
The Vision of Self-aware Reordering of Security Network
Function Chains

Vision Paper

Lukas Iffländer
University of Würzburg

Germany
lukas.ifflaender@uni-wuerzburg.de

Jürgen Walter
University of Würzburg

Germany
juergen.walter@uni-wuerzburg.de

Simon Eismann
University of Würzburg

Germany
simon.eismann@uni-wuerzburg.de

Samuel Kounev
University of Würzburg

Germany
samuel.kounev@uni-wuerzburg.de

ABSTRACT
Services provided online are subject to various types of attacks.
Security appliances can be chained to protect a system against
multiple types of network attacks. The sequence of appliances has
a significant impact on the efficiency of the whole chain. While
the operation of security appliance chains is currently based on
a static order, traffic-aware reordering of security appliances may
significantly improve efficiency and accuracy. In this paper, we
present the vision of a self-aware system to automatically reorder
security appliances according to incoming traffic. To achieve this,
we propose to apply a model-based learning, reasoning, and acting
(LRA-M) loop. To this end, we describe a corresponding system
architecture and explain its building blocks.

CCS CONCEPTS
• Networks → Security protocols; Middle boxes / network ap-
pliances; Deep packet inspection; Control path algorithms; Network
performance modeling; Denial-of-service attacks; Firewalls; • Hard-
ware → Modeling and parameter extraction; • Software and its
engineering → Software system models; • Security and pri-
vacy → Intrusion/anomaly detection and malware mitigation; Vir-
tualization and security;

ACM Reference Format:
Lukas Iffländer, Jürgen Walter, Simon Eismann, and Samuel Kounev. 2018.
The Vision of Self-aware Reordering of Security Network Function Chains:
Vision Paper. In Proceedings of ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE’18 Companion). ACM, New York, NY, USA, 4 pages.
https://doi.org/https://doi.org/10.1145/3185768.3186309

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE’18 Companion, April 9–13, 2018, Berlin, Germany
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN ISBN 978-1-4503-5629-9/18/04. . . $15.00
https://doi.org/https://doi.org/10.1145/3185768.3186309

1 INTRODUCTION
Today’s network attacks are based on huge bot networks. Their at-
tacking power raises as the number of online devices rapidly grows
in times of Internet of Things (IoT). The opportunity to throw ad-
ditional resources to fight attacks is limited since Moore’s Law
(promising doubled resources every two years) ended [7]. More-
over, booking additional resources on demand is very costly also
considering that the owners of bot networks do not have to pay for
their attack resources.

IT systems providing services via a network can be attacked in
various ways. Common attack types include, for example, “HTTP
Flood” or “ping of Death”. For each type of network attack, there
are dedicated Security Appliances (SAs) to defend the system. For
example, a firewall fights HTTP flooding attacks and excessive
pinging can be antagonized by a DDoS Protection System (DPS).
To protect a system against a set of attack types, multiple SAs have
to be chained in a Security Service Function Chain (SSFC).

For most systems, there is a direct correlation between consumed
resources and the number of processed packages. In contrast, SAs
(and therefore SSFCs) stand out, as they (i) behave differently under
various traffic conditions (package characteristics and overload [8])
and (ii) drop packets deemed as malicious causing lower load on
subsequent SAs.

Security can be taken out of service by attacks during subopti-
mal configuration long before available resources are purposefully
utilized. We illustrate this by a chain of two SAs, a firewall, and a
DPS. We assume that each SA can handle a throughput of 100 Mbps
while accurately filtering malicious packages. The described system
is now attacked by a Distributed Denial of Service Attack (DDoS)
attack on a port not filtered by the firewall. The traffic rate is 1
Gbps of which 90% of the traffic is malicious. The throughput and
required resources of the SSFC for this attack highly depend on the
order of SAs. If we put the firewall first, there would be no filtering.
Consequently, ten instances of each SA type would be required.
Otherwise, if we place the DPS in front, the first layer would still
require ten instances but 90% of the traffic would be dropped before
reaching the second layer. Instead of ten instances, the remaining
10% percent of traffic can be handled by a single firewall instance.
The attack could be survived using eleven instances in total, which
means a reduction of required resources by 45% compared to the

https://doi.org/https://doi.org/10.1145/3185768.3186309
https://doi.org/https://doi.org/10.1145/3185768.3186309

firewall in front. A second attack could be on a port blocked by
the firewall. Then the placement of the firewall in front of the DPS
inverts the discrepancy in efficiency. While dropping rates might
differ for different SAs and traffic compositions, our illustrative
example demonstrates potential efficiency gains when tailoring the
order to the incoming traffic.

While a traffic-aware reordering would provide benefits, today’s
operation of SSFC is based on a static order of SAs. To remedy
this deficiency, we propose a self-aware approach to automati-
cally reorder SAs based on incoming traffic. At this, SAs report
detected attacks to a central instance, the Function Chaining Con-
troller (FCC). We model the behavior of different SA types based on
measurements as well as different traffic types for attacks, benign
workloads, and combinations of them. Based on these models, we
then infer a configuration tailored to incoming traffic which can be
instantiated by dynamically reordering the SSFC.

The benefit of our approach is to improve the efficiency of the
traffic processing inside the SSFC. This results in an increased
throughput to resources ratio. Since overload situations are avoided
or at least mitigated, we additionally expect a reduction of the false-
positive and false-negative rate. Finally, the chances of the security
system being permanently disabled due to an attack are reduced.

The remainder of this paper is structured as follows: Based on the
problem statement postulated in Section 2, we present our vision of
self-aware reordering of Service Function Chains (SFCs) including
major building blocks in Section 3. Section 4 highlights deficiencies
in the state-of-the-art. Finally, we conclude the paper and lay out
our next research steps in Section 5.

2 PROBLEM STATEMENT
The order of an SSFC has a significant impact on its efficiency and
accuracy. The optimal order depends on the incoming traffic and
cannot, therefore, be static. However, the order of existing SSFCs is
determined once prior to initialization. While virtualized SA would
allow for quick traffic and attack analysis and instant reordering at
insignificant cost using Software Defined Networks (SDNs), SFCs
mechanisms do not take advantage of the combination of these two
abilities yet.

3 RESEARCH VISION
The high-level objective is to automatically reorder SAs inside the
SSFC to improve its efficiency and accuracy. Basically, we tailor the
order of SAs to the characteristics of arriving network packages.
A tailored configuration provides (i) a more efficient processing of
traffic inside the security system, (ii) a reduction of false positives
(accidental dropping) and false negatives (accidental forwarding of
malicious packages), and (iii) increased survivability during attacks.
In general, we expect insignificant overhead since we efficiently
gather information using push notifications, reasoning happens on
a small set of components, and acting can be considered instantly
based on existing SDN solutions. If required, preprocessing may fur-
ther reduce overhead at runtime. The main benefit of our approach
is that it can optimally cope with arbitrary attack mixes. Assuming
an SDN-based SFC is already in place, self-aware reordering adds
no extra vulnerabilities. Attacks aiming at triggering oscillating

Goals
(efficiency optimization)

Reports from SAs

Empirical Observations
(collected reports)

SSFC Model
(composed of SA models)

Learn Act

SSFC reordering

Reason

Figure 1: Structure of Self-aware Security Function Chain
Reordering System

Figure 2: Architecture for Self-aware reordering of SSFCs

behavior can be neglected due to insignificant SDN adaptation
costs.

3.1 Architecture
To tailor the sequence of SAs to incoming traffic, it is necessary to
determine the most efficient order for a certain traffic mix. There-
fore, we require a performance model of each SA inside the SSFC
as well as a mechanism to automatically combine them to predict
the performance of the entire SSFC. Self-awareness in computing
systems is achieved by implementing a model-based learning, rea-
soning, and acting loop (LRA-M loop) [2] as shown in Figure 1.

Figure 2 illustrates the coarse-grained architecture for self-aware
function chaining. It consists of a Function Chaining Controller,
a central Registry, and a set of Security Appliances. New SAs
are subscribed at the registry and report their statistics to the FCC.
The registry holds the set of connected SAs, and provides this in-
formation to the FCC. The FCC receives the statistics from the SAs
and can reorder them by updating successors of selected SAs. To
ensure scalability, we suggest detecting attacks directly on the SAs.
They then forward gathered statistics (e.g., frequencies) about the
attacks to the central FCC where they are evaluated. The controller
decides on the optimal configuration and if it is not the current
configuration issues the reconfiguration of the SSFC. For the com-
munication, we propose a push-based approach according to the
observer design pattern.

To ensure a broad applicability, we formulate requirements for
self-aware function chaining of SA: (i) the system must be able to
handle an arbitrary number of SAs, (ii) as well as arbitrary types of

Figure 3: Communication life-cycle between the SA and the
FCC

SAs, (iii) it must capable of working on all ISO/OSI layers to be able
to model attacks and defense for different levels (frames, packets,
and segments).

3.2 Attack Detection
Tomanage the communicationwith the central Function Chaining
Controller instance, we propose to deploy a wrapper software
aside from the SAs. All active SAs are registered at the central
controller at the beginning of their life-cycle and de-registered at
their shutdown. The SAs detect attacks while handling them. In
regular intervals, the SAs send these statistics as push messages to
the central controller. These messages contain all relevant infor-
mation on the detected attacks like source and destination address
and port, the attack rate and the attack type. The central controller
aggregates the incoming messages deriving the composition of the
incoming traffic. The LEARN process over the life-cycle of an SA
wrapper is depicted in Figure 3.

3.3 Deriving Tailored Configurations for
Incoming Traffic

To reason about which ordering of the SSFC will be suggested it is
necessary to model the workload classes, considering benign traffic
as well as attacks. To this end, the model of the arrival rate has to
consider the content (e.g., relevant for Deep Packet Inspection (DPI)
based Intrusion Detection Systems (IDSs)) and the composition of
the different workload classes.

To model the behavior of SAs, we require a common model
for every SA inherited by specialized models for the SA types. It is
necessary to model parametric dependencies between the incoming
traffic and the SA’s behavior. Relevant behavior to be modeled
includes the drop rate, overload behavior (especially relevant for
IDS). as well as the detection accuracy (rate of false-positive and
false-negative results).

The models can be parameterized based on measurements un-
der a variety of different workloads. For the parametrization, the
workload models can be re-used.

Based on the requirements, we propose to apply architectural
performance models to model the SAs. Architectural models cap-
ture the semantics, allowing for a comprehensible view on the SAs,
in contrast to low-level stochastic formalisms. Figure 4 illustrates
our proposed approach to model security appliances. Each security
appliance is modeled as a software component. Based on the distri-
bution of the input traffic of a security appliance, the corresponding
output traffic can be derived. We define the distribution of the in-
put/output traffic as Pin/out (ti) with i ∈ [1,n] for n different types
of traffic. Exemplary, a security appliance which drops all packets
of the traffic type k the output traffic can be described by:

Pout (ti) =

{
Pin (ti)/(1 − Pin (tk)) for i , k
0 for i = k

. (1)

Based on the capability to investigate a single configuration, we
have to decide which configurations to analyze. For small numbers
of SA types, each permutation can be tested. For example, a chain
of four SA types results in the analysis of 24 permutations. In later
stages, we plan to reduce the number of analyzed configurations
using greedy approaches and/or machine learning. Finally, the
controller proposes the configuration with the highest throughput
of all analyzed configurations.

3.4 Enacting the Reordering of Security
Appliances

The reordering happens by updating the successor of the respec-
tive SAs, as illustrated in Figure 2. To send the update, we apply
SDN features. The FCC sends ordering in form of coarse-grained
flow specifications to the SDN controller. Then the SDN controller
automatically executes them on the network devices, as shown in
Figure 5. Existing SDN controllers provide the capability to deduce
the detailed flow specifications.

4 RELATEDWORK
Existing work on SDNs focuses on internals and the connections
between the used devices as well as their placement inside the
network, e.g., [1, 3, 4]. None of these works targets the performance
of security appliances with their characteristics.

Figure 4: Modeling of Filtering Behavior for Security Appliances

Figure 5: Execution of a new configuration by communica-
tion between the FCC and the SDN-enabled network

.
Fischer [1] describes an approach to automated model building

for function chains using stochastic Petri nets. It consists of two
building blocks, a single Virtualized Network Function (VNF) and
a physical host. His description of the VNF model lacks essential
features required for our intended self-aware reordering. Espe-
cially, VNF with non-forwarding behavior (e.g., firewalls dropping
packets) cannot yet be modeled. Further, he does not differentiate
different types of traffic. Ocampo et al. [4] propose an optimized
composition of an SFC. However, their approach does not support
characteristics (required computing power, drop rate, throughput)
of the VNFs depending on the incoming traffic type. Mechtri et
al. [3] present a scalable algorithm for the placement of service
function chains. Concerning our vision, their approach is limited
to the optimal placement assuming a preconfigured ordering of the
network functions.

To implement our vision, we can refer to initial previous work on
SDN performance, automated model building, and self-aware sys-
tem adaptation. We applied Queueing Petri Nets (QPNs) to model
and predict SDN performance [5] and proposed an approach to cre-
ating a network performance model based on network dumps [6].
Further, we proposed a generic framework for the automated ex-
traction of architectural performance models from application per-
formance monitoring data [9].

5 CONCLUDING REMARKS AND NEXT STEPS
The operation of today’s SSFCs is based on a static order of SAs.
This can be highly inefficient as the processing of packages de-
pends on the characteristics of the incoming traffic. An unfitting
configuration may cause overload situations that may even infer the
detection of malicious packages. In this vision paper, we describe
how to automatically reorder the system on changing workload
and attacks in order to improve its efficiency and accuracy. We
expect this vision to affect security mechanisms for all services
provided online. Towards accomplishing, we propose a self-aware
approach, describe its architecture, and discuss the implementation
of major building blocks. As next steps, we will implement the soft-
ware to LEARN, REASON, and ACT. After evaluating the efficiency
improvements of an initial prototype, we plan to investigate how
to further improve reasoning.

6 ACKNOWLEDGMENTS
This work was co-funded by the German Research Foundation
(DFG) under grant No. (KO 3445/15-1) and grant No. (KO 3445/16-
1).

REFERENCES
[1] A. Fischer. Performance evaluation for service function chains through automated

model building. In 11th EAI International Conference on Performance Evaluation
Methodologies and Tools (ValueTools2017), 2017.

[2] S. Kounev, P. Lewis, K. L. Bellman, N. Bencomo, J. Camara, A. Diaconescu, L. Esterle,
K. Geihs, H. Giese, S. Götz, et al. The notion of self-aware computing. In Self-Aware
Computing Systems, pages 3–16. Springer, 2017.

[3] M. Mechtri, C. Ghribi, and D. Zeghlache. A scalable algorithm for the placement
of service function chains. IEEE Transactions on Network and Service Management,
13(3):533–546, Sept 2016.

[4] A. F. Ocampo, J. Gil-Herrera, P. H. Isolani, M. C. Neves, J. F. Botero, S. Latré,
L. Zambenedetti, M. P. Barcellos, and L. P. Gaspary. Optimal Service Function
Chain Composition in Network Functions Virtualization, pages 62–76. Springer
International Publishing, Cham, 2017.

[5] P. Rygielski, M. Seliuchenko, and S. Kounev. Modeling and Prediction of Software-
Defined Networks Performance using Queueing Petri Nets. In Proceedings of
the Ninth International Conference on Simulation Tools and Techniques (SIMUTools
2016), pages 66–75, August 2016.

[6] P. Rygielski, V. Simko, F. Sittner, D. Aschenbrenner, S. Kounev, and K. Schilling.
Automated Extraction of Network Traffic Models Suitable for Performance Simula-
tion. In Proceedings of the 7th ACM/SPEC International Conference on Performance
Engineering (ICPE 2016), pages 27–35. ACM, March 2016.

[7] T. N. Theis and H.-S. P. Wong. The end of moore’s law: A new beginning for
information technology. Computing in Science & Engineering, 19(2):41–50, 2017.

[8] S. Thian-ngam andM. Lertwatechakul. False positive decrement for snort intrusion
detection. Engineering and Applied Science Research, 36(3):251–259, 2012.

[9] J. Walter, C. Stier, H. Koziolek, and S. Kounev. An Expandable Extraction Frame-
work for Architectural Performance Models. In Proceedings of the 3rd International
Workshop on Quality-Aware DevOps (QUDOS’17). ACM, April 2017.

	Abstract
	1 Introduction
	2 Problem Statement
	3 Research Vision
	3.1 Architecture
	3.2 Attack Detection
	3.3 Deriving Tailored Configurations for Incoming Traffic
	3.4 Enacting the Reordering of Security Appliances

	4 Related Work
	5 Concluding Remarks and Next Steps
	6 Acknowledgments
	References

