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Abstract—Predictive maintenance is an essential aspect of the
concept of Industry 4.0. In contrast to previous maintenance
strategies, which plan repairs based on periodic schedules or
threshold values, predictive maintenance is normally based on
estimating the time-to-failure of machines.Thus, predictive main-
tenance enables a more efficient and effective maintenance ap-
proach. Although much research has already been done on time-
to-failure prediction, most existing works provide only specialized
approaches for specific machines. In most cases, these are either
rotary machines (i.e., bearings) or lithium-ion batteries. To bridge
the gap to a more general time-to-failure prediction, we propose
a generic end-to-end predictive maintenance methodology for the
time-to-failure prediction of industrial machines. Our methodol-
ogy exhibits a number of novel aspects including a universally
applicable method for feature extraction based on different types
of sensor data, well-known feature transformation and selection
techniques, adjustable target class assignment based on fault
records with three different labeling strategies, and the training
of multiple state-of-the-art machine learning classification models
including hyperparameter optimization. We evaluated our time-
to-failure prediction methodology in a real-world case study
consisting of monitoring data gathered over several years from a
large industrial press. The results demonstrated the effectiveness
of the proposed methodology for six different time-to-failure pre-
diction windows, as well as for the downscaled binary prediction
of impending failures. In this case study, the multi-class feed-
forward neural network model achieved the overall best results.

Index Terms—Predictive Maintenance, Time-to-Failure, Indus-
try 4.0, Sensors, Feature Engineering, Machine Learning.

I. INTRODUCTION

Rapid developments in the Internet of Things (IoT), contin-
uous miniaturization of sensors, and increasing digitalization
are leading to new applications in areas such as Industry 4.0
and Industrial IoT. Due to these developments, monitoring data
of industrial machines can be easily stored, resulting in huge
data sets. These can then be used to analyze the machines, with
predictive maintenance (PdM) being a typical application.

Nowadays, many companies still follow a periodic (PM) or
condition-based maintenance (CBM) approach. While in PM,
industrial machines are maintained at regular intervals, CBM
involves defining threshold values for particular sensors, which
trigger maintenance operations when exceeded. PM often leads
to a waste of personnel and material, since in many cases,
maintenance is not necessary and could be postponed. A study
by Mobley identified that this waste is responsible for about
one third of all maintenance-related costs [1]. In contrast,

CBM requires a high level of expert knowledge to define the
threshold values. Furthermore, the analysis of threshold values
is still a static, reactive approach, where unplanned downtimes
still occur often. Emerson and the Wall Street Journal estimate
the cost of these unplanned downtimes in manufacturing to
approximately 50 billion USD per year [2], [3]. In contrast to
PM and CBM, PdM aims at predicting deteriorating health by
analyzing earlier monitoring data and learning from previous
machine failures. A report by PricewaterhouseCoopers and
Mainnovation revealed that PdM increases machine uptime by
9% and machine life by 20%. In addition, according to a report
by the World Economic Forum [4], PdM reduces the costs of
scheduled repairs by 12% and maintenance costs in general
by 30%, while achieving 70% less breakdowns. Moreover,
predicting upcoming machine failures also increases employee
satisfaction, as technicians no longer have to be called to
emergencies spontaneously and immediately, but can plan and
prepare for the maintenance actions in advance.

Due to this high practical relevance of PdM for Industry 4.0,
much research has already been done in this field. However,
existing approaches are typically strongly tailored to particular
use cases, so that the models can hardly be transferred to
other applications. In contrast to these highly specialized
solutions, we propose a generic end-to-end PdM methodology
for time-to-failure prediction of industrial machines. The novel
contribution compared to existing works is the end-to-end
design, especially with respect to a universally applicable
feature extraction based on integral values, which does not rely
on profound expert knowledge. Furthermore, machine failures
are predicted at different time horizons, while investigating the
application of different class labeling strategies. We evaluate
our proposed end-to-end methodology using real production
data from a large-scale press. This type of machine has not
been studied before and differs significantly from the types
of machines commonly studied, namely bearings, lithium-ion
batteries, and hard disk drives.

The rest of this paper is structured as follows: In Section II,
we briefly describe related works in the domain of PdM and
machine failure prediction. Then, we present our proposed
PdM methodology for time-to-failure prediction in Section III.
In Section IV, we evaluate our approach in the context of a
real-world case study of a large-scale industrial press, followed
by a discussion in Section V. Finally, we conclude the paper
with a summary and an outlook on future work in Section VI.



II. RELATED WORK

In general, predictive maintenance can be divided into
two steps: (i) time-to-failure prediction and (ii) maintenance
scheduling based on these time-to-failure predictions. In this
paper, however, we focus on the first step, namely the time-
to-failure prediction. Existing approaches in this area typically
provide solutions designed for a specific machine. The most
frequently analyzed machine type are rotary machines. Here,
vibration data provide highly relevant indicators for machine
health prediction. Zhang et al. proposed a time-to-failure
prediction approach for bearings based on such vibration data
using principal component analysis (PCA), hidden Markov
model, and stochastic model for failure prediction [5]. In
this case, Zhang et al. modeled the prediction problem as
a regression task. Tobon-Mejia et al. introduced a similar
approach, but they used wavelet decomposition instead of PCA
and a mixture of Gaussian hidden Markov models [6].

Instead, Shuang et al. applied PCA in combination with
a support vector machine (SVM) for binary classification of
faulty bearings [7]. Huo et al. also employed binary classifica-
tion using SVM, but used a variation of permutation entropy
for feature extraction and Laplacian score for feature selec-
tion [8]. Unlike the other approaches, Amarnath et al. used
sound signals instead of vibration data for binary classification
of faulty bearings using a C4.5 decision tree [9].

Several authors have also applied multi-class classification
to predict different bearing fault types. One such approach is
by Zhang et al., employing permutation entropy on vibration
data, ensemble empirical mode decomposition (EEMD), and
multi-class SVM [10]. Another approach based on EEMD
was presented by Qin et al. [11]. However, they used random
forest to classify fault types and compared EEMD with wavelet
decomposition, concluding that EEMD provided better results.
The use of empirical mode decomposition in combination
with energy entropy and a feed-forward neural network was
described by Ali et al. [12]. In contrast, Li et al. applied fast
Fourier transform, root mean square maps, and convolutional
neural networks for the classification of different bearing fault
types [13]. However, all of these approaches used multi-class
classification only to distinguish between different fault types
and not to predict impending failures with different lead times.

The main shortcoming of the above approaches is that they
are strongly tailored to vibration or sound data and therefore
not transferable to domains where such data are not applicable
or not as meaningful as for rotary machines. In addition, all
of these approaches use a rigid prediction procedure without
comparing the influence of different class labeling strategies.

III. TIME-TO-FAILURE PREDICTION METHODOLOGY FOR
INDUSTRIAL MACHINES

The time-to-failure methodology proposed in this paper
is designed specifically for industrial machines. Therefore,
the availability of sensor monitoring data is assumed. Sec-
tion III-A presents the different categories of sensor data
covered by the methodology. Next, Section III-B shows the
feature selection included in the methodology along with

two possible feature normalization techniques. Section III-C
explains three different target labeling methods, followed
by model learning in Section III-D. Finally, Section III-E
describes the aggregation process for the predictions.

A. Extracting Features from Sensor Data

A sensor, in the context of industrial machines, is any
digital measuring instrument that monitors either a particular
component or the executed program of the machine. We
distinguish sensors in four different categories, treating them
in different ways: (i) physical units, (ii) paired units, (iii)
temporal information, and (iv) program information.

Sensors in the physical units category are sensors that mea-
sure the current state or condition of a machine component,
for example, the position of an axis, pressure, or temperature.

Sensors in the paired units category are similar, but they
additionally provide a specified target value for the measured
state or condition. The difference between the actual and target
value can be used as a measure for the performance of the
machine when running the implemented execution program.

In contrast, sensors in the temporal information category
provide data that can be used to compute the duration of
different events in the manufacturing process, typically the
execution of certain manufacturing steps. Based on such data,
a change in the health state of the machine can be detected. For
example, in case of a leakage, the machine may take longer
to build up a certain target pressure, which in turn may result
in a longer duration.

Finally, sensors in the program information category provide
data that can be used as an indicator to split the measurement
data of an entire manufacturing process into multiple phases,
for example, drilling, milling, tool change.

As part of the feature extraction process, our methodology
first uses data from program information sensors to partition all
sensor measurements into multiple separate parts representing
different phases or activities in the manufacturing process.

Next, the first feature—the duration—is computed for each
phase by subtracting the first timestamp from the last time-
stamp. For physical and paired units, a different feature
extraction approach is used in order to gain insight into the
performed execution. For most machine learning algorithms,
it is not applicable to simply use the measured time series as
input, since the durations of different executions vary, result-
ing in time series with different lengths. However, machine
learning algorithms always require the same input feature
dimension. Moreover, passing entire measurement time series
as features leads to an explosion of the feature dimension,
which slows down model learning tremendously, making it
hardly applicable. Finally, the mere use of measurement time
series can lead to misclassifications if the recording is slightly
shifted in time, since the actually related features are then no
longer considered as related by the machine learning model.
Therefore, f or physical units, the integral of the measured
values is computed; for paired units, the difference between
the target values and the actual values is computed. This is
illustrated in Figure 1, where a measured physical unit is



plotted against the measurement time and the integral for
an exemplary phase in the manufacturing process is depicted
in blue. The integral changes when either the intensity (i.e.,
the value range) of the physical unit or the duration of the
phase increases or decreases, as indicated by the red arrows
in Figure 1. Such changes typically indicate faulty machine
behavior, since the execution should follow a strict sequence of
instructions, although small variations are normal. The integral
function provides a much more robust representation of these
natural variations than the direct use of measurement data.

B. Feature Handling

The described feature extraction procedure, when applied
for typical industrial machine scenarios with multiple physical
unit sensors and multiple phases per manufacturing process,
would result in a high number of extracted features. To avoid
distortions during model learning and to keep the model build-
ing time as short as possible, only the most relevant features
should be selected. For this purpose, the methodology includes
a feature selection technique based on the Pearson correlation
coefficient, which is computed between each feature and the
target label. To reduce the dimensionality of the feature space,
the operator can set a threshold value and specify whether only
features with a correlation coefficient greater than the threshold
value should be considered for model learning or also features
with a correlation coefficient less than the threshold value.
In the latter case, strongly positively and strongly negatively
correlated features are included in the model learning.

However, since the values of different physical units are
typically defined in different scales, the features must also
be normalized before they can be used as input for machine
learning models. For this purpose, our methodology offers two
conventional techniques for feature normalization: min-max
and Z-score normalization. The min-max normalization scales
all values of a feature into the range of [0, 1] by subtracting
the minimum value from each value and dividing it by the
difference between the maximum and minimum value. In
contrast, the Z-score normalization transforms all values of
a feature so that their new distribution has a mean value of 0
with a standard deviation of 1. To this end, it subtracts the
mean value from each value and divides it by the standard
deviation. Compared to the min-max normalization, the Z-
score normalization is much more robust against outliers and
does not require the absolute minimum and maximum values;
however, it does not transform the values into a fixed range.
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Fig. 1. Integral-based feature extraction.

C. Target Class Mapping

After the feature engineering process, the target labels
must be created and mapped to the measurement data. To
this end, our methodology assumes the availability of failure
records with timestamps. The timestamps are matched to the
timestamps in the sensor measurement data, computing the
time-to-failure of each instance in the data set. Although
the time-to-failure could directly be used as a label to learn
regression models, the methodology discretizes the time-to-
failure in terms of classes to learn classification models instead
of regression models. This design decision is based on the
fact that most real-life scenarios for predictive maintenance in
Industry 4.0 do not require time-to-failure information at the
granularity of seconds or minutes but rather of hours or days.
This time horizon lends itself well to modeling using classes.

In order to derive the classification labels, our methodology
applies three different labeling techniques. In each case, the
operator must first specify a fixed number of prediction
windows of interest, which are mapped to different time-to-
failure classes. For instance, if the operator would specify
the prediction windows of 12 hours and 1 day, the resulting
discretized time-to-failure classes would represent failures in
the three time horizons: [0, 12), [12, 24), and [24,∞) hours.

The first labeling technique is a simple binary classification
per class. For each class, a vector of labels is created that
is set to 1 if the time-to-failure of the particular instance is
within the time-to-failure interval of the class and 0, otherwise.
Only for the last class, no vector is created since this class is
already covered by all other classes. If all other classes are 0,
this implies a 1 for the last class. This labeling approach is
illustrated in Figure 2 in the middle; it requires a separate
prediction model for each class except for the last one.

The second labeling technique also models the classes
separately, but contrary to the simple binary classification,
the vector of class labels is set to 1 if the time-to-failure
of the respective instance is smaller than the upper bound
of the time-to-failure interval of the class. Thus, for a single
instance, multiple classes can have a label of 1, while in the
simple binary case, only the highest class would be set to 1.
This labeling approach is illustrated at the bottom of Figure 2.
Similar to the simple binary labeling technique, it results in
a separate prediction model for each class except for the last
one. Here, the last class would contain even less information,
since it would be 1 for each instance. In the following, we
refer to this labeling technique as stacked binary.

Finally, the third labeling technique is multi-class labeling,
where a single vector of class labels is created containing the
name of the time-to-failure interval class into which the time-
to-failure of the corresponding instance falls. The top part of
Figure 2 represents this labeling approach. Unlike the first
two labeling techniques, this technique requires only a single
prediction model.

D. Model Learning

To learn a model for time-to-failure prediction, the method-
ology uses four different methods. However, similar to the



implemented feature selection and transformation techniques,
other algorithms would be possible as well and could be
incorporated into the methodology. The four methods currently
included in the time-to-failure prediction methodology are:

• Random Forest (RF): An ensemble method combining
multiple decision trees using bagging [14],

• eXtreme Gradient Boosting (XGBoost): An ensemble
method involving multiple decision trees using gradient
boosting [15],

• Feed-Forward Neural Network (FFNN): A neural net-
work architecture passing the information from input to
output without cycles [16], and

• AutoML: A framework that automatically trains several
models of different machine learning methods, optimizes
their hyperparameters, and creates stacked ensembles
from the best of these individual models [17].

For each of these methods, hyperparameter optimization
is applied using the grid-search technique. That is, the op-
erator can specify a list of possible configurations for each
parameter. However, in the case study (see Table I), we
also offer parameter configurations that have already achieved
satisfactory results in practice and, therefore, can be adopted
if no dedicated expert knowledge is available. For RF, the
adjustable parameters are the number of decision trees ntree
and the number of predictors mtry to choose from at each split.
For XGBoost, the parameters to be defined are eta, max depth,
and gamma. As the number of configurable parameters of
FFNN is very large, a predefined architecture is implemented
consisting of five dense layers with an adjustable dropout
after each layer. The rectified linear unit (ReLU) is used as
an activation function. For the final output, the sixth layer
applies the softmax activation function. Here, the number of
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Fig. 2. Applied labeling techniques. For the binary models, the entries with
1 are marked grey.

nodes equals the number of classes defined by the operator.
The design of this pre-defined FFNN architecture is based
on Chollet and Allaire [18]. However, the resulting FFNN
still provides a wide range of parameters, so the methodology
splits the grid search into two iterations. The first grid search
aims at estimating the required batch size and the overall
complexity of the model by varying the parameter settings
for the batch size, the number of nodes per layer, and the
dropout. For this first iteration, the number of nodes and
dropout are the same for all layers in order to keep the
number of permutations manageable. Based on the top results
of this first grid search, a second grid search is performed
considering only the parameter settings that are included in
these top results. Here, the number of nodes per layer and the
dropout after each layer are set per layer. Thus, the pre-selected
parameters are fine-tuned in this second iteration. To learn the
FFNN models, the adam optimizer is used with categorical
cross entropy as a loss function. Lastly, the methodology does
not include hyperparameter optimization for AutoML, since
AutoML already performs such an optimization internally.

E. Prediction Aggregation

Regardless of the analyzed labeling method, each prediction
method returns only a single time-to-failure class when the
models are applied. With respect to the multi-class model, the
output is simply the predicted class. However, for the binary
and stacked binary labeling methods, during the prediction
process, several of the binary models may predict 1, namely
an impending failure within the respective time window. In
this case, only the time-to-failure class with the shortest lead
time is returned as the final prediction.

IV. CASE STUDY

This section presents a case study evaluating the proposed
methodology for time-to-failure prediction by applying it to a
large-scale industrial press.

A. Case Study Details

The case study analyzes data from a large-scale industrial
press that was monitored over several years. During this
period, every 100th stroke was recorded with a resolution
of 1 millisecond. A stroke takes about four seconds during
which the press processes eight different phases. As a data
quality check, we sorted out recordings that did not consist of
exactly these eight phases or had a processing time that was
too short or too long. The phases are identified in the sensor
recordings based on the recorded command, which can be
seen as sensor data containing program information. Next, the
timestamps of the sensor measurements are used as temporal
information to compute the duration of each processing phase
and of the entire stroke, resulting in 9 duration features.
Besides the timestamps and the program command, 118 sensor
measurements are available for each recording entry. This
results in 118 physical unit sensors, 32 of which are paired
units; that is, there are 16 pairs of target and actual values. For
these pairs, the deviation is computed and used as physical unit



sensor data. In total, this results in 9+(118+16)× 8 = 1081
features per stroke in a data set containing 47152 strokes.

To train the feed-forward neural network (FFNN), the
features are transformed using the Z-score normalization. For
the other model learning methods applied, both normalization
techniques were tested, but the best predictions were obtained
without any normalization. In addition, correlation-based
feature selection was used to reduce the number of features.
However, as the reduced feature set did not improve the
prediction performance, in the following, we show the results
of using all features for model learning.

The chosen class boundaries were 5 hours, 12 hours, 1 day,
2 days, and 1 week, resulting in the classes 1 to 6, with the
time-to-failure falling into the range of [0, 5), [5, 12), [12, 24),
[24, 48), [48, 168), and [168,∞) hours, respectively. These
limits were selected because predictions in these time windows
allow technicians sufficient lead time to take countermeasures.

Table I shows the parameter settings for the applied grid-
search-based hyperparameter tuning. Note that for classifica-
tion, the default for mtry for random forest (RF) is set to
b
√
#featuresc, which yields 32. The other two settings for

mtry are obtained by multiplying the square root of the number
of features by factors of 2 and 4, respectively, followed by
rounding. The XGBoost parameter specification is based on
the recommendations of Jain [19]. Although AutoML performs
hyperparameter optimization internally, one parameter, namely
the maximum runtime, must be specified. For the binary and
stacked binary models, we set the maximum runtime to 6 hours
per binary class, resulting in a maximum total runtime of
30 hours. For the multi-class model, we set the maximum
runtime to 22 hours. Although this may appear to be a bias, it
does not affect the final prediction results since the maximum
runtime was not reached anyway due to early stopping.

To assess the quality of the time-to-failure prediction
methods, we compute accuracy, recall, precision, F1-score,
and Cohen’s kappa coefficient [20] using a 5-fold cross-
validation [21]. While the first four measures are very com-
monly used in machine learning-based classification tasks,
Cohen’s kappa coefficient is less frequently observed. There-
fore, we briefly describe it here. Cohen’s kappa coefficient
measures the quality of a predictor by comparing the predic-
tions to a random choice predictor based on class frequencies.

TABLE I
PARAMETER SETTINGS OF THE PREDICTION METHODS FOR THE

GRID-SEARCH-BASED HYPERPARAMETER OPTIMIZATION

Method Parameter Settings

RF ntree 500, 1000, 2000
mtry 32, 65, 131

XGBoost
eta 0.05, 0.10, 0.30
max depth 6, 8, 10, 15
gamma 0, 2, 10

FFNN
batch size 100, 500, 1000
number of nodes 64, 128, 256, 512
dropout 0.0, 0.2, 0.4

Formally, Cohen’s kappa coefficient is defined by

Kappa =
po − pe
1− pe

, (1)

where po is the accuracy of the learned predictor and pe is the
expected accuracy of a random choice predictor that uses the
class distribution of the training set as sampling frequencies.
Cohen’s kappa coefficient is more expressive than ordinary
accuracy for imbalanced data sets. The distribution of classes
in the data set used in this case study is illustrated in Table II.
It can be clearly seen that the classes are highly imbalanced;
for instance, the time-to-failure class 6 (i.e., no failure within
the next week) occurs 1118 times in the data set, whereas all
other classes are in the range of 7900 to 11000 instances.

TABLE II
THE DISTRIBUTION OF TIME-TO-FAILURE CLASSES.

Class Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Count 10977 7978 8762 7906 10411 1118

B. Macro Results

In this section, the best models for the three different label-
ing techniques are compared over all classes. The measures
recall, precision, and F1-score are calculated for each class
and then combined using arithmetic mean, resulting in macro
recall, macro precision, and macro F1-score. The class-wise
results are presented in Section IV-C.

Note that for the binary or stacked binary labeling, the best
model may actually consist of five different prediction methods
and hyperparameter settings corresponding to the classes 1
to 5 (cf. Section III-C), while for the multi-class labeling, the
best model comprises only a single prediction method with
its best hyperparameter configuration. Table III displays the
achieved accuracy, kappa, macro F1-score, macro recall, and
macro precision for the best models of each combination of
labeling and prediction method. Moreover, for the binary and
stacked binary labeling methods, also the best results using a
combination of different prediction methods are shown.

For the binary models, it can be observed that random
forest yielded by far the worst result with respect to accuracy,
kappa, macro F1-score, and macro recall. However, it achieved
the second highest macro precision. XGBoost and FFNN
performed rather similarly for all measures except macro
precision, where XGBoost provided the best result and FFNN
the worst. Finally, AutoML showed the overall best prediction
when using binary labeling. For all measures except macro
precision, it significantly outperformed the other prediction
methods. For this reason, the overall best combination of
binary models includes only AutoML models, which were all
based on boosting, i.e., mainly XGBoost models and a few
gradient boosting machine models. Since the best combination
is equal to the application of the five best binary models of
AutoML, both rows in Table III show the same values.

In terms of the stacked binary models, the first finding is that
the prediction quality of all methods increased greatly. Here,



TABLE III
THE ACHIEVED ACCURACY, KAPPA, MACRO F1-SCORE, MACRO RECALL, AND MACRO PRECISION FOR THE BEST PARAMETER SETTINGS OF EACH

INDIVIDUAL PREDICTION METHOD AS WELL AS THEIR OVERALL BEST COMBINATION FOR EACH LABELING APPROACH. THE BEST VALUES PER
LABELING METHOD ARE HIGHLIGHTED IN BOLD, WHILE THE OVERALL BEST VALUES ARE HIGHLIGHTED IN BOLD AND WRITTEN IN ITALIC.

Labeling Method Prediction Method Accuracy Kappa Macro F1-Score Macro Recall Macro Precision

Binary

Best Random Forest 0.5670 0.5042 0.5796 0.6140 0.8065
Best XGBoost 0.7183 0.6672 0.6933 0.7476 0.8070
Best FFNN 0.7129 0.6519 0.6657 0.7320 0.6931
Best AutoML 0.7934 0.7475 0.7372 0.8036 0.7555
Best Combination 0.7934 0.7475 0.7372 0.8036 0.7555

Stacked Binary

Best Random Forest 0.7576 0.7009 0.7749 0.7698 0.8053
Best XGBoost 0.8378 0.7995 0.8526 0.8522 0.8621
Best FFNN 0.7568 0.6983 0.7703 0.7610 0.7835
Best AutoML 0.8280 0.7863 0.8417 0.8371 0.8472
Best Combination 0.8409 0.8023 0.8533 0.8492 0.8590

Multi

Best Random Forest 0.8763 0.8462 0.8797 0.8770 0.8845
Best XGBoost 0.8862 0.8585 0.8920 0.8907 0.8946
Best FFNN 0.8972 0.8724 0.9000 0.9041 0.8951
Best AutoML 0.8408 0.8021 0.8519 0.8482 0.8571

random forest and FFNN provided similar results regarding
all measures, with the achieved values of random forest being
slightly higher. In addition, XGBoost outperformed AutoML
with respect to all measures, although all models learned from
AutoML were still based on boosting methods only. However,
the best combination of models was achieved by a mixture
of XGBoost and AutoML models. The best combination
model used XGBoost with eta = 0.05, max depth = 15, and
gamma = 0 for classes 2 and 3, while AutoML models were
used for classes 1, 4, and 5.

In contrast to this dominance of AutoML and XGBoost
for the binary and stacked binary models, FFNN significantly
outperformed AutoML in the case of multi-class labeling, de-
spite the fact that AutoML learned a complex ensemble model
consisting of eight gradient boosting machine models, seven
XGBoost models, one linear model, two random forest models,
and seven deep neural networks. Yet, XGBoost provided the
second best results on all evaluation measures. Moreover, even
random forest outperformed AutoML significantly. The results
obtained by the multi-class FFNN were the highest across
all labeling and prediction methods with an accuracy, kappa,
macro F1-score, macro recall, and macro precision of 89.72%,
87.25%, 90.00%, 90.41%, and 89.51%, respectively. The
configuration of this optimized FFNN was as follows:

• batch size = 500
• number of nodes per layer = [256, 256, 512, 512, 256]
• dropout per layer = [0.2, 0.2, 0.0, 0.0, 0.2]

Finally, when comparing the kappa values of the best
prediction methods per labeling strategy, only the multi-class
labeling approach achieved a value greater than 0.81, which
according to Landis and Koch [22] is considered the lower
limit of a near-perfect agreement. In numerical terms, the best
multi-class labeling model significantly exceeded this limit,
showing a kappa value of 0.8724, while the best stacked binary
labeling model almost reached the limit with a kappa value
of 0.8023, and the best binary labeling model remained far
from it with a kappa value of 0.7545. These results could

be explained by relationships between classes. When all six
classes are modeled with a single prediction model, slight
differences between the classes can be learned that are missed
when analyzing each class individually. Therefore, the next
section presents the prediction results by class.

C. Results by Class

In this section, the achieved prediction quality per class is
evaluated in detail. Table IV shows the F1-score (F), recall (R),
and precision (P) for the binary (B), stacked binary (S), and
multi-class (M) labeling for each of the six time-to-failure
classes. The best values per measure and class are highlighted
in bold, while the worst values are underlined. Regarding the
F1-score, it is apparent that the multi-class labeling performed
best; it achieved the highest value for five of the six classes.
Only for the last class (i.e., no machine failure within the next
week), the stacked binary labeling approach performed better
by 0.0081 percentage points. The binary labeling approach
produced the worst F1-scores for all classes. Nevertheless,
it achieved the same F1-score for class 1 as the stacked
binary labeling approach. This is due to the fact that the

TABLE IV
THE ACHIEVED F1-SCORE (F), RECALL (R), AND PRECISION (P) PER

CLASS FOR THE BEST MODELS OF EACH LABELING METHOD (LM), I.E.,
BINARY (B), STACKED BINARY (S), AND MULTI (M). THE BEST VALUES

ARE WRITTEN BOLD, WHILE THE WORST VALUES ARE UNDERLINED.

LM Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

F
B 0.8155 0.6935 0.7955 0.8595 0.9356 0.3234
S 0.8155 0.7273 0.8142 0.8765 0.9403 0.9460
M 0.8807 0.8353 0.8772 0.9111 0.9589 0.9379

R
B 0.8356 0.6161 0.7319 0.8129 0.9085 0.9168
S 0.8356 0.6980 0.8538 0.8679 0.9158 0.9240
M 0.8913 0.8420 0.8495 0.9161 0.9587 0.9669

P
B 0.7964 0.7933 0.8712 0.9116 0.9643 0.1964
S 0.7964 0.7591 0.7781 0.8853 0.9662 0.9690
M 0.8703 0.8206 0.9068 0.9062 0.9561 0.9105



labeling procedure for the first class is the same for both
labeling strategies and both use the same AutoML model for
class 1. This also applies to recall and precision. Moreover,
for classes 1 to 5, the obtained F1-score of the binary labeling
is close to the F1-score of the stacked binary labeling, it drops
significantly for class 6. While the stacked binary labeling and
the multi-class labeling achieved an F1-score of 0.9460 and
0.9379, respectively, the binary labeling only reached an F1-
score of 0.3234 for class 6.

When analyzing recall, again the multi-class labeling ap-
proach performed best for five of the six classes. Only for
class 3, stacked binary labeling outperformed multi-class la-
beling. Similar to the F1-score results, the difference is quite
small with only 0.0043 percentage points. Again, the binary
labeling performed worst for all six classes, while achieving
the same results as the stacked binary labeling approach for
class 1. Nevertheless, the binary labeling did not provide as
significantly poor results as for the F1-score of class 6. The
largest difference between the binary labeling and the second
best labeling method is for class 3, where the binary labeling
yielded a recall of 0.7319 and the multi-class labeling a recall
of 0.8495. Since recall is the number of instances correctly
predicted as positive relative to the total number of instances
that are actually positive, these results suggest that all three
labeling methods predict imminent machine failures quite well
while keeping the number of missed imminent failures low.

Lastly, the multi-class labeling approach achieved the high-
est precision for three time-to-failure classes (i.e., classes 1
to 3), while the stacked binary labeling approach performed
best for two classes (i.e., classes 5 and 6) and the binary
labeling approach provided the best precision for class 4. In
contrast, the stacked binary labeling performed worst for four
classes, namely classes 1 to 4, while binary labeling yielded
the same precision for class 1. Since precision is the number
of instances correctly predicted as positive relative to the total
number of instances predicted as positive, this implies that
the stacked binary labeling approach provided comparatively
many false alarms for classes with a short time-to-failure,
while it delivered the least number of false alarms for the two
classes with the highest time-to-failure. Similarly, the binary
labeling approach resulted in the fewest false alarms for the
classes indicating failures within the next 24 to 48 hours.
However, the precision of the binary labeling for class 6 is by
far the worst with only 0.1964, resulting in the low F1-score
of the binary labeling. That is, the binary labeling approach
predicted many instances as class 6, although the time-to-
failure is actually much shorter. This demonstrates the need
to compare different labeling strategies, as their performance
varies greatly both between classes and in aggregate. Finally,
the multi-class labeling provided least false alarms for the most
urgent time-to-failure classes.

D. Details on the Best Predictions

This section provides more detailed insights into the overall
best predictions, which were achieved by the feed-forward
neural network using multi-class labeling. Table V reports

the accumulated confusion matrix across all five folds, such
that each instance in the data set is used exactly once in
the test set. The columns of the confusion matrix show the
actually observed (Ob) time-to-failure classes, while the rows
represent the predicted (Pr) classes. The value in each cell
shows the number of instances predicted for that particular set
of observed and predicted class labels. The cells highlighted
in green indicate the correctly predicted instances. The second
cell from the left in the third row, for example, shows 398
instances that are predicted as “a failure will occur within the
next 12 to 24 hours”, while the failure actually occurred in
the time window of 5 to 12 hours after the measurement.

The confusion matrix clearly shows that most instances
are correctly predicted. Especially for higher time-to-failure
classes, only few mispredictions are made, whereas most mis-
predictions occur for shorter time-to-failure classes, where the
time difference between classes is also smaller. Moreover, the
majority of the mispredictions are located directly in adjacent
classes. Thus, the time-to-failure mispredictions mostly fall in
the closest time-to-failure windows, which leads to only minor
discrepancies for practical applications. Only relatively few
failure instances exhibit higher prediction error (i.e., several
cells apart in the confusion matrix).

Furthermore, for many practical applications, such a fine-
grained time-to-failure prediction might not be required and
instead a binary prediction with a prediction horizon of two
days might be sufficient. To evaluate our approach for such
scenarios, we reduced the confusion matrix with six classes
to the binary prediction of whether the machine failure will
occur within the next two days or not. That is, the classes 1
to 4 represent the “failure class”, while the classes 5 and 6
are grouped as the “no failure” class. For this binary task, our
predictive maintenance methodology predicts the failure with
even (substantially) higher accuracy, F1-score, and kappa of
97.79%, 98.54%, and 94.03%, respectively.

V. DISCUSSION AND THREATS TO VALIDITY

Although it is common practice to apply multiple binary
prediction models to predict impending failures with different
lead times (e.g., [23]), the results of our case study demon-
strated that such an approach does not necessarily yield good
results. In fact, the binary models actually performed the worst
in our case study. However, this finding only represents this
case study, while the ranking of the best labeling methods and
machine learning algorithms could be completely different for

TABLE V
THE ACCUMULATED CONFUSION MATRIX OVER ALL FIVE FOLDS FOR THE

FEED-FORWARD NEURAL NETWORK WITH MULTI-CLASS LABELING.

Pr
Ob Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Class 1 9719 755 243 131 144 20
Class 2 654 6635 462 86 78 12
Class 3 262 398 7671 235 42 18
Class 4 132 109 297 7283 166 11
Class 5 190 69 74 163 9959 18
Class 6 20 12 15 8 22 1039



another use case. Nevertheless, the results illustrate the need
to test different class labeling strategies, as their influence can
be even larger than the choice of machine learning method, as
it was the case in our case study. Given that only integral and
duration features were used, the methodology does not require
in-depth expert knowledge, making it easily transferable to
other application scenarios, even though it was evaluated here
in only one concrete use case. Furthermore, the case study
considered failures of a large industrial press, which have
hardly been analyzed in the literature so far.

While the application runtime of the prediction models is
negligible, the training and hyperparameter tuning takes a con-
siderable amount of time. In practical application, the models
should nevertheless be re-trained regularly to counteract pos-
sible concept drifts. However, due to the high computational
effort, this re-training should be carried out off-line.

With respect to the prediction aggregation for the stacked
binary model, we also compared the use of a strategy that
analyzes the consistency of 1s within the predictions. However,
using the time-to-failure class with the shortest lead time
yielded the best results. Yet, there exist many other ways to
aggregate the predictions of the binary models, such as incor-
porating class probabilities. As future work, we plan to develop
different prediction aggregating methods and investigate their
effects on the overall quality of the predictions.

We also plan to incorporate oversampling strategies to
balance the number of instances of each class, as this has been
shown to be beneficial in previous work [24]. Furthermore, we
plan to extend the prediction methods to include recurrent neu-
ral networks. In addition, we envision combining the models
of the different labeling methods into an overall model, as
results suggest that different labeling methods perform better
for different time-to-failure windows. This would allow us to
create an ensemble that weights the prediction of each model
with respect to the time-to-failure window. Finally, we plan
to use our time series forecasting method Telescope [25] to
forecast sensor values, providing additional information for
the machine learning method.

VI. CONCLUSION

In this paper, we introduced a universal end-to-end predic-
tive maintenance methodology for time-to-failure prediction
of industrial machines. Unlike other time-to-failure prediction
approaches that are specifically designed for certain machines,
the proposed methodology includes a universal sensor han-
dling and feature extraction approach based on integral values.
Moreover, it also includes feature transformation, feature se-
lection, adjustable target class labeling, and training of differ-
ent machine learning models as well as their hyperparameter
tuning. Thus, the proposed methodology provides an end-to-
end approach from sensor input to time-to-failure prediction.
However, the planning of targeted maintenance using this time-
to-failure prediction was beyond the scope of this thesis. We
evaluated the predictive maintenance methodology by applying
it to a real-world case study predicting the time-to-failure of
a large-scale industrial press with six different time windows.

The results showed that a feed-forward neural network with
multi-class labeling managed to achieve the best prediction
quality in terms of accuracy, F1-score, and kappa.
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