Multi-Tenancy Performance Benchmark
for Web Application Platforms

Rouven Krebs, Alexander Wert, and Samuel Kounev

SAP AG, Applied Research,
Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany
{rouven.krebs}@sap.com,

Karlsruhe Institute of Technology, IPD,
Kaiserstrasse 12, 76131 Karlsruhe, Germany
{alexander.wert, kounev}@kit.edu

Abstract. Cloud environments reduce data center operating costs through
resource sharing and economies of scale. Infrastructure-as-a-Service is
one example that leverages virtualization to share infrastructure resources.
However, virtualization is often insufficient to provide Software-as-a-
Service applications due to the need to replicate the operating system,
middleware and application components for each customer. To overcome
this problem, multi-tenancy has emerged as an architectural style that
allows to share a single Web application instance among multiple in-
dependent customers, thereby significantly improving the efficiency of
Software-as-a-Service offerings. A number of platforms are available to-
day that support the development and hosting of multi-tenant appli-
cations by encapsulating multi-tenancy specific functionality. Although
a lack of performance guarantees is one of the major obstacles to the
adoption of cloud computing, in general, and multi-tenant applications,
in particular, these kinds of applications and platforms have so far not
been in the focus of the performance and benchmarking community. In
this paper, we present an extended version of an existing and widely
accepted application benchmark adding support for multi-tenant plat-
form features. The benchmark is focused on evaluating the maximum
throughput and the amount of tenants that can be served by a platform.
We present a case study comparing virtualization and multi-tenancy. The
results demonstrate the practical usability of the proposed benchmark in
evaluating multi-tenant platforms and gives insights that help to decide
for one sharing approach.

Keywords: Platform, SaaS, Multi-tenancy, Benchmark

1 Introduction

Cloud Computing enables ubiquitous and convenient on demand access to com-
puting resources over network [2]. Cloud users benefit from the lower costs and
increased flexibility, in an efficient and scalable manner, the elimination of an
upfront commitment, and payment on a short-term pay per use basis [2]. The

2 Rouven Krebs, Alexander Wert, and Samuel Kounev

National Institute of Standards and Technology [19] defines three service mod-
els for cloud computing. The Infrastructure-as-a-Service (TaaS) model allows
to provide and share hardware resources using virtualization technology. The
Platform-as-a-Service (PaaS) model allows to deploy and develop applications
of different customers within a shared cloud middleware environment. Finally,
the Software-as-a-Service (SaaS) model provides hosted applications accessed
remotely via the Internet.

Multi-tenancy is an architectural style in SaaS scenarios that enables the
sharing a single application instance among multiple independent customers.
This style increases efficiency by sharing not only the hardware but also the
operating system, the middleware and the application components themselves.
The term tenant refers to a group of users sharing the same view on an applica-
tion. This view includes the data they access, the application configuration, the
user management, particular functionalities and related non-functional proper-
ties [18]. According to the Gartner’s hype cycle from 2011 [24] [21], multi-tenancy
is estimated to become mainstream in 2-5 years.

Implementing the functionality to share a single application instance among
several tenants is a complex task [11][20] that has to be performed for every
developed application. Therefore, the best approach for realizing multi-tenancy
is to employ a middleware platform or a PaaS environment that natively sup-
ports the development by encapsulating basic functionality such as for example
the management and identification of tenants. Google App Engine [10], SAP
NetWeaver Application Server and force.com [28] support the developer with
predefined interfaces and implicit functionality reducing the development effort
for creating a multi-tenant application.

While Cloud Computing provides many advantages as described above, it
still fails to provide high availability and response time guarantees required
for running mission-critical applications. Various reports [22] [4] indicate that
performance is still one of the major obstacles for the adoption of the cloud
paradigm. To gain insight into the performance provided by cloud platforms,
representative application benchmarks and metrics are needed. Various bench-
marks and metrics with focus on cloud environments were developed in the last
view years. However, such benchmarks are usually focused on specific aspects of
cloud services like persistence or features like infrastructure elasticity.

To the best of our knowledge, no benchmark that explicitly supports the
evaluation of multi-tenant platforms exists so far. To fill this gap, in this paper we
propose an extended version of an existing benchmark to support multi-tenancy.
This benchmark can be used to evaluate the performance of an on premise
middleware system or a PaaS environment supporting multi-tenant applications.

The selected case study to evaluate the usability of the benchmark is mo-
tivated by our former publication [20]. In this paper, we present an estimation
approach to balance the increasing development costs for developing a multi-
tenant application (MTA) with the decreasing operating costs resulting from
the improvements in resource efficiency. Furthermore, given that, running multi-
ple copies of an application in separate virtual machines (VM), each customized

Multi-Tenancy Performance Benchmark for Web Application Platforms 3

for a given tenant, is often considered as an alternative to adopting a multi-
tenant architecture, we decided to evaluate the two approaches in terms of the
performance they provide. Our approach allows to find the point at which multi-
tenancy is more efficient with respect to resource utilization in a given application
scenario.

In summary, the contribution of this paper is twofold: We present an extended
version of an established benchmark to support multi-tenancy. Furthermore, we
present a comparison of virtualization and multi-tenancy which helps to estimate
the efficiency of the approaches.

The remainder of the paper is structured as follows. In Section 2, we out-
line important and common design aspects of multi-tenant systems. Section 3
presents our extensions of the TPC-W benchmark based on the outcomes of
the previous section. Furthermore, we give an insight into our implementation.
Section 4 presents our case study investigating the efficiency of multi-tenant sys-
tems compared to virtualization. Section 5, surveys related work and Section 6
concludes the paper.

2 General Design Concerns in Multi-tenant Architectures

To ensure isolation in a multi-tenant application (MTA) one has to make a num-
ber of architectural decisions. Furthermore, PaaS scenarios raise some additional
requirements concerning the actual implementation. In this section, we give a
short overview of the most important architectural aspects related to our work
and the impact of multi-tenancy on potential benchmarks and metrics.

2.1 Tenant Identification

When a request arrives at a MTA not only the specific user has to be identified,
but also the tenant it belongs to. Various approaches exist to identify the tenant.
One solution is to attach the tenant specific information to the user identification.
However, this approach requires an authentication of the user and duplicate user
names in different tenants are not possible, thus, violating isolation. Another
widely used approach (e.g., Google App Engine [10]) is to use the host name as
a basis for the tenant identification. In this scenario, various host aliases point
to the same application instance/IP address. Thus, a tenant identification is
possible without requiring a login and duplicate user names are supported. A
common approach to transfer the tenant’s identifier along the execution path
leverages the thread context to which the relevant information is attached.

2.2 Database

In general, we distinguish three major approaches to separate a tenants data
from the data persisted by other tenants (Wang et al. [27] and Chong et al. [6]).
The dedicated database system provides a separate dedicated database for each

4 Rouven Krebs, Alexander Wert, and Samuel Kounev

tenant and has the best isolation at the cost of the highest overhead. In a dedi-
cated table/schema approach, every tenant uses the same database management
system, but separate tables or schemas. This scenario enables at least a partial
sharing. However, some mutual performance influences between tenants are now
possible. The highest degree of sharing, respectively efficiency, is established by
sharing the same tables and schemas. To differentiate the data, a column with
the tenant id is added to each table. This approach also has the largest conse-
quences on the application or platform. An application has to take care of the
tenant id in every database statement. If the platform provides an abstraction
of the database, it might handle the additional tenant id in a transparent way
(e.g., EclipseLink [8]).

2.3 Tenant Meta-Data

Koziolek [17] presents a high level architecture for MTAs based on observations
he made about existing offerings. In general, this architecture reflects a Web
Application Architecture with an additional meta data storage for the tenant
specific information (e.g., customization, database id, tenant name, SLAs). An-
other element is the meta-data manager which enables access to the meta-data
and adjusts the application according to the information stored in the meta-
data. The variability of information stored in the meta data is high. However,
we can assume that at least an id for the tenant, a display name for the tenant
and a database identifier is available. Depending on the employed data man-
agement approach, the latter may refer to an tenant specific id or database
connection. Platforms with multi-tenancy support usually provide access to the
tenant meta-data.

2.4 Security

Normally either the implemented persistency APIs of the platforms or the appli-
cation developer has to ensure the separation of data by using SQL statements
with tenant id as aforementioned. In addition, tenant specific caches might be
required. The identification of a tenant might base on an identity management
system as part of the meta-data manager. However, the access to the application
might allow to run attacks against other tenants with extended privileges. This
has to be reflected by special measures like SQL encoding and stack overflow
prevention.

2.5 Metrics for a Multi-tenant Benchmark

In traditional benchmarks, usually one or several performance metrics are ob-
served in relation to the amount of simulated users, the request rate, and some-
times price (e.g., [1]). Based on this information, a quality metric of the system
is derived.

In a multi-tenant system, we can also incorporate the amount of tenants, for
example, considering the throughput and response time in relation to the amount

Multi-Tenancy Performance Benchmark for Web Application Platforms 5

of tenants. This metric might be of interest when the per tenant overhead and the
total amount of tenants a platform could serve is relevant. Furthermore, it might
answer the question about the optimal amount of tenants for one application
server. Another metric might define a fixed number of tenants by observing the
QoS based on the amount of users for each.

It is worth to mention that real applications serve tenants with different
amounts of users and various database sizes and consequently various resource
demands. If these factors are known for the scenario under investigation the
benchmark might reflect this.

2.6 PaaS Persistence

We consider traditional middleware and PaaS environments with multi-tenancy
support. Existing PaaS environments provide an application runtime container
and various embedded services accessed via an API (e.g., Google App Engine,
SAP NetWeaver Cloud). Persistence services are of major importance. Existing
offerings provide SQL or key value stores. However, in the majority of cases, the
access to the storage is only permitted within the application runtime container.
Even in cases where a user interface to manipulate individual data records exists,
it is normally impossible to directly load high amounts of data.

3 Multi-tenant Benchmark

In this section, we present our extensions of the TPC-W benchmark [1] based
on the implementation provided in [5] and focus on our modifications for cloud
environments with multi-tenancy support. TPC-W was already used successfully
in the field of multi-tenancy [26] and already satisfies some of the requirements
for a cloud benchmark [3] .

3.1 TPC-W

The Transaction Processing Performance Council (TPC) developed a transac-
tional Web e-commerce benchmark (TPC-W) [1]. Its focus is on business oriented
transactional Web servers. The workload models an Internet commerce environ-
ment emulating an online bookshop. The benchmark emulates multiple on-line
browser sessions by accessing dynamically generated Web pages. The benchmark
provides three workload profiles that differ in their the browse-to-buy request
ratio resulting in different proportions of database reads or inserts/updates: pri-
marily shopping, browsing and Web-based ordering. The load can be varied by
the amount of emulated browsers (EB) sending requests to the system. One EB
corresponds to one user calling various Web transactions in a closed workload.
To ensure portability, TPC does not require the use of a specific implementation.
Instead a detailed specification of the functionality that must be provided by an
implementation is published.

6 Rouven Krebs, Alexander Wert, and Samuel Kounev

3.2 Multi-tenant TPC-W Specification

We extended the specification of TPC-W in several points to cover the relevant
conceptual aspects of multi-tenant systems described in Section 2. The PaaS
persistence related concerns (cf. Section 2.6) do not directly relate to the speci-
fication of the benchmark and will be discussed in Section 3.3.

The Tenant Meta Data Manager (cf. Section 2.3) provided by a platform is
used to render the tenant’s display name as part of various Web pages (Home
Page, Customer Registration Page, Buy Confirm Page). In one the pages (Buy
Confirm) the tenant’s identifier is also rendered.

For environments with a native connection to one schema on one database
server, a tenantId column is added to every table (cf. Section 2.2). Consequently,
the primary key has to be a combination of the tenantId and the entity specific
id field. In addition to the TPC-W standard the tenantId, retrived from the
meta-data manager, is added to every SQL request from the application to en-
sure data isolation and thus privacy of the data. In addition, we recommend to
encode all SQL parameters for security reasons. TPC-W does not specify appli-
cation internal caches; thus, we do not have to provide a tenant specific access
mechanism.

Several database management systems do not support the auto generation of
combined primary keys. Thus, an application based key generation mechanism is
applied to generate the primary keys. To ensure portability, we specify the usage
of a key-value table with segment support to reduce overhead. This solution
consists of a database table which provides a key counter for each table and
each tenant. To avoid overhead, the key-value table is accessed via an application
local cache. This cache increases the counter by a count of 1000 and thus it could
return 1000 ids before the next update of the key table. It has to be ensured that
increasing the database key counter by several application instances does not
result in unresolved conflicts. This key counter mechanism is used to generate
the primary keys. It is worth mentioning, that the tenantId part of the key
must not be generated, as this is a value derived by the request that triggered
the database update.

For environments with a native connection to various SQL servers or schemas
for each tenant the auto generation for the keys can be reused and the additional
column for the tenant id becomes obsolete. In such situations we assume that
the database connection/schema is either provided in a transparent way by the
platform or is stored in an application specific configuration where it is mapped
to the tenant. In the latter case, for every SQL request, the appropriate connec-
tion must be selected based on the tenants id returned by the tenant meta-data
manager.

For environments with an API based access to the persistence layer, where
the data isolation aspect is transparent to the application the above methods
might be irrelevant. However, if the data isolation aspect is not transparent the
described solutions have to be considered.

Multi-Tenancy Performance Benchmark for Web Application Platforms 7

The load driver has to support the platform specific tenant identification
mechanism (cf. Section2.1). As every tenant accesses the same application, we
assume similar workload profiles.

The relevant metrics and the exact setup concerning the number of users for
each tenant depends on the goals of the benchmarking scenario. For our case
study, we defined static workload profiles for each tenant with an increasing
amount of tenants.

3.3 Implementation

PlatformTenantAdapter CreateDatabase
—> +createSharedTable(connection:String);
+createTenantConnection(connection:String, tenantld:String):void
v 5
'
<<interface>> \
ITPCW_Tenant H
tenantContext .
+getTenantld():String [Cmmmmmmmmmmmm ey I %etConnecllons
+getTenantName():String H |
+getTenantDbld():int H H
N] 1
creates itenantContext H \
db, : ¥
TPCW_home_interaction Access TPCW_Database
= = — dbAccess
tenantDataAccess
TenantMetaDataAccess tenantDataAccess FillDatabase
—|+getCurrentTenant(): TPCW_Tenant +addData(table:String, content:String, tenantld:String)

Fig. 1: Overview of the Multi-Tenant TPC-W Benchmark.

The basis of our version [5] provides a Java Servlet based application that
accesses the database with the help of one central class using a JDBC connection.
Figure 1 shows an overview of the elements used in our version of the TPC-W
benchmark. In the following, we briefly describe the functionality of the various
elements and how they are related to each other.

TPCW_home_interaction is one example of 14 servlets used in our implemen-
tation. The servlets render the html pages and implement the expected work
flow. Every servlet has a reference to the TenantMetaDataAccess and uses an
implementation of the interface ITPCW_Tenant to access the meta-data for the
tenant that owns the current thread.

TPCW_Database implements the JDBC-based communication with the database,
which is implemented as described in Section 3.1. It also encapsulates the key
generator.

The TenantMetaDataAccess class implements the access to the platform’s
tenant meta-data. It hides the platform specific implementation for accessing in-
formation about the tenants. Thus, it is possible to port the implementation to

8 Rouven Krebs, Alexander Wert, and Samuel Kounev

another platform by changing the implementation of this class. The TenantMeta-
DataAccess provides a platform specific implementation of the ITPCW_Tenant
interface.

ITPCW_Tenant defines the interface that represents a concrete tenant en-
capsulating the communication with the meta-data manager to provide tenant
specific information.

CreateDatabase extends HttpServlet and is a proxy to create the required
schema in the platform environment when no direct access is available. The
method createSharedTable creates a shared schema in the database. Method
create TenantConnection creates a schema without tenant id for each tenant.
The corresponding connection and type of database multi-tenancy is then set
in the TPCW_Database. Thus, using create TenantConnection enables separate
schema and separate databases to be used. If the platform provides the tenant
specific connections in a transparent way, one has to modify TPCW_Database.

FillDatabase is a proxy extending HttpServlet to initialize the databases data
for the benchmark run using TPCW_Database.

The Load Driver is provided in [5]. The target platform in our case differen-
tiates tenants by the host name. Therefore, we created one instance of the load
driver for each tenant with a tenant specific hostname as a target.

4 Case Study

In this section, we apply our extended version of the TPC-W benchmark in a case
study demonstrating its use for performance evaluation. In addition, we present
a comparison of virtualization and multi-tenancy which helps to estimate the
efficiency of the approaches.

4.1 Goals

The main goal of the presented case study is to compare an application-based
multi-tenancy approach with a pure virtualization-based approach in terms of
performance. In particular, we investigate the following main question: Given
a certain setup, under which conditions is an application-based multi-tenancy
approach more efficient than a virtualization-based approach, and vice versa?

In order to address this question, we investigate the following research ques-
tions for each of the two scenarios:

— RQ1: What is the maximum throughput that can be achieved with the
corresponding sharing approach depending on the tenants-size.

— RQ2: Under which relationship between the tenant size and number of ten-
ants is a multi-tenant architecture more efficient?

4.2 Experimental Setup

In order to address the research questions mentioned above, we perform a series
of experiments.

Multi-Tenancy Performance Benchmark for Web Application Platforms 9

Load Server Load Server
Remote Browser Emulators Remote Browser Emulators
T1 T2 Tn T1 T2 Tn
\ \ ;)
\ /
\ VA
Application Application \
Server Server | .
- LAN XEN 4.1" LAN
XEN41 ~—Y— ~—Y— —¥— —¥— || licbite |1 ebit/s
VM 1 VM 2 VM n VM
MT-extended
TPC-W | | [TPC-W | | [TPC-W TPC-W | TPC-W
/ / |) “ Y,
- 7/]/ I _ -
AR
/] 1
B / / | ~
O MysQL
T Schema
MySQL xxx)
Database Server Database Server
(a) Setup for Virtualization-Based (b) Setup for Application-Based
Sharing Approach Multi-Tenancy Approach

Fig. 2: Experimental Setup

Figure 2 shows the experimental setups for the virtualization-based scenario
(Figure 2a) and the multi-tenancy scenario (Figure 2a). In both cases, the ex-
perimental setup comprises three physical servers: The Load Server is used for
user emulation, the Application Server hosts the application logic part of the
benchmark and the Database Server serves as the persistence layer. These three
physical machines have the same characteristics. In particular, each of them has
a processing power of 16 x 2,13 GHz, a memory capacity of 16 GB, and SUSE
Enterprise 11 as operating system. The machines are connected by a 1 Gbit/s
LAN. For our experiments, we assume there are n equal-sized tenants T1...Tn
each comprising m users (cf. Section 3.2) emulated by means of Remote Browser
Emulators (RBE) (cf. [1]) running on the Load Server. The browsing workload
mix defined by [1] is used to generate load.

In the following, we explain the differences in the two scenarios.

Scenario I: Virtualization-Based Approach In this scenario, the customer
contexts are separated by means of separate VMs and separate database schemata
(cf. Figure 2a). Thus, for each customer context the Application Server hosts a
VM on top of a common XEN 4.1 hypervisor. Each VM is running a separate
application instance of TPC-W within an SAP-specific customized version of
Apache Tomcat. Given that TPC-W is an I/O-intensive application, compared
to the Database Server, the CPU consumption on the Application Server is rela-

10 Rouven Krebs, Alexander Wert, and Samuel Kounev

tively small. Thus, given that the focus of our comparison is on the Application
Server tier, it is reasonable to pin the cores of all VM to one physical core to
avoid the database from being the bottleneck. The available memory capacity
is equally distributed among the VM and the host operating system. Similarly
to the application layer, the separation on the persistence layer is realized by
means of a separate database schemata. Thus, each TPC-W instance uses its
own, dedicated database schema. However, all database schemata are hosted
within a common MySQL 5.1 process executed on the Database Server.

Scenario II: Multi-Tenancy Approach In the multi-tenant scenario, the
tenants are separated by the notion of separate tenant contexts at the application
layer and an extended database schema which allows for accessing tenant-specific
data. Correspondingly, the experimental setup for Scenario II comprises only
one VM and only one database schema (cf. Figure 2b). The single VM hosts
the multi-tenant version of TPC-W (cf. Section 3.2) deployed on the extended
Apache Tomcat. The Tomcat instance provides a Tenant Meta Data Manager
(cf. Section 2.1). Based on the tenant-specific meta-data, the benchmark accesses
the extended database schema. Similarly to the setup of Scenario I, the virtual
processing unit of the single VM is pinned to a single physical CPU core.

Testing Methodology We performed 10 experiment series in total, five for
each scenario. For every series, the size of each tenant was fixed to 250, 500, 750,
1000 or 1500 users. We are interested in the maximum throughput of the system.
Thus, we started each experiment series with one active tenant and increased
the amount of tenants stepwise until the application started to throw time out
exceptions. To ensure equal conditions the databases were newly created, and
filled with data before every run. Afterwards, the database management system
and the VMs were restarted prior to starting the load driver. In the multi-tenancy
scenario we restarted the VM as well. The warm-up phase was set to 10 minutes
and the measurement period was 30 minutes.

4.3 Results

In this section we present the results of our measurements. Figure 3 presents
a general overview of the most important data gathered, whereas the specific
research questions RQ1 and RQ2 are addressed by Figure 4a and Figure 4b.
The confidence intervals in all measurements were negligibly small and are thus
omitted for compactness.

In Figure 3, the number of tenants is shown on the x-axis and the throughput
in transactions/second on the y-axis. The various curves represent measurements
with the multi-tenancy and virtualization-based sharing approach for various
amounts of users per tenant. In general the CPU utilization became a bottleneck
and prevented the system to achieve higher throughputs. In the virtualization
scenario with a tenant size of 250 users, the amount of guest domains was limited
to 12 due to a lack of memory which resulted in memory exceptions when the

Multi-Tenancy Performance Benchmark for Web Application Platforms 11

900

. 800
@
E 700 ——=
—— ~_s—a

E 600 — S //.///,,/—
5 500 ," -— - — —-Virtualization 250 Users
2 400 X — — - Virtualization 500 Users
% 300 « g _— ~a-Virtualization 750 Users
3 O e ~e-Multi-tenancy 250 Users
£ 200 p // Multi-tenancy 500 Users

100 —& Multi-tenancy 750 Users

o ./0/ ‘
0 5 10 15 20 25

Tenants

Fig. 3: Throughput Dependent on the Amount of Tenants.

1200 »

1000 /

800 A
M e

600 / \ \\ ~=-Multi-tenancy

400 ~e-Virtualization \x‘

200 ~=-Multi-tenancy

N
]

-
«

Tenants
N
1S

Throughput [Trans/s]

«

————

0 500 1000 1500 0 500 1000 1500
Tenant Size [# user] Tenant Size [# user]

(a) Maximum Achievable Throughput (b) Paredo Optimal Configurations

Fig. 4: Maximum Throughput and Paredo Based Decision Support.

server was lunched. Although the systems CPU was underutilized with only 12
domains. The measurement with 250 users and multi-tenancy were stopped at 20
tenants due to time limitations for further experiments and the already existing
data to answer our research questions. We assume unused potential concerning
the amount of tenants because of very low response times and a CPU utilization
of around 70%. The figure also shows that the advantage of multi-tenancy is less
for the 500 users scenario and even lower for 750 users. In similar measurements
for 1000 and 1500, users we observed lower maximum throughputs in the multi-
tenancy case.

Figure 4a focuses on RQ1. The maximum overall throughput of all tenants is
shown on the y-axis. The x-axis presents the number of users for each tenant. By
increasing the number of tenants for each tenant size, the maximum throughput
was determined. The maximum throughput decreases with lower values for the
tenant size in the case of virtualization whereas in the case of multi-tenancy
throughput remains stable.

Figure 4b shows the tenant size on the x-axis and the amount of tenants at
which the maximum throughput was achieved on the y-axis. Thus it presents
paredo optimal configurations in terms of the maximum throughput for the
virtualization and multi-tenancy scenario. It shows, that multi-tenancy is less
efficient in situations with more than 1000 users as there the amount of served
tenants and the throughput is below the capabilities of virtualization. In the
range between 250 and 1000 users per tenant, virtualization is a usable model,

12 Rouven Krebs, Alexander Wert, and Samuel Kounev

for the given hardware configuration, if the amount of tenants to be served is
below the curve for virtualization. Nevertheless, multi-tenancy is able to serve
more tenants with a higher total throughput by using the same hardware in these
boundaries. The benefits of multi-tenancy becomes more significant in scenarios
with 250 users or less. At these, the total throughput for virtualization was not
longer limited by the CPU, instead the memory become the bottleneck. Multi-
tenancy uses memory resources very efficiently as it avoids to allocate static
memory for the application, application server and OS. Consequently multi-
tenancy can still achieve a high throughput and good utilization of the CPU in
these cases. Thus, this figure addresses RQ2.

Especially for stateless web applications with low memory demands the CPU
is the primary bottleneck, beside I/O which is not subject of this discussion.
Based on our results we can conclude that virtualization produces additional
overhead on the CPU with an increasing amount of VMs hosted on one server,
thus the throughput was limited. Nevertheless, these drawbacks are widely neg-
ligibly. The most important observation is the inefficient usage of the memory
when virtualization is used to serve one application for several customers. Con-
sequently, the primary factor for selecting one of the solutions should be the
memory. If an application requests a high amount of memory the overheads for
the OS and application server may also become less important. Especially in
stateless applications with small memory demands multi-tenancy outperforms
virtualization for small tenants as here the static memory allocations of the run-
time environment become the limiting factor. Furthermore, multi-tenancy allows
to over commit memory, which is not possible using Xen.

5 Related Work

Performance is of major interest in cloud computing [2] [4]. Conventional mid-
dleware benchmarks for classical platforms (e.g., SPECjEnterprise [25]) do not
support essential cloud features like multi-tenancy. Therefore, several new bench-
marks have emerged in the last years to support the performance evaluation of
cloud platforms. Most activities focus IaaS and cloud-specific features like elas-
ticity [14]. Others focus on cloud specific services like persistence [7] [13].

Virtualization enables sharing at the infrastructure level. Thus, it is a key
enabler for IaaS clouds and it has been widely used over the past years in data
centers. A number of benchmarks have been developed in the past years for
evaluating virtualization platforms.

One example is VMmark [12], a benchmark developed by VMware. VM-
mark defines a tile as a set of VMs serving different predefined applications
(e.g., SPECweb2005). The benchmark score is based on a normalized overall
throughput of the applications as a function of the amount of deployed tiles.
The total throughput increases as long as the system is not saturated. As part
of the benchmark results VMware publishes the maximum throughput and the
number of tiles. This approach is similar to our approach, where we consider the
overall system throughput depending on the amount of tenants.

Multi-Tenancy Performance Benchmark for Web Application Platforms 13

Binnig et al. [3] discuss characteristics of cloud services and derive a list
of requirements for a cloud benchmark. Afterwards, they analyze the existing
TPC-W benchmark, discuss why the TPC-W benchmark satisfies requirements
for cloud benchmarking and discuss some initial ideas for a new benchmark that
overcomes some shortcomings of the TPC-W benchmark. Major shortcomings
reported are the requirement of ACID properties for data operations and invalid
metrics for adaptable and scalable systems in terms of elasticity. However, we
observe a trend in PaaS environments to support the ACID properties (e.g.,
SAP NetWeaver Cloud|[23]) for complex Web applications. Furthermore, a PaaS
provider or customer usually has the opportunity to control the elasticity mech-
anisms as required for a performance test. Finally, our focus is on multi-tenancy
features that were not considered in [3].

The authors of [26] present a method for resource demand estimation on a
per tenants base. Furthermore, they provide a mechanism to ensure performance
isolation. For the evaluation, they used an implementation of TPC-W. However,
they did not report any extensions for data isolation nor any usage of platform
provided multi-tenancy services.

MulTe [15] is a framework that helps building and running existing database
benchmarks to evaluate various performance metrics of multi-tenant database
management systems. However, our definition of multi-tenancy assumes a shared
application instance, as opposed to merely a shared DBMS used by several ap-
plications. Therefore, MulTe goals defer from our own.

Regarding the tradeoff decisions several papers present approaches to increase
the efficiency of multi-tenant systems (e.g., [29], [9]). However, they do not help
to come to a tradeoff decision for various resource sharing approaches.

In [27], various sharing options for implementing multi-tenant persistence are
discussed. The authors evaluate their non-functional behavior including perfor-
mance aspects. Given that our focus is on the application tier the database was
not a bottleneck in our scenario.

6 Conclusion

Performance concerns are one of the major obstacles for potential cloud cus-
tomers. We analyzed the most important concepts of multi-tenant applications
and identified features provided by platforms to support multi-tenancy. To sup-
port the performance engineering process this paper proposes an extension of
the TPC-W benchmark for platforms that support the identified multi-tenancy
features. This includes various multi-tenant persistence models, tenant identifi-
cation mechanisms and access to tenant specific meta-data. We evaluated the us-
ability of the proposed benchmark in a case study where the maximum through-
put of a multi-tenancy supporting platform based on the amount of tenants and
users per tenant was evaluated. Furthermore, we leveraged the benchmark to
compare a virtualization based with a multi-tenancy based sharing approach.
Multi-tenancy shows only a moderate benefit as long as additional virtual
machines can be started to handle new tenants. Once the lack of memory start

14 Rouven Krebs, Alexander Wert, and Samuel Kounev

limiting the capability to lunch further virtual machines, multi-tenancy shows
significant advantages as it still serves and increasing amount of tenants with
good performance. Overall, multi-tenancy exhibits significantly higher efficiency
for a high amount of tenants with low usage, because it avoids a high static
memory allocation. In our case study, we observed that memory was the primary
limitation of virtualization. As long as CPU is the bottleneck the advantages of
MTAs are less.

In our future research, we will leverage this benchmark for the evaluation
of performance isolation between different tenants. Furthermore, we are inter-
ested in the efficiency of mutual utilized resources when load profiles underlie
fluctuations and the impact of various load profiles for different tenants.

7 Acknowledgements

The research leading to these results has received funding from the Furopean
Union’s Seventh Framework Programme (FP7/2007-2013) under grant agree-
ment N2 258862 and was supported by the German Research Foundation (DFG),
grant RE 1674/6-1 (Transfer project KIT-SAP).

References

1. TPC BENCHMARK W, 2002. Transaction Processing Performance Council.

2. ARMBRUST, M., Fox, A., GRIFFITH, R., JoseErH, A. D., Karz, R. H., KONWIN-
SKI, A., LEE, G., PATTERSON, D. A., RABKIN, A., STOICA, I., AND ZAHARIA, M.
Above the clouds: A berkeley view of cloud computing. Tech. Rep. UCB/EECS-
2009-28, EECS Department, University of California, Berkeley, Feb 2009.

3. BinnNig, C., KossMANN, D., KrRASKA, T., AND LOESING, S. How is the weather
tomorrow?: towards a benchmark for the cloud. In Proceedings of the Second
International Workshop on Testing Database Systems (2009).

4. BITCURRENT. Bitcurrent cloud computing survey 2011. Tech. rep., bitcurrent,
2011.

5. CaIN, H. W., RAJWAR, R., MARDEN, M., AND LirasTi, M. H. An architectural
evaluation of Java TPC-W. In Proceedings of the Seventh International Symposium
on High-Performance Computer Architecture (2001).

6. CHONG, F., CARRARO, G., AND WOLTER, R. Multi-tenant data architecture.
website, June 2006.

7. COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN, R., AND SEARS, R.
Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM
symposium on Cloud computing (New York, NY, USA, 2010), SoCC ’10.

8. EcLipsE FOUNDATION. Eclipselink/development/indigo/multi-tenancy. website,
Oct 2012.

9. FEHLING, C., LEYMANN, F., AND MIETZNER, R. A framework for optimized
distribution of tenants in cloud applications. In Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on (2010).

10. GOOGLE. Google Cloud Platform, Nov 2012. https://cloud.google.com/index.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.
24.
25.

26.

27.

28.

29.

Multi-Tenancy Performance Benchmark for Web Application Platforms 15

Guo, C. J., Sun, W., HuANG, Y., WANG, Z. H., AND GAO, B. A framework for
native multi-tenancy application development and management. In E-Commerce
Technology and the 4th IEEFE International Conference on Enterprise Computing,
E-Commerce, and E-Services, 2007 (2007).

HERNDON, B., SMITH, P., RODERICK, L., ZAMOST, E., ANDERSON, J., MAKHIJA,
V., HERNDON, B., SMITH, P., ZAMOST, E., AND ANDERSON, J. Vmmark: A
scalable benchmark for virtualized systems. Tech. rep., VMware, 2006.

Huang, S., HuaNg, J., Da1, J., Xig, T., AND HUANG, B. The hibench benchmark
suite: Characterization of the mapreduce-based data analysis. In ICDE Workshops
(2010).

IsLaMm, S., LEg, K., FEKETE, A., AND Liu, A. How a consumer can measure
elasticity for cloud platforms. In Proceedings of the third joint WOSP/SIPEW
international conference on Performance Engineering (New York, NY, USA, 2012).
KIEFER, T., SCHLEGEL, B., AND LEHNER, W. Multe: A multi-tenancy database
benchmark framework. In TPC Technology Conference, TPCTC 2012 (2012).
KozioLek, H. Towards an architectural style for multi-tenant software applica-
tions. In Proc. Software Engineering (SE’10) (February 2010), vol. 159 of LNI.
KozioLek, H. The sposad architectural style for multi-tenant software ap-
plications. In Proc. 9th Working IEEE/IFIP Conf. on Software Architecture
(WICSA’11), Workshop on Architecting Cloud Computing Applications and Sys-
tems (July 2011).

KRrEBS, R., MoMM, C., AND KOUNEV, S. Architectural Concerns in Multi-Tenant
SaaS Applications. In Proceedings of the 2nd International Conference on Cloud
Computing and Services Science, CLOSER 2012).

MEeLL, P., AND GRANCE, T. The NIST definition of cloud computing. digital,
2011.

MowmwMm, C., AND KREBS, R. A Qualitative Discussion of Different Approaches for
Implementing Multi-Tenant SaaS Offerings. In Proceedings of Software Engineer-
ing 2011 (SE2011), Workshop(ESoSyM-2011) (2011).

NaTis, Y. Gartner reference model for elasticity and multitenancy. Gartner report,
Gartner, June 2012.

PAckMAN, E.; TAYLOR, P., RACHITSKY, L., REJALI, S., POWER, S., RAE, ., AND
KorrLER, D. Bitcurrent: Cloud comuting performance. Tech. rep., bitcurrent,
bitcurrent, June 2010.

SAP AG. SAP NetWeaver Cloud, Nov 2012. https://netweaver.ondemand.com.
SMmiTH, D. Hype cycle for cloud computing, 2011. Tech. rep., Gartner, July 2011.
ID Number: G00214915.

SPEC. Specjenterprise2010, Nov 2012. http://www.spec.org/jEnterprise2010/.
Wana, W., Huang, X., QiN, X., ZHaNG, W., WEI, J., AND ZHONG, H.
Application-level cpu consumption estimation: Towards performance isolation of
multi-tenancy web applications. In JEEE CLOUD (2012).

WaNG, Z. H., Guo, C. J., Gao, B., SuN, W., ZHANG, Z., AND AN, W. H. A
study and performance evaluation of the multi-tenant data tier design patterns for
service oriented computing. In e-Business Engineering, 2008. ICEBE ’08. IEEE
International Conference on.

WEIsSSMAN, C. D., AND BOBROWSKI, S. The design of the force.com multitenant
Internet application development platform. In Proceedings of the 35th SIGMOD
international conference on Management of data, SIGMOD ’09, ACM.

ZHANG, Y., WANG, Z., Gao, B., Guo, C., SunN, W., AND L1, X. An effective
heuristic for on-line tenant placement problem in saas. Web Services, IEEE Inter-
national Conference on 0 (2010).

