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ABSTRACT
Performance and power scale non-linearly with device uti-
lization, making characterization and prediction of energy
efficiency at a given load level a challenging issue. A com-
mon approach to address this problem is the creation of
power or performance state tables for a pre-measured subset
of all possible system states. Approaches to determine per-
formance and power for a state not included in the measured
subset use simple interpolation, such as nearest neighbor in-
terpolation, or define state switching rules. This leads to a
loss in accuracy, as unmeasured system states are not con-
sidered. In this paper, we compare different interpolation
functions and automatically configure and select functions
for a given domain or measurement set. We evaluate our
approach by comparing interpolation of measurement data
subsets against power and performance measurements on
a commodity server. We show that for non-extrapolating
models interpolation is significantly more accurate than re-
gression, with our automatically configured interpolation
function improving modeling accuracy up to 43.6%.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—Performance attributes

General Terms
Interpolation, Energy Efficiency
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1. INTRODUCTION
Computational devices have to run at a great range of de-

vice utilization levels, with power and performance scaling
non-linearly over the different load levels, as power saving
mechanisms, such as dynamic voltage and frequency scal-
ing (DVFS) are being used. A common and highly accurate
method for the characterization of power and performance

.

of a workload on a target system at a given load level is the
measurement of said characteristics and storing those mea-
surements in a table for re-use during management decisions.
The stored measurement results contain power and perfor-
mance values for a subset of possible system states. Deter-
mining the power and performance of the system at other
states remains challenging. Currently, several approaches to
estimate power consumption at these states exists: Some
tools, such as [10] only consider the existing pre-defined
states and determine the current state either by nearest
neighbor interpolation or through other rule-based mech-
anisms. Another approach is the training of models based
on measured data. Models range from simple models, such
as the linear power model [1] and variations thereof [3] to
more complex regression models, which also take additional
system properties into account [6]. In comparison to ap-
proximation, interpolation increases prediction accuracy, as
it does not sacrifice or approximate any of the pre-measured
results. A great number of different interpolation methods
exist. Depending on the system and the power or perfor-
mance metric under observation, a different interpolation
method may be optimal. In addition, some interpolation
methods can be configured with varying degrees of freedom.

This paper presents a library1 for automated selection of
interpolation and configuration strategies for performance
and power characterization with the goal of minimizing pre-
diction errors for unmeasured performance and power. The
major contributions of this paper are as follows:
(1) We present an approach for automated selection and
configuration of an interpolation strategy for a given set of
performance or power measurements; (2) We propose a com-
position of piece wise polynomial interpolators of varying
degrees for the interpolation of a system’s power over uti-
lization function; (3) We demonstrate that for closed and
bounded inputs, interpolation provides superior prediction
accuracy on the system of measurement in comparison to
approximation techniques, such as regression.

We evaluate our approach based on power and perfor-
mance measurements using ten of the workloads of the SPEC
SERT [5], measuring at 100 load levels per workload. Pre-
diction accuracy is evaluated based on the methods’ ability
to predict power and performance for all load levels based
on a smaller sub-set. We show that for bounded problem
spaces interpolation features superior accuracy compared to
regression. Our automated interpolation configuration and
selection improves modeling accuracy by 43.607% if addi-
tional reference data is available and by 31.36% if it is not.

1Library: http://descartes.tools/interpolation



2. INTERPOLATION
Scattered data interpolation [4] is the reconstruction of

a continuous function f(x) from n different sample points
{(x1, f1), (x2, f2), ..., (xn, fn)}. In this paper, we consider
univariate functions, where f(x) is our power or performance
metric and the input metric x the corresponding system met-
ric (usually utilization). We consider the following interpo-
lation functions:

• Nearest Neighbor Interpolation: f(x) = f(xi)
with xi ∈ {x1, ..., xn} being the nearest neighbor to
x, meaning that ∀xj ∈ {x1, ..., xn} : |x−xi| ≤ |x−xj |.
• Linear Interpolation: Given the two nearest neigh-

bors of x, xi and xi+1, with xi ≤ x and xi+1 > x:
f(x) = f(xi) + (f(xi+1)− f(i)) x−xi

xi+1−xi

• Shepard Interpolation [9]: f(x) = f(xi) if x =

xi, otherwise: f(x) =
∑n

i=1 wi(x)f(xi)∑n
i=1 wi(x)

with wi(x) =
1

|x−xi|p
. Parameter p is freely configurable and usu-

ally selected based on experience.

• Polynomial Interpolation: f(x) = anx
n+an−1x

n−1+
...+a0x

0, with the coefficients ai being the solution to
a system of equations that guarantees that the polyno-
mial of degree n passes through all n + 1 data points.
To avoid oscillation (Runge’s Phenomenon [8]), we also
split the set into subsets of size m and interpolate these
using polynomial functions of degree m− 1.

• Spline Interpolation: A type of piece-wise polyno-
mial interpolation. Guarantees that the overall func-
tion remains continuous in all interpolated data points [2].

3. DETERMINING ACCURACY
During the automated selection and configuration process,

we determine the accuracy of an interpolation function using
one of these two methods: Interpolation against a reference
dataset or cross validation. The latter of these two options
is the more common one, as interpolation accuracy improves
with additional interpolated data. As a result, all available
data is included in the interpolated data, leaving no addi-
tional data for referencing. However, a separate reference
dataset is most useful when determining the optimal inter-
polation method for a given problem domain.

If a reference dataset R containing the tuples (xi, yi) is
available, we calculate a set of absolute errors E with E =
{e1, ..., en} for interpolation function f as in Eq. 1:

∀(xi, yi) ∈ R : ei = |f(xi)− yi| (1)

If no reference dataset exists, we calculate the set of abso-
lute errors E via cross-validation on the interpolated dataset
I containing the tuples (xi, yi), with |I| = n. We create a
set of cross-validation-sets Vi as displayed in Eq. 2:

∀i ∈ {2, ..., n− 1} : Vi = I \ {(xi, yi)} (2)

With fi being the interpolation function constructed using
Vi, we calculate the cross-validation errors as in Eq. 3:

∀i ∈ {2, ..., n− 1} : ei−1 = |fi(xi)− yi| (3)

Our implementation allows the metric for calculation of
the final aggregate error of the error set E to be passed using
a functional expression. In this paper, we use the arithmetic
mean and median.

4. SELECTION AND CONFIGURATION
We allow selection of the best interpolation function for

the problem’s domain using an independent reference dataset
containing a larger set of data points, which describes a sim-
ilar problem as the dataset to be interpolated. E.g., both
datasets describe power per load level measurements, yet
they were measured for different workloads on different ma-
chines. In such a case, we create a subset from the reference
dataset. This subset is of the same size as the set that is
to be interpolated and contains data points with the clos-
est possible input values (x-axis values) to the input values
of the target data set. Then we select the best configura-
tion and interpolation methods for this subset by comparing
the aggregate modeling error of the potential interpolation
methods. The function with the minimum aggregate error
is selected as the final interpolation function. For functions
with a configurable parameter (degree of freedom), this pa-
rameter must be auto-configured first. Finally, we transfer
the selected method and configuration to the actual set to
be interpolated.

In some cases, reference data is not available and selec-
tion of a single pre-configured interpolation method is not
possible, either due to a lack of sufficient domain knowledge
or because of the problem domain’s nature. In this case, we
select the best interpolation function for a given dataset by
calculating the cross-validation error. We compute differ-
ent cross-validation datasets, each with one data point re-
moved. At least one data point must be removed for cross-
validation, as the self-prediction error of an interpolation
function is always 0. Consequently, cross-validation using
the full dataset is not possible. We evaluate the interpola-
tion method’s ability to predict the missing data point for
each of the cross-validation datasets. The function with the
minimum aggregate error over all cross-validation datasets
is selected as the final interpolation function.

Among the existing interpolation functions used in this
paper, two function types feature a configurable degree of
freedom. We select the final configuration parameter using
a hill-climbing approach, as expected values are well known
and as the parameters in all of our cases have a specified min-
imum value. To apply hill-climbing, each parameter must
have an initial parameter instance p0 and a function h so
that pi = h(pi−1). With f(pi) being the parametrized in-
terpolation function and e(f(pi)) being its error metric, we
iterate over the parameters pi in an ascending order (using
h) until e(f(pi+1)) ≤ e(f(pi)).

To improve interpolation accuracy for performance and
power measurements, we introduce a new approach to para-
metrization of piece-wise polynomials. It is designed to min-
imize the interpolation error due to state changes caused by
device power management. These state changes cause non-
continuous behavior in a power or performance function.
Consequently, it pays to introduce breaks at these points
when interpolating polynomials. Breakpoints are detected
at the data points featuring the greatest difference between
their range value and their successor’s range. Meaning that
given a set of n breakpoint indices B, with |B| = n, the
following has to hold true: ∀i ∈ B : |yi+1− yi| < |yj+1− yj |,
with j /∈ B. We use these break points for piece-wise poly-
nomial interpolation by interpolating polynomials over the
subsets defined within breakpoint boundaries. The amount
of breakpoints remains a freely configurable parameter and
can be determined using our hill-climbing approach.



Model 10% intervals 20% intervals 25% intervals scattered
Cubic Spline 0.172% 0.222% 0.224% 0.19%
Max. degree Polynomial 0.35% 0.249% 0.304% 0.215%
Linear (= Poly., degree 1) 0.169% 0.297% 0.296% 0.175%
Nearest Neighbor 0.704% 1.419% 1.772% 1.117%
Piece-Wise Polynomial (degree 2) 0.168% 0.225% 0.255% 0.191%
Piece-Wise Polynomial (degree 3) 0.19% 0.243% 0.317% 0.26%
Piece-Wise Polynomial (degree 4) 0.204% 0.246% - 0.218%
Shepard (weight 2) 0.353% 0.651% 0.793% 0.58%
Split Polynomial (1 break) 0.35% 0.249% 0.304% 0.215%
Split Polynomial (2 breaks) 0.305% 0.246% 0.317% 0.197%
Split Polynomial (3 breaks) 0.294% 0.217% 0.241% 0.191%
Split Polynomial (4 breaks) 0.284% 0.233% 0.296% 0.26%
Linear Power Model 2.757% 2.757% 2.757% 2.757%
Exponentially Corrected Model 4.023% 3.96% 3.938% 4.042%
Linear Regression 0.344% 0.255% 0.317% 0.199%

Table 1: Mean modeling errors for the power over load level function of the SSJ workload.

5. EVALUATION
We evaluate the accuracy of our interpolation methods

based on measurements using the SPEC Server Energy-Efficiency
Rating Tool (SERT) [5]. We use all of SERT’s mini-workloads
(called worklets) except for the memory Capacity worklet,
as it doesn’t scale with load levels, and the XMLvalidate
worklet, which didn’t scale correctly for fine-granular tar-
get load levels. The used worklets are: six different CPU
worklets [11]), two storage worklets, the memory Flood worklet,
and the hybrid SSJ worklet. We exercise each of the worklets
at 100 different load levels, with a separate idle power mea-
surement serving as a 101st measurement. For each of these
levels, throughput (in s−1) and power consumption (in W )
are measured. We select both evenly distributed as well as
scattered subsets of measurements from the original 101 re-
sults. All models are evaluated based on their ability to
accurately reconstruct the entire original measurement for
the given workload using no additional data. We compute
the relative absolute error (|pmodel − preferece|/preference)
for each data point in the reference measurement, using the
mean as overall error metric. A smaller relative error cor-
responds to a more accurate model. We compare the accu-
racy of our interpolation functions with three common power
modeling approaches:

• Linear Power Model:
The linear power model is a common model in litera-
ture [7]. It calculates power consumption at a target
load level u ∈ [0, 1]: p(u) = pidle + (pmax − pidle)u

• Linear Power Model (Exponential Correction):
This power model, introduced in [3], modifies the linear
power model using an exponential correction factor r,
accounting for the curvature in power per utilization
functions: p(u) = pidle + (pmax − pidle)(2u− ur)

• Polynomial Fitting using Regression:
We create polynomials of varying degrees to fit the
measured results. The coefficients a0, a1, ..., an of the
polynomial function p(u) = anx

n+...a1x+a0 are fitted
using OLS multiple linear regression.

5.1 Comparison of Interpolation Methods
A comparison of the mean accuracy of the interpolation

and modeling methods for the power per load level function
of the hybrid SSJ workload is shown in Table 1. The dis-
played error metric is the mean of the relative absolute differ-

ences between each data point in the reference measurement
and the corresponding model prediction. The table shows
the error for interpolation methods and the power models.
Interpolation with multiple configuration options (such as
Shepard weights) is marked with the respective configura-
tion. The best interpolation method changes depending on
input dataset size. Compared to the simple power mod-
els, interpolation functions are highly accurate, with mod-
eling errors reliably less than 1% for all dataset sizes. The
two exceptions are nearest neighbor and Shepard interpola-
tion. Polynomial interpolation provides the greatest accu-
racy, the optimal configuration depends on the size of the
input dataset.

Regression is not as accurate as any of the piece-wise poly-
nomial interpolation methods (equi-distant splits, dynamic
splits, or splines) in cases of equi-distant data. For our scat-
tered dataset, regression is only slightly less accurate than
cubic spline interpolation.

It is also notable that the dynamically split polynomial in-
terpolation and interpolation using one polynomial of max-
imum degree feature identical accuracy for this workload.
This effect is the result of the largest difference in power con-
sumption for SSJ taking place right before full utilization.
Consequently, the first breakpoint is set at full utilization,
resulting in no change to polynomial interpolation without
breakpoints. However, this observation is specific to SSJ
and does not repeat for other workloads. The CPU-bound
LU workload’s power, e.g., scales differently with increased
load, as can be seen in its power scaling behavior. LU has
a sharper increase in power consumption beginning at 60%
load. This results in a visible impact on interpolation accu-
racy (see Table 2), as interpolation methods must correctly
recognize this sudden increase in power draw.

5.2 Interpolation using Reference Dataset
Next, we evaluate the efficiency of automatic selection of

a good interpolation function using an independent refer-
ence dataset. We choose the SSJ measurement set as our
reference dataset and then choose the corresponding inter-
polation function for any given subset based on the optimal
interpolation function of SSJ for this given subset.

The accuracy of interpolation based on automated inter-
polation selection and configuration using SSJ as the ref-
erence dataset is displayed in Table 3. Compared to us-
ing regression, interpolation using an independent reference



Model 10% intervals 20% intervals 25% intervals scattered
Cubic Spline 0.198% 0.48% 0.901% 0.256%
Linear 0.219% 0.241% 0.856% 0.2%
Piece-Wise Polynomial (degree 2) 0.226% 0.442% 0.922% 0.268%
Piece-Wise Polynomial (degree 3) 0.239% 0.412% 0.744% 0.331%
Split Polynomial (1 break) 0.156% 0.53% 0.744% 0.304%
Split Polynomial (4 breaks) 0.127% 0.241% 0.856% 0.257%
Linear Regression 0.526% 1.305% 1.774% 0.823%

Table 2: Mean modeling errors for the power over load level function of the LU workload.

Worklet 10% intervals
Pol. (deg. 2)

20% intervals
Split Pol. (3 br.)

25% intervals
Cubic Spline

scattered
Linear

LU 0.226% 0.46% 0.901% 0.2%
SHA256 0.197% 0.232% 0.181% 0.174%
Flood 0.898% 2.017% 2.529% 0.787%
Sequential 0.123% 0.255% 0.178% 0.109%

Table 3: Mean modeling errors of independent reference based interpolation for representative workloads.

dataset features an improvement of 43.607% (mean over
the relative improvements) in accuracy. Compared to al-
ways choosing the single, most commonly best interpolation
method (dynamically split polynomial interpolation with one
breakpoint), automated selection and configuration still im-
proves model accuracy by 20.025% (mean over the relative
improvements).

5.3 Interpolation using Cross-Validation
Although cross-validation based configuration and selec-

tion lacks the additional data of its reference based counter-
part, it is still fairly accurate. Specifically it is 31.36% more
accurate than linear regression.

The major drawback of the cross-validation based config-
uration and selection are the different scales between the
cross-validation problem and the final dataset to be inter-
polated. E.g., when removing a data point from the 10%
utilization interval set, the interpolation function has to
interpolate a 20% utilization gap. Its ability to do so is
then judged to indicate its accuracy when interpolating equi-
distant data-points at 10% intervals.

6. CONCLUSIONS
This paper introduces an approach to automated config-

uration and selection for interpolation of power and perfor-
mance measurements. We show that for closed and bounded
problems, interpolation is far more accurate than similar
black-box modeling methods, such as regression. Compared
to linear regression, we are able to improve accuracy of a
power per utilization prediction by 43.607% if additional
reference data is available and by 31.36% if it is not. Our
automated approach can also improve prediction accuracy
by up to 20.025%, compared to always selecting the usually
best interpolation function.

The results in this paper enable more accurate predictions
of power and performance based on pre-measured results.
This, in turn, allows for better decision making in power and
performance management. The interpolation approaches,
introduced in this paper, can also be used for the generation
of additional data for under-fitted models.

For future work, we plan to evaluate the accuracy of the
approach in this paper for other problem domains than power
and performance modeling, as it is generic enough that is
should be possible to use in any space that can be modeled
as an interpolation problem.
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