
Predicting the Costs of Serverless Workflows
Simon Eismann

University of Würzburg
Würzburg, Germany

simon.eismann@uni-wuerzburg.de

Johannes Grohmann
University of Würzburg

Würzburg, Germany
johannes.grohmann@uni-

wuerzburg.de

Erwin van Eyk
Vrije Universiteit

Amsterdam, Netherlands
E.vanEyk@atlarge-research.com

Nikolas Herbst
University of Würzburg

Würzburg, Germany
nikolas.herbst@uni-wuerzburg.de

Samuel Kounev
University of Würzburg

Würzburg, Germany
samuel.kounev@uni-wuerzburg.de

ABSTRACT
Function-as-a-Service (FaaS) platforms enable users to run arbitrary
functions without being concerned about operational issues, while
only paying for the consumed resources. Individual functions are
often composed into workflows for complex tasks. However, the pay-
per-use model and nontransparent reporting by cloud providers make
it challenging to estimate the expected cost of a workflow, which
prevents informed business decisions. Existing cost-estimation ap-
proaches assume a static response time for the serverless functions,
without taking input parameters into account.

In this paper, we propose a methodology for the cost prediction
of serverless workflows consisting of input-parameter sensitive func-
tion models and a monte-carlo simulation of an abstract workflow
model. Our approach enables workflow designers to predict, com-
pare, and optimize the expected costs and performance of a planned
workflow, which currently requires time-intensive experimentation.
In our evaluation, we show that our approach can predict the re-
sponse time and output parameters of a function based on its input
parameters with an accuracy of 96.1%. In a case study with two
audio-processing workflows, our approach predicts the costs of the
two workflows with an accuracy of 96.2%.

CCS CONCEPTS
• Software and its engineering → Software performance; • Com-
puter systems organization → Cloud computing; • Computing
methodologies → Modeling and simulation; Machine learning.

KEYWORDS
Serverless, Workflows, Prediction, Cost, Performance

ACM Reference Format:
Simon Eismann, Johannes Grohmann, Erwin van Eyk, Nikolas Herbst,
and Samuel Kounev. 2020. Predicting the Costs of Serverless Workflows. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6991-6/20/04. . . $15.00
https://doi.org/10.1145/3358960.3379133

Proceedings of the 2020 ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE ’20), April 20–24, 2020, Edmonton, AB, Canada.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3358960.
3379133

1 INTRODUCTION
Serverless computing is an emerging cloud computing paradigm,
where all operational concerns, such as deployment and resource pro-
visioning, are delegated to the cloud platform and costs are calculated
based on a pay-per-use basis [19, 28]. Function-as-a-Service (FaaS)
platforms, such as AWS Lambda, Google Cloud Functions, or Azure
Functions enable the serverless execution of stateless, ephemeral
compute functions [25, 33]. To implement complex business func-
tionality, individual functions can be composed into serverless work-
flows using e.g. AWS Step Functions, Google Cloud Composer, or
Azure Durable Functions [37].

Currently, all major cloud providers use the same cost model for
serverless functions, where the cost of a function execution depends
on: i) the response time of a function rounded up to the nearest
100 ms, ii) the memory allocated to the function and iii) a static
charge for every invocation [2]. While many organizations report
significant cost savings by switching from traditional hosting options
to serverless solutions [2, 4, 26], an inhibiting factor for the adoption
of serverless solutions in practice is the difficulty of estimating the
expected costs of serverless functions and workflows [2, 6, 38].
A reason for this is that, in contrast to traditional hosting options,
the cost of a function depends directly on its input parameters—
since the response time distribution of a function depends on its
input parameters. For example, the time required to resize an image
depends on its original size. Therefore, the cost of resizing an image
depends on its original size as well. This is exacerbated in workflows,
where function outputs are often propagated to succeeding functions.
Hence, the cost and response time of functions contained within a
workflow can be erratic, which makes predicting the cost for the
overall serverless workflow challenging.

Existing approaches for the cost estimation of serverless functions
and workflows require the user to estimate the function response
time with a single mean value [13, 18]. This is often inaccurate due
to the erratic response time of functions within a workflow. The
response time of a function or workflow can be measured using
micro-benchmarks [6]. However, measuring cost is cumbersome
as cost/usage statistics for serverless functions are usually delayed
by 4-48 hours and aggregated either per hour or per day. Queuing

https://doi.org/10.1145/3358960.3379133
https://doi.org/10.1145/3358960.3379133
https://doi.org/10.1145/3358960.3379133

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Eismann et al.

Workflow Prediction Engine

f
f

f
f

Workflow Model

build
workflow

model

3

simulate
workflow

model

4

Monitoring Data
Repository

Function Model
Repository

Model
Trainer

f f f f

f f f f

Serverless
Functions

Monitoring
Data

Monitoring
Data

Function
Model

Monte-Carlo
Simulator

Workflow
Designer

fetch
function
modelsupload

workflow
structure

2

return cost
estimate

Continuous Model Learning

5

1

Workflow Cost Prediction

Figure 1: Overview of the proposed approach for the cost prediction of serverless workflows.

theory-based models can predict the impact of input parameters on
the performance of traditional systems [1, 10, 16], but are inappli-
cable for serverless solutions as they require knowledge about the
underlying resource landscape and deployment.

In this paper, we propose a methodology for the cost prediction
of serverless workflows. First, we apply machine learning to predict
the response time and output parameter distributions for individual
serverless functions. Standard regression techniques, such as SVR,
MARS, or random forest, can only be used to predict the mean
response time of a function. However, accurate cost estimations
require the prediction of response time distributions, because cloud
providers round the billed execution time up to the nearest 100 ms.
Therefore, we show how Mixture Density Networks (MDNs) can be
used to accurately predict the response time and output parameter
distributions of serverless functions. These individual function mod-
els are composed to a workflow model that describes the parameter
relationships within the workflow. Finally, a Monte-Carlo simulation
traverses the workflow model and samples distributions from the
individual functions models to derive cost predictions for serverless
workflows. In our case study, the proposed approach predicts the
response time distribution and the distribution of the output param-
eters of five representative Google Cloud Functions with a mean
accuracy of 96.1%. For two workflows composed of these functions,
our approach achieves a mean workflow cost prediction accuracy of
96.2%.

The approach presented in this paper provides accurate cost pre-
dictions for previously unobserved serverless workflows. Using our
approach, solution architects can make informed decisions when
choosing between a serverless workflow and a traditionally hosted
workflow by providing concrete numbers for the costs of the server-
less workflow. Based on our cost predictions, workflow designers
can compare alternatives without time-intensive experimentation.

Additionally, our approach represents a first step towards fully au-
tomated workflow optimization using multi-objective optimization
techniques, analogously to existing tools for traditional software
systems [3, 35].

2 APPROACH
In this paper, we propose an approach to predict the costs of server-
less workflow executions. Section 2.1 gives an overview of the
approach, whereas Section 2.2 goes into detail on predicting the
distributions of the response time and output parameters of a server-
less function. Section 2.3 describes how the proposed Monte-Carlo
simulation uses the predictions for individual functions to estimate
the average cost per execution of a serverless workflow.

2.1 Overview
The proposed approach shown in Figure 1 can be separated into two
phases, the continuous model learning process and the workflow
cost prediction process.

During the continuous model learning process, the existing
Serverless Functions are monitored. For any functions that
are not already deployed in production, micro-benchmarks can
be used to generate monitoring data [6]. The resulting monitor-
ing data is stored in a Monitoring Data Repository (e.g.,
Prometheus, InfluxDB or a managed monitoring solution from the
cloud provider). Periodically, the Model Trainer is triggered to
train models that describe the response time and output parameter
distributions of the serverless functions based on their input param-
eters, which is discussed in detail in Section 2.2. As the Model
Trainer could make use of GPU-based acceleration during the
model learning, it could be deployed in a distributed data analytics
cluster with GPU acceleration, such as a Spark or Hadoop cluster.

Predicting the Costs of Serverless Workflows ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

Text2
Speech

Text Audio

TextLength
(250)

ResponseTime

FileSize

Figure 2: For multiple text segments of length 250, a distribu-
tion of response times and output file sizes can be observed for
a function that transcribes text into speech.

The resulting models are then stored in the Function Model
Repository, which due to the infrequent access pattern can be a
cloud data storage, such as Amazon S3, Google Cloud Storage, or
Azure Storage.

The workflow cost prediction process is triggered when a work-
flow designer uploads the workflow that he/she wants to evalu-
ate. Next, the Workflow Prediction Engine fetches the
models for all functions contained in the workflow from the
Function Model Repository. These function models are
then composed into a Workflow Model based on the structure
uploaded by the workflow designer. To derive cost predictions from
the Workflow Model, the Monte-Carlo Simulator simu-
lates the Workflow Model. Finally, the derived cost estimates are
returned to the workflow designer. The Workflow Prediction
Engine could be implemented as a serverless function, as it has
an infrequent, potentially bursty access pattern and model infer-
ence rarely relies on GPU acceleration [43], which is currently not
supported for serverless functions [24].

In the following Sections 2.2 and 2.3, we describe the prediction
of function response time and output parameter distributions and our
approach to derive cost estimates for serverless workflows based on
the individual function models.

2.2 Function response time and output parameter
distribution prediction

We train an individual model for the response time and for each
output parameter of a serverless function based on monitoring data
from the Monitoring Data Repository. This monitoring
data contains the response time and parameterization for each re-
quest to the serverless function. Most machine learning techniques
require numeric input, while the parameters of a function call are
not necessary numeric values. Examples of non-numeric values in-
clude strings, lists, binary data, etc. In this paper, we do not address
the task of creating numeric features based on this data, as there is
extensive prior work targeting the automated extraction of numeric
features based on function input parameters [22, 31].

For the repeated execution of a serverless function with identi-
cal input parameter characteristics, a distribution of response times

Figure 3: Comparison between billed response time and mean
response time of normal distribution.

and output parameters can be observed. To illustrate this, we im-
plemented and evaluated a function called Text2Speech, which tran-
scribes text segments to speech, as shown in Figure 2. Transcribing
multiple text segments with a length of 250 characters, we observe a
distribution of the response time due to variation in the performance
and saturation of the hardware executing the function. Additionally,
we also observe varying values for the size of the resulting audio
file. However, both the response time and the resulting file size are
closely correlated to the length of the transcribed text segment.

Predicting the distribution of the response time of a serverless
function is important to estimate the resulting costs. Predicting only
the expected mean response time can lead to inaccurate cost predic-
tions, as all major FaaS providers round the billed response time up
to the nearest 100 ms. Figure 3 shows this for a simulated serverless
function with a normally distributed response time with a mean of
180 ms and a standard deviation of 60 ms. If we would solely use
the mean response time of 180 ms and round to the nearest 100 ms,
we would predict that an execution of this function is billed for 200
ms on average. However, looking at the actual probabilities of being
billed 100 ms (9.12%), 200 ms (53.93%), 300 ms (34.67%) and 400
ms (2.28%), results in a mean billed time of 230.11 ms. Therefore,
accurate cost estimations for serverless functions and workflows
require predicting the response time distribution instead of only the
mean response time.

Common regression techniques, such as SVR, MARS, or random
forest can only be used to predict the mean response time of a
serverless function. Therefore, we propose the usage of so-called
mixture density networks (MDNs) [9]. Bishop et al. propose the idea
to use a dense neural network to parameterize a gaussian mixture
model. A mixture model describes the probability density function
of a random variable as a linear combination ofm gaussian kernels:

p(y |x) =
m∑
i=1

αi (x) ∗ ϕi (y |x) (1)

with αi as the mixing factor (
∑m
i=1 αi (x) = 1) and ϕi (y |x) as a gauss-

ian kernel with mean µi and standard deviation σi . Provided with
a large enough number of kernels, a gaussian mixture distribution

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Eismann et al.

H1

H2

H3

H4
...

H1

H2

H3

H4
...

X1

X2
...

Input
Layer

μ1
...

σ1
...

α1
...

L2
 =

 0
.1

L2
 =

 0
.1

Dense
Layer

Dense
Layer

Regularization Regularization
Output Layer

Softmax
Activation

Linear
Activation

Softplus
Activation

Figure 4: Mixture density network architecture for the prediction of response time and output parameter distributions of serverless
functions with α as mixing coefficients, µ as kernel means and σ as kernel standard deviations.

can approximate any probability distribution with an arbitrary accu-
racy [20]. Simply put, a gaussian mixture distribution is the weighted
average ofm normal distributions. Parameterizing a gaussian mix-
ture distribution requires the weights, means and standard deviations
of them normal distributions. In a mixture density network, these pa-
rameters are estimated using a dense neural network. As the weights,
means and standard deviations are not contained within the train-
ing data set, traditional loss functions for regression, such as Mean
Squared Error (MSE), Mean Squared Logarithmic Error (MSLE)
or Mean Absolute Error (MAE) cannot be applied. Instead, most
mixture density networks use the negative log-likelihood function as
a loss function, which is defined as:

ℓ(x) = −loд(p(y |x)) (2)

For each sample in a training batch, the logarithm of its occur-
rence likelihood is calculated and then negated, as neural network
optimizers aim to minimize the loss function.

Figure 4 shows the network layout we propose to use for the
prediction of the response time and output parameter distributions of
serverless functions. It consists of an input layer, two dense hidden
layers, two regularizations and an output layer that aggregates over
the three layers describing the mixing coefficients αi , the means µi
and the standard deviations σi of the gaussian kernels. The input
layer contains a neuron for each input parameter, so the overall
network has rather few input neurons. The output layer has a total of
m ∗ 3 neurons, but our evaluation showed that the prediction of the
response time and output parameter distributions requires usually
less than five kernels. Therefore, the total number of output neurons
remains usually below fifteen. With limited input and output neurons,
the dense layers require only a comparatively low number of neurons
(200 were sufficient during our case study).

Some input parameters have a large range of values, such as the
file size. For such input parameters it is possible to only have a single
observation for a specific input parameter value. Additionally, the
response time for serverless functions is prone to outliers due to
function cold starts [7]. If such an outlier is the only sample for its
input parameter value, the neural network will overfit by parame-
terizing the mixture distribution for this specific input parameter

value much larger than for adjacent input parameter values. In or-
der to prevent this type of overfitting, we apply L2 regularization
after each dense layer. A L2 regularization (also known as ridge
regularization or Tikhonov regularization) adjusts the cost function
for the gradient descent learning by adding the squared Euclidean
norm of the corresponding layers weight matrix [15]. Therefore, the
L2 regularization penalizes model complexity. In our use case, this
is a desirable property as we assume that the relationship between
an input parameter and the observed response time distribution is
roughly continuous.

The dense layers use the widespread rectified linear unit (relu)
activation function [32]. The output layer for the mixing coefficients
uses the softmax activation function to guarantee that the mixing
coefficients sum up to one. As no restrictions apply for the means
of the linear kernels, the corresponding output layer uses a linear
activation function. For the prediction of response time distributions,
it could be restricted to positive values. However, there might be
edge cases in which the distribution of an output parameter might
contain negative values. As a standard deviation is restricted to val-
ues greater than or equal to zero, the corresponding output layer
should also be restricted accordingly as otherwise the negative loss
likelihood can no longer be calculated. Bishop et al. originally pro-
posed the usage of an exponential activation function [9]. However,
this is reported to potentially lead to numerical instability [11]. As
alternatives, we tested the softplus activation function [21] and an
exponential linear unit (elu) activation function [14] with an offset of
1. The convex nature of the softplus activation function enabled the
network to fit linear kernels with a small standard deviation, whereas
the elu + 1 activation function consistently skewed towards kernels
with large standard deviations. Linear kernels with a small standard
deviation are useful in mixture density networks to explain subpopu-
lations. Therefore, we choose the softplus activation function for the
standard deviation output layer. Finally, the three output layers are
concatenated to form a single output layer.

2.3 Workflow cost prediction
In Section 2.2, we propose the usage of mixture density networks
to predict the response time and output parameter distribution of

Predicting the Costs of Serverless Workflows ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

WorkflowModel
name:	String

Node
name:	String
rtModel:	MDNModel

ConnectionEdge
outputModel:	MDNModel

InputEdge

1..*

input
AbstractEdge

name:	String
distribution:	Distribution

0..*

source
1

Figure 5: Meta-model for the workflow model.

Algorithm 1 Workflow Model Traversal

1: function ESTIMATECOSTS(workflowModel)
2: for edge in workflowModel.nodes.input do
3: SOLVE(edge)
4: end for
5:

6: workflowCost = 0
7: for node in workflowModel.nodes do
8: rDist = SIMULATE(node.rtModel, node.input)
9: functionCost = ESTIMATECOST(rDist)

10: workflowCost += functionCost
11: end for
12:

13: return workflowCost
14: end function
15:

16: function SOLVE(edge)
17: if edge.distribution != NULL then
18: return
19: end if
20:

21: inputDists = edge.source.input
22: for dependency in inputDists do
23: SOLVE(dependency)
24: end for
25:

26: edge.distribution=SIMULATE(edge.model, inputDists)
27: end function

individual serverless function for a concrete input parameter value.
However, in a serverless workflow the input parameters of each
function are a distribution instead of a concrete value, because they
are the output of previous functions. We propose to run a Monte-
Carlo simulation [41] on a model of the workflow to empirically
determine the response time and output parameter distribution for a
given distribution of input parameters.

As shown in Figure 5, the proposed workflow model is an ex-
tended, directed acyclic graph (DAG), a common formalism to
model workflows [40]. As a simplification, we assume that con-
trol and data flow are identical. Each WorkflowModel consists
of a number of Nodes. A Node represents a single execution of a
serverless function and should be named after the function it repre-
sents. Every Node contains a number of AbstractEdges, which
represent the input parameters to the function and also should be

Algorithm 2 Monte-Carlo Simulation

1: function SIMULATE(MDNModel, paramDists)
2: numSamples = 5000
3: resultDistList = new List()
4: for i = 1; i ≤ numSamples; i++ do
5: params = new List()
6: for param in paramDists do
7: sample = param.drawSample()
8: params.add(sample)
9: end for

10: dist = MDNModel.predict(params)
11: resultDistList.add(dist)
12: end for
13:

14: return new MixtureDistribution(resultDistList)
15: end function

named accordingly. Each edge describes the name of a parameter
and its corresponding distribution. There are two sub-classes of
AbstractEdge, namely InputEdge and ConnectionEdge.
An InputEdge represents an input to the workflow and character-
izes the distribution of an input parameter to the first Nodes in the
workflow. On the contrary, ConnectionEdges serve both as input
parameters to nodes and output parameter from nodes. They charac-
terize the output distribution of a return parameter of a node, which is
usually an input parameter to another Node in the workflow. There-
fore, ConnectionEdges contain an MDNModel that can predict
the Distribution of the output parameter the Connection-
Edge represents, based on the input parameters of the corresponding
Node. ConnectionEdges additionally reference the Node of
which the output parameter originated from. Similarly, each Node
contains a MDNModel that can be used to estimate the response
time distribution of the serverless function represented by the Node
based on its input parameters. Since all edges always describe input
parameters of nodes, it is possible to add output parameters that do
not impact the cost of the workflow execution.

Algorithm 1 requires a WorkflowModel as an input and pro-
vides an estimation of the costs for executing this workflow. First, at
line 2-4 of Algorithm 1, all input distributions are solved by iterating
over all input edges of all nodes of the workflow and recursively
solving them. The SOLVE function described at line 16-27 returns
at line 18, if a given edge already has a distribution. This is the case
for InputEdges for example, as they are already parameterized as

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Eismann et al.

Algorithm 3 Cost Estimation

1: function ESTIMATECOST(respDist)
2: numSamples = 5000
3: sumCosts = 0
4: for i = 1; i ≤ numSamples; i++ do
5: sample = respDist.drawSample()
6: billedIntervals = CEIL(sample/BILLINGINTERVAL)
7: sumCosts += billedIntervals * CPUCOST
8: sumCosts += billedIntervals * MEMORYCOST
9: sumCosts += EXECUTIONCOST

10: end for
11:

12: return sumCosts/numSamples
13: end function

input. However, if the distribution of an edge is unknown, the dis-
tribution of the edge can be estimated by applying the Monte-Carlo
simulation on the given MDN model of the edge and the distribu-
tions of its input parameters. However, as the input parameters might
also be unknown, all dependent edges are first solved by recursively
calling SOLVE on them. This recursion is guaranteed to be finite,
as DAGs are not allowed to contain circles and all input edges are
already parameterized.

After the recursion ends at line 5 of Algorithm 1, all input distri-
butions to all nodes in the given workflow model are known. Hence,
lines 6-11 iterate over all nodes in the workflow engine, and sums
up the estimated cost for each predicted response time distribution.
Finally, the total costs can be returned at line 13.

Algorithm 2 details how the Monte-Carlo simulation derives the
distribution of response times or output parameters of a serverless
function based on the distribution of its input parameters. It uses
the mixture density networks described in Section 2.2, that predict
the expected distribution for concrete input parameter values. In
lines 5-9 of Algorithm 2, the algorithm draws a sample from the
probability distribution of each input parameter. Next, at lines 10-11,
the mixture density model is used to predict the expected distribution
for this set of input parameters and the resulting distribution is added
to a list. The more samples are used in a Monte-Carlo simulation,
the more precise the resulting estimation becomes, at the cost of in-
creased computation time. As rare events are not expected in our use
case, 5,000 samples likely provide a sufficient prediction accuracy.
The resulting list of probability distributions is then composed to a
mixture distribution with equal weights, which can be seen as the
average over the individual distributions.

Algorithm 3 shows the adapted Monte-Carlo simulation used
to predict the average cost for a function estimation based on its
response time distribution. First, 5,000 samples are drawn from the
response time distribution of the serverless function. In line 6, the
algorithm calculates the number of billed intervals by dividing the
response time sample by the size for the billing interval and rounding
up. The number of billed intervals is then used for calculating the
cost for the CPU time and the memory time, by multiplying them
at lines 7 and 8 of Algorithm 3. Some cloud providers do not split
the costs of CPU time and memory time; in this case lines 7 and 8
can be concatenated and replaced by just one multiplication with the
charged amount per interval. Additionally, each sample is charged

a constant blanket fee per execution, a.k.a. the invocation cost for
each function execution. After calculating all samples, the costs
for each sample are summed up and divided by the number of
samples to determine the average execution cost at line 12. The
static variables BILLINGINTERVAL, CPUCOST, MEMORYCOST
and EXECUTIONCOST depend on the pricing of the selected cloud
provider and can be parameterized accordingly.

3 CASE STUDY
We design our case study in order to answer the following three
research questions:

• RQ1: Are mixture density networks capable of accurately
predicting the distribution of the response time and the output
parameters of a serverless function?

• RQ2: Can the proposed algorithm and the underlying ma-
chine learning models for the individual functions accurately
predict the costs of a previously unobserved workflow?

• RQ3: What is the required time for training and workflow
prediction? Is the overhead feasible for a production environ-
ment?

Based on these research questions, we implemented the following
five audio utility functions on Google Cloud Functions using Python
with the following input and output parameters:

Text2Speech Transcribes text files into audio files, a functionality
that is commonly used to increase accessibility, to automate phone
banking or in smart home assistants like Alexa or Google Assis-
tant. It uses the google text-to-speech Python library gTTS (v2.0.3),
which returns an MP3 file.

Parameters:
• [Input] TextLength: Length of the text that needs to be tran-

scribed, measured in number of characters.
• [Output] FileSize: Size of the resulting MP3 file in bytes.

ProfanityDet Detects racial slurs, sexually explicit language and
general expletives in a text segment. The implementation is based
on the Python library profanity (v1.1.0), which implements a
blacklist-based filter.

Parameters:
• [Input] TextLength: Length of the text in which the profani-

ties are detected, measured in number of characters.
• [Output] ProfanityCount: Number of detected profanities

alongside their location in the text.

Conversion Converts an MP3 file to a WAV file. This conversion
tends to increase the file size, but many applications require raw
WAV files as input. The conversion is performed using the Python
library pydub (v0.23.1), a wrapper for the ffmpeg library, which
is available in all Google Cloud function instances.

Parameters:
• [Input] FileSize: Size of the MP3 file that is converted.
• [Output] FileSize: Size of the resulting WAV file in bytes.

Censor Censors segments of a WAV file, based on a list of time
segments that should be censored. For the censoring, all samples
within the segments that are censored are muted using the pydub
(v0.23.1) library.

Predicting the Costs of Serverless Workflows ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

300 400 500 600 700 800 900
Text length [characters]

0

500

1000

1500

2000

2500

3000

Re
sp

on
se

 ti
m

e
[m

s]

MDN Kernel 1 Mean
MDN Kernel 1 SD
Training Data

MDN Kernel 2 Mean
MDN Kernel 2 SD

Figure 6: MDN model for the response time of the text2speech
function.

Parameters:
• [Input] FileSize: Size of the file that is censored in bytes.
• [Input] ProfanityCount: Number of detected profanities.
• [Output] FileSize: Size of the censored audio file in bytes.

Compression Compresses a WAV audio file by reducing the sam-
pling rate and sample width using the pydub (v0.23.1) library. On
an initial set of audio files, the compression achieves compression
rates of about 60-90%.

Parameters:
• [Input] FileSize: Size of the audio file prior to compression,

measured in bytes.
• [Output] FileSize: Size of the audio file after compression,

measured in bytes.

We deploy each function to Google Cloud Functions with 512 MB
memory, the Python 3.7 runtime and a timeout of 60 seconds. The
code for the functions is available online1. In the following, we first
investigate the capability of the proposed mixture density networks
to accurately predict the distribution of a functions response time and
its output parameters. Next, we apply our cost-prediction algorithm
to two distinct workflows composed of these functions and compare
the cost predictions to the actual observed costs.

3.1 Response time and output parameter
distribution predictions

As described in Section 2.2, the mixture density networks can be
trained on monitoring data collected during function operation or us-
ing micro-benchmarks. In this case study, we use micro-benchmarks
to create the data set for the training of the mixture density networks
as these functions are currently not deployed in production. The
workload for each function consists of 50 requests/second with vary-
ing input parameters. The monitoring data for the first three minutes
of a measurement is discarded as a warm-up phase. The next ten
minutes are used as training data for the mixture density network
models. For the evaluation in this paper, we additionally collect the
monitoring data of the following 50 minutes as our validation data
1https://github.com/SimonEismann/FunctionsAndWorkflows

0.000
0.001
0.002
0.003
0.004
0.005

Text length = 300

Empirical Distribution Predicted Distribution

0.000
0.001
0.002
0.003
0.004

Pr
ob

ab
ilit

y
De

ns
ity

Text length = 600

500 1000 1500 2000 2500
Response time [ms]

0.000
0.001
0.002
0.003
0.004 Text length = 900

Figure 7: Comparison of measured response time distribution
in the validation data set and predicted response time distribu-
tion for three different text lengths.

set. This larger validation data set is only required for the evaluation
presented in this paper and is not necessary to apply our approach
in practice. For the experiments presented in this paper, we param-
eterize the network as following. We use the Adam optimizer [30]
with a learning rate of 0.001. We train for 500 epochs with a batch
size of 32 and to prevent overfitting an early stopping criterion ter-
minates the training process if the negative log-likelihood does not
decrease by more than 0.001 for 10 epochs [42]. Additionally, we
apply model check-pointing to save the best model achieved during
training as the model accuracy decreased at times during the training
process. In order to determine the appropriate number of kernels
for the gaussian mixture model, we apply basic hyper-parameter
optimization based on the observed negative log-likelihood during
model training to select between 1, 2, 3, 4 or 5 kernels. The collected
monitoring data, the implementation of the proposed approach and
the evaluation scripts are available online as a CodeOcean capsule
to enable 1-click reproduction of our results2.

As an example for the resulting models, Figure 6 shows how the
mixture density networks fit the training data for the response time
of the Text2Speech function. The input parameter TextLength varies
from roughly 300 to 900 characters and the resulting response time
ranges from roughly 400 ms up to 3000 ms. There is a clear correla-
tion between the length of the transcribed text and the response time
of the Text2Speech function. However, for each input text length,
a broad range of response times is observed. The mixture density
network describes this distribution using two normal distributed ker-
nels. The green normal distribution (MDN Kernel 2) is used to fit the
bulk of occurring response times and the orange normal distribution
(MDN Kernel 1) is used to describe the scattered lower response
times. It is important to note, that these two distributions are not
weighted equally, instead, the green kernel has a larger weight than
the orange kernel.

Figure 7 shows how the predicted distributions (in red) compare to
the observed empirical distributions from the validation data set for
text lengths of 300, 600 and 900. To derive the empirical distributions
we apply a gaussian kernel density estimation [12] with a bandwidth
2https://doi.org/10.24433/CO.6374129.v2

https://github.com/SimonEismann/FunctionsAndWorkflows
https://doi.org/10.24433/CO.6374129.v2

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Eismann et al.

Function Parameter 1 kernel 2 kernels 3 kernels 4 kernels 5 kernels

Text2Speech Response time 5.3% 4.2% 4.1% 6.4% 4.5%
Text2Speech FileSize 0.6% 0.3% 1.1% 0.4% 0.6%
Conversion Response time 13.2% 38.3% 3.4% 3.3% 3.3%
Conversion FileSize 0.9% 1.2% 7.8% 9.0% 16.4%
Compression Response time 13.1% 4.3% 5.2% 4.4% 3.6%
Compression FileSize 0.2% 1.7% 0.4% 0.2% 3.5%
ProfanityDet Response time 38.7% 32.9% 12.8% 9.4% 4.6%
ProfanityDet ProfanityCount 14.5% 69.0% 12.8% 12.3% 14.0%
Censor Response time 9.5% 10.1% 8.5% 8.2% 9.1%
Censor FileSize 1.0% 0.6% 0.7% 1.5% 7.9%

Table 1: Relative Wasserstein distance [%] between validation dataset and predictions of MDNs with 1-5 kernels. Kernel count
selected by hyperparameter optimization highlighted in bold.

of 0.4. The predicted distributions capture both the mean of the
empirical distribution and the shape of the distribution well. The
shape of the predicted distributions is slightly left heavy compared
to a normal distribution due to the addition of the second kernel.

Next, we investigate the impact of the number of kernels used in
the mixture density network. Table 1 shows the prediction error of
mixture density networks with one to five kernels for the response
time and output parameter distributions of the five functions. As a
measure for the similarity of two distributions, we use the Wasser-
stein metric [5], which is defined for two distributions u and v as:

l(u,v) =

∫ ∞

−∞

|U −V | (3)

with U and V as the cumulative distribution function of u and v,
respectively. Generally speaking, the Wasserstein metric quantifies
how far a sample from a set of samples drawn from u has to be
moved on average in order to transform the set of samples drawn
from u to a set of samples drawn from v. As the absolute values
of the Wasserstein metric are difficult to interpret, we calculate the
relative Wasserstein metric by dividing the absolute Wasserstein
metric by the mean of the empirical distribution as proposed in [34].
This relative Wasserstein metric enables us to quantify the prediction
accuracy for a single input value. As a mixture density network
predicts a different distribution for each input value, we calculate
the weighted average over all values of the input distribution with
the number of empirical samples as a weight.

Table 1 shows the weighted average of the relative Wasserstein
metric of mixture density networks with one to five kernels for the
response time and output parameter distributions of the five functions
and the kernel number selected by the hyper-parameter optimization.
Generally, it seems that response time distributions are harder to
predict than output parameter distributions. This is intuitive, as the
output parameter of a function for a certain input is often constant,
i.e., transcribing a text segment multiple times results in the same
audio file each time, but the response time varies between executions.
An outlier in this regard is the output parameter ProfanityCount of
the function ProfanityDet, which has a higher error compared to the
other parameters. This does not necessarily indicate a bad model

fit as the target parameter ProfanityCount is an integer value of
less than ten in most cases. The relative wasserstein metric assigns
high percentage errors for even small deviations between integer
distributions with a small range of values that also includes zero.

Regarding the kernel count, these results show that there is no
kernel count that is ideal for every function. While three to five
kernels seem to generally produce accurate performance predictions,
the prediction error for the FileSize parameter of the conversion
function with five kernels is 16.4%, while using two kernels re-
sults in a prediction error of 1.2%. This shows that selecting an
individual number of kernels for each function is necessary. The
hyper-parameter optimization based on the observed negative log-
likelihood during model training reliably selects a kernel count that
provides accurate predictions. In four out of ten scenarios, the hyper-
parameter optimization does not select the ideal number of kernels,
but the prediction accuracy of the selected kernels is always within
one percentage point of the ideal kernel count.

Across all functions, response time and parameter distributions,
the mixture density network models selected by the hyper-parameter
optimization achieve a prediction error of 3.9% and therefore a
prediction accuracy of 96.1%. This shows that mixture density
networks are capable of accurately predicting the distribution of
the response time and the output parameters of a serverless func-
tion (RQ1).

3.2 Workflow cost predictions
For the evaluation of our workflow cost prediction algorithm, we
consider the following scenario: A workflow designer is looking
to build a workflow that turns short text segments into speech and
censors any profanities within the text segment. For this task, he
comes up with the two different workflows shown in Figure 8. In both
workflows, the input text is first passed to the Text2Speech function
and then converted to a WAV file using the Conversion function.
In parallel, the text is also passed to the ProfanityDet function in
order to identify any profanities within the text. In WorkflowA , any
identified profanities are censored first using the Censor function and
afterwards the audio file is compressed. In WorkflowB, the audio
file is compressed prior to the censoring. While it is a reasonable

Predicting the Costs of Serverless Workflows ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

Text2
Speech Conversion

Censor

Profanity
Det

Compress

Text Audio

TextLength

TextLength

FileSize FileSize

DetProfanities

FileSize FileSize

(a) WorkflowA.

Text2
Speech Conversion

Censor

Profanity
Det

Compress

Text Audio

TextLength

TextLength

FileSize FileSize

DetProfanities

FileSize

FileSize

(b) WorkflowB.

Figure 8: The two alternatives for the transcription and censoring workflow. The blue arrows indicate parameters passed to a function
from a previous function.

Workflow Metric Invocations CPU Time Memory Time Total

WorkflowA Measured cost [cent] 2.00 * 10-6 8.60 * 10-5 1.40 * 10-5 1.02 * 10-4

WorkflowA Predicted cost [cent] 1.79 * 10-6 9.08 * 10-5 1.35 * 10-5 1.06 * 10-4

WorkflowA Relative prediction error 10.3% 5.5% 3.4% 4.0%
WorkflowB Measured cost [cent] 2.00 * 10-6 3.80 * 10-5 6.00 * 10-6 4.60 * 10-5

WorkflowB Predicted cost [cent] 1.79 * 10-6 3.70 * 10-5 5.52 * 10-6 4.43 * 10-5

WorkflowB Relative prediction error 10.3% 2.6% 8.0% 3.6%

Table 2: Comparison between measured and predicted cost for a single workflow execution for both workflows in EUR.

assumption that WorkflowB might be cheaper, manually quantifying
the cost difference is currently challenging for a workflow designer.

We apply the algorithm proposed in Section 2.3 in combination
with the mixture density network models with two kernels from
Section 3.1. To measure the actual execution cost of both workflow
alternatives, we implement both workflows using Google Cloud
Composer (a managed Apache Airflow service). The implementation
of the workflows is also available online3. At the time of writing, the
billing reporting for Google Cloud Functions is quite coarse-grained.
An example of the most detailed reporting currently possible: On
June 7th, 2019 you paid 43.7$ for 4,370,000 GHz-seconds CPU
time of Cloud Functions, 30.5$ for 12,200,000 GB-seconds memory
time of Cloud Functions and 5.5$ for 13,750,000 invocations of
Cloud Functions. There is currently no option to report costs for
time frames smaller than full days and no capability to report costs
for a specific function or function execution. Additionally, no costs
are reported until the free tier of 2 million invocations, 400,000

3https://github.com/SimonEismann/FunctionsAndWorkflows

GB-seconds memory time and 200,000 GHz-seconds CPU time are
used up.

Based on these limitations, we use the following approach to
experimentally evaluate the costs of both workflows. First, we pur-
posefully use up the capacity of the free tier by executing arbitrary
functions. Next, we reserve a day for each experiment where no
other functions are executed. During this day, we execute the first
workflow 5,000 times with text segments with a normally distributed
length (µ = 500, σ = 50). At the start of the next day we take the
aggregated costs for the day and divide them by 5,000 in order to
get the average cost per workflow execution. We repeat the same
process for the second workflow.

Table 2 shows the measured costs per workflow execution, the
predicted costs using our approach and the resulting relative predic-
tion error. At first glance, the measured prices seem unrealistically
low. However, this is mostly due to the unfamiliar pricing scheme of
cost per execution. If we were to assume that a n1-standard-2 VM
(2 vCPU, 7.5GB memory) from Google Cloud (currently priced at

https://github.com/SimonEismann/FunctionsAndWorkflows

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Eismann et al.

Text2Speech Conversion Compression ProfanityDet Censor
Serverless function

0

5

10

15

20

25

Tr
ai

ni
ng

 ti
m

e
[m

in
]

Figure 9: Training time for both models of each serverless func-
tions with hyper-parameter optimization.

$0.0950 per hour) can handle 5 requests per second, this would result
in a cost of 5.3 · 10-6 per request. Consequently, costs of 1.02 · 10-4

and 4.60 · 10-5 to execute a workflow consisting of five functions is
cheap, but within reason.

Existing approaches that rely on cost estimations for serverless
functions and workflow simply round the mean observed function
response time up to the nearest 100ms [13, 18]. Applying this cost
estimation approach results in a cost estimate of 4.06 · 10-5 for both
workflows as it assumes that the function execution cost is inde-
pendent of its context. However, a single execution of WorkflowA
costs 1.02 · 10-4 ct, whereas an execution of WorkflowB costs only
about half as much even though both workflows provide the same
functionality. This results in a relative prediction error of 60.2% for
WorkflowA and 11.8% for WorkflowB using the naive cost estimate.

Our approach on the other hand accurately predicts this cost
difference between the two workflows. It predicts the charged costs
for invocations, CPU time and memory time with a prediction error
ranging from 2.6% to 10.3%. An interesting observation is that the
measured and predicted cost for the number of invocations differs.
As in the workflows from our case study, the number of function
invocations is static, our approach correctly predicts that 25,000
functions (5 executions per workflow * 5,000 workflow executions)
will be executed. The billed costs on Google Cloud are rounded up to
full cents, which causes this observed difference between measured
and predicted costs for function invocations. We are looking to repeat
the measurements with a larger number of workflow executions to
significantly decrease the measurement uncertainty caused by the
rounding of billed costs.

Overall, the costs for the execution of WorkflowA and WorkflowB
are predicted with an error of 4.0% and 3.6% respectively, resulting
in a average cost prediction accuracy of 96.2%. This shows that
the proposed approach can accurately predict the expected costs of
previously unobserved workflows (RQ 2).

3.3 Overhead analysis
The proposed approach enables accurate cost predictions for server-
less workflows. In order to ensure that the proposed approach is
applicable in practice, we investigate the time required to train the

machine learning models for each function and the time required for
the Monte-Carlo simulation.

The following experiments were conducted using a Intel® Core™
i5-4690K CPU with 3.50 Ghz. We measure the time required to train
the MDN model for the response time distribution and the MDN
model for the output parameter for each function from our case study
with the hyper-parameter optimization to determine the appropriate
number of kernels, which requires training MDN models. Figure 9
shows the result of repeating this measurement ten times as a boxplot.
The training process for each function which includes training ten
mixture density networks takes between 10 and 15 minutes, with the
censor function as a small outlier with a median training time of 20
minutes. This difference can be attributed to an increased model
complexity due to the additional input parameter. In general, we
consider these training times acceptable as the training is performed
offline and can be easily parallelized.

Additionally, we measure the time required to derive the cost
predictions for a workflow using the Monte-Carlo simulation. Pre-
dicting the costs of WorkflowA requires 16.34±0.30 (N=10) seconds,
whereas the predictions for WorkflowB require 14.20±0.03 (N=10)
seconds. A user looking to compare these two workflow alterna-
tives would need to wait about 30 seconds. Therefore, we consider
the time requirements of using our approach in production feasi-
ble (RQ3).

4 LIMITATIONS
While our approach provides accurate cost predictions for serverless
workflows in our case study, there still are limitations and threats to
the validity to be discussed.

First, serverless functions can be provisioned with different mem-
ory limits, which indirectly also changes the processing power al-
located to each function instance. Our approach currently does not
take this into consideration and assumes that if a function is used
in a workflow, its memory limit is not changed. While we consider
this assumption reasonable, our approach could be combined with
techniques that use transfer learning to determine the impact of
configuration parameters on performance [27].

Besides costs for CPU time, memory time and a flat execution
cost, cloud providers usually also charge for network egress, i.e.,
the amount of data leaving their data center or a regional zone. Our
approach currently does not consider this type of costs as the spec-
ification of the workflow model does not contain any information
about when data leaves a regional zone or the data center of the cloud
provider. However, our approach is already capable of estimating the
size of the output data of a serverless function and if the workflow
model is extended accordingly, it should also be possible to predict
the egress costs. However, this still needs to be validated in a further
case study.

The approach proposed in this paper considers functions as black-
boxes which can only be monitored at the interface level. There-
fore, it does not explicitly model potential external calls within
the serverless functions. For external calls to other serverless solu-
tions such as serverless object storage (e.g., S3 Buckets or Google
Cloud Storage), serverless databases (e.g. AWS Aurora or Google
Cloud Datastore), serverless event management (e.g., AWS SNS or
Google Cloud Pub/Sub) or serverless in-memory data storage (e.g.,

Predicting the Costs of Serverless Workflows ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

AWS Elasticache) should not impact the response time prediction
accuracy, as the load-independent response time of these calls is
correctly modeled within the mixture density network describing the
response time of the function issuing the external call. External calls
to non-serverless services can negatively impact the response time
prediction accuracy, as the load-dependent behavior of these external
calls is not captured by our approach. In practice, this should be
neglectable as synchronous external calls in serverless functions are
a major anti-pattern as they cause double-billing [8].

Lastly, our approach currently does not consider the costs for
the Google Cloud Composer cluster used to execute the workflow.
Google Cloud Composer charges for a set of VMs, whereas AWS
Step Functions and Azure Logic Apps charge per connector within
the workflow. For this pricing model, the static costs could be derived
from our workflow model similar to how the static costs per execu-
tion are calculated. The Google Cloud Composer costs cannot be
directly translated to costs per execution. If we can reliably estimate
the number of workflows a cluster executes in a given time interval,
it would be possible to translate the static hourly costs for the Google
Cloud Composer cluster to a cost per workflow execution.

5 RELATED WORK
The existing publications related to this paper can be divided into
three groups: discussions about the costs of serverless computing,
cost prediction of serverless computing solutions and performance
distribution prediction approaches.

Discussions about the costs of serverless computing. In the work
of Adzic and Chatley [2], two industrial case studies of companies
migrating from traditional hosting options to serverless computing
are presented. The companies reported cost savings of 66% and 95%
respectively after switching to serverless computing. The authors
also discuss the non-constant response times of serverless functions
as a limitation of current serverless platforms.

Eivy et al. claim that while the costs of serverless computing
seem simple on the surface, they are surprisingly complicated in
practice [17]. They discuss the issue of rounding up the function
execution times to 100 ms and that response time estimates require
deploying and testing the function. They also compare a serverless
solution to traditional hosting in a case study with a large scale API,
where the costs for the serverless solution are almost trice the costs
for the VM based solution.

Vazquez et al. conducted a study on the applicability of serverless
computing for data-intensive applications [39]. They compare a
solution based on AWS Lamba to using EC2 to process data collected
by the MARS Express orbiter from the European Space Agency. In
their case study, both solutions incur similar costs, but the serverless
solution is roughly twice as fast.

Performance distribution prediction. Khoshkbarforoushha et al.
apply mixture density networks to predict the distribution of CPU
time and execution time of Hive queries [29]. In this study, the
mixture density networks achieved similar accuracy to state-of-the-
art approaches concerning single point estimates and additionally
accurate descriptions of the expected metric distribution.

Samani et al. apply mixture density networks to predict the dis-
tribution of service metrics based on infrastructure measurements.

They report that while the predictions were surprisingly accurate, it
also took considerable time to identify effective model parameteriza-
tions [36].

Cost prediction of serverless computing solutions. In the work
of Boza et al. [13], an approach using model-based simulations to
compare the costs of reserved VMs, on-demand VMs and serverless
functions is introduced. The authors propose to model serverless
functions as M(t)/M/∞ queues, which assumes constant function
response times and does not consider the impact of input parameters.
The authors further conducted a survey with 96 participants, which
revealed that many companies rely on reserved VMs to simplify
financial planning.

Another approach to optimize the costs of serverless workflows
by deciding whether to fuse multiple functions into a larger function
and which memory limit should be allocated to a serverless function
is proposed in the work by Elgmal [18]. This approach also relies
on a constant value instead of a distribution for the response time
of the serverless function and does not consider the impact of input
parameters on the response time of a serverless function.

Gunasekaran et al. propose to use serverless functions in combina-
tion with VM-based hosting to enable SLO and cost-aware resource
procurement [23]. To enable the cost-aware decision making be-
tween VM-based hosting and serverless functions, the authors also
rely on cost-predictions for the serverless functions. This approach
also relies on a constant value instead of a distribution for the re-
sponse time of the serverless function and does not consider the
impact of input parameters on the response time of a serverless
function.

6 CONCLUSION
Serverless functions enable the execution of arbitrary functions,
paying for usage rather than for reserved computing resources. To
provide complex functionality, these serverless functions are often
assembled into workflows. However, estimating the costs of these
serverless workflow is challenging as the response time and therefore
the costs of a serverless function depend on its input parameters,
which are propagated from prior functions within the workflow. Ex-
isting approaches for the cost estimation of serverless functions and
workflows do not take the influence of input parameters on the re-
sponse time into account [13, 18]. In this paper, we propose method-
olgy to predict the costs of serverless workflows. First, we apply
mixture density networks to predict the distribution of a function’s re-
sponse time and its output parameters. The resulting models are then
combined into a workflow model. Based on this workflow model,
a Monte-Carlo simulation derives cost estimates for the workflow
execution. The cost predictions provided by our approach enable
workflow designers to evaluate and compare workflow alternatives,
as well as optimize existing workflows. Our approach represents
a first step towards fully-automated workflow optimization based
on multi-objective optimization techniques. In a case study with
two audio-processing workflows, our approach is able to predict the
response time and output parameter distributions of five serverless
functions with an accuracy of 96.1% and the costs of two workflow
alternatives with an accuracy of 96.2%. As part of our future work,
we will investigate approaches to predict the impact of different
memory sizes on the performance of serverless functions.

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Eismann et al.

ACKNOWLEDGEMENTS
This material is based upon work supported by Google Cloud. The
authors would like to thank the anonymous reviewers for their valu-
able feedback and literature suggestions.

REFERENCES
[1] Vanessa Ackermann, Johannes Grohmann, Simon Eismann, and Samuel Kounev.

2018. Black-box Learning of Parametric Dependencies for Performance Models.
In Proceedings of 13th International Workshop on Models@run.time (MRT).

[2] Gojko Adzic and Robert Chatley. 2017. Serverless computing: economic and ar-
chitectural impact. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. ACM, 884–889.

[3] Aldeida Aleti, Stefan Bjornander, Lars Grunske, and Indika Meedeniya. 2009.
ArcheOpterix: An Extendable Tool for Architecture Optimization of AADL Mod-
els. In Proceedings of the 2009 ICSE Workshop on Model-Based Methodologies
for Pervasive and Embedded Software (MOMPES ’09). IEEE Computer Society,
61–71.

[4] Amazon. 2018. Autodesk Goes Serverless in the AWS Cloud, Reduces Account-
Creation Time by 99%. https://aws.amazon.com/solutions/case-studies/autodesk-
serverless/. (2018). Accessed: 2019-05-28.

[5] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. 2008. Gradient flows: in
metric spaces and in the space of probability measures. Springer Science &
Business Media.

[6] Timon Back and Vasilios Andrikopoulos. 2018. Using a microbenchmark to
compare function as a service solutions. In European Conference on Service-
Oriented and Cloud Computing. Springer, 146–160.

[7] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche
Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander Slomin-
ski, et al. 2017. Serverless computing: Current trends and open problems. In
Research Advances in Cloud Computing. Springer, 1–20.

[8] Ioana Baldini, Perry Cheng, Stephen J. Fink, Nick Mitchell, Vinod Muthusamy, Ro-
dric Rabbah, Philippe Suter, and Olivier Tardieu. 2017. The Serverless Trilemma:
Function Composition for Serverless Computing. In Proceedings of the 2017
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Onward! 2017). ACM, 89–103.

[9] Christopher M Bishop. 1994. Mixture density networks. Technical Report.
[10] Egor Bondarev, Peter de With, Michel Chaudron, and Johan Muskens. 2005. Mod-

elling of input-parameter dependency for performance predictions of component-
based embedded systems. In 31st EUROMICRO Conference on Software Engi-
neering and Advanced Applications. IEEE, 36–43.

[11] Oliver Borchers. 2015. A Hitchhiker’s Guide to Mixture Density Net-
works. https://towardsdatascience.com/a-hitchhikers-guide-to-mixture-density-
networks-76b435826cca. (2015). Accessed: 2019-05-28.

[12] Zdravko I Botev, Joseph F Grotowski, Dirk P Kroese, et al. 2010. Kernel density
estimation via diffusion. The annals of Statistics 38, 5 (2010), 2916–2957.

[13] Edwin F Boza, Cristina L Abad, Mónica Villavicencio, Stephany Quimba, and
Juan Antonio Plaza. 2017. Reserved, on demand or serverless: Model-based
simulations for cloud budget planning. In 2017 IEEE Second Ecuador Technical
Chapters Meeting (ETCM). IEEE, 1–6.

[14] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2015. Fast and
Accurate Deep Network Learning by Exponential Linear Units (ELUs). (2015).
arXiv:arXiv:1511.07289

[15] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. 2009. L 2 regular-
ization for learning kernels. In Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence. AUAI Press, 109–116.

[16] Simon Eismann, Jürgen Walter, Jóakim von Kistowski, and Samuel Kounev. 2018.
Modeling of parametric dependencies for performance prediction of component-
based software systems at run-time. In 2018 IEEE International Conference on
Software Architecture (ICSA). IEEE, 135–13509.

[17] Adam Eivy. 2017. Be wary of the economics of" Serverless" Cloud Computing.
IEEE Cloud Computing 4, 2 (2017), 6–12.

[18] Tarek Elgamal. 2018. Costless: Optimizing cost of serverless computing through
function fusion and placement. In 2018 IEEE/ACM Symposium on Edge Comput-
ing (SEC). IEEE, 300–312.

[19] Erwin Van Eyk, Lucian Toader, Sacheendra Talluri, Laurens Versluis, Alexandru
Uta, and Alexandru Iosup. 2018. Serverless is More: From PaaS to Present Cloud
Computing. IEEE Internet Computing 22, 5 (2018), 8–17.

[20] DN Geary. 1989. Mixture Models: Inference and Applications to Clustering.
Vol. 152. Royal Statistical Society. 126–127 pages.

[21] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier
neural networks. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics. PMLR, 315–323.

[22] Johannes Grohmann, Simon Eismann, Sven Elflein, Manar Mazkatli, Jóakim von
Kistowski, and Samuel Kounev. 2019. Detecting Parametric Dependencies for
Performance Models Using Feature Selection Techniques. In Proceedings of the

27th IEEE International Symposium on the Modelling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS ’19). IEEE, 309–322.

[23] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Mahmut Taylan Kandemir,
Bhuvan Urgaonkar, George Kesidis, and Chita Das. 2019. Spock: Exploiting
serverless functions for slo and cost aware resource procurement in public cloud.
In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD).
IEEE, 199–208.

[24] Joseph M. Hellerstein, Jose Faleiro, Joseph E. Gonzalez, Johann Schleier-Smith,
Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018. Serverless Com-
puting: One Step Forward, Two Steps Back. (2018). arXiv:arXiv:1812.03651

[25] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkatara-
mani, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2016. Serverless
Computation with openLambda. In Proceedings of the 8th USENIX Conference
on Hot Topics in Cloud Computing (HotCloud’16). USENIX Association, 33–39.

[26] IBM. 2017. Serverless Architectures in Banking: OpenWhisk on IBM Bluemix at
Santander. https://developer.ibm.com/code/videos/tech-talk-replay-build-faster-
banking-apps-ibm-cloud-functions/. (2017). Accessed: 2019-05-28.

[27] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner, Akshay
Patel, and Yuvraj Agarwal. 2017. Transfer learning for performance modeling
of configurable systems: An exploratory analysis. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering. IEEE,
497–508.

[28] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A.
Patterson. 2019. Cloud Programming Simplified: A Berkeley View on Serverless
Computing. (2019). arXiv:arXiv:1902.03383

[29] Alireza Khoshkbarforoushha and Rajiv Ranjan. 2016. Resource and performance
distribution prediction for large scale analytics queries. In Proceedings of the
7th ACM/SPEC on International Conference on Performance Engineering. ACM,
49–54.

[30] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic
Optimization. (2014). arXiv:arXiv:1412.6980

[31] Klaus Krogmann, Michael Kuperberg, and Ralf Reussner. 2010. Using genetic
search for reverse engineering of parametric behavior models for performance
prediction. IEEE Transactions on Software Engineering 36, 6 (2010), 865–877.

[32] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436.

[33] Theo Lynn, Pierangelo Rosati, Arnaud Lejeune, and Vincent Emeakaroha. 2017.
A preliminary review of enterprise serverless cloud computing (function-as-a-
service) platforms. In 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). IEEE, 162–169.

[34] Szymon Majewski, Michal Aleksander Ciach, Michal Startek, Wanda Niemyska,
Blazej Miasojedow, and Anna Gambin. 2018. The Wasserstein Distance as a
Dissimilarity Measure for Mass Spectra with Application to Spectral Deconvo-
lution. In 18th International Workshop on Algorithms in Bioinformatics (WABI
2018) (Leibniz International Proceedings in Informatics (LIPIcs)), Laxmi Parida
and Esko Ukkonen (Eds.), Vol. 113. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 25:1–25:21.

[35] Anne Martens, Heiko Koziolek, Steffen Becker, and Ralf Reussner. 2010. Au-
tomatically Improve Software Architecture Models for Performance, Relia-
bility, and Cost Using Evolutionary Algorithms. In Proceedings of the First
Joint WOSP/SIPEW International Conference on Performance Engineering
(WOSP/SIPEW ’10). ACM, 105–116.

[36] Forough Shahab Samani and Rolf Stadler. 2018. Predicting distributions of service
metrics using neural networks. In 2018 14th International Conference on Network
and Service Management (CNSM). IEEE, 45–53.

[37] Erwin van Eyk, Johannes Grohmann, Simon Eismann, André Bauer, Laurens
Versluis, Lucian Toader, Norbert Schmitt, Nikolas Herbst, Cristina L. Abad, and
Alexandru Iosup. [n. d.]. The SPEC-RG Reference Architecture for FaaS: From
Microservices and Containers to Serverless Platforms. IEEE Internet Computing
([n. d.]). https://doi.org/10.1109/MIC.2019.2952061

[38] Erwin Van Eyk, Alexandru Iosup, Cristina L Abad, Johannes Grohmann, and
Simon Eismann. 2018. A SPEC RG cloud group’s vision on the performance
challenges of FaaS cloud architectures. In Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering. ACM, 21–24.

[39] Jose Luis Vazquez-Poletti, Ignacio Martín Llorente, Konrad Hinsen, and Matthew
Turk. 2018. Serverless computing: from planet mars to the cloud. Computing in
Science & Engineering 20, 6 (2018), 73–79.

[40] Laurens Versluis, Erwin Van Eyk, and Alexandru Iosup. 2018. An Analysis of
Workflow Formalisms for Workflows with Complex Non-Functional Requirements.
In Companion of the 2018 ACM/SPEC International Conference on Performance
Engineering. ACM, 107–112.

[41] David Vose. 2008. Risk analysis: a quantitative guide. John Wiley & Sons.
[42] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. 2007. On early stopping in

gradient descent learning. Constructive Approximation 26, 2 (2007), 289–315.
[43] Qingchen Zhang, Laurence T Yang, Zhikui Chen, and Peng Li. 2018. A survey on

deep learning for big data. Information Fusion 42 (2018), 146–157.

https://aws.amazon.com/solutions/case-studies/autodesk-serverless/
https://aws.amazon.com/solutions/case-studies/autodesk-serverless/
https://towardsdatascience.com/a-hitchhikers-guide-to-mixture-density-networks-76b435826cca
https://towardsdatascience.com/a-hitchhikers-guide-to-mixture-density-networks-76b435826cca
http://arxiv.org/abs/arXiv:1511.07289
http://arxiv.org/abs/arXiv:1812.03651
https://developer.ibm.com/code/videos/tech-talk-replay-build-faster-banking-apps-ibm-cloud-functions/
https://developer.ibm.com/code/videos/tech-talk-replay-build-faster-banking-apps-ibm-cloud-functions/
http://arxiv.org/abs/arXiv:1902.03383
http://arxiv.org/abs/arXiv:1412.6980
https://doi.org/10.1109/MIC.2019.2952061

	Abstract
	1 Introduction
	2 Approach
	2.1 Overview
	2.2 Function response time and output parameter distribution prediction
	2.3 Workflow cost prediction

	3 Case study
	3.1 Response time and output parameter distribution predictions
	3.2 Workflow cost predictions
	3.3 Overhead analysis

	4 Limitations
	5 Related Work
	6 Conclusion
	References

