
Automated Extraction of Palladio Component Models from
Running Enterprise Java Applications

Fabian Brosig, Samuel Kounev, Klaus Krogmann
Software Design and Quality Group
Universität Karlsruhe (TH), Germany

{brosig, skounev, krogmann}@ipd.uni-karlsruhe.de

ABSTRACT
Nowadays, software systems have to fulfill increasingly strin-
gent requirements for performance and scalability. To ensure
that a system meets its performance requirements during op-
eration, the ability to predict its performance under different
configurations and workloads is essential. Most performance
analysis tools currently used in industry focus on monitoring
the current system state. They provide low-level monitoring
data without any performance prediction capabilities. For
performance prediction, performance models are normally
required. However, building predictive performance models
manually requires a lot of time and effort. In this paper,
we present a method for automated extraction of perfor-
mance models of Java EE applications, based on monitor-
ing data collected during operation. We extract instances
of the Palladio Component Model (PCM) - a performance
meta-model targeted at component-based systems. We eval-
uate the model extraction method in the context of a case
study with a real-world enterprise application. Even though
the extraction requires some manual intervention, the case
study demonstrates that the existing gap between low-level
monitoring data and high-level performance models can be
closed.

1. INTRODUCTION
For effective performance management during system op-

eration, performance models are highly beneficial. They
enable a proactive and flexible run-time resource manage-
ment by predicting the system performance (e.g., service re-
sponse times and resource utilization) for anticipated usage
and configuration scenarios. For example, if one observes a
growing customer workload and assumes a steady workload
growth rate, a performance model can help to determine
when the system would reach its saturation point. This
way, system operators can react to the changing workload
before the system has failed to meet its performance objec-
tives, thus avoiding a violation of service level agreements
(SLAs). Furthermore, performance models can be exploited

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ROSSA 2009, October 19, 2009 - Pisa, Italy
Copyright 2009 ICST 978-963-9799-70-7/00/0004 $5.00.

to implement autonomic performance and resource manage-
ment, e.g., automatic system reconfiguration at run-time to
ensure that SLAs are continuously satisfied and system re-
sources are utilized efficiently.

Unfortunately, building a predictive performance model
manually requires a lot of time and effort [9]. The model
must be designed to reflect the abstract system structure and
capture its performance-relevant aspects. In addition, model
parameters like service resource demands or system config-
uration parameters have to be determined. Current perfor-
mance analysis tools used in industry mostly focus on profil-
ing and monitoring transaction response times and resource
consumption. The tools often provide large amounts of low-
level data while important information needed for build-
ing performance models is missing, e.g., service resource
demands. Given the costs of building performance mod-
els, techniques for automatic extraction of models based on
observation of the system at run-time are highly desirable.
During system development, such models can be exploited
to evaluate the performance of system prototypes. During
operation, an automatically extracted performance model
can be applied for efficient and performance-aware resource
management.

In this paper, we present a method for automated ex-
traction of performance models of enterprise Java applica-
tions during operation. The target platform we consider
is the Oracle WebLogic Server (WLS) which is currently
one of the leading Java EE application servers available on
the market [19]. Our model extraction method is based on
monitoring data collected during operation using state-of-
the-art, off-the-shelf monitoring tools available for the con-
sidered platform. In particular, we use the WebLogic Di-
agnostics Framework (WLDF) shipped as part of WLS. We
implemented the proposed extraction method in a tool pro-
totype and evaluated its effectiveness in the context of a
case study with a beta-version of the successor of the SPEC-
jAppServer2004 benchmark which we will refer to as SPEC-
jAppServer2004 Next 1.

As a performance model, we selected the Palladio Com-
ponent Model (PCM, [2]). PCM is a high-level UML-like
design-oriented modeling approach that captures the perfor-

1SPECjAppServer2004 is a trademark of the Standard
Performance Evaluation Corp. (SPEC). The SPEC-
jAppServer2004 Next results or findings in this publication
have not been reviewed or accepted by SPEC, therefore no
comparison nor performance inference can be made against
any published SPEC result. The official web site for SPEC-
jAppServer2004 is located at http://www.spec.org/osg/
jAppServer2004.

mance-relevant aspects of component-based software archi-
tectures. For performance prediction, PCM supports low-
level mathematical performance models like, e.g., queue-
ing networks. Mathematical models are automatically de-
rived from the high-level model, which makes the PCM easy
to use for software developers. We consider component-
level performance models such as PCM since they allow per-
component or per-service performance predictions based on
detailed usage behavior specifications. This is required for
the performance management of modern enterprise systems
where SLAs need to be managed in dynamic architectures
where, e.g., services are newly composed and deployed on-
the-fly.

The rest of this paper is organized as follows. In Section 2,
we provide some background on the technologies and tools
we use. We then describe the model extraction method in
Section 3 followed by a presentation of the case study in
Section 4. Finally, we review related work in Section 5 and
conclude the paper in Section 6.

2. BACKGROUND
We start by describing the technology platform, perfor-

mance models and monitoring tools our model extraction
method is based on.

2.1 Java Platform, Enterprise Edition
The Java Platform, Enterprise Edition (Java EE) is one

of the most popular middleware architectures for enterprise
applications. A significant part of Java EE is the Enter-
prise JavaBean (EJB) Architecture. It is a server-side frame-
work for component-based enterprise Java applications. The
EJB 3.0 specification supports two types of so-called beans:
i) session beans that encapsulate business logic in the form
of services executed through synchronous invocation and
ii) message-driven beans (MDBs) that encapsulate business
logic executed to process asynchronous messages sent through
a message-oriented middleware. Session beans can be state-
ful or stateless, depending on whether they maintain a con-
versational state, i.e., a conversational context between client
and bean, or not. For persisting data, the current version
of Java EE proposes the Java Persistence API (JPA).

2.2 Palladio Component Model
The Palladio Component Model (PCM) is a domain-spe-

cific modeling language for describing performance-relevant
aspects of component-based software architectures [2]. It
has been used successfully to model a number of different
systems of variable size and complexity, e.g., [2, 13, 15].
The PCM comes with a tool set facilitating the creation
and analysis of PCM performance models [1].

Given that PCM is targeted at component-based architec-
tures, its focus is on modeling the performance-influencing
factors of software components. In order to capture the time
behavior and resource consumption of a component, four
factors have to be taken into account. Obviously, the compo-
nent’s implementation affects its performance. Additionally,
the component may depend on external services whose per-
formance has to be considered. Furthermore, both the way
the component is used, i.e., the usage profile, and the exe-
cution environment in which the component is running have
to be taken into consideration. Since these performance-
influencing factors are explicitly modeled in PCM, the im-
pact of changing them can be predicted.

Figure 1: Example RDSEFF for the provided service
scheduleWorkOrder.

To support modeling large applications and concurrently
involve multiple developers, the PCM’s model is split into
five sub-models: The repository model consists of interface
and component specifications. A component specification
defines which interfaces the component provides and requires.
For each provided service, the component specification con-
tains a high-level description of the service’s internal behav-
ior. The description is provided as a so-called Resource De-
manding Service Effect Specification (RDSEFF), which we
describe in more detail below. The system model describes
how component instances from the repository are assembled
to build a specific system. The resource environment model
specifies the execution environment in which a system is de-
ployed. PCM allows modeling processing resources like, e.g.,
CPUs and disk drives. The allocation model describes the
mapping of components from the system model to resources
defined in the resource environment model. The usage model
describes the user behavior. It captures the services that are
called at run-time, the frequency (workload intensity), the
order and the input parameters passed to them.

In the following, we provide a brief overview of the mod-
eling capabilities of RDSEFFs. An RDSEFF describes the
performance-relevant internal behavior of a provided com-
ponent service in an abstract fashion. The goal is to capture
the control flow and resource consumption of the service de-
pending on the input parameters passed to it.

The service behavior is characterized by a sequence of
performance-relevant actions. Calls to required services are
modeled using so-called ExternalCallActions, whereas in-
ternal computations within the component are modeled us-
ing InternalActions. Control flow actions like LoopAction

or BranchAction are used only when they affect calls to re-
quired services, e.g., if a required service is called within a
loop; otherwise, the loop is captured as part of an Inter-

nalAction. LoopActions and BranchActions are character-
ized with loop iteration numbers and branch probabilities,
respectively. InternalActions, on the other hand, are char-
acterized with resource demand specifications.

As an example, consider a component WorkOrderSession

that provides the interface IWorkOrderSession and requires
the interface IMfgSession. The RDSEFF in Figure 1 de-
scribes the service IWorkOrderSession#scheduleWorkOrder

implemented by the component. Starting with an External-

CallAction to service IMfgSession#findAssembly, the ser-
vice executes an InternalAction requiring CPU resources
followed by a LoopAction whose number of iterations is spec-

ified as a Probability Mass Function (PMF). With a prob-
ability of 30%, the loop body is executed 11 times, with a
probability of 50%, it is executed 10 times and with a proba-
bility of 20% it is executed 9 times. The loop body contains
an ExternalCallAction to service IMfgSession#getInven-

tory and a further InternalAction that is enriched by a
CPU demand annotation. While PCM supports generic
CPU units, in the context of this paper, a demand of 1 CPU
unit is understood as a demand of 1 millisecond CPU time.

Beyond the example, PCM RDSEFFs allow to model de-
pendencies between input parameters (parameters passed
upon service invocation and parameters returned from ex-
ternal service calls) and control flow (number of loop itera-
tions and branch selection) and resource demands [12]. For
example, a LoopAction can be executed for each element of
a list provided as input parameter and an InternalAction

can have a resource demand depending on the list’s length.

2.3 WebLogic Diagnostics Framework
WebLogic Diagnostics Framework (WLDF) is a monitor-

ing and diagnostics framework that enables collecting and
analyzing diagnostic data for a running Oracle WebLogic
Server (WLS). The diagnostic data provides insight into the
run-time performance of the server and allows isolating, di-
agnosing and resolving potential issues with the server oper-
ating environment [21]. The two main WLDF features that
we make use of are the data harvester and the instrumenta-
tion engine.

The data harvester can be configured to collect detailed
diagnostic information about a running WLS and the appli-
cations deployed thereon. For instance, the amount of free
Java heap memory or the number of pooled bean instances
of a specific stateless session bean can be monitored.

The instrumentation engine allows injecting diagnostic ac-
tions in the server or application code at defined locations.
In short, a location can be the beginning or end of a method,
or before or after a method call. Depending on the con-
figured diagnostic actions, each time a specific location is
reached during processing, an event record is generated.
Besides information about, e.g., the time when or the lo-
cation where the event occurred, an event record contains
a so-called diagnostic context id. The diagnostic context
id uniquely identifies the request that generated the event
allowing to trace individual requests as they traverse the
system.

3. MODEL EXTRACTION METHOD
We now present our model extraction method and discuss

the way we have implemented it in our tool prototype. For
further details on the method and its implementation we
refer to [4].

Figure 2 illustrates the model extraction process. The
three main steps of the process are: i) extraction of the ap-
plication architecture, ii) extraction of performance-relevant
control flow and iii) extraction of resource demands. The
extraction is based on monitoring data collected during op-
eration.

Note that we focus on the EJB 3.0 Component Model and
do not consider the web tier (Servlets, Java Server Faces,
etc). We concentrate on session beans and do not consider
asynchronous messaging respectively MDBs. We assume
that the Java Persistence API (JPA) is used for persisting
entity data. Finally, we are currently considering a single

Figure 2: Steps of the model extraction method.

WLS instance, however, the approach we propose can be
extended to multiple instances.

3.1 Extracting the Application’s Architecture
In the first step of the extraction process, the effective

application architecture is extracted. The latter refers to
the set of components and connections between components
that are effectively used during operation. Besides consid-
ering each EJB as an individual component according to
the EJB 3.0 Component Model, the method also supports
grouping multiple EJBs to higher-level components, e.g.,
considering EJBs contained in the same Java package as
a single component.

The components and connections are identified on the ba-
sis of trace data reflecting the observed call paths during ex-
ecution. With the help of the diagnostic context id provided
by the WLDF instrumentation engine, individual requests
can be traced as they traverse the system. For instance,
if WLDF is configured to monitor entries and exits of EJB
business methods, each call to a business method triggers
the generation of an event record at the beginning and end
of the method. Grouping the event records by the diagnos-
tic context id and sorting the groups by the event record
id leads to traces of individual requests [3]. Based on the
set of observed call paths, the effective connections among
components can be determined, i.e., required interfaces of
components can be bound to components providing the re-
spective services.

3.2 Extracting Performance-Relevant
Control Flow

In PCM, the performance-relevant control flow of a com-
ponent service is modeled as an RDSEFF. Given a com-
ponent service, in order to extract an RDSEFF, one first
has to identify the performance-relevant actions of the ser-
vice. We assume these performance-relevant actions to be
known, given that they can be identified using existing ap-
proaches [6, 9].

We concentrate on monitoring the effective control flow,
extract probabilities of different call paths in contrast to ex-
tracting explicit parametric dependencies. RDSEFFs distin-
guish internal component computations (InternalActions),
calls to external services (ExternalCallActions) and con-
trol flow constructs between external service calls (Loop-
Actions or BranchActions). In order to make it possible
to monitor the performance-relevant actions of a service, we
assume that such actions are moved to separate methods.
Each method representing a performance-relevant action is
named according to a naming scheme that makes the control
flow of the respective component service explicit. That re-
quirement arises from the lack of tool support for in-method

class A {
@EJB private BLocal s e s s i o n ;
. . .
public int methodA(int a) {

/∗ compute something ∗/
int r e s u l t = 0 ;
for (int i = 0 ; i < a ; i++) {

/∗ compute something ∗/
/∗ c a l l e x t e rna l s e rv i c e ∗/
r e s u l t += s e s s i o n . methodB () ;

}
return r e s u l t ;

}
}

⇓
class A {

@EJB private BLocal s e s s i o n ;
. . .
public int methodA(int a) {

/∗ ex t rac ted in t e rna l act ion ∗/
methodA 1 IntAct 474 (a) ;
/∗ ex t rac ted loop act ion ∗/
int r e s u l t = 0 ;
methodA 1 LoopAct 985 (r e su l t , a) ;
return r e s u l t ;

}
public void methodA 1 IntAct 474 (int a){

/∗ compute something ∗/
}
public int methodA 1 LoopAct 985

(int r e su l t , int a) {
for (int i = 0 ; i < a ; i++) {

/∗ ex t rac ted loop body ∗/
r e s u l t += methodA 1 LoopBody 398 () ;

}
return r e s u l t ;

}
public int methodA 1 LoopBody 398 () {

/∗ ex t rac ted in t e rna l act ion ∗/
methodA 1 IntAct 055 () ;
/∗ ex t rac ted ex terna l c a l l act ion ∗/
return methodA 1 ExtCall 172 () ;

}
public void methodA 1 IntAct 055 () {

/∗ compute something ∗/
}
public int methodA 1 ExtCall 172 () {

/∗ c a l l e x t e rna l s e rv i c e ∗/
return s e s s i o n . methodB () ;

}
}

Listing 1: Example: Code refactoring.

instrumentation. Current instrumentation tools including
WLDF support only method-level instrumentation. They do
not support instrumentation at custom locations other than
method entries and exits. As part of our future work, we in-
tend to relax the above assumption. Given that performance-
relevant actions are moved to separate methods, WLDF can
be configured to monitor the performance-relevant control
flow. Based on the generated trace data, RDSEFFs can be
extracted. For LoopActions, the number of loop iterations
is extracted as PMF. For BranchActions, branch transition
probabilities are extracted.

Listing 1 shows an example that illustrates the required
refactoring. The code fragment on the top shows the im-
plementation of a component service A#methodA. It consists
of some internal computations and a call to an external ser-
vice in another component within a loop. The code frag-
ment on the bottom shows the refactored implementation.
The InternalActions, the LoopAction and the External-

CallAction have been moved into separated methods. The
newly introduced methods are named according to the nam-
ing scheme mentioned above.

Figure 3: Call path tracing with WLDF.

Figure 4: Extracted RDSEFF of A#methodA.

Figure 3 illustrates a call to A#methodA as an UML se-
quence diagram. The rows of the table on the right represent
WLDF event records that are generated when the method
is executed. The event record list is ordered by the event
record id (which is not shown in the table). Given that the
event records belong to one request, the diagnostic context
id is the same for all records. Each event record contains
information about the method name and the location where
the record generation was triggered. By means of this infor-
mation, the control flow can be extracted [3].

Figure 4 shows the RDSEFF extracted from the trace data
generated by WLDF. The RDSEFF consists of an Inter-

nalAction followed by a LoopAction containing a further
InternalAction and an ExternalCallAction. The loop it-
eration number of LoopAction LoopAct_985 is extracted as
a PMF. The PMF states that the loop iterates one time
with a probability of 20% and ten times with a probability
of 80%. Notice that the shown RDSEFF is not annotated
with resource demands. The resource demand specifications
are added in the next step.

3.3 Extracting Resource Demands
In PCM, the resource demands are specified as annota-

tions attached to the InternalActions of RDSEFFs. De-
termining resource demands involves identification of the re-
sources used by services and quantification of the amount of
time spent using these resources. The resource demand of

a service is its total processing time at the considered re-
source not including any time spent waiting for the resource
to be made available. The challenge is to extract the re-
source demands from a running system that is not available
for testing in a controlled environment.

For the resource demand extraction we do not use method
instrumentation where single measurements result in sin-
gle event records. Instead, we use method instrumentation
where single measurements are aggregated online to obtain
statistics on individual methods like, e.g., method invoca-
tion counts or average method response times. Given that
single measurements are not required to be stored, the latter
technique’s overhead is an order of magnitude lower than the
event record triggering approach. The downside of the data
aggregation is the loss of information about individual mea-
surements. Thus, resource demand estimation approaches
that require individual measurement observations like, e.g.,
statistical regression are not applicable.

We investigated two approaches for estimating the re-
source demands of individual InternalActions: i) approxi-
mate resource demands with measured response times, ii) es-
timate resource demands based on measured utilization and
throughput data. In the first approach, we measure the
response time of an InternalAction and use the average
response time as an estimate of the resource demand. This
approach is simple, however, it only works if the considered
resource dominates the overall response time of the Inter-

nalAction. Furthermore, the times spent queueing for the
resource have to be insignificant compared to the actual pro-
cessing time at the resource. Thus, the first approach is only
applicable during phases of low resource utilization, i.e., typ-
ically 20%.

For cases of higher resource utilization, we propose the sec-
ond approach. It uses measured utilization and throughput
data to estimate resource demands. During an observation
period of fixed length T , we obtain the average utilization
(Ui,r) of resource r due to executing InternalAction i and
the total number of times Ci that InternalAction i is ex-
ecuted. For each InternalAction i, its resource demand
(Di,r) for resource r can be estimated as the quotient of
utilization and throughput:

Di,r =
Ui,r

Ci/T
=
Ui,r · T
Ci

,

which is often referred to as Service Demand Law [17]. While
the Ci’s can be easily measured, determining Ui,r is a chal-
lenge. The total utilization of a resource, e.g., the overall
CPU utilization, can be measured using operating system
tools. However, what needs to be determined is the fraction
of the total resource utilization that is caused by a distinct
action (InternalAction i). This is a complex task, given
that we observe the system during operation where usually
many actions are running at the same time.

We do not use profilers for that purpose, since profiling
imposes too much overhead and is normally too intrusive.
Instead, we partition the measured total resource utilization
with response time ratios that are weighted with throughput
data. Concerning one individual resource r, let i1, . . . , in
be the list of InternalActions that stress the considered
resource during the observation period, Ri1 , . . . ,Rin their
measured average response times, Ci1 , . . . , Cin their invoca-
tion counts and finally Ur the total resource utilization of
resource r. We estimate the average utilization Uik,r (1 ≤

k ≤ n) of resource r due to executing InternalAction ik as:

Uik,r = Ur ·
Rik · Cik∑n
j=1Rij · Cij

.

Thus, we partition the total resource utilization Ur using
weighted response time ratios. This partitioning is based
on the assumption that the measured response times of the
InternalActions are proportional (at least approximately)
to their resource demands which again implies that the con-
sidered resource dominates the response times of the Inter-

nalActions. However, in contrast to the first approach, the
resource demands can be estimated during an observation
period under medium to high load, i.e., resource utilization
between 50%-80%.

When there are InternalActions that are not dominated
by a single resource, i.e., if there is more than one resource
having a significant impact on the InternalAction process-
ing times, the second approach can be generalized regarding
the granularity of measured times. If one can measure pro-
cessing times of individual execution fragments, so that the
measured times of these fragments are dominated by single
resources, again the second approach can be applied.

We adopt the strategy of the second approach in order
to apportion CPU resource demands among the database
server (DBS) and the application server (in our case, WLS).
We apply the following approximation: Looking at an EJB
transaction, the transaction consists of a working phase and
a commit phase. Processing times in the working phase are
apportioned to the WLS CPU. Processing times in the com-
mit phase are apportioned to the DBS CPU. The assump-
tion is that the length of the working phase is proportional
to the WLS CPU resource demand whereas the length of the
commit phase is proportional to the DBS CPU resource de-
mand. The approximation implies that, when estimating re-
source demands for the DBS CPU, we overestimate database
writes and ignore database reads. However, given that JPA
implements internal entity caches that reside on the WLS
instance, database reads are not expected to dominate the
overall application performance. Note that the adequacy
of this approximation depends on the type of application
considered. While processing times of working phases nor-
mally can be directly measured, in general, processing times
of transaction commit phases are not accessible. For in-
stance, in EJB 3.0, there are transactions that are managed
by the EJB container. In order to measure such a mid-
dleware service, we compute the difference between method
response times inside the method and response times outside
the method. For the former case, we introduce time sensors
after method entry and before method exit. For the latter
case, the time sensors are placed around the method call at
the callee. In this way, we obtain approximated processing
times of transaction commit phases .

In Section 4, we evaluate and compare the proposed ap-
proaches for estimating the resource demands.

4. EVALUATION
To evaluate the model extraction method, we implemented

it as part of a tool prototype and applied it to a case study
on a representative Java EE application. The application
we consider is the SPECjAppServer2004 Next benchmark
application. We start with a brief overview of the bench-
mark.

Figure 5: SPECjAppServer2004 Next architecture.

4.1 SPECjAppServer2004_Next Benchmark
SPECjAppServer2004 Next is a beta version of the succes-

sor of the SPECjAppServer2004 benchmark. It is a Java EE
benchmark developed by SPEC’s Java subcommittee for
measuring the performance and scalability of Java EE-based
application servers. The benchmark workload is generated
by an application that is modeled after an automobile man-
ufacturer. As business scenarios, the application comprises
customer relationship management (CRM), manufacturing
and supply chain management (SCM). The business logic is
divided into three domains: orders domain, manufacturing
domain and supplier domain.

To give an example of the business logic implemented by
the benchmark, consider a car dealer that places a large or-
der with the automobile manufacturer. The large order is
sent to the manufacturing domain which schedules a work
order to manufacture the ordered vehicles. In case some
parts needed for the production of the vehicles are depleted,
a request to order new parts is sent to the supplier domain.
The supplier domain selects a supplier and places a purchase
order. When the ordered parts are delivered, the supplier
domain contacts the manufacturing domain and the inven-
tory is updated. Finally, upon completion of the work order,
the orders domain is notified.

Figure 5 depicts the architecture of the benchmark as de-
scribed in the benchmark documentation. The benchmark
application is divided into three domains: orders domain,
manufacturing domain and supplier domain. The applica-
tion logic in the three domains is implemented using EJBs
which are deployed on the considered Java EE application
server. The domains interact with a database server via
Java Database Connectivity (JDBC) using the Java Persis-
tence API (JPA). The communication between the domains
is asynchronous and implemented using point-to-point mes-
saging provided by the Java Message Service (JMS). The
workload of the orders domain is triggered by dealerships
whereas the workload of the manufacturing domain is trig-
gered by manufacturing sites. Both, dealerships and manu-
facturing sites are emulated by the benchmark driver, a sep-

Figure 6: Experimental environment.

arate supplier emulator is used to emulate external suppli-
ers. The communication with the suppliers is implemented
using Web Services. While the orders domain is accessed
through Java Servlets, the manufacturing domain can be
accessed either through Web Services or EJB calls, i.e., Re-
mote Method Invocation (RMI). As shown on the diagram,
the system under test spans both the Java application server
and the database server. The emulator and the benchmark
driver have to run outside the system under test so that they
do not affect the benchmark results.

The benchmark driver executes four benchmark opera-
tions. A dealer may browse through the catalog of cars,
purchase cars or manage his dealership inventory, i.e., sell
cars or cancel orders. A manufacturer may place work orders
for manufacturing vehicles.

We selected the SPECjAppServer2004 Next benchmark
application as a basis for our case study since it models a
representative, state-of-the-art system. Previous versions of
the benchmark have already been successfully applied for
research purposes [10, 11].

4.2 Experimental Environment
We installed the benchmark in the system environment de-

picted in Figure 6. The benchmark application was deployed
in Oracle WebLogic Server (WLS). WLS was configured to
use a file-based store to persist event records generated by
WLDF. As a database server (DBS) for persisting JPA en-
tity data, Oracle Database 11g was used. The benchmark
driver and the supplier emulator were running on a separate
machine. The three machines all have Intel Pentium Dual
Core CPUs, 3 GB of RAM and are connected using a 1 GBit
Ethernet.

4.3 Case Study
We conducted a case study with the goal to evaluate the

accuracy of PCM models of the SPECjAppServer2004 Next
application extracted by means of our tool prototype. We
focused on the main part of the benchmark application, the
manufacturing domain. The EJBs are considered as indi-
vidual components. The resources we considered were the
CPUs of the system under test, i.e., the CPU of the WLS
instance (WLS CPU) and the CPU of the database server
(DBS CPU). We considered several different scenarios vary-
ing, on the one hand, the type of workload under which
the PCM models are extracted, on the other hand, the type
of workload for which performance predictions are made.
By workload here we mean the operation mix and operation
throughput. Thus, the operation throughput determines the
workload intensity. Note that we considered only open work-
loads. For each scenario, two PCM models were considered:

• A PCM model in which resource demands were ap-
proximated with the measured response times, denoted
as Model A.

• A PCM model in which resource demands were esti-
mated based on the utilization and throughput data,
denoted as Model B.

The extracted PCM models are validated by comparing
the model predictions with measurements on the real sys-
tem. While the model extraction requires instrumentation,
the measurements used for the validation were made with-
out any instrumentation. For the PCM model predictions
we used a queueing-network based simulation [2]. As perfor-
mance metrics, we considered the average response times of
business operations as well as the average utilization of the
WLS CPU and the DBS CPU. For each scenario and the
two corresponding PCM models, we first predicted the per-
formance metrics for low load conditions (≈ 20% WLS CPU
utilization), medium load conditions (≈ 40% and ≈ 60%)
and high load conditions (≈ 80%) and then compared them
with measurements. Note that all predictions of a scenario
are derived from one Model A and one Model B. We con-
sidered the following specific scenarios:

• Scenario 1: The workload consisted of the business
operation ScheduleWorkOrder. The resource demands
for Model A were extracted during light system load.
The resource demands for Model B were extracted dur-
ing high system load. The goal of this scenario is to
evaluate the accuracy of the model predictions for a
fixed operation mix and varying workload intensity.
The model predictions were compared against mea-
surements under low, medium and high load condi-
tions.

• Scenario 2a: This scenario is similar to the above with
the exception that it used the business operation Cre-

ateVehicle. CreateVehicle is a larger operation con-
sisting of several sub-operations one of them being
the ScheduleWorkOrder operation considered in Sce-
nario 1.

• Scenario 2b: We used the PCM models extracted in
Scenario 2a to conduct performance predictions for the
workload considered in Scenario 1. This is possible be-
cause the workload considered in Scenario 1 is a subset
of the workload considered in Scenario 2a. The goal
is to evaluate the applicability of our approach, when
performance predictions are made based on a model
that was extracted during a period when the respec-
tive workload for which predictions are made was run
concurrently with other workloads.

4.3.1 Scenario 1
In this scenario, the resource demands for Model A were

extracted during a steady state time of 1020 sec with an av-
erage WLS CPU utilization of 12%. The resource demands
for Model B were extracted during a steady state time of
1020 sec and a WLS CPU utilization of 81%. For both
models, WLS CPU and DBS CPU resource demands were
extracted for four internal actions. To validate the model for
different throughput levels, we compare the predicted server
utilization and operation response times against measure-
ments on the real system which are made during a steady

state time of 1020 sec. We used the operation Schedule-

WorkOrder for both the workload during model extraction
and to validate the extracted models.

Figure 7 shows the results of the model validation. Predic-
tions based on Model B are slightly better than predictions
based on Model A. For the highest considered throughput
level, both models deliver no performance predictions. This
is because the system as represented by the models is not
able to sustain the injected load since the WLS CPU uti-
lization is overestimated to be 100%. Both models overes-
timate the WLS CPU utilization while underestimating the
DBS CPU utilization. The modeling prediction error for
CPU utilization is mostly about 20%. The modeling predic-
tion error for response times increases with the throughput
level. The higher the CPU utilization, the bigger the impact
of the overestimated WLS CPU demands on the predicted
response times. We assume that the overestimation of the
WLS CPU demands is due to the instrumentation overhead
(about 15%) during resource demand extraction.

4.3.2 Scenario 2a
In this scenario, the resource demands for Model A were

extracted during a steady state time of 1140 sec with an aver-
age WLS CPU utilization of 9%. The resource demands for
Model B were extracted during a steady state time of 1140
sec and a WLS CPU utilization of 75%. For both models,
nine internal actions were annotated with WLS CPU de-
mand estimations, DBS CPU demands were estimated for
four internal actions. Measurements on the real system were
made during a steady state time of 1140 sec. We used the op-
eration CreateVehicle for both the workload during model
extraction and to validate the extracted models.

Figure 8 shows the results for Scenario 2a. For both
Model A and Model B, the prediction error is mostly about
20%. In the experiment with the highest throughput, it is
the overestimated WLS CPU utilization that causes a re-
sponse time deviation of 47%. For all throughput levels, the
DBS CPU utilization is overestimated by Model A. Thus, in
this scenario, the approximation of DBS CPU demands with
the measured response times of transaction commit phases
does not match as well as in Scenario 1. Apart from that,
the results in this scenario are similar to the results in Sce-
nario 1.

4.3.3 Scenario 2b
In this scenario, the PCM models extracted in Scenario 2a

are validated with a different workload. The difference be-
tween the validations in Scenario 2a and Scenario 2b is in the
usage profile we used as input for the performance prediction
and the measurements we compared the predictions against.
We used the operation CreateVehicle for the workload dur-
ing model extraction and the operation ScheduleWorkOrder

to validate the extracted models.
Figure 9 shows the results for Scenario 2b. Note that for

the same reasons as in Scenario 1, both models deliver no
performance predictions for the highest considered through-
put level. As expected, this scenario’s Model A performs
similar to Model A of Scenario 1. Concerning Model B,
while the performance predictions for the WLS CPU utiliza-
tion are about 5% higher than the predictions of Scenario 1,
the DBS CPU utilization is underestimated with an error
of about 50%. Thus, partitioning DBS CPU utilization via
response time ratios of transaction commit phases requires

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80

C
P

U
 U

til
iz

at
io

n

Throughput ops/sec

Measured WLS CPU
Model A WLS CPU
Model B WLS CPU

Measured DBS CPU
Model A DBS CPU
Model B DBS CPU

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80

A
vg

. R
es

po
ns

e
T

im
e

Throughput ops/sec

Measured
Model A
Model B

Figure 7: Scenario 1: Validation of the ScheduleWorkOrder performance model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45

C
P

U
 U

til
iz

at
io

n

Throughput ops/sec

Measured WLS CPU
Model A WLS CPU
Model B WLS CPU

Measured DBS CPU
Model A DBS CPU
Model B DBS CPU

 0

 50

 100

 150

 200

 250

 300

 10 15 20 25 30 35 40 45

A
vg

. R
es

po
ns

e
T

im
e

Throughput ops/sec

Measured
Model A
Model B

Figure 8: Scenario2a: Validation of the CreateVehicle performance model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80

C
P

U
 U

til
iz

at
io

n

Throughput ops/sec

Measured WLS CPU
Model A WLS CPU
Model B WLS CPU

Measured DBS CPU
Model A DBS CPU
Model B DBS CPU

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80

A
vg

. R
es

po
ns

e
T

im
e

Throughput ops/sec

Measured
Model A
Model B

Figure 9: Scenario2b: Validation of the CreateVehicle performance model.

further investigation while partitioning WLS CPU utiliza-
tion via response time ratios of internal actions appears to
be appropriate. Concerning the estimation of DBS CPU de-
mands, we expect that the partitioning will be improved if
we take the I/O demands of the commit phases into account.

4.3.4 Summary
With the automatically extracted PCM models, we were

able to predict CPU utilization and operation response times
with an error of mostly about 20% – 30%. The lower the
concurrency level in the considered usage profile, the better
the resource demand estimations were. In cases of high con-
currency and high system load, we partition the measured
resource utilization among different actions which introduces
a loss of precision. In Scenario 2b, this issue was observed
especially for estimated DBS CPU demands.

However, further calibrations are possible. For instance,
the estimated WLS CPU demands can be calibrated by tak-
ing the instrumentation overhead into account. The esti-
mated DBS CPU demands can be calibrated by considering
also the I/O demands of the transactions. To observe I/O
demands we can use WLDF to monitor SQL queries sent to
the DBS. However, this comes at the expense of a signifi-
cantly higher overhead.

5. RELATED WORK
The approach presented in this paper is related to multiple

extraction approaches: a) trace-based approaches, b) run-
time monitoring, and c) extraction of PCM instances.

Trace-based approaches. Call path tracing is a form
of dynamic analysis which a number of approaches apply to
gain reliable data on the actual execution of an application.
Hrischuk et al. [7] extract performance models in the scope
of “Trace-Based Load Characterization (TLC)”. The target
model of TLC is not component-based as ours. The “effec-
tive” architecture of a software system is extracted by Israr
et al. in [8] using pattern matching on trace data. Thereby,
their approach can differentiate between asynchronous, block-
ing synchronous, and forwarding communication. Opposed
to our approach, the components Israr et al. support have
no explicit control flow. TLC and Israr et al. use Lay-
ered Queueing Networks (LQNs) as the target performance
model and are limited to LQN structures. Thus, PCM fea-
tures such as stochastic characterizations of loop iteration
numbers or branch probabilities are not supported.

Dynatrace Diagnostics [20] is an industrial tool for perfor-
mance management. It traces transactions for applications
deployed in distributed, heterogeneous .NET and Java envi-
ronments. Besides providing a call tree, it also monitors
method argument values and provides information about
the system’s resource utilization. An explicit architecture
model, components or behavior are not extracted.

Briand et al. [3] extract UML sequence diagrams from
trace data which is obtained by aspect-based instrumenta-
tion.

Run-time monitoring. Carrera et al. [5] present an
automatic monitoring framework covering the operation sys-
tem, JVM, middleware and application level. After initially
defining performance objectives, it automatically traces the
execution. Performance data (including resource consump-
tion) allow primarily hotspot and bottleneck detection.

The Compas tool [18] is an adaptive monitoring and per-
formance management framework capable of extracting data

in real-time from a running application which generates sys-
tem behavior models. It addresses performance issues re-
lated to the EJB layer in Java EE applications. Compas
instruments through a proxy layer which encapsulates each
component. The instrumentation is transparent like in our
approach and assumes synchronous invocations, i.e., it does
not support MDBs. In contrast to PCM, Compas is not ex-
plicitly dealing with components or context information on
bound component.

Zheng et al. [22] focus on run-time monitoring and online
prediction of performance. Their models are reverse engi-
neered by the use of Kalman filters, however, they are not
component-based. Like in our approach, they are not re-
quired to directly monitor resource demands of interest but
can estimate them based on known (or easily measurable)
metrics such as response time and resource utilization.

PCM extraction. Several approaches are concerned
with the extraction of PCM instances from code. The tool
Java2PCM [9] extracts component-level control flow from
Java code. The extracted behavior model matches the con-
trol flow structure results from our approach. Krogmann et
al. [14, 16] extract behavior models via static and dynamic
analysis but do not focus on extracting timing values dur-
ing system operation, instead they abstract from concrete
timing values (Java bytecode operations) to enable cross-
platform prediction. Their approach relies on own instru-
mentations and extracts control and data flow by means of
machine learning techniques.

The ArchiRec [6] approach for static code analysis com-
plements the approach presented in this paper. ArchiRec
provides component boundaries as input for identifying in-
ternal actions and component calls within our approach.
In ArchiRec, components and their interfaces are identified
within Java and EJB code through metrics calculation and
subsequent hierarchical clustering.

6. CONCLUDING REMARKS
In this paper, we presented an approach for automatically

extracting performance models on the basis of monitoring
data collected during operation and available from off-the-
shelf monitoring tools. The proposed extraction method
was implemented in a tool prototype. The extracted per-
formance models allow performance predictions of Java EE
applications using the PCM.

We evaluated our approach in the context of a case study
with a real-world enterprise application, a beta-version of
the successor of the SPECjAppServer2004 benchmark, which
we deployed in a realistic system environment. The ex-
tracted performance models were used to derive performance
predictions that were compared to actual measurements.
The prediction error was between 20 to 30 percent. However,
further calibrations are possible.

Even though the performance model extraction requires
some intervention, the prototype we implemented shows that
the existing gap between low-level monitoring data and high-
level performance models can be closed. Most available per-
formance analysis tools monitor the current system state.
We propose techniques that are capable to predict the sys-
tem’s performance for different configurations and work-
loads.

In the future we will extend our work on the model extrac-
tion into several directions. In the short term, we will ex-
tend the extraction method to consider point-to-point asyn-

chronous messaging, i.e., MDBs. We plan to also con-
sider the web tier of Java EE, e.g., Servlets and Java Server
Pages. With these enhancements, we will extend the case
study to the entire benchmark application, then using the
released version of the successor of SPECjAppServer2004.
Furthermore, we will implement the improvements on the
extraction of resource demands we proposed in Section 4.3.4
and investigate how to handle the issue of extracting re-
source demands for load-dependent resources like CPUs im-
plementing dynamic frequency scaling technologies. To fur-
ther automate the model extraction we will investigate how
to overcome the current component code refactoring.

The work will be continued in the context of the Descartes
project2 where online performance models generated dy-
namically from the evolving system configuration are ex-
ploited for autonomic performance and resource manage-
ment.

7. REFERENCES
[1] Palladio Component Model. Last visit: 2009-07-23.

http://www.palladio-approach.net/.

[2] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance
prediction. Journal of Systems and Software, 82:3–22,
2009.

[3] L. C. Briand, Y. Labiche, and J. Leduc. Toward the
Reverse Engineering of UML Sequence Diagrams for
Distributed Java Software. IEEE Trans. Software
Eng., 32(9):642–663, 2006.

[4] F. Brosig. Automated Extraction of Palladio
Component Models from Running Enterprise Java
Applications. Master’s thesis, Universität Karlsruhe
(TH), Germany, 2009.

[5] D. Carrera, J. Guitart, J. Torres, E. Ayguade, and
J. Labarta. Complete instrumentation requirements
for performance analysis of Web based technologies.
Proc. 2003 IEEE Int’l Symposium on Performance
Analysis of Systems and Software, pages 166–175,
2003.

[6] L. Chouambe, B. Klatt, and K. Krogmann. Reverse
Engineering Software-Models of Component-Based
Systems. 12th European Conf. on Software
Maintenance and Reengineering, pages 93–102, 2008.
IEEE Computer Society.

[7] C. Hrischuk, C. Murray Woodside, and J. Rolia.
Trace-based load characterization for generating
performance software models. IEEE Trans. Software
Eng., 25(1):122–135, 1999.

[8] T. Israr, M. Woodside, and G. Franks. Interaction tree
algorithms to extract effective architecture and layered
performance models from traces. Journal of Systems
and Software, 5th Int’l Workshop on Software and
Performance, 80(4):474–492, 2007.

2The Descartes project is funded by the German Research
Foundation within the Emmy Noether Programme for a pe-
riod of five years. The project aims to develop a set of
novel methods and techniques for building next generation
autonomic and self-aware enterprise systems. The latter will
be aware of their own performance and will automatically
adapt as the environment evolves ensuring that system re-
sources are utilized efficiently and performance requirements
are continuously satisfied.

[9] T. Kappler, H. Koziolek, K. Krogmann, and R. H.
Reussner. Towards Automatic Construction of
Reusable Prediction Models for Component-Based
Performance Engineering. Software Engineering 2008,
volume 121 of Lecture Notes in Informatics, pages
140–154, 2008.

[10] S. Kounev. Performance Modeling and Evaluation of
Distributed Component-Based Systems Using
Queueing Petri Nets. IEEE Trans. on Software Eng.,
32(7):486–502, 2006.

[11] S. Kounev and A. Buchmann. Performance Modeling
and Evaluation of Large-Scale J2EE Applications. In
Proc. 29th Int’l Computer Measurement Group
(CMG) Conf., 2003.

[12] H. Koziolek, S. Becker, and J. Happe. Predicting the
Performance of Component-based Software
Architectures with different Usage Profiles. Proc. 3rd
Int’l Conf. on the Quality of Software Architectures
(QoSA’07), Springer LNCS 4880, pages 145–163, 2007.

[13] H. Koziolek, S. Becker, J. Happe, and R. Reussner.
Model-Driven Software Development: Integrating
Quality Assurance, Chapter Evaluating Performance
of Software Architecture Models with the Palladio
Component Model, pages 95–118. IDEA Group, 2008.

[14] K. Krogmann, M. Kuperberg, and R. Reussner.
Reverse Engineering of Parametric Behavioural
Service Performance Models from Black-Box
Components. MDD, SOA und IT-Management (MSI
2008), pages 57–71, 2008. GITO Verlag.

[15] K. Krogmann and R. H. Reussner. The Common
Component Modeling Example, Springer LNCS 5153,
Chapter Palladio: Prediction of Performance
Properties, pages 297–326, 2008.

[16] M. Kuperberg, K. Krogmann, and R. Reussner.
Performance Prediction for Black-Box Components
using Reengineered Parametric Behaviour Models.
Proc. 11th Int’l Symposium on Component Based
Software Engineering (CBSE 2008), Springer LNCS
5282, pages 48–63, 2008.

[17] D. Menasce, V. Almeida, and L. Dowdy. Capacity
Planning and Performance Modeling: From
Mainframes to Client-Server Systems. Prentice-Hall,
New Jersey, Mar. 1994.

[18] A. Mos and J. Murphy. A Framework for Performance
Monitoring, Modelling and Prediction of Component
Oriented Distributed Systems. WOSP ’02: Proc of the
3rd Int’l Workshop on Software and Performance,
pages 235–236, 2002. ACM.

[19] Y. Natis, M. Pezzini, K. Iijima, and R. Favata. Magic
Quadrant for Enterprise Application Servers, 2Q08,
2008. Gartner RAS Core Research Note G00156200.

[20] F. Rometsch and H. Sauer. Dynatrace Diagnostics:
Performance-Management und Fehlerdiagnose vereint.
iX, 9/2008:72–75, 2008.

[21] R. Sly. Introduction to the WebLogic Diagnostics
Framework (WLDF). 2006. Dev2Arch Article. Last
visit: 2009-07-23.
http://www.oracle.com/technology/pub/articles/

dev2arch/2006/06/wldf.html.

[22] T. Zheng, C. Woodside, and M. Litoiu. Performance
model estimation and tracking using optimal filters.
IEEE Trans. Software Eng., 34(3):391–406, 2008.

