benchmark is run 2 to n times and the last two runs are averaged. The resulting
value is the maximum throughput.

• The benchmark is run multiple times until the last runs result is lower then the
preceding one. If this is the case, run the benchmark a last time and average over
the last three runs to compute the maximum.

• Set the maximum throughput to an arbitrary fraction of the benchmark run.

As part of this thesis is to simplify testbeds for externally driven loads, including auto-
calibration, the fourth option is not selected. Because the SERT uses the second option
and to evaluate the proposed framework as closely to existing benchmark runs as possible,
the second option is selected.

2.2.2. Chauffeur

Chauffeur is used as a test harness and this section is mainly based upon the ChauffeurTM

Worklet Development Kit (WDK) User Guide [SPEa] and [LAB+13]. Chauffeur incorpo-
rates the aforementioned measurement methodology and is also used by the SERT. It is
designed with the following principles in mind.

• Energy Measurements

• Scalability

• Ease of use

• Portability

• Flexibility

Figure 2.5 shows an overview of Chauffeur. It consist of the following hardware (HW) and
software (SW) parts:

Figure 2.5.: Chauffeur overview from [SPEa]

12

2.3. Performance Counters 13

Controller (HW) The controller system governs which sequence is run and for
how long. It also collects the measurement data. It com-
municates with the SUT and Power Analyzer via TCP/IP.

SUT (HW) The actual system stressed during measurements.

Power Analyzer (HW) Measures the power consumption of the SUT.

Temperature Sensor (HW) Measures the ambient temperature in the SUT’s vicinity.

SPEC PTDaemon (SW) Collects the power and temperature measurements from
the Power Analyzer and Temperature Sensor.

Director (SW) Controls the measurement sequence on the SUT.

Reporter (SW) Receives all results from a measurement and compiles a
report of the benchmark suite.

Workload (SW) Actual workload stressing the SUT. It is controlled by the
Director.

The Chauffeur components and communication are illustrated in Figure 2.6. The Director
runs as a Java Virtual Machine (JVM) on the controller and communicates with the SPEC
PTDaemon to collect power measurement results. It also controls the Host JVM which
in turn runs the Clients. Chauffeur can be configured to run the workload on several
Central Processing Unit (CPU) cores in parallel. For each core it should run on, a Client
JVM is started by the Host which actually runs the workload and worklets, and dispatches
transactions until the current interval is finished. The results are collected and send to
the Director, which is handing them on to the Reporter compiling the final reports. All
communication is done via TCP/IP.

Figure 2.6.: Chauffeur components and communication from [SPEa]

2.3. Performance Counters

This thesis tries to model a workload’s power consumption locally by generating perfor-
mance counter events. Performance counters are integrated in today’s hard- and software
and can be read with either specialized software like IntelPCM, performance monitoring
utilities of the Operating system (OS) or manually by directly accessing CPU registers.

13

14 2. Foundations

This chapter will first give an introduction of what performance counters are and some
drawbacks associated with them. Afterwards the counters available on the SUT are listed
in their respective sections of either CPU counters which are read with IntelPCM or oper-
ating system counters that will be read by using the Linux virtual filesystem proc. This
work focuses on performance counters available on Intel platforms due to the available
testbed which uses an Intel Xeon E3-1230 v5.

The following descriptions are based on [Int16b] and [AMD16]. To monitor a systems
performance and behavior, hardware manufacturers including Performance Monitoring
Units (PMUs) for observation. A PMU includes Model Specific Registers (MSRs) which
can store the count for either of the two event types:

• Occurrence event counts the number how often an event has been observed.

• Duration event counts the accumulated clocks for which an event has been observed.

Performance counters are further divided into two different classes, architectural and non-
architectural. Architectural counters are a smaller subset of events as they are avail-
able across processor implementations. Non-architectural counters offer a wider variety of
countable events but are model specific and therefore might not be available on certain
systems.

The PMU also includes a Pin Control (PC) flag to toggle Performance Monitoring (PM)
pins (PM0/BP0 or PM1/BP1) if an event occurs or an MSR overflows. PM events cover
a broad scope on what the hardware is currently doing, which includes for example, but
is not limited to, cache hits or misses on each cache level, falsely or correct predicted
branches and instructions retired. The recorded performance counter events can be read
on a system wide basis. Subsets can also be read on a per socket or a per core basis.

Monitoring performance events using a PMU does have its disadvantages. Weaver et
al. [WTM13] have shown that modern implementations of performance counters are not
accurate and have a tendency to deviate. They found two causes of deviation that make
interpreting performance counters a difficult task. One cause is nondeterminism in which
identical workloads resulted in different counter values and overcount for which counters
where increased multiple times for the same instruction. Another problem presents itself
if the PM pins are used. For occurrence events, it might be possible that an event happens
twice within one clock cycle. While the value in the MSR is incremented twice, the pin is
only asserted once which causes a deviation.

IntelPCM is a tool provided by Intel for monitoring performance counters. It can either
be executed as a standalone application or integrated into a program using its C++ Ap-
plication Programming Interface (API). As reading performance counters requires careful
implementation, IntelPCM is selected as tooling to minimize errors resulting from erro-
neous self implemented instrumentation.

The operating system itself also counts certain events that can be obtained. In the case
of Linux, these counters can be read from the virtual proc file system. Especially the files
/proc/stat and /proc/meminfo are of interest. They, for example, give insight on how
many hard and software interrupts have been processed, the number of context switches
performed and memory utilization.

2.4. Preexisting Worklets

For evaluation, three readily available worklets are selected as a basis to test if the frame-
work works for approximating local applications. They were selected as they stress different
hardware parts of the SUT. The first worklet described in this section is the π worklet,

14

2.4. Preexisting Worklets 15

approximating π. It was selected as it gives a first evaluation if the proposed framework
can approximate simple workloads and using performance counters is a viable approach.
The Pi worklet is followed by XMLValidate from the SERT which stresses the CPU and
memory, making it more complicated, provoking more counters to be triggered to validate
the framework with a wider variety of performance counters. The last worklet described
is the hybrid SSJ worklet, also from the SERT. It is closest to a real world application
and combines different worklets stressing a more diverse set of hardware components. The
evaluation of this workload will show if the framework can approximate locally running
workloads reasonably well before evaluating externally driven workloads.

2.4.1. Pi Worklet

The Pi worklet comes from the ChauffeurTest package shipped together with Chauffeur.
It calculates π with an iterative approximation using the Gregory-Leibniz series shown
in 2.1. The upper limit for n is set randomly for each transaction with values between
[1000; 100000]. This worklet is especially heavy on the CPU but not other hardware
components of the SUT. It is therefore a good basis worklet for a first evaluation if the
proposed framework is feasible.

π = 4 ·
n∑

k=1

(−1)k+1

2k − 1
(2.1)

2.4.2. XMLValidate

The XMLValidate worklet, as described in [SPE13], uses the Java javax.xml.validation

package to implement transactions. The worklet validates Extensible Markup Language
(XML) files against a XML schemata as shown in Figure 2.7. It randomizes the input file
by swapping commented regions within the XML file. Despite used as a CPU benchmark,
it also stresses the memory subsystem. It also performs a more complex operation than
the Pi worklet. XMLValidate is used as feasibility evaluation when the memory system is
stressed as well.

Figure 2.7.: XMLValidate transaction from [SPE13]

2.4.3. SSJ

SSJ from the SERT test suite simulates Online Transaction Processing (OLTP) as a Server
Side Java application. It is described in [SPE13] and based on SSJ in SPECpower ssj2008
but is not comparable to it. SSJ is a hybrid worklet, which means it is stressing multiple

15

16 2. Foundations

components of the SUT. The CPU, caches and memory of the SUT are stressed. This
worklet is closer to a real world application than the Pi or XMLValidate worklets. It is
therefore raising the complexity in the evaluation of the proposed approach.

The SSJ worklet includes six transactions as a worklet sequence which are executed with
certain frequencies as cited from [SPE13]. The mentioned frequencies are approximations
how often a transaction occurs.

New Order (30.3%) A new order is inserted into the system

Payment (30.3%) Records a customer payment

Order Status (3.0%) Requests the status of an existing order

Delivery (3.0%) Processes orders for delivery

Stock Level (3.0%) Finds recently ordered items with low stock levels

Customer Report (30.3%) Creates a report of recent activity for a customer

16

3. Related Work

A number of work has been in done in terms of energy efficiency, power consumption,
NFV performance counters. These topics often overlap. The following chapter will give an
overview on the specified topics. First the aspect of efficiency measurements and improve-
ments, followed by a short overview of work on NFVs. Finally a summary of performance
counter and their usage in power estimation and modeling is presented.

3.1. Energy Efficiency and Benchmarking

A wide variety of work has been done in terms of energy efficiency benchmarking with a
focus on CPU loads and NFVs. Most work focuses on a broader scope like [vKBL+15],
in which workloads are distributed hierarchically from multiple machines down to Simul-
taneous Multithreading (SMT) and also Bagaa et al. [BBLM14], which distributes VNFs
efficiently while also taking SDN into account. Botero et al. [BHD+12] developed a Mixed
Integer Program (MIP) for consolidating VNFs in a virtualized network to achieve better
energy efficiency. A. Beloglazov and R. Buyya [BB10] improve efficiency by migrating
VMs within a data center while ensuring Quality of Service (QoS). However, in the afore-
mentioned works, the efficiency is only viewed in the scope of a complete network, taking
into account several systems or VNFs instead of a single entity.

Work from Jin et al. [JWC12] concentrates on the trade-off between the virtualization
overhead and efficiency increase using VMs by aggregating workload on fewer physical
machines with higher utilization. Yet using less systems does not necessarily increase
efficiency, as shown in [vKBB+15], in which the efficiency of the SERT CPU workloads
under different load levels is measured. It also explores the influence of different workloads
on efficiency. The proposed solution on the other hand tries to simulate workloads on a
lower level without the need to approximate multiple connected systems.

A more focused paper [vKBB+16] shows that repeatable power measurements can be
difficult to achieve and measurement results can vary, even with nominally identical CPUs.
Yet this thesis is not only measuring CPU efficiency but rather a complete system, in which
the CPU is only one of many components influencing the efficiency.

It is evident that this thesis is in between both categories of having a broad view of
connected systems and focusing on specific components.

17

18 3. Related Work

3.2. NFV Deployment

Work on NFVs focuses often on scaling a NFV to provision for dynamically changing
demands. The work of Moens and DeTurk [MDT14] as well as Mijumbi et. al. [MSG+15]
are concerned with deploying VNFs in virtualized environments. While both develop
models and algorithms for efficient VNF placement, they do not take into account power
consumption. In an article from Bouet et. al. [BLCC15] a cost minimization heuristic is
developed which takes different aspects of VNF placements into account. Yet the energy
efficiency or power consumption, a central part of this thesis, is not addressed.

3.3. Power Estimation and Performance Counters

Performance counters are used for performance analysis of software. One way for such an
analysis is calculating Call per Instructions (CPIs) stacks. In a paper from S. Eyerman
et al. [EEKS06] performance counters are used to calculate more accurate stacks on
superscalar out-of-order processors. They use different miss events like cache misses and
Translation Lookaside Buffer (TLB) misses for their CPI stack calculation.

Performance counters are not only used to analyze performance, but are also useful for
compiler optimizations through an off-line learning model, as shown in [CFA+07]. In
the paper from Singh et al. [SBM09], a model derived from performance counters is
used to implement a thread scheduler that takes power consumption into consideration.
Another paper from F. Bellosa [Bel00] also describes thread scheduling by enriching the
thread context with performance counter and known energy values. Having a framework
that can reliably trigger performance events can be used for validation and testing such
implementations.

Modeling the power consumption based on performance counters is also a possible ap-
plication. In the papers from Bircher and John [BJ12], Lewis et al. [LGT08] and Isci
and Martonosi [IM03], models are developed estimating the power consumption as a func-
tion of performance counters dependent on the workload. The work from Contreras and
Martonosi [CM05] also build a model based on performance counters but focuses on em-
bedded devices with a specific CPU and memory. Kadayif et al. [KTK+01] provide a tool
based on performance counters for the UltraSPARC platform which provides energy esti-
mations. They all show that performance counters can be used for power estimations. It
is therefore expected that the proposed framework for approximating power consumption
by triggering counter events is a viable approach and can help in model validation and
test cases for tooling and instrumentation.

In a paper from Zaparanakus et al. [ZJH09], an overview on the accuracy of the measure-
ment infrastructure for multiple CPUs is presented. Weaver et al. [WTM13] for instance
identified two major deviations, which can influence counter values. Weaver also researched
the overhead of common performance counter implementations and found that the current
PAPI interface has large overheads [Wea15]. Despite research in the area of performance
counter accuracy, none of the mentioned works treated the accurate generation of counter
events.

18

4. Approach

This thesis aims to develop a framework leveraging performance counters that can approx-
imate workloads locally which would usually be driven by external load generators. The
approach described in this section shows how the proposed approximation is measured and
evaluated.

Before an implementation can be made, first the most relevant performance counters have
to be identified. A correlation analysis is made on the reference measurement of the NFV
workload. It is the most diverse workload and also stresses the SUT’s NICs.

To prove that an approximation is possible, multiple implementations are made with the
purpose of triggering events. Each event trigger is then evaluated if it can accurately
generate performance counter events, reaching the target value without over or under
counting. As counters might be able to introduce side effects on other counters that are
implemented, it is necessary to identify them and incorporate these side effects in the
framework.

After the most viable implementation for each event trigger is selected, the framework is
build and evaluated against the local benchmarks described in Section 2.4. The power
consumption of the local workloads is measured under different load levels and the perfor-
mance counters are recorded. If the framework is able to approximate the local references,
it shows that simulating power consumption through performance counters is a reasonable
approach.

During all reference and evaluation measurements, performance counters are recorded
for evaluation against a linear regression model, based on the preexisting local reference
measurements. It is used as a second evaluation step for the framework’s approximation
performance.

4.1. Reference Workloads

This section describes the purpose of the selected workloads. The local workloads intro-
duced in Section 2.4 are used for feasibility while the NFV workload acts as the externally
driven application.

4.1.1. Local Workloads

To act as reference if workloads can be approximated through performance counters, three
locally executable workloads stressing specific parts of a SUT with increasing complexity
are selected.

19

20 4. Approach

• Pi worklet : Simple approximation of π. Mainly stresses the CPU.

• XMLValidate: Validates XML file according to a schemata. Stresses both the CPU
and memory.

• SSJ : A simulation of OLTP, resembling a real world application. This worklet put
CPU, memory and caches under load.

These workloads are not dependent to be driven by an external load generator. They
therefore do not have I/O heavy operations resulting from network traffic or otherwise. Yet
they stress certain aspects of SUT to evaluate the feasibility of the proposed approximation
framework. Measurements are performed as described in Section 2.2.1.

4.1.2. NFV Workload

The NFV workload, described in more detail in Section 5.2, acts as the externally driven
reference workload. As VNFs are stressing the network adapter, which is not used by the
local workloads, a VNF is a good example for externally driven workloads. The selected
VNF is a DPI firewall inspecting User Datagram Protocol (UDP) packets and checking
them for validity.

To put the SUT under stress, network traffic needs to be generated. A traffic generator
is implemented that produces suitable traffic and is able to saturate the available network
connection. The generator must also be able to run at different load levels like the Chauf-
feur harness for measurements to be comparable. A receiver is installed, to which allowed
packets are routed to ensure the VNF is working correctly and can be calibrated.

One of the main problems in calibrating the testbed is the non-blocking behavior of the
implemented transactions (packets inspected by the DPI). This is inherent to most ex-
ternally driven workloads as no knowledge about the SUT’s current transaction status is
available. To perform a reference measurement with actual external traffic, calibrating the
VNF deviates from the procedure introduced in Section 2.2.1. The maximum throughput
is defined as the number of packets handled by the SUT without dropping packets due
to overload. A disadvantage is that the overload is likely to happen because the network
bandwidth is saturated instead of the SUT’s CPU and memory. Calibration is done via
binary search until the threshold of packets dropped is within reasonable bounds or the
maximum number of steps is reached. Afterwards measurements are taken in the described
manner, recording the following data:

• Valid packets send

• Malicious packets send

• Packets received

• Performance counters

• Power consumption

4.2. Workload Approximation

To achieve a workload approximation through performance counters, suitable candidates
have to be identified from the available sources, IntelPCM and the OS. The available
performance counters are presented and suitable counters are selected. Afterwards the
possible influences of side effects when triggering events is described.

20

4.2. Workload Approximation 21

4.2.1. Selection of Available Performance Counters

A wide variety of performance counters are available on modern systems. Not only are
counters measured by the CPU itself but also by the OS. To identify and select counters
that have an influence on power consumption, the Pearson correlation between counters
and the power consumption is calculated for different load levels also used in the evaluation.
Ten load levels ranging from 10% to 100% in 10% steps are used. The measurement from
which the correlation is calculated is the VNF workload, as the proposed framework should
be able to approximate externally driven workloads. A correlation below 0.8 is considered
to low for implementation. Feasibility of implementation is considered as well as a second
criteria. This is necessary because it might be possible that some performance counters
might not be susceptible to manipulation from user space programs and need modifications
of the OS to work, which is not within the scope of this thesis. On the other hand, some
performance event triggers might be implemented with only minor changes to already
selected counters, justifying a lower correlation in certain cases.

Performance counters with values that had a constant value of zero or listing hardware
configurations during the measurement are omitted.

CPU Performance Counters

The correlations are presented in Table 4.1 and descriptions are cited from [Wil]. The
C-State (CPU power saving states) residency counters are also omitted. This is due to
external tools needed or a CPU specific self-written implementation to send the CPU
to a defined C-State. This might not be executable on other hardware other than the
SUT’s. The QuickPath Interconnect (QPI) and L3 cache occupancy metrics are omitted
because they are not measured in the IntelPCM configuration used for this thesis. CPU
internal power metrics are omitted because the power consumption is measured externally.
Temperature readings are not a part of this thesis.

The EXEC counter is not selected, despite high correlation, as it is dependent on FREQ.
IPC ’s correlation is not deemed sufficient for implementation. FREQ has high correlation
but the framework should approximate a workload under real conditions in which the
frequency is usually not influenced by user space programs. It is also dependent on ACYC.
The same is true for AFREQ. Its high correlation is caused by a nearly constant value as
a fraction of the CPU’s design frequency. L3MPI and L2MPI are a byproduct of INST
and L3MISS / L2MISS with low correlation. ACYC is well correlated, but not selected
for the same reasons as FREQ. The TIME(ticks), PhysIPC and PhysIPC% counters are
not selected due to low correlation. INSTnom and INSTnom% are dependent on INST
which is selected to be implemented.

Counters implemented that have a high correlation without directly modifying the CPU’s
configuration are L3MISS, L2MISS, READ, WRITE and INST. Despite lower correlation,
L3HIT s and L2HIT s are selected. If a memory access misses L2, it could either hit or miss
L3. It therefore seems reasonable to select L3HIT as L2 misses could directly generate L3
hits or misses if needed. As all other cache related performance counters are selected and
the cache’s content need to be controlled in a specific manner, L2HIT is therefore selected
as well despite moderate correlation.

Linux Recorded Performance Counters

The performance counter correlations together with a description, taken from [BBN+] and
shortened where necessary, are presented in Table 4.2 and 4.3.

For this thesis, user is not selected despite a high correlation value. The number of
background programs cannot be influenced as the SUT is already running with a minimum

21

22 4. Approach

Perf. counter Correlation Selected Description

EXEC 0.976 Instructions per nominal CPU cycle ignoring
turbo and power saving modes

IPC 0.577 Instructions per cycle
FREQ 0.981 Frequency relative to nominal CPU fre-

quency
AFREQ 0.992 Frequency relative to nominal CPU fre-

quency excluding the time when the CPU is
sleeping

L3MISS 0.968 ! L3 cache line misses

L2MISS 0.983 ! L2 cache line misses

L3HIT −0.629 ! L3 cache hits

L2HIT 0.727 ! L2 cache hits
L3MPI 0.478 L3 cache misses per instruction
L2MPI −0.693 L2 cache misses per instruction

READ 0.943 ! Memory read traffic

WRITE 0.969 ! Memory write traffic

INST 0.976 ! Number of instructions retired
ACYC 0.981 Number of clockticks including turbo and

power saving modes
TIME(ticks) −0.203 Number of invariant clockticks invariant to

turbo and power saving modes
PhysIPC 0.582 IPC multiplied by number of threads per core
PhysIPC% 0.576 PhysIPC relative to maximum IPC
INSTnom 0.976 Instructions per nominal cycle multiplied by

number of threads per core
INSTnom% 0.976 INSTnom relative to maximum IPC

Table 4.1.: CPU performance counters

22

4.2. Workload Approximation 23

of software installed and the number of processes created by the test harness is fixed.
The softirq counter is not selected even with high correlation because software interrupt
are handled only after a system call or hardware interrupt [Pro06]. Therefore hardware
interrupts are deemed sufficient. Yet it should not be discarded but implemented in the
future to possibly improve the proposed framework. The processes counter has a good
correlation but was not selected as the implementation for context switches (ctxt) creates
threads which will interfere with this counter. As with the softirq counter, it should be kept
in mind for further improvements. All other not selected counters correlation is deemed
too low to be selected.

Hardware interrupts (irq) and the number of context switches (ctxt) are selected due to
their high correlation.

Perf. counter Correlation Selected Description

user 0.874 Normal processes executing in user mode
system 0.565 Processes executing in kernel mode
idle −0.675 Processes currently idling
iowait −0.322 Waiting for I/O to complete

ctxt 0.992 ! Number of context switches
processes −0.984 Number of processes and threads created
procs running 0.685 Number of threads running or ready to run

(runnable threads)
procs blocked −0.055 Number of processes blocked, waiting for I/O

to complete
softirq 0.993 Software interrupts serviced since boot time

irq 0.997 ! Number of interrupts serviced since boot
time

Table 4.2.: Linux performance counters

The memory performance counters are also read. Yet none of them is selected for im-
plementation. The reasons are low correlation and feasibility of implementation such as
SReclaimable, which is is part of the in-kernel data structure cache Slab. The only two
counters not falling into these two categories are MemFree with a correlation of 0.975 and
MemAvailable, with −0.821. Test implementations are made to influence these counters
but no noticeable impact could be measured. Further evaluation of these counters for
future implementation is therefore necessary but is not within the scope of this thesis.

4.2.2. Side Effects of Triggering Performance Events

Triggering performance events to modify the counters can have side effects, especially
counters for more abstract events such as context switches. But also counters closer to
hardware do have side effects. A read operation on memory for instance could trigger
cache misses or hits, depending on the cache lines currently residing in cache. Therefore
side effects for each selected performance counters are evaluated by generating a large
number of each events individually. The degree to which an event causes side effects on
other counters is measured and included in the frameworks configuration.

To determine if side effects improve the approximation, two composition mechanisms are
implemented for evaluation. First an accumulation method is implemented as shown in
Equation 4.1. The accumulated side effects sx affecting the event count vx are calculated
by multiplying the side effects for a single event si with the number of events causing the

23

24 4. Approach

Perf. counter Correlation Description

MemFree 0.975 The sum of LowFree and HighFree
MemAvailable −0.821 An estimate of how much memory is available for

starting new applications, without swapping. Calcu-
lated from MemFree, SReclaimable, the size of the file
Least Recently Used (LRU) lists, and the low water-
marks in each zone.

Buffers −0.984 Relatively temporary storage for raw disk blocks
Cached −0.984 In-memory cache for files read from the disk (the page-

cache). Does not include SwapCached.
Active −0.984 Memory that has been used more recently and usually

not reclaimed unless absolutely necessary.
Inactive −0.950 Memory which has been less recently used. It is more

eligible to be reclaimed for other purposes
Active(anon) −0.531 Not available
Active(file) −0.984 Not available
Inactive(file) −0.950 Not available
Dirty −0.165 Memory which is waiting to get written back to the

disk
Writeback 0.290 Memory which is actively being written back to the

disk
AnonPages −0.575 Non-file backed pages mapped into userspace page ta-

bles
Mapped −0.721 Files which have been mmaped, such as libraries
Slab 0.627 In-kernel data structure cache
SReclaimable −0.935 Part of Slab, that might be reclaimed, such as caches
SUnreclaim 0.714 Part of Slab, that cannot be reclaimed on memory

pressure
KernelStack 0.587 Not available
PageTables −0.043 Amount of memory dedicated to the lowest level of

page tables
Committed AS −0.028 The amount of memory presently allocated on the sys-

tem. The committed memory is a sum of all of the
memory which has been allocated by processes, even
if it has not been ”used” by them as of yet. A process
which malloc()’s 1GiB of memory but only touches
300MiB of it will show up as using 1GiB.

Table 4.3.: Linux memory performance counters

24

4.2. Workload Approximation 25

effect vi. The effects are summed over all event triggers i. If the resulting accumulated
side effects are lower than vx, they are subtracted and set as the new count of events to
trigger including side effects vs,x. In case sx is higher than vx, the new count is set to zero,
triggering no events.

sx =
n∑

i=1

si · vi

vs,x =

{
vx − sx if sx ≤ vx

0 if sx > vx

(4.1)

It is likely that the simple aforementioned method is not an optimal solution when bal-
ancing side effects and number of events to generate. An analytic solution to this problem
might not be feasible to obtain. Therefore simulated annealing is used to find an optimal
solution. Simulated annealing is selected as it is less prone to be caught in local maxima
or minima like hill climbing. The following description is mainly based on [HJJ03] and
adapted to the proposed framework.

In simulated annealing the global minimum solution ω∗ is searched in the solution space
Ω with ω∗ ∈ Ω. To find the global minimum, an energy function f : Ω → R is needed to
assess if a solution is closer to the minimum, while the condition f (ω) ≥ f (ω∗) must be
fulfilled. As energy function, a modified Mean Squared Error (MSE) function as shown in
Equation 4.2 is used. ω̂i is the target value for the i-th operation, ωi the current value and
ωs,i the side effects imposed by the current configuration.

f (ω) =
1

n

n∑
i=1

(ω̂i − ωi − ωs,i)
2 (4.2)

Each solution ω has neighbors defined by a neighborhood function N (ω). A neighbor
is a solution that can be reached within a single iteration. A neighboring solution ω′ ∈
N (ω) is calculated by selecting a random operation ωi and incrementing it by one. If a
calculated neighbor is accepted based on the acceptance probability in Equation 4.3 with
tk as the temperature parameter or cooling schedule at iteration k. tk is defined such that
tk > 0 for all k and lim

k→+∞
tk = 0.

P{Accept ω′ as next solution} =

e
−∆ω,ω′

tk if ∆ω,ω′ > 0

1 if ∆ω,ω′ ≤ 0
(4.3)

If the temperature T is reduced slowly, then simulated annealing can reach a steady state.
The probability of the system in state ω with the energy f (ω) at temperature T follows a
Boltzmann distribution. As distance metric ∆ω,ω′ , shown in 4.4, is used.

∆ω,ω′ = f
(
ω′)− f (ω) (4.4)

First the initial solution is selected, the temperature change counter is set k = 0. After-
wards the temperature parameter tk and the initial temperature T = t0 ≥ 0 are selected.
Finally before the algorithm can start, Mk is set which defines the number of iterations
at each temperature. Then the algorithm is ready and can be started. It repeats the
following steps until the stopping criterion is met by either finding the minimum energy
or a predefined number of iteration steps were executed.

25

26 4. Approach

1. Set repetition counter m = 0

a) Generate a solution ω′ ∈ N (ω)

b) Calculate ∆ω,ω′

c) ω ← ω′ with probability from 4.3

d) m← m+ 1

e) If not m = Mk, then goto a)

2. k ← k + 1

3. If stopping criterion is not met, then go to 1.

4.3. Regression Model

As stated earlier, a linear regression model based on measurements from the local refer-
ence workloads Pi, XMLValidate and SSJ is created as as a second evaluation method.
If the model is able to predict the power consumption generated by the framework, it
shows that performance counters are able to approximate workloads independent of ex-
ternal appliances. If the prediction for the NFV workload is false, but correct for local
workloads, it gives an indication that hardware used by externally driven workloads can
significantly influence the approximation when trying to simulate them. In case the local
and NFV workloads are incorrect, it shows that the used modeling approach is not suffi-
cient for approximating power consumption through the selected performance counters if
the measurements show a working approximation.

The model is generated using multiple linear regression. The following section is based
on [FKLM13]. The power consumption y is modeled through the input parameters, the
performance counters, x1, . . . , xk. y is therefore modeled as the conditional expected value
E (y|x1, . . . , xk) and can be written in a general form as shown in Equation 4.5.

y = β0 + β1x1 + · · ·+ βkxk + ϵ (4.5)

The model parameters β0, β1, . . . , βk need to be estimated from the reference measure-
ments. The first parameter β0 is the intercept. Both x and β can be written in vector
form, including the intercept. So we obtain β = (β0, β1, . . . , βk) and x = (1, x1, . . . , xk)

′.
The Equation 4.5 can now be written as y = x′β + ϵ.

Performance counter Estimated coefficient β Standard Error

Intercept 23.214 1.1483
L3 misses 1.2528 · 10−4 2.2907 · 10−5

L3 hits −7.878 · 10−5 1.4998 · 10−5

Bytes read from memory controller −5.8589 · 10−8 9.7646 · 10−9

Bytes written to memory controller −3.8536 · 10−8 2.236 · 10−8

Instructions retired 1.184 · 10−8 2.744 · 10−9

Interrupts 3.659 · 10−3 1.3766 · 10−3

Context switches −1.7381 · 10−3 5.0857 · 10−4

Table 4.4.: Estimated coefficients β of linear regression model

26

4.3. Regression Model 27

From the observations the design matrix X, the vector y and ϵ can be constructed as
shown in Equation 4.6. x14 in the design matrix refers to the first observation and the
fourth performance counter value. The linear regression model can now be written in the
compact form y = Xβ + ϵ where ϵ are the independent distributed errors ϵi, such that
E (ϵi) = 0 and V ar (ϵi) = σ2.

y =

y1
...
yn

 X =

1 x11 . . . x1k
...

...
...

1 xn1 . . . xnk

 ϵ =

ϵ1
...
ϵn

 (4.6)

Using the least square estimates from Equation 4.7, β can be estimated to form the final
linear regression model with its coefficients shown in Table 4.4.

β =
(
X′X

)−1
X′y (4.7)

27

5. Implementation

Some of the software used in the course of this thesis was not readily available for use,
therefore several software components had to be implemented. A traffic generator has to
be used for the reference measurements and no readily available application does fit the
requirements. It therefore had to be self implemented. The architecture and configuration
of the traffic generator is described, followed by an adaption of an existing code base for
a DPI firewall that suits the packets generated. To model workloads using performance
counter, several implementations to trigger counter events are implemented and evaluated
on the basis of accuracy and side effects. The performance counter implementation also
includes a kernel module to help improve results when triggering certain events. The
resulting implementations are used to create a framework to accurately trigger perfor-
mance counter events to model power consumption. The framework’s design choices and
integration into Chauffeur is explained in the last section.

5.1. Traffic Generator and Receiver

This section describes the implementation of the traffic generator and receiver program
written in Java 1.8. Generator and receiver are only distinguished through the command
line parameters that are read on program startup. First the architecture of the program
itself is outlined and the generation of packets is explained, followed by the description of
configuration parameters.

The requirements for the load generator are a simple configuration as well as the ability
to generate a high number of packets per second to saturate an ethernet connection with
a bandwidth of 1GBit/s. A multithreaded application is preferred but not necessary. As
the workload used is a VNF firewall inspecting UDP packets, both valid and malicious
packets have to be generated at defined rates with delay between packets determined by
a distribution function. The generator must support the UDP protocol to be compatible
with the firewall. The receiver application must only be able to count arriving UDP packets
on specified sockets.

A traffic generator was implemented as available solutions do not have the required fea-
tures. As stated in [Ols05], the Linux kernel pktgen module offers a high speed packet
generator that can use multiple threads. Yet each thread needs exclusive access to a net-
work device. This would limit pktgen to a single thread as only one ethernet link to the
SUT is available. While it is able to saturate line rates of 1GBit/s with a single thread,

29

30 5. Implementation

packet delay distribution in pktgen is hard to control for small delays. A second traffic gen-
erator considered is Ostinato, which is highly configurable and comes with a wide variety
of protocols, including UDP. This variety makes Ostinato difficult to configure properly
and achieve the required load levels. If Ostinato could saturate the available ethernet
bandwidth could not be determined in the course of this thesis. It is therefore decided to
implement a traffic generator suited best for the required features.

5.1.1. Architecture

The architecture for the traffic generator consists of five packages as can be seen in
Figure 5.1. The main package nfv.traffic contains classes for controlling the pro-
gram from the command line, managing sender threads and logging facilities. Package
nfv.traffic.config is concerned with parsing and writing JavaScript Object Nota-
tion (JSON) configuration files. Distributions for package send intervals are contained
in distribution. The last package nfv.traffic.protocol does contain the sender and
receiver classes for package generation.

A logging facility is provided in the form of a console and file logger in package nfv.logger.
They have been implemented as an extra project due to its supplemental nature. It can
therefore be omitted after small code changes if no logging is required.

Command and control tasks are running as one thread. Each socket bound by the traffic
generator uses its own thread. Packet generation can therefore distributed to multiple
threads to achieve a high amount of packets per second. The logging facilities run in
their own thread storing log messages in a blocking data structure before writing. This
approach is chosen to keep interference with packet generation and control to a minimum
if log messages are written to disk.

A packet generated by the application is shown in Figure 5.2. Each packet has at least the
following payload data. First an integer determining if this packet is part of a measurement,
followed by an identifier if the packet is valid or malicious, which is either valid ormalicious
in ASCII representation. Afterwards the total packet count is appended for testing the
implementation. It is followed by a unique identifier of the socket which did generate
the packet. The rest of the packets payload is filled with randomly generated data. The
minimum size of a packet is 21 byte for valid packets and 25 byte for malicious packets.
The maximum size is limited by the Maximum Transmission Unit (MTU).

nfv.traffic

The class Controller in this package is the main class starting and initializing the traffic
generator. It uses a single instantiation of Command to print out information to the com-
mand line. It also reads commands from the command line supplied by either a user or
script. The available commands are:

• Start / Stop of traffic generators bound to specific sockets.

• Reset packet counters on a socket.

• Add / Remove / Copy new traffic generator sockets.

• Changing configuration of existing sockets.

• Printing packet counter variables in human readable form or as a comma separated
list for automated parsing.

• Load / Store configuration files in JSON format.

30

5.1. Traffic Generator and Receiver 31

Figure 5.1.: Software architecture of the traffic generator and receiver

The Controller further includes an instance of SocketPool which is used for bookkeeping
of bound sockets and associated threads. It is able to start, stop, add and remove packet
generator threads from the application. The Controller object also contains TGLogger
which keeps track of registered logging facilities.

nfv.traffic.config

The config package contains two classes. First the ConfigSerialization which parses
and writes JSON configuration files by means of the Gson library. The second class in
this package is Config which contains all settings needed for a traffic generator to run
in unmodifiable fields. Immutability is chosen to prevent side effects on running packet
generator threads by changing fields in a Config object.

Figure 5.2.: Packet structure

31

32 5. Implementation

nfv.traffic.distribution

This package contains the Distribution interface consisting of just two methods. The
first is to get a string representation of the distribution in use. The second method is
generating the next delay according to the distribution implemented. It is based on the
pseudo random number generator Random from the Java API. Two implementations for
this interface are written. An exponential distribution (ExponentialDistribution) used
for measurements and calibrations and a constant distribution (ConstantDistribution)
for testing purposes.

nfv.traffic.protocol

This package contains most of the functionality for the packet generator. Each object of
UdpSender and UdpReceiver is implemented as a thread bound to a socket. They are
managed through the SocketPool. Each object counts how many packets were send in
total, during a measurement phase as well as how many of these packets are malicious or
valid. The current status of these counters can be returned as objects in the form of either
UdpSenderStatus or UdpRecevierStatus. They are used by the Command class for print-
ing. The configuration for a sender or receiver is determined during object construction
by passing a Config object. The available configuration options are explained in detail in
Section 5.1.2. Traffic generator threads are normally delayed using the Thread.sleep()

method. An additional busy wait was added to be able to handle delays shorter than one
millisecond to increase packet throughput and saturate the network link between the SUT
and the traffic generator and receiver.

5.1.2. Configuration

This chapter describes the configuration options and their application in the traffic genera-
tor. The configuration file is divided into several blocks (objects in JSON), each consisting
of the same 13 fields. For the receiver only the localAddress field is important. It is still
necessary to always provide all fields or otherwise the file cannot be parsed correctly.

localAddress The local address and source socket from which packets will be send.
The socket has to be provided as a decimal Internet Protocol Version
4 (IPv4) address and port number divided by a colon.

destAddress Destination address to which packets are send. The format is identical
to localAddress.

distribution The distribution function to be used. The value provided must match a
string representation implemented by either Constant or Exponential.

packetCount This value tells the traffic generator to stop after a certain amount of
packets have been send on this socket. It is only taken into account if
usePacketCount is set to true.

packetSize This field determines the packet’s payload size in bytes.

usePacketCount If this field is set to true, the packetCount field is evaluated. If set to
false, packetCount has no effect and the traffic generator will produce
packets on this socket until stopped otherwise.

meanDelay Mean value the distribution functions should achieve.

minDelay Lowest value the distribution function should return.

maxDelay Highest value the distribution function should return.

32

5.2. NFV Workload 33

maliciousRate Rate of malicious packets generated.

useStandardSeed Set this value to true if the random number generator should use
the standard seed implemented by Java. If set to false, the value
randomSeed will be used to seed the random number generator.

randomSeed Seed for the random number generator. This value only takes effect if
useStandardSeed is set to false.

useBusyWait Use the busy wait method instead of Thread.sleep() if set to true.

5.2. NFV Workload

The NFV workload running on the SUT is a DPI firewall implemented in C. The firewall
was adapted to work with the packets generated by the traffic generator described in
Section 5.1.1. It is able to distinguish between valid and malicious UDP packets depending
on the payload.

The firewall uses the netfilterqueue library to receive packets from the Linux kernel. The
library is used to create handles to which packets can be forwarded. The handle binds to
a rule in the kernel netfilter module. To be able to bind, a netfilter rule needs to have a
queue number assigned to it. If netfilter matches a packet to a bound rule, it is forwarding
the packet to the handle. The firewall then has to render a judgment whether the packet
should be dropped or accepted. If a packet is accepted, it is forwarded to the receiver. The
firewall uses the string search function strstr() from the C standard libraries to search
for either of the two identifiers described in Section 5.1.1. Does the packet include neither
of the two identifiers, then the firewall will signal accept to netfilter. Packets not send over
UDP will also be accepted.

Since the firewall is a single thread implementation, several instances have to be started
and connected to rules in the netfilter kernel module. The rules for netfilter, configured
through iptables, are explained in detail in Chapter 6.

The firewall uses only one command line parameter at startup. This is a positive integer
number determining the queue number to which the firewall should be bound.

5.3. Linux Kernel Module

For the implementation of the performance counter framework, several implementations
are tested. One of them is setting a contiguous memory range to not cache data and
reliable trigger cache miss events. The module is written in American National Standards
Institute (ANSI)-C as other languages are not supported. It creates devices and registers a
callback function so user space programs can map virtual kernel memory to their memory
space via a system call to mmap().

5.3.1. Caching Modes

The different caching modes supported by the SUT’s processor are described to gain an
overview of which to choose. The used processor supports six different modes as stated
in [Int16b].

Strong Uncachable (UC) All reads and writes will appear on the system bus and are
not reordered. Also no speculative prefetches are made. This
mode can only be set through the Memory Type Range Reg-
ister (MTRR).

33

34 5. Implementation

Uncachable- (UC-) This mode is identical to Strong Uncachable but can only be
set through the Page Attribute Table (PAT). If set, it can
be overridden if the same memory is set to Write Combining
via the MTRR.

Write Combining (WC) Memory is not cached but writes can be delayed and stored
in the WC buffer and written if the buffer is full or a seri-
alizing event occurs. Speculative memory access is allowed
in this mode. WC allows reordering and is therefore for
memory locations in which the write order is not important
as long as the writes appear on the system bus. Cache co-
herency is not enforced by the CPU.

Write Through (WT) In this mode, read and writes are cached. Writes will be
written to the main memory and cache line if it is valid. It
allows for buffering as in WC and speculative memory access.
Also cache coherency is enforced by the CPU.

Write Back (WB) This is the standard mode for main memory. All reads and
writes are cached, speculative accesses can be made and co-
herency is enforced. Write misses will write to cache line and
not to main memory until the cache line is evicted.

Write Protected (WP) In WP mode, read misses cause a cache line to be fetched.
A write is is propagated to the system bus and the corre-
sponding cache lines on all processors are invalidated. This
mode allows for speculative read. It can only be set through
the MTRR.

Caching mode Uncachable- (UC-) is selected as it can be set through the PAT and does
not allow hardware prefetching of data. It also forbids the caching of data which in return
should be a reliable way of triggering cache misses. Using the MTRR was refrained from
in accordance with [GR], which states that the PAT should be used if available. Therefore
Strong Uncachable (UC) is not selected. Write Back (WB) was not selected to allow
for maximum control over how data is written or read without buffering. The modes
Write Through (WT), WB and Write Protected (WP) are not suitable as they allow data
caching. Furthermore setting memory as UC- has precedence over WB even if WB is set
through the MTRR. This is important as most parts of the main memory are set to WB
by default via the MTRR.

To set memory to UC-, access to the PAT is needed, which is only possible in ring 0.
Therefore a Linux kernel module is written to allocate virtual kernel memory and mark it
as UC-.

5.3.2. Character Device Driver

The module implements a character device driver. Devices in Linux use a major and a
minor number. The major number decides which module in the kernel is responsible for
the device. Choosing a hardcoded major number should be avoided as it could result
in conflicts with other kernel modules using the same number. The preferred way for
kernel modules is automatically assigning a free major number on module load. As a
single module can manage multiple similar devices, each device also gets a minor number
assigned. The minor number is used by the kernel module itself and not the kernel to
distinguish multiple devices. In this module, the minor number is ascending, ranging from
0 to n− 1, with n as the number of devices that the module creates.

34

5.4. Relevant Performance Counter 35

First sufficient space for the internal device representation is allocated and a major number
is requested from the kernel. Afterwards a device class uc is created under which the
uncachable devices will be grouped. This is not necessary but helps keeping an overview
of all devices on the system. The group will show up as a folder in /sys/devices/virtual/

containing all created devices assigned to this group. Afterwards the devices themselves
are initialized. For each device, a certain number of contiguous pages in the kernel virtual
memory space are allocated through __get_free_pages(). The returned pointer is used
to set the allocated memory as UC- by calling set_memory_uc(). If the memory could be
allocated and set to UC-, a device is created and registered at the kernel. After registering,
the device becomes usable by user space programs. Accessing the device is still difficult
because no handle in the /dev/ folder is created automatically. This is done through a call
to device_create() with the full name for each device. The name used for the devices
are uncachable-m where m is the minor number of each device.

Only four operations are permitted to keep the code base minimal. Therefore only the
following callback functions needed to be implemented.

open This function does set the status of a device to open and stores a pointer
to the module’s internal device representation in the field private_data of
struct file*, supplied as argument by the kernel. This is important for access
to the device when mmap() is called. This callback is executed if a device is
opened via open() from user space.

release Resets the device state to closed.

read This callback function is implemented to be able to read the amount of allocated
memory in bytes.

mmap This function is called if a user space program tries to map the device’s memory
into its virtual memory space. To map the correct memory for each opened
device, the internal representation is retrieved from the private_data field and
the page protection is updated through pgprot_noncached(). Afterwards a call
to remap_pfn_range() maps the virtual kernel memory to user space.

If a function call should fail due to an error, a memory cleanup is performed if necessary
and appropriate error messages are printed to the kernel ring buffer. The called function
will then return with a negative integer value to indicate the error.

The kernel module supports two parameters that can be set on module load. It will fallback
to default values if the parameters are not supplied.

device_count This parameter specifies the number of devices (n) that the module creates.
The default value is 8.

device_size The size determines the amount of pages allocated in memory for each
device. It must be provided as an exponent to base 2. A device size of
3 for example will result in 32KiB of memory allocated for a page size of
4KiB. The default value is 2.

5.4. Relevant Performance Counter

To model workloads on the basis of performance counters, it is necessary to reliable trigger
events associated with the counters used in this thesis. As shown in Section 2.3, perfor-
mance counter do have drawbacks such as over counting and non-determinism. Together
with modern multithreaded preemptive operating systems, reliably triggering performance
events becomes difficult due to shared resources, scheduling and other characteristics that

35

36 5. Implementation

cannot be directly influenced without changing the underlying OS. Therefore different
possible implementations had to be tested and measured to determine the most viable
solution for certain counters, which is described in the following sections. The counter for
L2 misses is omitted, as generating an L2 misses are implemented by producing L3 hits.

Cache Hit and Miss Triggers

Triggering cache hits and misses is essential for the implemented performance counter
framework. To trigger cache misses and hits, an array is allocated that is at least twice
the size of the L3 cache, which is 16MiB for the SUT used in this thesis, according to
[Int16a]. The program will initialize the cache by cycling through 8MiB before any cache
misses or hits are generated. This is to improve accuracy as, in an ideal scenario, the last
cache size bytes should still reside in cache. For L3 cache events, the complete array is
used. In case of L2 cache events, only a subsection with four times the size of the total
L2 cache is used in the same array, always following p3. Three pointers to the array are
needed to determine which data was loaded last and should still reside in cache.

• p3: Position of the last used data for L3 cache misses.

• p2c: Position of the last used data for L2 cache misses or hits in the L2 subarray.

• p2l: Position of the first byte in the L2 subarray.

For L3 cache events, the complete array is cycled in steps with a multiple of the cache
line size (64 byte [Int16a]). Optionally a random factor can be added to test if hardware
prefetching or other hardware features influences event triggering in the following sections.
As the last L3 cache size bytes should still remain in cache after initialization, L2 hits
are triggered first, followed by L3 hits and last L3 misses. Triggering L2 hits first ensures
that only two fixed memory pointers should produce an acceptable hit rate on the first
two bytes of the L2 subarray which are p2l and p2c. Afterwards the L3 hits are generated
by cycling through an array four times the size of the L2 cache size (256KiB per physical
core [Int16a]) that still fits inside L3. This will move p2c forward until it encounters the
array’s upper bound which will reset p2c back to p2l + 1. Finally L3 misses are produced
by cycling through the complete array with p3. Mixing different cache event triggers is
possible by moving all pointers appropriately.

The cache hit and miss triggers are implemented with three different instructions to eval-
uate different approaches. Single Instruction Multiple Data (SIMD) intrinsics, C and
x86-64-Assembler (ASM) is used to find the optimal implementation. Also included are
different functionalities which are read, write and copy data. A random factor when step-
ping through the array is added to the pointer as well to evaluate influences of speculative
access as described in 2.3. The memory used by the trigger implementation is either vir-
tual process memory, shared memory or memory from the kernel module that is marked
as UC-.

Read and Write Bytes to Memory Controller

To produce a memory access, all cache levels have to be missed beforehand. Therefore read
bytes from memory controller and write bytes to memory controller are implemented in the
same manner as the L3 cache misses. The memory controller counters are implemented
with the three aforementioned variants, SIMD, C and ASM as well. The functionality
on the other hand is restricted to the access type, which is either read or write. The
implementation of the read and write event trigger also includes the three different memory
types for evaluation.

36

5.4. Relevant Performance Counter 37

Instructions Retired

Triggering events to modify the retired instruction count is possible with basic C or C++
code. Therefore a simple routine was implemented, adding a constant value to a stack
variable as shown in Listing 5.1. Yet higher language constructs can consist of multiple
instructions. The code is therefore compiled into ASM language as can be seen in Listing
5.2. The assembler instructions which comprise the loop construct, line 7 and 8 in Listing
5.1, can be found in line 27 to 33 and amounting to seven instructions per loop iteration.
The remaining instructions are totaling 13. They could be subtracted from the number of
events to generate, but it would only result in an immeasurable small improvement and is
therefore not implemented. The Call Frame Information (CFI) directives are not counted
as they do not get executed and are for stack unwinding in case of exception handling and
debugging.

1 static uint64_t INST_RET_LOOP = 7;

2 static int32_t INST_RET_ADD = 5;

3

4 static void inst_ret_retire(uint64_t instruction_count) {

5 uint64_t loop_iterations = instruction_count / INST_RET_LOOP;

6 int32_t x = 0;

7 for (uint64_t i = 0; i < loop_iterations; i++)

8 x += INST_RET_ADD;

9 }

Listing 5.1.: C++ implementation of retired instructions

Context Switches

The Linux OS keeps track of how many context switches have been performed during
runtime. To trigger a context switch, either a new process or thread has to be created
that can be switched. Another option would be to suspend the currently running modeled
workload to signal the OS that it can switch in already existing processes or threads.

Suspending the workload to trigger context switches though has two disadvantages. The
first reason to not further investigating this solution is the scheduling interval. The pre-
cision of the sleep(), usleep() and nanosleep() functions is dependent on the OS. On
Linux, according to [Wol16], the standard precision is 1ms which is insufficient if more
than 1000 transactions per second have to be executed. Another reason is the possibility
that no thread does have to be switched in during suspension. Especially under low load
and with several CPUs available, it is not guaranteed that another thread is available to
be switched in.

It was therefore chosen to create a thread with an empty workload that could be switched
in and immediately finished for joining. To keep the compiler from removing an empty
function due to optimizations, an inline assembler macro with no content was added as
can be seen on line 4 in Listing 5.3. The number of context switches to be performed was
divided by two as the newly created thread has to be switched in, and after finishing, the
workload has to be switched back out for the transaction to resume.

Interrupts

Hardware interrupts are common on most systems and are being counted by the OS. They
are selected as it is very likely that external traffic / load generators will cause interrupts
on the SUT. Yet triggering a hardware interrupt programmatically is difficult without
resorting to external hardware. One solution was found to achieve interrupts. Using the

37

38 5. Implementation

1 _ZL13INST_RET_LOOP:

2 .quad 7

3 .align 4

4 .type _ZL12INST_RET_ADD, @object

5 .size _ZL12INST_RET_ADD, 4

6 _ZL12INST_RET_ADD:

7 .long 5

8 .text

9 .type _ZL15inst_ret_retirem, @function

10 _ZL15inst_ret_retirem:

11 .LFB0:

12 .cfi_startproc

13 push rbp

14 .cfi_def_cfa_offset 16

15 .cfi_offset 6, -16

16 mov rbp, rsp

17 .cfi_def_cfa_register 6

18 mov QWORD PTR [rbp-40], rdi

19 mov rcx, QWORD PTR _ZL13INST_RET_LOOP[rip]

20 mov rax, QWORD PTR [rbp-40]

21 mov edx, 0

22 div rcx

23 mov QWORD PTR [rbp-8], rax

24 mov DWORD PTR [rbp-20], 0

25 mov QWORD PTR [rbp-16], 0

26 .L3:

27 mov rax, QWORD PTR [rbp-16]

28 cmp rax, QWORD PTR [rbp-8]

29 jnb .L4

30 mov eax, DWORD PTR _ZL12INST_RET_ADD[rip]

31 add DWORD PTR [rbp-20], eax

32 add QWORD PTR [rbp-16], 1

33 jmp .L3

34 .L4:

35 nop

36 pop rbp

37 .cfi_def_cfa 7, 8

38 ret

39 .cfi_endproc

40 .LFE0:

41 .size _ZL15inst_ret_retirem, .-_ZL15inst_ret_retirem

42 .globl main

43 .type main, @function

Listing 5.2.: ASM of retired instructions

38

5.5. Performance Event Trigger Framework 39

1 #define MIN_SWITCHES_PER_THREAD 2

2

3 static void context_op() {

4 asm("");

5 }

6

7 void context_switch(uint64_t switches) {

8 uint64_t switch_count = switches / MIN_SWITCHES_PER_THREAD;

9 std::thread threads[switch_count];

10

11 for (uint64_t i = 0; i < switch_count; i++)

12 threads[i] = std::thread(context_op);

13 for (uint64_t i = 0; i < switch_count; i++)

14 threads[i].join();

15 }

Listing 5.3.: Context switch implementation

Boost open source library, they are triggered by programming the Advanced Programmable
Interrupt Controller (APIC) to throw a local timer interrupt after a deadline is reached.
The deadline is set to a value of 5 ns. This is the minimum value at which interrupts could
be observed.

5.5. Performance Event Trigger Framework

Each workload generates performance events which are counted by the PMU. These coun-
ters can be leveraged using a generic approach. Performance Event Trigger Framework
(PET) uses these counters to simulate workloads by triggering the same amount of counter
events. To achieve a reliable generation of events, the implementations described in section
5.4 are used. PET can therefore be used to validate power models by simulating arbitrary
workloads.

PET should be able to utilize only a subset of the implemented performance counters.
It is therefore implemented as a modularized system to deploy only those event triggers
needed for the modeled workload. Correctional factors and improvements presented in
Section 5.4 are incorporated where feasible. The framework should also be able to add
new performance counter triggers in the future without making major changes to the code
base.

PET is primarily designed to work as a library for benchmark suites such as Chauffeur,
but can be run as a standalone executable as well. If run as executable, a fixed amount of
transactions supplied as a command line argument are performed.

5.5.1. Architecture

PET consists of three main parts as shown in Figure 5.3. Foremost the framework itself,
keeping track of the modules, their operations available and the side effects imposed by
the operations. The framework also includes a simulated annealing functionality to find a
solution between the side effects and number of events to generate. The framework offers a
native C++ interface and a Java Native Interface (JNI) for Chauffeur through an adapter.
Lastly the modules triggering performance events are connected to the framework. The
modules provide the event triggering implementations.

39

40 5. Implementation

Figure 5.3.: PET architecture

Framework

The framework manages the modules that should be used, the operations that can be
executed together with their respective values and the side effects. It takes care that all
modules have been initialized and cleaned up via callback functions. The initialization
and cleanup calls are shown in Figure 5.4 and 5.5. Internal housekeeping is omitted for
clarity. PET first comprises a list of registered modules and available operations which is
checked against the configuration. If a configured operation is not available, it is removed
from the list. Is the simulated annealing flag is set to true, simulated annealing will be
performed to approximate operation values with the configured values as target, taking
into account the side effects the current configuration will impose. Afterwards the module
list is iterated and each module’s initialization function is called with the process number
as parameter. If an error occurs during module initialization, an error code not equal
to zero can be returned, resulting in the operation’s values for this module to be zeroed.
Afterwards the side effects are incorporated into the event values if the framework is set to
use side effects, or the values from the simulated annealing are set. The original configured
values are adopted unchanged, in case the naive approach without side effects is used.

Cleanup is a simple task of traversing the internal list of registered modules and calling the
cleanup function on each. As with initialization, if an error occurs, it can be signaled by
returning an error code. After cleaning up the modules, all values for a module’s operation
are set to zero.

Generating performance events is carried out by calling the transaction() function which
subsequently will call the module’s operation with the correct amount of events to be
generated as shown in Figure 5.6. init(int32_t) must be called before transaction().
Otherwise the function will return immediately without generating events.

PET also supports simple debugging for the framework and modules. It provides the
debug(FILE*, const char*, ...) function with the same declaration as fprintf. If
the DEBUG flag is not set, calls to debug will have no effect. This keeps the code more
readable as the debug output functions do not need to be removed if no debug is desired.
It also removes pre processor if-else blocks which would otherwise be necessary. For
all modules, the file identifier FILE* debug_file is available for the debug function. The
framework ensures that the variable is initialized before any call to a module is made.
Each process of PET writes to its own debug file. Therefore each invocation must be
distinguishable. This is achieved by supplying the process number to the framework when

40

5.5. Performance Event Trigger Framework 41

Figure 5.4.: PET initialization

Figure 5.5.: PET cleanup

41

42 5. Implementation

Figure 5.6.: PET cleanup

calling the init function. If PET is used as an executable, it must be provided as the first
command line argument.

The PET library offers two interfaces, a native C++ interface and JNI to be called from a
Java application. The interfaces should be easy to use and not overburdened. The native
interfaces therefore consists of only eight functions while the JNI offers only three. The
native interface functions in the pet namespace are:

• int32_t init(int32_t)

Initializes PET so transactions can be executed. A call to this function will also
cause all modules to be initialized via their respective initialization function. It will
return a non-zero value if an error occurs. The only argument is the process number
that must be supplied.

• int32_t cleanup()

Resets PET, frees memory and calls the modules cleanup function. Will return a
non-zero value if an error occurs.

• int32_t transaction()

This function calls all performance event trigger operations with the supplied values
in the configuration file.

• std::list<pet::module*>* get_modules()

Returns a pointer to the list of modules configured.

• void set_sideeffects(bool)

Switches the use of side effects on or off. Must be called before init() to take effect.

• bool use_sideeffects()

Returns the status if side effects are used.

• void set_simulated_annealing(bool)

Switches the use of simulated annealing on or off. Must be called before init() to
take effect.

• bool use_simulated_annealing()

Returns the status if simulated annealing should be used for the side effects.

42

5.5. Performance Event Trigger Framework 43

The init(), cleanup() and transaction() functions are adapted to JNI to be callable
from Chauffeur. Functions switching the side effects or simulated annealing on or off are
not adapted and their values are provided as parameters to the JNI initialization function
as shown below. The interface is automatically generated by javah and included in PET.

Modules

The modules provide the actual performance event triggering. A module offers one or
more operations to trigger performance events. Calls to module operations should not fail
or fail gracefully. Therefore no error code is returned from operation calls.

As the modules are build as static libraries, each module must have a unique name after
which its callback functions are named to avoid errors during linking. All module functions
and variables should be contained in the pet_module namespace to keep the global names-
pace uncluttered. To simplify the process of writing modules, C pre-processor macros have
been implemented that provide appropriately named callback functions for the framework.

• pet_module_register(name, init_func, cleanup_func)

This macro will create all necessary functions and data holding variables. They are
named appropriately to be distinguishable for the linker. The module’s name is the
folder it resides in and is used in the configuration file. The name must be unique.

• pet_add_operation(operation_name, callback_func)

This macro will add an operation to the list of available operations for this module.
It must be called after pet_module_register to work properly. The name of the
operation is also used in the configuration file for identification. The name must be
unique within PET. An operation is called from PET via the callback function which
must have the following function header format: void callback_func(uint64_t).

The macros must be called within the pet_module namespace as shown in the example
for the instructions retired module in Listing 5.4. In total four modules with the following
operations are implemented.

• cache_memory

– Generate L3 cache miss

– Generate L3 cache hit

– Read bytes from memory controller

– Write bytes to memory controller

• inst_retired

– Increase instructions retired counter

• interrupt

– Generate hardware interrupts

• ctxt_switch

– Trigger a context switch

5.5.2. Configuration

To configure the framework, a simple configuration file parser is implemented. The config-
uration file contains the modules to use, the amount of events to trigger for each operation
and the side effects on other events caused by generating an event. A configuration file

43

44 5. Implementation

1 #ifndef SRC_MODULES_INST_RETIRED_INST_RETIRED_H_

2 #define SRC_MODULES_INST_RETIRED_INST_RETIRED_H_

3

4 #include "../../include/module.h"

5

6 namespace pet_module {

7

8 // Instructions executed for each loop iteration

9 static const uint64_t INST_RET_LOOP = 7;

10 // Value added to the temporary variable to have an instruction that gets executed.

11 // This value is not relevant but magic numbers are bad coding style.

12 static const int32_t INST_RET_ADD = 5;

13

14 static void inst_ret_retire(uint64_t);

15

16 static int32_t inst_ret_init(const int32_t);

17 static int32_t inst_ret_cleanup();

18

19 pet_register_module(inst_retired, inst_ret_init, inst_ret_cleanup);

20 pet_add_operation(inst, inst_ret_retire);

21

22 }; // namespace pet_module

23

24 #endif // SRC_MODULES_INST_RETIRED_INST_RETIRED_H_

Listing 5.4.: Module header for generating retired instructions events

is parsed during compile time, generating a header file populating internal lists for the
modules, operations and side effects. Parsing is done via a Python script that is called
from the build system as a dependency to the framework target.

The configuration file consists of three sections which must be in the correct order to work
correctly as illustrated in Listing 5.5. Each section name is preceded by a # character.
The first section, MODULES, includes all modules that should be used by the framework.
The name of the module must be identical to the folder in which its source code resides in
the PET subfolder modules. The second section, OPERATION_VALUES, lists the operations
which should be performed and how many events should be generated for each transaction.
If an operation name is supplied that is not offered by a listed module, it is discarded. If
the same operation name is listed twice, the last occurrence will have precedence. The last
section named OPERATION_SIDEEFFECTS describes the side effects an operation produces
per event. The operation name is followed by a list of affected operations and by which
factor each operation is affected. Values for side effects must be double values. All
values provided are inserted in the source code. Therefore values not valid by the C++11
standard will lead to compiler errors. An example configuration file is provided together
with PET.

Side Effects

The side effects supplied are measured as shown by running each performance event trigger
on its own and record the values for the other counters. The recorded side effect values
are divided by the total amount of events triggered to reflect the impact on other counters
for a single performance event. If the side effects should be used via the set_sideeffects
function, it can be switched between two different approaches, described in detail in Section
4.2.2.

First, a simple summation of all side effect factors multiplied with the causing event count
configured. The sum is then subtracted from the affected event count. Cases in which an

44

5.5. Performance Event Trigger Framework 45

1 #MODULES

2 cache_memory

3 inst_retired

4

5 #OPERATION_VALUES

6 l3miss 100

7 mem_read 500

8 inst 1000000

9

10 #OPERATION_SIDEEFFECTS

11 l3miss mem_read,factor,0.1;inst,factor,50.0f

12 mem_read l3miss,factor,4.2e-3;inst,factor,24

Listing 5.5.: Example PET configuration file

operation value would fall below zero are handled by setting the value to zero and therefore
not executing the operation.

The second option is simulated annealing, which is offered by the external GNU Scientific
Library (GSL) library. As energy function, a modified MSE function is used. The distance
function is defined as the energy difference between two neighboring solutions.

If simulated annealing or the summation should be used can be switched by using the
function set_simulated_annealing.

5.5.3. PET Build System

PET uses Cmake as build system to generate Makefiles. Cmake is chosen as it is inde-
pendent of the operating system and offers a simple way of configuring dependencies. It
also offers setting parameters before building a project to influence the build process. All
modules residing in the folder src/module will be added to the build process if a CMake-

Lists.txt is provided. Only two commands are needed to build PET. The first command
”cmake .” checks all dependencies, orders the targets accordingly and generates Makefiles.
The second command ”make” builds the project in the sequence determined by Cmake.

The framework build can be modified with the following five options configured through
Cmake. The standard value for binary options is off if not otherwise stated.

debug out This option switches debug output on or off. If set to on, the
define DEBUG will be added to the compiler call, activating debug
output as described in Section 5.5.1.

sideeffects Switches side effects on or off.

simulated annealing Switches simulated annealing on or off. This option only takes
effect if the side effects option is set to on.

config file The PET configuration to use during compilation. The standard
value is ../pet.cfg.

classpath As the framework needs an adapter to be used from Chauffeur,
class files for Chauffeur and the workload have to be set correctly.
The standard setting are relative paths from the main PET folder,
../../bin:../../../Chauffeur/bin.

45

46 5. Implementation

Dependencies

The dependencies of PET are shown in Figure 5.7. Targets copying libraries and header
files are omitted for clarity. To avoid version mismatches between libraries of the build
system and the SUT, external shared libraries are searched first in the folder the framework
is executed in. Therefore all external libraries needed for execution are copied to the bin
folder. Libraries needed for execution are:

• libboost_system

• libboost_date_time

• libstdc++

• libgsl

• libgslcblas

cache_memory ctxt_switch inst_retired interrupt

libboost_
date_time

libboost_systemuncachable_
module

pet

jni_md.h

jni.h

petl (library)

javah

Chauffeur binPetTransaction

libgslcblas

libgsl

Kernel header Kernel config

Main targets
Internal targets and dependencies
External dependencies

libstdc++

config file parser

JNI header file
pet_module_
header

Figure 5.7.: PET dependencies

The JNI header file is generated through a call to javah. To correctly generate the header
file, it is necessary to set the class paths in which the binaries of Chauffeur and the
PetTransaction class can be found. They can be set through the classpath option. The
jni.h and jni_md.h is included in the framework via the generated JNI header file. The
configuration file parser generates a header file as well that is included by the framework.
It contains the function to fill the internal module, operation and side effect lists with the
parsed data. All files that need to be generated are created in the bin folder. This helps
keeping the actual source code folder clean.

While most dependencies can be easily installed and deployed together with PET, the
kernel module has a drawback. To build the kernel module, the correct kernel headers

46

5.5. Performance Event Trigger Framework 47

and kernel configuration of the SUT is needed. It would be necessary to automatically
collect the correct kernel information from the SUT to cross-compile the module. This
was not within the scope of this thesis and the module needs to be build on the SUT to
work correctly. A Makefile is supplied with the module. If it is not build on the SUT, then
the kernel might refuse loading the module, panic and halt the system or crash without
warning.

5.5.4. Chauffeur Worklet

A Chauffeur worklet is provided together with PET. The class PetTransaction, ex-
tending Transaction, contains all functionality. It has a static initializer block to en-
sure the native library is loaded before any instance is constructed. The overloaded
init(IntervalContext) method provides the process number in form of the client identi-
fier and forwards the call to the native functions. The process(PetUser, Integer) and
cleanup() methods are forwarding the calls to the native functions as well without pro-
viding any parameters. Occurring errors during any of the three aforementioned methods
are logged.

As no parameters have to be generated for a transaction, the PetUserFactory and PetUser

are extending the Chauffeur base classes AbstractUserFactory and AbstractUser. They
do not provide extended functionality. The PetSuite class is extending the Chauffeur
class BasicSuiteDescription without functionality.

The interface IPetConstants provides the library path and name. The constants are used
in PetTransaction to avoid cluttering the source code with string literals.

47

6. Testbed Setup

Two testbeds are used for this thesis. A reference testbed for measuring the VNF workload
with the traffic generator and a second simplified testbed for evaluation measurements and
the local workloads, Pi, XMLValidate and SSJ. This chapter describes both testbeds and
their hardware configuration. The calibration for the VNF workload is also presented here.
Calibration runs for the proposed framework and local workloads is done automatically
with Chauffeur.

6.1. Reference Testbed and Calibration

The VNF reference workload needs a traffic generator to be stressed to certain load levels.
Therefore a more complex testbed setup is necessary. It is illustrated in Figure 6.1 and
consists of four machines.

The Controller System which runs the Controller, a self written script, calibrates the SUT
and runs it at the desired load levels and collecting measurement data. It is connected
to the Package Generator and Package Receiver, each running on a distinct system. The
CPU and memory setup for the Generator and Receiver machines can be found in Section
B.2. They report the number of malicious and valid packages generated / received during
each run. For the power measurements, the Controller is also connected to the SPEC
PTDaemon, which is collecting the power measurements from the power meter. The
PTDaemon is running on the Controller System. The SUT is connected to the Controller
as well and reports network statistics of received and send packets before and after each
measurement phase. Performance counters are also measured on the SUT and reported
back to the Controller. All control communication between the machines is transmitted
via Transmission Control Protocol (TCP). The Package Generator is not only connected
to the Controller but also to the SUT via a 1GBit/s ethernet connection which carries
the payload the DPI has to inspect. If a package is not dropped, it is forwarded to the
Package Receiver through a second 1GBit/s connection.

The Generator uses 16 threads for package generation to stress the SUT’s 8 logical cores
uniformly, with two sender threads per logical core on the SUT. On the SUT, each package
is handed over to a specific firewall process depending on the source Internet Protocol (IP)
address. As the modification of the source address is not possible within Java and all sent
packages would have the same source, netfilter rules are applied on the Load Generator
that changes the source depending on the destination port number shown in Listing 6.1.

49

50 6. Testbed Setup

Control System

Load Generator

SUT

Package Generator

VNF Workload
Controller

SPEC PTDaemon Power Meter

Sender Threads

0 1 2 ... 13 14 15

DPI Firewall processes

0 1 2 3 4 5 6 7

Receiver

Package Receiver

Receiver Threads

0 1 2 ... 13 14 15

Perf. Counter

Figure 6.1.: Setup of the reference testbed

The PORT and IP variables are replaced accordingly. The rule is added to the NAT table
to be able to change the source address after the package is routed to the receiver with
the address 172.16.3.102.

1 iptables -t nat

2 -A POSTROUTING

3 -d 172.16.3.102

4 -p udp

5 --destination-port ${PORT}

6 -j SNAT

7 --to-source 172.16.3.${IP}

Listing 6.1.: Netfilter rule for the Load Generator

The incoming packages need to be directed to the correct DPI processes running in the
user space. As before, netfilter rules are applied that redirect the packages. The rule
creation is shown in Listing 6.2. The rule states that all UDP packages with the specified
source address (-s) and destination 172.16.3.102 are handed over to the NFQUEUE chain
with a specific number (COUNT) ranging from 0 to 7, corresponding to a DPI process. The
IP variable is identical on both the Load Generator and the SUT.

To distribute the load between all CPUs uniformly, each of the NIC’s four RX interrupts
is pinned to a physical core. As the receiver uses more, but less powerful cores, interrupts
are also pinned to multiple physical cores on the receiver to avoid package drop between
him and the SUT in case a single core cannot handle all arriving packages. The Package
Receiver uses 16 threads, one for each possible source address.

50

6.1. Reference Testbed and Calibration 51

1 iptables -A FORWARD

2 -p udp

3 -s 172.16.3.${IP}

4 -d 172.16.3.102

5 -j NFQUEUE

6 --queue-num ${COUNT}

Listing 6.2.: Netfilter rule for the SUT

Calibration

After the testbed is setup several measurements with a mean send interval ranging from
0 to 18 000 ns per generator thread are taken to validate that the testbed is working. The
results are shown in Figure 6.2. It can be seen that the implemented traffic generator is
able to saturate the network connection. The packages generated in total are increasing
while the TX queue stays constant at around 9000 ns. At the same time the send buffer
errors rise with an identical rate as the generated packages, indicating that the NIC is
under maximum load.

Despite testing with different queue lengths and settings for Generic Segmentation Offload
(GSO) (hardware offloading is not supported on the SUT), there is a gap between the Load
Generator TX and Receiver RX package counts for low mean send intervals. This package
drop must occur on the SUT, as RX and TX queue values for the SUT are identical to Load
Generator TX and Receiver RX respectively. It is also not reflected in the package drop
counters of the NIC, but it will influence the Valid Packages Received used for calibration
and is therefore calibrated out.

Calibrating the DPI firewall is performed via a binary search with a maximum of 20 steps.
The maximum allowed package drop between the Valid Packages Generated and Valid
Packages Received was set to 0.5%. Three calibration runs were performed and resulted
in an average send interval of 13 717 ns per thread as shown in Figure 6.2.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000 12,000 13,000 14,000 15,000 16,000 17,000 18,000
0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

350,000,000
Calibration
Generated in total
Valid Packages Generated
Valid Packages Received
Load Generator TX
Receiver RX
Load Generator Send Buffer Error
Receiver Buffer Error

Mean Send Interval / ns

P
ac

ka
ge

s

Figure 6.2.: Calibrating the reference DPI firewall

51

52 6. Testbed Setup

6.2. Chauffeur Testbed

Simplifying the testbed to be able to use Chauffeur, generally the same setup as shown
in Section 2.2.2 is used with added measurements for the performance counters. It only
consists of two physical machines as shown in Figure 6.3, the Control System and the
SUT. The Control System is running the SPEC PTDaemon collecting power measure-
ments and the Chauffeur Controller itself, which governs the SUT. The SUT reports back
the measurement results and performance counters. It runs the Chauffeur Host, which
communicates via TCP to the client processes executing transactions and IntelPCM for
the counter values, described in Section 2.3. Each client is pinned to a single CPU core.
The parameters for the simulated annealing library are shown in Listing 6.3. If it is used,
the optimization will take place before every measurement during the initialization.

Control System SUT

Chauffeur Host
Controller

SPEC PTDaemon Power Meter

Client processes

0 1 2 3 4 5 6 7

Perf. Counter

Figure 6.3.: Setup of the simplified testbed

1 static gsl_siman_params_t siman_config = {

2 200, // Number of points to try before stepping

3 1000, // Iterations before T is decreased

4 2.0, // Maximum step size

5 1.0, // Boltzman constant tk

6 0.008, // Initial temperature

7 1.003, // Temperature dampening factor

8 2.0e-6 // Minimum temperature

9 };

Listing 6.3.: Simulated annealing configuration of the GSL library

52

7. Evaluation

The externally driven workload, is measured with power consumption and performance
counters. Afterwards the framework is configured to approximate the NFV workload and
measured on a simplified testbed with identical load levels. It is evaluated if the framework
can approximate externally driven workloads and how accurate the approximation is. This
is important as externally driven workloads can stress hardware that would otherwise
remain unused for local workloads. The measurement results for the approximation is
compared to the local approximation measurements to identify if hardware used only by
externally driven workloads has an influence on power consumption and to which degree.
To further validate the approximation, a regression model is build and its prediction is
compared to the measured approximation results.

7.1. Performance Counter Implementation

To model workloads on the basis of performance counters, it is necessary to reliable trigger
events associated with the counters used in this thesis, different possible implementations
are tested and measured to determine the most viable solution for the event triggers. The
evaluation for the event triggers is described in the following sections. The side effects for
each event are determined for inclusion in PET. The event trigger for L2 misses is omitted,
as generating L2 misses are implemented by producing L3 hits.

Evaluation of Implementation

The counters used include both hardware counters from IntelPCM (see Section 2.3) and
software counters managed by the OS. For measuring how well the implementation per-
forms, a measurement of 10 000 transactions is executed. The accuracy of events triggered
is described in the corresponding sections. Also possible side effects on other performance
counters are observed. They are evaluated and compared to the background noise by
calculating the average number of side effects generated per transaction with the runtime
and events generated in total.

The measurements for the performance counters are first run with one process. Followed
by measurements with four and eight processes, number of physical CPUs and virtual
CPUs of the SUT respectively, to test for their behavior in a multithreaded environment
and determine the optimal solution for triggering events. To avoid possible deviations of
events counted on a per core basis by changing the executing core for a process during
runtime, each process is pinned to a fixed CPU number.

53

54 7. Evaluation

It is necessary for some counters to access large arrays residing in main memory to work.
The following selected counter events are relying on this array to be generated.

• L3 cache misses

• L3 cache hits

• L2 cache misses

• L2 cache hits

• Bytes read from memory controller

• Bytes written to memory controller

Different memory sizes are measured for the aforementioned counters. As the memory is
limited, allocation is dependent on the number of processes executed. For each step the
memory size allocated by a single process is doubled from the last one measured, until the
upper bound is exceeded. Measurement always begins at 16MiB. For a single process,
memory sizes up to 2048MiB are deemed sufficiently large. For four and eight processes,
upper bounds of 1024MiB and 512MiB are set respectively, resulting in a total of 4GiB
allocated.

SUT Background Noise

The measurements are not the only applications executing on the SUT. The OS and
other background tasks still have to be processed on an idle system. These background
applications might deviate counter values as they trigger events on their own. To account
for background noise, a measurement of 120 s in an idle state is taken. The averaged values
can be found in Table A.1. If events are counted on a per core basis, all cores are summed.
The mean value is calculated for events counted on a per socket or system wide basis. For
the evaluation of measurements, background noise is not removed as the target values are
chosen to be high enough that the background applications are neglectable. The target
values are two to four orders of magnitude larger than the background noise, depending
on the performance counter.

7.1.1. L3 Cache Misses

Several different implementations and parameters for reliable triggering L3 cache misses
are implemented to determine the optimal solution. The implementations differ in the
instructions used to produce cache misses, which are SIMD intrinsics, C and ASM. Each
instruction set was tested with read, write and copy functionality. For all options, the
array is cycled through with a step size that is a multiple of the cache line size. The step
size is varied with 2, 4 and 6 times the cache line size. For each transaction, 100 L3 cache
misses should be generated.

To account for hardware prefetching used in modern CPUs, measurements that addition-
ally add a random number in the range of 0 to 64 to the step size are taken. This applies
only to virtual process and shared memory described below.

Another influence that is taken into consideration is the displacement of data already in the
cache level by other processes. This could trigger unwanted cache hits or misses. Therefore
the memory location in which the array is stored is measured with process owned virtual
memory space and memory shared by all processes. In the case of shared memory, all
processes are accessing the identical array. Also a third memory option is evaluated in the
form of memory set to UC- through a kernel module as described in Section 5.3. Only
one fixed array location is used for read or write operations and two if copy operations are
executed. The locations for UC- memory are fixed as the data should not be cached by
the processor and all read and write operations will appear on the system bus.

54

7.1. Performance Counter Implementation 55

Singlethreaded

The evaluation for a single process without randomness on process virtual memory is
shown in Figure 7.1. It can be seen that all implementations do not perform well and are
not reaching the target of 1 · 106 L3 cache misses. The write functions in particular do
generate almost no cache misses. One exception is the ASM read function that has only a
deviation of less than −3.5% for memory sizes larger than 512MiB with a step size of 6.

Measurement results if a random factor is used can be seen in Figure 7.2. In comparison
without a random factor, an overall improvement can be observed. For a small step size
of 2, all implementations fall short by a large margin. Increasing the step size to 4 and 6
improves the obtained results with −6.6% and −3.5% deviation for the ASM read function
and a memory size greater 512MiB. It can be seen that SIMD implementations do work
but deviate further from the target value than the C and ASM implementations. Adding
a random factor does not have an effect on write functions.

Using shared memory instead of virtual process memory did yield similar behavior for a
single process as shown in Figure C.1 and C.2. It shows an unexpected behavior for the
ASM copy function with step size 2, dropping sharply from 64MiB to 128MiB. As the
improvement is not sufficient and it exhibits an odd behavior for different memory sizes,
using the ASM copy function is refrained from.

Setting parts of memory as UC- did not result in the expected improvement. Instead the
opposite is the case. All implementations only produce a neglectable amount of L3 cache
misses as shown in Figure 7.3. With an average runtime of 14.67ms, the values are about
ten times above the mean background noise of 117.6 L3 misses per second and core (see
Table A.1). It can be deducted that a cache miss event is not triggered reliably, if the
cache is set to UC-. An assumption is that the implementation itself causes some cache
misses to be generated as overhead, but accessing UC- memory as intended is not counted
towards cache misses.

Multithreaded

The implementations with or without randomness exhibits similar behavior as single pro-
cess measurements for both, four and eight processes. Using a step size of 2 and 4 shows
some odd behavior in the ASM copy function, as well as the C and ASM read function for
eight processes (see Figure C.3 and C.8). These implementations do degrade with larger
memory allocated without random factor. Using a random factor yields analogous results
as single process measurements for process owned virtual memory as well as shared mem-
ory as shown in Figure C.4, C.6, C.9 and C.11. The kernel module providing uncachable
memory did not perform better in a multithreaded scenario as can be seen in Figure C.7
and C.12. Therefore using the kernel module for producing cache misses was not further
investigated.

As using shared memory is comparable to virtual process memory space and the imple-
mentation is requiring more complex system calls, it is also omitted in further cache miss
evaluations. It can also be concluded that a step size of 6 works best overall and the C and
ASM functions exhibit a higher accuracy than the SIMD function. The write functions
are neglected as they did not perform as expected and produced only a small number of
L3 cache misses. They will also inevitably introduce side effects on both, the bytes written
to and bytes read from memory controller counter. The write functions did not perform
better than the read implementation and are therefore not further investigated.

The ASM implementation does exhibit the most promising characteristics with and with-
out randomness. No randomness is selected as it does not improve the ASM implementa-
tion. A memory size of 512MiB is selected as a compromise between accuracy and memory
footprint.

55

56 7. Evaluation

16 32 64 128 256 512 1024 2048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(a) Step size 2

16 32 64 128 256 512 1024 2048
0

2

4

6

8

10

12

14

16

18
x 10

4

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(b) Step size 4

16 32 64 128 256 512 1024 2048
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(c) Step size 6

Figure 7.1.: L3 cache miss results for virtual process memory and no random factor

56

7.1. Performance Counter Implementation 57

16 32 64 128 256 512 1024 2048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(a) Step size 2

16 32 64 128 256 512 1024 2048
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(b) Step size 4

16 32 64 128 256 512 1024 2048
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(c) Step size 6

Figure 7.2.: L3 cache miss results for virtual process memory with random factor

57

58 7. Evaluation

SIMD ASM C
0

5

10

15

20

25

30

35

L3
 c

ac
he

 m
is

se
s

Read
Write
Copy

Figure 7.3.: L3 cache miss results for UC- memory with fixed array indices

Side Effects

The measurement results on other performance counters are shown in Table 7.1. While
most counters exhibit the expected behavior with rising side effects when multiple pro-
cesses are used, bytes read from memory controller is decreasing. It might be possible
that the read counter converges towards the cache line size as more processes use memory
bandwidth and speculative prefetches are decreasing. Yet the read counter decreases de-
spite not fully utilizing the available memory bandwidth of 34.1Gbyte s−1 [Int] with the
highest total read/write transfer rate of 6.65Gbyte s−1 for eight processes. All side effects,
except L2 cache hits for a single process, are above the background noise.

Processes
Performance counter 1 4 8

L3 cache hits 0.0016 0.0025 0.0043
L2 cache hits 0.0018 0.0053 0.0231
Bytes read from memory controller 195.3955 98.5811 85.5179
Bytes written to memory controller 3.2293 4.6702 21.1981
Instructions retired 129.0967 129.6483 131.0951
Interrupts 1.8 · 10−5 1.7 · 10−5 3.2 · 10−5

Context switches 17.3 · 10−5 13.9 · 10−5 22.0 · 10−5

Average runtime (ms) 44 61.75 119.63

Table 7.1.: Side effects of L3 cache misses per cache miss generated

7.1.2. L3 Cache Hits and L2 cache misses

L3 cache hits are produced identical to L2 cache misses. This section therefore covers both.
The cache hits are measured similar to L3 cache misses, except only a step size of 6 will
be evaluated. A step size of 6 is chosen as it was shown in section 7.1.1 to have the most
promising characteristics. Memory allocated is not evaluated for different allocation sizes
as L3 hits are generated through a small subarray that fits inside L3 but not L2 cache.
Therefore measurement results from 512MiB are presented in accordance with the results
shown in Section 7.1.1. The kernel module does not need to be measured as caching must
not be disabled to generate cache hits. For each transaction, 100 cache hits should be
generated, totaling 1 · 106.

58

7.1. Performance Counter Implementation 59

Singlethreaded

The results for a single process with memory allocated from virtual process memory is
presented in Table 7.2. Not applying a random factor while stepping through the array
leads to fewer cache hits than targeted by a large margin. Using shared memory instead
of virtual process memory does not show an overall improvement for all implementations.
It can also be observed that the ASM and C functions perform better than SIMD. Results
for the ASM copy function and the C read function are the most promising. As with L3
cache misses, it is refrained from using the copy implementation due to possible side effects
that could increase both, the read and written byte counters without major improvements
in accuracy.

Virtual memory Shared memory
Implementation No random Random No random Random

SIMD Read 165 031 923 975 204 095 921 490
Write 932 1420 882 1501
Copy 193 001 922 185 215 001 922 891

ASM Read 204 282 966 181 215 075 967 565
Write 914 1489 1273 1408
Copy 222 718 979 248 217 607 965 657

C Read 213 862 971 336 215 489 966 999
Write 778 1421 960 1475
Copy 259 416 968 232 265 018 966 856

Table 7.2.: L3 cache hit results for a single process

Multithreaded

Table 7.3 shows the results for four processes with a target value of 4 · 106 byte. With a
deviation of −11.5%, the C read function performs best on virtual process memory. The
ASM and SIMD functions deviating further from the target value. Using shared memory
yields no improvement over process memory.

Virtual memory Shared memory
Implementation No random Random No random Random

SIMD Read 443 037 3 391 786 1 193 440 3 110 869
Write 6984 6088 8529 17 300
Copy 1 328 717 2 218 435 872 237 3 305 744

ASM Read 1 225 584 3 408 932 272 529 3 224 223
Write 12 381 4740 10 786 14 939
Copy 1 459 860 3 155 795 753 391 3 433 311

C Read 743 568 3 537 446 727 382 3 279 071
Write 8872 13 675 9379 9920
Copy 1 358 422 2 701 179 2 120 709 3 354 666

Table 7.3.: L3 cache hit results for four processes

Results for eight processes are presented in Table 7.4. It shows major discrepancies com-
pared to one and four processes. While the step from one to four processes scales reasonably

59

60 7. Evaluation

well, increasing the process count above the number of physical cores does not. A possi-
ble reason might be the L2 cache that must be shared between two processes for SMT.
Exceptions are the SIMD read function on virtual memory and the ASM read function
on shared memory. As the SIMD functions did not perform as well before, it is unrea-
sonable to use this implementation for just eight processes. The C read shows the most
deterministic behavior overall that scales with the process count up to the physical core
count. While the ASM function performs well on shared memory on eight processes, due
to the implementation using the same memory for L3 cache misses and hits, virtual process
memory should be used for L3 hits as well. Allocating shared memory for L3 cache hits
would make it necessary to produce L3 misses until the shared memory has replaced the
virtual process memory used for L3 misses decreasing the accuracy. Therefore the C read
function on virtual process memory is selected.

Virtual memory Shared memory
Implementation No random Random No random Random

SIMD Read 2 284 193 5 253 885 1 369 922 2 806 889
Write 22 623 31 034 25 669 33 562
Copy 1 579 026 3 738 683 1 293 117 4 273 203

ASM Read 1 747 484 4 047 238 1 317 336 6 243 432
Write 26 052 34 182 30 485 30 371
Copy 2 478 220 4 343 272 1 418 783 3 881 193

C Read 1 516 549 4 199 528 1 495 260 4 320 079
Write 26 676 28 181 21 899 30 297
Copy 1 556 921 4 320 763 1 973 445 3 612 386

Table 7.4.: L3 cache hit results for eight processes

Side Effects

The side effects on other performance counters are small but not neglectable as all side
effects are above the background noise. Some odd behavior for the read can be observed
while triggering this counter when using more than one process. While the value is low
for a single process, the increase is large when multiple processes are executing L3 cache
hits. Yet it does not increase when the process count is increased from four to eight. The
L3 cache misses also exhibit a non-monotone behavior.

Processes
Performance counter 1 4 8

L3 cache misses 0.0026 0.0542 0.0389
L2 cache hits 0.0093 0.0120 0.0272
Bytes read from memory controller 0.5995 49.6423 38.4774
Bytes written to memory controller 0.4137 1.8019 10.4447
Instructions retired 74.2021 75.1916 75.7607
Interrupts 0.000 01 0.000 07 0.000 25
Context switches 0.000 17 0.000 56 0.000 71

Average runtime (ms) 13 46.75 97.75

Table 7.5.: Side effects of L3 cache hits per cache hit generated

60

7.1. Performance Counter Implementation 61

7.1.3. L2 Cache Hits

L2 cache hits are measured with identical options as L3 cache misses in Section 7.1.1.
Instead of traversing an array step-wise, fixed memory locations are used. This should keep
the cache lines containing the addresses in cache and produce L2 hits. As the locations are
fixed, no random factor needs to be considered. Also step size variations are not measured.
The kernel module is not used as caching must be active to be able to hit the L2 cache.
A target value of 1 · 106 L2 cache hits is set, with each transaction performing 100 hits.

Singlethreaded

The result for a single process generating L2 cache hits for virtual process memory are
illustrated in Table 7.6. It can be seen that neither of the implementations is generating
enough cache hits to reach the target value. The same applies when shared memory is
used.

Implementation Virt. memory Shared memory

SIMD Read 1601 1396
Write 1557 1535
Copy 1623 1606

ASM Read 1392 1395
Write 1512 1472
Copy 1410 1394

C Read 1502 1421
Write 1378 1393
Copy 1372 1506

Table 7.6.: L2 cache hit results for a single process

Multithreaded

L2 cache hits do not fare better in a multi process scenario. Table 7.7 shows that the
L2 cache hits do increase. Yet they are still unable to reach the target values. It must
therefore concluded that the technique and implementation of triggering L2 cache hit
events is insufficient. The side effects are not evaluated as triggering does not work and
this event triggering implementation should not be used.

7.1.4. Bytes Read from Memory Controller

This performance counter sums up bytes that have been read from main memory. Trig-
gering this performance event is similar to that producing L3 cache misses as accessing
main memory must miss all cache levels before. The test procedure is therefore identical
to that described in Section 7.1.1 with the following two exceptions.

As shown for L3 cache misses, a step size of 6 performs best in triggering cache misses.
Therefore other step sizes have not been examined. Only the read implementations are
measured as a second change because copying could introduce major side effects. Writing
on the other hand is assumed would not trigger the counter and is therefore also omitted.
The implementations for the read function used are also identical to the ones described in
Section 7.1.1.

61

62 7. Evaluation

4 Processes 8 Processes
Implementation Virt. memory Shared memory Virt. memory Shared memory

SIMD Read 9467 8858 29 053 33 305
Write 9965 10 398 33 351 32 110
Copy 9093 10 385 35 694 28 268

ASM Read 9493 9816 33 219 35 201
Write 9648 9305 29 659 31 961
Copy 9910 9061 32 164 31 329

C Read 10 364 10 594 30 302 32 038
Write 9110 7973 29 145 33 162
Copy 9899 9487 27 992 32 317

Table 7.7.: L2 cache hit results for four and eight processes

Singlethreaded

First measurements for a single process are taken. While 100 byte are requested to be read
for each of the 10 000 transactions, resulting in theoretical 1 · 106 byte in total. While a
single byte will cause an entire cache line to be fetched, a target value of 64 · 106 byte is
expected. Yet Figure 7.4 shows that each transaction generates between 13 350 byte to
14 285 byte of data read for the smallest memory size with even higher values for larger
memory sizes. The overcounting decreases for larger memory sizes of 512MiB and above
for implementations without a random factor. The same behavior can be observed when
using shared memory as shown in Figure C.15, which is due to the fact that only one process
is generating read events. The results still show a more than two time overcounting on all
implementations and memory sizes.

16 32 64 128 256 512 1024 2048
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3
x 10

8

Memory allocated / Mbyte

B
yt

es
 r

ea
d

fr
om

 m
em

or
y

co
nt

ro
lle

r

SIMD / random
ASM / random
C / random
SIMD
ASM
C

Figure 7.4.: Bytes read results for single process with virtual process memory

If the kernel module with uncachable memory is used, overcounting can be reduced to
a minimum. While the module could not increase the accuracy in reliably triggering L3
cache misses, using it to minimize over-provisioning in read counters has proven effective,
as Table 7.8 shows.

62

7.1. Performance Counter Implementation 63

Implementation Target Bytes read Deviation

SIMD 64 · 106 64 002 560 0.004%
ASM 64 · 106 64 038 080 0.060%
C 64 · 106 64 025 024 0.039%

Table 7.8.: Bytes read results for single process with uncachable memory

Multithreaded

The results for multiple processes are shown in Figure 7.5. The deviations are ranging
from 174% to 331% with four, and 141% to 288% with eight processes for target values
of 256 · 106 byte and 512 · 106 byte respectively. Also large fluctuations across memory sizes
and implementations make these counters less suitable if more than one process is running
in parallel using virtual process memory. Using shared memory does not bring an overall
improvement and is still largely overcounting as shown in Figure C.16.

16 32 64 128 256 512 1024
1

2

3

4

5

6

7

8

9

10
x 10

8

Memory allocated / Mbyte

B
yt

es
 r

ea
d

fr
om

 m
em

or
y

co
nt

ro
lle

r

SIMD / random
ASM / random
C / random
SIMD
ASM
C

(a) 4 processes

16 32 64 128 256 512

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

9

Memory allocated / Mbyte

B
yt

es
 r

ea
d

fr
om

 m
em

or
y

co
nt

ro
lle

r

SIMD / random
ASM / random
C / random
SIMD
ASM
C

(b) 8 processes

Figure 7.5.: Bytes read results for four and eight processes with virtual process memory

Using the kernel module for multiple processes improves the results as shown in Table 7.9.
Especially in the case of four processes, using the ASM read function comes close to the
target value with a small deviation. With eight processes, deviations are larger with over

63

64 7. Evaluation

−30% across all implementations.

Processes Implementation Target Bytes read Deviation

4 SIMD 256 · 106 242.41 · 106 −5.31%
ASM 256 · 106 255.98 · 106 −0.01%
C 256 · 106 191.16 · 106 −25.33%

8 SIMD 512 · 106 326.43 · 106 −36.24%
ASM 512 · 106 343.67 · 106 −32.88%
C 512 · 106 347.82 · 106 −32.07%

Table 7.9.: Bytes read results for four processes with uncachable memory

A simple correction factor for eight processes was tested. The results are shown in Table
7.10. Despite purposely choosing a lower value of 1.3 instead of 1.5, which is the average
of all implementations, an overcounting can be observed. Yet the results show a lower
deviation as before. It is questionable if the simple factor is sufficient as a high deviation
only occurs for a CPU count that is above the number of physical CPUs. It is therefore
specific to the SUT and a different approach might be more promising.

Implementation Target Bytes read Deviation

SIMD 512 · 106 572.75 · 106 11.87%
ASM 512 · 106 561.53 · 106 9.67%
C 512 · 106 557.23 · 106 8.83%

Table 7.10.: Bytes read results for eight processes with correction factor and uncachable
memory

Reliable triggering read counters for a higher CPU count might not be feasible as the
results for eight processes show. Still the ASM read function performs similar to the C
function in this case and works well on lower process counts. The ASM read function in
combination with the kernel module is determined to be the optimal solution to trigger
the performance counter for bytes read from memory controller. The correction factor is
not used as it is now overcounting on all implementations and the resulting framework
should be agnostic to the amount of processes and the machine it is running on.

Side Effects

The side effects using the read event trigger show reasonable values for one and four
processes in Table 7.11 and are all above the background noise. A small number of cache
hits and misses are expected because it is both shared cache for instructions and data.
Stepping from one to four processes yields only a smaller increases with the exception
on the L3 cache misses, which increase significantly. Using eight processes a different
characteristic is observed with a four to five times increase on the L3 and L2 cache counters
and context switches. The bytes written counter especially is several orders of magnitude
larger than for one and four processes. This strong incline in counted events, especially
bytes written could be the reason for the implementation not performing well with higher
process counts. Yet the underlying problem could not be determined within the scope of
this thesis.

64

7.1. Performance Counter Implementation 65

Processes
Performance counter 1 4 8

L3 cache misses 2.7 · 10−5 9.3 · 10−5 42.5 · 10−5

L3 cache hits 7.180 · 10−4 8.898 · 10−4 36.074 · 10−4

L2 cache hits 1.551 · 10−3 2.703 · 10−3 8.417 · 10−3

Bytes written to memory controller 0.0135 0.002 46 13.589
Instructions retired 22.014 22.163 24.078
Interrupts 2.7 · 10−5 2.6 · 10−5 3.1 · 10−5

Context switches 1.74 · 10−4 1.58 · 10−4 8.51 · 10−4

Average runtime (ms) 61 65.25 144.88

Table 7.11.: Side effects of bytes read from memory controller per event generated

7.1.5. Bytes Written to Memory Controller

This performance counter sums up the bytes written to the memory controller. The same
test procedure is used as described for read bytes to memory controller in Section 7.1.4.
The amount of bytes written per transaction is 100 byte totaling to 1 · 106 byte. As the
caching mechanism will write complete cache lines instead of single values as WB (see
Section 5.3) is set, a target value of 64 · 106 byte is expected to be measured.

Only write operations together with a step size of 6 are used to minimize side effects due
to expected read operations when copying. Other step sizes are not evaluated as it has
been shown in Section 7.1.1 that a size of 6 is optimal.

Singlethreaded

The results for a single process are presented in Figure 7.6 for virtual process memory.
The implementation works well for memory sizes of 512MiB and larger. With deviations
with randomness ranging from 0.01% to −0.03% for the SIMD and ASM implementation
respectively. Without random factor, deviations range from −0.03% for SIMD to −0.01%
for ASM. For a memory size of 16MiB not using a random factor is not optimal. Adding
a random factor improves the results but still a large discrepancy can be observed. Using
shared memory exhibits similar characteristics as can be seen in Figure C.17.

16 32 64 128 256 512 1024 2048
1

2

3

4

5

6

7
x 10

7

Memory allocated / Mbyte

B
yt

es
 w

rit
te

n
to

 m
em

or
y

co
nt

ro
lle

r

SIMD / random
ASM / random
C / random
SIMD
ASM
C

Figure 7.6.: Bytes written results for single process with virtual process memory

Using the kernel module as shown in Table 7.12 is expected to work well as observed before
in Section 7.1.4 for the read bytes counter, but instead less than half the target value of

65

66 7. Evaluation

bytes are written to memory. Therefore another measurement was taken doubling the
target value internally to achieve the correct counter values. The SIMD implementation
does largely overcount and is therefore not usable combined with uncachable memory. C
and ASM behave similar and come closer to the target value. The deviation though is still
greater than with virtual process or shared memory.

Bytes read Deviation
Impl. Target without factor with factor without factor with factor

SIMD 64 · 106 30.56 · 106 91.01 · 106 −52.25% 42.40%
ASM 64 · 106 30.59 · 106 61.16 · 106 −52.20% −4.44%
C 64 · 106 30.58 · 106 61.16 · 106 −52.22% −4.44%

Table 7.12.: Bytes written results for single process with uncachable memory

Multithreaded

The results for virtual process memory are shown in Figure 7.7. The implementations
do not work well in a multi process environment. Only the SIMD implementation with-
out randomness and four processes coming close to the target value for a memory size
of 512MiB. Yet for other memory sizes it is the least accurate implementation. This
suggests that it might be an outlier. Using shared memory brings no improvement as the
results in Figure C.18 show. Only the fluctuations using a memory size of 16MiB are less
pronounced.

The kernel module performs worse if multiple processes are executed in parallel as shown
in Table 7.13 and 7.14. While the C implementation seems to improve slightly if no
correction factor is used, it is still too far off from the target value to be usable. The ASM
implementation does only deteriorate by a small margin if four processes are used while
the SIMD implementation seems to be the least viable option across all process counts. If
the correction factor is applied on multiple processes, all implementations overcount by a
large margin. This renders the kernel module unusable for the bytes written performance
counter.

Bytes read Deviation
Impl. Target without factor with factor without factor with factor

SIMD 256 · 106 94.28 · 106 964.36 · 106 −63.17% 376.70%
ASM 256 · 106 118.00 · 106 766.23 · 106 −53.91% 299.31%
C 256 · 106 134.20 · 106 831.98 · 106 −47.58% 324.99%

Table 7.13.: Bytes written results for four processes with uncachable memory

Bytes read Deviation
Impl. Target without factor with factor without factor with factor

SIMD 512 · 106 135.65 · 106 2.79 · 109 −73.51% 544.92%
ASM 512 · 106 140.74 · 106 2.46 · 109 −72.51% 480.47%
C 512 · 106 195.28 · 106 2.44 · 109 −61.86% 476.56%

Table 7.14.: Bytes written results for eight processes with uncachable memory

66

7.1. Performance Counter Implementation 67

16 32 64 128 256 512 1024
0

0.5

1

1.5

2

2.5

3

3.5

x 10
8

Memory allocated / Mbyte

B
yt

es
 w

rit
te

n
to

 m
em

or
y

co
nt

ro
lle

r

SIMD / random
ASM / random
C / random
SIMD
ASM
C

(a) 4 processes

16 32 64 128 256 512
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

8

Memory allocated / Mbyte

B
yt

es
 w

rit
te

n
to

 m
em

or
y

co
nt

ro
lle

r

SIMD / random
ASM / random
C / random
SIMD
ASM
C

(b) 8 processes

Figure 7.7.: Bytes written results for four and eight processes with virtual process memory

67

68 7. Evaluation

As the results show, triggering the bytes written performance counter is struggling to
achieve a counter value approximate to the target in multithreaded environments. Still
the ASM implementation without randomness is selected as the most viable solution but
care must be taken when this event trigger is used.

Side Effects

The side effects are presented in Table 7.15. All counters do exceed the background noise
of the SUT. The L3 cache misses and L2 cache hits do exhibit fluctuations over different
process counts. The large values for the read counter are not expected and show a decrease
with rising process count. Using the bytes written counter in conjunction with bytes read
would therefore need large corrections on the read counter. Interrupts increase if multiple
processes are used but seem otherwise not affected by increasing the process count above
the physical number of CPUs. The context switch counter on the other hand increases
consistently with process count. Together with the negative outcome for multiple processes
and large effects on the bytes read, this event trigger should be used with care.

Processes
Performance counter 1 4 8

L3 cache misses 0.43 · 10−4 12.37 · 10−4 8.06 · 10−4

L3 cache hits 1.18 · 10−3 3.21 · 10−3 4.03 · 10−3

L2 cache hits 1.66 · 10−3 14.46 · 10−3 11.94 · 10−3

Bytes read from memory controller 192.11 122.25 65.09
Instructions retired 129.09 129.93 130.58
Interrupts 1.3 · 10−5 2.04 · 10−5 1.91 · 10−5

Context switches 1.71 · 10−4 9.34 · 10−4 18.58 · 10−4

Average runtime (ms) 22 75.25 66.25

Table 7.15.: Side effects of bytes written to memory controller per event generated

7.1.6. Instructions Retired

The results of the instruction count trigger can be seen in Table 7.16. For each of the
10 000 transactions per process, 1 · 106 instructions had to be retired. The implementation
for retired instructions works well with reasonable deviations below 1%. An increase in
overcount for multiple processes is expected and can be observed in the measurement
results. As the overcount accumulates faster than the number of cores, a 10 times increase
for an 8 times higher target value, it can be reasoned that this should be corrected for very
high numbers of CPUs in a SUT to further improve the event trigger.

Processes Target Result Deviation

1 10 · 109 10.005 · 109 0.05%
4 40 · 109 40.121 · 109 0.30%
8 80 · 109 80.414 · 109 0.52%

Table 7.16.: Retired instructions measurement results

As shown, triggering the retired instruction counter works well on its own. Yet modeling
a workload will make use of other performance counters as well. This will inevitably
introduce an overcount of instructions retired if it is not corrected for.

68

7.1. Performance Counter Implementation 69

Side Effects

The side effects are presented in Table 7.17. For a single process, all cache hit / miss
counter stay below the system background noise. Yet the amount of side effects increases
for these counters when multiple processes are executing. If four processes are executed,
the L3 cache hits climb above the background noise. In case of eight processes, only the L2
cache misses stay below. Bytes read and written, together with the system wide counters
context switches and interrupts are above the baseline for all number of processes executed.

Processes
Performance counter 1 4 8

L3 cache misses 0.14 · 10−7 0.49 · 10−7 1.03 · 10−7

L3 cache hits 2.05 · 10−7 5.29 · 10−7 6.20 · 10−7

L2 cache hits 5.05 · 10−7 5.47 · 10−7 11.18 · 10−7

Bytes read from memory controller 1.67 · 10−5 11.97 · 10−5 20.09 · 10−5

Bytes written to memory controller 0.99 · 10−5 31.26 · 10−5 55.71 · 10−5

Interrupts 2.96 · 10−8 4.90 · 10−8 5.24 · 10−8

Context switches 7.75 · 10−8 9.13 · 10−8 11.63 · 10−8

Average runtime (ms) 2811 2953.25 3992.63

Table 7.17.: Side effects of instructions retired counter per event triggered

7.1.7. Context Switches

Context switches can only be measured on a system wide basis. If several workloads are
running in parallel, the average of the context switches for each measurement is taken
because it could not be guaranteed that all workloads finish at the exact same time and
all processes reading the counter are accessing the same value. To test if the factor of two
is correct, a second measurement without the correction factor is executed for comparison.

The results for 10 000 transactions with 10 context switches each is shown in Table 7.18.
It exhibits that the correction factor of two, described in Section 5.4, was wrongfully
assumed with a deviation of nearly −30% for single process and even higher for four and
eight processes. A deviation of around 20% could be measured without the correction
factor. Therefore the factor is removed from the implementation for context switches.

Result Deviation
Processes Context switches with factor without factor with factor without factor

1 100 000 70 350.0 120 641.0 −29.7% 20.6%
4 400 000 271 682.5 481 323.8 −32.1% 20.3%
8 800 000 470 264.6 940 653.3 −41.2% 17.6%

Table 7.18.: Context switches measurement results

As the results without doubling the event trigger count are about 20%, it is tested if a
factor of 0.8 can correct for overcounting of context switches. A third measurement is
taken and presented in Table 7.19. The results show that it works well with one and four
processes. With eight processes, a slightly higher deviation can be observed but is still
performing better as before. Therefore the correction factor of 0.8 is used in the framework
to achieve a higher accuracy when generating context switches.

69

70 7. Evaluation

Processes Context switches Result Deviation

1 100 000 100 588.0 0.6%
4 400 000 400 688.5 0.2%
8 800 000 757 056.0 −5.4%

Table 7.19.: Context switches measurement results with correction for overcounting

Side Effects

Triggering a context switch is bound to have major side effects on other performance
counters. Table 7.20 shows other implemented counter values as context switches are
performed. L3 and L2 cache hits stay relatively close for one and four processes and
only increase when eight processes are used. The L3 cache misses on the other hand,
already have an increase when stepping from one to four processes but with relatively low
values compared to cache hits. Despite expecting constant values for all process counts,
bytes read increases significantly when multiple processes are executed. The bytes written
counter exhibits a similar but less pronounced behavior. The memory access could be due
to storing and loading the context information from main memory. The interrupt counter
shows a fluctuating behavior for different process counts. All side effects are above the
background noise in all three cases.

Processes
Performance counter 1 4 8

L3 cache misses 6.67 9.88 10.41
L3 cache hits 45.89 48.90 73.68
L2 cache hits 184.60 164.45 262.78
Bytes read from memory controller 5262.89 7177.48 7604.78
Bytes written to memory controller 4270.92 4624.21 4732.31
Instructions retired 23 742.65 23 572.34 23 620.37
Interrupts 4.46 · 10−3 2.75 · 10−3 10.52 · 10−3

Average runtime (ms) 559 705.50 1004.63

Table 7.20.: Side effects of context switches per event generated

7.1.8. Interrupts

The evaluation of interrupts triggered uses 10 interrupts per transaction which should be
measured. The results in Table 7.21 show that the interrupt implementation performs well
with only minor deviations from the target value. The minor decline in achieved interrupts
for increasing number of processes should be further investigated in the future to be able
to improve the implementation. As triggering interrupts has one of the longest runtimes,
the decrease could be related to the relatively long time to program the APIC.

Side Effects

Table 7.22 shows the side effects of triggering hardware interrupts. Similar to context
switches (see Section 7.1.7), interrupts also introduce major side effects. This is due to
the fact that interrupts do cause two context switches per event. All side effects exceed
the background noise. The cache hits and misses are increasing with a rising process
count. This is contrary to the expectation of staying constant within reasonable deviations.

70

7.2. Performance Event Trigger Framework 71

Processes Interrupts Result Deviation

1 100 000 100 276.0 0.3%
4 400 000 400 946.0 0.2%
8 800 000 798 682.3 −0.2%

Table 7.21.: Interrupt measurement results

Compared to a single process, the bytes read counter increases by over 50% if four processes
are used. The write counter on the other hand, does not increase if four processes are used.
Yet this changes drastically when eight processes are executing and a major increase in
the bytes read and written can be observed. This implementation should be used with
care if more processes produce interrupts than the CPU has physical cores. As the side
effects on context switches shows a constant behavior, this implementation might also be
used to trigger context switches in pairs with an interrupt as side effect.

Processes
Performance counter 1 4 8

L3 cache misses 0.064 0.142 0.341
L3 cache hits 0.224 0.410 4.637
L2 cache hits 8.646 11.219 41.690
Bytes read from memory controller 50.64 79.82 265.37
Bytes written to memory controller 26.45 23.61 119.38
Instructions retired 15 258.97 15 320.79 15 385.13
Context switches 2.00 2.00 2.01

Average runtime (ms) 6487 6453.50 6528.38

Table 7.22.: Side effects of interrupts per event triggered

7.2. Performance Event Trigger Framework

This section describes the evaluation of the Performance Event Trigger Framework (PET)
in terms of feasibility and accuracy. First the local reference workloads Pi, XMLValidate
and SSJ are evaluated. Afterwards the NFV workload is evaluated. Reference measure-
ments are taken with 10 load levels, ranging from 10% to 100%. For each load level,
a pre-measurement, measurement and post-measurement time of 30 s, 120 s and 10 s is
used. All measurements with PET approximating the workloads are measured for three
composition mechanism, the naive method without side effects, the accumulation method
and simulated annealing described in Section 4.2.2. The measurements include the power
consumption, score and transaction count, recorded by Chauffeur and the performance
counters for L3 cache misses and hits, read and written bytes, instructions retired, context
switches and interrupts.

To further improve the implementation, measurements are taken, in which some perfor-
mance counters are not triggered. A performance counter is removed under the assumption
of a low or negative impact on the power consumption, if

• its measurement is overcounting by at least one order of magnitude, taking into
account the median over all load levels.

71

72 7. Evaluation

• its correlation of the reference measurement with the power consumption is below a
value of 0.9.

• its median reference value is below the background noise shown in Table A.1.

The measurement is considered invalid and not evaluated if a stable load level could not be
reached. A load level is stable if the score, transaction count divided by the measurement
phase’s runtime, does not deviate largely from the target score necessary for the load
level. All power measurement results include the 95% confidence interval. To determine
the best solution for the workload, the mean and maximum deviation and Coefficient of
Variation (CV) are compared. If no clear solution can be determined, the accuracy of the
performance counters are compared.

The side effects measured in Section 7.1 are rounded and transferred to the configuration
of PET. The configured factors are shown in Table D.2. All side effects are incorporated
to increase the accuracy because PET uses 8 processes for evaluation and all side effects
for the event triggers exceed the background noise.

As expected, PET achieves a good accuracy on focused workloads like Pi. The accuracy
decreases with the rising complexity of the workload but still has a reasonable accuracy for
the NFV workload. All workloads can be approximated with a mean deviation of less than
10%. Which of the three composition mechanisms should be selected and if performance
counters should be removed is dependent on the workload. The decision must therefore
be left to the user to obtain an accurate approximation.

7.2.1. Pi Workload

The Pi workload is CPU heavy and does not stress other hardware components. The
results of the power measurements are shown in Figure 7.8 and Table 7.23. The measure-
ments using no side effects and accumulation seem accurate on average, but the maximum
deviation is over 10%. The CV on the accumulation method is higher but it deviates less
from the target power consumption on average and at its peak. It also has an invalid load
level at 10%. As neither of the both measurements is clearly superior, a decision must
be reached considering the reduced configuration. Best results could be achieved at the
medium load levels as PET tends to underestimate the power consumption on higher load
levels and overestimation on lower load levels. Simulated annealing did not work as ex-
pected and misses the targeted power consumption by a large margin. It is monotonically
increasing over the load levels but at a slow rate, resulting in bad approximations.

Deviations from target
Measurement Mean Maximum CV

Naive 102.95% 114.96% 6.94%
Accumulation 98.07% 87.57% 7.24%
Simulated Annealing 57.95% 40.37% 28.26%

Table 7.23.: Pi workload mean and maximum deviation from the target and CV

To improve accuracy, it is considered removing performance counters from the configu-
ration fitting one of the three rules mentioned earlier. The correlations of the reference
performance counter values with power consumption are listed in Table 7.24. Also included
are the factor of the reference performance counters against the background noise and the
factor of PET measurements against the reference.

72

7.2. Performance Event Trigger Framework 73

100 90 80 70 60 50 40 30 20 10
20

30

40

50

60

70

80

90

Load Level / %

P
ow

er
 /

W
at

t

Reference
Naive
Accumulation
Simulated Annealing

Figure 7.8.: Pi workload power consumption

As can be seen, all performance counters, except instructions retired and context switches
can be removed from the configuration for all three implementations, to evaluate if the
overall accuracy of the framework can be improved.

Background Target value factor
Performance counter Correlation noise factor Without SE Accu. Sim.An.

L3 cache misses 0.9087 0.0310 454.5196 404.4826 518.5293
L3 cache hits 0.9096 0.0029 621.5461 532.2341 673.4158
Bytes read 0.9789 1.0789 348.9333 142.3288 175.9248
Bytes written 0.9870 2.2438 250.5546 166.9880 159.7027
Instructions retired 0.9886 3.4061 1.0826 1.0766 0.1542
Interrupts 0.2186 2.3188 0.6848 0.5958 6.3017
Context switches 0.9726 24.3096 0.6783 0.6337 1.3057

Table 7.24.: Pi workload performance counter results

The results of the reduced configuration are illustrated in Figure 7.9 and Table 7.25. They
show an overall improvement for all three measurements. The mean deviation from the
target with the naive approach is only better by a small margin while its CV shows a
noticeable decrease, together with the maximum deviation. Using side effects on the other
hand improves on mean and maximum deviation as well as CV. Simulated annealing is
considerably better using the reduced configuration with values in the same range as the
naive and accumulation measurements. As before, the accumulation and naive solution
are still the better options in a simple workload. The reduced solution with accumulated
side effects is determined as the best solution, as its average deviation is closest to the
target value with only marginally higher maximum deviation and CV.

It is shown that local workloads focusing on the CPU can be approximated well with
good accuracy and only minor deviations from the target value below 5%. If simulated
annealing is used, the deviation is still below 10% and therefore within a reasonable limit.

73

74 7. Evaluation

100 90 80 70 60 50 40 30 20 10
20

30

40

50

60

70

80

90

Load Level / %

P
ow

er
 /

W
at

t

Reference
Naive
Accumulation
Simulated Annealing

Figure 7.9.: Pi workload power consumption with reduced configuration

Deviations from target
Measurement Mean Maximum CV

Naive 98.68% 95.61% 1.79%
Accumulation 99.38% 95.49% 2.00%
Simulated Annealing 102.18% 109.36% 3.45%

Table 7.25.: Pi workload mean and maximum deviation from the target and CV with re-
duced configuration

74

7.2. Performance Event Trigger Framework 75

7.2.2. XMLValidate

The SERT workload XMLValidate not only stresses the CPU but also the memory. It
is therefore a good expansion on Chauffeur’s Pi workload to evaluate if the accuracy
demonstrated in Section 7.2.1 can be achieved on a more complex workload. The power
measurements with all performance counters is shown in Figure 7.10. Most load levels of
the naive measurement are marked as invalid. Simulated annealing also has five invalid
load levels. With only three valid load levels on the naive measurement, caution must be
taken not to over emphasize on the sparse data set available.

The lower load levels of the valid data reach the target value with minor deviations. At the
100% load level, the naive method is at its maximum deviation and it is therefore unlikely
that it could reach other load levels with reasonable accuracy. Accumulation works well
and reaches deviations and a CV comparable to the Pi workload. Simulated annealing
has the same problem already encountered in the Pi workload of not reaching the target
power consumption by a large margin.

100 90 80 70 60 50 40 30 20 10
20

30

40

50

60

70

80

90

100

Load Level / %

P
ow

er
 /

W
at

t

Reference
Naive
Accumulation
Simulated Annealing

Figure 7.10.: XMLValidate workload power consumption

Deviations from target
Measurement Mean Maximum CV

Naive 89.52% 61.07% 27.69%
Accumulation 95.68% 88.71% 5.04%
Simulated Annealing 47.43% 32.22% 26.81%

Table 7.26.: XMLValidate mean and maximum deviation from the target and CV

As with the Pi workload, performance counters are removed from the configuration to see
if the first results can be improved, based on Table 7.27. The L3 cache misses and hits,
bytes read and written and the instruction count are kept. They all have a high correlation,
are above the background noise and none of them is overcounting by a large margin.
The interrupts are removed from all configurations as it has a low correlation, yet higher
compared to the Pi workload. The context switches are used for the simulated annealing

75

76 7. Evaluation

and accumulation measurements. They are removed from measurements including side
effects due to a large overcount.

Background Target value factor
Performance counter Correlation noise factor Without SE With SE Sim.An.

L3 cache misses 0.9860 12.4535 0.0377 0.0145 0.8449
L3 cache hits 0.9852 1.2912 0.0622 0.0135 0.9668
Bytes read 0.9805 463.9503 1.8800 0.0488 0.3203
Bytes written 0.9829 865.1718 0.6841 0.0647 0.3417
Instructions retired 0.9829 5.8681 0.0694 0.6656 0.0840
Interrupts 0.4662 1.0403 0.4540 6.8549 16.0928
Context switches 0.9585 5.9283 0.0533 114.5332 5.6804

Table 7.27.: XMLValidate performance counter results

Reducing the performance counters does not yield the expected improvements. The naive
measurement has only two valid load levels. A possible reason is the low score of 8.896 and
a high client CV across all load levels (see Table E.3, E.4 and E.5). Using the accumulation
approach in the reduced measurement did not improve the approximation. In fact, it stayed
close to the measurement including all performance counters. As with the Pi workload,
simulated annealing works better with less performance event triggers to optimize. Yet it
is still off by over a quarter of the target power consumption.

100 90 80 70 60 50 40 30 20 10
20

30

40

50

60

70

80

90

100

Load Level / %

P
ow

er
 /

W
at

t

Reference
Naive
Accumulation
Simulated Annealing

Figure 7.11.: XMLValidate power consumption with reduced configuration

Using a more complex workload does not necessarily result in a higher deviation. The
accumulation measurement is in close proximity to the full configuration measurement
taken for the Pi workload with a mean deviation of below 5%. Yet reducing the amount
of performance counters did not yield better results. This is mainly due to the workload
stressing more hardware components which in turn leads to more performance triggers
necessary to approximate the power consumption. While high deviations can be observed
in the naive and simulated annealing measurement, it is reasoned that the behavior is due
to the low score and therefore transaction count. This could prohibit PET reaching a
stable throughput, which is necessary for the load level to be valid.

76

7.2. Performance Event Trigger Framework 77

Deviations from target
Measurement Mean Maximum CV

Naive 76.69% 60.52% 29.82%
Accumulation 95.64% 88.43% 5.40%
Simulated Annealing 81.15% 72.98% 8.61%

Table 7.28.: XMLValidate mean and maximum deviation from the target and CV with re-
duced configuration

7.2.3. SSJ

The SSJ is the most complex local workload, executing different transactions. The results
for SSJ are shown in Figure 7.12 and Table 7.29. Neglecting the side effects does not yield
good results. As with XMLValidate, most load levels are invalidated due to large deviations
in the score. The naive approach is therefore not suitable. To shorten the runtime of a
transaction, the configured event count could be reduced. Yet this would result in some
event trigger counts falling below one. As the current implementation of PET only supports
integer values, this is not applicable. Incorporating the side effects in the measurement
results in all load levels being valid. Yet it always exceeds the reference power consumption.
In this complex workload, most performance counter values are configured to zero as the
side effects when the accumulation method is used often outweigh the event trigger count
and no performance events are triggered at all. This will cause PET to end a transaction
quickly, stressing the CPU, the dominant power consumer, and subsequently results in
the observed overshot in power consumption. It also causes the counter values to be
significantly below one in four of the seven counter values, shown in Table 7.30. Simulated
annealing balances the side effects and configured parameters and can achieve a reasonable
approximation that is slightly above 5% on average with the maximum deviation staying
below 10%.

100 90 80 70 60 50 40 30 20 10
20

30

40

50

60

70

80

90

100

Load Level / %

P
ow

er
 /

W
at

t

Reference
Naive
Accumulation
Simulated Annealing

Figure 7.12.: SSJ workload power consumption

77

78 7. Evaluation

Deviations from target
Measurement Mean Maximum CV

Naive 112.35% 126.44% 19.37%
Accumulation 113.28% 127.61% 7.03%
Simulated Annealing 94.75% 90.65% 3.66%

Table 7.29.: SSJ mean and maximum deviation from the target and CV

For the reduced configuration, only the interrupts and context switches are a viable option
to remove, as they are below the background noise. All other performance counters have
a high correlation, are above the background noise and do not overcount by one order of
magnitude.

Background Target value factor
Performance counter Correlation noise factor Without SE With SE Sim.An.

L3 cache misses 0.9835 63.0325 0.0283 0.0905 0.8914
L3 cache hits 0.9752 6.5001 0.1186 0.1165 1.1638
Bytes read 0.9987 706.8520 1.0713 0.1638 0.9267
Bytes written 0.9841 531.5548 0.4502 0.0075 2.1231
Instructions retired 0.9789 1.6516 0.1856 1.5625 0.7991
Interrupts 0.9725 0.4753 1.3286 6.2710 1.6641
Context switches 0.9932 0.5965 0.2914 65.1277 54.9626

Table 7.30.: SSJ performance counter results

The results for the reduced configuration is presented in Figure 7.13 and Table 7.31 and
show an improvement for the naive approach. Yet above the 50% load level, an accurate
and stable load level could not be achieved. Accumulating side effects did improve on
average but not on CV and maximum deviation. The measurement still seems to suffer
from the same problem observed in the full configuration measurement and is largely above
the target power consumption at full load. The simulated annealing measurement also did
not improve. Its accuracy decreases in both, mean and maximum deviation, and the CV
increases.

Deviations from target
Measurement Mean Maximum CV

Naive 96.65% 120.91% 12.99%
Accumulation 102.97% 127.84% 9.92%
Simulated Annealing 90.37% 82.63% 7.38%

Table 7.31.: SSJ mean and maximum deviation from the target and CV with reduced con-
figuration

The results show that even a complex workload can be approximated with a reasonable
accuracy below 10% on both mean and maximum deviations. A mean deviation of below
5%, as reached with XMLValidate and Pi could not be achieved. It also is determined
that reducing the amount of performance counters to trigger can have a detrimental effect
on the accuracy of the approximation when simulating complex workloads.

78

7.2. Performance Event Trigger Framework 79

100 90 80 70 60 50 40 30 20 10
20

30

40

50

60

70

80

90

100

Load Level / %

P
ow

er
 /

W
at

t

Reference
Naive
Accumulation
Simulated Annealing

Figure 7.13.: SSJ power consumption with reduced configuration

7.2.4. NFV Workload

The NFV workload, a DPI firewall, stresses hardware parts otherwise not used by the
local workloads evaluated before. In this section, the ability to approximate the power
consumption without putting these specific hardware components under load is evaluated.
For this workload, two NICs together with CPU and memory need to be approximated
without stressing the NICs.

From the results shown in Figure 7.14 and Table 7.32, it can be determined that the naive
measurement works best, deviating less in both mean and maximum from the target.
Yet it is underestimating the power consumption consistently with one exception at the
90% load level. The local workloads on the other hand, alter more often between over-
and underestimating the power consumption. This behavior is expected and most likely
stems from the NICs that cannot be stressed via the approximation. The accumulation and
simulated annealing measurements could not achieve a good accuracy with high deviations
and CVs.

Deviations from target
Measurement Mean Maximum CV

Naive 93.37% 83.65% 8.27%
Accumulation 76.31% 59.81% 14.33%
Simulated Annealing 79.23% 64.03% 12.33%

Table 7.32.: NFV mean and maximum deviation from the target and CV

According to Table 7.33, the reduced configuration is identical for all implementations.
Only the L3 cache misses can be removed as they are below the background noise. Other
performance counters either have a high correlation, are above the background noise and
do not overcount by one order of magnitude.

Reducing the amount of performance events to trigger did not result in an overall better
approximation as shown in Figure 7.15 and Table 7.34.

79

80 7. Evaluation

100 90 80 70 60 50 40 30 20 10
20

25

30

35

40

45

50

55

60

Load Level / %

P
ow

er
 /

W
at

t

Reference
Naive
Accumulation
Simulated Annealing

Figure 7.14.: NFV workload power consumption

Background Target value factor
Performance counter Correlation noise factor Without SE With SE Sim.An.

L3 cache misses 0.9677 2.7756 1.3799 0.0186 1.5721
L3 cache hits 0.9676 0.2600 1.7484 0.0210 1.7288
Bytes read 0.9429 72.2970 9.2149 0.0089 0.9960
Bytes written 0.9695 91.5291 5.0920 0.0102 1.3954
Instructions retired 0.9762 1.9273 0.2673 0.1463 0.2570
Interrupts 0.9967 44.3945 0.0696 0.5055 0.3108
Context switches 0.9917 103.7100 0.0822 0.3643 0.3045

Table 7.33.: NFV workload performance counter results

80

7.2. Performance Event Trigger Framework 81

This coincides with the results from the XMLValidate and SSJ workloads. The accumula-
tion and simulated annealing measurements only show minor changes and are still off by
a large margin. The naive measurement only improved on average but at the cost of a
higher CV and maximum deviation. The figure also shows the same overestimation at the
90% load level already observed with the full configuration, which could be the result of
a systematic problem or a low score and large variation among the clients executing the
workload.

100 90 80 70 60 50 40 30 20 10
20

25

30

35

40

45

50

55

60

Load Level / %

P
ow

er
 /

W
at

t

Reference
Naive
Accumulation
Simulated Annealing

Figure 7.15.: NFV power consumption with reduced configuration

Deviations from target
Measurement Mean Maximum CV

Naive 95.48% 127.18% 13.42%
Accumulation 76.38% 60.17% 14.28%
Simulated Annealing 79.17% 63.80% 12.28%

Table 7.34.: NFV mean and maximum deviation from the target and CV with reduced
configuration

The approximation measurements are repeated with an elongated measurement phase of
240 s. It is expected that a longer measurement phase could reduce the CV in the higher
load levels as well as the score and therefore result in less invalid load levels. The results
are shown in Figure 7.16 and Table 7.35.

While a longer measurement phase now allows for a more stable measurement at higher
load levels, the mean deviation for the accumulation measurement has increased but is
still below 10%. Yet its CV and maximum deviation have significantly improved. The
accumulation and simulated annealing measurement have not been influenced by the longer
measurement phase. They suffer from the same problem already encountered at the shorter
measurement phase.

It is expected after more stable load levels are reached that the naive measurement would
converge towards the simulated annealing measurement shown in Figure 7.17. In this
scenario, it would be clear from the increasing difference between the target target and

81

82 7. Evaluation

100 90 80 70 60 50 40 30 20 10
20

25

30

35

40

45

50

55

60

Load Level / %

P
ow

er
 /

W
at

t

Reference
Naive
Accumulation
Simulated Annealing

Figure 7.16.: NFV power consumption with 240 s measurement phase

Deviations from target
Measurement Mean Maximum CV

Naive 91.16% 83.53% 5.86%
Accumulation 76.32% 59.77% 14.33%
Simulated Annealing 79.00% 63.81% 12.32%

Table 7.35.: NFV mean and maximum deviation from the target and CV with 240 s mea-
surement phase

82

7.2. Performance Event Trigger Framework 83

the measured power consumption, that the NICs side effects on the power consumption
are not approximated. In the current scenario, the naive measurement can approximate
an externally driven workload with a reasonable accuracy of less than 10% on average.
Simulated annealing and accumulation are not optimal with larger deviations.

100 90 80 70 60 50 40 30 20 10
−20

−15

−10

−5

0

5

10

Load Level / %

P
ow

er
 D

iff
er

en
ce

 /
W

at
t

120s / No Side Effects
120s / Side Effects
120s / Simulated Annealing
240s / No Side Effects
240s / Side Effects
240s / Simulated Annealing

Figure 7.17.: NFV workload power consumption differences between reference and approx-
imation measurements

Table 7.36 illustrates all evaluated workloads with their optimal configuration. For the
NFV workload, the elongated measurement is selected despite a lower mean deviation
which is caused by a large single outlier. All workloads can be approximated with an
accuracy of 10% with the simple Pi workload offering the best approximation, decreasing
with complexity as expected.

Deviations from target
Workload Configuration Measurement Mean Maximum CV

Pi Reduced Naive 99.38% 95.49% 2.00%
XMLValidate Full Accumulation 95.68% 88.71% 5.04%
SSJ Full Simulated Ann. 94.75% 90.65% 3.66%
NFV Elongated, Full Naive 91.16% 83.53% 5.86%

Table 7.36.: Comparison of workloads with mean and maximum deviation and CV

It has been shown that a workload stressing hardware components otherwise not used by
locally executed workloads can be approximated while maintaining a reasonable accuracy.
Performance counters are a feasible option to approximate workloads and no knowledge
of the externally driven component is necessary. Yet care must be taken which implemen-
tation should be used and if the workload is specialized enough, like the Pi workload, to
justify removing performance counters from the configuration without detrimental effects.

83

84 7. Evaluation

7.2.5. Lower Bound for Valid Measurements

Some measurements are marked as invalid and could not be included in the evaluation.
Those invalid measurements occur mostly in runs not including side effects and therefore
less transactions can be executed in the same time span due to longer runtimes. To deter-
mine the cause for this behavior, the calibrated scores, number of transactions executed
divided by the measurement time for the full and reduced configuration measurements are
summarized in Table 7.37. It shows that invalid measurements are more likely to happen
if the score is low. It is assumed that there is a bound to the transaction count, below
PET might not achieve a stable load level and subsequently a valid measurement. CVs be-
tween the client processes on the SUT are higher and the scores are lower than their valid
counterparts, which can be seen in Table E.3, E.4 and E.5, supporting the assumption of
a lower bound. A lower bound on the transaction count would also imply an upper bound
on the transactions size. Transaction size is determined by the amount of performance
events to trigger. More events to trigger causes the transaction to have a longer runtime
resulting in a lower transaction count or score for a given measurement time.

Workload Configuration Measurement Score Valid Load Levels

Pi Full No Side Effects 381.809 10
Side Effects 488.154 9
Sim. An. 52.707 7

Reduced No Side Effects 35 980.271 10
Side Effects 40 606.948 10
Sim. An. 21 134.736 10

XMLValidate Full No Side Effects 8.896 3
Side Effects 1 157 616.680 10
Sim. An. 61.728 6

Reduced No Side Effects 8.896 2
Side Effects 1 165 138.268 10
Sim. An. 154.047 9

SSJ Full No Side Effects 18.101 4
Side Effects 61 481.960 10
Sim. An. 1408.967 10

Reduced No Side Effects 1809.804 7
Side Effects 1 467 523.797 10
Sim. An. 139 141.733 10

NFV Full No Side Effects 587.016 10
Side Effects 6261.657 10
Sim. An. 2331.591 10

Reduced No Side Effects 574.314 9
Side Effects 6213.617 10
Sim. An. 2360.121 10

Table 7.37.: Calibrated workload scores compared to valid load levels

To determine the lower bound, the scores of all invalid measurements from all workloads
are grouped in a histogram. Outliers with values above a score of 300 are removed and
the result is shown in Figure 7.18. It can be seen that a lower score results in a higher
number of invalid measurements and a lower bound exists at a score of 25.

84

7.3. Linear Regression Model 85

Despite this relatively low bound, transaction count should be significantly higher to com-
pletely avoid invalid measurements, as Table 7.37 shows.

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

Score

Figure 7.18.: Histogram of invalid measurements by score

Avoiding the lower bound can be achieved in two ways. A transaction could be shortened
by reducing the amount of performance events to trigger, which would reduce the runtime
and increase the transaction count. Yet this might not be feasible if a configuration
parameter falls below one, because PET can only handle integer values. The second more
promising option, used in the NFV workload, is to increase the measurement time.

7.3. Linear Regression Model

In this section, the linear regression model described in Section 4.3 is evaluated if it can
predict the power consumption of the NFV workload. The model is fitted to the data
from the reference measurements of the Pi, XMLValidate and SSJ workloads. The four
measurements achieving the best approximation for each workload, listed in Section 7.2.4,
are used for the prediction. The results are shown in Table 7.38.

Workload
Load Level Pi XMLValidate SSJ NFV

100% −92.26 −755.22 −923.29 −493.85
90% −80.70 −657.58 −746.59 −453.25
80% −68.34 −581.71 −642.79 −405.90
70% −55.71 −510.63 −552.00 −358.60
60% −43.03 −438.95 −470.24 −305.35
50% −30.30 −364.76 −376.26 −250.23
40% −17.52 −291.76 −290.08 −196.34
30% −4.91 −220.05 −211.71 −140.32
20% 4.93 −147.00 −122.42 −84.59
10% 14.20 −76.37 −39.25 −29.96

Table 7.38.: Power consumption prediction of the linear regression model in watts

It is obvious that the model did not work correctly for all workloads and the prediction
is even inverse to the load levels. To improve the model and remove detrimental effects,
a t-test is performed to identify performance counter coefficients that have no significance
in the model and remove them. The t value for each coefficient is calculated and tested

85

86 7. Evaluation

against the null hypothesis with a significance level of α = 0.05. Only the bytes written to
memory controller counter is not significant and removed. The obtained coefficients and
standard errors of the modified model are shown in Table F.6 and the results are listed in
Table F.7. The results show that no improvement could be reached and the model is still
inverse.

As the workloads selected are increasing in complexity and the Pi workload in particular
is only stressing the CPU, performance counter variation is high. Table 7.39 shows the
CV of each performance counter for different combinations of workloads. It is assumed
that a different combination of the workloads available, with lower CVs, might yield better
prediction for the local workloads.

Table 7.39 contains the CV of the observations for different workload combinations. No
combination has CV values deemed sufficiently low. Yet the combination of SSJ and
XMLValidate seems the most promising base for the model.

Workload Combination
Pi

SSJ Pi Pi SSJ
Performance Counter XMLValidate SSJ XMLValidate XMLValidate

L3 cache misses 168.05 127.63 155.17 125.17
L3 cache hits 173.78 127.31 160.03 130.36
Bytes read 114.57 125.73 142.69 73.65
Bytes written 102.32 126.76 128.47 60.32
Instructions retired 75.84 61.55 66.75 83.87
Interrupts 65.09 45.42 70.86 44.74
Context switches 119.00 82.45 116.12 101.07

Table 7.39.: Performance counter CV of different workload combinations in percent

The coefficients for the model based on XMLValidate and SSJ and the prediction are shown
in Table F.8 and 7.40. While the results for the Pi workload are more promising, they are
still off by a large margin. The other workloads do not work either and show no promising
results. The model also seems to exhibit a strange behavior for the local workloads in
which it inverts its direction. This can be observed well on the SSJ workload around the
50% load level, where the power consumption declines until the 50% load level, reaching
its minimum, and then increasing towards higher load levels.

As no promising model could be found, based on [AKK+09] and [BKW05], the model is
analyzed for multicollinearity. It is present if performance counters in the model are not
linearly independent. To test for multicollinearity, the condition index ξ and the influence
of each performance counter on the variance of the estimator is evaluated. If more than
50% of the variance can be asserted to two or more coefficients of a condition index ξj ,
a multicollinearity between the parameters can be assumed. It can also be present if ξ is
between 5 to 10 for weak and between 30 to 100 for moderate to strong multicollinearity.
The condition index is calculated by ξ =

√
λmax/λj . λj are the eigenvalues of the matrix

X ′X (see Equation 4.6). The results for the multicollinearity analysis are shown in Table
7.41. As can be seen, the 8th eigenvalue accounts for more than 50% in all performance
counters indicating a multicollinearity between them. The 6th, 7th and 8th eigenvalue
also show a high ξ which also indicates multicollinearity.

The proposed linear regression model did not work and could not be used for the evalua-
tion described in Section 4.3. The proposed model’s prediction is inverse to the load levels

86

7.3. Linear Regression Model 87

Workload
Load Level Pi XMLValidate SSJ NFV

100% 54.86 −740.72 21.42 −102.06
90% 36.63 −701.46 4.29 −90.82
80% 30.92 −636.72 0.60 −79.27
70% 24.26 −587.72 −5.22 −67.78
60% 18.14 −534.20 −10.47 −54.49
50% 12.84 −521.91 −16.64 −41.03
40% 10.80 −400.15 −14.83 −27.86
30% 10.52 −368.75 −8.47 −14.19
20% 11.55 −329.89 −5.13 −0.40
10% 13.54 −342.84 1.47 14.26

Table 7.40.: Power consumption prediction of the linear regression model in watts

and does not predict the power consumption correctly, even after non-significant perfor-
mance counters are removed. Evaluating the CV of different combinations of local work-
loads showed high variation among the observations. Despite selecting the most promising
combination, the model could not predict the power consumption of any workload with
reasonable accuracy. The analysis also indicated that there is a strong multicollinearity
between the performance counters. This leads to the conclusion that a linear regression
model is insufficient for predicting the power consumption through performance counters.

Dimension j ξ L
3
m
is
se
s

L
3
h
it
s

B
y
te
s
re
ad

B
y
te
s
w
ri
tt
en

In
st
ru
ct
io
n
s
re
t.

In
te
rr
u
p
ts

C
on

te
x
t
sw

it
ch
es

1 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1.57 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 2.86 0.000 0.000 0.000 0.000 0.000 0.001 0.000
4 7.76 0.000 0.000 0.000 0.000 0.000 0.025 0.001
5 14.7 0.000 0.000 0.000 0.000 0.000 0.010 0.000
6 35.7 0.000 0.000 0.006 0.001 0.002 0.001 0.004
7 252 0.002 0.000 0.191 0.491 0.113 0.067 0.121
8 1430 0.998 0.999 0.803 0.508 0.885 0.896 0.875

Table 7.41.: Multicollinearity analysis

87

8. Conclusion

Due to the rising amount of servers and network equipment, energy demand in today’s IT
infrastructure rises consistently. To handle this problem, efficiency measurements that aid
in the selection of suitable appliances are necessary. SPEC offers the SERT benchmark
to rate the energy efficiency of servers to identify the best suited equipment based on
standardized workloads. Yet modern IT infrastructure is highly interconnected and the
workload is usually not run in isolation on a single machine. With the rise of SDN and
NFV these networks become more flexible and off-the-shelf servers are taking over tasks
normally carried out by dedicated network appliances.

Efficiency in networks is often viewed on a broader scope, taking multiple machines and
network functions into account. To achieve a lower power consumption while being able
to satisfy the demanded load, the placement and distribution of network functions is
researched, including consolidating and splitting up virtualized functions. Another point
of view is the component level, rating specific hardware parts for energy efficiency. Models,
often using performance counters, are used to predict the power consumption of a system.
Yet an approximation of the power consumption as a workload is not available.

Existing benchmarks are either run locally or need complex testbeds to stress the SUT,
which needs expertise and is time consuming. Locally executed benchmarks on the other
hand do not use hardware components otherwise put under load by external requests. To
produce reliable performance measurements with a local benchmark including hardware
normally not used by a local workload, the Performance Event Trigger Framework (PET)
is proposed. Its goal is to approximate the power consumption which would normally be
observed on interconnected systems under different load levels while being compatible with
Chauffeur, also used by the SERT. PET triggers performance counter events to simulate
the workload.

As benchmarks must be repeatable and reliable, the first step is to identify which per-
formance counters are suited by correlation analysis. From the available counters, L3 /
L2 cache hits and misses, bytes read from and written to memory controller, instructions
retired, context switches and interrupts are selected due to their high correlation with
power consumption. Afterwards the implementations that should reliably trigger events
to achieve accuracy is presented.

The implementations are evaluated on how accurate and therefore reliable they can ap-
proximate a performance counter. The optimal solution is selected and integrated into
PET. During the evaluation of the selected performance counters, it became clear that

89

90 8. Conclusion

triggering L2 cache hits did not work with the proposed implementation and is therefore
not part of PET. The evaluation showed that most counters can be implemented with rea-
sonable accuracy. Yet especially memory related counters tend to be less accurate when
used in a multithreaded environment. It is also shown that triggering performance coun-
ters comes at a cost. Each performance event does introduce side effects when triggered.
These side effects are also evaluated.

To validate the implemented framework three local workloads, Pi from Chauffeur, XML-
Validate and SSJ from the SERT are used. They range in complexity from simple CPU
heavy calculations in the Pi workload, to a diverse hardware usage executing different
operations in SSJ. As an exemplary workload that is dependent on external devices, a
DPI firewall, acting as a VNF is set up. For each of the four workloads, three different
approaches for the side effects are evaluated, including measurements ignoring them, ac-
cumulating the side effects and remove them from the amount of events to trigger and
simulated annealing, balancing the side effects with the configured event count. Further
measurements are taken to evaluate if performance counter can be removed that might
have detrimental effects on the approximation.

Also a linear regression model is created to evaluate the approximation with the predic-
tions. The model is build upon the observations from the three local workloads. Yet it
turned out to be unfeasible to produce correct predictions even for the local workloads it
is build upon. Removing insignificant parameters did not resolve the issue. Choosing a
different combination with a lower CV among the observations could also not remedy the
prediction problems. The performed analysis indicated multicollinearity between parame-
ters and the model is deemed unfit for use with the selected performance counters.

The evaluation showed that workloads can be approximated with an average deviation of
less than 10%. On very focused workloads, such as Pi, removing performance counters
has a positive impact on the approximation, reducing the average deviation to below
1%. Yet the remaining more complex workloads did not profit as much due to their
higher complexity. This shows that approximating locally and externally driven workloads,
specifically NFV workloads, is possible with reasonable accuracy using the Performance
Event Trigger Framework.

During the evaluation, it became apparent that there is a lower bound on the transaction
count, below no stable load level can be reached. This bound is identified and available
solutions are presented.

8.1. Future Work

This thesis can be used as a basis for future research of performance counters, power
consumption approximation and modeling, and energy efficiency. In the course of this
thesis, new questions arose of which a few will be listed here.

• Implement new performance event trigger to have a more diverse set. This will not
only allow PET to have a better approximation but also can widen the possible
workloads that can be approximated.

• Extend PET to not only allow linear correlation but also others, like exponential
for example. Possible variants could also include a decrease in events triggered with
increasing load levels.

• Research the side effects of the performance counters further to better understand
how they occur and possible interactions between them.

90

8.1. Future Work 91

• Code analysis in combination with measurements of workloads could be used to
define a model that can represent the amount of performance events that would
be generated for certain operations or code segments. PET would then be able to
simulate a workload based on the source code.

• Find a solution for keeping the transaction runtime close to the approximated frame-
work while maintaining a good approximation to make PET measurements compat-
ible with already existing efficiency measurements of the same workload.

• PET can be used for faster resource planning and estimation.

91

Bibliography

[AKK+09] S. Albers, D. Klapper, U. Konradt, A. Walter, and J. Wolf, Methodik der
empirischen Forschung. Gabler Verlag, 2009.

[AMD16] AMD, AMD64 Architecture Programmer’s Manual Volume 2: System
Programming, Advanced Micro Devices Inc., April 2016. [Online]. Available:
http://support.amd.com/TechDocs/24593.pdf

[BB10] A. Beloglazov and R. Buyya, “Energy efficient resource management in virtu-
alized cloud data centers,” in 2010 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing. IEEE, 2010.

[BBLM14] R. Bolla, R. Bruschi, C. Lombardo, and S. Mangialardi, “Dropv2: Energy-
efficiency through network function virtualization,” IEEE Network, vol. 28,
no. 2, pp. 26–32, Apr. 2014.

[BBN+] T. Bowden, B. Bauer, J. Nerin, S. Feng, and S. Seibold,“The /proc filesystem,”
accessed: 15.09.2016. [Online]. Available: http://git.kernel.org/cgit/linux/
kernel/git/torvalds/linux.git/tree/Documentation/filesystems/proc.txt

[Bel00] F. Bellosa, “The benefits of event-driven energy accounting in power-sensitive
systems,” in EW 9 Proceedings of the 9th workshop on ACM SIGOPS Euro-
pean workshop: beyond the PC: new challenges for the operating system, 2000,
pp. 37–42.

[BHD+12] J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer,
and H. de Meer, “Energy efficient virtual network embedding,” IEEE
Communications Letters, vol. 16, no. 5, pp. 756–759, Mar. 2012. [Online].
Available: http://www.sahandtarjomeh.com/wp-content/uploads/2015/09/
Energy-Efficient-Virtual d7rf4e8w5f41s3rf01f.pdf

[BJ12] W. L. Bircher and L. K. John, “Complete system power estimation using
processor performance events,” IEEE Trans. Comput., vol. 61, no. 4, pp. 563–
577, Apr. 2012. [Online]. Available: http://dx.doi.org/10.1109/TC.2011.47

[BKW05] D. Belsley, E. Kuh, and R. Welsch, Regression Diagnostics: Identifying Influ-
ential Data and Sources of Collinearity, ser. Wiley Series in Probability and
Statistics. Wiley, 2005.

[BLCC15] M. Bouet, J. Leguay, T. Combe, and V. Conan, “Cost-based placement of
vdpi functions in nfv infrastructures,” International Journal in Network Man-
agement, vol. 25, pp. 490–506, November 2015.

[CCW+12] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen,
W. Khan, M. Fargano, C. Cui, H. Deng, J. Benitez, U. Michel, H. Damker,
K. Ogaki, T. Matsuzaki, M. Fukui, K. Shimano, D. Delisle, Q. Loudier,
C. Kolias, I. Guardini, E. Demaaria, R. Minerva, A. Manzalini, D. López,
F. J. R. Salguero, F. Ruhl, and P. Sen, “White paper: Network

93

http://support.amd.com/TechDocs/24593.pdf
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/proc.txt
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/proc.txt
http://www.sahandtarjomeh.com/wp-content/uploads/2015/09/Energy-Efficient-Virtual__d7rf4e8w5f41s3rf01f.pdf
http://www.sahandtarjomeh.com/wp-content/uploads/2015/09/Energy-Efficient-Virtual__d7rf4e8w5f41s3rf01f.pdf
http://dx.doi.org/10.1109/TC.2011.47

94 Bibliography

functions virtualization,” AT&T, BT, CenturyLink, China Mobile, Colt,
Deutsche Telekom, KDDI, NTT, Orange, Telecom Italia, Telefonica, Telstra,
Verizon, Darmstad, Germany, Tech. Rep., Oct. 2012. [Online]. Available:
http://portal.etsi.org/NFV/NFV White Paper.pdf

[CFA+07] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. O’Boyle, and O. Temam,
“Rapidly selecting good compiler optimizations using performance counters,”
in CGO ’07 Proceedings of the International Symposium on Code Generation
and Optimization, 2007, pp. 185–197.

[CM05] G. Contreras and M. Martonosi, “Power prediction for intel xscale R⃝processors
using performance monitoring unit events,” in Proceedings of the 2005
International Symposium on Low Power Electronics and Design, ser. ISLPED
’05. New York, NY, USA: ACM, 2005, pp. 221–226. [Online]. Available:
http://doi.acm.org/10.1145/1077603.1077657

[EEKS06] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A performance
counter architecture for computing accurate cpi components,” in ASPLOS
XII Proceedings of the 12th international conference on Architectural support
for programming languages and operating systems, 2006, pp. 175–184.

[ETS13] ETSI, Network Functions Virtualisation (NFV); Use Cases, European
Telecommunications Standards Institute (ETSI) Std., Rev. 1.1.1, Oct. 2013.
[Online]. Available: http://www.etsi.org/deliver/etsi gs/NFV/001 099/001/
01.01.01 60/gs NFV001v010101p.pdf

[ETS14] ——, Network Functions Virtualisation (NFV); Virtual Network Functions
Architecture, European Telecommunications Standards Institute (ETSI) Std.,
Rev. 1.1.1, Dec. 2014. [Online]. Available: http://www.etsi.org/deliver/etsi
gs/NFV-SWA/001 099/001/01.01.01 60/gs NFV-SWA001v010101p.pdf

[FKLM13] L. Fahrmeier, T. Kneib, S. Lang, and B. Marx, Regression Models, Methods
and Applications. Springer Berlin Heidelberg, 2013.

[GR] R. Gooch and L. R. Rodriguez, “Mtrr (memory type range register) control,”
accessed: 2016-08-15. [Online]. Available: http://git.kernel.org/cgit/linux/
kernel/git/torvalds/linux.git/tree/Documentation/x86/mtrr.txt

[HJJ03] D. Henderson, S. H. Jacobson, and A. W. Johnson, The Theory and
Practice of Simulated Annealing, F. Glover and G. A. Kochenberger,
Eds. Boston, MA: Springer US, 2003. [Online]. Available: http:
//dx.doi.org/10.1007/0-306-48056-5 10

[IM03] C. Isci and M. Martonosi, “Runtime power monitoring in high-end processors:
Methodology and empirical data,” in Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO 36.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 93–. [Online].
Available: http://dl.acm.org/citation.cfm?id=956417.956567

[Int] Intel, “Intel R⃝ Xeon R⃝ Processor E3-1230 v5 (8M Cache, 3.40 GHz),”
accessed: 08.09.2016. [Online]. Available: http://ark.intel.com/products/
88182/Intel-Xeon-Processor-E3-1230-v5-8M-Cache-3 40-GHz

[Int16a] ——, IntelR⃝ 64 and IA-32 Architectures Optimization Reference Manual, Intel
Corporation, June 2016.

[Int16b] ——, IntelR⃝ 64 and IA-32 Architectures Software Developer’s Manual, Intel
Corporation, June 2016.

94

http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://doi.acm.org/10.1145/1077603.1077657
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs_NFV-SWA001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs_NFV-SWA001v010101p.pdf
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/x86/mtrr.txt
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/x86/mtrr.txt
http://dx.doi.org/10.1007/0-306-48056-5_10
http://dx.doi.org/10.1007/0-306-48056-5_10
http://dl.acm.org/citation.cfm?id=956417.956567
http://ark.intel.com/products/88182/Intel-Xeon-Processor-E3-1230-v5-8M-Cache-3_40-GHz
http://ark.intel.com/products/88182/Intel-Xeon-Processor-E3-1230-v5-8M-Cache-3_40-GHz

Bibliography 95

[JWC12] Y. Jin, Y. Wen, and Q. Chen, “Energy efficiency and server virtualization
in data centers: An empirical investigation,” in 2012 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), Mar. 2012,
pp. 133–138.

[KTK+01] I. Kadayif, T.Chinoda, M. Kandemir, N. Vijaykrishnan, M. Irwin, and A. Siva-
subramaniam,“vec: Virtual energy counters,” in PASTE’01 Proceedings of the
2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, 2001, pp. 28–31.

[LAB+13] K.-D. Lange, J. A. Arnold, H. Block, N. Totura, J. Beckett, and M. G. Tricker,
“Further implementation aspects of the server efficiency rating tool (sert),”
in 4th ACM/SPEC International Conference on Performance Engineering
(ICPE), April 2013.

[LGT08] A. Lewis, S. Ghosh, and N.-F. Tzeng, “Runtime energy consumption
estimation based on workload in server systems,” in Proceedings of the 2008
Conference on Power Aware Computing and Systems, ser. HotPower’08.
Berkeley, CA, USA: USENIX Association, 2008, pp. 4–4. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855610.1855614

[LT11] K.-D. Lange and M. G. Tricker, “The Design and Development of the Server
Efficiency Rating Tool (SERT),” in Proceedings of the 2nd ACM/SPEC
International Conference on Performance Engineering, ser. ICPE ’11.
New York, NY, USA: ACM, 2011, pp. 145–150. [Online]. Available:
http://doi.acm.org/10.1145/1958746.1958769

[LTA+12] K.-D. Lange, M. G. Tricker, J. A. Arnold, H. Block, and C. Koopmann,
“The implementation of the server efficiency rating tool,” in Proceedings of
the 3rd ACM/SPEC International Conference on Performance Engineering,
ser. ICPE ’12. New York, NY, USA: ACM, 2012, pp. 133–144. [Online].
Available: http://doi.acm.org/10.1145/2188286.2188307

[MDT14] H. Moens and F. De Turck, “Vnf-p: A model for efficient placement of vir-
tualized network functions,” in 10e International Conference on Network and
Service Management, Proceedings, 2014, pp. 418–423.

[MSG+15] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. D. Turck, and S. Davy,
“Design and evaluation of algorithms for mapping and scheduling of virtual
network functions,” in Proceedings of the 2015 1st IEEE Conference on Net-
work Softwarization (NetSoft). IEEE, Apr. 2015, pp. 1–9.

[Ols05] R. Olsson, “pktgen the linux packet generator,” in Proceedings of the Linux
Symposium, vol. 2, July 2005.

[OPN] OPNFV, “Opnfv technical overview,” https://www.opnfv.org/software/
technical-overview, accessed: 29.03.2016.

[PNV+10] M. Poess, R. O. Nambiar, K. Vaid, J. M. S. Jr, K. Huppler, and E. Haines,
“Energy benchmarks: A detailed analysis,” in Proceedings of the 1st Interna-
tional Conference on Energy-Efficient Computing and Networking. ACM,
2010.

[Pro06] T. L. I. Project, “Software interrupt definition,” April 2006, accessed:
21.09.2016. [Online]. Available: http://www.linfo.org/software interrupt.html

[SAP11] SAP,“Sap power benchmarks specification,”http://global.sap.com/solutions/
benchmark/pdf/Specification SAP Power Benchmarks V12.pdf, February
2011, accessed: 28.09.2016.

95

http://dl.acm.org/citation.cfm?id=1855610.1855614
http://doi.acm.org/10.1145/1958746.1958769
http://doi.acm.org/10.1145/2188286.2188307
https://www.opnfv.org/software/technical-overview
https://www.opnfv.org/software/technical-overview
http://www.linfo.org/software_interrupt.html
http://global.sap.com/solutions/benchmark/pdf/Specification_SAP_Power_Benchmarks_V12.pdf
http://global.sap.com/solutions/benchmark/pdf/Specification_SAP_Power_Benchmarks_V12.pdf

96 Bibliography

[SBM09] K. Singh, M. Bhadauria, and S. A. McKee, “Real time power estimation and
thread scheduling via performance counters,”ACM SIGARCH Computer Ar-
chitecture News, vol. 37, pp. 46–55, May 2009.

[SPEa] SPEC, ChauffeurTM Worklet Development Kit (WDK) User Guide 1.1.0, 7001
Heritage Village Plaza, Suite 225 Gainesville, VA 20155, USA.

[SPEb] ——, Power and Performance Benchmark Methodology V2.2, Standard Per-
formance Evaluation Corporation (SPEC), 7001 Heritage Village Plaza, Suite
225 Gainesville, VA 20155, USA.

[SPE13] ——, “Server efficiency rating tool (sert) design document 1.0.2,” https://
www.spec.org/sert/docs/SERT-Design Doc.pdf, 2013.

[vKBB+15] J. v. Kistowski, H. Block, J. Beckett, K.-D. Lange, J. A. Arnold, and
S. Kounev, “Analysis of the influences on server power consumption and
energy efficiency for cpu-intensive workloads,” in Proceedings of the 6th
ACM/SPEC International Conference on Performance Engineering, ser.
ICPE ’15. New York, NY, USA: ACM, 2015, pp. 223–234. [Online].
Available: http://doi.acm.org/10.1145/2668930.2688057

[vKBB+16] J. v. Kistowski, H. Block, J. Beckett, C. Spradling, K.-D. Lange, and
S. Kounev, “Variations in cpu power consumption,” in ICPE’16 Proceedings of
the 7th ACM/SPEC on International Conference on Performance Engineer-
ing, 2016, pp. 147–158.

[vKBL+15] J. v. Kistowski, J. Beckett, K.-D. Lange, H. Block, J. A. Arnold, and
S. Kounev, “Energy efficiency of hierarchical server load distribution strate-
gies,” in IEEE 23rd International Symposium on Modelling, Analysis and Sim-
ulation of Computer and Telecommunication Systems, October 2015.

[vKHK14] J. G. von Kistowski, N. R. Herbst, and S. Kounev, “Modeling Variations
in Load Intensity over Time,” in Proceedings of the 3rd International
Workshop on Large-Scale Testing (LT 2014), co-located with the 5th
ACM/SPEC International Conference on Performance Engineering (ICPE
2014). New York, NY, USA: ACM, Mar. 2014, pp. 1–4. [Online]. Available:
http://doi.acm.org/10.1145/2577036.2577037

[WD14] J. Whitney and P. Delforge, “Data center efficiency assessment,” http://www.
nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf, Aug. 2014.

[Wea15] V. M. Weaver, “Self-monitoring overhead of the linux perf event performance
counter interface,” in Performance Analysis of Systems and Software, 2015.
ISPASS 2015. IEEE International Symposium on. IEEE, March 2015, pp.
102–111.

[Wil] T. Willhalm, “Intel pcm column names decoder ring,” accessed: 15.09.2016.
[Online]. Available: https://software.intel.com/en-us/blogs/2014/07/18/
intel-pcm-column-names-decoder-ring

[Wol16] J. Wolf, Linux-UNIX-Programmierung: Das umfassende Handbuch, ser.
Rheinwerk Computing. Rheinwerk Verlag GmbH, 2016.

[WTM13] V. M. Weaver, D. Terpstra, and S. Moore, “Non-determinism and overcount
on modern hardware performance counter implementations,” in Performance
Analysis of Systems and Software, 2013. ISPASS 2013. IEEE International
Symposium on, 2013.

96

https://www.spec.org/sert/docs/SERT-Design_Doc.pdf
https://www.spec.org/sert/docs/SERT-Design_Doc.pdf
http://doi.acm.org/10.1145/2668930.2688057
http://doi.acm.org/10.1145/2577036.2577037
http://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
http://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
https://software.intel.com/en-us/blogs/2014/07/18/intel-pcm-column-names-decoder-ring
https://software.intel.com/en-us/blogs/2014/07/18/intel-pcm-column-names-decoder-ring

Bibliography 97

[ZJH09] D. Zaparanuks, M. Jovic, and M. Hauswirth, “Accuracy of performance
counter measurements,” in Performance Analysis of Systems and Software,
2009. ISPASS 2009. IEEE International Symposium on, 2009, pp. 23 –32.

97

List of Figures

2.1. NFV architecture as taken from [OPN] . 8
2.2. VNF functional view, taken from [ETS14] 9
2.3. SERT components, as taken from [SPE13] 11
2.4. Worklet measurement execution, taken from [SPE13] 11
2.5. Chauffeur overview from [SPEa] . 12
2.6. Chauffeur components and communication from [SPEa] 13
2.7. XMLValidate transaction from [SPE13] . 15

5.1. Software architecture of the traffic generator and receiver 31
5.2. Packet structure . 31
5.3. PET architecture . 40
5.4. PET initialization . 41
5.5. PET cleanup . 41
5.6. PET cleanup . 42
5.7. PET dependencies . 46

6.1. Setup of the reference testbed . 50
6.2. Calibrating the reference DPI firewall . 51
6.3. Setup of the simplified testbed . 52

7.1. L3 cache miss results for virtual process memory and no random factor . . 56
7.2. L3 cache miss results for virtual process memory with random factor 57
7.3. L3 cache miss results for UC- memory with fixed array indices 58
7.4. Bytes read results for single process with virtual process memory 62
7.5. Bytes read results for four and eight processes with virtual process memory 63
7.6. Bytes written results for single process with virtual process memory 65
7.7. Bytes written results for four and eight processes with virtual process memory 67
7.8. Pi workload power consumption . 73
7.9. Pi workload power consumption with reduced configuration 74
7.10. XMLValidate workload power consumption 75
7.11. XMLValidate power consumption with reduced configuration 76
7.12. SSJ workload power consumption . 77
7.13. SSJ power consumption with reduced configuration 79
7.14. NFV workload power consumption . 80
7.15. NFV power consumption with reduced configuration 81
7.16. NFV power consumption with 240 s measurement phase 82
7.17. NFV workload power consumption differences between reference and ap-

proximation measurements . 83
7.18. Histogram of invalid measurements by score 85

C.1. L3 cache misses for one process, shared memory and no random factor . . . 105
C.2. L3 cache misses for one process and shared memory with random factor . . 106

99

100 List of Figures

C.3. L3 cache misses for four processes, process virtual memory and no random
factor . 107

C.4. L3 cache misses for four processes and process virtual memory with random
factor . 108

C.5. L3 cache misses for four processes, shared memory and no random factor . 109
C.6. L3 cache misses for four processes and shared memory with random factor . 110
C.7. L3 cache miss results for four processes and UC- memory with fixed array

indices . 111
C.8. L3 cache misses for eight processes, process virtual memory and no random

factor . 112
C.9. L3 cache misses for eight processes and process virtual memory with random

factor . 113
C.10.L3 cache misses for eight processes, shared memory and no random factor . 114
C.11.L3 cache misses for eight processes and shared memory with random factor 115
C.12.L3 cache misses for eight processes and UC- memory with fixed array indices116
C.13.L3 cache hits for four processes using shared memory 116
C.14.L3 cache hits for eight processes using shared memory 117
C.15.Bytes read for one process using shared memory 117
C.16.Bytes read for four and eight processes using shared memory 118
C.17.Bytes written for one process using shared memory 118
C.18.Bytes written for four and eight processes using shared memory 119

100

List of Tables

4.1. CPU performance counters . 22
4.2. Linux performance counters . 23
4.3. Linux memory performance counters . 24
4.4. Estimated coefficients β of linear regression model 26

7.1. Side effects of L3 cache misses per cache miss generated 58
7.2. L3 cache hit results for a single process . 59
7.3. L3 cache hit results for four processes . 59
7.4. L3 cache hit results for eight processes . 60
7.5. Side effects of L3 cache hits per cache hit generated 60
7.6. L2 cache hit results for a single process . 61
7.7. L2 cache hit results for four and eight processes 62
7.8. Bytes read results for single process with uncachable memory 63
7.9. Bytes read results for four processes with uncachable memory 64
7.10. Bytes read results for eight processes with correction factor and uncachable

memory . 64
7.11. Side effects of bytes read from memory controller per event generated . . . 65
7.12. Bytes written results for single process with uncachable memory 66
7.13. Bytes written results for four processes with uncachable memory 66
7.14. Bytes written results for eight processes with uncachable memory 66
7.15. Side effects of bytes written to memory controller per event generated . . . 68
7.16. Retired instructions measurement results . 68
7.17. Side effects of instructions retired counter per event triggered 69
7.18. Context switches measurement results . 69
7.19. Context switches measurement results with correction for overcounting . . . 70
7.20. Side effects of context switches per event generated 70
7.21. Interrupt measurement results . 71
7.22. Side effects of interrupts per event triggered 71
7.23. Pi workload mean and maximum deviation from the target and CV 72
7.24. Pi workload performance counter results . 73
7.25. Pi workload mean and maximum deviation from the target and CV with

reduced configuration . 74
7.26. XMLValidate mean and maximum deviation from the target and CV 75
7.27. XMLValidate performance counter results 76
7.28. XMLValidate mean and maximum deviation from the target and CV with

reduced configuration . 77
7.29. SSJ mean and maximum deviation from the target and CV 78
7.30. SSJ performance counter results . 78
7.31. SSJ mean and maximum deviation from the target and CV with reduced

configuration . 78
7.32. NFV mean and maximum deviation from the target and CV 79
7.33. NFV workload performance counter results 80

101

102 List of Tables

7.34. NFV mean and maximum deviation from the target and CV with reduced
configuration . 81

7.35. NFV mean and maximum deviation from the target and CV with 240 s
measurement phase . 82

7.36. Comparison of workloads with mean and maximum deviation and CV . . . 83
7.37. Calibrated workload scores compared to valid load levels 84
7.38. Power consumption prediction of the linear regression model in watts 85
7.39. Performance counter CV of different workload combinations in percent . . . 86
7.40. Power consumption prediction of the linear regression model in watts 87
7.41. Multicollinearity analysis . 87

A.1. SUT system wide background noise for 1 s averaged over 120 s with 95%
confidence interval . 103

D.2. PET side effect configuration per event generated 120
E.3. PET measurement client CVs in percent . 121
E.4. PET measurement score for the load levels 100% to 60% 122
E.5. PET measurement score for the load levels 50% to 10% 123
F.6. Estimated coefficients β of linear regression model with not significant coun-

ters removed . 124
F.7. Power consumption prediction of the linear regression model in watts with

insignificant coefficients removed . 124
F.8. Estimated coefficients β of linear regression model based on XMLValidate

and SSJ . 124

102

Appendix

A. SUT Background Noise

Performance counter System Socket Core Base value

IntelPCM L3 misses ! 941.06± 65.00

L2 misses ! (13.000± 0.851) · 103

L3 hit ratio ! 0.9152± 0.0030

L2 hit ratio ! 0.2763± 0.0057

L3 hits (from hit ratio) ! 1028.97± 72.02

L2 hits (from hit ratio) ! (46.658± 1.868) · 103

Bytes read ! (55.260± 60.365) · 103

Bytes written ! (19.779± 23.377) · 103

Instructions retired ! (31.93± 2.23) · 106

Linux Interrupts ! 22.87± 1.04

Context switches ! 30.73± 1.97

Table A.1.: SUT system wide background noise for 1 s averaged over 120 s with 95% con-
fidence interval

B. Testbed Hardware

B.1. SUT

• CPU: Intel Xeon E3-1230 v5

– 4 cores with 2 threads per core

– 3.4GHz and 3.8GHz with turbo

– 32KiB L1 data cache per core

– 32KiB L1 instruction cache per core

– 256KiB L2 shared cache per core

103

104 8. Appendix

– 8MiB L3 shared cache

– 64 byte cache line size

• Memory

– 16GiB total capacity (1 module)

– Single channel

– 2133MHz clock speed

• NIC 1: HPE Ethernet 1Gb 2-port 332i Adapter

– Dual-Port 10/100/1000Base-T full-duplex/half-duplex

– Broadcom NetXtreme BCM5720

• NIC 2: HP Ethernet 1Gb 2-port 332T Adapter

– Dual-Port 10/100/1000Base-T full-duplex/half-duplex

– Broadcom NetXtreme BCM5720

– 2.2W maximum power consumption

– 2.1W idle power consumption

B.2. Traffic Generator and Receiver

• CPU: Intel Xeon E5-2560 v3

– 2.3GHz and 3.0GHz with turbo

– 32KiB L1 data cache per core

– 32KiB L1 instruction cache per core

– 256KiB L2 shared cache per core

– 25MiB L3 shared cache

– 64 byte cache line size

• Memory

– 32GiB total capacity (2 modules, each 16GiB)

– Dual channel

– 2133MHz clock speed

104

C. Measurement Results of Selected Performance Counter 105

C. Measurement Results of Selected Performance Counter

16 32 64 128 256 512 1024 2048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Shared memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(a) Step size 2

16 32 64 128 256 512 1024 2048
0

2

4

6

8

10

12

14

16

18
x 10

4

Shared memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(b) Step size 4

16 32 64 128 256 512 1024 2048
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Shared memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(c) Step size 6

Figure C.1.: L3 cache misses for one process, shared memory and no random factor

105

106 8. Appendix

16 32 64 128 256 512 1024 2048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Shared memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(a) Step size 2

16 32 64 128 256 512 1024 2048
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Shared memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(b) Step size 4

16 32 64 128 256 512 1024 2048
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Shared memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(c) Step size 6

Figure C.2.: L3 cache misses for one process and shared memory with random factor

106

C. Measurement Results of Selected Performance Counter 107

16 32 64 128 256 512 1024
0

0.5

1

1.5

2

2.5
x 10

6

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(a) Step size 2

16 32 64 128 256 512 1024
0

2

4

6

8

10

12
x 10

5

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(b) Step size 4

16 32 64 128 256 512 1024
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(c) Step size 6

Figure C.3.: L3 cache misses for four processes, process virtual memory and no random
factor

107

108 8. Appendix

16 32 64 128 256 512 1024
0

2

4

6

8

10

12

14

16

18
x 10

5

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(a) Step size 2

16 32 64 128 256 512 1024
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(b) Step size 4

16 32 64 128 256 512 1024
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(c) Step size 6

Figure C.4.: L3 cache misses for four processes and process virtual memory with random
factor

108

C. Measurement Results of Selected Performance Counter 109

16 32 64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

Shared memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(a) Step size 2

16 32 64 128 256 512 1024
0

2

4

6

8

10

12

14
x 10

5

Shared memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(b) Step size 4

16 32 64 128 256 512 1024
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

Shared memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(c) Step size 6

Figure C.5.: L3 cache misses for four processes, shared memory and no random factor

109

110 8. Appendix

16 32 64 128 256 512 1024
0

2

4

6

8

10

12

14

16

18
x 10

5

Shared memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(a) Step size 2

16 32 64 128 256 512 1024
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

Shared memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(b) Step size 4

16 32 64 128 256 512 1024
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

Shared memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(c) Step size 6

Figure C.6.: L3 cache misses for four processes and shared memory with random factor

110

C. Measurement Results of Selected Performance Counter 111

SIMD ASM C
0

50

100

150

200

250

300

350

400

450

500

L3
 c

ac
he

 m
is

se
s

Read
Write
Copy

Figure C.7.: L3 cache miss results for four processes and UC- memory with fixed array
indices

111

112 8. Appendix

16 32 64 128 256 512
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(a) Step size 2

16 32 64 128 256 512
0

1

2

3

4

5

6

7
x 10

6

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(b) Step size 4

16 32 64 128 256 512
0

1

2

3

4

5

6

7

8
x 10

6

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(c) Step size 6

Figure C.8.: L3 cache misses for eight processes, process virtual memory and no random
factor

112

C. Measurement Results of Selected Performance Counter 113

16 32 64 128 256 512
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(a) Step size 2

16 32 64 128 256 512
0

1

2

3

4

5

6

7

8
x 10

6

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(b) Step size 4

16 32 64 128 256 512
0

1

2

3

4

5

6

7

8
x 10

6

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(c) Step size 6

Figure C.9.: L3 cache misses for eight processes and process virtual memory with random
factor

113

114 8. Appendix

16 32 64 128 256 512
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

Shared memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(a) Step size 2

16 32 64 128 256 512
0

1

2

3

4

5

6

7
x 10

6

Shared memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(b) Step size 4

16 32 64 128 256 512
0

1

2

3

4

5

6

7

8
x 10

6

Shared memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(c) Step size 6

Figure C.10.: L3 cache misses for eight processes, shared memory and no random factor

114

C. Measurement Results of Selected Performance Counter 115

16 32 64 128 256 512
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

Shared memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(a) Step size 2

16 32 64 128 256 512
0

1

2

3

4

5

6

7

8
x 10

6

Shared memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(b) Step size 4

16 32 64 128 256 512
0

1

2

3

4

5

6

7

8
x 10

6

Shared memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(c) Step size 6

Figure C.11.: L3 cache misses for eight processes and shared memory with random factor

115

116 8. Appendix

SIMD ASM C
0

500

1000

1500

2000

2500

3000

3500

L3
 c

ac
he

 m
is

se
s

Read
Write
Copy

Figure C.12.: L3 cache misses for eight processes and UC- memory with fixed array indices

16 32 64 128 256 512 1024
0

1

2

3

4

5

6
x 10

5

Shared memory allocated / Mbyte

L3
 c

ac
he

 h
its

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(a) Without random factor

16 32 64 128 256 512 1024
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Shared memory allocated / Mbyte

L3
 c

ac
he

 h
its

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(b) With random factor

Figure C.13.: L3 cache hits for four processes using shared memory

116

C. Measurement Results of Selected Performance Counter 117

16 32 64 128 256 512
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Shared memory allocated / Mbyte

L3
 c

ac
he

 h
its

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(a) Without random factor

16 32 64 128 256 512
0

1

2

3

4

5

6

7

8
x 10

5

Shared memory allocated / Mbyte

L3
 c

ac
he

 h
its

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

(b) With random factor

Figure C.14.: L3 cache hits for eight processes using shared memory

16 32 64 128 256 512 1024 2048
1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

8

Shared memory allocated / Mbyte

B
yt

es
 r

ea
d

fr
om

 m
em

or
y

co
nt

ro
lle

r

SIMD / random
ASM / random
C / random
SIMD
ASM
C

Figure C.15.: Bytes read for one process using shared memory

117

118 8. Appendix

16 32 64 128 256 512 1024
1

2

3

4

5

6

7

8

9

10
x 10

8

Shared memory allocated / Mbyte

B
yt

es
 r

ea
d

fr
om

 m
em

or
y

co
nt

ro
lle

r

SIMD / random
ASM / random
C / random
SIMD
ASM
C

(a) 4 processes

16 32 64 128 256 512

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

9

Shared memory allocated / Mbyte

B
yt

es
 r

ea
d

fr
om

 m
em

or
y

co
nt

ro
lle

r

SIMD / random
ASM / random
C / random
SIMD
ASM
C

(b) 8 processes

Figure C.16.: Bytes read for four and eight processes using shared memory

16 32 64 128 256 512 1024 2048
1

2

3

4

5

6

7
x 10

7

Shared memory allocated / Mbyte

B
yt

es
 w

rit
te

n
to

 m
em

or
y

co
nt

ro
lle

r

SIMD / random
ASM / random
C / random
SIMD
ASM
C

Figure C.17.: Bytes written for one process using shared memory

118

C. Measurement Results of Selected Performance Counter 119

16 32 64 128 256 512 1024
0

0.5

1

1.5

2

2.5

3

3.5

x 10
8

Shared memory allocated / Mbyte

B
yt

es
 w

rit
te

n
to

 m
em

or
y

co
nt

ro
lle

r

SIMD / random
ASM / random
C / random
SIMD
ASM
C

(a) 4 processes

16 32 64 128 256 512
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

8

Shared memory allocated / Mbyte

B
yt

es
 w

rit
te

n
to

 m
em

or
y

co
nt

ro
lle

r

SIMD / random
ASM / random
C / random
SIMD
ASM
C

(b) 8 processes

Figure C.18.: Bytes written for four and eight processes using shared memory

119

120 8. Appendix

D. PET Side Effect Configuration

P
ro
ce
ss
es

P
er
fo
rm

an
ce

co
u
n
te
r

L3cachehits

L3cachemisses

Bytesread

Byteswritten

Instructionsretired

Interrupts

Contextswitches

1
L
3
ca
ch
e
h
it
s

1
.6
·1
0
−
3

0.
7
·1

0
−
3

1.
2
·1
0
−
3

2
·1

0
−
7

0
.2
2
4

4
6

L
3
ca
ch
e
m
is
se
s

2.
6
·1

0
−
3

0.
0
3
·1

0
−
3

0.
4
·1
0
−
3

0.
1
4
·1

0
−
7

0
.0
6
4

7
B
y
te
s
re
ad

0.
6

19
5

1
9
2

1
.7
·1

0
−
5

5
1

5
2
6
3

B
y
te
s
w
ri
tt
en

0.
4

3
0.
0
1
4

1
·1

0
−
5

2
6

4
2
7
1

In
st
ru
ct
io
n
s
re
ti
re
d

74
12
9

2
2

1
2
9

1
5
2
5
9

2
3
7
4
3

In
te
rr
u
p
ts

1
·1

0
−
5

2
·1
0
−
5

3
·1

0
−
5

1
·1
0
−
5

3
·1

0
−
8

4
.5
·1
0
−
3

C
on

te
x
t
sw

it
ch
es

17
·1

0
−
5

17
·1
0
−
5

1
7
·1

0
−
5

1
7
·1
0
−
5

8
·1

0
−
8

2

4
L
3
ca
ch
e
h
it
s

2
.5
·1
0
−
3

0.
9
·1

0
−
3

3.
2
·1
0
−
3

5
·1

0
−
7

0.
4
1

4
9

L
3
ca
ch
e
m
is
se
s

50
·1

0
−
3

2
·1

0
−
3

1.
2
·1
0
−
3

0.
4
9
·1

0
−
7

0
.1
4
2

1
0

B
y
te
s
re
ad

50
98

1
2
2

1
2
·1

0
−
5

8
0

7
1
7
7

B
y
te
s
w
ri
tt
en

1.
8

4
0.
0
0
2

3
1
·1

0
−
5

2
4

4
6
2
4

In
st
ru
ct
io
n
s
re
ti
re
d

75
12
9

2
2

1
3
0

1
5
3
2
1

2
3
5
7
2

In
te
rr
u
p
ts

7
·1

0
−
5

2
·1
0
−
5

3
·1

0
−
5

2
·1
0
−
5

5
·1

0
−
8

2
.8
·1
0
−
3

C
on

te
x
t
sw

it
ch
es

56
·1

0
−
5

14
·1
0
−
5

1
6
·1

0
−
5

9
3
·1
0
−
5

9
·1

0
−
8

2

8
L
3
ca
ch
e
h
it
s

4
.3
·1
0
−
3

3.
6
·1

0
−
3

4
·1
0
−
3

6
·1

0
−
7

4
.6
3
7

7
4

L
3
ca
ch
e
m
is
se
s

40
·1

0
−
3

4.
3
·1

0
−
3

0.
8
·1
0
−
3

1
·1

0
−
7

0
.3
4
1

1
0

B
y
te
s
re
ad

38
85

6
4

2
0
·1

0
−
5

2
6
5

7
6
0
5

B
y
te
s
w
ri
tt
en

10
21

1
3
.6

5
6
·1

0
−
5

1
1
9

4
7
3
2

In
st
ru
ct
io
n
s
re
ti
re
d

75
13
1

2
4

1
3
1

1
5
3
8
5

2
3
6
2
0

In
te
rr
u
p
ts

25
·1

0
−
5

3
·1
0
−
5

3
·1

0
−
5

2
·1
0
−
5

5
·1

0
−
8

1
0
.5
·1
0
−
3

C
on

te
x
t
sw

it
ch
es

71
·1

0
−
5

22
.0
·1
0
−
5

8.
5
·1

0
−
5

1
8
6
·1
0
−
5

1
2
·1

0
−
8

2

T
ab

le
D
.2
.:
P
E
T

si
d
e
eff

ec
t
co
n
fi
gu
ra
ti
o
n
pe
r
ev
en

t
ge
n
er
a
te
d

120

E. Measurement Results of PET 121

E. Measurement Results of PET

10
0
%

90
%

8
0
%

7
0
%

6
0
%

5
0
%

4
0
%

3
0
%

2
0
%

1
0
%

P
i

F
u
ll

N
ai
v
e

0.
0

1
.5

1.
7

1
.1

1
.2

1.
8

1
.2

2
.3

2
.7

4
.1

A
cc
u
m
u
la
ti
on

0.
3

0
.9

1.
4

1
.2

0
.9

1.
2

1
.3

2
.3

3.
0

4
.0

S
im

u
la
te
d
A
n
n
ea
li
n
g

0.
5

2
.8

2.
9

5
.5

5
.2

4.
0

8
.3

6
.4

8.
2

1
2
.2

R
ed
u
ce
d

N
ai
ve

0.
5

0
.1

0.
1

0
.2

0
.2

0.
2

0
.3

0
.2

0.
4

0
.4

A
cc
u
m
u
la
ti
on

0.
2

0
.1

0.
2

0
.1

0
.1

0.
1

0
.1

0
.2

0.
2

0
.2

S
im

u
la
te
d
A
n
n
ea
li
n
g

1.
3

0
.2

0.
1

0
.2

0
.2

0.
3

0
.2

0
.3

0.
3

0
.6

X
M
L
V
al
.

F
u
ll

N
ai
v
e

28
.0

11
.1

9.
8

8
.0

1
1
.0

1
1.
8

1
3
.1

1
7
.3

2
1
.7

1
8
.0

A
cc
u
m
u
la
ti
on

0.
8

0
.0

0.
0

0
.0

0
.0

0.
0

0
.0

0
.0

0
.1

0
.1

S
im

u
la
te
d
A
n
n
ea
li
n
g

0.
4

1
.8

1.
9

3
.6

3
.8

4.
5

1
.9

5
.6

6.
4

1
1
.4

R
ed
u
ce
d

N
ai
ve

28
.2

13
.1

9.
7

9
.1

1
0
.0

1
3.
0

8
.0

1
2
.8

2
0
.2

1
8
.5

A
cc
u
m
u
la
ti
on

0.
2

0
.0

0.
0

0
.0

0
.0

0.
0

0
.0

0
.0

0.
1

0
.1

S
im

u
la
te
d
A
n
n
ea
li
n
g

0.
5

2
.2

2.
1

1
.6

3
.3

2.
5

3
.3

3
.1

3.
6

6
.2

S
S
J

F
u
ll

N
ai
v
e

33
.5

20
.3

1
2.
6

7
.8

6
.6

1
0.
7

7
.9

4
.8

9
.6

1
8
.6

A
cc
u
m
u
la
ti
on

0.
1

0
.1

0.
1

0
.1

0
.1

0.
1

0
.2

0
.2

0.
2

0
.3

S
im

u
la
te
d
A
n
n
ea
li
n
g

0.
1

0
.8

1.
0

0
.6

0
.5

0.
9

0
.8

1
.5

0.
9

3
.4

R
ed
u
ce
d

N
ai
ve

33
.2

18
.9

1
3.
4

6
.7

1
.0

0.
8

0
.9

1
.5

1.
5

0
.8

A
cc
u
m
u
la
ti
on

1.
2

0
.0

0.
0

0
.0

0
.0

0.
0

0
.0

0
.0

0.
1

0
.1

S
im

u
la
te
d
A
n
n
ea
li
n
g

0.
2

0
.1

0.
1

0
.1

0
.1

0.
1

0
.1

0
.0

0.
2

0
.2

N
F
V

F
u
ll

N
ai
v
e

11
.1

3
.5

0.
7

1
.4

2
.1

1.
4

1
.2

1
.0

2
.8

4
.3

A
cc
u
m
u
la
ti
on

0.
2

0
.3

0.
3

0
.5

0
.4

0.
4

0
.4

0
.8

0
.5

0
.9

S
im

u
la
te
d
A
n
n
ea
li
n
g

0.
2

0
.6

0.
5

0
.5

0
.2

0.
6

1
.0

1
.0

1.
5

1
.3

R
ed
u
ce
d

N
ai
ve

21
.6

4
.7

2.
2

1
.8

1
.4

1.
6

1
.2

1
.8

2.
5

4
.2

A
cc
u
m
u
la
ti
on

0.
7

0
.5

0.
3

0
.5

0
.4

0.
2

0
.5

0
.6

0.
7

1
.4

S
im

u
la
te
d
A
n
n
ea
li
n
g

0.
1

0
.6

0.
7

0
.4

0
.5

0.
3

0
.7

1
.2

1.
3

1
.5

E
lo
n
ga
te
d

N
ai
ve

12
.7

2
.4

1.
3

0
.7

0
.8

0.
8

0
.8

0
.7

1.
0

2
.4

A
cc
u
m
u
la
ti
on

0.
6

0
.2

0.
3

0
.3

0
.3

0.
4

0
.4

0
.5

0.
5

1
.0

S
im

u
la
te
d
A
n
n
ea
li
n
g

0.
3

0
.2

0.
4

0
.5

0
.4

0.
4

0
.5

0
.8

0.
7

1
.2

T
ab

le
E
.3
.:
P
E
T

m
ea
su
re
m
en

t
cl
ie
n
t
C
V
s
in

pe
rc
en

t

121

122 8. Appendix

1
0
0
%

9
0
%

80
%

70
%

60
%

P
i

F
u
ll

N
aive

3
8
0.8

0
9

3
4
3
.9
9
0

303
.610

266
.520

229
.367

A
ccu

m
u
la
tion

4
7
9.7

3
7

4
3
8
.3
5
7

387
.340

343
.340

294
.157

S
im

u
la
ted

A
n
n
ea
lin

g
5
2
.8
2
6

4
7
.5
8
0

42
.001

36
.287

31
.922

R
ed
u
ced

N
a
ive

3
6
0
1
2
.0
8
1

3
2
3
5
1
.4
5
8

28
760

.722
25

182
.340

21
561

.546
A
ccu

m
u
la
tion

4
0
6
0
6
.9
4
8

3
6
5
3
5
.9
2
9

32
509

.667
28

424
.921

24
343

.007
S
im

u
lated

A
n
n
ea
lin

g
2
1
1
1
2
.4
1
8

1
9
0
2
1
.4
4
1

16
904

.164
14

798
.229

12
690

.113

X
M
L
V
alid

ate
F
u
ll

N
aive

8.8
7
1

7
.2
8
8

6.489
6
.014

5.115
A
ccu

m
u
lation

1
1
5
7
4
2
6
.4
1
9

1
0
0
6
4
6
5
.6
0
0

894
490

.805
782

745
.217

670
960

.849
S
im

u
lated

A
n
n
ea
lin

g
6
0
.4
6
9

5
6
.2
3
4

49
.324

44
.483

37
.427

R
ed
u
ced

N
aive

8.9
1
2

7
.2
4
7

6.839
6
.090

5.356
A
ccu

m
u
lation

1
1
6
7
2
3
7
.7
3
3

1
0
0
6
3
7
1
.1
1
8

894
513

.505
782

694
.587

670
917

.963
S
im

u
lated

A
n
n
ea
lin

g
1
5
4.0

3
8

1
3
7
.0
6
4

124
.103

109
.116

91
.931

S
S
J

F
u
ll

N
aive

1
8
.0
7
5

1
4
.4
0
2

12
.904

11
.896

11
.071

A
ccu

m
u
lation

6
1
5
5
3
.0
5
6

5
5
2
8
2
.4
4
4

49
169

.292
43

051
.547

36
859

.142
S
im

u
la
ted

A
n
n
ea
lin

g
1
4
0
9
.0
3
6

1
2
7
1
.7
3
2

1130
.232

986
.266

852
.100

R
ed
u
ced

N
aive

1
8
0
7
.4
5
6

1
4
2
1
.7
3
4

1312
.344

1198
.032

1091
.188

A
ccu

m
u
la
tion

1
4
6
4
8
6
9
.9
6
0

1
0
0
6
4
3
8
.5
3
8

894
629

.032
782

725
.412

670
892

.260
S
im

u
la
ted

A
n
n
ea
lin

g
1
3
9
1
3
8
.5
3
5

1
2
5
2
7
4
.6
1
5

111
304

.292
97

399
.069

83
502

.123

N
F
V

F
u
ll

N
aive

5
6
8.1

5
9

5
1
3
.2
5
3

468
.480

410
.657

352
.259

A
ccu

m
u
la
tion

6
2
6
1
.7
8
8

5
6
3
1
.5
6
4

5003
.889

4382
.502

3755
.880

S
im

u
la
ted

A
n
n
ea
lin

g
2
3
5
1
.5
4
6

2
0
9
8
.0
5
4

1862
.708

1635
.208

1395
.707

R
ed
u
ced

N
aive

6
1
5.4

0
3

4
9
9
.1
2
6

455
.790

402
.607

341
.956

A
ccu

m
u
la
tion

6
2
2
4
.0
1
5

5
5
9
0
.0
0
7

4969
.151

3730
.289

3108
.501

S
im

u
la
ted

A
n
n
ea
lin

g
2
3
6
0
.8
7
8

2
1
3
0
.9
6
8

1898
.705

1663
.466

1423
.847

E
lo
n
gated

,
F
u
ll

N
aive

5
7
6.1

7
9

5
1
8
.2
4
1

465
.187

410
.743

351
.810

A
ccu

m
u
la
tion

6
2
3
4
.2
0
2

5
6
1
0
.8
0
8

4989
.049

4361
.637

3740
.267

S
im

u
la
ted

A
n
n
ea
lin

g
2
3
4
2
.6
0
1

2
1
0
4
.2
5
9

1867
.088

1640
.858

1402
.155

T
ab

le
E
.4
.:
P
E
T

m
ea
su
rem

en
t
sco

re
fo
r
th
e
loa

d
levels

100
%

to
60

%

122

E. Measurement Results of PET 123

5
0
%

4
0
%

3
0
%

2
0
%

1
0
%

P
i

F
u
ll

N
ai
v
e

1
9
0.
1
8
4

1
5
4
.2
7
3

1
1
4
.0
2
5

7
5
.4
9
0

3
8
.0
7
0

A
cc
u
m
u
la
ti
on

2
4
2.
8
3
9

1
9
8
.0
3
7

1
4
7
.3
5
8

9
6
.5
1
7

4
7
.3
8
3

S
im

u
la
te
d
A
n
n
ea
li
n
g

2
6
.8
3
9

2
1
.7
4
2

1
6
.2
6
1

1
0
.7
3
7

4.
9
3
2

R
ed
u
ce
d

N
ai
v
e

1
7
9
7
2
.3
2
3

1
4
3
9
4
.4
2
9

1
0
7
9
8
.9
2
4

7
1
8
6
.8
4
3

3
6
0
7
.2
6
0

A
cc
u
m
u
la
ti
on

2
0
2
9
0
.2
2
6

1
6
2
4
3
.4
3
5

1
2
1
8
7
.0
6
0

8
1
1
3
.7
0
0

4
0
6
2
.3
5
4

S
im

u
la
te
d
A
n
n
ea
li
n
g

1
0
5
6
2
.5
3
3

8
4
7
2
.8
2
5

6
3
4
5
.5
7
9

4
2
3
2
.0
1
6

2
1
0
9
.6
3
7

X
M
L
V
al
id
at
e

F
u
ll

N
ai
v
e

3.
9
9
9

3
.3
4
9

2.
6
1
6

1
.8
6
6

0.
8
7
5

A
cc
u
m
u
la
ti
on

5
5
8
9
4
8
.0
9
0

4
4
7
3
6
5
.5
9
7

3
3
5
5
1
8
.8
4
6

2
2
3
6
3
9
.2
0
1

1
1
1
8
0
0
.4
2
9

S
im

u
la
te
d
A
n
n
ea
li
n
g

3
0
.4
8
8

2
4
.8
7
4

1
7
.7
3
5

1
2
.8
0
4

6.
3
8
9

R
ed
u
ce
d

N
ai
v
e

4.
7
4
8

3
.2
5
7

2.
5
7
4

1
.8
5
8

0.
8
4
1

A
cc
u
m
u
la
ti
on

5
5
9
0
5
8
.5
4
3

4
4
7
1
3
9
.9
1
6

3
3
5
4
6
9
.4
0
0

2
2
3
6
0
9
.6
7
8

1
1
1
8
3
2
.3
1
5

S
im

u
la
te
d
A
n
n
ea
li
n
g

7
5
.5
0
6

6
0
.4
9
6

4
6
.2
4
3

3
0
.8
3
8

1
5
.0
0
3

S
S
J

F
u
ll

N
ai
v
e

9.
1
2
2

7
.6
7
2

5.
3
3
2

3
.6
4
0

2.
0
5
8

A
cc
u
m
u
la
ti
on

3
0
7
5
2
.2
4
9

2
4
5
8
6
.6
0
5

1
8
4
6
3
.8
0
4

1
2
3
0
4
.0
5
4

6
1
4
7
.0
5
7

S
im

u
la
te
d
A
n
n
ea
li
n
g

7
0
4
.4
3
4

5
6
1
.5
6
2

4
2
2
.8
6
8

2
8
2
.0
0
0

1
4
0
.1
7
6

R
ed
u
ce
d

N
ai
v
e

9
0
8.
1
0
5

7
2
1
.6
5
2

5
4
5
.4
0
9

3
6
1
.6
4
7

1
8
1
.0
1
3

A
cc
u
m
u
la
ti
on

5
5
9
0
3
4
.7
6
6

4
4
7
2
0
7
.0
0
7

3
3
5
4
3
3
.6
2
9

2
2
3
6
1
1
.7
9
1

1
1
1
8
4
1
.1
4
1

S
im

u
la
te
d
A
n
n
ea
li
n
g

6
9
5
3
7
.4
0
6

5
5
6
1
6
.6
2
8

4
1
7
6
6
.4
9
8

2
7
8
5
9
.0
5
1

1
3
9
1
1
.6
6
6

N
F
V

F
u
ll

N
ai
v
e

2
9
5.
2
5
8

2
3
5
.3
6
4

1
7
6
.2
7
8

1
1
7
.9
3
8

5
7
.5
9
6

A
cc
u
m
u
la
ti
on

3
1
3
3
.8
7
8

2
5
0
6
.9
2
7

1
8
7
5
.7
1
2

1
2
4
8
.4
1
7

6
2
3
.1
1
0

S
im

u
la
te
d
A
n
n
ea
li
n
g

1
1
6
0
.4
2
1

9
3
4
.3
8
4

7
0
0
.2
6
6

4
6
6
.8
6
2

2
3
6
.0
2
2

R
ed
u
ce
d

N
ai
v
e

2
8
6.
1
8
8

2
3
2
.1
4
0

1
7
2
.3
5
4

1
1
4
.9
9
0

5
7
.9
8
8

A
cc
u
m
u
la
ti
on

3
1
0
8
.5
0
1

2
4
8
8
.2
7
8

1
8
6
8
.5
5
0

1
2
4
0
.9
5
5

6
2
0
.7
7
0

S
im

u
la
te
d
A
n
n
ea
li
n
g

1
1
8
3
.6
5
1

9
4
7
.3
3
8

7
1
2
.7
8
3

4
7
0
.5
6
2

2
3
6
.8
8
2

E
lo
n
ga
te
d
,
F
u
ll

N
ai
v
e

2
9
4.
6
5
8

2
3
7
.5
7
7

1
7
6
.6
6
6

1
1
7
.6
6
6

5
9
.0
0
8

A
cc
u
m
u
la
ti
on

3
1
1
7
.1
6
8

2
4
9
6
.7
2
0

1
8
6
5
.5
8
6

1
2
4
4
.2
9
5

6
2
3
.2
0
1

S
im

u
la
te
d
A
n
n
ea
li
n
g

1
1
7
0
.2
7
2

9
3
7
.2
3
6

7
0
1
.5
4
2

4
6
7
.7
6
9

2
3
3
.6
8
2

T
ab

le
E
.5
.:
P
E
T

m
ea
su
re
m
en

t
sc
o
re

fo
r
th
e
lo
a
d
le
ve
ls

5
0
%

to
1
0
%

123

124 8. Appendix

F. Linear Regression Model

Performance counter Estimated coefficient β Standard Error

Intercept 23.185 1.1963
L3 misses 9.7313 · 10−5 1.6844 · 10−5

L3 hits −5.939 · 10−5 1.0333 · 10−5

Bytes read from memory controller −5.304 · 10−8 9.6052 · 10−9

Instructions retired 7.4655 · 10−9 1.0876 · 10−9

Interrupts 1.6188 · 10−3 7.3213 · 10−4

Context switches −9.3015 · 10−4 2.0541 · 10−4

Table F.6.: Estimated coefficients β of linear regression model with not significant counters
removed

Workload
Load Level Pi XMLValidate SSJ NFV

100% −1.38 −400.16 −494.54 −371.19
90% −0.38 −348.51 −394.95 −341.78
80% 1.85 −308.33 −337.54 −306.64
70% 4.17 −270.68 −288.19 −271.30
60% 6.64 −232.69 −244.03 −231.06
50% 9.41 −193.58 −192.65 −188.99
40% 12.67 −154.56 −145.94 −147.73
30% 15.92 −116.66 −103.75 −104.64
20% 18.14 −78.02 −54.40 −61.47
10% 20.52 −40.90 −8.66 −18.91

Table F.7.: Power consumption prediction of the linear regression model in watts with in-
significant coefficients removed

Performance counter Estimated coefficient β Standard Error

Intercept 30.807 2.8458
L3 misses 1.1915 · 10−5 6.6617 · 10−5

L3 hits −7.6529 · 10−6 4.2786 · 10−5

Bytes read from memory controller −9.0466 · 10−10 2.9851 · 10−8

Bytes written to memory controller −1.7218 · 10−8 3.3599 · 10−8

Instructions retired 3.6391 · 10−9 5.2868 · 10−9

Interrupts −6.4723 · 10−3 4.4762 · 10−3

Context switches −1.851 · 10−4 1.939 · 10−3

Table F.8.: Estimated coefficients β of linear regression model based on XMLValidate and
SSJ

124

Acronyms

3GPP 3rd Generation Partnership Project 9

ANSI American National Standards Institute 33

API Application Programming Interface 14, 31

APIC Advanced Programmable Interrupt Controller 37, 70

ASCII American Standard Code for Information Interchange 30

ASM x86-64-Assembler 36, 37, 54, 55, 58, 59, 60, 61, 62, 63, 64, 65, 66

BSS Business Support System 8

CDN Content Delivery Network 7

CFI Call Frame Information 36

CPI Call per Instruction 18

CPU Central Processing Unit 13, 14, 15, 17, 18, 19, 20, 21, 34, 37, 49, 50, 51, 53, 54, 64,
68, 70, 72, 73, 76, 78, 86, 90, 103, 104

CV Coefficient of Variation 72, 73, 75, 76, 77, 78, 79, 81, 83, 86, 90, 101, 102

DPI Deep Packet Inspection 1, 3, 6, 8, 9, 20, 29, 33, 49, 50, 51, 78, 90, 99

EPA United States Environmental Protection Agency 9

ETSI European Telecommunication Standardisation Group 7

GSL GNU Scientific Library 45, 52

GSO Generic Segmentation Offload 51

IETF Internet Engineering Task Force 9

IMS IP Multimedia Subsystem 7

IP Internet Protocol 12, 13, 49

IPv4 Internet Protocol Version 4 32

JNI Java Native Interface 39, 42, 46

JSON JavaScript Object Notation 30, 31, 32

JVM Java Virtual Machine 13

125

126 Acronyms

LRU Least Recently Used 23

MIP Mixed Integer Program 17

MSE Mean Squared Error 25, 45

MSR Model Specific Register 14

MTRR Memory Type Range Register 33, 34

MTU Maximum Transmission Unit 30

NAT Network Adress Translation 8, 49

NFV Network Functions Virtualization 1, 3, 5, 6, 7, 8, 9, 17, 19, 20, 26, 33, 53, 71, 72, 78,
83, 85, 86, 89, 90, 124

NFVI Network Functions Virtualization Infrastructure 8

NIC Network Interface Card 8, 19, 50, 51, 78, 79, 81, 104

NRDC National Resources Defense Council 5

OLTP Online Transaction Processing 15, 20

OS Operating system 13, 20, 35, 37, 53, 54

OSS Operation Support System 8

PAT Page Attribute Table 33, 34

PC Pin Control 14

PET Performance Event Trigger Framework 1, 3, 39, 40, 42, 43, 44, 45, 46, 47, 53, 71, 72,
76, 83, 85, 89, 90, 91, 99

PM Performance Monitoring 14

PMU Performance Monitoring Unit 14, 39

QoS Quality of Service 17

QPI QuickPath Interconnect 21

SDN Software Defined Networking 1, 3, 5, 8, 17, 89

SERT Server Efficiency Rating Tool 1, 3, 5, 6, 7, 9, 10, 12, 14, 15, 17, 73, 89, 90

SIMD Single Instruction Multiple Data 36, 54, 55, 58, 59, 60, 61, 62, 63, 64, 65, 66

SMT Simultaneous Multithreading 17, 59

SPEC Standard Performance Evaluation Corporation 1, 3, 5, 6, 9, 10, 13, 49, 51, 89

SUT System Under Test 3, 8, 10, 12, 13, 14, 15, 19, 20, 21, 29, 32, 33, 36, 37, 45, 46, 49,
50, 51, 53, 54, 64, 68, 83, 89

TCP Transmission Control Protocol 12, 13, 49, 51

TLB Translation Lookaside Buffer 18

TPC Transaction Processing Performance Council 9

126

Acronyms 127

UC Strong Uncachable 33, 34

UC- Uncachable- 33, 34, 36, 54, 55, 99, 100, 105

UDP User Datagram Protocol 20, 29, 33, 50

vCDN Virtualized Content Delivery Network 7

VM Virtual Machine 8, 17

VNF Virtual Network Function 5, 6, 7, 8, 9, 17, 20, 29, 49, 90

VNFaaS Virtual Network Function as a Service 7

VNFC Virtual Network Function Component 9

VNFD Virtual Network Function Descriptor 9

VNFI Virtual Network Function Instance 8, 9

VNPaaS Virtual Network Platform as a Service 7

WB Write Back 34, 64

WC Write Combining 33, 34

WDK Worklet Development Kit 12

WP Write Protected 34

WT Write Through 34

XML Extensible Markup Language 15, 20

127

	Contents
	Abstract - German
	Abstract - English
	1 Introduction
	2 Foundations
	2.1 Network Function Virtualization
	2.2 Power Measurement and Methodology
	2.2.1 Measurement
	2.2.2 Chauffeur

	2.3 Performance Counters
	2.4 Preexisting Worklets
	2.4.1 Pi Worklet
	2.4.2 XMLValidate
	2.4.3 SSJ

	3 Related Work
	3.1 Energy Efficiency and Benchmarking
	3.2 NFV Deployment
	3.3 Power Estimation and Performance Counters

	4 Approach
	4.1 Reference Workloads
	4.1.1 Local Workloads
	4.1.2 NFV Workload

	4.2 Workload Approximation
	4.2.1 Selection of Available Performance Counters
	4.2.2 Side Effects of Triggering Performance Events

	4.3 Regression Model

	5 Implementation
	5.1 Traffic Generator and Receiver
	5.1.1 Architecture
	5.1.2 Configuration

	5.2 NFV Workload
	5.3 Linux Kernel Module
	5.3.1 Caching Modes
	5.3.2 Character Device Driver

	5.4 Relevant Performance Counter
	5.5 Performance Event Trigger Framework
	5.5.1 Architecture
	5.5.2 Configuration
	5.5.3 PET Build System
	5.5.4 Chauffeur Worklet

	6 Testbed Setup
	6.1 Reference Testbed and Calibration
	6.2 Chauffeur Testbed

	7 Evaluation
	7.1 Performance Counter Implementation
	7.1.1 L3 Cache Misses
	7.1.2 L3 Cache Hits and L2 cache misses
	7.1.3 L2 Cache Hits
	7.1.4 Bytes Read from Memory Controller
	7.1.5 Bytes Written to Memory Controller
	7.1.6 Instructions Retired
	7.1.7 Context Switches
	7.1.8 Interrupts

	7.2 Performance Event Trigger Framework
	7.2.1 Pi Workload
	7.2.2 XMLValidate
	7.2.3 SSJ
	7.2.4 NFV Workload
	7.2.5 Lower Bound for Valid Measurements

	7.3 Linear Regression Model

	8 Conclusion
	8.1 Future Work

	Bibliography
	List of Figures
	List of Tables
	Appendix
	A SUT Background Noise
	B Testbed Hardware
	B.1 SUT
	B.2 Traffic Generator and Receiver

	C Measurement Results of Selected Performance Counter
	D PET Side Effect Configuration
	E Measurement Results of PET
	F Linear Regression Model

	Acronyms

