
Performance Engineering of
Distributed Component-Based Systems -

Benchmarking, Modeling and Performance Prediction

Vom Fachbereich Informatik
der Technischen Universität Darmstadt

genehmigte

DISSERTATION

zur Erlangung des akademischen Grades
eines Doktors der Ingenieurwissenschaften (Dr.-Ing.)

von

Samuel Kounev, MSc.

Referenten:
Prof. Alejandro P. Buchmann, PhD, TU-Darmstadt
Prof. Dr.-Ing. Dr. h.c. Günter Hommel, TU-Berlin

Tag der Einreichung: 03.05.2005
Tag der mündlichen Prüfung: 03.08.2005

Darmstadt 2005, Darmstädter Dissertation D17

To my father Douhomir (in memoriam),

who bought me my first computer,

my mother Ekaterina,

who encouraged me during my studies,

and to my wife Hanna,

who inspired me to write this thesis.

i

ii

Abstract

Performance (noun) - the manner in which or the

efficiency with which something reacts or fulfils its

intended purpose.

– Random House Webster’s College Dictionary

Distributed component-based systems (DCS) are becoming increasingly ubiqui-
tous as enabling technology for modern enterprise applications. In the face of
globalization and ever increasing competition, Quality of Service (QoS) require-
ments on such systems, like performance, availability and reliability are of crucial
importance. In order to survive, businesses must ensure that the systems they
operate, not only provide all relevant services, but also meet the performance ex-
pectations of their users. To avoid the pitfalls of inadequate QoS, it is important
to analyze the expected performance characteristics of systems during all phases of
their life cycle. However, as systems grow in size and complexity, analyzing their
expected performance becomes a more and more challenging task. System archi-
tects and deployers are often faced with questions such as the following: Which
deployment platform (hardware and software) would provide the best scalability
and cost/performance ratio for a given application? For a given platform, what
performance would the application exhibit under the expected workload and how
much hardware would be needed to meet the service level agreements? In seeking
answers to these questions, system developers nowadays often rely on their intuition,
marketing studies, expert opinions, past experiences, ad hoc procedures or general
rules of thumb. As a result, the overall system capacity is unknown and capacity
planning and procurement are done without a sufficient consideration given to the
QoS requirements. In the pressure to release new applications as early as possible,
more often than not, performance is considered as an afterthought.

In this thesis, a systematic approach for performance engineering of DCS is
developed that helps to identify performance and scalability problems early in the
development cycle and ensure that systems are designed and sized to meet their QoS

iii

requirements. The proposed approach builds on the fact that if a DCS is to provide
good performance and scalability, both the platforms on which it is built and the
system design must be efficient and scalable. To this end, we suggest that in the
beginning of the system life cycle, the performance and scalability of the platforms
chosen are validated using standard benchmarks and that performance models are
then exploited to evaluate the system performance throughout the development
cycle. In contrast to the ”fix-it-later”approach, this approach helps to identify
performance and scalability problems early in the system life cycle and eliminate
them with minimal overhead.

Contributions in the Area of Benchmarking The first part of the thesis deals
with the problem of measuring the performance and scalability of hardware and
software platforms for DCS. The focus is placed on J2EE-based platforms since they
are currently the technology of choice for DCS. The shortcomings of conventional
benchmarks used in the J2EE industry are described and the need for industry-
standard benchmarks is discussed. In order to be useful, benchmarks must meet
the following important requirements - they must be representative of real-world
systems, must exercise and measure all critical services provided by platforms, must
not be biased in favor of particular products, must generate reproducible results
and must not have any inherent scalability limitations. In the past five years several
attempts were made to develop a benchmark satisfying these requirements and they
demonstrated that the latter is an extremely challenging task requiring far more
than good programming skills.

The first attempt was initiated in 2000 and resulted in the development of
the ECperf benchmark. ECperf was developed under the Java Community Pro-
cess (JCP) with participation of all major J2EE application server vendors. A huge
amount of time, money and effort was invested in the specification and development
of ECperf, however, while it met most of the requirements discussed above, unfor-
tunately, it failed to meet all of them. We discovered several subtle issues in the
design of ECperf, limiting the overall scalability of the benchmark and degrading
its performance and reliability. These issues were related to the way long trans-
actions were processed and persistent data was managed. We proposed a redesign
of the benchmark in which asynchronous, message-based processing is exploited to
reduce data contention in the database and improve the benchmark scalability. This
eliminated the scalability bottleneck and addressed the identified performance and
reliability issues.

The proposed redesign of the ECperf benchmark was submitted as an official
proposal to the ECperf expert group at Sun Microsystems and later to the OSG-
Java subcommittee of SPEC, which was responsible for the future of ECperf1. The

1In September 2002, the ECperf benchmark was taken over by SPEC and renamed to SPEC-
jAppServer. SPEC’s OSG-Java subcommittee was now responsible for the benchmark.

iv

proposal was approved and the new design was implemented in a future version of
the benchmark in whose development and specification the author was involved as
release manager and lead developer. The new benchmark was called SPECjApp-
Server2004 and was developed within SPEC’s OSG-Java subcommittee, which in-
cludes BEA, Borland, Darmstadt University of Technology, Hewlett-Packard, IBM,
Intel, Oracle, Pramati, Sun Microsystems and Sybase. Even though SPECjApp-
Server2004 is partially based on ECperf, it implements a new enhanced workload
that exercises all major services of the J2EE platform in a complete end-to-end app-
lication scenario. Thus, SPECjAppServer2004 is substantially more complex than
ECperf. SPECjAppServer2004 provides a reliable method to evaluate the perfor-
mance and scalability of J2EE-based platforms and holds a number of advantages
over conventional J2EE benchmarks. By modeling a realistic application and not
being optimized for any particular platform, SPECjAppServer2004 provides a level
playing field for performance comparisons of competing products. Furthermore,
SPECjAppServer2004 has been tested on multiple hardware and software platforms
and has proven to scale well from low-end desktop PCs to high-end servers and large
clusters.

We discuss the way SPECjAppServer2004 evolved and the issues and challenges
that had to be addressed in order to achieve the above mentioned goals. While doing
this, we present several case studies which show how benchmarks like SPECjApp-
Server2004 can be exploited for studying the effect of different platform configura-
tion settings and tuning parameters on the overall system performance. The case
studies demonstrate that benchmarking not only helps to choose the best platform
and validate its performance and scalability, but also helps to identify the config-
uration parameters most critical for performance. After its release in April 2004,
SPECjAppServer2004 quickly gained in market adoption and it currently enjoys
unprecedented popularity for a benchmark of this size and complexity. SPECj-
AppServer2004 became the de facto industry-standard workload for evaluating the
performance and scalability of J2EE-based platforms and it is increasingly used
throughout the industry.

Contributions in Performance Engineering While building on a scalable and
optimized platform is a necessary condition for achieving good performance and
scalability, unfortunately, it is not sufficient. The application, i.e. the DCS, built
on the selected platform must also be designed to be efficient and scalable. The
second major contribution of this thesis was the development of a performance
engineering framework for DCS that provides a method to evaluate the performance
and scalability of the latter during the different phases of their life cycle. This helps
to identify design problems early in the development cycle and have them resolved
in time. The framework is based on Queueing Petri Net (QPN) models and is made
up of two parts. The first part provides a tool and methodology for analyzing QPN

v

models by means of simulation. The second part provides a practical performance
modeling methodology that shows how to model DCS using QPNs and use the
models for performance evaluation. In the following, we take a closer look at these
two parts.

Part 1 - Analysis of QPN Models by Means of Simulation Modeling
realistic DCS using conventional models such as queueing networks and stochastic
Petri nets poses many difficulties stemming from the limited model expressiveness,
on the one hand, and the system size and complexity, on the other hand. We
present some case studies which demonstrate this and show how QPNs can be ex-
ploited to address these difficulties and allow for accurate modeling of DCS. The
QPN paradigm provides a number of benefits over conventional modeling paradigms.
Most importantly, it allows the integration of hardware and software aspects of sys-
tem behavior into the same model. The main problem with QPN models, however, is
that currently available tools and techniques for QPN analysis suffer the state space
explosion problem imposing a limit on the size of the models that are tractable.
This is the reason why QPNs have hardly been exploited in the past decade and
very few, if any, practical applications have been reported. A major contribution of
this thesis is the development of a novel methodology for analyzing QPN models by
means of discrete-event simulation. The methodology provides an alternative app-
roach to analyze QPN models, circumventing the state space explosion problem. As
an implementation of the methodology, a simulation tool for QPNs called SimQPN
was developed. SimQPN is the world’s first simulator specialized for QPNs. It has
been tested extensively and has proven to run very fast and provide accurate and
stable point and interval estimates of performance metrics. Using SimQPN, now for
the first time, QPNs have been applied to model large and complex DCS in realistic
capacity planning studies.

An alternative approach to simulate QPN models would be to use a general pur-
pose simulation package. However, mapping a QPN model to a description in the
terms of a general purpose simulation language is a complex, time-consuming and
error-prone task. Moreover, not all simulation languages provide the expressiveness
needed to describe complex QPN models. Another disadvantage is that general
purpose simulators are normally not as fast and efficient as specialized simulators.
Being specialized for QPNs, SimQPN simulates QPN models directly and has been
designed to exploit the knowledge of the structure and behavior of QPNs to improve
the efficiency of the simulation. Therefore, SimQPN provides much better perfor-
mance than a general purpose simulator, both in terms of the speed of simulation
and the quality of output data provided.

Part 2 - Performance Modeling Methodology Now that we have a scal-
able methodology for analyzing QPN models, we can exploit them as a performance

vi

prediction tool in the performance engineering process for DCS. However, building
models that accurately capture the different aspects of system behavior is a very
challenging task when applied to realistic systems. The second part of our per-
formance engineering framework consists of a practical modeling methodology that
shows how to model DCS using QPNs and use the models for performance evalua-
tion. The methodology takes advantage of the modeling power and expressiveness
of QPN models and provides the following important benefits over conventional
modeling approaches:

1. QPN models allow the integration of hardware and software aspects of system
behavior and lend themselves very well to modeling DCS.

2. In addition to hardware contention and scheduling strategies, using QPNs one
can easily model software contention, simultaneous resource possession, syn-
chronization, blocking and asynchronous processing. These aspects of system
behavior, which are typical for modern DCS, are difficult to model accurately
using current modeling approaches.

3. By restricting ourselves to QPN models, we can exploit the knowledge of their
structure and behavior for fast and efficient simulation using SimQPN. This
enables us to analyze models of large and complex DCS and ensures that our
approach scales to realistic systems.

4. QPNs can be used to combine qualitative and quantitative system analysis.
A number of efficient qualitative analysis techniques from Petri net theory are
readily available and can be exploited.

5. Last but not least, QPN models have an intuitive graphical representation
that facilitates model development.

The proposed performance engineering framework provides a very powerful tool
for performance prediction that can be used throughout the phases of the software
engineering lifecycle of DCS. We have validated our approach by applying it to
study a number of different DCS ranging from simple systems to systems of realistic
size and complexity such as the SPECjAppServer set of benchmarks. We present
a case study in which a deployment of the industry-standard SPECjAppServer2004
benchmark is modeled and its performance is predicted under load. In addition to
CPU and I/O contention, it is demonstrated how some more complex aspects of
system behavior, such as thread contention and asynchronous processing, can be
modeled. The model predictions demonstrate accuracy that is by far not attainable
using conventional modeling techniques for DCS.

vii

viii

Acknowledgements

Many people have contributed to the work presented in this thesis. First of all, I
would like to thank my advisor Prof. Alejandro Buchmann, Ph.D., for his invalu-
able support, advice and encouragement during the last four years. Without him
this work would not have been possible. I would also like to thank Prof. Dr.-Ing.
Dr. h.c. Günter Hommel for taking over the part of the second reviewer.

Special thanks go to my friend and colleague Dr.-Ing. Mariano Cilia for his un-
conditional help and advice during the different phases of my work. His friendship
and support have been invaluable to me.

I am also especially thankful to SPEC’s Long-time President Kaivalya Dixit (in
memoriam) for his incredible support and the opportunity to be involved in a number
of industry projects which have helped to give my research practical relevance. Spe-
cial thanks to my friends and colleagues from SPEC’s OSG Java Subcommittee, es-
pecially to John Stecher from IBM and Tom Daly from Sun Microsystems who were
involved with me in the development of the SPECjAppServer2004 benchmark. Many
thanks also to Chris Beer from HP; Ricardo Morin from Intel; Steve Realmuto and
Russell Raymundo from BEA; Rafay Khawaja and Shan Appajodu from Borland;
Matt Hogstrom from IBM; Akara Sucharitakul, Ning Sun and Shanti Subramanyam
from Sun Microsystems; Evan Ireland from Sybase and Balu Sthanikam from Ora-
cle. I really appreciate their cooperation.

I gratefully acknowledge the many fruitful discussions with Dr. Falko Bause from
the University of Dortmund and his cooperation in providing me with the HiQPN-
Tool. I also acknowledge the cooperation of Jim Rivera, Director of Technology at
BEA, who arranged for us to obtain a research license for the WebLogic platform.

I want to thank all members of the Databases and Distributed Systems Group,
my colleagues at the Information Technology Transfer Office and those at the
Ph.D. Program (Graduiertenkolleg) ”Enabling Technologies for Electronic Com-
merce”for creating such a pleasant and enjoyable working environment. I appreci-
ate their help and support especially during my first year in Darmstadt. Thanks
to Dr. Roger Kilian-Kehr, Dr. Ludger Fiege, Lars Brückner, Dr. Peer Hasselmeyer,
Jan Steffan, Marco Voss, Christoph Liebig and Dr. Ming-Chuan Wu. I am also es-

ix

pecially thankful to Volker Sauer, Dr. Matthias Meixner and Christian Haul who
have been of immense help to me in resolving many technical problems. Many
thanks also to Marion Braun for her kind support and assistance with numerous
bureaucratic matters.

Furthermore, I would like to thank my diploma students Björn Weis, Kai Juse,
Christofer Dutz, Bernhard Siedentop, Anja Steih and Andreas Fleischmann for their
hard work on many interesting projects in the field of performance engineering.
Special thanks goes to Björn Weis for collaborating with me on conducting the case
study presented in Section 2.6 of Chapter 2.

In the end, I would like to extend my deepest gratitude to my family. Words
fail to describe how much I owe them. My best thanks to my wife Hanna for
her endless love and inspiration; to my parents Douhomir and Ekaterina for their
immeasurable support and encouragement; to my brother George and my sister
Stella for always being there for me; and last but not least to my parents-in-law Peter
and Christel Böhringer who have been like real parents to me. Without these people
I would not be who I am today and this thesis would never have been written...

Finally, thanks to you, the reader for taking the time to read this thesis. Without
you our work would have been in vain.

x

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Shortcomings of Current Approaches 4

1.3.1 Load Testing . 5
1.3.2 Performance Modeling . 6

1.4 Approach and Contributions of this Thesis 7
1.4.1 Contributions in the Area of Benchmarking 8
1.4.2 Contributions in Performance Engineering 10

1.5 Thesis Organization . 13

2 Benchmarking Distributed Component Platforms 15
2.1 Introduction . 15
2.2 The J2EE Platform . 16
2.3 The ECperf Benchmark . 18

2.3.1 ECperf Business Model . 18
2.3.2 ECperf Application Design 20
2.3.3 From ECperf to SPECjAppServer2001/2002 22

2.4 Evaluating J2EE Persistence Methods 22
2.4.1 Persistence Methods in J2EE 22
2.4.2 Performance Comparison of BMP and CMP 23
2.4.3 The ECperf Persistence Bottleneck 26

2.5 The SPECjAppServer2004 Benchmark 35
2.5.1 SPECjAppServer2004 Business Model 36
2.5.2 Benchmark Design and Workload 38
2.5.3 Standard vs. Distributed Workload 40

2.6 Case Study with SPECjAppServer2004 on JBoss 40
2.6.1 Experimental Setting . 41
2.6.2 Performance Analysis . 43

xi

2.6.3 Conclusions from the Analysis 53
2.7 Concluding Remarks . 54

3 Performance Models 57
3.1 Introduction . 57
3.2 Queueing Networks . 58
3.3 Petri Nets . 61
3.4 Queueing Petri Nets . 63

3.4.1 Basic Queueing Petri Nets . 64
3.4.2 Hierarchical Queueing Petri Nets 66

3.5 Concluding Remarks . 68

4 Performance Modeling Case Studies 69
4.1 Introduction . 69
4.2 Case Study 1: Modeling using Queueing Networks 70

4.2.1 Motivation . 70
4.2.2 Workload Characterization 71
4.2.3 Building a Performance Model 75
4.2.4 Model Analysis and Validation 78
4.2.5 Conclusions from the Analysis 83

4.3 Case Study 2: Modeling using Queueing Petri Nets 83
4.3.1 Motivation . 84
4.3.2 Workload Characterization 86
4.3.3 First Cut System Model . 87
4.3.4 Hierarchical System Model 89
4.3.5 Model Analysis and Validation 90
4.3.6 Conclusions from the Analysis 97

4.4 Concluding Remarks . 99

5 Analysis of QPN Models by Simulation 101
5.1 Introduction . 101
5.2 SimQPN - Simulator for Queueing Petri Nets 102

5.2.1 SimQPN Features . 103
5.2.2 Design and Architecture . 103
5.2.3 Random Number Generation 107
5.2.4 Output Data Analysis . 107

5.3 SimQPN Validation and Performance Analysis 113
5.3.1 Method of Coverage Analysis Used 113
5.3.2 Model of SPECjAppServer2001’s Order Entry Application . . 115
5.3.3 Product-form Queueing Network 118
5.3.4 Model of SPECjAppServer2002 123

xii

xiii

5.4 Concluding Remarks . 127

6 Performance Modeling Methodology 129
6.1 Introduction . 129
6.2 Methodology Overview . 130

6.2.1 Step 1: Establish performance modeling objectives. 131
6.2.2 Step 2: Characterize the system in its current state. 132
6.2.3 Step 3: Characterize the workload. 132
6.2.4 Step 4: Develop a performance model. 140
6.2.5 Step 5: Validate, refine and/or calibrate the model. 144
6.2.6 Step 6: Use model to predict system performance. 146
6.2.7 Step 7: Analyze results and address modeling objectives. . . 146

6.3 Case Study: Modeling SPECjAppServer2004 146
6.3.1 Establish performance modeling objectives. 148
6.3.2 Characterize the system in its current state. 149
6.3.3 Characterize the workload. 149
6.3.4 Develop a performance model. 156
6.3.5 Validate, refine and/or calibrate the model. 166
6.3.6 Use model to predict system performance. 167
6.3.7 Analyze results and address modeling objectives. 175

6.4 Concluding Remarks . 176

7 Related Work 177
7.1 Benchmarking DCS . 177
7.2 Tools/Techniques for QPN Analysis 181
7.3 Performance Engineering of DCS . 181

8 Summary and Outlook 185
8.1 Ongoing and Future Work . 188

Bibliography 191

xiv

List of Figures

1.1 A multi-tiered distributed component-based application. 3

2.1 The ECperf business domains. 19

2.2 Interaction with the supplier emulator. 20

2.3 ECperf deployment environment. 24

2.4 ECperf results with BMP vs. CMP. 25

2.5 Deployment environment with Informix. 27

2.6 The scheduleWorkOrder transaction. 28

2.7 Sending purchase orders asynchronously. 31

2.8 New design of the scheduleWorkOrder transaction. 32

2.9 Synchronous vs. asynchronous variant of ECperf with Informix. . . . 33

2.10 Synchronous vs. asynchronous variant of ECperf with Oracle 9i. . . 34

2.11 CPU utilization of the database server and the application server. . 35

2.12 Manufacturing throughput as we increase the network delay. 36

2.13 SPECjAppServer2004 business model. 37

2.14 Single-node deployment. 41

2.15 Clustered deployment. 42

2.16 Mean response times with different Web containers in the single-node
environment. 45

2.17 Mean response times with different Web containers in the clustered
environment. 45

2.18 Mean response times with remote vs. local interfaces in the single-
node environment. 46

2.19 Mean response times with remote vs. local interfaces in the clustered
environment. 46

2.20 CPU utilization under different configurations in the single-node en-
vironment. 50

2.21 Mean response times under different configurations in the single-node
environment. 50

xv

xvi LIST OF FIGURES

2.22 CPU utilization under different configurations in the clustered envi-
ronment. 51

2.23 Mean response times under different configurations in the clustered
environment. 51

2.24 CPU utilization under the 2 JVMs in the single-node environment. . 52
2.25 CPU utilization under the 2 JVMs in the clustered environment. . . 53
2.26 Response times under the 2 JVMs in the single-node environment. . 53
2.27 Response times under the 2 JVMs in the clustered environment. . . 54

3.1 A basic QN. 58
3.2 An ordinary PN before and after firing transition t1. 62
3.3 A queueing place and its shorthand notation. 64
3.4 A QPN model of a central server with memory constraints (based

on [16]). 65
3.5 A subnet place and its shorthand notation. 67

4.1 Deployment environment. 71
4.2 Request mean service demands. 74
4.3 QN model of the system. 76
4.4 Simplified QN model of the system. 77
4.5 Server utilization in different scenarios. 84
4.6 Deployment environment for order entry application. 85
4.7 Flat QPN system model. 87
4.8 Model’s high-level QPN. 89
4.9 Model’s low-level QPN. 90
4.10 High-level QPN model with N WebLogic servers. 97

5.1 SimQPN’s object model. 104
5.2 SimQPN’s main simulation routine. 105
5.3 SimQPN’s batch means procedure. 112
5.4 QPN model of SPECjAppServer2001’s order entry application. . . . 116
5.5 Product-form QN. 119
5.6 QPN equivalent to the product-form QN. 120
5.7 QN model of SPECjAppServer2002. 123
5.8 QPN model of SPECjAppServer2002. 125

6.1 Example of CSID for customer registration transaction. 136
6.2 Modeling request/transaction arrivals and departures. 141
6.3 Modeling composite transactions. 143
6.4 Allocating and releasing passive resources. 143
6.5 Model validation and refinement process. 145

LIST OF FIGURES xvii

6.6 Deployment environment. 147
6.7 Execution graphs for Purchase and Manage. 151
6.8 Execution graphs for Browse, WorkOrder and LargeOrder. 152
6.9 Client/server interaction diagrams for subtransactions. 153
6.10 Workload service demand parameters (ms). 154
6.11 QPN model of the system. 158
6.12 System testing environment. 166
6.13 Extended QPN model of the system (capturing thread contention at

the load balancer). 172
6.14 Predicted server CPU utilization in considered scenarios. 175

xviii LIST OF FIGURES

List of Tables

2.1 ECperf business transaction mix requirements. 21

2.2 SPECjAppServer2004 business transaction mix requirements. 39

2.3 Deployment environment details. 42

4.1 Request mean service demands. 74

4.2 Formal queue definitions. 76

4.3 Model input parameters for the 3 scenarios. 78

4.4 Analysis results for scenario 1 (low load). 79

4.5 Analysis results for scenario 2 (moderate load). 81

4.6 Analysis results for scenario 3 (heavy load) with 4 and 6 WLS. . . . 81

4.7 Analysis results for scenario 3 (heavy load) with 9 WLS. 82

4.8 NewOrder service demands with large order lines running. 82

4.9 Analysis results for scenarios with large order lines. 83

4.10 Workload mean service demands. 86

4.11 Analysis results for scenario 1. 92

4.12 Modeling error for scenario 1. 93

4.13 Analysis results for scenario 1 with 40 threads. 94

4.14 Modeling error for scenario 1 with 40 threads. 95

4.15 Analysis results for scenario 2. 96

4.16 Modeling error for scenario 2. 96

4.17 Analysis results for scenario 3. 98

4.18 Modeling error for scenario 3. 98

5.1 Token population (N) and utilization (U) results for the QPN model
of SPECjAppServer2001’s order entry application from a single sim-
ulation run. 117

5.2 Throughput (X) and residence time (R) results for the QPN model
of SPECjAppServer2001’s order entry application from a single sim-
ulation run. 117

xix

xx LIST OF TABLES

5.3 Experimental analysis of residence time variation and coverage of 90%
conf. intervals for the QPN model of SPECjAppServer2001’s order
entry application from 1430 runs. 118

5.4 Experimental analysis of residence time variation and coverage of 95%
conf. intervals for the QPN model of SPECjAppServer2001’s order
entry application from 3820 runs. 118

5.5 Mean service times of requests at the queues of the product-form QN. 119

5.6 Queue population (N), throughput (X) and residence time (R) results
for the product-form QN from a single simulation run. 120

5.7 Utilization (U) results for the product-form QN from a single simu-
lation run. 121

5.8 Experimental analysis of residence time variation and coverage of 90%
conf. intervals for the product-form QN from 2398 runs. 121

5.9 Experimental analysis of residence time variation and coverage of 95%
conf. intervals for the product-form QN from 4665 runs. 122

5.10 Experimental analysis of residence time variation and coverage of 95%
conf. intervals for the product-form QN under heavy load from 4300
runs. 122

5.11 Model input parameters for the 3 scenarios considered in Chapter 4. 124

5.12 Residence time (R), throughput (X) and utilization (U) results for
scenario 2 with 6 WebLogic servers from 500 simulation runs - Part 1. 125

5.13 Residence time (R), throughput (X) and utilization (U) results for
scenario 2 with 6 WebLogic servers from 500 simulation runs - Part 2. 126

5.14 Response time (R), throughput (X) and utilization (U) results for
scenario 3 with 6 and 9 WebLogic servers from 500 simulation runs. 126

6.1 System component details. 149

6.2 Workload service demand parameters. 154

6.3 Workload intensity parameters. 155

6.4 Input parameters for validation scenarios. 167

6.5 Validation results. 168

6.6 Analysis results for scenarios under normal conditions with 4 and 6
app. server nodes. 169

6.7 Analysis results for scenarios under peak conditions with 6 app. server
nodes. 169

6.8 Load balancer service demands. 170

6.9 Analysis results for scenarios under heavy load with 8 app. server
nodes. 170

6.10 Workload intensity parameters for heavy load scenarios with thread
contention. 173

LIST OF TABLES xxi

6.11 Analysis results for heavy load scenario 3 with 15 and 30 load balancer
threads and 8 app. server nodes. 174

6.12 Analysis results for heavy load scenario 4 with 20 load balancer
threads and 8 app. server nodes. 174

xxii LIST OF TABLES

List of Acronyms

Acronym Meaning

2PC 2-Phase-Commit

2PL 2-Phase-Locking

API Application Programming Interface

AS Application Server/s

BOM Bill of Materials

BMP Bean-Managed Persistence

CB Component-Based

CGSPN Colored Generalized Stochastic Petri Net

CMP Container-Managed Persistence

CPN Colored Petri Net

DBMS Database Management System

DBS Database Server

DCS Distributed Component-based System/s

DES Discrete Event Simulation

EJB Enterprise Java Bean

FCFS First-Come-First-Serve (scheduling strategy)

FIFO First-In-First-Out

GC Garbage Collection

GSPN Generalized Stochastic Petri Net

HLQPN High-Level Queueing Petri Net

HQPN Hierarchical Queueing Petri Net

HTTP Hypertext Transfer Protocol

xxiii

xxiv LIST OF ACRONYMS

Acronym Meaning

IID Independent and Identically Distributed (random variables)

IR Injection Rate

IS Infinite Server (scheduling strategy)

IT Information Technology

J2EE Java 2 Enterprise Edition Platform

J2SE Java 2 Standard Edition Platform

JCP Java Community Process

JDBC Java Database Connectivity

JMOB Java Middleware Open Benchmarking Project

JMS Java Messaging Service

JRE Java Runtime Environment

JSP Java Server Page

JVM Java Virtual Machine

LAN Local Area Network

LCFS Last-Come-First-Served (scheduling strategy)

LLQPN Low-Level Queueing Petri Net

LO Large Order

LQN Layered Queueing Network

MDB Message-Driven Bean

MOM Message-Oriented Middleware

NOBM Method of Non-Overlapping Batch Means

OLTP Online Transaction Processing

OS Operating System

PEPSY-QNS Perf. Evaluation and Prediction SYstem for Queueing NetworkS

PN (Ordinary) Petri Net

PO Purchase Order

PS Processor-Sharing (scheduling strategy)

P&S Performance and Scalability

QN Queueing Network

QoS Quality of Service

QPN Queueing Petri Net

RDBMS Relational Database Management System

xxv

Acronym Meaning

RMI Remote Method Invocation

RPC Remote Procedure Call

RR Round-Robin (scheduling strategy)

RT-UML UML Profile for Schedulability, Performance and Time

RUBiS Rice University Bidding System

SLAs Service Level Agreements

SMP Session Bean-Managed Persistence

SPEC Standard Performance Evaluation Corporation

SPEC-OSG SPEC’s Open Systems Group

SPE Software Performance Engineering

SPN Stochastic Petri Net

SQL Structured Query Language

SUT System Under Test

TCO Total Cost of Ownership

TPC Transaction Processing Performance Council

TPM Transaction Processing Monitor

UML Unified Modeling Language

WAN Wide Area Network

WLS WebLogic Server/s

xxvi LIST OF ACRONYMS

Chapter 1

Introduction

All solid facts were originally mist.

– Henry S. Haskins

A problem well stated is a problem half solved.

– Charles F. Kettering

1.1 Motivation

Distributed component-based systems (DCS) are becoming increasingly ubiquitous
as enabling technology for modern enterprise applications. In the face of global-
ization and ever increasing competition, Quality of Service (QoS) requirements on
such systems, like performance, availability and reliability are of crucial importance.
There are numerous studies, for example in the areas of e-business, manufacturing,
telecommunications, military, health care and transportation that have shown that,
depending on the type of system considered, a failure to meet the QoS requirements
can lead to serious financial losses, loss of customers and reputation, and in some
cases even to loss of human lives. In order to survive, businesses must ensure that
the systems they operate, not only provide all relevant services, but also meet the
performance expectations of their users. To avoid the pitfalls of inadequate QoS, it
is important to analyze the expected performance characteristics of systems during
all phases of their life cycle. The methods used to do this are part of the discipline
called Performance Engineering [145]. Performance engineering helps to estimate
the level of performance a system can achieve and provides recommendations to
realize the optimal performance level [112]. However, as systems grow in size and
complexity, analyzing their performance becomes a more and more challenging task.
System architects and deployers are often faced with the following questions:

1

2 CHAPTER 1. INTRODUCTION

� Which platform (hardware and software) would provide the best scalability
and cost/performance ratio for a given application?1

� What performance would the application exhibit under the expected workload
and how much hardware would be needed to meet the Service Level Agree-
ments (SLAs)?

Answering the first question requires being able to measure the Performance and
Scalability (P&S) of alternative hardware and software platforms. Answering the
second question requires being able to predict the performance of a given application
deployed on a selected platform. The motivation in writing this thesis originated
from our observation that, in seeking answers to the above questions, system de-
velopers nowadays often rely on their intuition, marketing studies, expert opinions,
past experiences, ad hoc procedures or general rules of thumb. As a result, the over-
all system capacity is unknown and capacity planning and procurement are done
without a sufficient consideration given to the QoS requirements. In the pressure
to release new applications as early as possible, more often than not, performance
is considered as an afterthought. A widespread misconception is that performance
problems can be addressed by simply ”throwing enough hardware at the system”.
Therefore, pretty often performance issues are ignored until the final stage of sys-
tem development (the ”fix-it-later”approach [146]). At this late stage, a change
of the platform and/or a major application redesign might be required in order to
address discovered performance issues. In our opinion, this approach is expensive,
time-consuming and professionally irresponsible.

The goal of this thesis is to provide a systematic approach for performance
engineering of DCS that helps to identify performance problems early in the deve-
lopment cycle and ensure that systems are designed and sized to meet their QoS
requirements. Before we discuss our approach we take a closer look at the problem
we just described.

1.2 Problem Statement

Modern DCS are usually built on middleware platforms such as J2EE [158], Mi-
crosoft .NET [114] or CORBA [126]. Middleware platforms simplify application
development by providing some common services typically used in enterprise app-
lications. Application logic is normally partitioned into components distributed
over physical tiers. Figure 1.1 shows a typical architecture of a multi-tiered dis-
tributed component-based application. There are three tiers: presentation tier,
business logic tier and data tier. The presentation tier includes Web servers host-
ing Web components that implement the presentation logic of the application. The

1In this thesis, we use the terms ”system”and ”application”interchangeably.

1.2. PROBLEM STATEMENT 3

Client 1 Client 2 Client n

AS 1 AS m

Load Balancers

Presentation
Tier

Business Logic
Tier

Data Tier

Firewall

Legacy Systems

Web Routers

WS 1 WS 2 WS k

Intra/InterNET

Web Servers (WS)
1..k

App. Servers (AS)
1..m

Database Servers (DS)
1..p

Client Side

Clients
1..n

DS 1 ... DS p

Figure 1.1: A multi-tiered distributed component-based application.

business logic tier includes a cluster of application servers hosting business logic
components that implement the business logic of the application. The data tier
includes database servers and legacy systems providing data management services.
Web routers and load balancers are used to distribute incoming requests over the
available Web servers and application servers, respectively. The inherent complexity
of such architectures makes it extremely difficult to manage the end-to-end system
P&S. System architects and deployers are often confronted with the following ques-
tions during the various stages of the system life cycle:

1. Which hardware platform (type of servers, disk subsystems, load balancers, etc.)
would provide the best scalability and cost/performance ratio for the applica-
tion?

4 CHAPTER 1. INTRODUCTION

2. Similarly, which software platform (OS, middleware, DBMS, etc.) would pro-
vide the best scalability and cost/performance ratio for the application?

3. Are the platforms selected scalable or do they have any inherent bottlenecks?

4. Which deployment settings and tuning parameters of the platforms selected
(hardware and software) have the greatest effect on the overall system perfor-
mance? How could the optimal values of these parameters be determined?

5. Is the current system design scalable? Which system components would be
most utilized as the load increases and are they potential bottlenecks?

6. What maximum load would the system be able to handle in its current state
without breaking the SLAs?

7. What performance would the system exhibit for a given workload and con-
figuration scenario? What would be the average transaction throughput and
response time? How utilized would be the various system components (Web
servers, application servers, database servers, etc.)?

8. Which system components have the greatest effect on the overall system per-
formance and how much would performance improve if they are optimized?

9. How much hardware would be needed to guarantee that SLAs are met? How
many Web servers, application servers and database servers would be required?

1.3 Shortcomings of Current Approaches

Three different approaches have been employed in the industry when seeking answers
to the above questions:

� Educated Guess

� Load Testing

� Performance Modeling

In the first approach, system architects and deployers make an educated guess or
a simple back-of-the-envelope estimation based on their intuition, past experiences,
expert opinions, ad hoc procedures or general rules of thumb [108]. This approach
is very quick, easy and cheap, however, the information it provides is usually very
rough and can not be relied upon. Therefore, following this approach is extremely
risky and is not an option for mission-critical applications. We now take a closer
look at the other two approaches and discuss their advantages and disadvantages.

1.3. SHORTCOMINGS OF CURRENT APPROACHES 5

1.3.1 Load Testing

In the second approach, load-testing tools are used to generate load on the sys-
tem and measure its performance. Sophisticated load testing tools can emulate
hundreds of thousands of ”virtual users”that mimic real users interacting with the
system. While tests are run, system components are monitored and performance
metrics (e.g. response time, latency, utilization and throughput) are measured. Re-
sults obtained in this way can be used to identify and isolate system bottlenecks,
fine-tune application components and measure the end-to-end system scalability.
Unfortunately, this approach has several drawbacks. First of all, it is not appli-
cable in the early stages of system development when the system is not available
for testing. Second, it is extremely expensive and time-consuming since it requires
setting up a production-like testing environment, configuring load testing tools and
conducting the tests. Finally, testing results normally cannot be reused for other
applications.

Another form of load testing which does not require that the system is avail-
able for testing is benchmarking. Benchmarking can be applied to test alternative
platforms (hardware and software) on which the system can be built. This can be
done before system development has started and can help in answering the first
four questions discussed in Section 1.2. The way benchmarking works is by run-
ning artificial workloads (benchmarks) on the platforms considered and measuring
their P&S. However, in order for benchmark results to be useful, the benchmarks
employed must fulfill the following five important requirements:

1. They must be representative of real-world systems.

2. They must exercise and measure all critical services provided by platforms.

3. They must not be tuned/optimized for (i.e. be biased in favor of) specific
products.

4. They must generate reproducible results.

5. They must not have any inherent scalability limitations.

In the context of platforms for DCS, a number of benchmarks have been de-
veloped in the past decade and have been used in the industry (see for exam-
ple [67, 121, 122, 123, 124, 129, 130, 156, 168]). However, unfortunately most
of these benchmarks fail to meet the above requirements because of one or more of
the following reasons:

� Workloads used are designed to showcase the performance of particular prod-
ucts (proprietary benchmarks).

6 CHAPTER 1. INTRODUCTION

� Workloads used are not realistic enough. Important services provided by plat-
forms are not tested at all, or they are tested, but are not stressed enough.

� Individual platform components are tested (e.g. CPUs, secondary storage
systems, DBMS software) as opposed to end-to-end platforms (including all
hardware and software needed to build a DCS).

� Workloads used have inherent scalability bottlenecks.

� Benchmark results are not reviewed by subject experts to make sure that
benchmarks are run correctly and results are valid.

1.3.2 Performance Modeling

In the third approach, performance models are built and then used to predict the
P&S of the system under study. Models represent the way system resources are
used by the workload and capture the main factors determining the behavior of the
system under load [111]. Queueing networks and stochastic Petri nets are perhaps
the two most popular types of models that have been exploited in the industry.
This approach is usually cheaper than load testing and has the advantage that it
can be applied to evaluate alternative system designs at the early stages of system
development before the system is available for testing. However, building models
of realistic systems that accurately capture the different aspects of system behavior
and analyzing the models is an extremely challenging task. Most modeling tools
and techniques currently available impose some serious restrictions and when using
them the modeler usually runs into one or more of the following problems:

1. The types of models supported do not provide the expressiveness needed to
capture all important aspects of system behavior (e.g. queueing network mod-
els).

2. Models supported are expressive enough, however, constructing a representa-
tive model requires too much time and effort (e.g. simulation models).

3. Constructing a representative model can be done in reasonable amount of
time, however, one of the following holds:

� Once the model is constructed it turns out that it is not possible to
analyze it using available analysis methods because the model is too large
(referred to as largeness problem).

� Model analysis is possible, but requires too much time and computing
power.

1.4. APPROACH AND CONTRIBUTIONS OF THIS THESIS 7

� Model analysis can be performed with reasonable overhead, however,
results provided are very approximate.

To illustrate the problems above let us consider the two most popular types of
models used in practice - queueing networks and stochastic Petri nets. Unfortu-
nately, they both have some serious limitations in terms of expressiveness and often
fail to capture important aspects of system behavior. For example, while queueing
networks provide a very powerful mechanism for modeling hardware contention and
scheduling strategies, they are not that suitable for modeling software contention
and synchronization aspects. Stochastic Petri nets, on the other hand, lend them-
selves very well to modeling software contention and synchronization aspects, but
have difficulty in representing scheduling strategies and hardware contention.

Falko Bause has proposed a new modeling formalism called Queueing Petri
Nets (QPNs) [11] that combines queueing networks and stochastic Petri nets into
a single formalism and eliminates the above disadvantages. However, modeling a
realistic DCS using QPNs, usually results in a model that is way too large to be
analyzable using currently available tools and techniques. The problem is that avail-
able tools and solution techniques for QPN models are all based on Markov chain
analysis, which suffers the well known state space explosion problem and limits the
size of the models that can be analyzed (the largeness problem). An attempt to alle-
viate the problem was the introduction of Hierarchically-Combined Queueing Petri
Nets (HQPNs) [13] which allow hierarchical model specification and exploit the hi-
erarchical structure for efficient numerical analysis. This type of analysis, called
structured analysis, allows models to be solved that are about an order of magni-
tude larger than those analyzable with conventional techniques. However, while
this alleviates the problem it does not eliminate it since, as shown in [86], models
of realistic DCS are still too large to be analyzable using this approach.

1.4 Approach and Contributions of this Thesis

In this thesis, we develop a systematic approach for performance engineering of DCS
that helps to address the questions discussed in Section 1.2. The proposed approach
is based on a combination of benchmarking and performance modeling. It builds on
the fact that the overall P&S of a DCS is a function of two important variables:

1. The P&S of the hardware and software platforms used.

2. The P&S of the system design.

Therefore, if a DCS is to provide good P&S, both the platforms used and the
system design must be efficient and scalable. To this end, we suggest that in the
beginning of the system life cycle, the P&S of the platforms chosen are validated

8 CHAPTER 1. INTRODUCTION

using standard benchmarks and that performance models are then exploited to eval-
uate the system P&S throughout the development cycle. In contrast to the ”fix-it-
later”approach, this approach helps to identify P&S problems early in the system
life cycle and eliminate them with minimal overhead.

The performance engineering of DCS is a multidimensional problem. Most cur-
rent approaches concentrate on a single dimension and fudge the others. The app-
roach we propose addresses multiple dimensions, simultaneously. The contributions
of the thesis are now discussed in detail.

1.4.1 Contributions in the Area of Benchmarking

Building on a scalable and optimized platform is a precondition for achieving high
P&S. Therefore, we suggest that before an application is built, the alternative plat-
forms that can be used are compared and the one that provides the best cost/per-
formance ratio is chosen. This is especially important for platform components that
could have an effect on the system design, such as the type of middleware used.
Even if the platform (or parts of it) are predefined and there are no alternatives
to consider, the P&S of the platform employed should be validated before starting
application development. Otherwise, one might later have to migrate the applica-
tion to another platform if the selected one turns out not to meet the requirements
for P&S.

Thus, standard benchmarks are needed that would provide a reliable method
to evaluate the end-to-end P&S of hardware and software platforms for DCS. In
order to be useful, these benchmarks must meet the requirements discussed in
Section 1.3.1, i.e. they must be representative of real-world systems, must exercise
and measure all critical services provided by platforms, must not be tuned/optimized
for specific products, must generate reproducible results and must not have any in-
herent scalability limitations. In the past five years several attempts were made to
develop a benchmark satisfying these requirements and they demonstrated that the
latter is an extremely challenging task requiring far more than good programming
skills. Maybe the most challenging part is to ensure that the benchmark provides a
level playing field for performance comparisons and is designed in such a way that it
does not have any inherent scalability limitations, i.e. it should scale well from low-
end desktop PCs to high-end servers and large clusters. The first attempt to define
a benchmark for J2EE-based2 DCS platforms was initiated in 2000 and resulted in
the development of the ECperf benchmark. ECperf was developed under the Java
Community Process (JCP) with participation of all major J2EE application server
vendors including IBM, BEA Systems, Sun Microsystems, Oracle, Hewlett Packard,

2The Java 2 Enterprise Edition Platform (J2EE) defines an industry-standard for implement-
ing middleware platforms for DCS. J2EE-based platforms are currently technology of choice for
building DCS.

1.4. APPROACH AND CONTRIBUTIONS OF THIS THESIS 9

Sybase, iPlanet, Borland, Macromedia, Pramati and IONA. A huge amount of time,
money and effort was invested in the specification and development of ECperf, how-
ever, while it met most of the requirements discussed above, unfortunately, it failed
to meet all of them.

In Chapter 2, we present ECperf and conduct a detailed analysis of its design.
We discovered several subtle design issues limiting the overall scalability of the
benchmark and degrading its performance and reliability. The main problem was in
the way long transactions were processed and persistent data was managed. Long
transactions were processed synchronously and spanned external network communi-
cation which was leading to high data contention in the database. This resulted in
a scalability bottleneck which manifested itself clearly when using a database with
pessimistic concurrency control and was not that obvious when using databases with
optimistic schedulers. Moreover, independent of the type of database used, the iden-
tified problem in the design of the benchmark was causing some performance and
reliability issues. In Chapter 2, after discussing the problem in detail, we propose a
redesign of the benchmark which addresses the discovered issues. In the new design,
long transactions are chopped up into shorter ones reducing data contention in the
database. External communication is performed asynchronously outside of the con-
text of database-intensive transactions. This eliminates the scalability bottleneck
and addresses the identified performance and reliability issues.

The proposed redesign of the benchmark was documented and submitted as an
official proposal [80] to the ECperf expert group at Sun Microsystems and later
to the OSG-Java subcommittee of SPEC3, which was responsible for the future of
ECperf4. The proposal was discussed and approved. The new design was imple-
mented in a future version of the benchmark in whose development and specification
the author was involved as release manager and lead developer. The new bench-
mark was called SPECjAppServer2004 and was developed within SPEC’s OSG-Java
subcommittee, which includes BEA, Borland, Darmstadt University of Technology,
Hewlett-Packard, IBM, Intel, Oracle, Pramati, Sun Microsystems and Sybase. It
is important to note that even though SPECjAppServer2004 is partially based on
ECperf, it implements a new enhanced workload that exercises all major services
of the J2EE platform in a complete end-to-end application scenario. Thus, SPEC-
jAppServer2004 is substantially more complex than ECperf. After its release in
April 2004, SPECjAppServer2004 quickly gained in market adoption and it currently

3The Standard Performance Evaluation Corporation (SPEC) is a non-profit corporation whose
mission is to ”establish, maintain and endorse a standardized set of relevant benchmarks that
can be applied to the newest generation of high-performance computers”(quoted from SPEC’s by-
laws). With currently more than 70 institutional members from across the industry and academia,
SPEC has grown to become one of the world’s largest and most successful performance standard-
ization bodies.

4In September 2002, the ECperf benchmark was taken over by SPEC and renamed to SPEC-
jAppServer. SPEC’s OSG-Java subcommittee became responsible for the benchmark.

10 CHAPTER 1. INTRODUCTION

enjoys unprecedented popularity for a benchmark of this size and complexity. SPEC-
jAppServer2004 became the de facto industry-standard workload for evaluating the
P&S of J2EE-based platforms and it is increasingly used throughout the industry.
This success is due to the following important benefits that the benchmark provides:

1. The application and workload modeled by SPECjAppServer2004 have been
designed to be representative of real-world systems.

2. SPECjAppServer2004 exercises all major services of J2EE platforms and mea-
sures the end-to-end platform P&S.

3. SPECjAppServer2004 has been tested on multiple hardware and software plat-
forms and has proven to scale well from low-end desktop PCs to high-end
servers and large clusters.

4. Being an industry-standard, SPECjAppServer2004 has not been tuned or op-
timized for any specific platform and provides a level playing field for perfor-
mance comparisons.

5. Once a platform has been tested and validated, the results can be used for
multiple projects/applications. Official benchmark results are made publicly
available and can be used free of charge.

6. Last but not least, prior to publication, official benchmark results are reviewed
by subject experts making sure that the benchmark was run correctly and the
results are valid.

Doing benchmarking before beginning system development ensures that P&S
problems in the platforms used are discovered and addressed in time. Applications
can then be developed with confidence that there are no bottlenecks and/or ineffi-
ciencies in the platforms employed. However, while the main purpose of benchmarks
like SPECjAppServer2004 and its predecessors is to measure the P&S of platforms,
they could equally well be used for studying the effect of different platform config-
uration settings and tuning parameters on the overall system performance. Thus,
benchmarking not only helps to choose the best platform and validate its P&S, but
also helps to identify the configuration parameters most critical for performance. In
Chapter 2, we present some case studies that demonstrate this.

The results from the contributions discussed above were published in [84], [83],
[82] and [88].

1.4.2 Contributions in Performance Engineering

While building on a scalable and optimized platform is a necessary condition for
achieving high P&S, unfortunately, it is not sufficient. As already noted, the app-
lication, i.e. the DCS, built on the selected platform must also be designed to be

1.4. APPROACH AND CONTRIBUTIONS OF THIS THESIS 11

efficient and scalable. The second major contribution of this thesis is the develop-
ment of a performance engineering framework for DCS that provides a method to
evaluate the P&S of the latter during the different phases of their life cycle. This
helps to identify problems early in the development cycle and have them resolved
in time. The framework is based on QPN models and is made up of two parts.
The first part provides a tool and methodology for analyzing QPN models by means
of simulation, circumventing the state-space explosion problem. This allows QPN
models of realistic DCS to be analyzed. The second part of the framework provides
a practical performance modeling methodology that shows how to model DCS using
QPNs and use the models for performance evaluation. We now take a closer look
at these two parts.

Analysis of QPN Models by Means of Simulation

Modeling realistic DCS using conventional models such as queueing networks and
stochastic Petri nets poses many difficulties stemming from the limited model ex-
pressiveness, on the one hand, and the system size and complexity, on the other
hand. In Chapter 4, we present some case studies that demonstrate this and show
how QPNs can be exploited to address these difficulties and allow for accurate model-
ing of DCS. The QPN paradigm provides a number of benefits over conventional
modeling paradigms. Most importantly, it allows the integration of hardware and
software aspects of system behavior into the same model. The main problem with
QPN models, however, is that, as discussed in Section 1.3.2, currently available tools
and techniques for QPN analysis suffer the state space explosion problem imposing
a limit on the size of the models that are tractable. The case studies considered in
Chapter 4 show that QPN models of realistic systems are too large to be analyzable
using currently available analysis techniques. This is the reason why QPNs have
hardly been exploited in the past decade and very few, if any, practical applications
have been reported. A major contribution of this thesis, presented in Chapter 5,
is the development of a novel methodology for analyzing QPN models by means
of discrete-event simulation. The methodology provides an alternative approach to
analyze QPN models, circumventing the state space explosion problem. As an im-
plementation of the methodology, a simulation tool for QPNs called SimQPN was
developed. SimQPN is to the best of our knowledge the first simulator specialized
for QPNs. It has been tested extensively and has proven to run very fast and pro-
vide accurate and stable point and interval estimates of performance metrics. Using
SimQPN, now for the first time, QPNs have been applied to model large and com-
plex DCS in realistic capacity planning studies. Some of these studies are presented
in Chapters 5 and 6.

An alternative approach to simulate QPN models would be to use a general pur-
pose simulation package. However, this approach has some disadvantages. First,

12 CHAPTER 1. INTRODUCTION

general purpose simulation packages do not provide means to represent QPN con-
structs directly. Mapping a QPN model to a description in the terms of a general
purpose simulation language is a complex, time-consuming and error-prone task.
Moreover, not all simulation languages provide the expressiveness needed to des-
cribe complex QPN models. Another disadvantage is that general purpose simu-
lators are normally not as fast and efficient as specialized simulators, since they
are usually not optimized for any particular type of models. Being specialized for
QPNs, SimQPN simulates QPN models directly and has been designed to exploit
the knowledge of the structure and behavior of QPNs to improve the efficiency of
the simulation. Therefore, SimQPN provides much better performance than a gen-
eral purpose simulator, both in terms of the speed of simulation and the quality
of output data provided. Last but not least, SimQPN has the advantage that it is
extremely light-weight and being implemented in Java it is platform independent.

The case studies presented in Chapter 4 were published in [85] and [86]. The
first paper shows how conventional queueing network models can be used to model
DCS demonstrating the difficulties stemming from the limited model expressiveness.
The second paper demonstrates how QPN models can be used to address these diffi-
culties and motivates the need for scalable QPN analysis techniques. The proposed
methodology for analyzing QPN models by means of simulation has been accepted
for publication in [87].

Performance Modeling Methodology

Now that we have a scalable tool for analyzing QPN models, we can exploit them as a
performance prediction mechanism in the performance engineering process for DCS.
However, building models that accurately capture the different aspects of system
behavior is a very challenging task when applied to realistic systems. The second
part of our performance engineering framework, presented in Chapter 6, consists of
a practical modeling methodology that shows how to model DCS using QPNs and
use the models for performance evaluation. The methodology takes advantage of
the modeling power and expressiveness of QPN models and provides the following
important benefits over conventional modeling approaches:

1. QPN models allow the integration of hardware and software aspects of system
behavior and lend themselves very well to modeling DCS.

2. In addition to hardware contention and scheduling strategies, using QPNs one
can easily model software contention, simultaneous resource possession, syn-
chronization, blocking and asynchronous processing. These aspects of system
behavior, which are typical for modern DCS, are difficult to model accurately
using current modeling approaches.

1.5. THESIS ORGANIZATION 13

3. By restricting ourselves to QPN models, we can exploit the knowledge of their
structure and behavior for fast and efficient simulation using SimQPN. This
enables us to analyze models of large and complex DCS and ensures that our
approach scales to realistic systems.

4. QPNs can be used to combine qualitative and quantitative system analysis.
A number of efficient qualitative analysis techniques from Petri net theory are
readily available and can be exploited.

5. Last but not least, QPN models have an intuitive graphical representation
that facilitates model development.

The modeling methodology has been submitted for publication at [81] and is
currently under review. The proposed performance engineering framework provides
a very powerful tool for performance prediction that can be used throughout the
phases of the software engineering lifecycle of DCS. We have validated our app-
roach by applying it to study a number of different DCS ranging from simple sys-
tems to systems of realistic size and complexity such as the SPECjAppServer set
of benchmarks. In Chapter 6, a case study is presented in which a deployment
of the industry-standard SPECjAppServer2004 benchmark is modeled and its per-
formance is predicted under load. In addition to CPU and I/O contention, it is
demonstrated how some more complex aspects of system behavior, such as thread
contention and asynchronous processing, can be modeled. The model predictions
demonstrate accuracy that is not attainable using conventional modeling techniques
for DCS.

1.5 Thesis Organization

The thesis is organized as follows. In Chapter 2, we introduce several popular
benchmarks for measuring the P&S of J2EE-based hardware and software plat-
forms. We start with the ECperf benchmark and after introducing it we present
a case study which uses the benchmark to evaluate the performance of the major
persistence methods in J2EE. We discuss a scalability problem we identified in the
design of the benchmark and propose a solution which exploits asynchronous pro-
cessing to reduce data contention in the database. The case study demonstrates that
building on a scalable platform is not sufficient to ensure that a DCS is scalable. Af-
ter ECperf, we briefly discuss its successor benchmarks SPECjAppServer2001 and
SPECjAppServer2002, and then introduce the new SPECjAppServer2004 bench-
mark. SPECjAppServer2004 is the state-of-the-art industry-standard benchmark for
measuring the P&S of J2EE-based platforms. At the end of the chapter, we present
a case study with a deployment of SPECjAppServer2004 on the JBoss application
server. The case study demonstrates how benchmarks like SPECjAppServer2004

14 CHAPTER 1. INTRODUCTION

can be used to identify the platform configuration parameters that are most critical
for the overall system P&S.

Chapter 3 introduces the performance models that are used in the rest of the
thesis. It starts with a brief overview of the conventional queueing network and
Petri net models and then introduces the queueing Petri net modeling formalism
which is used as a basis for the performance engineering framework developed in
this thesis.

In Chapter 4, we present two practical performance modeling case studies which
illustrate the difficulties that arise when trying to model a realistic DCS and predict
its performance. In the first case study, a queueing network model of a SPECjApp-
Server2002 deployment is built. The difficulties due to the limited expressiveness
of queueing network models and the limitations in the available analysis techniques
are discussed. In the second case study, a Queueing Petri Net (QPN) model of a
deployment of SPECjAppServer2001’s order entry application is built. The study
demonstrates the modeling power and expressiveness of QPN models and shows how
they can be used to integrate hardware and software aspects of system behavior.
However, the study also shows that QPN models of realistic systems are too large
to be analyzable using currently available tools and techniques for QPN analysis.

In Chapter 5, we present SimQPN - our tool and methodology for analyzing
QPN models by means of simulation. SimQPN is one of the two major components
of the performance engineering framework developed in this thesis. It provides
an alternative approach to analyze QPN models, circumventing the state space
explosion problem and allowing QPN models of realistic DCS to be analyzed. We
validate SimQPN by applying it to study several different QPN models ranging from
simple models to models of realistic size and complexity.

Chapter 6 presents the other major component of the performance engineering
framework we propose - a practical performance modeling methodology for DCS.
The methodology helps to construct models of DCS that accurately reflect both
their functional and performance characteristics. It exploits QPN models to take
advantage of their modeling power and expressiveness. After discussing the modeling
methodology in general, we present a case study in which it is used to model a
realistic system and analyze its P&S. The system modeled is a deployment of the
SPECjAppServer2004 benchmark. A detailed model of the system and its workload
is built in a step-by-step fashion. The model is validated and used to predict the
system performance for several deployment configurations and workload scenarios
of interest.

Chapter 7 reviews some related work in the area of benchmarking and perfor-
mance engineering of DCS.

Finally, Chapter 8 summarizes and concludes the thesis.

Chapter 2

Benchmarking Distributed Component

Platforms

The reputation of current ’benchmarketing’ claims

regarding system performance is on par with the

promises made by politicians during elections.

Kaivalya M. Dixit, Long-time SPEC President

The Benchmark Handbook, 1993

2.1 Introduction

The overall Performance and Scalability (P&S) of a DCS is a function of the P&S
of the hardware and software platforms on which the system is built and the P&S of
the system design. Thus, building on scalable and optimized platforms is a precon-
dition for achieving high P&S. Therefore, we suggest that before a system is built,
the hardware and software platforms chosen are tested by means of benchmarks
to measure and validate their P&S. The system can then be developed with confi-
dence that there are no bottlenecks and/or inefficiencies in the platforms employed.
Benchmarking platforms prior to starting system development not only helps to
discover and address P&S problems in time, but also helps to identify the platform
configuration parameters that are most critical for the system P&S.

In this chapter, we present several popular benchmarks for measuring the P&S of
J2EE-based hardware and software platforms. In addition to this, we present several
case studies in which the benchmarks were used to evaluate alternative application
designs and study the effect of some platform configuration options and tuning
parameters on the overall system performance. The reason we consider J2EE-based

15

16 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

platforms is that they are currently the technology of choice for building DCS.

We start with the ECperf benchmark developed in 2000/2001 under the Java
Community Process (JCP). After discussing ECperf’s business model and applica-
tion design, in Section 2.4 we present a case study in which the benchmark is used as
an example of a realistic application in order to evaluate the performance of the ma-
jor persistence methods in J2EE. We discuss several subtle issues we discovered in
the design of ECperf, limiting the overall scalability of the benchmark and degrading
its performance and reliability. After discussing these issues in detail, we propose
a redesign of the benchmark in which asynchronous, message-based processing is
exploited to reduce data contention in the database and improve the benchmark
scalability. This eliminates the scalability bottleneck and addresses the identified
performance and reliability issues. The case study demonstrates that building on
a scalable platform is not sufficient to ensure that a DCS is scalable, i.e. the sys-
tem design must also be scalable. After ECperf, we briefly discuss its successor
benchmarks SPECjAppServer2001 and SPECjAppServer2002, which are identical
in terms of workload and only differ in the version of J2EE they are implemented
for.

In the second part of the chapter, starting with Section 2.5, we present SPEC-
jAppServer2004 - the successor benchmark of SPECjAppServer2002, SPECjApp-
Server2001 and ECperf. It implements a new enhanced workload that exercises
all major services of J2EE in a complete end-to-end application scenario. SPECj-
AppServer2004 is the state-of-the-art industry-standard benchmark for evaluating
the P&S of J2EE-based platforms. After introducing SPECjAppServer2004, in
Section 2.6 we present a case study with a deployment of the benchmark on the
JBoss application server1. The benchmark is used to study how the performance
of J2EE applications running on JBoss can be improved by exploiting different de-
ployment options and tuning parameters offered by the platform. The case study
demonstrates how benchmarks like SPECjAppServer2004 can be used to identify
the platform configuration parameters that are most critical for the overall system
P&S. Even though the results are specific to JBoss, most of the conclusions are
generalized to other J2EE application servers.

2.2 The J2EE Platform

Over the past five years, the Java 2 Enterprise Edition Platform (J2EE) has estab-
lished itself as the technology of choice for developing modern DCS. This success
is largely due to the fact that J2EE is not a proprietary product, but rather an
industry standard, developed as the result of a large industry initiative led by Sun
Microsystems, Inc. The goal of this initiative was to establish a standard middle-

1The JBoss application server is the world’s most popular open-source J2EE application server.

2.2. THE J2EE PLATFORM 17

ware platform for developing enterprise-class DCS in Java. Over 30 software vendors
have participated in this effort and have come up with their own implementations
of J2EE, the latter being commonly referred to as J2EE application servers.

In essence, the aim of J2EE is to enable developers to quickly and easily build
scalable, reliable and secure applications without having to develop their own com-
plex middleware services. Here we are talking about services such as transac-
tion management, caching, resource-pooling, clustering, transparent failover, load-
balancing and back-end integration to name just a few. Many of these services
are also provided by traditional Transaction Processing Monitors (TPMs), but in a
rather monolithic and highly proprietary manner. The J2EE platform allows deve-
lopers to leverage middleware services provided by the industry without having to
code using proprietary middleware APIs.

The fact that J2EE application servers are all based on a common standard and
that this standard is itself based on Java, ensures that J2EE applications are not
only operating-system independent, but also portable across a wide range of middle-
ware platforms - J2EE implementations. This gives J2EE system developers a wide
selection of platforms on which they can develop and deploy their applications. The
freedom of choice encourages best-of-breed products to compete and establish them-
selves in the market. However, since product functionality is standardized, the focus
is placed on the performance, scalability and the Total Cost of Ownership (TCO)
of the platforms. It is exactly here that application server vendors strive to distin-
guish their products in the market and gain competitive advantage. This raises the
following questions that system developers are often confronted with:

� Which J2EE application server would provide the best scalability and cost/per-
formance ratio for a given application?

� Which hardware platform and operating system should be used as deployment
platform for the chosen application server?

Obviously, the natural approach to answer these questions is to use benchmarks
to measure the P&S of alternative platforms. However, we have all been able to
witness how in the recent years different vendors have been running proprietary
benchmarks and coming up with contradictory and biased results in their attempts
to push their products and beat the competition [3, 120, 122, 124, 163]. It is clear
that such results and claims cannot be trusted. What is needed are publicly available
industry-standard benchmarks built and maintained by the industry itself with no
predominance of any particular vendor. In order to provide useful results these
benchmarks must fulfill the following requirements:

1. They must be representative of real-world systems.

2. They must exercise and measure all critical services provided by platforms.

18 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

3. They must not be tuned/optimized for specific products.

4. They must generate reproducible results.

5. They must not have any inherent scalability limitations.

The first attempt to come up with a benchmark for J2EE-based platforms that
meets these requirements was initiated in 2000 and resulted in the development of
the ECperf benchmark.

2.3 The ECperf Benchmark

ECperf is a popular benchmark for measuring the P&S of J2EE hardware and soft-
ware platforms. It was built by Sun Microsystems in conjunction with J2EE server
vendors under the JCP. ECperf is composed of a specification and a toolkit [155].
The specification describes the benchmark as a whole, the modeled workload, the
running and scaling rules, and the operation and reporting requirements. The toolkit
provides the necessary code to run the benchmark and measure performance.

2.3.1 ECperf Business Model

The ECperf workload is based on a distributed application claimed to be large
enough and complex enough to represent a real-world e-business system [155, 161].
The benchmark designers have chosen manufacturing, supply chain management,
and order/inventory as the ”storyline”of the business problem to be modeled. This
is an industrial-strength distributed problem, that is heavyweight, mission-critical
and requires the use of a powerful and scalable infrastructure. Most importantly,
it requires the use of interesting middleware services, including distributed trans-
actions, clustering, load-balancing, fault-tolerance, caching, object persistence and
resource pooling among others. It is these services of application servers that are
exercised and measured by the ECperf benchmark.

ECperf models businesses using four domains [155]:

1. Customer domain dealing with customer orders and interactions.

2. Manufacturing domain performing just-in-time manufacturing operations

3. Supplier domain handling interactions with external suppliers.

4. Corporate domain managing all customer, product and supplier information.

Figure 2.1 illustrates these domains and gives some examples of typical transac-
tions run in each of them.

2.3. THE ECPERF BENCHMARK 19

&86720(5�'20$,1

2U G H U �(Q W U \ �$S S O L F D W L R Q
����� �3 O D F H �2U G H U

����������� �&K D Q J H �2U G H U
����������� �* H W �2U G H U �6W D W X V
����������� �* H W �&X V W R P H U �6W D W X V

&253 25$7(�'20$,1

&X V W R P H U � �6X S S O L H U �D Q G
3 D U W V �,Q I R U P D W L R Q

������������ �5H J L V W H U �&X V W R P H U
������������ �'H W H U P L Q H �'L V F R X Q W

������� �&K H F N �&U H G L W

0$18) $&785,1* �'20$,1

0D Q X I D F W X U L Q J �$S S O L F D W L R Q
��� �6F K H G X O H �: R U N �2U G H U

����������� �8S G D W H �: R U N �2U G H U
����������� �&R P S O H W H �: R U N �2U G H U
����������� �&U H D W H �/ D U J H �2U G H U

683 3 / ,(5�'20$,1

,Q W H U D F W L R Q V �Z L W K �6X S S O L H U V
��������� �6H O H F W �6X S S O L H U
��������� �6H Q G �3 X U F K D V H �2U G H U
��������� �'H O L Y H U �3 X U F K D V H �2U G H U

Figure 2.1: The ECperf business domains.

The customer domain models customer interactions using an order entry app-
lication, providing some typical online ordering functionality, such as placing new
orders (NewOrder transaction), changing existing orders (ChangeOrder transaction)
and retrieving the status of a given order (OrderStatus transaction) or all orders
of a given customer (CustStatus transaction). Orders can be placed by individ-
ual customers as well as by distributors. Orders placed by distributors are called
large orders.

The manufacturing domain models the activity of production lines in a manufac-
turing plant. Products manufactured by the plant are called widgets. Manufactured
widgets are also called assemblies, since they are comprised of components. The Bill
Of Materials (BOM) for an assembly indicates the components needed for producing
it. Both assemblies and components are commonly referred to as parts. There are
two types of production lines, planned lines and large order lines. Planned lines
run on schedule and produce a predefined number of widgets. Large order lines
run only when a large order (LO) is received in the customer domain. The unit of
work in the manufacturing domain is a work order. Each work order is for a specific
quantity of a particular type of widget. When a work order is created, the BOM
for the corresponding type of widget is retrieved and the required parts are taken
out of inventory. As the widgets move through the assembly line, the work order
status is updated to reflect progress. Once the work order is complete, it is marked

20 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

as completed and inventory is updated. When the inventory of parts gets depleted,
suppliers need to be located and purchase orders need to be sent out. This is done by
contacting the supplier domain. The supplier domain is responsible for interactions
with suppliers. A supplier is chosen based on the parts that need to be ordered,
the time in which they are required and the prices quoted. A purchase order (PO)
is sent to the selected supplier. When the supplier delivers the parts, the supplier
domain sends a message to the manufacturing domain to update inventory.

Finally, the corporate domain is a master keeper of all customer, supplier and
product information for the whole enterprise. Credit information, including credit
limits, about all customers is kept solely in a database in the corporate domain to
provide maximal security and privacy. When a new order is placed in the customer
domain, the corporate domain is contacted to determine the total amount to be
paid taking customer discount policies into account. Before the order is confirmed
a credit worthiness check is made.

2.3.2 ECperf Application Design

All the activities and processes in the four domains described above are implemented
using Enterprise Java Bean (EJB) components [157] assembled into a single J2EE
application which is deployed on the System Under Test (SUT). The only exception
is for the interactions with suppliers which are implemented using a separate Java
servlet application called supplier emulator. The latter is deployed in a Java-enabled
Web server on a dedicated machine. The supplier emulator provides the supplier
domain with a way to emulate the process of sending and receiving purchase or-
ders to/from suppliers. The supplier emulator accepts a purchase order from the
BuyerSes component in the supplier domain, processes the purchase order and then
delivers the items ordered to the ReceiverSes component in the supplier domain.
This interaction is depicted in Figure 2.2.

,QWHUQHW

5HFHLYHU6HV
(- %

% X \ HU6HV
(- %

6\ VW HP �8 QGHU�7 HVW

(- %

(- % (- %

(- %

(P X OD W R U
6HUYOHW

6X S S OLHU�(P X OD W R U�6HQG
�32

��'HOLYHU�32

Figure 2.2: Interaction with the supplier emulator.

The workload generator is implemented using a multithreaded Java application

2.3. THE ECPERF BENCHMARK 21

called ECperf driver. The latter is designed to run on multiple client machines,
using an arbitrary number of JVMs to ensure that it has no inherent scalability
limitations. A relational DBMS is used for data persistence and all data access
operations use entity beans which are mapped to tables in the ECperf database.

The throughput of the benchmark is driven by the activity of the order en-
try application in the customer domain and the manufacturing application in the
manufacturing domain. The throughput of both applications is directly related to
the chosen Injection Rate (IR), which determines the number of order entry transac-
tions started and the number of work orders scheduled per second. The total number
of order entry transactions (NewOrder, ChangeOrder, OrderStatus and CustStatus)
injected per second is equal to the IR. The total number of work orders scheduled
per second equals 0.65 ∗ IR (of these, 0.05 ∗ IR are triggered by large orders placed
in the customer domain).

Business transactions are selected by the driver based on the mix shown in
Table 2.1. Since the benchmark is intended to test the transaction handling capa-
bilities of EJB containers, the mix is update intensive. The actual mix achieved in
the benchmark must be within 5% of the targeted mix for each type of transaction.
For example, the NewOrder transactions can vary between 47.5% to 52.5% of the
total mix. The driver checks and reports on whether the mix requirement was met.

Table 2.1: ECperf business transaction mix requirements.

Business Transaction Percent Mix

NewOrder 50%

ChangeOrder 20%

OrderStatus 20%

CustStatus 10%

The summarized performance metric provided after running the benchmark is
called BBops/min and it denotes the average number of successful Benchmark Busi-
ness OPerationS per minute completed during the measurement interval. BBops/min
is composed of the total number of business transactions completed in the customer
domain, added to the total number of work orders completed in the manufacturing
domain, normalized per minute. The benchmark can be run in two modes. In the
first mode only the order entry application is run, while in the second mode both
the order entry and the manufacturing applications are run.

22 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

2.3.3 From ECperf to SPECjAppServer2001/2002

In September 2002, the ECperf benchmark was taken over by SPEC and renamed to
SPECjAppServer20012. SPECjAppServer2001 became the official industry-standard
benchmark for measuring the P&S of J2EE 1.2 hardware and software platforms. In
November 2002, SPECjAppServer2001 was ported to J2EE 1.3/EJB 2.0 and a new
version of the benchmark was released under the name SPECjAppServer2002. Note
that, in terms of workload and application design, both SPECjAppServer2001 and
SPECjAppServer2002 were essentially identical to ECperf 1.1 and the only difference
between them was in the versions of J2EE/EJB used.

2.4 Evaluating J2EE Persistence Methods

The J2EE platform provides a variety of options for making business data persistent
using DBMS technology. However, the integration with existing backend database
systems has proven to be of crucial importance for the P&S of J2EE applications
because the latter are usually very data-intensive. As a result, the data access layer,
and the link between the application server and the database server in particular,
are very susceptible to turning into a system bottleneck. In this section, we use
the ECperf benchmark as an example of a realistic application in order to evaluate
the major persistence methods in J2EE and demonstrate how the data access layer
could easily become a bottleneck preventing the system to scale. We discuss several
subtle issues we discovered in the design of ECperf limiting the overall scalability
of the benchmark and degrading its performance and reliability. The main prob-
lem is in the way long transactions are processed and persistent data is managed.
Long transactions are processed synchronously and span external network commu-
nication which leads to high data contention in the database. This results in a
scalability bottleneck which manifests itself clearly when using a database with pes-
simistic concurrency control. After discussing the problem in detail, we propose a
redesign of the benchmark which addresses the discovered issues. In the new design,
long transactions are chopped up into shorter ones reducing data contention in the
database. External communication is performed asynchronously outside of the con-
text of database-intensive transactions. This eliminates the scalability bottleneck
and addresses the identified performance and reliability issues.

2.4.1 Persistence Methods in J2EE

Entity beans are the natural method provided in J2EE for modeling persistent
business data. They provide an object-oriented model in which business data is

2SPECjAppServer is a trademark of the Standard Performance Evaluation Corp. (SPEC).
Although released in 2002, the benchmark was named SPECjAppServer2001, because it used the
workload of the ECperf 1.1 benchmark, which was released in 2001.

2.4. EVALUATING J2EE PERSISTENCE METHODS 23

represented as Java objects. The actual data being modeled is stored in attributes of
the objects. However, in order to make the entity bean data persistent, the container
needs an underlying persistence mechanism. Examples of persistence mechanisms
that can be used are relational databases, object databases or file systems. We will
be assuming that a relational DBMS is used as persistence mechanism since this is
the most typical case. Before the entity bean data can be made persistent, it must
be mapped to some data structures in the underlying storage - the database. Data
access code (typically SQL) must be provided for storing data in the database and
retrieving it. The EJB specification [157] offers two alternatives for defining the
data access code of entity beans. In the first case, code is written by the component
developer and the bean is said to use Bean-Managed Persistence (BMP). In the
second case, code is automatically generated by the container and the bean is said
to use Container-Managed Persistence (CMP). As discussed in [140], both BMP
and CMP have their virtues and drawbacks.

There are some fundamental benefits that entity beans bring to the table. First,
they allow a clear separation between the business logic and the persistence logic of
the application. When using entity beans the developer does not need to know about
the underlying persistence mechanism. The data access logic is decoupled from the
application logic and application code is much easier to understand and maintain.
Second, entity beans allow the container to cache and reuse data in the middle tier
and in this way reduce the load on the database. Finally, entity beans can enforce
control on the way data is accessed and modified. For example, when updating an
attribute on an entity bean, the entity bean may need to perform validation logic on
its changes and possibly institute updates on other entity beans in the application.
However, even though entity beans bring all these advantages, there are situations
when it is not worth to go through the entity bean layer. In particular, when reading
large amounts of read-only data for listing purposes it is recommended to consider
bypassing entity beans and read data directly through JDBC in session beans. This
is sometimes termed Session Bean-Managed Persistence (SMP) [101] and in the
above situations may lead to significant performance gains. To summarize, the
J2EE platform provides three major approaches for managing persistent business
data: BMP, CMP and SMP. We will concentrate on BMP and CMP since they are
more typical for modern J2EE applications.

2.4.2 Performance Comparison of BMP and CMP

We now use the ECperf benchmark to compare BMP and CMP in terms of their
performance and discuss the issues that drive the choice between them. In addition,
we provide some guidelines for improving BMP performance.

ECperf offers both BMP and CMP versions of all entity beans used. We con-
ducted experiments, first with BMP and then with CMP, in the deployment envi-

24 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

&OLHQW�3&

$ S S OLF D WLR Q�6 HU Y HU

' D WD E D V H�6 HU Y HU

6 X S S OLHU �(P X OD WR U

&OLHQW�3&�U X QQLQJ �WK H�(&S HU I �' U LY HU
������5 HG + D W�/ LQX [�� � � � �� � � �0 % �0 D LQ�0 HP R U \

6 8 7 �� �6 \ V WHP �8 QG HU �7 HV W
������(&S HU I �(- % V �G HS OR \ HG �R Q�: HE / R J LF �6 HU Y HU �� � �
������6 R OD U LV �� � �6 8 1 �8 OWU D �6 S D U F �, , �� 8 OWU D �� � �
������� �[�� � � �0 +] �&38 V � �� �* % �5 $ 0

5 ' % 0 6 � �2 U D F OH�� L�� � � � � � � �' D WD E D V H�6 HU Y HU
������+ R V WLQJ �WK H�(&S HU I �' D WD E D V H
������5 HG �+ D W�/ LQX [�� � �
������� �[�� � � �* +] �$ 0 ' �; 3�&38 � �� �* % �5 $ 0

(&S HU I �6 X S S OLHU �(P X OD WR U
������(P X OD WR U �G HS OR \ HG �R Q�: HE / R J LF �6 HU Y HU �� � �
������6 R OD U LV �� � �6 8 1 �8 OWU D �6 S D U F �, , �� 8 OWU D �� � �
������� �[�� � � �0 +] �&38 � �� �* % �5 $ 0

� � � �0 E LW
/ $ 1

Figure 2.3: ECperf deployment environment.

ronment depicted in Figure 2.3. We were quite surprised that ECperf performed
much worse with BMP than with CMP. Monitoring the database server, we noticed
that in the BMP version of ECperf entity bean data was updated in the database
at every transaction commit even when no changes had been made, i.e. at trans-
action commit all entity beans accessed by the transaction had their data updated
in the database even if they had been accessed in read-only mode. We changed
the BMP code to check if data had been modified and only in this case update the
database [154]. As a result, throughput soared by a factor of two, but performance
was still worse than with CMP.

Figure 2.4 shows the ECperf results that we obtained with our optimized BMP
code compared to the results that we obtained with CMP. In these experiments
we ran the order entry application under different transaction IRs. The first graph
compares average throughput (order entry transactions per minute) relative to the
average throughput achieved when running at IR of 10. The second graph reports
the average transaction commit time (in ms) of order entry transactions. Results
show that CMP performs substantially better as we raise the IR beyond 30. As

2.4. EVALUATING J2EE PERSISTENCE METHODS 25

0

1

2

3

4

10 20 30 40 50

Transaction Injection Rate

R
el

at
iv

e
Th

ro
ug

hp
ut

BMP CMP

0

200

400

600

800

1000

1200

1400

1600

1800

10 20 30 40 50

Transaction Injection Rate

A
ve

ra
ge

 C
om

m
it

Ti
m

e
(m

s)

Figure 2.4: ECperf results with BMP vs. CMP.

argued in [154], there are some important reasons for this performance difference.
Most importantly, giving the container control over the data access logic, allows for
some automatic optimizations usually not implemented in BMP code. For example,
the container can monitor which fields of an entity bean are modified during a
transaction and make sure that only these fields are written to the database at
commit time. This minimizes database access calls and avoids doing unnecessary
work. Another optimization that is usually provided is related to the loading of
entity beans. With BMP loading an entity bean usually requires two database calls:

26 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

1. ejbFind to find the respective database record and retrieve its primary key.

2. ejbLoad to read the entity bean’s data from the database.

With CMP these steps are usually transparently combined into a single database
access retrieving both the primary key and the data. Similar optimization can also
be applied when loading a collection of N entity beans. With BMP this would require
N+1 database calls, i.e. 1 ejbFind and N ejbLoads. With CMP the container can
combine the N+1 calls into a single call.

Coming back to our results with ECperf (Figure 2.4), we see that the extra
database calls when using BMP lead not only to higher response times, but also to
the system getting saturated much more quickly. As a result, throughput starts to
drop as we increase the IR beyond 40. So, generally speaking, if configured properly
CMP usually performs much better than BMP and therefore our recommendation is
to use CMP whenever possible. However, there are situations where one may not be
able to use CMP. For example, in cases where the container does not directly support
the persistence mechanism used, or it supports it, but some complex mappings need
to be defined that are not supported. In such cases BMP holds an advantage over
CMP, because it not only allows an arbitrary persistence mechanism to be used, but
also provides complete control on how beans are mapped to storage structures. If
one does not have a choice but to use BMP, there are several straightforward ways to
improve its performance [84]. First of all, the N+1 database calls problem described
above can be eliminated by using the so-called Fat Key Pattern [101]. Second,
most containers provide sophisticated caching mechanisms that can be exploited to
reduce the load on the database. For example, if an entity is never modified by
external applications, one can avoid having to load the entity data at the beginning
of every transaction. Once the entity data is loaded from the database, it can be
used for multiple transactions without any further database accesses. Finally, BMP
performance can be improved significantly by using parameterized prepared SQL
statements [125]. This reduces the load on the DBMS by allowing it to reuse cached
execution plans for statements that were already prepared. Most application servers
provide a prepared statement cache as part of the connection pool manager.

2.4.3 The ECperf Persistence Bottleneck

Apart from running ECperf with Oracle we also conducted some experiments with
Informix. However, surprisingly enough, the benchmark was exhibiting quite a
different behavior when run with Informix. More specifically, the persistence layer
was turning into a system bottleneck and preventing the benchmark to stress the
application server and measure its performance. We now take a closer look at the
sources of this problem and then proceed to offer a concrete solution to eliminate
the persistence bottleneck.

2.4. EVALUATING J2EE PERSISTENCE METHODS 27

&OLHQW�3&

$ S S OLF D WLR Q�6 HU Y HU

' D WD E D V H�6 HU Y HU

6 X S S OLHU �(P X OD WR U

� � � �0 E LW
/ $ 1 &OLHQW�3&�U X QQLQJ �WK H�(&S HU I �' U LY HU

������5 HG + D W�/ LQX [�� � � � �� � � �0 % �0 D LQ�0 HP R U \

6 8 7 �� �6 \ V WHP �8 QG HU �7 HV W
������(&S HU I �(- % V �G HS OR \ HG �R Q�: HE / R J LF �6 HU Y HU �� � �
������6 R OD U LV �� � �6 8 1 �8 OWU D �6 S D U F �, , �� 8 OWU D �� � �
������� �[�� � � �0 +] �&38 V � �� �* % �5 $ 0

5 ' % 0 6 � �, QI R U P L[�8 QLY HU V D O�6 HU Y HU �� � � �
������+ R V WLQJ �WK H�(&S HU I �' D WD E D V H
������6 R OD U LV �� � �6 8 1 �8 OWU D �6 S D U F �, , �� 8 OWU D �� � �
������� �[�� � � �0 +] �&38 V � �� �* % �5 $ 0

(&S HU I �6 X S S OLHU �(P X OD WR U
������(P X OD WR U �G HS OR \ HG �R Q�: HE / R J LF �6 HU Y HU �� � �
������6 R OD U LV �� � �6 8 1 �8 OWU D �6 S D U F �, , �� 8 OWU D �� � �
������� �[�� � � �0 +] �&38 � �� �* % �5 $ 0

Figure 2.5: Deployment environment with Informix.

Figure 2.5 depicts our second deployment environment with Informix as database
server. When we ran ECperf out-of-the-box in this environment we monitored the
database and observed very high data contention levels. Unlike Oracle, Informix
employs a pessimistic scheduler which uses a locking-based concurrency control tech-
nique based on the popular 2-Phase-Locking (2PL) Protocol [170]. Under 2PL data
items are locked before being accessed. Concurrent transactions trying to access
locked data items in conflicting mode are either aborted or blocked waiting for the
locks to be released. When running ECperf we noticed that large amounts of data
access operations were resulting in lock conflicts which were blocking the respective
transactions. A high proportion of the latter were eventually being aborted because
of either timing out or causing a deadlock. As a result, very poor throughput levels
were achievable and raising the IR beyond 2 caused a sudden drop in throughput -
a phenomenon known as data thrashing [160].

The first thing that comes to mind when trying to reduce data contention is to
decrease the locking granularity [170]. After setting up Informix to use row-level
locks (instead of page-level locks) we observed a significant increase in throughput.

28 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

To further optimize the data layer we tried decreasing the isolation level [135].

We configured all entity beans to use the SQL TRANSACTION_COMMITTED_READ

isolation level although this could compromise data consistency and integrity. How-
ever, the ECperf specification [155] does not place a restriction with respect to this.
While these obvious optimizations could help to alleviate the identified bottleneck,
they could not eliminate it and make ECperf behave as intended.

Getting to the Core of the Problem

After conducting a number of experiments and monitoring the database we noticed
the following: the crucial transaction scheduleWorkOrder of the WorkOrderSes
bean in the manufacturing domain was taking relatively long to complete, while
holding exclusive locks on some highly demanded database tables. The transaction
first creates a new work order entity, then identifies the components that make up
the requested assembly in the BOM and assigns the required parts from inventory.
The transaction can also cause calls into the supplier domain in case some parts
get depleted and new amounts need to be ordered. Figure 2.6 depicts the execution
step-by-step.

6FKHGXOH:RUN2UGHU 6XS S � � (P XOD W RU6XS S � � ' RP D L Q(& S HUI � ' %

* HW � % L OO� RI � 0 D W HUL D OV

& UHD W H� :RUN� 2UGHU

* HW � S D UW V � I URP � , Q Y HQ W RU\

, I � S D UW V � GHS OHW HG� � FRQ W D FW � 6XS S OL HU

& UHD W H� 3 2 6HQ G� 3 2

& RQ I L UP � 5 HFHL Y D O

Figure 2.6: The scheduleWorkOrder transaction.

The scheduleWorkOrder transaction proceeds as follows:

2.4. EVALUATING J2EE PERSISTENCE METHODS 29

1. Create a work order.

� Insert a row in the M_WORKORDER table.

2. Start processing the work order (stage 1 processing).

� Get the BOM.

� Assign required parts from inventory.

3. If parts need to be ordered send a purchase order.

� Insert rows in the S_PURCHASE_ORDER and
S_PURCHASE_ORDERLINE tables.

� Send the purchase order to the supplier emulator - order is sent in XML
format through HTTP.

We identified two problems with this design of the scheduleWorkOrder trans-
action. First, sending the purchase order (the last step) delays the transaction
while holding locks on the previously inserted table and index entries. We mon-
itored the database lock tables and observed that indeed most of the lock con-
flicts were occurring when trying to access the M_WORKORDER, S_PURCHASE_ORDER

and S_PURCHASE_ORDERLINE tables or their indices. This supported our initial sus-
picion that it was the access to these tables that was causing the bottleneck. The
second problem is that the sending step is not implemented to be undoable. In
other words once a purchase order is sent to the supplier emulator, its processing
begins and this processing is not cancelled even if the scheduleWorkOrder trans-
action that sent the order is eventually aborted. Indeed, if this occurs, all actions
of the scheduleWorkOrder transaction are rolled back except for the sending step.
As a result, the respective purchase order is removed from the S_PURCHASE_ORDER

table, but the supplier emulator is not notified that the order has been cancelled
and continues processing it. Later when the order is delivered no information about
it will be found in the database and an exception will be triggered. Thus, while
the first problem has to do with data contention and performance, the second one
concerns the scheduleWorkOrder transaction’s atomicity and semantics.

We suggested modifications to the benchmark that aim at eliminating the iden-
tified bottleneck. Our approach breaks up the scheduleWorkOrder transaction into
smaller separate transactions. This is known as transaction chopping in the litera-
ture [170]. The main goal is to commit update operations as early as possible, so
that respective locks are released. We strive to isolate time-consuming operations
in separate transactions that do not require exclusive locks. At the same time we
ensure that transaction semantics are correct. We have identified and proposed two
different solutions to the problem. In the first one we keep adhering to the EJB 1.1

30 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

specification, while in the second one, we utilize some services defined in the EJB 2.0
specification. Here we only consider the second solution since it has some significant
advantages over the first one. Readers interested in the EJB 1.1 solution are referred
to [80].

Utilizing Messaging and Asynchronous Processing

The problem with the scheduleWorkOrder transaction was that the sending of the
purchase order may delay the transaction while holding highly demanded locks.
On the one hand, we want to move this step into a separate transaction to make
scheduleWorkOrder finish faster. On the other hand, we need to guarantee that the
sending operation is executed atomically with the rest of the scheduleWorkOrder
transaction. In other words, if the transaction commits, the purchase order should
be sent, if the transaction aborts the purchase order should be destroyed and never
be sent. In fact, as already discussed above, this atomicity is not guaranteed by the
given design of ECperf. However, we believe that this is what the correct behavior
of the scheduleWorkOrder transaction should be. We would like to note that in
the given situation we do not have the requirement that the sending of the purchase
order must be executed to its end before scheduleWorkOrder commits. We only need
to make sure that, provided that the transaction commits, the sending operation is
eventually executed. This situation lends itself naturally to asynchronous processing
and messaging.

Messaging is an alternative to traditional Request-Reply processing. Request-
Reply is usually based on Remote Method Invocation (RMI) or Remote Procedure
Call (RPC) mechanisms. Under these mechanisms, a client sends a request (usually
by calling a method on a remote object) and is then blocked, waiting until the
request is processed to its end. This is exactly our situation above with the sending
of the purchase order. This blocking element prevents the client from performing
any processing in parallel while waiting for the server - a problem that has long
been a thorn for software developers and whose solution has led to the emergence of
Messaging and Message-Oriented Middleware (MOM) as an alternative to Request-
Reply. In fact, it is a solution defined long time ago with the advent of the so-
called queued transaction processing models [18]. In a nutshell, the idea behind
messaging is that a middleman is introduced, sitting between the client and the
server [140]. The middleman receives messages from one or more message producers
and broadcasts these messages to possibly multiple message consumers. This allows
a producer to send a message and then continue processing while the message is being
delivered and processed. The message producer can optionally be later notified when
the message is completely processed. A special type of messaging is the so-called
point-to-point messaging in which each message is delivered to a single consumer.
Messages are sent to a centralized message queue where they are processed usually

2.4. EVALUATING J2EE PERSISTENCE METHODS 31

on a First-In-First-Out (FIFO) basis. Multiple consumers can grab messages off
the queue, but any given message is consumed exactly once. The Java Messaging
Service (JMS) [159] is a standard Java API for accessing MOM infrastructures and
the EJB 2.0 specification [157] integrates JMS with EJB by introducing Message-
Driven Beans (MDBs). The latter are components that act as message consumers
in that they receive and process messages delivered by the MOM infrastructure.
For example in a point-to-point messaging scenario MDBs can be used to process
messages arriving on a message queue.

Eliminating the Persistence Bottleneck

We wanted to allow the scheduleWorkOrder transaction to commit before the pur-
chase order is sent, but with the guarantee that it will eventually be sent. By
utilizing messaging we can simply send a message to the supplier domain notifying
it that a new order has been created and must be sent. After this we can commit our
transaction and release all locks. A dedicated MDB can be deployed in the supplier
domain to handle incoming messages by sending orders to the supplier emulator.

-06�6HUYHU

-06�4 X HX H

(-% �& R Q W D L Q HU

6X S S O L HU
(P X O D W R U
6HUYO HW

: HE �& R Q W D L Q HU

: R UN 2 UG HU6HV
(-%

0HV V D J H� ' UL YHQ
% HD Q

Figure 2.7: Sending purchase orders asynchronously.

We only need to make sure that the operation that sends the notification message
to the supplier domain is executed as part of the scheduleWorkOrder transaction.
This would ensure that the sending of the message is executed atomically with the
rest of the transaction. Furthermore, modern messaging infrastructures provide a
guaranteed message delivery option which ensures that once a transaction is com-
mitted all messages it has sent will be delivered even if respective consumers were
down at the time of sending. Taking advantage of this property, we can claim that
if the scheduleWorkOrder transaction creates a purchase order and then success-
fully commits, we have the guarantee that the supplier domain will eventually be
notified and the purchase order will be sent out to the supplier emulator. The
latter enables us to safely move our sending step into a separate transaction and
execute it asynchronously. Figure 2.7 illustrates this solution. The new design of
the scheduleWorkOrder transaction is depicted in Figure 2.8.

32 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

6FKHGXOH:RUN2UGHU (& S HUI � ' %

* HW � % L OO� RI � 0 D W HUL D OV
& UHD W H� :RUN� 2UGHU

* HW � S D UW V � I URP � , Q Y HQ W RU\
, I � S D UW V � GHS OHW HG� � FRQ W D FW � 6XS S OL HU

& UHD W H� 3 2 6HQ G� 0 HV V D J H

0 HV V D J H� GUL Y HQ � % HD Q 6XS S � � (P XOD W RU(& S HUI � ' %3 2� 4 XHXH

5 HD G� 3 2
* HW � Q H[W � 0 HV V D J H

& RQ I L UP � 5 HFHL Y D O

6XS S � � ' RP D L Q 3 2� 4 XHXH

6HQ G� 3 2� RY HU� + 7 7 3

Figure 2.8: New design of the scheduleWorkOrder transaction.

Figure 2.9 compares throughput (BBops/min) achieved with Informix when run-
ning ECperf out-of-the-box against throughput achieved after implementing our
messaging-based redesign. All data is relative to the throughput that we obtained
when running ECperf out-of-the-box at IR of 1. As we can see, throughput increases
linearly up to IR of 6 and then gradually starts to drop as we go beyond IR of 10.
This is because at this point the application server is saturated (its CPU utilization
approaches 100%). Not only does the asynchronous design bring a big performance
advantage, but it also eliminates the second problem that we mentioned regarding
the atomicity of the scheduleWorkOrder transaction. There is no way for a purchase
order to be cancelled after it has been sent to the supplier emulator. A further bene-
fit that we get is related to the application’s reliability. Under the original design
if the supplier emulator is down at the time a new purchase order is being created,
the scheduleWorkOrder transaction will be aborted after timing out and all its work
will be lost. With the new design the notification message will be sent successfully
and although the sending of the order will be delayed until the supplier emulator
comes up, the scheduleWorkOrder transaction will be able to commit successfully.

One might wonder why this bottleneck in ECperf was not noticed earlier. The
answer is that everyone had only been testing with Oracle where an optimistic
multi-version concurrency control protocol is used. The important advantage of
this protocol is that it never blocks read operations even when concurrent updates

2.4. EVALUATING J2EE PERSISTENCE METHODS 33

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

Transaction Injection Rate

R
el

at
iv

e
T

hr
ou

gh
pu

t

Synchronous Asynchronous

Figure 2.9: Synchronous vs. asynchronous variant of ECperf with Informix.

are taking place. For this particular workload Oracle’s protocol obviously proved to
perform much better. However, we will now show that even with an Oracle DBMS
our redesign brings some significant performance and reliability benefits.

Figure 2.10 compares the synchronous and asynchronous variants of ECperf when
run with Oracle. The performance gains of the asynchronous variant are consider-
ably lower in this case, but they increase steadily as we raise the IR. The average
CPU utilization of the database server and the application server during the expe-
riments is shown on Figure 2.11. We can see that under the synchronous variant
of ECperf the CPU utilization of the application server approaches 100% at IR of
6. This explains why there is hardly any increase in throughput at higher IRs.
Under the asynchronous variant, the CPU utilization of the application server is
constantly lower because purchase orders are not sent immediately. As as result,
the application server is saturated much later, namely at IR of 10 instead of 6. This
enables us to achieve higher throughput levels at IRs beyond 6 and explains why
the database server’s CPU utilization is higher at these IRs. As far as the database
server is concerned, there is almost no difference in CPU utilization. This is because
whether we send purchase orders synchronously or asynchronously does not affect
the amount of work that has to be done by the database server.

34 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

Transaction Injection Rate

R
el

at
iv

e
T

hr
ou

gh
pu

t
Synchronous Asynchronous

Figure 2.10: Synchronous vs. asynchronous variant of ECperf with Oracle 9i.

However, we must note that the scenario under which we carried out our expe-
riments is not realistic in the sense that the supplier emulator is contacted over a
LAN. In real life, contacting the supplier emulator might take much longer if we
have to go over a WAN. This would result in much higher network delays and would
further degrade the performance of the synchronous ECperf design. In order to
illustrate this, we modified the supplier emulator to impose an artificial delay before
confirming receipt of the purchase order. We then carried out some experiments
under the same transaction IR, but with different length of the simulated network
delay. Figure 2.12 shows the impact of the emulator delays on the throughput of the
manufacturing application. Obviously, there was hardly any impact on the asyn-
chronous variant of ECperf because the delays were not blocking the transactions
in the manufacturing domain. However, this was not the case for the synchronous
variant of ECperf where the delays were making the scheduleWorkOrder transaction
finish slower and in this way were directly affecting the throughput of the manufac-
turing application. We can see how quickly the throughput drops as we increase the
length of the network delay.

ECperf and its successors SPECjAppServer2001 and SPECjAppServer2002 were
intended as DBMS-independent benchmarks and some changes were required in

2.5. THE SPECJAPPSERVER2004 BENCHMARK 35

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10
Transaction Injection Rate

O
ra

cl
e

C
P

U
 U

til
iz

at
io

n

Synchronous Asynchronous

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Transaction Injection Rate

W
eb

Lo
gi

c
C

P
U

 U
til

iz
at

io
n

Synchronous Asynchronous

Figure 2.11: CPU utilization of the database server and the application server.

order to make this a reality. The proposed modifications were submitted both to the
ECperf expert group at Sun Microsystems and to SPEC’s OSG-Java subcommittee
where they were discussed and approved. The modifications were implemented in a
future version of the benchmark that is presented in the next section.

2.5 The SPECjAppServer2004 Benchmark

SPECjAppServer2004 is the new industry-standard benchmark for measuring the
P&S of J2EE hardware and software platforms, i.e. the successor benchmark of
SPECjAppServer2002, SPECjAppServer2001 and ECperf. SPECjAppServer2004
was developed by SPEC’s Java subcommittee, which includes IBM, Darmstadt

36 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

0

1

2

3

0 2 4 6 8
Average Emulator Delay (sec)

R
el

at
iv

e
M

an
uf

ac
tu

rin
g

Th
ro

ug
hp

ut

Synchronous Asynchronous

Figure 2.12: Manufacturing throughput as we increase the network delay.

University of Technology, Sun Microsystems, BEA, Borland, Intel, Oracle, Hewlett-
Packard, Pramati and Sybase. It is important to note that even though SPECjApp-
Server2004’s business model looks similar to SPECjAppServer2002 (and respectively
to ECperf), SPECjAppServer2004 is a new benchmark substantially different from
previous versions of SPECjAppServer [153]. It implements a new enhanced work-
load that exercises all major services of the J2EE platform, including the Web
container and the Java Messaging Service (JMS), in a complete end-to-end appli-
cation scenario. Asynchronous messaging is exploited as proposed in Section 2.4.3
(resp. [80, 83]) to provide maximum scalability and address performance and relia-
bility issues.

2.5.1 SPECjAppServer2004 Business Model

The SPECjAppServer2004 workload has been specifically modeled after an automo-
bile manufacturer whose main customers are automobile dealers [147]. Dealers use
a Web based user interface to browse an automobile catalogue, purchase automo-
biles, sell automobiles and track dealership inventory. As depicted in Figure 2.13,
SPECjAppServer2004’s business model comprises five domains: customer domain
dealing with customer orders and interactions, dealer domain offering Web based
interface to the services in the customer domain, manufacturing domain performing
”just in time”manufacturing operations, supplier domain handling interactions with
external suppliers, and corporate domain managing all dealer, supplier and automo-
bile information. With exception of the dealer domain, these domains are similar
to their respective domains in SPECjAppServer2002 in terms of the services they
provide. However, their implementation is different.

2.5. THE SPECJAPPSERVER2004 BENCHMARK 37

&RUSRUDWH
' RP DL Q

&X V WRP HU
' RP DL Q

' HDO HU
' RP DL Q

'HDOHUV

6 X S S OL HUV 0 DQ X I DF WX UL Q J
' RP DL Q

6 X SSO L HU
' RP DL Q

Figure 2.13: SPECjAppServer2004 business model.

The customer domain hosts an order entry application that provides some typical
online ordering functionality. The latter includes placing new orders, retrieving the
status of an order or all orders of a given customer, canceling orders and so on.
Orders for more than 100 automobiles are called large orders.

The dealer domain hosts a Web application (called dealer application) that pro-
vides a Web based interface to the services in the customer domain. It allows cus-
tomers, in our case automobile dealers, to keep track of their accounts, keep track
of dealership inventory, manage a shopping cart, and purchase and sell automobiles.

The manufacturing domain hosts a manufacturing application that models the
activity of production lines in an automobile manufacturing plant. Similarly to
SPECjAppServer2002, there are two types of production lines, planned lines and
large order lines. Planned lines run on schedule and produce a predefined number
of automobiles. Large order lines run only when a large order (LO) is received in
the customer domain. The unit of work in the manufacturing domain is a work
order. Each work order is for a specific number of automobiles of a certain model.
When a work order is created, the bill of materials for the corresponding type
of automobile is retrieved and the required parts are taken out of inventory. As
automobiles move through the assembly line, the work order status is updated to
reflect progress. Once the work order is complete, it is marked as completed and
inventory is updated. When the inventory of parts gets depleted, suppliers need
to be located and purchase orders need to be sent out. This is done by contacting
the supplier domain, responsible for interactions with external suppliers. A supplier

38 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

is chosen based on the parts that need to be ordered, the time in which they are
required and the prices quoted. A purchase order (PO) is sent to the selected
supplier. The purchase order includes the quantities of the various parts being
ordered, the site they must be delivered to and the date by which delivery must
happen. When the parts are delivered, the supplier domain sends a message to the
manufacturing domain to update inventory.

2.5.2 Benchmark Design and Workload

All the activities and processes in the five domains described above are implemented
using J2EE components (Enterprise Java Beans, Servlets and Java Server Pages)
assembled into a single J2EE application that is deployed in an application server
running on the System Under Test (SUT). The only exception is for the interactions
with suppliers which are implemented using a separate Web application called sup-
plier emulator. The latter is deployed in a Java-enabled Web server on a dedicated
machine. The supplier emulator provides the supplier domain with a way to emulate
the process of sending and receiving purchase orders to/from suppliers.

A relational DBMS is used for data persistence and all data access operations
use entity beans which are mapped to tables in the SPECjAppServer database. All
entity beans use CMP and follow the guidelines in [83] to provide maximum scala-
bility and performance. Communication across domains is implemented using asyn-
chronous messaging exploiting JMS and MDBs. In particular, the placement and
fulfillment of large orders, requiring communication between the customer domain
and the manufacturing domain, is implemented asynchronously. Another example
is the placement and delivery of supplier purchase orders, which requires communi-
cation between the manufacturing domain and the supplier domain. The latter is
implemented according to the proposal in Section 2.4.3 (resp. [80, 83]) to address
performance and reliability issues.

The workload generator is implemented using a multi-threaded Java applica-
tion called SPECjAppServer driver. The latter is designed to run on multiple client
machines using an arbitrary number of JVMs to ensure that it has no inherent scala-
bility limitations. The driver is made of two components - manufacturing driver and
DealerEntry driver. The manufacturing driver drives the production lines (planned
lines and large order lines) in the manufacturing domain and exercises the manu-
facturing application. It communicates with the SUT through the RMI interface.
The DealerEntry driver emulates automobile dealers that use the dealer application
in the dealer domain to access the services of the order entry application in the
customer domain. It communicates with the SUT through HTTP and exercises the
dealer and order entry applications using three operations referred to as business
transactions:

1. Browse - browses through the vehicle catalogue.

2.5. THE SPECJAPPSERVER2004 BENCHMARK 39

2. Purchase - places orders for new vehicles.

3. Manage - manages the dealer inventory (sells vehicles and/or cancels open
orders).

Each business transaction emulates a specific type of client session comprising
multiple round-trips to the server. For example, the Browse transaction navigates to
the vehicle catalogue Web page and then pages a total of thirteen times, ten forward
and three backwards. Business transactions are selected by the driver based on the
mix shown in Table 2.2. The actual mix achieved by the benchmark must be within
5% of the targeted mix for each type of business transaction. For example, Browse
transactions can vary between 47.5% to 52.5% of the total mix. The driver checks
and reports on whether the mix requirement was met.

Table 2.2: SPECjAppServer2004 business transaction mix requirements.

Business Transaction Percent Mix

Browse 50%

Purchase 25%

Manage 25%

The throughput of the benchmark is driven by the activity of the dealer and
manufacturing applications. The throughput of both applications is directly related
to the chosen transaction Injection Rate (IR). The latter determines the number of
business transactions generated by the DealerEntry driver, and the number of work
orders scheduled by the manufacturing driver per unit of time. The summarized
performance metric provided after running the benchmark is called JOPS and it
denotes the average number of successful JAppServer Operations Per Second com-
pleted during the measurement interval. JOPS is composed of the total number of
business transactions completed in the dealer domain, added to the total number of
work orders completed in the manufacturing domain, normalized per second.

To ensure that benchmark results are correctly obtained and all requirements
are met, the driver makes explicit audit checks by calling certain components on the
SUT both at the beginning and at the end of the run. The driver includes audit
results with the run results. For a list of the individual auditing activities the driver
performs, refer to the benchmark Run and Reporting Rules [147].

The most important J2EE services exercised by the benchmark are the following:

� The Web container, including Servlets and JSPs.

40 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

� The EJB container.

� EJB 2.0 container-managed persistence.

� Transaction management.

� JMS and MDBs.

� Database connectivity.

Note that the benchmark also heavily exercises all parts of the underlying in-
frastructure that make up the application environment, including hardware, JVM
software, database software, JDBC drivers and the system network.

2.5.3 Standard vs. Distributed Workload

To satisfy the requirements of a wide variety of customers, the SPECjAppServer2004
benchmark can be run in standard or distributed mode [147]. In the standard
version of the workload, the benchmark domains are allowed to be combined. This
means that the benchmark implementer can choose to run a single deployment unit
that accesses a single database containing the tables of all domains. However, the
benchmark implementer is free to separate the domains into their deployment units
with one or more database instances.

The distributed version of the workload is intended to measure application per-
formance where the world-wide enterprise that the benchmark models performs
business transactions across business domains employing heterogeneous resource
managers. In this model, the workload requires a separate deployment unit and a
separate DBMS instance for each domain. XA-compliant recoverable 2-phase com-
mits [162] are required for business transactions that span multiple domains. The
configuration for the 2-phase commit is required to be done in a way that would
support heterogeneous systems. Even though implementations are likely to use the
same type of resource manager for all domains, the J2EE servers and resource mana-
gers cannot take advantage of the knowledge of homogeneous resource managers to
optimize the 2-phase commits.

2.6 Case Study with SPECjAppServer2004 on JBoss

The JBoss application server is the world’s most popular open-source J2EE appli-
cation server. Combining a robust, yet flexible architecture with a free open-source
license and extensive technical support from the JBoss Group, JBoss has quickly es-
tablished itself as a competitive platform for e-business applications. However, like
other open-source products, JBoss has often been criticized for having poor P&S,
failing to meet the requirements for mission-critical enterprise-level services.

2.6. CASE STUDY WITH SPECJAPPSERVER2004 ON JBOSS 41

In this section3, we use the SPECjAppServer20044 benchmark to study how the
performance of J2EE applications running on JBoss can be improved by exploiting
different deployment and tuning options offered by the platform. We start by com-
paring several alternative Web containers (servlet/JSP engines) that are typically
used in JBoss applications, i.e. Tomcat 4, Tomcat 5 and Jetty. Following this, we
evaluate the performance difference when using local interfaces, as opposed to re-
mote interfaces, for communication between the presentation layer (Servlets/JSPs)
and the business layer (EJBs) of the application. We measure the performance gains
from several typical data access optimizations often used in JBoss applications and
demonstrate that the choice of JVM has very significant impact on the overall sys-
tem performance. The exact version of JBoss server considered is 3.2.3, released on
November 30, 2003. Even though our study is specific to JBoss, most of the results
and findings of this section are generalized to other J2EE application servers.

2.6.1 Experimental Setting

In our experimental analysis, we use two different deployment environments for
SPECjAppServer2004, depicted in Figures 2.14 and 2.15, respectively. The first one
is a single-node deployment, while the second one is a clustered deployment with four
JBoss servers. Table 2.3 provides some details on the configuration of the machines
used in the two deployment environments. Since JBoss exhibits different behavior
in clustered environment, the same deployment option (or tuning parameter) might
have different effect on performance when used in the clustered deployment, as
opposed to the single-node deployment. Therefore, we consider both deployment
environments in our analysis.

'DWDEDVH�6HUYHU

� � � �0 EL W
/ $ 1

'UL YHU�0 DF K L Q H - % R VV�6HUYHU

- '% &+ 7 7 3 � 5 0 ,

Figure 2.14: Single-node deployment.

3The material presented in this section is joint work with Björn Weis [88, 171].
4The SPECjAppServer2004 results or findings in this section have not been reviewed

by SPEC, therefore no comparison nor performance inference can be made against any
published SPEC result. The official Web site for SPECjAppServer2004 is located at
http://www.spec.org/jAppServer2004.

42 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

'DWDEDVH�6HUYHU

� � � �0 EL W
/ $ 1

�

�

�

'UL YHU�0 DF K L Q H

- % R VV�6HUYHU�& O X VWHU

- '% &
+ 7 7 3 � 5 0 ,

Figure 2.15: Clustered deployment.

Table 2.3: Deployment environment details.

Node Description

Driver Machine SPECjAppServer Driver &
Supplier Emulator

2 x AMD XP2000+ CPU
2 GB, SuSE Linux 8

Single JBoss Server JBoss 3.2.3 Server
2 x AMD XP2000+ CPU
2 GB, SuSE Linux 8

JBoss Cluster Nodes JBoss 3.2.3 Server
1 x AMD XP2000+ CPU
1 GB, SuSE Linux 8

Database Server Popular commercial DBMS
2 x AMD XP2000+ CPU
2 GB, SuSE Linux 8

JBoss is shipped with three standard server configurations: ”minimal”, ”de-
fault” and ”all”. The ”default”configuration is typically used in single-server en-
vironments, while the ”all”configuration is meant for clustered environments. We
use the ”default”configuration as a basis for the single JBoss server in our single-
node deployment, and the ”all”configuration as a basis for the N JBoss servers in

2.6. CASE STUDY WITH SPECJAPPSERVER2004 ON JBOSS 43

our clustered deployment. For details on the changes made to the standard server
configurations for deploying SPECjAppServer2004, the reader is referred to [171].
In both the single-node and the clustered deployments, all SPECjAppServer2004
components (EJBs, servlets, JSPs) are deployed on all JBoss servers. In the clus-
tered deployment, client requests are evenly distributed over the JBoss servers in
the cluster.

The driver machine hosts the SPECjAppServer2004 driver and the supplier
emulator. All entity beans are persisted in the database. The DBMS we use
runs under SQL isolation level of READ COMMITTED by default. For entity
beans required to run under REPEATABLE READ isolation level, pessimistic SE-
LECT FOR UPDATE locking is used. This is achieved by setting the row-locking
option in the jbosscmp-jdbc.xml configuration file.

We adhere to the SPECjAppServer2004 Run Rules for most of the experiments
in our study. However, since not all deployment options that we consider are allowed
by the Run Rules, in some cases we have to slightly deviate from the latter. For
example, when evaluating the performance of different entity bean commit options,
in some cases we assume that the JBoss server has exclusive access to the underlying
persistent store (storing entity bean data), which is disallowed by the Run Rules.
This is acceptable, since our aim is to evaluate the impact of the respective deploy-
ment options on performance, rather than to produce standard benchmark results
to be published and compared with other results.

2.6.2 Performance Analysis

We now present the results of our experimental analysis. We look at a number of
different JBoss deployment and configuration options and evaluate their impact on
the overall system performance. As a basis for comparison a standard out-of-the-
box configuration is used with all deployment parameters set to their default values.
Hereafter, we refer to this configuration as Standard (shortened ”Std”). For each
deployment/configuration setting considered, its performance is compared against
the performance of the standard configuration. Performance is measured in terms
of the following metrics:

� CPU utilization of the JBoss server(s) and the database server.

� Throughput of business transactions.

� Mean response times of business transactions.

By business transactions, here, we mean the three dealer operations, Purchase,
Manage and Browse (as defined in Section 2.5.2) and the WorkOrder transaction
running in the manufacturing domain. It is important to note that the IR at which

44 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

experiments in the single-node environment are conducted is different from the IR
for experiments in the clustered environment. A higher IR is used for cluster experi-
ments, so that the four JBoss servers are utilized to a reasonable level. Disclosing the
exact IRs at which experiments are run is not allowed by the SPECjAppServer2004
license agreement.

Use of Different Web Containers

JBoss allows a third-party Web container to be integrated into the application server
framework. The most popular Web containers typically used are Tomcat [4] and
Jetty [117]. By default Tomcat 4.1 is used. As of the time of writing, the integration
of Tomcat 5 in JBoss is still in its beta stage. Therefore when using it, numerous
debug messages are output to the console and logged to files. This accounts for
significant overhead that would not be incurred in production deployments. For this
reason, we consider two Tomcat 5 configurations, the first one out-of-the-box and
the second one with debugging turned off. It is the latter that is more representative
and the former is only included to show the overhead of debugging.

Since the manufacturing application does not exercise the Web container, it is not
run in the experiments of this section. Only the dealer and order-entry applications
are run, so that the stress is put on the benchmark components that exercise the
Web container.

We consider four different configurations:

1. Tomcat 4.1 (shortened Tom4)

2. Tomcat 5 out-of-the-box (shortened Tom5)

3. Tomcat 5 without debugging (shortened Tom5WD)

4. Jetty

Comparing the four Web containers in the single-node deployment, revealed no
significant difference with respect to achieved transaction throughput and average
CPU utilization. With exception of Tom5WD, in all configurations, the measured
CPU utilization was about 90% for the JBoss server and 45% for the database
server. The Tom5WD configuration exhibited 2% lower CPU utilization both for
the JBoss server and the database server. As we can see from Figure 2.16, the lower
CPU utilization resulted in Tom5WD achieving the best response times, followed by
Jetty. It stands out that the response time improvement was most significant for the
Browse transaction. The reason for this is that, while Purchase and Manage com-
prise only 5 round-trips to the server, Browse comprises a total of 17 round-trips
each going through the Web container. As mentioned, the effect on transaction

2.6. CASE STUDY WITH SPECJAPPSERVER2004 ON JBOSS 45

throughput was negligible. This was expected since, for a given IR, SPECjApp-
Server2004 has a target throughput that is normally achieved unless there are some
system bottlenecks.

The four Web containers exhibited similar behavior in the clustered deployment.
The only exception was for the Tom5 configuration, which in this case was perform-
ing much worse compared to the other configurations. The reason for this was that,
all four servers in the clustered deployment were logging their debug messages to
the same network drive. Since, having four servers, means four times more debug
information to be logged, the shared logging drive became a bottleneck. Figure 2.17
shows the response times of the three business transactions. Note that this diagram
uses a different scale.

Figure 2.16: Mean response times with different Web containers in the single-node
environment.

Figure 2.17: Mean response times with different Web containers in the clustered
environment.

46 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

Use of Local vs. Remote Interfaces

In SPECjAppServer2004, by default, remote interfaces are used to access busi-
ness logic components (EJBs) from the presentation layer (Servlets/JSPs) of the
application. However, since in both the single-node and clustered environments,
presentation components are co-located with business logic components, one can
alternatively use local interfaces. This eliminates the overhead of remote network
communication and is expected to improve performance. In this section, we evaluate
the performance gains from using local interfaces to access EJB components from
Servlets and JSPs in SPECjAppServer2004. Note that our standard configuration
(i.e. Std) uses remote interfaces.

Figure 2.18: Mean response times with remote vs. local interfaces in the single-node
environment.

Figure 2.19: Mean response times with remote vs. local interfaces in the clustered
environment.

2.6. CASE STUDY WITH SPECJAPPSERVER2004 ON JBOSS 47

Figure 2.18 shows the transaction response times with remote vs. local interfaces
in the single-node deployment. As we can see, using local interfaces led to response
times dropping up to 35%. Again, most affected was the Browse transaction. In
addition to this, the use of local interfaces led to lower CPU utilization of the JBoss
server. It dropped from 82% to 73% when switching from remote to local interfaces.
Again, differences in transaction throughput were negligible.

As expected, switching to local interfaces brought performance gains also in the
clustered deployment. However, in this case, the delays resulting from calls to the
EJB layer were small compared to the overall response times. This is because in
clustered environment, there is additional load balancing and synchronization over-
head which contributes to the total response times. As a result, delays from calls to
the EJB layer constitute smaller portion of the overall response times than in the
single-node case. Therefore, the performance improvement from using local inter-
faces was also smaller than in the single-node case. Figure 2.19 shows the measured
response times of business transactions. The effect on transaction throughput and
CPU utilization was negligible.

Data Access Optimizations

In this section, we measure the effect of several data access configuration options on
the overall system performance. The latter are often exploited in JBoss applications
to tune and optimize the way entity beans are persisted. We first discuss these
options and then present the results from our analysis.

Entity Bean Commit Options: JBoss offers four entity bean persistent sto-
rage commit options, i.e. A, B, C and D [29, 148]. While the first three are defined
in the EJB specification [157], the last one is a JBoss-specific feature.

The four commit options have the following semantics:

� Commit Option A - the container caches entity bean state between trans-
actions. This option assumes that the container has exclusive access to the
persistent store and therefore it does not need to synchronize the in-memory
bean state from the persistent store at the beginning of every transaction.

� Commit Option B - the container caches entity bean state between transac-
tions, however unlike option A, the container is not assumed to have exclusive
access to the persistent store. Therefore, the container has to synchronize the
in-memory entity bean state at the beginning of every transaction. Thus, busi-
ness methods executing in a transaction context do not see much benefit from
the container caching the bean, whereas business methods executing outside
a transaction context can take advantage of cached bean data.

48 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

� Commit Option C - the container does not cache bean instances.

� Commit Option D - bean state is cached between transactions as with op-
tion A, but the state is periodically synchronized with the persistent store.

Note that the standard configuration (i.e. Std) uses commit option B for all
entity beans. We consider two modified configurations exploiting commit options
A and C, respectively. In the first configuration (called CoOpA), commit option A
is used. While in the single-node deployment commit option A can be configured
for all SPECjAppServer2004 entity beans, doing so in the clustered deployment
would introduce potential data inconsistency. The problem is that changes to entity
data in different nodes of the cluster are normally not synchronized. Therefore,
in the clustered deployment, commit option A is only used for the beans which are
never modified by the benchmark (the read-only beans), i.e. AssemblyEnt, BomEnt,
ComponentEnt, PartEnt, SupplierEnt, SupplierCompEnt and POEnt.

The second configuration that we consider (called CoOpC) uses commit option C
for all SPECjAppServer2004 entity beans.

Entity-Bean-With-Cache-Invalidation Option: We mentioned that using
commit option A in clustered environment may introduce potential data inconsis-
tency. This is because each server in the cluster would assume that it has exclusive
access to the persistent store and cache entity bean state between transactions.
Thus, when two servers update an entity at the same time, the changes of one of
them could be lost. To address this problem, JBoss provides the so-called cache in-
validation framework [89]. The latter allows one to link the entity caches of servers
in the cluster, so that when an entity is modified, all servers who have a cached copy
of the entity are forced to invalidate it and reload it at the beginning of next trans-
action. JBoss provides the so-called ”Standard CMP 2.x EntityBean with cache
invalidation”option for entities that should use this cache invalidation mechanism.
In our analysis, we consider a configuration (called EnBeCaIn) that exploits this
option for SPECjAppServer2004’s entity beans. Unfortunately, in the clustered de-
ployment, it was not possible to configure all entity beans with cache invalidation,
since doing so led to numerous rollback exceptions being thrown when running the
benchmark. The latter appears to be due to a bug in the cache invalidation mech-
anism. Therefore, we could only apply the cache invalidation mechanism to the
read-only beans, i.e. AssemblyEnt, BomEnt, ComponentEnt, PartEnt, SupplierEnt,
SupplierCompEnt and POEnt. Since read-only beans are never modified, this should
be equivalent to simply using commit option A without cache invalidation. However,
as we will see later, experiments show that there is a slight performance difference.

Instance-Per-Transaction Policy: JBoss’ default locking policy allows only
one instance of an entity bean to be active at a time. Unfortunately, the latter often

2.6. CASE STUDY WITH SPECJAPPSERVER2004 ON JBOSS 49

leads to deadlock and throughput problems. To address this, JBoss provides the
so-called Instance Per Transaction Policy, which eliminates the above requirement
and allows multiple instances of an entity bean to be active at the same time [148].
To achieve this, a new instance is allocated for each transaction and it is dropped
when the transaction finishes. Since each transaction has its own copy of the bean,
there is no need for transaction based locking.

In our analysis, we consider a configuration (called InPeTr) that uses the in-
stance per transaction policy for all SPECjAppServer2004 entity beans.

No-Select-Before-Insert Optimization: JBoss provides the so-called No-
Select-Before-Insert entity command, which aims to optimize entity bean create
operations [148]. Normally, when an entity bean is created, JBoss first checks to
make sure that no entity bean with the same primary key exists. When using the No-
Select-Before-Insert option, this check is skipped. Since, in SPECjAppServer2004
all primary keys issued are guaranteed to be unique, there is no need to perform the
check for duplicate keys. To evaluate the performance gains from this optimization,
we consider a configuration (called NoSeBeIn) that uses the No-Select-Before-Insert
option for all SPECjAppServer2004 entity beans.

Sync-On-Commit-Only Optimization: Another optimization typically used
is the so-called Sync-On-Commit-Only container configuration option. It causes
JBoss to synchronize changes to entity beans with the persistent store only at com-
mit time. Normally, dirty entities are synchronized whenever a finder method is
called. When using Sync-On-Commit-Only, synchronization is not done when finder
methods are called, however, it is still done after deletes/removes to ensure that cas-
cade deletes work correctly. We consider a configuration called SyCoOnly , in which
Sync-On-Commit-Only is used for all SPECjAppServer2004 entity beans.

Prepared Statement Cache: In JBoss, by default, prepared statements are
not cached. To improve performance one can configure a prepared statement cache
of an arbitrary size [148]. We consider a configuration called PrStCa, in which a
prepared statement cache of size 100 is used.

In summary, we are going to compare the following configurations against the
standard (Std) configuration:

1. Commit Option A (CoOpA)

2. Commit Option C (CoOpC)

3. Entity Beans With Cache Invalidation (EnBeCaIn)

50 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

4. Instance Per Transaction Policy (InPeTr)

5. No-Select-Before-Insert (NoSeBeIn)

6. Sync-On-Commit-Only (SyCoOnly)

7. Prepared Statement Cache (PrStCa)

Analysis in Single-node Environment Figure 2.20 shows the average CPU
utilization of the JBoss server and the database server under the different config-
urations in the single-node environment. Figure 2.21 shows the response times.

Figure 2.20: CPU utilization under different configurations in the single-node envi-
ronment.

Figure 2.21: Mean response times under different configurations in the single-node
environment.

2.6. CASE STUDY WITH SPECJAPPSERVER2004 ON JBOSS 51

All configurations achieved pretty much the same transaction throughput with
negligible differences. As we can see, apart from the three configurations CoOpA,
EnBeCaIn and PrStCa, all other configurations had similar performance. As ex-
pected, configurations CoOpA and EnBeCaIn had identical performance, since in a
single-node environment there is practically no difference between them. Caching
entity bean state with commit option A, resulted in 30 to 60 percent faster response
times. Moreover, the CPU utilization dropped by 20% both on the JBoss server and
the database server. The performance gains from using a prepared statement cache
were even greater, i.e. the database utilization dropped from 47% to only 18%!

Figure 2.22: CPU utilization under different configurations in the clustered envi-
ronment.

Figure 2.23: Mean response times under different configurations in the clustered
environment.

52 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

Analysis in Clustered Environment Figure 2.22 shows the average CPU uti-
lization of the JBoss servers and the database server under the different configura-
tions in clustered environment. Figure 2.23 shows the response times of business
transactions. As usual, all configurations achieved pretty much the same transaction
throughput with negligible differences.

As we can see, the performance gains from caching entity bean state with commit
option A (configurations CoOpA and EnBeCaIn) were not as big as in the single-
node deployment. This was expected since, as discussed earlier, in this case only
the read-only beans could be cached. It came as a surprise, however, that there was
a difference between simply using commit option A for read-only beans (CoOpA),
as opposed to using it with the cache invalidation option (EnBeCaIn). We did
not expect to see a difference here, since cached beans, being read-only, were never
invalidated. There was a slight difference, however, not just in CPU utilization,
but also in transaction response times, which in most cases were slightly better for
EnBeCaIn. Again, the performance gains from having a prepared statement cache
were considerable, i.e. the database utilization dropped from 78% to only 27%!

Use of Different JVMs

In this section, we demonstrate that the underlying JVM has a very significant im-
pact on the performance of JBoss applications. We compare the overall performance
of our SPECjAppServer2004 deployments under two different popular JVMs. Un-
fortunately, we cannot disclose the names of these JVMs, as this is prohibited by
their respective license agreements. We will instead refer to them as ”JVM A”and
”JVM B”. The goal is to demonstrate that changing the JVM on which JBoss is
running, may bring huge performance gains and therefore it is worth considering
this in real-life deployments.

Figure 2.24: CPU utilization under the 2 JVMs in the single-node environment.

2.6. CASE STUDY WITH SPECJAPPSERVER2004 ON JBOSS 53

Figures 2.24 and 2.25 show the average CPU utilization of the JBoss server and
the database server under the two JVMs in the single-node and clustered environ-
ment, respectively. Mean response times are shown in Figures 2.26 and 2.27. As
evident, in both environments, JBoss runs much faster with the second JVM: re-
sponse times are up to 55% faster and the CPU utilization of the JBoss server is
much lower.

2.6.3 Conclusions from the Analysis

Comparing the three alternative Web containers Tomcat 4.1, Tomcat 5 and Jetty
revealed no significant performance differences. Tomcat 5 (with debugging turned
off) and Jetty turned out to be slightly faster than Tomcat 4.1. On the other hand,
using local interfaces to access business logic components from the presentation
layer brought significant performance gains. Indeed, response times dropped by

Figure 2.25: CPU utilization under the 2 JVMs in the clustered environment.

Figure 2.26: Response times under the 2 JVMs in the single-node environment.

54 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

Figure 2.27: Response times under the 2 JVMs in the clustered environment.

up to 35% and the utilization of JBoss server dropped by 10%. Caching entity
beans with commit option A (with and without cache invalidation) resulted in 30
to 60 percent faster response times and 20% lower CPU utilization both for the
JBoss server and the database server. The performance gains from caching prepared
statements were even greater. The other data access optimizations considered led
to only minor performance improvements. However, we must note here that, being
an application server benchmark, SPECjAppServer2004 places the emphasis on the
application server (transaction processing) rather than the database. We expect
the performance gains from data access optimizations to be more significant in
applications where the database is the bottleneck. Furthermore, in our analysis
we considered optimizations one at a time. If all of them were to be exploited
at the same time, their cumulative effect would obviously lead to more significant
performance improvements. Finally, we demonstrated that switching to a different
JVM may improve JBoss performance by up to 60%.

Even though our study was specific to JBoss, most of the conclusions we drew
above can be carried over to other J2EE application servers. Conducting tests with
several commercial application servers showed similar behavior with respect to the
performance gains from caching beans with commit option A, the effect of using
local interfaces, the benefits of caching prepared statements and the significance of
the choice of JVM.

2.7 Concluding Remarks

Benchmarking platforms prior to starting system development helps to ensure that
the platforms selected meet the requirements for P&S. Alternative hardware and
software platforms can be compared choosing the ones that provide the best cost/per-

2.7. CONCLUDING REMARKS 55

formance ratio. Another benefit of benchmarking is that it helps to identify the
platform deployment settings and configuration parameters that are most critical
for the overall system P&S. However, in order for benchmark results to be useful,
the benchmarks employed must fulfill the following five important requirements:

1. They must be representative of real-world systems.

2. They must exercise and measure all critical services provided by platforms.

3. They must not be tuned/optimized for specific products.

4. They must generate reproducible results.

5. They must not have any inherent scalability limitations.

In this chapter, we looked at several popular benchmarks for measuring the P&S
of J2EE-based hardware and software platforms. The most important benchmark
considered was SPECjAppServer2004 which is the state-of-the-art industry-standard
benchmark for J2EE-based platforms. We looked at the way SPECjAppServer2004
evolved and discussed the problems that had to be addressed in order to make the
benchmark meet the above requirements. SPECjAppServer2004 provides a reliable
method for evaluating the P&S of J2EE-based platforms. It features the following
additional benefits:

1. It has been tested on multiple hardware and software platforms and has proven
to scale well from low-end desktop PCs to high-end servers and large clusters.

2. Once a platform has been tested and validated, the results can be used for
multiple projects/applications. Official benchmark results are made publicly
available and can be used free of charge.

3. Prior to publication, official benchmark results are reviewed by subject experts
making sure that the benchmark was run correctly and results are valid.

4. Last but not least, the benchmark can be used as a sample (blueprint) app-
lication, demonstrating programming best practices and design patterns for
building scalable applications.

In addition to considering concrete benchmarks, we presented several case stud-
ies that showed how benchmarks can be used to analyze the effect of application
design alternatives, platform configuration options and tuning parameters on the
overall system performance. In particular, we studied the performance difference
between container-managed and bean-managed persistence and showed that in gen-
eral container-managed persistence utilizes the container’s caching services much

56 2. BENCHMARKING DISTRIBUTED COMPONENT PLATFORMS

better than bean-managed persistence. We showed how easily the data access layer
of J2EE applications can become a system bottleneck and provided some guidelines
on how such bottlenecks can be approached and eliminated. Several subtle issues
in the design of ECperf were identified, degrading its scalability, reliability and per-
formance. A redesign of the benchmark was proposed to address the discovered
issues. The new design, demonstrated the performance gains and reliability benefits
that asynchronous message-based processing provides over traditional request-reply
processing. Finally, we studied how the performance of JBoss applications can be
improved by exploiting different deployment and configuration options offered by the
JBoss platform. Most of the options that we considered are available on other plat-
forms and their effect on system performance does not depend significantly on the
platform used. This was confirmed by experimentation and most of the conclusions
from the study were generalized to other J2EE application servers.

The case study with ECperf, among other things, demonstrated that building on
a scalable platform is not sufficient to ensure that a DCS is scalable, i.e. the system
design must also be scalable. In the rest of this thesis, we develop a performance
engineering framework for DCS that helps to identify P&S problems early in the
development cycle and ensure that systems are designed and sized to meet their per-
formance requirements. The framework exploits performance models for analyzing
the system P&S. The next chapter introduces the different types of models that we
are going to use.

Chapter 3

Performance Models

Every computer professional, from software developers

to database administrators to network engineers to

systems administrators, should master the basics of

quantitative performance analysis.

Dr. Daniel A. Menascé

2001 A. A. Michaelson Award Recepient

3.1 Introduction

A number of different modeling formalisms have been developed in the past decades
that can be used for modeling DCS. Queueing Networks (QNs) and Stochastic Petri
Nets (SPNs) are perhaps the two most popular types of models that have been
exploited in practical studies. However, as argued in [11], they both have some
serious shortcomings. While QNs provide a very powerful mechanism for modeling
hardware contention and scheduling strategies, they are not as suitable for repre-
senting blocking and synchronization of processes. SPNs, on the other hand, lend
themselves well to modeling blocking and synchronization aspects, but have diffi-
culty in representing scheduling strategies. Bause [11] has proposed a new modeling
formalism called Queueing Petri Nets (QPNs) that combines QNs and SPNs into
a single formalism and eliminates the above disadvantages. QPNs allow queues to
be integrated into places of Petri nets. This enables the modeler to easily represent
scheduling strategies and brings the benefits of QNs into the world of Petri nets.

This chapter provides a brief overview of the conventional queueing network and
Petri net modeling formalisms and then introduces the QPN formalism discussing
its advantages.

57

58 CHAPTER 3. PERFORMANCE MODELS

3.2 Queueing Networks

A Queueing Network (QN) consists of a set of interconnected queues. Each queue
represents a service station that serves requests (also called jobs) sent by customers.
A service station consists of one or more servers and a waiting area which holds
requests waiting to be served. When a request arrives at a service station, its service
begins immediately if a free server is available. Otherwise, the request is forced to
wait in the waiting area or the service of another request is preempted in case the
arriving request has a higher priority. The time between successive request arrivals
is called interarrival time. Each request demands a certain amount of service, which
is specified by the length of time a server is occupied serving it, i.e the service time.
The queueing delay is the amount of time the request waits in the waiting area
before its service begins. The response time is the total amount of time the request
spends at the service station, i.e. the sum of the queueing delay and the service
time.

',6.

& 3 8 �

& 3 8 � 6(5 9 ,& (� 67 $ 7 ,2 1 � �

6(5 9 ,& (� 67 $ 7 ,2 1 � �

$UULYLQJ
5 H T X H V W V : D L W L Q J

$ U H D
6H U Y H U V

S�

S�

' H S D UW LQJ
5 H T X H V W V

Figure 3.1: A basic QN.

Figure 3.1 shows a basic QN with two queues, i.e. service stations. Arriving re-
quests first visit service station 1, which has two servers (representing CPUs). After
requests are served by one of the servers, they move to service station 2 (repre-
senting a disk device) with probability p1 or leave the network with probability p2.
Requests completing service at station 2 return back to station 1. The intercon-
nection of queues in a QN is described by the paths requests may take which are
specified by routing probabilities. A request might visit a service station multiple
times while it circulates through the network. The total amount of service time
required over all visits to the station is called service demand of the request at the
station. Requests are usually grouped into classes with all requests in the same
class having the same service demands. The algorithm which determines the order
in which requests are served at a service station is called scheduling strategy (or

3.2. QUEUEING NETWORKS 59

scheduling/queueing/service discipline) [24]. Some typical scheduling strategies are:

� FCFS (First-Come-First-Served): Requests are served in the order in which
they arrive. This strategy is typically used for queues representing I/O devices.

� LCFS (Last-Come-First-Served): The request that arrived last is served next.

� RR (Round-Robin): If the service of a request is not completed at the end of
a time slice of specified length, the request is preempted and returns to the
queue, which is served according to FCFS. This action is repeated until the
request is completely served.

� PS (Processor-Sharing): All requests are assumed to be served simultaneously
with the server speed being equally divided among them. This strategy cor-
responds to Round-Robin with infinitesimally small time slices and is typically
used for modeling CPUs.

� IS (Infinite-Server): There is an ample number of servers so that no queue
ever forms. Service stations with IS scheduling strategy are often called delay
resources or delay servers.

There is a standard notation for describing queues, called Kendall’s notation.
Queues are described by six parameters as follows: A/S/m/B/K/SD where

A stands for the request interarrival time distribution.

S stands for the request service time distribution.

m stands for the number of servers.

B stands for the capacity of the queue, i.e. the maximum number of requests
that can be accommodated in the queue. If this argument is missing, then, by
default, the queue capacity is assumed to be infinite.

K stands for the system population, i.e. the maximum number of requests that
can arrive in the queue. If this argument is missing, then, by default, the
system population is assumed to be infinite.

SD stands for the scheduling discipline.

The distributions of the request interarrival times and service times are generally
denoted by a one-letter symbol as follows:

� M = Exponential (Markovian) distribution.

� D = Degenerate (or deterministic) distribution.

60 CHAPTER 3. PERFORMANCE MODELS

� Ek = Erlang distribution with parameter k.

� G = General distribution.

A deterministic distribution means that the times are constant and there is no
variance. A general distribution means that the distribution is not known. If G is
used for A, it is sometimes written GI. B is usually infinite or a variable, as is K. If
B or K are assumed to be infinite for modeling purposes, they can be omitted from
the notation (which they frequently are). However, if K is included, B must also be
included to ensure that one is not confused between the two.

A QN in which requests arrive from an external source, get served in the network
and then depart is said to be open, for e.g. the QN in Figure 3.1. A QN in which
there is no external source of requests and no departures is said to be closed. In a
closed QN it is assumed that for each request class the number of requests circulating
in the network is constant. It is also possible that a QN is open for some request
classes and closed for others in which case the QN is called mixed.

Typical measures of interest for a QN include queue lengths, response times,
throughput (the number of requests served per unit of time) and utilization (the
fraction of time that a service station is busy). A relationship, known as Little’s
Law [98], relates the throughput X of a service station with the average number
of requests N in it and their average response time R. The relation is shown in
Equation (3.1) and holds under the condition that the service station is in steady
state, i.e. the number of requests arriving per unit of time is equal to the number
of those completing service.

N = X.R (3.1)

Another relationship that will be used often relates the service time S of requests
at a station with its utilization U and throughput X. This relationship is known as
Utilization Law [51, 109] and is shown in Equation (3.2).

U = X.S (3.2)

QNs provide a very powerful mechanism for modeling hardware contention (con-
tention for CPU time, disk access and other hardware resources). A number of
efficient analysis methods have been developed for certain classes of QNs, which
enable models of realistic size and complexity to be analyzed. However, QNs are
not as suitable for modeling software contention (contention for processes, threads,
database connections and other software resources), as well as blocking, synchroniza-
tion, simultaneous resource possession and asynchronous processing. Even though
extensions of QNs, such as Extended QNs [24], provide some limited support for
modeling software contention and synchronization aspects, they are rather restric-
tive and inaccurate. For further details on QNs, the reader is referred to [24, 166].

3.3. PETRI NETS 61

3.3 Petri Nets

Petri nets were introduced in 1962 by Carl Adam Petri. An ordinary Petri Net (PN)
(also called Place-Transition Net) is a bipartite directed graph composed of places,
drawn as circles, and transitions, drawn as bars. A formal definition is given be-
low [16]:

Definition 3.1 (PN) An ordinary Petri Net (PN) is a 5-tuple
PN = (P, T, I−, I+,M0) where:

1. P = {p1, p2, ..., pn} is a finite and non-empty set of places,

2. T = {t1, t2, ..., tm} is a finite and non-empty set of transitions,

3. P ∩ T = ∅,

4. I−, I+ : P × T → N0 are called backward and forward incidence functions,
respectively,

5. M0 : P → N0 is called initial marking.

The incidence functions I− and I+ specify the interconnections between places
and transitions. If I−(p, t) > 0, an arc leads from place p to transition t and place p is
called an input place of the transition. If I+(p, t) > 0, an arc leads from transition t
to place p and place p is called an output place of the transition. The incidence
functions assign natural numbers to arcs, which we call weights of the arcs. When
each input place of transition t contains at least as many tokens as the weight of
the arc connecting it to t, the transition is said to be enabled. An enabled transition
may fire, in which case it destroys tokens from its input places and creates tokens
in its output places. The amounts of tokens destroyed and created are specified by
the arc weights. The initial arrangement of tokens in the net (called marking) is
given by the function M0, which specifies how many tokens are contained in each
place. When a transition fires, the marking may change. Figure 3.2 illustrates this
using a basic PN with 4 places and 2 transitions. The PN is shown before and after
firing of transition t1, which destroys one token from place p1 and creates one token
in place p2.

Different extensions to ordinary PNs have been developed in order to increase the
modeling convenience and the modeling power. Colored PNs (CPNs) introduced by
K. Jensen [69] are one such extension. The latter allow a type (color) to be attached
to a token. A color function C assigns a set of colors to each place, specifying the
types of tokens that can reside in the place. In addition to introducing token colors,
CPNs also allow transitions to fire in different modes (transition colors). The color
function C assigns a set of modes to each transition and incidence functions are
defined on a per mode basis. A formal definition of a CPN follows [16]:

62 CHAPTER 3. PERFORMANCE MODELS

W�
W�

S� S�

S� S�

W�
W�

S� S�

S� S�
D�� E ��

Figure 3.2: An ordinary PN before and after firing transition t1.

Definition 3.2 (CPN) A Colored PN (CPN) is a 6-tuple
CPN = (P, T,C, I−, I+,M0) where:

1. P = {p1, p2, ..., pn} is a finite and non-empty set of places,

2. T = {t1, t2, ..., tm} is a finite and non-empty set of transitions,

3. P ∩ T = ∅,

4. C is a color function defined from P ∪ T into finite and non-empty sets,

5. I− and I+ are the backward and forward incidence functions defined on
P × T , such that I−(p, t), I+(p, t) ∈ [C(t) → C(p)MS], ∀(p, t) ∈ P × T 1

6. M0 is a function defined on P describing the initial marking such that
M0(p) ∈ C(p)MS ,∀p ∈ P .

Other extensions to ordinary PNs allow temporal (timing) aspects to be in-
tegrated into the net description [16]. In particular, Stochastic PNs (SPNs) at-
tach an exponentially distributed firing delay to each transition, which specifies the
time the transition waits after being enabled before it fires. Generalized Stochas-
tic PNs (GSPNs) allow two types of transitions to be used: immediate and timed.
Once enabled, immediate transitions fire in zero time. If several immediate transi-
tions are enabled at the same time, the next transition to fire is chosen based on
firing weights (probabilities) assigned to the transitions. Timed transitions fire after
a random exponentially distributed firing delay as in the case of SPNs. The firing of
immediate transitions always has priority over that of timed transitions. A formal
definition of GSPNs follows [16]:

Definition 3.3 (GSPN) A Generalized Stochastic PN (GSPN) is a 4-tuple
GSPN = (PN, T1, T2,W) where:

1The subscript MS denotes multisets. C(p)MS denotes the set of all finite multisets of C(p).

3.4. QUEUEING PETRI NETS 63

1. PN = (P, T, I−, I+,M0) is the underlying ordinary PN,

2. T1 ⊆ T is the set of timed transitions, T1 6= ∅,

3. T2 ⊂ T is the set of immediate transitions, T1 ∩ T2 = ∅, T1 ∪ T2 = T ,

4. W = (w1, ..., w|T |) is an array whose entry wi ∈ R+

� is a (possibly marking dependent) rate of a negative exponential distri-
bution specifying the firing delay, if transition ti is a timed transition
or

� is a (possibly marking dependent) firing weight, if transition ti is an im-
mediate transition.

Combining definitions 3.2 and 3.3, leads to Colored GSPNs (CGSPNs) [16]:

Definition 3.4 (CGSPN) A Colored GSPN (CGSPN) is a 4-tuple
CGSPN = (CPN, T1, T2,W) where:

1. CPN = (P, T,C, I−, I+,M0) is the underlying CPN,

2. T1 ⊆ T is the set of timed transitions, T1 6= ∅,

3. T2 ⊂ T is the set of immediate transitions, T1 ∩ T2 = ∅, T1 ∪ T2 = T ,

4. W = (w1, ..., w|T |) is an array whose entry wi ∈ [C(ti) 7−→ R+] such that
∀c ∈ C(ti) : wi(c) ∈ R+

� is a (possibly marking dependent) rate of a negative exponential distribu-
tion specifying the firing delay due to color c, if ti ∈ T1 or

� is a (possibly marking dependent) firing weight specifying the relative
firing frequency due to color c, if ti ∈ T2.

PNs are a very powerful tool for both qualitative and quantitative system anal-
ysis. Unlike QNs, they easily lend themselves to modeling blocking and synchro-
nization aspects. However, PNs have the disadvantage that they do not provide
any means for direct representation of scheduling strategies [10]. The attempts to
eliminate this disadvantage have led to the emergence of queueing PNs.

3.4 Queueing Petri Nets

We now give a brief introduction to QPNs, which are a combination of QNs and
PNs. A deeper and more detailed treatment of the subject can be found in [10, 11,
12, 13, 16].

64 CHAPTER 3. PERFORMANCE MODELS

3.4.1 Basic Queueing Petri Nets

The QPN modeling formalism was introduced in 1993 by Falko Bause [11]. The main
idea behind it was to add queueing and timing aspects to the places of CGSPNs.
This is done by allowing queues (service stations) to be integrated into places of
CGSPNs. A place of a CGSPN that has an integrated queue is called a queueing
place and consists of two components, the queue and a depository for tokens which
have completed their service at the queue. This is depicted in Figure 3.3.

48(8(' (3 2 6 , 7 2 5 <

Figure 3.3: A queueing place and its shorthand notation.

The behavior of the net is as follows: tokens, when fired into a queueing place
by any of its input transitions, are inserted into the queue according to the queue’s
scheduling strategy. Tokens in the queue are not available for output transitions
of the place. After completion of its service, a token is immediately moved to
the depository, where it becomes available for output transitions of the place. This
type of queueing place is called timed queueing place. In addition to timed queueing
places, QPNs also introduce immediate queueing places, which allow pure scheduling
aspects to be described. Tokens in immediate queueing places can be viewed as being
served immediately. Scheduling in such places has priority over scheduling/service
in timed queueing places and firing of timed transitions. The rest of the net behaves
like a normal CGSPN. An enabled timed transition fires after an exponentially
distributed delay according to a race policy. Enabled immediate transitions fire
according to relative firing frequencies and their firing has priority over that of
timed transitions. We now give a formal definition of a QPN and then present an
example of a QPN model.

Definition 3.5 (QPN) A Queueing PN (QPN) is an 8-tuple
QPN = (P, T,C, I−, I+,M0, Q,W) where:

3.4. QUEUEING PETRI NETS 65

1. CPN = (P, T,C, I−, I+,M0) is the underlying Colored PN

2. Q = (Q̃1, Q̃2, (q1, ..., q|P |)) where

� Q̃1 ⊆ P is the set of timed queueing places,

� Q̃2 ⊆ P is the set of immediate queueing places, Q̃1 ∩ Q̃2 = ∅ and

� (q1, ..., q|P |) is an array whose entry qi denotes the description of a queue
taking all colors of C(pi) into consideration, if pi is a queueing place or
equals the keyword ’null’, if pi is an ordinary place.

3. W = (W̃1, W̃2, (w1, ..., w|T |)) where

� W̃1 ⊆ T is the set of timed transitions,

� W̃2 ⊆ T is the set of immediate transitions,
W̃1 ∩ W̃2 = ∅, W̃1 ∪ W̃2 = T and

� (w1, ..., w|T |) is an array whose entry wi ∈ [C(ti) 7−→ R+] such that
∀c ∈ C(ti) : wi(c) ∈ R+

– is a (possibly marking dependent) rate of a negative exponential dis-
tribution specifying the firing delay due to color c, if ti ∈ W̃1 or

– is a (possibly marking dependent) firing weight specifying the relative
firing frequency due to color c, if ti ∈ W̃2.

'LVN��

7 H U PLQ D O V

0 H PRU \
3 D U W LW LRQ V

& 3 8

S�

S�
W�

W� W�

W�

S�

S�

S�

W�W�S�

W�

P

R R R R

R

R
R R R

RR R

RR

P

'LVN��

Figure 3.4: A QPN model of a central server with memory constraints (based
on [16]).

66 CHAPTER 3. PERFORMANCE MODELS

Example 3.1 (QPN) Figure 3.4 shows an example of a QPN model of a central
server system with memory constraints based on [16]. Place p2 represents several
terminals, where users start jobs (modeled with tokens of color ’o’) after a certain
thinking time. These jobs request service at the CPU (represented by a G/C/1/PS
queue, where C stands for Coxian distribution) and two disk subsystems (represented
by G/C/1/FCFS queues). To enter the system each job has to allocate a certain
amount of memory. The amount of memory needed by each job is assumed to be
the same, which is represented by a token of color ’m’ on place p1. Note that, for
readability, token cardinalities have been omitted from the arc weights in Figure 3.4,
i.e. symbol o stands for 1’o and symbol m for 1’m. According to definition 3.5 we
have the following:

QPN = (P, T,C, I−, I+,M0, Q,W) where

� CPN = (P, T,C, I−, I+,M0) is the underlying Colored PN as depicted in
Figure 3.4,

� Q = (Q̃1, Q̃2,
(null,G/C/∞/IS,G/C/1/PS, null,G/C/1/FCFS,G/C/1/FCFS)),
Q̃1 = {p2, p3, p5, p6}, Q̃2 = ∅,

� W = (W̃1, W̃2, (w1, ..., w|T |)), where W̃1 = ∅, W̃2 = T and
∀c ∈ C(ti) : wi(c) := 1, so that all transition firings are equally likely.

In [10] it is shown that QPNs have greater expressive power than QNs, extended
QNs and SPNs. In addition to hardware contention and scheduling strategies, us-
ing QPNs one can easily model simultaneous resource possession, synchronization,
blocking and software contention. This enables the integration of hardware and
software aspects of system behavior into the same model [15]. While the above
could also be achieved by using Layered QNs (LQNs) (or stochastic rendezvous net-
works) [99, 107, 137, 139, 174], the latter are defined at a higher-level of abstraction
and are usually less detailed and accurate. Another benefit of QPNs is that, since
they are based on Petri nets, one can exploit a number of efficient techniques from
Petri net theory to verify some important qualitative properties of QPNs, such as
ergodicity, boundedness, liveness or existence of home states. The latter not only
help to gain insight into the behavior of QPNs, but are also essential preconditions
for a successful quantitative analysis [11].

3.4.2 Hierarchical Queueing Petri Nets

A major hurdle to the practical application of QPNs is the so-called largeness prob-
lem or state-space explosion problem: as one increases the number of queues and
tokens in a QPN, the size of the model’s state space grows exponentially and quickly

3.4. QUEUEING PETRI NETS 67

exceeds the capacity of today’s computers. This imposes a limit on the size and com-
plexity of the models that are analytically tractable. An attempt to alleviate this
problem was the introduction of Hierarchically-Combined QPNs (HQPNs) [13]. The
main idea is to allow hierarchical model specification and then exploit the hierar-
chical structure for efficient numerical analysis. This type of analysis is termed
structured analysis and it allows models to be solved that are about an order of
magnitude larger than those analyzable with conventional techniques.

$FWXDO
3 R S XODWL R Q

, Q S XW 2 XWS XW

8 V H U � V S H FL I L H G � S DU W� R I
WK H � V XE Q H W

* U DS K L FDO� Q R WDWL R Q � I R U
V XE Q H W� S ODFH

Figure 3.5: A subnet place and its shorthand notation.

HQPNs are a natural generalization of the original QPN formalism. In HQPNs
a queueing place may contain a whole QPN instead of a single queue. Such a
place is called a subnet place and is depicted in Figure 3.5. A subnet place might
contain an ordinary QPN or again a HQPN allowing multiple levels of nesting. For
simplicity, we restrict ourselves to two-level hierarchies. We use the term High-Level
QPN (HLQPN) to refer to the upper level of the HQPN and the term Low-Level
QPN (LLQPN) to refer to a subnet of the HLQPN. Every subnet of a HQPN has
a dedicated input and output place, which are ordinary places of a CPN. Tokens
being inserted into a subnet place after a transition firing are added to the input
place of the corresponding HQPN subnet. The semantics of the output place of
a subnet place is similar to the semantics of the depository of a queueing place:
tokens in the output place are available for output transitions of the subnet place.
Tokens contained in all other places of the HQPN subnet are not available for

68 CHAPTER 3. PERFORMANCE MODELS

output transitions of the subnet place. Every HQPN subnet also contains actual−
population place used to keep track of the total number of tokens fired into the
subnet place.

3.5 Concluding Remarks

The QPN paradigm provides a number of benefits over conventional modeling
paradigms such as QNs and SPNs. In addition to hardware contention and schedul-
ing strategies, using QPNs one can easily model blocking, synchronization, simul-
taneous resource possession and software contention. As will be seen in the next
chapter, this lends itself very well to modeling DCS. QPN models bring the following
advantages:

1. They combine the modeling power and expressiveness of QNs and SPNs.

2. They allow the integration of hardware and software aspects of system behav-
ior into the same model.

3. They have an intuitive graphical representation that facilitates model deve-
lopment.

4. They can be used to combine qualitative and quantitative system analysis. A
number of efficient qualitative analysis techniques from Petri net theory can
be exploited.

In the next chapter, we present some practical performance modeling case studies
which show how performance models can be exploited for performance analysis of
DCS.

Chapter 4

Performance Modeling Case Studies

The best way to learn a subject is to apply

the concepts to a real system.

– Dr. Raj Jain

I hear, I forget; I see, I remember;

I do, I understand.

– An Ancient Chinese Proverb

4.1 Introduction

Performance models are a very powerful tool for performance analysis of DCS. They
can be exploited during system development to predict the expected performance
of the system under load. This helps to identify performance problems early in the
system life cycle and have them resolved in time. However, in order for models
to provide useful results, they must be representative. Building models that accu-
rately capture the different aspects of system behavior becomes a more and more
challenging task as systems grow in size and complexity. In this chapter, we present
two practical performance modeling case studies which illustrate the difficulties that
arise when trying to model a realistic DCS and predict its performance. The systems
modeled are deployments of the SPECjAppServer2002 and SPECjAppServer2001
benchmarks introduced in Chapter 2.

In the first case study, a Queueing Network (QN) model of a SPECjAppServer2002
deployment is built. The model is analyzed using analytical techniques and used
to predict the system performance under several different configurations. Results
obtained are validated through measurements on the real system. The study illus-

69

70 CHAPTER 4. PERFORMANCE MODELING CASE STUDIES

trates the difficulties stemming from the limited expressiveness of QN models and
the limitations in the available analysis techniques.

In the second case study, a Queueing Petri Net (QPN) model of a deployment
of SPECjAppServer2001’s order entry application is built. Again, the system per-
formance is predicted for several different configurations and results are validated
through measurements on the real system. The study demonstrates the modeling
power and expressiveness of QPN models and shows how they can be used to in-
tegrate hardware and software aspects of system behavior. However, the study also
shows that QPN models of realistic systems are too large to be analyzable using
currently available tools and techniques for QPN analysis. New solution techniques
and tools are needed which would enable models of realistic size and complexity to
be analyzed. Only this would make it possible to exploit QPN models to their full
potential.

4.2 Case Study 1: Modeling using QNs

In this section, we build and validate a QN model of a SPECjAppServer2002 deploy-
ment and then show how the model can be used to predict the system performance
for the purpose of capacity planning. In the course of the study, we discuss the prob-
lems that arise from the limited model expressiveness, on the one hand, and from the
system size and complexity, on the other hand. We propose different workaround
solutions to these problems and illustrate them through practical examples.

4.2.1 Motivation

Imagine the following hypothetical scenario: A company is about to automate its
internal and external business operations with the help of e-business technology. The
company chooses to employ a J2EE-based platform and develops a J2EE application
for supporting its order-inventory, supply chain and manufacturing operations. Let
us assume that this application is SPECjAppServer2002 and that the company is
testing the application in the deployment environment depicted in Figure 4.1. This
environment uses a cluster of WebLogic Servers (WLS) as a J2EE container and an
Oracle database server (DBS) for persistence. We assume that all machines in the
WLS cluster are identical.

Before putting the application into production the company conducts a capacity
planning study in order to come up with an adequate sizing and configuration of
the deployment environment. More specifically, the company needs answers to the
following questions:

� How many WebLogic servers would be needed to guarantee adequate perfor-
mance under the expected workload?

4.2. CASE STUDY 1: MODELING USING QUEUEING NETWORKS 71

'DWDEDVH�6HUYHU

���

2 U D F O H � � L � ' D W D E D V H � 6 H U Y H U
�+ R VWL Q J �WK H�63 (& M $ 6�'%

����� �[�$ 0 '�0 3 �� � � � � �& 3 8 V
����� �* % �5 $ 0 � �6X 6(�/ L Q X [��

: H E / R J L F � 6 H U Y H U � � � & O X V W H U
��(DF K �Q R G H�HT X L S S HG �Z L WK �

�����$ 0 '�; 3 �� � � � � �& 3 8
������ �* % �5 $ 0 � �6X 6(�/ L Q X [��

� � � �0 EL W
/ $ 1

& O L HQ W�3 &

6X S S O L HU�(P X O DWR U

6 X S S O L H U � (P X O D W R U � 0 D F K L Q H
���: HE/ R J L F �6HUYHU��

������� �[�$ 0 '�0 3 � � � � � �& 3 8 V
������� �* % �5 $ 0 � �6X 6(�/ L Q X [��

& O L H Q W � (P X O D W R U � 0 D F K L Q H
�����5 X Q Q L Q J �63 (& M $ 6�'UL YHU
��$ 0 '�; 3 �� � � � � �& 3 8

������ * % �5 $ 0 � �5 HG + DW�/ L Q X [��

Figure 4.1: Deployment environment.

� For a given number of WebLogic servers, what level of performance would
the system provide? What would be the average transaction throughput and
response time? How utilized (CPU/Disk utilization) would be the WebLogic
servers and the database server?

� Will the capacity of the database server suffice to handle the incoming load?

� Does the system scale or are there any other potential system bottlenecks?

We now build a QN model of the system and show how it can be used to address
these questions.

4.2.2 Workload Characterization

The first step in the modeling process is to describe the workload of the system under
study in a qualitative and quantitative manner. This is called workload character-
ization [108] and in its simplest form includes four major steps:

1. Describe the types of requests that are processed by the system (the re-
quest classes).

2. Identify the system resources used by each request class.

72 CHAPTER 4. PERFORMANCE MODELING CASE STUDIES

3. Measure the total amount of service time (the service demand) for each request
class at each resource.

4. Specify the number of requests of each class that the system will be exposed
to (the workload intensity).

As discussed in Chapter 2, the SPECjAppServer2002 workload, which is identical
to ECperf, is made up of two major components - the order entry application in the
customer domain and the manufacturing application in the manufacturing domain.
The order entry application is processing the following four transaction types:

1. NewOrder : places a new order in the system.

2. ChangeOrder : modifies an existing order.

3. OrderStatus: retrieves the status of a given order.

4. CustStatus: lists all orders of a given customer.

We map each of them to a separate request class in our workload model. The
manufacturing application, on the other hand, is running production lines. The main
unit of work there is a work order. Each work order produces a specific quantity of
a particular type of widget. There are two types of production lines: planned lines
and large order lines. While planned lines run on a predefined schedule, large order
lines run only when a large order arrives in the customer domain. Each large order
results in a separate work order. During the processing of work orders multiple
transactions are executed in the manufacturing domain, i.e. scheduleWorkOrder,
updateWorkOrder and completeWorkOrder. Each work order moves along three
virtual production line stations, which represent distinct operations in the manu-
facturing flow. In order to simulate activity at the stations, the manufacturing
application waits for a designated time at each station.

One way to model the manufacturing workload would be to define a separate
request class for each transaction run during the processing of work orders. However,
this would lead to an overly complex model and would limit the range of analysis
techniques that would be applicable for its solution. Second, it would not be of
much benefit, since after all, what most interests us is the rate at which work orders
are processed and not the performance metrics of the individual work-order-related
transactions. Therefore, we model the manufacturing workload at the level of work
orders. We define a single request class WorkOrder, which represents a request for
processing a work order. This keeps our model simple and as will be seen later is
enough to provide sufficient information about the behavior of the manufacturing
application.

4.2. CASE STUDY 1: MODELING USING QUEUEING NETWORKS 73

Altogether, we end up with five request classes: NewOrder (NO), Change-
Order (CO), OrderStatus (OS), CustStatus (CS) and WorkOrder (WO). The fol-
lowing resources are used during their processing:

� The CPU of a WebLogic server (WLS-CPU).

� The Local Area Network (LAN).

� The CPUs of the database server (DBS-CPU).

� The disk subsystem of the database server (DBS-I/O).

In order to determine the service demands at these resources, we conducted a
separate experiment for each of the five request classes. In each case, we deployed
the benchmark in a configuration with a single WebLogic server and then injected
requests of the respective class into the system. During the experiment, we moni-
tored the system resources and measured the time requests spent at each resource
during their processing. For the database server, we used the Oracle 9i Intelligent
Agent, which provides exhaustive information about CPU consumption as well as
I/O wait times. For the WebLogic server, we monitored the CPU utilization using
operating system tools and then used the Service Demand Law [51, 108] to derive
the CPU service demand: the service demand D of requests at a given resource is
equal to the average resource utilization U divided by the average request through-
put X, during the measurement interval (assuming that requests of just one type
are processed during the experiment), i.e.

D =
U

X
(4.1)

We decided we could safely ignore network service demands, since all commu-
nications were taking place over a 100 MBit LAN and communication times were
negligible. Table 4.1 reports the service demand measurements for the five request
classes in the workload model. Figure 4.2 summarizes these measurements in graph-
ical form.

As we can see from Table 4.1, database I/O service demands are much lower
than CPU service demands. This stems from the fact that data is cached in the
database buffer and disks are usually accessed only when updating or inserting new
data. However, even in this case the I/O overhead is minimal since the only thing
that is done is to flush the database log buffer, which is performed with sequential
I/O accesses. Here we would like to point out that SPECjAppServer2002 and its
predecessor benchmarks ECperf and SPECjAppServer2001 use relatively small data
volumes for the workload intensities generated. While this keeps the I/O overhead
low, as discussed in Chapter 2, it causes increased data contention in the database.
As will be seen later, the latter poses some difficulties in predicting transaction

74 CHAPTER 4. PERFORMANCE MODELING CASE STUDIES

Table 4.1: Request mean service demands.

TX-Type WLS-CPU DBS-CPU DBS-I/O

NewOrder 12.98ms 10.64ms 1.12ms

ChangeOrder 13.64ms 10.36ms 1.27ms

OrderStatus 2.64ms 2.48ms 0.58ms

CustStatus 2.54ms 2.08ms 0.3ms

WorkOrder 24.22ms 34.14ms 1.68ms

0 10 20 30 40 50 60 70

WorkOrder

CustStatus

OrderStatus

ChangeOrder

NewOrder

Service Demand (ms)

WLS-CPU DBS-CPU DBS-I/O

Figure 4.2: Request mean service demands.

response times since data contention does not easily lend itself to analytical modeling
using conventional techniques.

Now that we know the service demands of the different request classes, we pro-
ceed with the last step in the workload characterization, which aims to quantify
the workload intensity. For each request class, we must specify the rates at which
requests arrive. We should also be able to vary these rates so that we can consider
different scenarios. To this end, we modified the SPECjAppServer2002 driver to
allow more flexibility in configuring the intensity of the workload generated. Specif-
ically, the new driver allows us to set the number of concurrent order entry clients
emulated, as well as their average think time, i.e. the time they ”think”after receiv-
ing a response from the system before they send the next request. In addition to
this, we can specify the number of planned production lines run in the manufactur-
ing domain and the time they wait after processing a work order before starting a
new one. In this way, we can precisely define the workload intensity and transaction

4.2. CASE STUDY 1: MODELING USING QUEUEING NETWORKS 75

mix. We will study in detail several different scenarios under different transaction
mixes and workload intensities.

4.2.3 Building a Performance Model

We are now ready to build a QN model of the SPECjAppServer2002 deployment.
We first define the model in a general fashion and then customize it to some concrete
workload scenarios. We use a closed model, which means that for each instance of
the model the number of concurrent clients sending requests to the system is fixed.
Figure 4.3 shows a high-level view of our QN model. Table 4.2 presents a formal
specification of the model queues (i.e. queueing stations) in Kendall’s notation.
With queues defined in this way, we end up with a non-product-form QN. Note
that we could have chosen to model the CPUs of the database server using a single
G/M/2/PS queue instead of two separate G/M/1/PS queues. However, many efficient
analysis techniques for non-product-form QNs do not support G/M/m/PS queues and
therefore we chose the first option so that we have more flexibility when analyzing
the model.

Following is a brief description of the queues used:

C : IS queue (delay resource) used to model the client machine which runs the
SPECjAppServer driver and emulates virtual clients sending requests to the
system. The service time of order entry requests at this queue is equal to
the average client think time, while the service time of WorkOrder requests
is equal to the average time a production line waits after processing a work
order before starting a new one. Note that times spent in this queue are not
part of system response times.

A1..AN : PS queues used to model the CPUs of the N WebLogic servers.

B1, B2 : PS queues used to model the two CPUs of the database server.

D : FCFS queue used to model the disk subsystem (made up of a single 100GB disk
drive) of the database server.

L : IS queue (delay resource) used to model the virtual production line stations in
the manufacturing domain. Only WorkOrder requests ever visit this queue.
Their service time at the queue corresponds to the average delay at the pro-
duction line stations simulated by the manufacturing application during work
order processing.

The model is a multi-class QN with five request classes as defined in the pre-
vious section. The behavior of requests in the QN is defined by specifying their
respective routing probabilities pi and service demands at each queue which they

76 CHAPTER 4. PERFORMANCE MODELING CASE STUDIES

Table 4.2: Formal queue definitions.

Queue Type Description

A1..AN G/M/1/PS WLS CPUs

B1, B2 G/M/1/PS DBS CPUs

D G/M/1/FCFS DBS Disk Subsystem

C G/M/∞/IS Client Machine

L G/M/∞/IS Prod. Line Stations

%�

&

%�

$�

$�

$1� �

$1

/

'
S�

S�

S�

S�

S�

S�

S�
S�

�� 1

�� 1

�� 1

�� 1

'DWDEDVH�6HUYHU

: HE/ R J L F �6HUYHU�& O X VWHU

& O L HQ W

3 UR G X F WL R Q �/ L Q H�6WDWL R Q V

Figure 4.3: QN model of the system.

visit. We discussed the service demands in the previous section. To set the routing
probabilities we examine the life-cycle of client requests in the QN. Every request is
initially at the client queue C, where it waits for a user-specified think time. After
the think time elapses, the request is routed to a randomly chosen queue Ai, where
it queues to receive service at a WebLogic server CPU. We assume that requests
are evenly distributed over the N WebLogic servers, i.e. each server is chosen with
probability 1/N . Processing at the CPU may be interrupted multiple times if the
request requires some database accesses. Each time this happens, the request is
routed to the database server where it queues for service at one of the two CPU
queues B1 or B2 (each chosen equally likely so that p3 = p4 = 0.5). Processing at
the database CPUs may be interrupted in case I/O accesses are needed. For each
I/O access the request is sent to the disk subsystem queue D and after receiving ser-

4.2. CASE STUDY 1: MODELING USING QUEUEING NETWORKS 77

vice there, it is routed back to the database CPUs. This may be repeated multiple
times depending on routing probabilities p5 and p6. Having completed their service
at the database server, requests are sent back to the WebLogic server. Requests
may visit the database server multiple times during their processing, depending on
routing probabilities p1 and p2. After completing service at the WebLogic server,
requests are sent back to the client queue C. Order entry requests are sent directly
to the client queue (for them p8 = 1, p7 = 0), while WorkOrder requests are routed
through queue L (for them p8 = 0, p7 = 1), where they are additionally delayed for
1 second. This delay corresponds to the 1 second delay at the three production line
stations imposed by the manufacturing application during work order processing.

In order to set routing probabilities p1, p2, p5 and p6 we need to know how
many times a request visits the database server during its processing and for each
visit how many times I/O access is needed. Since we only know the total service
demands over all visits to the database, we assume that requests visit the database
just once and need a single I/O access during this visit. This allows us to drop
routing probabilities p1, p2, p5 and p6 and results in a simplified model depicted in
Figure 4.4.

%�

&

%�

$�

$�

$1� �

$1

/

'

S�

S�

S�
S�

� � 1

� � 1

� � 1

� � 1

'DWDEDVH�6HUYHU

: HE/ R J L F �6HUYHU�& O X VWHU

& O L HQ W

3 UR G X F WL R Q �/ L Q H�6WDWL R Q V

Figure 4.4: Simplified QN model of the system.

The following input parameters need to be supplied before the model can be
analyzed:

� Number of order entry clients (NewOrder, ChangeOrder, OrderStatus and
CustStatus).

� Average think time of order entry clients - customer think time.

78 CHAPTER 4. PERFORMANCE MODELING CASE STUDIES

� Number of planned production lines processing WorkOrder requests.

� Average time production lines wait after processing a work order, before start-
ing a new one - manufacturing (mfg) think time.

� Service demands of the five request classes at queues Ai, Bj , and D (as per
Table 4.1).

We consider two types of deployment scenarios. In the first one, large order
lines in the manufacturing domain are turned off. In the second one, they are
running as defined in the benchmark workload. The reason for this separation is
that large order lines introduce some asynchronous processing, which in general is
hard to model using QNs. We start with the simpler case where we do not have
such processing and then we show how the large order processing can be integrated
into the model.

4.2.4 Model Analysis and Validation

We now proceed to analyze several different instances of the QN model and then
validate them by comparing results from the analysis with measured data. We first
consider the case without large order lines and study the system in three scenarios
representing low, moderate and heavy load, respectively. In each case, we examine
deployments with different number of WebLogic servers - from 1 to 9. Table 4.3
summarizes the input parameters for the three scenarios that we consider.

Table 4.3: Model input parameters for the 3 scenarios.

Parameter Low Moderate Heavy

NewOrder Clients 30 50 100

ChangeOrder Clients 10 40 50

OrderStatus Clients 50 100 150

CustStatus Clients 40 70 50

Planned Lines 50 100 200

Customer Think Time 2 sec 2 sec 3 sec

Mfg Think Time 3 sec 3 sec 5 sec

Scenario 1: Low Load

A number of analysis tools for QNs have been developed and are available free
of charge for noncommercial use (see for e.g. [25, 63, 71, 74]). We employed the

4.2. CASE STUDY 1: MODELING USING QUEUEING NETWORKS 79

PEPSY-QNS tool [25] (Performance Evaluation and Prediction SYstem for Queue-
ing NetworkS) from the University of Erlangen-Nuernberg. We chose PEPSY be-
cause it supports a wide range of solution methods (over 30) for product- and non-
product-form QNs. Both exact and approximate methods are provided, which are
applicable to models of considerable size and complexity. We used the multisum
method [23] to solve our QN model. However, to ensure plausibility of the results,
we cross-verified them with results obtained from other methods such as bol aky and
num app [25]. In all cases the difference was negligible.

Table 4.4 summarizes the results we obtained for the first scenario. We studied
two different configurations - the first one with 1 WebLogic server, the second one
with 2. The table reports throughput (X) and response time (R) for the five request
classes, as well as CPU utilization (U) of the WebLogic servers (UWLS) and the
database server (UDBS). Results obtained from the model analysis are compared
against results obtained through measurements and the modeling error is reported.

Table 4.4: Analysis results for scenario 1 (low load).

1 WebLogic Server 2 WebLogic Servers

METRIC Model Measured Error Model Measured Error

XNO 14.59 14.37 1.5% 14.72 14.49 1.6%

XCO 4.85 4.76 1.9% 4.90 4.82 1.7%

XOS 24.84 24.76 0.3% 24.89 24.88 0.0%

XCS 19.89 19.85 0.2% 19.92 19.99 0.4%

XWO 12.11 12.19 0.7% 12.20 12.02 1.5%

RNO 56ms 68ms 17.6% 37ms 47ms 21.3%

RCO 58ms 67ms 13.4% 38ms 46ms 17.4%

ROS 12ms 16ms 25.0% 8ms 10ms 20.0%

RCS 11ms 17ms 35.2% 7ms 10ms 30.0%

RWO 1127ms 1141ms 1.2% 1092ms 1103ms 1.0%

UWLS 66% 70% 5.7% 33% 37% 10.8%

UDBS 36% 40% 10% 36% 38% 5.2%

As we can see from the table, while throughput and utilization results are ex-
tremely accurate, the same does not hold for response time results. This is because
when we run a transaction mix, as opposed to a single transaction, some additional
delays are incurred which are not captured by the model. For example, delays re-
sult from contention for data access (database locks, latches), processes, threads,
database connections, etc. Our model captures the hardware contention aspects of
system behavior and does not represent software contention aspects. While software

80 CHAPTER 4. PERFORMANCE MODELING CASE STUDIES

contention may not always have a big impact on transaction throughput and CPU
utilization, it usually does have a direct impact on transaction response time and
therefore real (measured) response times are higher than the ones obtained from
the model. In [107] and [139] some techniques are presented for estimating delays
incurred from software contention. However, they are rather approximative and at-
tempting to apply them to our system leads to technical difficulties stemming from
the size and complexity of the latter.

From Table 4.4 we see that the response time error for requests with very low
service demands (e.g. OrderStatus and CustStatus) is much higher than average.
This is because the processing times for such requests are very low (around 10ms)
and the additional delays from software contention, while not that high as absolute
values, are high relative to the overall response times. The results show that the
higher the service demand of a request type, the lower the response time error is.
Indeed, the requests with the highest service demand (WorkOrder) always have the
lowest response time error.

Scenario 2: Moderate Load

In this scenario there are 260 concurrent clients interacting with the system and
100 planned production lines running in the manufacturing domain. This is twice
as much as in the previous scenario. We study 2 deployments - the first one with
3 WebLogic servers, the second with 6. Table 4.5 summarizes the results from the
model analysis. Again we obtain very accurate throughput and utilization results,
and accurate response time results. The response time error does not exceed 35%,
which is considered acceptable in most capacity planning studies [109].

Scenario 3: Heavy Load

In this scenario there are 350 concurrent clients and 200 planned production lines
in total. We consider three configurations - with 4, 6 and 9 WebLogic servers,
respectively. However, we slightly increase the think times in order to make sure that
the single database server is able to handle the load. Tables 4.6 and 4.7 summarize
the results for this scenario. For the configuration with 9 WebLogic servers, the
available model analysis algorithms failed to produce reliable response time results
and therefore we only consider throughput and utilization for this configuration.

Scenarios with Large Order Lines

We now consider the case when large order lines in the manufacturing domain are
enabled. The latter are activated upon arrival of large orders in the customer do-
main. Each large order generates a work order that is processed asynchronously on
one of the large order lines. As already mentioned, this poses a difficulty since QNs

4.2. CASE STUDY 1: MODELING USING QUEUEING NETWORKS 81

Table 4.5: Analysis results for scenario 2 (moderate load).

3 WebLogic Servers 6 WebLogic Servers

METRIC Model Measured Error Model Measured Error

XNO 24.21 24.08 0.5% 24.29 24.01 1.2%

XCO 19.36 18.77 3.1% 19.43 19.32 0.6%

XOS 49.63 49.48 0.3% 49.66 49.01 1.3%

XCS 34.77 34.24 1.5% 34.80 34.58 0.6%

XWO 23.95 23.99 0.2% 24.02 24.03 0.0%

RNO 65ms 75ms 13.3% 58ms 68ms 14.7%

RCO 66ms 73ms 9.6% 58ms 70ms 17.1%

ROS 15ms 20ms 25.0% 13ms 18ms 27.8%

RCS 13ms 20ms 35.0% 11ms 17ms 35.3%

RWO 1175ms 1164ms 0.9% 1163ms 1162ms 0.0%

UWLS 46% 49% 6.1% 23% 25% 8.0%

UDBS 74% 76% 2.6% 73% 78% 6.4%

Table 4.6: Analysis results for scenario 3 (heavy load) with 4 and 6 WLS.

4 WebLogic Servers 6 WebLogic Servers

METRIC Model Msrd. Error Model Msrd. Error

XNO 32.19 32.29 0.3% 32.22 32.66 1.3%

XCO 16.10 15.96 0.9% 16.11 16.19 0.5%

XOS 49.59 48.92 1.4% 49.60 49.21 0.8%

XCS 16.55 16.25 1.8% 16.55 16.24 1.9%

XWO 31.69 31.64 0.2% 31.72 32.08 1.1%

RNO 106ms 98ms 8.2% 103ms 94ms 9.6%

RCO 106ms 102ms 3.9% 102ms 98ms 4.1%

ROS 25ms 30ms 16.7% 24ms 27ms 11.1%

RCS 21ms 31ms 32.3% 20ms 27ms 25.9%

RWO 1310 1260ms 4.0% 1305ms 1251ms 4.3%

UWLS 40% 42% 4.8% 26% 29% 10.3%

UDBS 87% 89% 2.2% 88% 91% 3.3%

provide very limited possibilities for modeling this type of asynchronous processing.
We now present one approach to integrate large order processing into the model.

82 CHAPTER 4. PERFORMANCE MODELING CASE STUDIES

Table 4.7: Analysis results for scenario 3 (heavy load) with 9 WLS.

9 WebLogic Servers

METRIC Model Msrd. Error

XNO 32.24 32.48 0.7%

XCO 16.12 16.18 0.4%

XOS 49.61 49.28 0.7%

XCS 16.55 16.46 0.5%

XWO 31.73 32.30 1.8%

UWLS 18% 20% 10.0%

UDBS 88% 91% 3.3%

Since large order lines are always triggered by NewOrder transactions we can
add the load they produce to the service demands of NewOrder requests. To do
that we rerun the NewOrder experiments with the large order lines turned on. The
additional load leads to higher utilization of system resources and in this way impacts
the measured NewOrder service demands (see Table 4.8). While this incorporates
the large order line activity into the model, it changes the semantics of NewOrder
jobs. In addition to the NewOrder transaction load, they now also include the
load caused by large order lines. Thus, performance metrics (throughput, response
time) for NewOrder requests no longer correspond to the respective metrics of the
NewOrder transaction. Therefore, we can no longer quantify the performance of the
NewOrder transaction on itself. Nevertheless, we can still analyze the performance
of other transactions and gain a picture of the overall system behavior. Table 4.9
summarizes the results for the three scenarios with enabled large order lines. We
consider one configuration per scenario: the first one with 1 WebLogic server, the
second with 3 and the third with 9. As we can see, while the model predictions
for transaction throughput and server utilization were very accurate, unfortunately
this was not the case for response times. The incorporation of large order lines into
the model led to the modeling error for response time soaring up to 75%.

Table 4.8: NewOrder service demands with large order lines running.

TX-Type WLS-CPU DBS-CPU DBS-I/O

NewOrder 23.49ms 21.61ms 1.87ms

4.3. CASE STUDY 2: MODELING USING QUEUEING PETRI NETS 83

Table 4.9: Analysis results for scenarios with large order lines.

Low / 1 WLS Moderate / 3 WLS Heavy / 9 WLS

METRIC Model Error Model Error Model Error

XCO 4.79 6.4% 19.09 3.5% 15.31 4.5%

XOS 24.77 2.9% 49.46 2.3% 48.96 3.1%

XCS 19.83 2.4% 34.67 2.1% 16.37 1.9%

XWO 11.96 5.7% 23.43 2.6% 29.19 1.2%

RCO 86ms 60.7% 95ms 34.5% - -

ROS 18ms 71.0% 22ms 55.1% - -

RCS 16ms 74.6% 19ms 59.6% - -

RWO 1179ms 16.1% 1268ms 5.0% - -

UWLS 80% 0.0% 53% 1.9% 20% 0.0%

UDBS 43% 2.4% 84% 2.4% 96% 1.0%

4.2.5 Conclusions from the Analysis

We used the QN model to predict system performance in several different configura-
tions varying the workload intensity and the number of WebLogic servers available.
The model was extremely accurate in predicting transaction throughput and server
utilization, and less accurate in predicting transaction response time. The results
enable us to give answers to the questions we started with in Section 4.2.1. Depend-
ing on the service level agreements and the expected workload intensity, we can now
determine how many WebLogic servers we need in order to guarantee adequate per-
formance. We can also see for each configuration which component is mostly utilized
and thus could become a potential bottleneck (see Figure 4.5). In scenario 1, we saw
that with a single WebLogic server, the latter could easily become a bottleneck since
its utilization would be twice as high as that of the database server. The problem
was resolved by adding an extra WebLogic server. In scenarios 2 and 3, we saw
that with more than 3 WebLogic servers as we increase the load, the database CPU
utilization approaches 90%, while the WebLogic servers remain in all cases less than
50% utilized. This clearly indicates that, in this case, the database server is the
bottleneck.

4.3 Case Study 2: Modeling using QPNs

In this section, we build a QPN model of a deployment of SPECjAppServer2001’s
order entry application and then, as in the first case study, we show how the model

84 CHAPTER 4. PERFORMANCE MODELING CASE STUDIES

0 20 40 60 80 100

1AS / LOW

*1AS / LOW

2AS / LOW

3AS / MODERATE

*3AS / MODERATE

6AS / MODERATE

4AS / HEAVY

6AS / HEAVY

9AS / HEAVY

*9AS / HEAVY

DATABASE CPU
WEBLOGIC CPU * WITH LARGE ORDER LINES

Figure 4.5: Server utilization in different scenarios.

can be used to predict the system performance for the purpose of capacity planning.
We demonstrate the modeling power and expressiveness of QPN models and show
how they can be used to integrate hardware and software aspects of system behavior.
However, we also show that QPN models of realistic systems are too large to be
analyzable using currently available tools and techniques for QPN analysis. New
solution techniques and tools are needed which would enable models of realistic size
and complexity to be analyzed. Only this would make it possible to exploit QPN
models to their full potential.

4.3.1 Motivation

Imagine the following hypothetical scenario: A company is about to introduce an
online ordering service for its customers and chooses to implement the service using
a J2EE application. Assume that this application is the order entry application
of SPECjAppServer2001. Before putting the application into production, the com-
pany decides to conduct a capacity planning study in order to come up with an
adequate sizing and configuration of the deployment environment. We assume that
the company initially plans to deploy the application in the deployment environment
depicted in Figure 4.6. This environment uses a cluster of WebLogic servers (WLS)
as a container for the J2EE application and Oracle 9i as a database server (DBS)
for persistence. We assume that all machines in the WLS cluster are identical.

4.3. CASE STUDY 2: MODELING USING QUEUEING PETRI NETS 85

2UDFOH��L�'%6
/ R DG �%DODQ FHU

: / 6��

���

2 U D F O H � � L � � � �� �� � � ' D W D E D V H � 6 H U Y H U
���+ R V W LQ J �W K H�63 (& M $ S S 6HUY HU�'%
���� � � �* +] �$ 0 '�; 3 �& 3 8 � �� �* %�5 $ 0
���5 X Q Q LQ J �R Q �5 HG �+ DW �/ LQ X [�� � �

: H E / R J L F � 6 H U Y H U � � �� � & O X V W H U
���(DFK �Q R G H�HT X LS S HG �Z LW K �
���$ 0 '�; 3 �� � � � � �& 3 8 � �� �* %�5 $ 0
���5 X Q Q LQ J �R Q �6X 6(�/ LQ X [�� � �

/ $ 1

: / 6��

: / 6�1

, Q W H U Q H W& OLHQ W ��

& OLHQ W �.

& OLHQ W ��

���

Figure 4.6: Deployment environment for order entry application.

The company is interested in finding answers to the following questions:

1. What level of performance does the system provide under load?

2. Are there potential system bottlenecks? Does the system scale?

3. How many WebLogic servers would be needed to guarantee adequate perfor-
mance?

In addition, the company needs to find optimal values for the following config-
uration parameters:

1. Number of threads in WLS thread pools.

2. Number of JDBC connections in WLS database connection pools.

3. Number of shared server processes of the Oracle server instance.

We now build a QPN model of the system and show how it can be used to
address these questions.

86 CHAPTER 4. PERFORMANCE MODELING CASE STUDIES

4.3.2 Workload Characterization

As in the previous case study, we first characterize the workload of the system.
Since, this time only the order entry application is run, we have four request classes
corresponding to the four order entry transaction types: NewOrder (NO), Change-
Order (CO), OrderStatus (OS) and CustStatus (CS). The following resources are
used during their processing:

� The CPU of a WebLogic server (WLS-CPU).

� The Local Area Network (LAN).

� The CPUs of the database server (DBS-CPU).

� The disk subsystem of the database server (DBS-I/O).

Again, in order to determine the service demands at these resources, we con-
ducted a separate experiment for each of the four request classes. In each case,
we deployed the order entry application in a configuration with a single WebLogic
server and then injected requests of the respective class into the system. During
the experiment, we monitored the system resources and measured the time requests
spent at each resource during their processing. For the database server, we used
the Oracle 9i Intelligent Agent, which provides exhaustive information about CPU
consumption as well as I/O wait times. For the WebLogic server, we monitored the
CPU utilization using operating system tools and then used the Service Demand
Law to derive the CPU service demand. As to network service demands, we de-
cided to ignore them since all communications were taking place over a 100 MBit
LAN and communication times were negligible. Table 4.10 reports the service de-
mand measurements for the four request classes. In addition to hardware resources,
for each transaction, a WLS thread, a database connection and a database server
process are used during its processing.

Table 4.10: Workload mean service demands.

TX-Type WLS-CPU DBS-CPU DBS-I/O

NewOrder 70ms 53ms 12ms

ChangeOrder 26ms 16ms 6ms

OrderStatus 7ms 4ms 0ms

CustomerStatus 10ms 5ms 0ms

4.3. CASE STUDY 2: MODELING USING QUEUEING PETRI NETS 87

4.3.3 First Cut System Model

We are now ready to build a QPN model of the system. We start with a simple
model that does not utilize any hierarchical structures and is depicted in Figure 4.7.
For now we assume that there is a single WebLogic server in the WLS cluster.

:/6�&38 ' % 6�34 ' % 6�&38 ' % 6�, � 2

' % 6�3UR FH V V �3R R O

&O L H Q W

' $ 7 $ % $ 6(� 6(5 9 (5

W� W� W� W� W�

:/6�7 K UH D G �3R R O

' % �&R Q Q �3R R O[
[

[[[[[[[

�
 F

[

�
 F

�
 W �
 WWW W

SS S

FF F

UL

�
 S �
 S

UM

Figure 4.7: Flat QPN system model.

The following types of tokens (token colors) are used in the model:

Token ’ri’ represents a request sent by a client for execution of a transaction
of class i. For each request class a separate token color is used (e.g. ’r1’,
’r2’, ’r3’,...). Tokens of these colors can be contained only in places Client,
WLS-CPU, DBS-PQ, DBS-CPU and DBS-I/O.

Token ’t’ represents a WLS thread. Tokens of this color can be contained only in
place WLS-Thread-Pool.

Token ’p’ represents a DBS process. Tokens of this color can be contained only in
place DBS-Process-Pool.

Token ’c’ represents a JDBC connection to the DBS. Tokens of this color can be
contained only in place DB-Conn-Pool.

In the following we describe the places of the model:

88 CHAPTER 4. PERFORMANCE MODELING CASE STUDIES

Client Queueing place with IS scheduling strategy used to represent clients sending
requests to the system. The service time of this place corresponds to the
average client think time.

WLS-CPU Queueing place with PS scheduling strategy used to represent the CPU
of the WLS.

DBS-CPU Queueing place with PS scheduling strategy used to represent the CPU
of the DBS.

DBS-I/O Queueing place with FCFS scheduling strategy used to represent the
disk subsystem of the DBS.

WLS-Thread-Pool Ordinary place used to represent the thread pool of the WLS.
Each token in this place represents a WLS thread.

DB-Conn-Pool Ordinary place used to represent the JDBC connection pool of
the WLS. Tokens in this place represent JDBC connections to the DBS.

DBS-Process-Pool Ordinary place used to represent the process pool of the DBS.
Tokens in this place represent Oracle processes.

DBS-PQ Ordinary place used to hold incoming requests at the DBS while they
wait for a server process to be allocated to them.

We now take a look at the life-cycle of a client request in the system model.
Every request (modeled by a token of color ’ri’ for some i) is initially at the queue
of place Client where it waits for a user-specified think time. After the think time
elapses the request moves to the Client depository and waits for a WLS thread to be
allocated to it before its processing can start. Once a thread is allocated (modeled
by taking a token of color ’t’ from place WLS-Thread-Pool), the request moves to
the queue of place WLS-CPU, where it receives service from the CPU of WLS. It
then moves to the depository of the place and waits for a JDBC connection to be
allocated to it. The JDBC connection (modeled by token ’c’) is used to contact the
database and make any updates required by the respective transaction. A request
sent to the database server arrives at place DBS-PQ (DBS Process Queue) and waits
for a server process (modeled by token ’p’) to be allocated to it. Once this is done,
the request receives service first at the CPU and then at the disk subsystem of the
database server. This completes the processing of the request, which is then sent
back to place Client releasing the held DBS process, JDBC connection and WLS
thread. The following input parameters need to be supplied before the model can
be analyzed:

� Number of requests of each request class in the initial marking.

4.3. CASE STUDY 2: MODELING USING QUEUEING PETRI NETS 89

� Service times of request classes at the queues of places WLS-CPU, DBS-CPU
and DBS-I/O (as per Table 4.10). Service times are assumed to be exponen-
tially distributed.

� Average client think time (service time at the queue of place Client).

� Number of WLS threads (tokens ’t’), JDBC connections (tokens ’c’) and Or-
acle server processes (tokens ’p’) in the initial marking.

4.3.4 Hierarchical System Model

The model described above is a flat QPN model and its corresponding state space
grows exponentially with the number of requests in the system. This means that
only relatively small instances of the model (i.e. with relatively small number of
requests) are analytically tractable. We will now show how hierarchical structuring
can be exploited to alleviate the state space explosion problem and enable larger
models to be analyzed. The idea is to isolate the database server and model it
using a separate nested QPN. In order to do this we replace the database server
part of the original flat QPN with a single subnet place which we call ”DBS”. This
place represents the entire database server and is expanded into a low-level QPN
containing the original DBS queues of the flat model. Figures 4.8 and 4.9 show the
high-level and low-level QPN of the new system model. By specifying the model
in a hierarchical fashion we can now exploit structured analysis techniques, which
enables us to solve models with much higher number of requests.

:/6�&38 ' % 6

W� W� W�

' % �&R Q Q �3R R O

&O L H Q W

:/6�7 K UH D G �3R R O

W
W W

[[

F
F F

�
 W �
 W

[[[[

�
 F �
 F

UL
UM

Figure 4.8: Model’s high-level QPN.

90 CHAPTER 4. PERFORMANCE MODELING CASE STUDIES

'%6�34 '%6�& 38 '%6�, � 2

'%6�3U R F H V V �3R R O

W� W�

$ F W X D O � 3R SX O D W L R Q

, Q SX W 2 X W SX W

W L Q S X W WR X WS X W
[[[[

[

[
[

[

[

SS S

[

�
 S �
 S

Figure 4.9: Model’s low-level QPN.

4.3.5 Model Analysis and Validation

We now proceed to analyze several different instances of the model introduced in the
previous section and then validate them by comparing results from the analysis with
measured data. We start by taking a look at the mathematical laws and formulas
that we use in our analysis. Our presentation is based on the following notation:

D : Service demand of a queue, i.e. the amount of time required for a token (request)
to be served at the queue.

µ : Average service rate of a queue, i.e. the number of tokens (requests) served at
the queue per unit of time.

N : Average token population of a queue, place or depository, i.e. the average num-
ber of tokens (requests) in it.

U : Average utilization of a queue, place or depository, i.e. the probability that
there is a token (request) in it.

X : Average throughput of a queue, place or depository, i.e. the number of tokens
(requests) that leave it per unit of time. Note that, at steady state, the rate
at which tokens leave a queue/place/depository is equal to the rate at which
they enter it.

R : Average residence time of a token (request) at a queue, place or depository.

All models that we consider in this section are based on the hierarchical system
model presented in the previous section. We use the HiQPN-Tool [14] to solve the

4.3. CASE STUDY 2: MODELING USING QUEUEING PETRI NETS 91

models. Based on the solution of the model’s underlying Markov chain the HiQPN-
Tool reports the distribution of the number of tokens at each place in steady state.
For queueing places the latter is reported separately for the queue and for the
depository of the place. Using the distributions, one can easily derive the average
token population N (which is done automatically and reported by the tool) and the
utilization U of each queue in steady state. The following trivial relations hold:

N =

∞X
i=0

i.pi (4.2)

U = 1− p0 (4.3)

where pi is the probability that there are i tokens in the queue.
Note that since places Client, WLS-CPU, DBS-PQ, DBS-CPU and DBS-I/O

form a closed chain with respect to the flow of requests in the system, using the
”flow-in = flow-out” principle from Queueing Theory [166], we can conclude that
in steady state the throughput of requests through each of these places must be
the same. This applies also to the queues and depositories of the places, i.e. they
have the same throughput as the places themselves. Furthermore, this holds both
for total request throughput, as well as for throughput of particular request classes.
The following trivial relationship holds [109]:

µ =
1

D
(4.4)

Using this formula we can derive the service rates of the queues in the model for
the different request classes based on their service demands provided in Table 4.10.
Given that the service rates of all queues are load-independent, we can use the fol-
lowing relation (which follows from the Utilization Law) to derive the throughput X

of a queue in the case of a single request class:

X = U.µ (4.5)

In the case of multiple request classes we can derive the throughput of each
request class using Little’s Law. Recall that the latter relates the throughput X of
a queue with the average number of requests N in it and their average residence
time R. The relation is shown in Equation (4.6) below and can be applied both
with respect to all requests of the system as well as with respect to separate request
classes.

X =
N

R
(4.6)

We apply this formula to the Client queue for each request class in the system.
The average number N of requests of each class is reported by the tool. The residence

92 CHAPTER 4. PERFORMANCE MODELING CASE STUDIES

time of requests R is also known since the queue has IS scheduling strategy and
therefore the residence time of all requests is equal to the service time of the queue,
which is an input parameter to the model (the client think time). Substituting N

and R in Equation (4.6) we can calculate the throughput of each request class. Now
that we know how to find the throughput of requests in the system, we can derive
the residence time of requests at every place, queue or depository using the following
equation, which again follows directly from Little’s Law:

R =
N

X
(4.7)

We are now ready to start analyzing some concrete instances of the model.

Scenario 1: Single Request Class

We start with a simplified scenario in which we have a single request class, the
NewOrder transaction. Our goal is to analyze the behavior of the system with
respect to this transaction. Assume that we have 80 clients in the system with
average think time of 200ms and there are 60 WLS threads, 40 JDBC connections
and 30 DBS processes available. We use this data to parameterize the hierarchical
system model from Section 4.3.4. Table 4.11 summarizes the analysis results for
this scenario. It reports the calculated throughput and residence time of requests
at the most important queues and depositories. It also reports the average token
population of places WLS-Thread-Pool, DB-Conn-Pool and DBS-Process-Pool. We
have used subscripts ’Q’ and ’D’ to distinguish between queues and depositories of
places.

Table 4.11: Analysis results for scenario 1.

PLACE N U X R [ms]

ClientQ 2.85 0.94 14.28 200

ClientD 17.14 1.00 -//- 1200

WLS-CPUQ 56.67 1.00 -//- 3967

WLS-CPUD 0.00 0.00 -//- 0

DBS-PQ 0.00 0.00 -//- 0

DBS-CPUQ 3.11 0.75 -//- 218

DBS-I/OQ 0.20 0.17 -//- 14

WLS-Thread-Pool 0.00 0.00

DB-Conn-Pool 36.67 1.00

DBS-Process-Pool 26.67 1.00

4.3. CASE STUDY 2: MODELING USING QUEUEING PETRI NETS 93

The total end-to-end request response time (RTotal) is equal to the time needed
for a request to make a complete cycle through the queueing places of the system.
The latter can be calculated by summing up the residence times of requests at the
queues and depositories of all queueing places plus the residence time at the ordinary
place DBS-PQ.

RTotal = RClientD + RWLS−CPUQ +

+ RWLS−CPUD + RDBS−PQ +

+ RDBS−CPUQ + RDBS−I/OQ
(4.8)

Note that the above sum excludes the Client queue, since the time spent at
it corresponds to the client think time. It also excludes the depositories of places
DBS-CPU and DBS-I/O, because requests never wait at them. Table 4.12 compares
results obtained from the model analysis with results obtained from measurements
and shows the modeling error for the most important performance metrics. The
measurements were collected by running an experiment in which the specified work-
load was injected into the system over a period of 40 minutes. Measurements were
taken after the first 10 minutes, which the system needed to reach steady state.

Table 4.12: Modeling error for scenario 1.

METRIC Model Measured Error

WLS-CPU Utilization 100% 100% 0%

DBS-CPU Utilization 75% 65% 15%

NewOrder Throughput 14.28 13.43 6.3%

NewOrder Resp.Time 5399ms 5738ms 5.9%

Thread Queue Length 17.14 18 4.7%

As we can see from Table 4.11, requests spend 1200ms on average at the Client
depository waiting for a WLS thread to become available. On the other hand,
there are plenty of JDBC connections and DBS processes available and there is no
contention for these resources as indicated by the residence times of requests at
WLS-CPUD and DBS-PQ both of which are zero. Since, on average, there are only
3.31 requests served concurrently at the database server we can decrease the number
of available JDBC connections and DBS processes significantly without impacting
performance in a negative way. In fact, doing this could even improve the overall
performance since JDBC connections and DBS processes cost memory and reducing

94 CHAPTER 4. PERFORMANCE MODELING CASE STUDIES

them will increase the amount of memory available for the WebLogic server and
database server, respectively.

It would be interesting to see what would change if we decrease the number of
available WLS threads to 40. This would limit the number of requests processed
concurrently by the WebLogic server. Table 4.13 repeats the analysis for 40 WLS
threads.

Table 4.13: Analysis results for scenario 1 with 40 threads.

PLACE N U X R [ms]

ClientQ 2.85 0.94 14.28 200

ClientD 37.14 1.00 -//- 2601

WLS-CPUQ 36.67 1.00 -//- 2568

WLS-CPUD 0.00 0.00 -//- 0

DBS-PQ 0.00 0.00 -//- 0

DBS-CPUQ 3.11 0.75 -//- 218

DBS-I/OQ 0.20 0.17 -//- 14

WLS-Thread-Pool 0.00 0.00

DB-Conn-Pool 36.67 1.00

DBS-Process-Pool 26.67 1.00

As we can see, the change does not have any impact on the overall system
throughput, since in both cases the WebLogic server is saturated to its full capa-
city. However, one might at first be misled to believe that because of increased
contention for threads, the end-to-end request response time would also increase,
which according to the model as well as the measurements is not the case. This
is because reducing the level of concurrency in the WebLogic server results in re-
quests being served faster and this compensates the longer time spent queueing for
threads. In both cases the WebLogic server is completely utilized and the rest of
the system remains unaffected by the change. Table 4.14 shows the modeling error
with 40 threads. As we can see, in both cases the QPN model is quite accurate in
representing the system.

As demonstrated, QPNs enable us to integrate in the same model hardware and
software aspects of system behavior. Using queueing places we can easily model
hardware contention and scheduling strategies with the same flexibility as in tradi-
tional QNs. However, in addition to this, QPNs also empower us to represent some
further aspects of system behavior such as simultaneous resource possession, block-
ing and contention for software resources (threads, connections and processes). The

4.3. CASE STUDY 2: MODELING USING QUEUEING PETRI NETS 95

latter is not possible, at least at this level of accuracy, using conventional model-
ing paradigms such as QNs and Petri nets. Even though extensions of QNs, such
as Extended QNs, provide some limited support for modeling software contention,
they are way too restrictive and inaccurate to compare with the modeling power
demonstrated in the above examples.

Table 4.14: Modeling error for scenario 1 with 40 threads.

METRIC Model Measured Error

WLS-CPU Utilization 100% 100% 0%

DBS-CPU Utilization 75% 65% 15%

NewOrder Throughput 14.28 13.41 6.4%

NewOrder Resp.Time 5401ms 5742ms 5.9%

Thread Queue Length 37.14 40 7.1%

Scenario 2: Multiple Request Classes

We will now look at a scenario in which we have two classes of requests in the
system - NewOrder and ChangeOrder. We again use the hierarchical model from
Section 4.3.4 as a basis. However, this time we define two types of request tokens
(NewOrder and ChangeOrder) so that we can distinguish between the two request
classes. Trying to solve the resulting HQPN model for high values of the number
of NewOrder and ChangeOrder clients, we ran into state space explosion of the
underlying Markov chain. Therefore, we make some simplifications in order to come
up with a model that is analyzable. First of all, we assume that there are plenty
of JDBC connections and DBS server processes and drop places DB-Conn-Pool and
DBS-Process-Pool. In addition, we assume that there are only 20 clients in the
system (10 NewOrder and 10 ChangeOrder), the average think time is 1 second and
there are 10 WLS threads available. Tables 4.15 and 4.16 report the analysis results
and modeling error for this scenario. The modeling error for most performance
metrics remains under 10%.

Scenario 3: Multiple WebLogic servers

In this final scenario we generalize our initial setting to allow multiple WebLogic
servers to be used. We again use the hierarchical system model from Section 4.3.4
as a basis, but modify the HLQPN to include multiple WLS queueing places - one
per WebLogic server. The new HLQPN is depicted in Figure 4.10.

96 CHAPTER 4. PERFORMANCE MODELING CASE STUDIES

Table 4.15: Analysis results for scenario 2.

PLACE N U X R [ms]

WLS-Thread-Pool 6.68 0.99

Over All Request Classes

ClientQ 16.67 1.00 16.67 1000

ClientD 0.00 0.00 -//- 0

WLS-CPUQ 2.14 0.76 -//- 128

DBS-CPUQ 1.00 0.54 -//- 59

DBS-I/OQ 0.16 0.14 -//- 9

Over NewOrder Requests

ClientQ 7.45 1.00 7.45 1000

ClientD 0.00 0.00 -//- 0

WLS-CPUQ 1.64 0.70 -//- 220

DBS-CPUQ 0.79 0.46 -//- 107

DBS-I/OQ 0.10 0.06 -//- 14

Over ChangeOrder Requests

ClientQ 9.22 1.00 9.22 1000

ClientD 0.00 0.00 -//- 0

WLS-CPUQ 0.50 0.35 -//- 54

DBS-CPUQ 0.21 0.19 -//- 23

DBS-I/OQ 0.06 0.09 -//- 7

Table 4.16: Modeling error for scenario 2.

METRIC Model Measured Error

WLS-CPU Utilization 76% 77% 1.2%

DBS-CPU Utilization 54% 64% 15.6%

Avg.free WLS-Threads 6.68 7 4.5%

NewOrder Throughput 7.45 7.47 0.2%

NewOrder Resp. Time 341ms 318ms 7.2%

ChgOrder Throughput 9.22 9.15 0.7%

ChgOrder Resp. Time 84ms 104ms 19.2%

To simplify things we do not include WLS-Thread places for the WebLogic
servers in the new model. In fact, if we were to have WLS-Thread places for the

4.3. CASE STUDY 2: MODELING USING QUEUEING PETRI NETS 97

W � B �

W�

&OLHQW ' % 6

: / 6 � �

: / 6 � �

: / 6 � Q

: / 6 � � Q� ��

W � B �

W � B � Q� ��

W � B Q

W�B �

W�B �

W�B � Q� ��

W�B Q

[
[

[

[

[[

[[

[[

[[

[

[

[

[
[

[UL
UM

Figure 4.10: High-level QPN model with N WebLogic servers.

WebLogic servers, we would also need some way to distinguish between requests in
the DBS subnet originating from different WebLogic servers. This is because we
need to know at which WebLogic server to release a thread after completing service
at the DBS subnet. One way to implement this is using the notion of tags [15]
which are automatically added to tokens upon entry into the DBS subnet to keep
track of their origin. However, this functionality is currently not supported by the
HiQPN-Tool and therefore we do not include any WLS-Thread places in the model.
We assume that there are 30 NewOrder clients in the system and that there is no
contention for WLS threads, JDBC connections or Oracle processes. The client
think time is again 1 second. Tables 4.17 and 4.18 summarize the analysis results
for 2 and 3 WebLogic servers. As seen from the results, the modeling error remains
under 10% and the QPN models perform quite well as a performance prediction
tool.

4.3.6 Conclusions from the Analysis

We used the QPN model to predict the system performance for several different
workload and configuration scenarios. In addition to transaction throughput and
response times, we were able to predict the number of WLS threads, JDBC con-
nections and Oracle processes used on average during operation. In all cases, the

98 CHAPTER 4. PERFORMANCE MODELING CASE STUDIES

Table 4.17: Analysis results for scenario 3.

PLACE N U X R [ms]

For 2 WebLogic Servers

ClientQ 18.28 1.00 18.28 1000

WLS1-CPUQ 1.68 0.64 9.14 184

WLS2-CPUQ 1.68 0.64 9.14 184

DBS-CPUQ 8.07 0.96 18.28 441

DBS-I/OQ 0.27 0.21 -//- 15

For 3 WebLogic Servers

ClientQ 18.42 1.00 18.42 1000

WLS1-CPUQ 0.72 0.43 6.14 117

WLS2-CPUQ 0.72 0.43 6.14 117

WLS3-CPUQ 0.72 0.43 6.14 117

DBS-CPUQ 9.05 0.98 18.42 491

DBS-I/OQ 0.28 0.22 -//- 15

Table 4.18: Modeling error for scenario 3.

METRIC Model Measured Error

For 2 WebLogic Servers

WLS-CPU Utilization 64% 68% 6%

DBS-CPU Utilization 96% 91% 5%

NewOrder Throughput 18.28 17.56 4%

NewOrder Resp. Time 640ms 693ms 8%

For 3 WebLogic Servers

WLS-CPU Utilization 43% 44% 2%

DBS-CPU Utilization 98% 97% 1%

NewOrder Throughput 18.42 17.61 5%

NewOrder Resp. Time 623ms 673ms 7%

model predictions were very accurate and the modeling error did not exceed 20%.
However, unfortunately, it was not possible to provide exhaustive answers to the
questions asked in Section 4.3.1. Trying to analyze the QPN model for a realistic
customer population, we ran into the state space explosion problem and the tractable
scenarios had to be (artificially) simplified. Thus, using currently available analysis
techniques for QPNs, it was not possible to predict the system performance under

4.4. CONCLUDING REMARKS 99

realistic load conditions and analyze its scalability.

4.4 Concluding Remarks

In this chapter, we presented two practical performance modeling case studies which
demonstrated how conventional QN models and the relatively new QPN models can
be exploited for performance analysis of DCS. We modeled two realistic systems
and discussed the difficulties stemming from the limited model expressiveness, on
the one hand, and the lack of scalable analysis techniques, on the other hand.

Using QN models it was not possible to accurately model asynchronous process-
ing and software contention aspects. Moreover, the available analysis techniques
were not able to provide reliable response time results when considering large mod-
els with increased workload intensity.

We showed that QPN models hold a significant advantage over conventional
QN models, since they allow the integration of hardware and software aspects of
system behavior into the same model. However, we also showed that QPN models
of realistic systems are too large to be analyzable using currently available tools
and techniques for QPN analysis. The problem is that the latter are all based on
Markov chain analysis, which suffers the state space explosion problem and limits
the size of the models that can be solved. This is the reason why QPNs have hardly
been exploited in the past decade and very few, if any, practical applications have
been reported. Even though HQPNs and structured analysis techniques alleviate
the problem, they do not eliminate it. In the next chapter, we develop a new method
for analyzing QPN models that exploits discrete event simulation. The proposed
method circumvents the state space explosion problem and allows models of realistic
systems to be analyzed.

100 CHAPTER 4. PERFORMANCE MODELING CASE STUDIES

Chapter 5

Analysis of QPN Models by Simulation

Applying simulation to the modeling and performance

analysis of complex systems can be compared to using

the surgical scalpel, whereby ”in the right hand [it] can

accomplish tremendous good, but it must be used with

great care and by someone who knows what they are

doing”.

– R. E. Shannon, 1981

5.1 Introduction

The Queueing Petri Net (QPN) paradigm provides a number of benefits over con-
ventional modeling paradigms such as queueing networks and stochastic Petri nets.
Using QPNs one can integrate hardware and software aspects of system behavior
into the same model. As demonstrated in the previous chapter this lends itself very
well to modeling DCS. However, currently available tools and techniques for QPN
analysis suffer the state space explosion problem imposing a limit on the size of the
models that are tractable. In this chapter, we present SimQPN - a simulation tool
for QPNs developed as part of this thesis that provides an alternative approach to
analyze QPN models, circumventing the state space explosion problem. In doing
this, we propose a methodology for analyzing QPN models by means of discrete
event simulation. The methodology shows how to simulate QPN models and ana-
lyze the output data from simulation runs. We validate our approach by applying it
to study several different QPN models ranging from simple models to models of re-
alistic systems. We evaluate the quality of data provided by SimQPN by conducting

101

102 CHAPTER 5. ANALYSIS OF QPN MODELS BY SIMULATION

an exhaustive experimental analysis of the variation of point estimates and coverage
of confidence intervals reported.

An alternative approach to simulate QPN models would be to use a general pur-
pose simulation package. However, this approach has some disadvantages. First,
general purpose simulation packages do not provide means to represent QPN con-
structs directly. Instead, they require that simulation models are described using a
general purpose simulation language. Mapping a QPN model to a description in the
terms of a general purpose simulation language is a complex, time-consuming and
error-prone task. Moreover, not all simulation languages provide the expressiveness
needed to describe complex QPN models. Some simplifications might be required
that could lead to less accurate results. Another disadvantage is that general pur-
pose simulators are normally not as fast and efficient as specialized simulators, since
they are usually not optimized for any particular type of models. Being special-
ized for QPNs, SimQPN simulates QPN models directly and has been designed to
exploit the knowledge of the structure and behavior of QPNs to improve the effi-
ciency of the simulation. Therefore, SimQPN is expected to provide much better
performance than a general purpose simulator, both in terms of the speed of sim-
ulation and the quality of output data provided. Last but not least, SimQPN has
the advantage that it is extremely light-weight and being implemented in Java it is
platform independent.

This chapter is organized as follows: In Section 5.2, we present SimQPN - our
simulation tool for QPNs, and discuss its features, design and architecture. In
parallel to this, we discuss our methodology for simulating QPN models based on
which SimQPN was developed. We look at the methods for output data analy-
sis employed and discuss the specifics of their implementation. Following this, in
Section 5.3, we study several different QPN models using SimQPN and validate the
results with respect to correctness and accuracy. We evaluate the performance of
point and interval estimators implemented in SimQPN. Finally, in Section 5.4, we
present some concluding remarks.

5.2 SimQPN - Simulator for Queueing Petri Nets

In this section, we present SimQPN taking a detailed look at its features, design and
architecture. In parallel to this, we present our methodology for simulating QPN
models based on which SimQPN was developed. The methodology shows how to
simulate QPN models and analyze the output data from simulation runs. We look
at the methods for output data analysis employed and discuss the specifics of their
implementation.

5.2. SIMQPN - SIMULATOR FOR QUEUEING PETRI NETS 103

5.2.1 SimQPN Features

SimQPN is a discrete event simulation (DES) engine specialized for QPNs. It is im-
plemented 100% in Java to provide maximum portability and platform-independence.
It is extremely light-weight (less than 1 MB) and requires only an installed Java Run-
time Environment (JRE)1. SimQPN simulates QPNs using a sequential algorithm
based on the event-scheduling approach for simulation modeling.

In the first version of SimQPN, the most important features typically used in
QPN models have been implemented. As of the time of writing, QPN models with
the following restrictions are supported:

� Scheduling strategies for queues are limited to FCFS, PS and IS.

� The following service time distributions are supported for FCFS and IS queues:
Beta, BreitWigner, ChiSquare, Gamma, Hyperbolic, Exponential, Exponen-
tialPower, Logarithmic, Normal, StudentT, Uniform and VonMises. For PS
queues, currently only exponential service time distributions are supported,
which makes it easier to handle residual service times. For the next version of
SimQPN it is planned to relax this restriction.

� Empirical distributions are supported in the following way. The user is ex-
pected to provide a probability distribution function (PDF), specified as an
array of positive real numbers (histogram). A cumulative distribution func-
tion (CDF) is constructed from the PDF and inverted using a binary search for
the nearest bin boundary and a linear interpolation within the bin (resulting
in a constant density within each bin).

� Timed transitions are currently not supported. However, in most cases, a
timed transition can be approximated by a serial network consisting of an
immediate transition, a queueing place and a second immediate transition.

� Since in practice immediate queueing places are very rarely used, they have
been left out from the first version of SimQPN.

5.2.2 Design and Architecture

SimQPN has an object-oriented architecture. Every element (for e.g. place, transi-
tion or token) of the simulated QPN is internally represented as object. Communi-
cation between objects is mostly implemented through method calls, with exception
of some cases, where object data is accessed directly (bypassing accessor meth-
ods) to provide better performance. Although the latter is a deviation from the
object-oriented paradigm, we have made this compromise because it speeds up the

1JRE version 1.1 or higher is required.

104 CHAPTER 5. ANALYSIS OF QPN MODELS BY SIMULATION

simulation significantly. Figure 5.1 shows the major types of objects (classes) used in
SimQPN and the relationships among them. At the top level is the Simulator class,
which contains the main simulation routine. The PlaceStats and QueueStats objects
are used to manage statistics gathered during the simulation. The AggregateStats
object is used to manage statistics gathered from multiple simulation runs.

1RGH

3 O D F H7 U D Q V L W L RQ

4 X HX HL Q J 3 O D F H

6 W D W V

3 O D F H6 W D W V

4 X HX H6 W D W V

$ J J U HJ D W H6 W D W V

(Y HQ W

7 RN HQ

6 L P X O D W RU

X V HV
X V HV

X V HV
X V HV

X V HV

X V HV

X V HV

X V HV

Figure 5.1: SimQPN’s object model.

Figure 5.2 outlines the main simulation routine which drives each simulation
run. As already mentioned, SimQPN’s internal simulation procedure is based on
the event-scheduling approach [66, 92]. To explain what is understood by event here,
we need to look at the way the simulated QPN transitions from one state to another
with respect to time. Since only immediate transitions are supported, the only place
in the QPN where time is involved is inside the queues of queueing places. Tokens
arriving at the queues wait until there is a free server available and are then served.
A token’s service time distribution determines how long its service continues. After
a token has been served it is moved to the depository of the queueing place, which
may enable some transitions and trigger their firing. This leads to a change in the
marking of the QPN. Once all enabled transitions have fired, the next change of the
marking will occur after another service completion at some queue. In this sense,
it is the completion of service that initiates each change of the marking. Therefore,
we define event to be a completion of a token’s service at a queue.

For FCFS queues, a token’s service completion event is scheduled (added to the
event list) as soon as there is a free server available to serve the token. For IS
queues, a token’s service completion event is scheduled immediately upon arrival of
the token at the queue. Finally, for PS queues in contrast to FCFS and IS queues,

5.2. SIMQPN - SIMULATOR FOR QUEUEING PETRI NETS 105

,QLWLDOL]H

$ U H� WK HU H� HQDE OHG
WU DQV LWLR QV "

6 HOHF W� WU DQV LWLR Q� WR � I LU H
E DV HG � R Q� Z HLJ K WV

) LU H� V HOHF WHG � WU DQV LWLR Q

& K HF N � I R U � QHZ O\
HQDE OHG � G LV DE OHG

WU DQV LWLR QV

6 F K HG X OH� V HU Y LF H
F R P S OHWLR Q� HY HQWV � DW

3 6 � T X HX HV

3 U R F HV V � QH[W� HY HQW� R Q
HY HQW� OLV W� � DG Y DQF LQJ

V LP X ODWLR Q� WLP H

& K HF N � I R U � QHZ O\
HQDE OHG � WU DQV LWLR QV

,V � V WR S S LQJ
F U LWHU LR Q
I X OI LOOHG "

(QG

6 X P P DU L]H� F R OOHF WHG
G DWD

% HJ LQ

< HV

1 R

< HV

1 R

Figure 5.2: SimQPN’s main simulation routine.

service completion events are only scheduled after all enabled transitions have fired.
This is because service rates at PS queues depend on the token population which
may change when transitions fire. By deferring the scheduling of service completion
events until after all enabled transitions have fired it is avoided to have to reschedule
the events after each change in the token population as transitions fire. Thus, the
knowledge of the behavior of the simulated QPN is exploited to save CPU time and
improve the efficiency of the simulation. A scheduled service completion event at a
PS queue might still need to be rescheduled, however, only in the case where before

106 CHAPTER 5. ANALYSIS OF QPN MODELS BY SIMULATION

the time has come for it to be executed, events in other queues cause new transitions
to be enabled and their firing triggers a change in the queue’s token population.
If this happens the next service completion event of the PS queue is rescheduled
according to its new token population. Elapsed service times can be safely ignored
since PS queues are assumed to have exponentially distributed service times. The
next version of SimQPN is planned to also deal with the more complicated case of
PS queues with non-exponential service time distributions.

Another way in which SimQPN exploits the knowledge of the structure and
behavior of QPNs to improve the efficiency of the simulation is by using an optimized
algorithm for keeping track of the enabling status of transitions. Generally, Petri net
simulators need to check for enabled transitions after each change in the marking
caused by a transition firing. The exact way they do this is one of the major factors
determining the efficiency of the simulation [57]. In [118], it is shown how the locality
principle of colored Petri nets can be exploited to minimize the overhead of checking
for enabled transitions. The locality principle states that an occurring transition will
only affect the marking on immediate neighbor places and hence the enabling status
of a limited set of neighbor transitions. SimQPN exploits an adaptation of this
principle to QPNs, taking into account that tokens deposited into queueing places
do not become available for output transitions immediately upon arrival and hence
cannot affect the enabling status of the latter. Since checking the enabling status of
a transition is a computationally expensive operation, our goal is to make sure that
this is done as seldom as possible, i.e. only when there is a real possibility that the
status has changed. This translates into the following two cases when the enabling
status of a transition needs to be checked:

1. After a change in the token population of an ordinary input place of the tran-
sition, as a result of firing of the same or another transition. Three subcases
are distinguished:

(a) Some tokens were added. In this case, it is checked for newly enabled
modes by considering all modes that are currently marked as disabled
and that require tokens of the respective colors added.

(b) Some tokens were removed. In this case, it is checked for newly disabled
modes by considering all modes that are currently marked as enabled and
that require tokens of the respective colors removed.

(c) Some tokens were added and at the same time others were removed. In
this case, both of the checks above are performed.

2. After a service completion event at a queueing input place of the transition.
The service completion event results in adding a token to the depository of the
queueing place. Therefore, in this case, it is only checked for newly enabled

5.2. SIMQPN - SIMULATOR FOR QUEUEING PETRI NETS 107

modes by considering all modes that are currently marked as disabled and
that require tokens of the respective color added.

SimQPN maintains a global list of currently enabled transitions and for each transi-
tion a list of currently enabled modes. The latter are initialized at the beginning of
the simulation by checking the enabling status of all transitions. As the simulation
progresses, a transition’s enabling status is checked only in the above mentioned
cases. This reduces CPU costs and speeds up the simulation substantially.

5.2.3 Random Number Generation

SimQPN utilizes the Colt open source library for high performance scientific and
technical computing in Java, developed at CERN [38]. In SimQPN, Colt is primarily
used for random number generation and, in particular, its implementation of the
Mersenne Twister random number generator is employed [104]. The latter is one of
the strongest uniform pseudo-random number generators known and passes many
stringent statistical tests, including the diehard test of G. Marsaglia [102] and the
load test of P. Hellekalek and S. Wegenkittl [62, 95, 169]. It has an astronomically
large period of 219937−1(= 106001) and 623-dimensional equidistribution with up to
32-bit accuracy. By default, SimQPN uses Mersenne Twister for all of its random
number streams. However, for situations where one is willing to trade off quality
for performance, it offers an alternative medium quality uniform pseudo-random
number generator that is a bit faster. In addition to Mersenne Twister, SimQPN
also employs Colt’s random seed generator to ensure that there is no correlation
between seeds used to initialize random number generators.

5.2.4 Output Data Analysis

Modes of Data Collection

SimQPN offers the ability to configure what data exactly to collect during the
simulation and what statistics to provide at the end of the run. This can be specified
for each place (ordinary or queueing) of the QPN. The user can choose one of four
modes of data collection. The higher the mode, the more information is collected
and the more statistics are provided. Since collecting data costs CPU time, the more
data is collected, the slower the simulation would run. Therefore, by configuring
data collection modes, the user can make sure that no time is wasted collecting
unnecessary data and, in this way, speed up the simulation.

Mode 1 considers only token throughput data, i.e. for each queue, place or
depository the token arrival and departure rates are estimated for each color.

Mode 2 adds token population and utilization data, i.e. for each queue, place
and depository the following data is provided on a per-color basis:

108 CHAPTER 5. ANALYSIS OF QPN MODELS BY SIMULATION

� Minimum/maximum number of tokens.

� Average number of tokens.

� Mean color utilization, i.e. the fraction of time that there is a token of the
respective color inside the queue/place/depository.

For queues, in addition to the above, the overall queue utilization is reported
(i.e. the fraction of time that there is a token of any color inside the queue).

Mode 3 adds residence time data, i.e. for each queue, place and depository the
following additional data is provided on a per-color basis:

� Minimum/maximum observed token residence time.

� Mean and standard deviation of observed token residence times.

� Estimated steady state mean token residence time.

� Confidence interval (c.i.) for the steady state mean token residence time at a
user-specified significance level.

Mode 4 provides all of the above and additionally dumps observed token resi-
dence times to files.

Steady State Analysis

SimQPN supports two basic methods for estimation of the steady state mean resi-
dence times of tokens inside the queues, places and depositories of the QPN. These
are the well-known method of independent replications (in its variant referred to
as replication/deletion approach) and the classical method of non-overlapping batch
means (NOBM). We refer the reader to [1, 2, 8, 92, 132, 134] for an introduction
to these methods. Both of them can be used to provide point and interval esti-
mates of the steady state mean token residence time. In cases where one wants
to apply a more sophisticated technique for steady state analysis (for example
ASAP [149, 150, 151, 152]), SimQPN can be configured to output observed to-
ken residence times to files (mode 4), which can then be used as input to external
analysis tools (for example [52]).

Both the replication/deletion approach and the method of NOBM have differ-
ent variants [119, 132, 152]. Below we discuss some details on the way they were
implemented in SimQPN.

5.2. SIMQPN - SIMULATOR FOR QUEUEING PETRI NETS 109

Elimination of Initialization Bias Since we are interested in estimating steady
state parameters of the simulated queueing process, we need to somehow address
the well-known problem of the initial transient [131, 132, 172]. Both of the above
mentioned methods require that the analyzed sequence of observations is stationary,
and therefore when using them, the effects of transient system behavior need to
be accounted for. A number of different approaches have been proposed in the
literature for dealing with this problem, including heuristic, statistical, graphical
and hybrid approaches. For a survey of methods refer to [97, 132, 138]. Most
methods attempt to estimate the length of the warm-up period and then discard
all data collected during it to eliminate initialization bias. One of the simplest and
most popular methods is the graphical method of Welch [61, 173], which has met
some success [1, 97]. The latter is appealing because it is simple, practical and does
not make any assumptions about the type of system modeled. For these reasons,
we decided as a start to implement the method of Welch in SimQPN. We have
followed the rules in [92] for choosing the number of replications, their length and
the window size. SimQPN allows the user to configure the first two parameters
and then automatically plots the moving averages for different window sizes. Thus,
simulation experiments with SimQPN usually comprise two stages: stage 1 during
which the length of the initial transient is determined, and stage 2 during which the
steady state behavior of the system is simulated and analyzed. Again, if the user
prefers to use another method for elimination of the initialization bias, this can be
achieved by dumping collected data to files (mode 4) and feeding it into respective
analysis tools.

Replication/Deletion Approach We briefly discuss the way the replication/dele-
tion approach is implemented in SimQPN. Suppose that we want to estimate the
steady state mean residence time ν of tokens of given color at a given place, queue
or depository. As discussed in [2], in the replication/deletion approach multiple
replications of the simulation are made and the average residence times observed
are used to derive steady state estimates. Specifically, suppose that n replications
of the simulation are made, each of them generating m residence time observa-
tions Yi1, Yi2, . . . , Yim. We delete l observations from the beginning of each set to
eliminate the initialization bias. The number of observations deleted is determined
through the method of Welch as discussed in the previous paragraph. Let Xi be
given by

Xi =

Pm
j=l+1 Yij

m− l
i = 1, 2, . . . , n (5.1)

110 CHAPTER 5. ANALYSIS OF QPN MODELS BY SIMULATION

and

X(n) =

Pn
i=1Xi

n
(5.2)

S2(n) =

Pn
i=1[Xi −X(n)]2

n− 1
(5.3)

Then theXi’s are independent and identically distributed (IID) random variables
with E(Xi) ≈ ν and X(n) is an approximately unbiased point estimator for ν.
According to the central limit theorem [22, 166], if m is large, the Xi’s are going to
be approximately normally distributed and therefore the random variable

tn =
[X(n)− ν]q

S2(n)
n

will have t distribution with (n− 1) degrees of freedom (df) [65] and an approx-
imate 100(1− α) percent confidence interval for ν is then given by

X(n)± tn−1,1−α/2

r
S2(n)

n
(5.4)

where tn−1,1−α/2 is the upper (1− α/2) critical point for the t distribution with
(n− 1) df [8, 132, 166].

Method of Non-Overlapping Batch Means Unlike the replication/deletion
approach, the method of NOBM seeks to obtain independent observations from
a single simulation run rather than from multiple replications. Thus, it has the
advantage that it must go through the warm-up period only once and is therefore
less sensitive to bias from the initial transient. Suppose that we make a simulation
run of length m and then divide the resulting observations Y1, Y2, . . . , Ym into n
batches of length q. Assume that m = n ∗ q and let Xi be the sample (or batch)
mean of the q observations in the ith batch, i.e.

Xi(q) =

P(i−1)q+q

j=(i−1)q+1 Yj

q
i = 1, 2, . . . , n (5.5)

The mean ν is estimated by X(n) = (
Pn

i=1Xi(q))/n and it can be shown (see
for example [8, 92]) that an approximate 100(1− α) percent confidence interval for
ν is given by substituting Xi(q) for Xi in Equations (5.2), (5.3) and (5.4) above.

SimQPN offers two different stopping criteria for determining how long the sim-
ulation should continue. In the first one, the simulation continues until the QPN

5.2. SIMQPN - SIMULATOR FOR QUEUEING PETRI NETS 111

has been simulated for a user-specified amount of model time (fixed-sample-size pro-
cedure). In the second one, the length of the simulation is increased sequentially
from one checkpoint to the next, until enough data has been collected to provide es-
timates of residence times with user-specified precision (sequential procedure). The
precision is defined as an upper bound for the confidence interval half length. It
can be specified either as an absolute value (absolute precision) or as a percentage
relative to the mean residence time (relative precision). The sequential approach for
controlling the length of the simulation is usually regarded as the only efficient way
for ensuring representativeness of the samples of collected observations [61, 91, 133].
Therefore, hereafter we assume that the sequential procedure is used.

The main problem with the method of NOBM is to select the batch size q, such
that successive batch means are approximately uncorrelated. Different approaches
have been proposed in the literature to address this problem (see for example [1,
43, 132]). In SimQPN, we start with a user-configurable initial batch size (by
default 200) and then increase it sequentially until the correlation between successive
batch means becomes negligible. Thus, the simulation goes through two stages: the
first sequentially testing for an acceptable batch size and the second sequentially
testing for adequate precision of the residence time estimates (see Figure 5.3). The
parameters n and p, specifying how often checkpoints are made, can be configured
by the user.

We use the jackknife estimators [115, 132] of the autocorrelation coefficients to
measure the correlation between batch means. A jackknife estimator Ĵ(k, q) of the
autocorrelation coefficient of lag k for the sequence of batch means
X1(q), X2(q), . . . , Xn(q) of size q is calculated as follows:

Ĵ(k, q) = 2r̂(k, q)− r̂′(k, q) + r̂′′(k, q)

2
(5.6)

where r̂(k, q) is the ordinary estimator of the autocorrelation coefficient of lag k,
calculated from the formula [132]:

r̂(k, q) =
R̂(k, q)

R̂(0, q)
(5.7)

where

R̂(k, q) =
1

n− k

nX
i=k+1

[Xi(q)−X(n)][Xi−k(q)−X(n)] (5.8)

and r̂′(k, q) and r̂′′(k, q) are calculated like r̂(k, q), except that r̂(k, q) is the
estimator over all n batch means, whereas r̂′(k, q) and r̂′′(k, q) are estimators over
the first and the second half of the analyzed sequence of n batch means, respectively.

112 CHAPTER 5. ANALYSIS OF QPN MODELS BY SIMULATION

&ROOHFW�¶Q¶ E D WFK HV �RI
RE V HU Y D WL RQ V

$ U H�E D WFK �P HD Q V
D S S U R[L P D WHO\
X Q FRU U HOD WHG "

, Q FU HD V H�E D WFK �V L] H

&RQ WL Q X H�FROOHFWL Q J �G D WD
X Q WL O�HQ RX J K �RE V HU Y D WL RQ V
I RU �¶Q¶ E D WFK HV �D Y D L OD E OH

, V �U HT X L U HG
S U HFL V L RQ
U HD FK HG "

(Q G

5 HS RU W�U HV X OWV

% HJ L Q

< HV

1 R

< HV

7 HV W�V HT X HQ FH�RI �E D WFK
P HD Q V �I RU �FRU U HOD WL RQ

&RP S X WH�V WHD G \ � V WD WH
HV WL P D WHV �D Q G �WHV W�WK HL U

S U HFL V L RQ

&RQ WL Q X H�FROOHFWL Q J �G D WD �X Q WL O
¶S ¶�Q HZ �E D WFK HV �D U H�D Y D L OD E OH

1 R

Figure 5.3: SimQPN’s batch means procedure.

We use the algorithm proposed in [132] to determine when to consider the se-
quence of batch means as approximately uncorrelated: a given batch size is accepted
to yield approximately uncorrelated batch means if all autocorrelation coefficients
of lag k (k = 1, 2, . . . , L; where L = 0.1 ∗ n) are statistically negligible at a given
significance level βk, 0 < βk < 1. To get an acceptable overall significance level β
we assume that

β <

LX
k=1

βk (5.9)

5.3. SIMQPN VALIDATION AND PERFORMANCE ANALYSIS 113

As recommended in [132], in order to get reasonable estimators of the autocor-
relation coefficients, we apply the above batch means correlation test only after at
least 100 batch means have been recorded (i.e. n >= 100). In fact, by default n is
set to 200 in SimQPN. Also to ensure approximate normality of the batch means,
the initial batch size (i.e. the minimal batch size) is configured to 200.

For FCFS queues, SimQPN also supports indirect estimation of the steady state
token residence times according to the variance-reduction technique in [36]. The
latter suggests, first estimating delay times in the waiting areas of the queues, and
then adding them to the mean service times to obtain indirect estimates of the total
residence times with reduced variance. SimQPN allows the user to configure for
each FCFS queue whether direct or indirect estimates should be used (the default
is indirect).

5.3 SimQPN Validation and Performance Analysis

In this section, we analyze several different QPN models by means of SimQPN,
and then validate the results with respect to correctness and accuracy. We follow
the guidelines in [5, 8, 78, 91, 92, 143, 144] and consider models of different size
and complexity, in each case, examining the simulation output under a variety of
settings for the input parameters. We compare the simulation results with results
obtained using other methods, i.e. analytical techniques, approximation techniques
or measurements on the system modeled. In some cases, we consider QPN mod-
els that may be mapped to equivalent QN models which are analytically tractable.
The latter enables us to easily validate simulation results by comparing them against
results obtained using analytical techniques applied to the equivalent QN models.
This allows us to consider large QPN models that are not analyzable using cur-
rently available QPN analysis techniques, but whose equivalent QN models may be
analyzed using conventional techniques.

In addition to validating results for reasonableness, we also study the perfor-
mance of the point and interval estimators implemented in SimQPN. We conduct
an exhaustive experimental analysis of the variation of point estimates and coverage
of confidence intervals. Before we begin with the presentation of the results, we
briefly discuss the method of coverage analysis we employ.

5.3.1 Method of Coverage Analysis Used

Let us consider multiple independent replications (runs) of a simulation experiment.
Coverage of confidence interval is defined as the probability c that the confidence
interval (obtained from a replication) covers the true value ν of the respective pa-
rameter being estimated. As usual, if n replications of the experiment have been

114 CHAPTER 5. ANALYSIS OF QPN MODELS BY SIMULATION

executed, the coverage c can be estimated by the proportion:

ĉ =
s

n
(5.10)

where s is the number of replications in which the reported confidence interval
contains the true value. The accuracy with which ĉ estimates c is usually assessed
by the following confidence interval based on the normal distribution:

ĉ− z1−α/2

r
ĉ(1− ĉ)

n
, ĉ+ z1−α/2

r
ĉ(1− ĉ)

n

!
(5.11)

where z1−α/2 is the (1−α/2) quantile of the standard normal distribution. This
is based on the fact that, while the number of confidence intervals containing the
true value ν has a binomial distribution with mean nc, (ĉ − c)

p
ĉ(1− ĉ)/n tends

to the standard normal distribution as n→∞ [65, 133].
In [106, 133] it is argued that, unless certain rules are adhered to, the above

point and interval estimators for coverage cannot be relied upon to produce reliable
results. It is advocated to conduct coverage analysis sequentially and several rules
are formulated for obtaining reliable and statistically accurate results. In [93, 94] the
rules are revised and extended, proposing to use an interval estimator of coverage
based on the F distribution. We now briefly summarize these rules indicating how
they were implemented in our coverage analysis for SimQPN:

� Rule 1: Coverage should be analyzed sequentially, i.e. analysis of coverage
should be stopped when the absolute precision of the estimated coverage sat-
isfies a specified level which is sufficiently small. In our case, we stopped when
reaching absolute precision of +/-0.05.

� Rule 2: An estimate of coverage has to be calculated from a representative
sample of data, so the coverage analysis can start only after a minimum number
of ”bad”confidence intervals have been recorded. In our case, we required at
least 200 ”bad”confidence intervals (as suggested in [93]) to be recorded before
sequential analysis commences.

� Rule 3: Results from simulation runs that are clearly too short should not be
taken into account. To implement this rule, after recording 200 ”bad”confidence
intervals, we calculated the average run length and then discarded all runs
shorter by more than one standard deviation than the average run length. As
justified in [106, 133], this filters out statistical ”noise”and removes significant
bias in the results.

� Rule 4: An interval estimator which is based on the F distribution of coverage
should be used to ensure that the sequential analysis of coverage produces

5.3. SIMQPN VALIDATION AND PERFORMANCE ANALYSIS 115

realistic estimates: A 100(1 − α) lower limit ĉl and upper limit ĉu of the
confidence interval for the true coverage are given by:

ĉl = ĉ−∆1 =
nĉ

nĉ+ (n− nĉ+ 1)f1−α/2(r1, r2)

ĉu = ĉ+ ∆2 =
(nĉ+ 1)f1−α/2(r3, r4)

(n− nĉ) + (nĉ+ 1)f1−α/2(r3, r4)
(5.12)

where f1−α/2(r1, r2) and f1−α/2(r3, r4) are the (1−α/2) quantiles of the F dis-
tribution with (r1, r2) and (r3, r4) degrees of freedom,
r1 = 2 ∗ (n− nĉ+ 1), r2 = 2 ∗ nĉ, r3 = 2 ∗ (nĉ+ 1) and
r4 = 2 ∗ (n− nĉ) [93].

In our analysis of coverage, we consider both the interval estimator in (5.12)
based on the F distribution, as well as the traditional interval estimator (5.11)
based on the normal distribution.

5.3.2 Model of SPECjAppServer2001’s Order Entry Application

In Chapter 4 (Section 4.3), we built a QPN model of SPECjAppServer2001’s order
entry application, analyzed it using analytical techniques and validated it against
measurements on the real system. We now consider the same model again, but
this time we analyze it through simulation using SimQPN. We then compare results
obtained from the simulation with the analytical solution presented in Chapter 4.
The model we consider is depicted in Figure 5.4. For a detailed description of places
and tokens of the model refer to Section 4.3 of Chapter 4.

The following input parameters need to be supplied before the model can be
analyzed:

� Number of requests (i.e. clients) of each request class in the initial marking.

� Service times of request classes at the queues of places WLS-CPU, DBS-CPU
and DBS-I/O.

� Average client think time (service time at the queue of place Client).

� Number of WLS threads (tokens ’t’), JDBC connections (tokens ’c’) and Or-
acle server processes (tokens ’p’) in the initial marking.

In Chapter 4, we studied 3 different scenarios (instances of the model) varying
the above parameters. Here we only consider the first one, which is the one with the

116 CHAPTER 5. ANALYSIS OF QPN MODELS BY SIMULATION

:/6�&38 ' % 6�34 ' % 6�&38 ' % 6�, � 2

' % 6�3UR FH V V �3R R O

&O L H Q W

' $ 7 $ % $ 6(� 6(5 9 (5

W� W� W� W� W�

:/6�7 K UH D G �3R R O

' % �&R Q Q �3R R O[
[

[[[[[[[

�
 F

[

�
 F

�
 W �
 WWW W

SS S

FF F

UL

�
 S �
 S

UM

Figure 5.4: QPN model of SPECjAppServer2001’s order entry application.

highest number of tokens. The conclusions we draw apply equally well to the other
two scenarios. We assume that there are 80 NewOrder clients in the system with
average think time of 200ms and there are 60 WLS threads, 40 JDBC connections
and 30 DBS processes available.

Tables 5.1 and 5.2 report the results from simulating the model using SimQPN.
The method of batch means was used for steady state analysis and the simulation
was stopped as soon as the half widths of all 90% confidence intervals for residence
times dropped below 5% of the respective point estimates (relative precision stopping
criterion). The length of the warm-up period (determined through the method of
Welch) was 6 ∗ 106ms (model time) and the total run duration was 9 seconds (wall
clock time) on a machine with a 2 GHz CPU. The results are compared with the
exact results from the analytical solution in Chapter 4, obtained using the structured
SOR analysis method. For each queue and depository, the estimated steady state
token population (N), utilization (U), throughput (X) and residence time (R) are
reported. For residence times, in addition, 90% confidence intervals are provided.
We have used subscripts ’Q’ and ’D’ to distinguish between queues and depositories
of queueing places.

Tables 5.1 and 5.2 show the results from a single simulation run. However, as in
any simulation, results vary from run to run. To measure this variation and evaluate

5.3. SIMQPN VALIDATION AND PERFORMANCE ANALYSIS 117

the confidence interval coverage, we made multiple replications of the above simu-
lation run as described in Section 5.3.1. We stopped as soon as enough data was
available in order to provide, for each confidence interval in the simulation results,
a 95% confidence interval for the true coverage with absolute half-width less than
0.05. Tables 5.3 and 5.4 present the results from our analysis. We skip the results
for throughput and utilization, since the analysis showed that their variation was
negligible. As discussed in Section 5.3.1, we include two interval estimates of the
true coverage (95% confidence intervals) - the first one based on the normal distri-
bution and the second one based on the F distribution. As expected, the confidence
intervals based on the F distribution are slightly wider (i.e. more conservative) than

Table 5.1: Token population (N) and utilization (U) results for the QPN model of
SPECjAppServer2001’s order entry application from a single simulation run.

N U

PLACE Anal. Sim. Anal. Sim.

ClientQ 2.857 2.864 0.942 0.943

ClientD 17.143 17.136 1.000 1.000

WLS-CPUQ 56.676 56.658 1.000 1.000

DBS-CPUQ 3.116 3.134 0.757 0.761

DBS-I/OQ 0.207 0.208 0.171 0.172

WLS-Thread-Pool 0.000 0.000 0.000 0.000

DB-Conn-Pool 36.676 36.658 1.000 1.000

DBS-Process-Pool 26.676 26.658 1.000 1.000

Table 5.2: Throughput (X) and residence time (R) results for the QPN model of
SPECjAppServer2001’s order entry application from a single simulation run.

X [requests/sec] R [ms]

PLACE Anal. Sim. Anal. Sim. (90% c.i.)

ClientQ 14.286 14.309 200.00 200.11 (+/- 00.84)

ClientD 14.286 14.309 1199.97 1197.46 (+/- 05.73)

WLS-CPUQ 14.286 14.309 3967.25 3958.87 (+/- 19.04)

DBS-CPUQ 14.286 14.309 218.15 218.97 (+/- 05.25)

DBS-I/OQ 14.286 14.309 14.48 14.51 (+/- 00.05)

118 CHAPTER 5. ANALYSIS OF QPN MODELS BY SIMULATION

the traditional ones based on the normal distribution. Repeating the above analysis
for different variations of the model (with modified input parameters) led to similar
results in terms of the precision of the point and interval estimates.

5.3.3 Product-form Queueing Network

The next model we consider is a QN model taken from the examples shipped with
the PEPSY-QNS tool (Performance Evaluation and Prediction SYstem for Queue-
ing NetworkS) [25]. The example we consider is called e bcmp2 and is shown in
Figure 5.5. It is a closed product-form QN with two request classes. We first
translate the QN into a QPN and then analyze the latter through simulation using
SimQPN. We compare results obtained from the simulation with the analytical so-
lution provided by PEPSY. Finally, as in the previous case, we analyze the variation
of point estimates and the confidence interval coverage.

Table 5.3: Experimental analysis of residence time variation and coverage of 90%
conf. intervals for the QPN model of SPECjAppServer2001’s order entry application
from 1430 runs.

Variation Coverage Point/Interval (95% c.i.) Estimates
PLACE Mean St.Dev. Pt.Est. Int.Est.(N-dist.) Int.Est.(F-dist.)
ClientQ 199.99 0.44 0.901 0.901 +/- 0.015 [0.885, 0.916]
ClientD 1199.98 3.18 0.902 0.902 +/- 0.015 [0.886, 0.917]
WLS-CPUQ 3967.14 11.30 0.896 0.896 +/- 0.016 [0.879, 0.912]
DBS-CPUQ 218.08 3.50 0.889 0.889 +/- 0.017 [0.871, 0.906]
DBS-I/OQ 14.48 0.03 0.898 0.898 +/- 0.015 [0.881, 0.913]

Table 5.4: Experimental analysis of residence time variation and coverage of 95%
conf. intervals for the QPN model of SPECjAppServer2001’s order entry application
from 3820 runs.

Variation Coverage Point/Interval (95% c.i.) Estimates
PLACE Mean St.Dev. Pt.Est. Int.Est.(N-dist.) Int.Est.(F-dist.)
ClientQ 199.99 0.58 0.948 0.948 +/- 0.007 [0.941, 0.955]
ClientD 1200.04 4.10 0.947 0.947 +/- 0.007 [0.940, 0.954]
WLS-CPUQ 3967.53 14.67 0.939 0.939 +/- 0.007 [0.931, 0.947]
DBS-CPUQ 218.05 4.60 0.933 0.933 +/- 0.008 [0.925, 0.941]
DBS-I/OQ 14.48 0.03 0.945 0.945 +/- 0.007 [0.937, 0.952]

5.3. SIMQPN VALIDATION AND PERFORMANCE ANALYSIS 119

����

��� �

����

��� �

7HUPLQDOV
� � � 0 � � , 6 �

& 3 8
� � � 0 � � � 3 6 �

' LVN � �
� � � 0 � � �) &) 6 �

' LVN � �
� � � 0 � � �) &) 6 �

' LVN � �
� � � 0 � � �) &) 6 �

Figure 5.5: Product-form QN.

The mean service times of requests at the various queues of the model are given in
Table 5.5 (all times are in milliseconds). Service times are exponentially distributed.
There are 10 requests of class 1 and 12 of class 2. Mapping the QN to an equivalent
QPN is straightforward and the resulting QPN is shown in Figure 5.6. Basically,
every queue is mapped to a queueing place and request classes are mapped to token
colors. Connected queues in the QN have their respective queueing places connected
through transitions in the QPN.

Tables 5.6 and 5.7 show the results from simulating the product-form QN (more
precisely its equivalent QPN) using SimQPN. Again, the method of batch means
was used for steady state analysis and the simulation was stopped as soon as the
half widths of all 90% confidence intervals for residence times dropped below 5%
of the respective point estimates (relative precision stopping criterion). The length
of the warm-up period (determined through the method of Welch) was 16 ∗ 106ms
(model time) and the total run duration was 65 seconds (wall clock time) on a

Table 5.5: Mean service times of requests at the queues of the product-form QN.

Request Class CPU Disk 1 Disk 2 Disk 3 Terminals

Class 1 200 1000 500 20000 10000

Class 2 250 1000 500 20000 10000

120 CHAPTER 5. ANALYSIS OF QPN MODELS BY SIMULATION

W�

W�

W�

W�

W�

W�

W�

'LVN��

'LVN��

'LVN��

7 H U P LQ D O V & 3 8

W�

�� ��

�� ��

�� ��
�� ��

[

[

[

[

[

[

[

[

[

[
[

[

[[

[[

Figure 5.6: QPN equivalent to the product-form QN.

machine with a 2 GHz CPU. The results are compared with the exact results from
the analytical solution provided by PEPSY. For each queue, the estimated steady
state population (N), throughput (X) and residence time (R) are reported. For
residence times, in addition, 90% confidence intervals are provided.

As in the previous case, to evaluate the variation of point estimates and the

Table 5.6: Queue population (N), throughput (X) and residence time (R) results
for the product-form QN from a single simulation run.

N X [requests/sec] R [ms]
PLACE Anal. Sim. Anal. Sim. Anal. Sim. (90% c.i.)

Request Class 1
CPU 0.592 0.594 1.241 1.243 476.7 477.8 (+/- 001.9)
Disk 1 0.510 0.511 0.248 0.249 2055.0 2056.1 (+/- 012.1)
Disk 2 0.159 0.160 0.310 0.311 513.6 513.8 (+/- 000.3)
Disk 3 2.535 2.535 0.062 0.062 40857.0 40926.5 (+/- 435.3)
Terminals 6.204 6.200 0.620 0.621 10000.0 9985.4 (+/- 018.2)

Request Class 2
CPU 0.864 0.866 1.468 1.468 588.7 589.6 (+/- 002.4)
Disk 1 0.604 0.603 0.294 0.293 2056.0 2054.2 (+/- 012.5)
Disk 2 0.188 0.189 0.367 0.367 513.6 513.6 (+/- 000.3)
Disk 3 3.005 3.013 0.073 0.073 40941.0 40947.1 (+/- 417.3)
Terminals 7.339 7.330 0.734 0.734 10000.0 9989.2 (+/- 016.5)

5.3. SIMQPN VALIDATION AND PERFORMANCE ANALYSIS 121

confidence interval coverage, we made multiple replications of the above simulation
run and applied the coverage analysis method in Section 5.3.1. The stopping crite-
rion was the same as for the previous model. Tables 5.8 and 5.9 present the results
from our analysis. Repeating the evaluation for different variations of the model
led to similar results with no degradation in the precision of the point and interval
estimates. In Table 5.10, we present the results for one such variation, in which the
service times of requests at the ”Terminals”queue (i.e. the client think times) were
reduced from 10000ms to 5000ms, leading to overloading Disk 3. As expected, most
affected by this change were the residence times at Disk 3, which increased by over

Table 5.7: Utilization (U) results for the product-form QN from a single simulation
run.

U

PLACE Anal. Sim.

CPU 0.615 0.616

Disk 1 0.542 0.541

Disk 2 0.169 0.170

Disk 3 0.903 0.904

Terminals 1.000 1.000

Table 5.8: Experimental analysis of residence time variation and coverage of 90%
conf. intervals for the product-form QN from 2398 runs.

Variation Coverage Point/Interval (95% c.i.) Estimates
PLACE Mean St.Dev. Pt.Est. Int.Est.(N-dist.) Int.Est.(F-dist.)

Request Class 1
CPU 476.7 1.1 0.888 0.888 +/- 0.012 [0.875, 0.901]
Disk 1 2054.4 6.4 0.902 0.902 +/- 0.012 [0.890, 0.914]
Disk 2 513.6 0.2 0.903 0.903 +/- 0.012 [0.890, 0.914]
Disk 3 40854.1 226.9 0.911 0.911 +/- 0.012 [0.898, 0.923]
Terminals 9999.6 10.1 0.904 0.904 +/- 0.012 [0.891, 0.915]

Request Class 2
CPU 588.8 1.3 0.887 0.887 +/- 0.013 [0.873, 0.899]
Disk 1 2056.4 6.3 0.909 0.909 +/- 0.011 [0.897, 0.920]
Disk 2 513.6 0.2 0.894 0.894 +/- 0.012 [0.881, 0.906]
Disk 3 40937.1 226.1 0.907 0.907 +/- 0.012 [0.894, 0.919]
Terminals 10000.3 9.4 0.896 0.896 +/- 0.012 [0.883, 0.908]

122 CHAPTER 5. ANALYSIS OF QPN MODELS BY SIMULATION

177%. This is because, at this load, Disk 3 is completely saturated (its utilization is
over 99%), leading to long waiting times in the queue. Residence times at the other
queues were not as much affected by the change, since requests have much lower
service demands for them (see Table 5.5) and in spite of the heavier load, they were

Table 5.9: Experimental analysis of residence time variation and coverage of 95%
conf. intervals for the product-form QN from 4665 runs.

Variation Coverage Point/Interval (95% c.i.) Estimates
PLACE Mean St.Dev. Pt.Est. Int.Est.(N-dist.) Int.Est.(F-dist.)

Request Class 1
CPU 476.7 1.2 0.936 0.936 +/- 0.007 [0.928, 0.943]
Disk 1 2054.6 6.9 0.947 0.947 +/- 0.006 [0.941, 0.953]
Disk 2 513.6 0.2 0.948 0.948 +/- 0.006 [0.941, 0.954]
Disk 3 40857.8 240.6 0.950 0.950 +/- 0.006 [0.943, 0.957]
Terminals 10000.1 10.8 0.944 0.944 +/- 0.006 [0.937, 0.951]

Request Class 2
CPU 588.7 1.4 0.932 0.932 +/- 0.007 [0.924, 0.939]
Disk 1 2056.5 6.7 0.951 0.951 +/- 0.006 [0.945, 0.957]
Disk 2 513.6 0.2 0.944 0.944 +/- 0.006 [0.937, 0.951]
Disk 3 40942.9 238.6 0.946 0.946 +/- 0.006 [0.939, 0.953]
Terminals 10000.1 9.6 0.957 0.957 +/- 0.005 [0.951, 0.963]

Table 5.10: Experimental analysis of residence time variation and coverage of 95%
conf. intervals for the product-form QN under heavy load from 4300 runs.

Variation Coverage Point/Interval (95% c.i.) Estimates
PLACE Mean St.Dev. Pt.Est. Int.Est.(N-dist.) Int.Est.(F-dist.)

Request Class 1
CPU 591.1 3.2 0.933 0.933 +/- 0.007 [0.925, 0.941]
Disk 1 2403.1 13.2 0.943 0.943 +/- 0.007 [0.936, 0.950]
Disk 2 517.5 0.2 0.953 0.953 +/- 0.006 [0.947, 0.960]
Disk 3 72561.5 401.1 0.952 0.952 +/- 0.006 [0.945, 0.958]
Terminals 5000.1 5.3 0.948 0.948 +/- 0.006 [0.941, 0.955]

Request Class 2
CPU 726.0 3.9 0.933 0.933 +/- 0.007 [0.925, 0.941]
Disk 1 2405.5 13.1 0.946 0.946 +/- 0.007 [0.938, 0.953]
Disk 2 517.6 0.2 0.948 0.948 +/- 0.007 [0.940, 0.954]
Disk 3 72857.6 398.7 0.950 0.950 +/- 0.007 [0.943, 0.956]
Terminals 4999.9 4.8 0.951 0.951 +/- 0.006 [0.944, 0.958]

5.3. SIMQPN VALIDATION AND PERFORMANCE ANALYSIS 123

still under 70% utilized (the CPU was about 67% utilized, Disk 1 about 60% and
Disk 2 still less than 20%). In all cases, the estimated coverage of 90% and 95%
confidence intervals did not drop below 88% and 93%, respectively.

5.3.4 Model of SPECjAppServer2002

In Chapter 4 (Section 4.2), we built a QN model of SPECjAppServer2002 that
spanned the whole benchmark application. This was a non-product-form model
and we were only able to analyze it using analytical approximation methods (more
specifically, we used the multisum method [23, 25]). However, when increasing
the number of customers interacting with the system, even approximation methods
started to fail. We now consider the same model again, but this time we analyze
it through simulation using SimQPN. We compare results obtained from the simu-
lation with the approximate results presented in Chapter 4. We also consider the
cases where approximation methods were failing, and in these cases, we compare the
simulation results with measurements on the real system modeled. The QN model
from Chapter 4 is depicted in Figure 5.7. It is a closed model with five request
classes: NewOrder (NO), ChangeOrder (CO), OrderStatus (OS), CustStatus (CS)
and WorkOrder (WO). For detailed information on the model queues and requests
refer to Section 4.2 of Chapter 4.

%�

&
%�

$�

$�

$1� �

$1

/

'

S�
S�

�� 1

�� 1

�� 1

�� 1

'D W D E D V H � 6 H U Y H U

$S S O L F D W L R Q � 6 H U Y H U � &O X V W H U

&O L H Q W

3 U R G X F W L R Q � /L Q H � 6 W D W L R Q V

�� �

�� �

Figure 5.7: QN model of SPECjAppServer2002.

The following input parameters need to be supplied before the model can be
analyzed:

124 CHAPTER 5. ANALYSIS OF QPN MODELS BY SIMULATION

� Number of WebLogic servers N.

� Number of order entry clients (NewOrder, ChangeOrder, OrderStatus and
CustStatus).

� Average think time of order entry clients - Customer Think Time.

� Number of planned production lines generating WorkOrder requests.

� Average time production lines wait after processing a work order before start-
ing a new one - Manufacturing (Mfg) Think Time.

Each set of values for these parameters generates a different instance of the
model. In Chapter 4, we considered three scenarios (see Table 5.11) representing
low, moderate and heavy load, respectively. The number of WebLogic servers was
ranging from 1 to 9. Here we only consider the moderate and heavy load scenarios,
since they are the largest and most problematic ones as far as analysis is concerned.
Again, we translate the QN into an equivalent QPN by mapping queues to queueing
places and connecting them through transitions. The resulting QPN is shown in
Figure 5.8. Note that, compared to the QPN in Chapter 4 (Section 4.3), this is
a huge QPN (considering token population and colors) and even for the simplest
scenario (low load) trying to analyze it by means of conventional techniques results
in explosion of the underlying state space.

Table 5.11: Model input parameters for the 3 scenarios considered in Chapter 4.

Parameter Low Moderate Heavy

NewOrder Clients 30 50 100

ChangeOrder Clients 10 40 50

OrderStatus Clients 50 100 150

CustStatus Clients 40 70 50

Planned Lines 50 100 200

Customer Think Time 2 sec 2 sec 3 sec

Mfg Think Time 3 sec 3 sec 5 sec

Tables 5.12 and 5.13 summarize the results from 500 simulation runs of the
moderate load scenario with 6 WebLogic servers. Each run took approximately 5
minutes on a machine with a 2 GHz CPU. For every request class, the mean and
standard deviation of observed throughputs (in requests/sec) and residence times
at queues Ai, Bj and D (in milliseconds) are reported. The simulation results are

5.3. SIMQPN VALIDATION AND PERFORMANCE ANALYSIS 125

$1� �

$�

$�

$1

%�

%�

/��1

��1

��1

��1

���

���
'

S�

S�

& 7

[[

[

[

[

[

[

[

[[

[[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

& D V H � [� R I
� � � � � : 2� � �
: 2

& D V H � [� R I
� � � � � 12� � �
12
� � � � � & 2� � �
& 2
� � � � � 26 � � �
26
� � � � � & 6 � � �
& 6

Figure 5.8: QPN model of SPECjAppServer2002.

compared against the approximate results presented in Chapter 4. The latter were
obtained using the multisum analytical approximation method supported by the
PEPSY tool. As we can see, results from the simulation are consistent with the
approximate results and have very low variation. Since the exact values of the

Table 5.12: Residence time (R), throughput (X) and utilization (U) results for
scenario 2 with 6 WebLogic servers from 500 simulation runs - Part 1.

Ai (WLS-CPU) Bj (DBS-CPU)
Metric Anal. Sim. St.Dev. Anal. Sim. St.Dev.
RNO 17 16.8 0.22 40 39.2 0.73
RCO 18 17.7 0.24 39 38.1 0.73
ROS 3 3.4 0.03 9 9.2 0.16
RCS 3 3.3 0.03 8 7.7 0.13
RWO 31 31.4 0.42 129 124.9 2.69

XNO 4.05 4.06 ≤ 0.01 12.15 12.15 ≤ 0.01
XCO 3.24 3.24 ≤ 0.01 9.72 9.72 ≤ 0.01
XOS 8.28 8.28 ≤ 0.01 24.83 24.83 ≤ 0.01
XCS 5.80 5.80 ≤ 0.01 17.40 17.40 ≤ 0.01
XWO 4.00 4.01 ≤ 0.01 12.01 12.03 ≤ 0.01

U 0.23 0.23 ≤ 0.01 0.74 0.74 ≤ 0.01

126 CHAPTER 5. ANALYSIS OF QPN MODELS BY SIMULATION

estimated parameters are not known (exact analytical solution of the model is not
available), coverage analysis for confidence intervals does not make sense in this
case.

Table 5.13: Residence time (R), throughput (X) and utilization (U) results for
scenario 2 with 6 WebLogic servers from 500 simulation runs - Part 2.

D (DBS-Disk)
Metric Anal. Sim. St.Dev.
RNO 1 1.3 ≤ 0.01
RCO 1 1.4 ≤ 0.01
ROS 1 0.8 ≤ 0.01
RCS 0 0.4 ≤ 0.01
RWO 2 1.9 ≤ 0.01

XNO 24.29 24.31 ≤ 0.01
XCO 19.43 19.45 ≤ 0.01
XOS 49.67 49.66 ≤ 0.01
XCS 34.80 34.80 ≤ 0.01
XWO 24.02 24.05 ≤ 0.01

U 0.13 0.13 ≤ 0.01

Table 5.14: Response time (R), throughput (X) and utilization (U) results for sce-
nario 3 with 6 and 9 WebLogic servers from 500 simulation runs.

6 App. Servers 9 App. Servers

METRIC Anal. Sim. Msrd. Anal. Sim. Msrd.

RNO - 98 94 - 95 81

RCO - 97 98 - 94 84

ROS - 23 27 - 22 24

RCS - 20 27 - 19 25

RWO - 286 251 - 282 215

XNO 32.22 32.28 32.66 32.24 32.31 32.48

XCO 16.11 16.15 16.19 16.12 16.15 16.18

XOS 49.60 49.62 49.21 49.61 49.64 49.28

XCS 16.55 16.56 16.24 16.55 16.56 16.46

XWO 31.72 31.82 32.08 31.73 31.83 32.30

UWLS−CPU 26.5% 26.4% 29% 17.8% 17.6% 20%

UDBS−CPU 86.1% 87.7% 91% 86.2% 87.7% 91%

5.4. CONCLUDING REMARKS 127

We now repeat the same analysis for the heavy load scenario with 6 and 9 Web-
Logic servers. The average run duration was 12 minutes. Results are summarized in
Table 5.14. For each request class, we consider its total response time and through-
put. Note that by response time we mean the total amount of time needed for
processing a request, i.e. the sum of its residence times at queues Ai (WLS-CPU),
Bj (DBS-CPU) and D (DBS-Disk). Unfortunately, available approximation meth-
ods fail to provide reliable response time estimates for models of this size. Therefore,
this time the analytical results only include throughput and utilization. To validate
response time results, we compare them against measurements taken on the real sys-
tem that the model represents. Note that the expected deviation here is higher, since
the model is only an approximation of the system, and as discussed in Chapter 4, it
has some inherent limitations. Nevertheless, we see that results obtained from the
simulation are close to the actual values measured on the system modeled. Repeat-
ing the analysis for the other configurations considered in Chapter 4 led to results
of similar accuracy.

5.4 Concluding Remarks

This chapter showed how the problem of analyzing large QPN models can be ap-
proached by exploiting discrete event simulation for model analysis. We presented
SimQPN - our simulation tool for QPNs, and discussed its features, design and ar-
chitecture. In parallel to this, we presented our methodology for simulating QPN
models based on which SimQPN was developed. The methods for output data anal-
ysis used in SimQPN were presented and the specifics of their implementation were
discussed. It was shown how SimQPN exploits the knowledge of the structure and
behavior of QPNs to improve the efficiency of the simulation.

We validated our approach by applying it to study several different QPN models.
In each case, we validated the simulation results by comparing them with results
obtained using other methods, i.e. analytical methods, approximation methods or
measurements on the system modeled. Models of different size and complexity
ranging from simple models to large and complex models of realistic systems were
considered. Each model was analyzed for different variations of its input param-
eters. The variability of output data provided by SimQPN and the coverage of
confidence intervals reported were subjected to a rigorous experimental analysis.
Results showed that data reported by SimQPN is pretty accurate and stable. Even
for residence time, the metric with highest variation, the standard deviation of point
estimates did not exceed 2.5% of the mean value. In all cases, the estimated cover-
age of confidence intervals was less than 2% below the nominal value (higher than
88% for 90% confidence intervals and higher than 93% for 95% confidence intervals).
In addition to this, SimQPN proved to be pretty fast in terms of measured CPU
running times. A simulation run for the simple models in Sections 5.3.2 and 5.3.3

128 CHAPTER 5. ANALYSIS OF QPN MODELS BY SIMULATION

on a 2GHz CPU took less than one minute on average. Even for the much larger
models in Section 5.3.4, CPU running times did not exceed 12 minutes.

SimQPN provides a portable simulation engine for QPNs. Being specialized for
QPNs, it is extremely light-weight and fast. It can be used to analyze QPN models
of realistic size and complexity, making it possible to exploit the modeling power and
expressiveness of the QPN paradigm to its full potential as a performance prediction
tool. In the next chapter, we develop a practical performance modeling methodology
for DCS based on QPN models. The methodology helps to construct models of DCS
that accurately reflect their performance and scalability characteristics and can be
exploited for performance prediction in the software engineering process.

Chapter 6

Performance Modeling Methodology

There is no other way to handle the complexity than

by breaking it up into manageable pieces.

– Bruce Schneier

Make everything as simple as possible, but not

simpler!

– Albert Einstein

6.1 Introduction

Performance models are a very powerful tool for performance analysis of DCS and
are used increasingly during system development to predict the expected perfor-
mance of the system under load. However, as shown in Chapter 4, building models
that accurately capture the different aspects of system behavior is a very challeng-
ing task when applied to realistic systems. In this chapter, we present a practi-
cal performance modeling methodology for DCS which helps to construct models
that accurately reflect the performance and scalability characteristics of the lat-
ter. Our methodology builds on the methodologies proposed by Menascé, Almeida
and Dowdy in [108, 109, 110, 111, 112], however, a major difference is that our
methodology is based on Queueing Petri Net (QPN) models as opposed to conven-
tional Queueing Network (QN) models and it is specialized for DCS. QPN models
are more sophisticated than QN models and enjoy greater modeling power and ex-
pressiveness. Taking advantage of this, our methodology provides the following
important benefits:

1. As shown in the previous chapters, QPN models allow the integration of hard-

129

130 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

ware and software aspects of system behavior and lend themselves very well
to modeling DCS.

2. In addition to hardware contention and scheduling strategies, using QPNs one
can easily model software contention, simultaneous resource possession, syn-
chronization, blocking and asynchronous processing. These aspects of system
behavior, which are typical for modern DCS, are difficult to model accurately
using conventional QN models.

3. By restricting ourselves to QPN models, we can exploit the knowledge of their
structure and behavior for fast and efficient simulation using SimQPN. As
shown in Chapter 5, this enables us to analyze models of large and complex
DCS and ensures that our approach scales to realistic systems.

4. QPNs can be used to combine qualitative and quantitative system analysis.
A number of efficient techniques from Petri net theory can be exploited to
verify some important qualitative properties of QPNs. The latter not only
help to gain insight into the behavior of the system, but are also essential
preconditions for a successful quantitative analysis [11].

After discussing our modeling methodology in general, we present a case study in
which the latter is used to model a realistic system and analyze its performance and
scalability. The system modeled is a deployment of the industry-standard SPECj-
AppServer2004 benchmark, presented in Chapter 2. A detailed model of the system
and its workload is built in a step-by-step fashion. The model is validated and used
to predict the system performance for several deployment configurations and work-
load scenarios of interest. In each case, the model is analyzed by means of simulation
using SimQPN - our simulation tool presented in the previous chapter. In order to
validate the approach, the model predictions are compared against measurements
on the real system. In addition to CPU and I/O contention, it is demonstrated
how some more complex aspects of system behavior, such as thread contention and
asynchronous processing, can be modeled.

This chapter is organized as follows: Section 6.2 provides an overview of the
performance modeling methodology and discusses each of its seven steps in detail.
Following this, Section 6.3 presents our case study of SPECjAppServer2004 show-
ing how each step of the modeling process is applied in practice. Finally, some
concluding remarks are given in Section 6.4.

6.2 Methodology Overview

The methodology we propose includes the following steps:

1. Establish performance modeling objectives.

6.2. METHODOLOGY OVERVIEW 131

2. Characterize the system in its current state.

3. Characterize the workload.

4. Develop a performance model.

5. Validate, refine and/or calibrate the model.

6. Use model to predict system performance.

7. Analyze results and address modeling objectives.

It is important to note that the modeling process is iterative in nature and the
above steps might have to be repeated multiple times as the system and workload
evolve. Each of the steps is now discussed in detail.

6.2.1 Step 1: Establish performance modeling objectives.

The first step is to set some concrete goals for the performance modeling effort. The
latter should be stated in a simple and precise manner. Modeling objectives can be
classified in the following categories some of which partially overlap:

� Performance Prediction: Predict the performance of the system for a given
workload and configuration scenario.

� Performance Verification: Verify that the system would be able to meet es-
tablished Service Level Agreements.

� Capacity Analysis: Determine the maximum load that the system would be
able to handle in its current state.

� Scalability Analysis: Study the performance of the system as the load increases
and more hardware is added.

� Bottleneck Analysis: Find which system components are most utilized and
investigate if they are potential bottlenecks.

� Performance Tuning: Study the effect of a particular deployment setting or
tuning parameter on the system performance and find its optimal value.

� Performance Optimization: Find the components with the largest effect on
performance and study the performance gains from optimizing them.

� Cost/Performance Analysis: Compare different system architectures and con-
figuration alternatives in terms of their cost/performance ratios.

� Sizing and Capacity Planning: Determine the amount of hardware that would
be needed to guarantee certain performance levels.

132 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

6.2.2 Step 2: Characterize the system in its current state.

In this step, the system is described in detail in terms of its hardware and software
architecture. The product of this step is a specification that includes the following
information:

� System architecture/topology (system tiers, communication links, etc).

� Types of servers used (e.g. Web servers, application servers, database servers).

� Type of hardware used (e.g. server machines, disk subsystems, load balancers,
backup systems).

� Type of software used (e.g. operating systems, middleware, transaction mon-
itors, DBMS, application software).

� Communication equipment and network protocols used (e.g. routers, firewalls,
switches).

The goal here is to obtain an in-depth understanding of the system architecture
and its components. The latter is essential for building representative models.

6.2.3 Step 3: Characterize the workload.

In this step, the workload of the system under study is described in a qualitative
and quantitative manner. This is called workload characterization [35] and includes
five major steps:

1. Identify the basic components of the workload.

2. Partition basic components into workload classes (workload partitioning).

3. Identify the system components and resources (hardware and software) used
by each workload class.

4. Describe the inter-component interactions and processing steps for each work-
load class.

5. Characterize workload classes in terms of their service demands and workload
intensity.

The steps above are now discussed in detail.

6.2. METHODOLOGY OVERVIEW 133

Identify the Basic Components of the Workload

Basic component refers to a generic unit of work that arrives at the system from
an external source [108]. Some examples include HTTP requests, remote procedure
calls, Web service invocations, database transactions, interactive commands, batch
jobs, etc. Basic components could also be composed of multiple processing tasks,
for e.g. client sessions comprising multiple requests to the system, open and closed
nested transactions, etc. The choice of basic components and the decision how
granular they are defined depend on the nature of the services provided by the
system and on the modeling objectives. Since, in almost all cases, basic components
can be considered as some kind of requests or transactions processed by the system,
we will often refer to them as requests or transactions1. Similarly, basic components
comprising multiple processing tasks will be referred to as composite transactions
and their individual processing tasks will be called subtransactions.

Partition Basic Components into Workload Classes

The basic components of real workloads are typically heterogeneous in nature. In
order to improve the representativeness of the workload model and increase its
predictive power, the basic components must be partitioned into classes (called
workload classes) that have similar characteristics. The partitioning can be done
based on different criteria, depending on the type of system modeled and the goals
of the modeling effort. Some typical criteria are quickly described [108, 116]:

� Applications: Classes are derived based on applications involved, e.g. online
ordering, inventory management, supply-chain management.

� Functional: Classes are derived based on the functions being served, for e.g.
place new order, change existing order, browse product catalogue.

� Objects handled: Classes are derived based on the type of objects handled by
the applications, for e.g. a Web server workload can be partitioned by the
type of documents accessed: HTML, Image, Sound, Video, etc.

� Resource consumption: Classes are derived based on resource consumption, for
e.g. download requests may be divided into three classes based on the size of
the file requested: small (≤ 500K), medium (500K-5MB) and large (≥ 5MB).

� Workload intensity: Classes are derived based on the number of concurrent
units of work (i.e. requests or transactions) that contend for system resources.
Workload intensity will be discussed in detail later in the last step of the
workload characterization process.

1The term transaction here is used loosely to refer to any unit of work or processing task
executed in the system.

134 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

� Processing mode: Classes are derived based on the mode of processing: syn-
chronous or asynchronous.

� Geographical: Classes are derived based on geographical orientation, for e.g.
HTTP requests may be broken down into classes based on where they originate
from: USA, Europe, Asia, etc.

Multiple of the above criteria might be used to partition basic components into
workload classes. To improve model representativeness, it is recommended that al-
ready at this stage the workload be partitioned in such a way that each workload
class is as homogeneous as possible in terms of the load it places on the system and
its resources. Note that a workload class might later have to be split into several
workload classes if it turns out to exhibit large variability in terms of measured
resource usage. This will be revisited when the last step of the workload charac-
terization process is discussed. Workload classes are sometimes also referred to as
request classes or transaction classes.

Identify the System Components and Resources Used by Each Workload
Class

In this step, for each workload class the system components and resources used
(hardware and software) are identified. For example, an online request to place an
order might require using a Web server, application server and backend database
server. For each of these servers, the concrete hardware and software resources
used must be specified. Hardware resources could be CPUs, disk drives, network
links, etc. Software resources could be transaction monitors, database management
systems, message-oriented middleware, application software, etc. However, software
resources could also be operating system processes, threads, semaphores, database
connections, locks, latches, etc. Again, the level of detail here is determined by the
system type and modeling objectives. It is distinguished between active and passive
resources [111]. An active resource is a resource that delivers a certain service to
transactions at a finite speed. In contrast, a passive resource is needed for the
execution of a transaction, but is not characterized by a speed of service delivery.
Once a transaction acquires the required number of instances of a passive resource,
its execution progresses at a rate that is independent of any characteristic of the
resource. Active resources are normally hardware devices, for e.g. CPUs or disk
drives, while passive resources are usually software resources (for e.g. processes,
threads, database connections or locks), but could also be hardware resources, a
common example being main memory.

6.2. METHODOLOGY OVERVIEW 135

Describe the Inter-Component Interactions and Processing Steps for
Each Workload Class

The aim of this step is to describe the processing steps, the inter-component in-
teractions and flow of control for each workload class. Also for each processing
step, the hardware and software resources used must be specified. Different nota-
tions may be exploited for this purpose, for example Client/Server Interaction Di-
agrams (CSID) [110], Communication-Processing Delay Diagrams [108], Execution
Graphs [146], as well as conventional UML Sequence and Activity Diagrams [26].

Figure 6.1 shows an example of a CSID describing the inter-component inter-
actions and flow of control for a customer registration transaction. The diagram
is made up of nodes (squares and circles) and directed arcs connecting the nodes.
Nodes represent clients and servers visited during the execution of the transaction.
Every node is identified by a unique number indicated by a label next to the node.
Square nodes represent clients, while circle nodes represent servers used during pro-
cessing. All transactions start at node 1 (called the start node) and end in another
square node (called the end node). Directed arcs show the flow of control from
one node to the next during execution. The diagram also shows which communi-
cation networks are used for inter-component communication and the average sizes
(depending on whether such information is available) of the messages exchanged
between the components. The latter are shown in the square brackets over the
arrows.

Characterize Workload Classes in Terms of Their Service Demands and
Workload Intensity

In this step, the load placed by the workload classes on the system must be quanti-
fied. Two sets of parameters need to be specified for each workload class:

� Service demand parameters.

� Workload intensity parameters.

Service demand parameters specify the total amount of service time required by
each workload class at each resource. For example, the CPU time of order-entry
transactions at the application server, their CPU and I/O time at the database
server, etc. Note that service demands refer only to times spent receiving service
at the resources, i.e. they do not include waiting times. Depending on the level of
detail at which the system is modeled, service demands may also be considered for
the individual processing steps (subtransactions) of workload classes. For example,
the CPU time at the application server for sending a notification to the customer at
the end of an order-entry transaction, confirming that the order has been received.

136 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

7 6 5

[100]

4

3 2 1

Add Customer Register Customer

Add Customer Store Customer
Profile

[2000] [1000]

LAN 1

[500]

LA
N

 1

[100] [1500]

C = Client
AS = Application Server

DRS = Directory Server
DBS = Database Server

Send
Confirmation

Internet LAN 1

Internet LAN 1 LAN 2 LAN 1 LAN 1 LAN 2

 AS

 AS

 AS

 DRS

 DBS

C

C

Figure 6.1: Example of CSID for customer registration transaction.

Workload intensity parameters provide for each workload class a measure of the
number of units of work, i.e. requests or transactions, that contend for system
resources. For example, the number of order-entry transactions executed per unit of
time, the average number of batch jobs processed concurrently, etc. Depending on
the way workload intensity is specified, workload classes may be classified as open
or closed:

� Open class: Workload intensity is specified by an arrival rate (λ), i.e. average
number of requests that arrive per unit of time. The arrival rate is usually
independent of the system state.

� Closed class: Workload intensity is specified by the average number of re-
quests (N) served concurrently in the system. Alternatively, workload inten-
sity can be specified by the number of active clients/terminals (M) that send
requests to the system and their average think time (Z).

6.2. METHODOLOGY OVERVIEW 137

The decision whether a given class is modeled as open or closed (i.e. how its workload
intensity is specified) is influenced by several factors, including the nature of the real
workload, the amount of information about it available (e.g. measurement data) and
the data required as output from the model.

We now discuss some general techniques for obtaining service demand parame-
ters. Most techniques involve running the system or components thereof and tak-
ing measurements. In case the system is not available for testing (for e.g. in the
early stages of system development), techniques exist for estimating the service
demand parameters [113]. In the following discussions, it is assumed that the sys-
tem is available at least in a prototypical form, so that service demands can be
obtained through measurements. The measurement process usually involves three
major steps [108, 112, 141]:

1. Select Variables to Measure: First, the performance variables to be measured
are selected. In most cases, it is not possible to measure service demands
directly. Instead, some other parameters are measured from which service de-
mands can be derived. The most typical case is to derive service demands from
resource utilization and transaction throughput data. In certain cases, it might
be possible to obtain service demands directly using specialized measurement
tools.

2. Collect Measurement Data: The next step is to gather measurement data
for the selected variables to be measured. This is usually done by means
of performance monitoring and measurement tools, for example accounting
systems, program analyzers, log generators or hardware monitors. Depending
on the variables to be measured, several measurement tools may be required
at different layers of the system environment, for example operating system,
middleware, virtual machine or the application software layer. In some cases,
the system might need to be instrumented manually to include performance
measurement code.

3. Analyze and Transform Measurement Data: In this last step, the measurement
data gathered is analyzed and transformed into meaningful information from
which service demand parameters can be derived. Measurement tools often
gather huge amounts of raw data, corresponding to a detailed log of the system
activities during the observation period. This data has to be summarized and
represented in a more compact form before it can be used. Two techniques
often exploited in this context are averaging and clustering. If a workload class
proves to exhibit large variability in terms of service demands, it is partitioned
into several workload classes with more homogeneous populations.

To illustrate the above steps, imagine that we want to estimate the I/O service
demand of order-entry transactions of an online ordering system. One way to do this

138 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

would be to measure the number of I/O operations typically performed by order-
entry transactions and multiply it by the average disk service time per I/O operation
(assuming that service times of I/O operations performed have low variability).
Assume that the system has been monitored for a period of one hour and a hundred
thousand observations for the number of I/O operations per transaction have been
recorded. The detailed measurement data has to be replaced with a more compact
representation in order for it to be usable. One approach would be to compute the
arithmetic mean of all observations collected and use it to derive the I/O service
demand (averaging). However, if transactions exhibit large variability in terms of
the number of I/O operations they perform, averaging all observations would likely
produce a model that is not representative of most of the transactions. In such
cases, observations are normally grouped into clusters, such that the variability
within each cluster is relatively small compared to the variability in the entire set
of observations (clustering). Thus, a workload class might need to be split into
several workload classes with lower variability in resource usage. For a discussion of
clustering techniques refer to [54, 68].

As mentioned, service demand parameters are most typically derived from mea-
sured resource utilization and transaction throughput data. The Service Demand
Law is used [51]. The latter states that the service demand Di,r of class r trans-
actions at resource i is equal to the average utilization Ui,r of resource i by class r
transactions divided by the average throughput X0,r of class r transactions during
the measurement interval, i.e.

Di,r =
Ui,r

X0,r
(6.1)

There are two approaches for estimating the service demands using the above
relation:

� Conduct a single experiment, injecting transactions from all workload classes
concurrently.

� Conduct a separate experiment for each workload class, injecting transactions
only from a single class at a time.

If transactions from multiple workload classes are injected concurrently (app-
roach 1), the partial utilization of the considered resource due to each workload
class (i.e. Ui,r) must be determined. However, system monitors normally provide
only total resource utilization statistics. Accounting systems or program analyzers
are typically used to provide additional data, so that the measured total utilization
can be apportioned among the different workload classes. Some methods for ap-
portioning the total resource utilization among the workload classes are discussed
in [108, 111, 112]. There are two problems with this approach. First, in almost

6.2. METHODOLOGY OVERVIEW 139

all cases there is some resource usage (sometimes called system overhead), that is
either not captured at all, or is captured, but not accounted to any workload class
by the employed accounting system or program analyzer. It is usually hard to find
a way to distribute the unattributed resource usage among the workload classes in
a fair manner. Second, the overhead of accounting systems and program analyzers
is often so high that they influence the system behavior significantly. This leads to
higher resource utilization, which in turn results in higher service demand estimates
not representative of the normal operating conditions. This is particularly true for
JVM profilers that are normally exploited in the context of J2EE applications.

In the second approach, transactions are injected from a single workload class
at a time, so that the measured total resource utilization is due to a single class
and Equation (6.1) can be applied directly. Note that this automatically incorpo-
rates the operating system overhead into the service demand of the respective class.
However, a potential problem with this approach is that, depending on the work-
load considered, the transactions from the various workload classes might behave
differently when they are run concurrently as opposed to one at a time. In such
cases, the interactions between different workload classes would not be captured in
the workload model.

Which of the two approaches to estimate service demands is chosen depends on
many factors including the type of system modeled, the workload considered, the
measurement tools available, etc. In any case, the following should be kept in mind
when conducting experiments to estimate service demands:

� Make sure that only transactions from the considered workload class(es) are
injected.

� Make sure that the system resources are utilized only by the workload injected,
i.e. that no foreign processes are running in the background that could affect
the measurements. A common pitfall is to overlook a background process (for
e.g. scanlogd daemon on Linux) that produces additional load and skews the
measurements.

� Make sure that the monitoring and measurement tools used have negligible
overhead, i.e. that they do not affect the measurements taken.

� Make sure that measured resources are reasonably utilized. It is recommended
to have them at least 50% utilized, if possible.

� Repeat each experiment at least a couple of times to verify that measurements
are stable.

� Run experiments under different load to ensure that service demands are not
load dependent. Variations within +/- 5% are normally acceptable.

140 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

� Experiments should begin with a ramp up period that is long enough for the
system to reach steady state. The measurement period should start after
steady state has been reached and should continue until a reasonable number
of transactions (possibly on the order of thousands) have been executed.

� Service demands for heavy loaded resources have greater effect on the model
accuracy and therefore more care should be taken when estimating them.

� A good rule of thumb to verify the service demand estimates for a given
workload class is the following: Under light load (with little or no concurrency),
the measured response time should be roughly equal to the sum of the service
demands of the respective workload class at all resources it uses.

This concludes our discussion of the workload characterization step. The output
of this step is called workload model and is used as input for building a performance
model in the next step.

6.2.4 Step 4: Develop a performance model.

In this step, a performance model is developed that represents the different com-
ponents of the system and its workload, and captures the main factors affecting its
performance. The performance model can be used to understand the behavior of the
system and predict its performance under load. The methodology presented here
exploits QPN models to take advantage of the modeling power and expressiveness
of QPNs.

The way a performance model is constructed is based on the output from the
previous three steps of the methodology, i.e. the modeling objectives, the system
specification and the workload model. One of the greatest challenges in building a
good model is to find the right level of detail. A general rule of thumb is: ”Make
the model as simple as possible, but not simpler!”. Including too much detail might
render the model intractable, on the other hand, making it too simple, might render
it unrepresentative. The information from the workload characterization step is of
critical importance when deciding on the level of detail at which different aspects of
the system are modeled.

Normally, the modeling process includes the following steps in which the system
and workload components are modeled using QPN constructs:

1. Model the system components and resources.

2. Model the basic components of the workload.

3. Model the inter-component interactions.

4. Parameterize the model.

6.2. METHODOLOGY OVERVIEW 141

The first step is to map the system components and resources (hardware and
software) to respective QPN model constructs. Active resources are usually mod-
eled using queueing places. Depending on the type of resource, queues with different
scheduling strategies (queueing disciplines) may be used. For example, for proces-
sors (CPUs) usually PS scheduling strategy is used, while for secondary storage
systems (e.g. disk drives) and networks, mostly FCFS scheduling strategy is used.
Passive resources such as threads, processes, database connections and locks are
normally modeled using tokens inside ordinary places. For example, a thread pool
can be modeled using an ordinary place whose tokens represent threads. The ini-
tial population of the place determines the number of threads available in the pool.
Whenever a thread is used, a token is removed from the place and after the thread
is released, the token is returned back to the place.

The next step is to model the basic components of the workload, i.e. the trans-
actions (requests) processed by the system. The latter are normally modeled using
tokens, exploiting different colors to distinguish between workload classes. Some ad-
ditional QPN constructs are needed to model the way transactions get started and
completed in the system, or equivalently, the way requests arrive and depart from
the system. Figure 6.2 illustrates how this is done for open and closed workload
classes.

�%���&ORVHG�FODVVHV
&OLHQW 6 \ V WHPW� W�

[[[
[

�$ ���2 S HQ �FODVVHV
6 \ V WHPW� W�

[[

Figure 6.2: Modeling request/transaction arrivals and departures.

For open workload classes, two transitions, one timed (t1) and one immediate (t2)
are needed. The timed transition does not have any input places and is by definition
always enabled. Whenever it fires, it simply creates a new token and deposits it into
the system, represented in the figure using a subnet place (a nested QPN). Tokens
created correspond to newly started transactions (resp. newly arriving requests).
The firing delay is chosen according to the desired transaction injection rate (resp.
request arrival rate). The immediate transition, on the other hand, is used to model
transaction completions (resp. request departures). It simply destroys tokens, i.e.
transactions/requests whose processing has been completed.

For closed workload classes, a different mechanism is employed. A queueing
place, called Client, with IS queue (i.e. delay resource) and two immediate transi-
tions are used. Two cases are distinguished, based on whether workload intensity

142 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

is specified as an average number of transactions being processed concurrently (re-
quests being served concurrently), or it is specified as a number of active clients/ter-
minals that start transactions (send requests) and their average think time. In the
first case, tokens in the Client place are served immediately (i.e. the service time
of the queue is zero) and its initial token population determines the number of con-
current transactions (resp. requests) in the system. In the second case, the Client
place (or more precisely its queue) has service time equal to the average client think
time and its initial token population determines the number of active clients/termi-
nals starting transactions (sending requests). The immediate transitions are used to
move tokens (i.e. transactions or requests) from the Client to the system and back.

Note that a single set of the above described QPN constructs can be used to
model multiple workload classes, as long as all of them are of the same type (open
or closed). As mentioned, different token colors can be used to distinguish between
workload classes. However, it is recommended to use a separate set of constructs
for every basic component of the workload.

The next step is to model the inter-component interactions and processing steps
for transactions of the different workload classes. The latter were described in
detail during workload characterization and their descriptions are used here as a
starting point for their modeling. Interactions between system components are
normally modeled using transitions connecting the QPN places corresponding to
the respective components. Transitions are used to destroy and create tokens at the
places of the QPN. A typical case is to destroy a token in one place and then create
the same token in another place, which can be seen as moving the token from the
first place to the second. This can be used, for example, to model the flow of control
from one system component to another when processing a transaction.

For composite transactions, the individual processing steps (subtransactions)
can also be modeled using tokens. One way to do this is to use a separate to-
ken color for every subtransaction. This is illustrated in Figure 6.3 for open and
closed workload classes, respectively. An upper-case X token is used to represent a
composite transaction. The individual subtransactions of the latter are represented
using lower-case x tokens, where xi stands for the i-th subtransaction. When the
transaction is started (by firing transition t1), a token x1 representing the first pro-
cessing step (subtransaction) is created and deposited into the system. After the
subtransaction is completed, its token is destroyed (by transition t3) and a token
representing the next processing step xi+1 is created and deposited into the system.
This process continues until the last subtransaction (modeled as token xn) has been
processed. Note that, to make things more illustrative, in the case of open classes
arriving and departing X tokens are depicted as input and output of transitions t1
and t3, respectively.

Figure 6.4 illustrates how allocating and releasing instances of passive resources
can be modeled. An ordinary place is used to represent a pool of instances of

6.2. METHODOLOGY OVERVIEW 143

�$���2SHQ�FODVVHV

6\VWHPW� W�W� [L�� I R U ������ L � �Q� ��
[� [L[L[L; ; I R U ��L� �Q�

�% ���& OR VHG �FODVVHV

& O L HQ W 6\VWHPW� W�W�

[� [L; [L [L
[L�� I R U ������ �L�� �Q� ��

;� I R U ��L� �Q�

Figure 6.3: Modeling composite transactions.

W� W�

R RR
R R

3DVVLYH
5 HVR X U F H� 3R R O

Figure 6.4: Allocating and releasing passive resources.

a passive resource (for e.g. thread pool or connection pool). The instances of
the passive resource (e.g. threads or connections) are represented using tokens of
color ’o’. Allocating an instance of the resource is modeled by removing a token
from the pool (transition t1). Releasing a previously allocated instance is modeled
by returning the token back to the pool (transition t2). The initial population of
the place representing the pool determines the number of instances of the resource
available.

The last step of the modeling process is to parameterize the model. This involves
providing values for the following model parameters:

� Initial token population of places.

� Service times of tokens at the queues of queueing places.

144 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

� Firing weights of immediate transitions.

� Firing delays of timed transitions.

Parameter values need to be supplied on a per workload class basis. The work-
load model is used as input when assigning values to the parameters. Note that the
performance model might be considered for different sets of parameter values.

6.2.5 Step 5: Validate, refine and/or calibrate the model.

The fifth step in our performance modeling methodology aims at ensuring that the
performance model built in the previous step reflects the real system and workload
to a reasonable degree of accuracy. Before the model can be used for performance
prediction, it has to be validated. The model is said to be valid if the perfor-
mance metrics (e.g. response time, throughput and resource utilization) predicted
by the model match the measurements on the real system within a certain accept-
able margin of error [112]. As a rule of thumb, errors within 10% for utilization
and throughput, and within 20% for response time are considered acceptable [111].
Validating the model answers questions such as the following:

� Is the right model for the system being considered?

� Does the model capture all critical aspects of the system behavior, i.e. is it
representative enough?

� Are the estimated model input parameters, for e.g. service demands, reason-
able?

� Are the assumptions and simplifications made when building the model ac-
ceptable?

Model validation is normally done by comparing performance metrics predicted
by the model with measurements on the real system. This is done for several dif-
ferent scenarios varying the model input parameters. If the predicted values do not
match the measured values within an acceptable level of accuracy, the model must
be refined to more accurately reflect the system and workload modeled. Other-
wise, the model is deemed valid and can be used for performance prediction. The
validation and refinement process is illustrated in Figure 6.5. It is important that
the model predictions are verified for a number of different scenarios under differ-
ent transaction mixes and workload intensities, before the model is deemed valid.
Normally, the scenarios considered when measuring the service demands during
workload characterization are used as a starting point in the validation phase. Af-
ter each refinement of the model, all previous scenarios studied, including the ones
where the model predictions were accurate, must be re-evaluated.

6.2. METHODOLOGY OVERVIEW 145

6\VWHP�0RGHO5 HD O�6\VWHP

0HD VX U HPHQ WV

0HD VX U HG
3 HU I RU PD Q F H�0HWU L F V

3 U HGL F WHG
3 HU I RU PD Q F H�0HWU L F V

5 HI L Q H�0RGHO1 2

< (6

& K D Q J H�0RGHO
, Q S X W�3 D U D PHWHU V

(Q RX J K
VF HQ D U L RV

F RQ VL GHU HG"

% HJ L Q

1 2

< (6
(Q G

(U U RU V
D F F HS WD E OH"

0RGHO�6ROX WL RQ

Figure 6.5: Model validation and refinement process.

The model refinement process usually involves the following activities:

� The model input parameters (e.g. workload intensity and service demand
estimates) are double-checked.

� The system is monitored under load to ensure that all critical aspects of its
behavior have been captured by the model.

� All assumptions and simplifications made during the modeling process are
revisited to make sure that they are acceptable.

� It is considered to increase the level of detail at which system and workload
components are modeled.

146 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

If after refining the model its results still do not match the measurements on the
real system within an acceptable level of accuracy, the model has to be calibrated.
Model calibration is the process of changing the model to force it to match the
actual system [33]. This is achieved by changing the values of some model input or
output parameters. The parameters may be increased or decreased by an absolute or
percentage amount. Normally, input parameters are changed (e.g. service demands),
however, in certain cases also output parameters might be changed. If an output
parameter is altered when calibrating the baseline model, it must be altered in the
same manner whenever the model is used for performance prediction. After the
model is calibrated, the validation procedure must be repeated to make sure that
the calibrated model now accurately reflects the real system and workload. For a
detailed discussion of model calibration techniques, the reader is referred to [55, 111].

6.2.6 Step 6: Use model to predict system performance.

In this step, the validated performance model is used to predict the performance of
the system for the deployment configurations and workload scenarios targeted for
analysis. The latter are derived from the modeling objectives.

6.2.7 Step 7: Analyze results and address modeling objectives.

In this last step of the methodology, the results from the model predictions are
analyzed and used to address the goals set in the beginning of the modeling study.
If after analyzing the results it turns out that some further information is needed,
it might be required to go back to the previous step and consider some further
workload and configuration scenarios.

6.3 Case Study: Modeling SPECjAppServer2004

Now that we have discussed our modeling methodology in general, we present a
practical case study which demonstrates how it can be used to model a realistic
DCS and analyze its performance and scalability. The system modeled is our de-
ployment of the industry-standard SPECjAppServer2004 benchmark. Note that in
Chapter 4, we modeled previous versions of the benchmark using QN models and
QPN models. In both cases, we ran into some serious difficulties stemming from
the size and complexity of the system modeled. These problems were addressed in
Chapter 5 by means of SimQPN - our simulation tool for QPNs. In this chapter, we
include another application of SimQPN, this time analyzing QPN models of SPEC-
jAppServer2004. Note that the models considered here span the whole benchmark
application and are much more complex and sophisticated. In addition to CPU and

6.3. CASE STUDY: MODELING SPECJAPPSERVER2004 147

I/O contention, they demonstrate how some further aspects of system behavior,
such as thread contention and asynchronous processing, can be modeled.

Consider an automobile manufacturing company that wants to use e-business
technology to support its order-inventory, supply-chain and manufacturing opera-
tions. The company has decided to employ the J2EE platform and is in the process
of developing a J2EE application. Let us assume that the first prototype of this
application is SPECjAppServer2004 and that the company is testing the applica-
tion in the deployment environment depicted in Figure 6.6. This environment uses
a cluster of WebLogic servers (WLS) as a J2EE container and an Oracle database
server (DBS) for persistence. We assume that all servers in the WebLogic cluster
are identical and that initially only two servers are available.

'DWDEDVH�6HUYHU

� �* % L W
/ $ 1

�

�

�

/ R DG �% DO DQ F HU

$ S S O L F DWL R Q �6HUYHU�& O X VWHU

- '% &+773

+773

,QWHUQHW

6X S S O L HUV

'HDO HUV

+77
3

+773

Figure 6.6: Deployment environment.

The company is now about to conduct a performance evaluation of their system
in order to find answers to the following questions:

� For a given number of WebLogic servers, what level of performance would the
system provide?

� How many WebLogic servers would be needed to guarantee adequate perfor-
mance under the expected workload?

� Will the capacity of the single load balancer and single database server suffice
to handle the incoming load?

� Does the system scale or are there any other potential system bottlenecks?

148 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

The following sections show how these questions can be answered by means of
the proposed performance modeling methodology.

6.3.1 Establish performance modeling objectives.

Some general goals of the modeling study were listed above. At the beginning
of the modeling process, these goals need to be made more specific and precise.
Let us assume that under normal operating conditions the company expects to
have 72 concurrent dealer clients (40 Browse, 16 Purchase and 16 Manage) and
50 planned production lines. During peak conditions, 152 concurrent dealer clients
(100 Browse, 26 Purchase and 26 Manage) are expected and the number of planned
production lines could increase up to 100. Moreover, the workload is forecast to
grow by 300% over the next 5 years. The average dealer think time is 5 seconds, i.e.
the time a dealer ”thinks”after receiving a response from the system before sending
a new request. On average 10 percent of all orders placed are assumed to be large
orders. The average delay after completing a work order at a planned production
line before starting a new one is 10 seconds. Note that all of these numbers were
chosen arbitrarily in order to make our motivating scenario more specific. Based on
these assumptions, the following concrete goals are established:

� Predict the performance of the system under normal operating conditions with
4 and 6 WebLogic servers, respectively. What would be the average transaction
throughput and response time (for Browse, Purchase and Manage)? How
many work orders would be completed per second in the manufacturing domain
and what would be the average work order processing time? How utilized
(CPU/Disk utilization) would be the WebLogic servers, the load balancer and
the database server?

� Determine if 6 WebLogic servers would be enough to ensure that the average
response times of business transactions do not exceed half a second during
peak conditions.

� Predict how much system performance would improve if the load balancer is
upgraded with a slightly faster CPU.

� Study the scalability of the system as the workload increases and additional
WebLogic servers are added.

� Determine which servers would be most utilized under heavy load and inves-
tigate if they are potential bottlenecks. In particular, verify if the capacity of
the single load balancer and single database server would suffice to handle the
incoming load.

6.3. CASE STUDY: MODELING SPECJAPPSERVER2004 149

6.3.2 Characterize the system in its current state.

As shown in Figure 6.6, the system we are considering has a two-tier hardware
architecture consisting of an application server tier and a database server tier. In-
coming requests are evenly distributed across the nodes in the application server
cluster. For HTTP requests (dealer application), this is achieved using a software
load balancer running on a dedicated machine. For RMI requests (manufacturing
application), this is done transparently by the EJB client stubs. The application
logic is partitioned into three layers: presentation layer (Servlets/JSPs), business
logic layer (EJBs) and data layer (DBMS). Table 6.1 describes the system compo-
nents in terms of the hardware and software platforms used. This information is
enough for the purposes of our study.

Table 6.1: System component details.

Component Description

Load Balancer WebLogic 8.1 Server (HttpClusterServlet)
1 x AMD Athlon XP2000+ CPU
1 GB RAM, SuSE Linux 8

App. Server Cluster Nodes WebLogic 8.1 Server
1 x AMD Athlon XP2000+ CPU
1 GB RAM, SuSE Linux 8

Database Server Oracle 9i Server
2 x AMD Athlon MP2000+ CPU
2 GB RAM, SuSE Linux 8

Local Area Network 1 GBit Switched Ethernet

6.3.3 Characterize the workload.

Identify the Basic Components of the Workload

As discussed in Chapter 2, the SPECjAppServer2004 benchmark application is made
up of three major subapplications - the dealer application in the dealer domain, the
order entry application in the customer domain and the manufacturing application
in the manufacturing domain. The dealer and order entry applications process
business transactions of three types - Browse, Purchase and Manage. Hereafter, the
latter are referred to as dealer transactions2. The manufacturing application, on

2Again the term transaction here is used loosely and should not be confused with a database
transaction or a transaction in the sense of the Java Transaction API (JTA transaction).

150 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

the other hand, is running production lines which process work orders. Thus, the
SPECjAppServer2004 workload is composed of two basic components:

� Dealer transactions processed in the dealer and customer domains.

� Work orders processed in the manufacturing domain.

Note that each dealer transaction emulates a client session comprising multiple
round-trips to the server. For each round-trip there is a separate HTTP request,
which can be seen as a subtransaction (or a nested transaction). A more fine-
grained approach to model the workload would be to define the individual HTTP
requests (subtransactions) as basic components. However, this would unnecessarily
complicate the workload model since we are interested in the performance of dealer
transactions as a whole and not the performance of their individual subtransactions.
The same reasoning applies to work orders, because each work order comprises mul-
tiple JTA transactions initiated with separate RMI calls (e.g. scheduleWorkOrder,
updateWorkOrder and completeWorkOrder). An alternative approach would be to
model the manufacturing workload at the level of JTA transactions or RMI calls.
However, this would again unnecessarily complicate the workload model, since we
are only interested in the rate at which work orders are processed and not in the
performance of the individual work-order-related transactions. This is a typical
example, how the level of detail in the modeling process is decided based on the
modeling objectives.

Partition Basic Components into Workload Classes

We now partition the basic components of the workload into classes according to
the type of work being done. There are three types of dealer transactions - Browse,
Purchase and Manage. Since we are interested in their individual behavior, we model
them using separate workload classes. Thus, dealer transactions are partitioned
into three workload classes: Browse, Purchase and Manage. Work orders, on the
other hand, can be divided into two types based on whether they are processed
on a planned or large order line. Planned lines run on schedule and complete a
predefined number of work orders per unit of time. In contrast, large order lines run
only when a large order arrives in the customer domain. Each large order generates a
separate work order processed asynchronously on a dedicated large order line. Thus,
work orders originating from large orders are different from ordinary work orders in
terms of the way their processing is initiated and in terms of their resource usage.
To distinguish between the two types of work orders, they are modeled using two
separate workload classes: WorkOrder (for ordinary work orders) and LargeOrder
(for work orders generated by large orders). The latter will hereafter be referred
to as WorkOrder and LargeOrder transactions, respectively. Altogether, we end up
with five workload classes: Browse, Purchase, Manage, WorkOrder and LargeOrder.

6.3. CASE STUDY: MODELING SPECJAPPSERVER2004 151

Identify the System Components and Resources Used by Each Workload
Class

The next step is to identify the system components (hardware and software re-
sources) used by each workload class. The following hardware resources are used by
dealer transactions (Browse, Purchase and Manage):

� The CPU of the load balancer machine (LB-C).

� The CPU of an application server in the cluster (AS-C).

� The CPUs of the database server (DB-C).

� The disk drive of the database server (DB-D).

� The Local Area Network (LAN).

WorkOrders and LargeOrders use the same resources with exception of the first
one (LB-C), since their processing is driven through direct RMI calls to the EJBs
in the WebLogic cluster, bypassing the HTTP load balancer.

As far as software resources are concerned, all workload classes use the WebLogic
servers and the Oracle DBMS. Dealer transactions additionally use the software load

ORJLQ

D G G 9 H K LF OH 7 R& D U W

F K H F N 2 X W

ORJRX W

JR7 R+ RP H 3 D JH

3 8 5 & + $ 6 (

ORJLQ

V K RZ , QY H QW RU \

V H OO9 H K LF OH V �
F D QF H O2 S H Q2 U G H U V

ORJRX W

JR7 R+ RP H 3 D JH

0 $ 1 $ * (

Figure 6.7: Execution graphs for Purchase and Manage.

152 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

ORJLQ

RS H Q9 H K LF OH
& D W D ORJX H

JR7 R+ RP H 3 D JH

ORJRX W

E U RZ V H) RU H Z D U G �
% D F N Z D U G

� �

% 5 2 : 6 (

V F K H G X OH : RU N 2 U G H U

X S G D W H : RU N 2 U G H U

6 OH H S � � � � P V �

F RP S OH W H : RU N 2 U G H U

6 OH H S � � � � P V �

�

: 2 5 . 2 5 ' (5 �
/ $ 5 * (2 5 ' (5

Figure 6.8: Execution graphs for Browse, WorkOrder and LargeOrder.

balancer (HttpClusterServlet), which is deployed in a dedicated WebLogic server.
For a transaction to be processed by a WebLogic server, a thread must be allocated
from the server’s thread pool. If the database needs to be accessed, a database
connection from the server’s JDBC connection pool must be allocated.

Describe the Inter-Component Interactions and Processing Steps for
Each Workload Class

All of the five workload classes identified represent composite transactions. Fig-
ures 6.7 and 6.8 use execution graphs to illustrate the processing steps (i.e. the
subtransactions) of transactions from the different workload classes.

For every subtransaction, multiple system components are involved and they
interact to perform the respective operation. The inter-component interactions and
flow of control for subtransactions are depicted in Figure 6.9 by means of clien-
t/server interaction diagrams. Directed arcs show the flow of control from one node
to the next during execution. Depending on the path followed, different execution

6.3. CASE STUDY: MODELING SPECJAPPSERVER2004 153

scenarios are possible. For example, for dealer subtransactions two scenarios are
possible depending on whether the database needs to be accessed or not. Dealer
subtransactions that do not access the database (e.g. goToHomePage) follow the
path 1 → 2 → 3 → 4, whereas dealer subtransactions that access the database (e.g.
showInventory or checkOut) follow the path 1 → 2 → 3 → 5 → 6 → 7.

�$���6XEWUDQVDFWLRQV�RI�%URZVH��3XUFKDVH�DQG�0DQDJH

�%���6XEWUDQVDFWLRQV�RI�: RUN 2 UGHU�DQG�/ DUJH2 UGHU

& $ 6 ' % $ 6 &
� � � � �

& $ 6 ' % $ 6/ % &

&

� � �

�

� � �

Figure 6.9: Client/server interaction diagrams for subtransactions.

Since most dealer subtransactions do access the database, for simplicity, it is
assumed that all of them follow the path 1 → 2 → 3 → 5 → 6 → 7 in Figure 6.9.

Characterize Workload Classes in Terms of Their Service Demands and
Workload Intensity

Since the system is available for testing, the service demands can be determined by
injecting load into the system and taking measurements. Note that it is enough to
have a single WebLogic server available in order to do this, i.e. it is not required
to have a realistic production like testing environment. For each of the five work-
load classes a separate experiment was conducted injecting transactions from the
respective class and measuring the utilization of the various system resources. CPU
utilization was measured using the vmstat utility on Linux. The disk utilization of
the database server was measured with the help of the Oracle 9i Intelligent Agent,
which proved to have negligible overhead. Service demands were estimated using
the Service Demand Law (see Equation (6.1)) as described in Section 6.2.3.

Table 6.2 reports the estimated service demand parameters for the five request
classes in our workload model. Figure 6.10 summarizes this data in a graphical form.

154 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

It was decided to ignore network service demands, since all communications were
taking place over 1 GBit LAN and communication times were negligible. Therefore,
hereafter the network will be ignored in the workload and performance models.

Table 6.2: Workload service demand parameters.

Workload Class LB-C AS-C DB-C DB-D

Browse 42.72ms 130ms 14ms 5ms

Purchase 9.98ms 55ms 16ms 8ms

Manage 9.93ms 59ms 19ms 7ms

WorkOrder - 34ms 24ms 2ms

LargeOrder - 92ms 34ms 2ms

0 50 100 150 200 250

LargeOrder

WorkOrder

Manage

Purchase

Browse

LB-C AS-C DB-C DB-D

Figure 6.10: Workload service demand parameters (ms).

As evident from Table 6.2, database I/O service demands are much lower than
CPU service demands. This stems from the fact that data is cached in the database
buffer and, for the most part, disks are accessed only when updating or inserting new
data. However, even in this case, the I/O overhead is minimal, since the only thing
that is done is to flush the database log buffer, which is performed with sequential
I/O. Here we would like to point out that, being an application server benchmark,
SPECjAppServer2004 is designed to place the stress on the application server and

6.3. CASE STUDY: MODELING SPECJAPPSERVER2004 155

not on database I/O.
Note that in order to keep the workload model simple, it is assumed that the

total service demand of a transaction at a given system resource is spread evenly
over its subtransactions. Thus, the service demand of a subtransaction can be
estimated by dividing the measured total service demand of the transaction by the
number of subtransactions it has. Whether this simplification is acceptable will
become clear later when the model is validated. In case the estimation proves to
be too inaccurate, one might have to come back and refine the workload model by
measuring the service demands of subtransactions individually.

Now that the service demands of workload classes have been quantified, the work-
load intensity must be specified. For each workload class, the number of units of work
(transactions) that contend for system resources must be indicated. The way work-
load intensity is specified is dictated by the modeling objectives. In our case, work-
load intensity was defined in terms of the following parameters (see Section 6.3.1):

� Number of concurrent dealer clients (Browse, Purchase and Manage) and their
average think time (referred to as dealer think time).

� Number of planned production lines and the average time they wait after pro-
cessing a WorkOrder before starting a new one (referred to as manufacturing
think time or mfg think time for short).

With workload intensity specified in this way, all workload classes are automat-
ically modeled as closed. Two scenarios of interest were indicated when discussing
the modeling objectives in Section 6.3.1: operation under normal conditions and
operation under peak conditions. The values of the workload intensity parameters
for these two scenarios are shown in Table 6.3. However, the workload had been
forecast to grow by 300% and another goal of the study was to investigate the scal-
ability of the system as the load increases. Therefore, scenarios with up to 300%
higher workload intensity need to be considered as well.

Table 6.3: Workload intensity parameters.

Parameter Normal Conditions Peak Conditions

Browse Clients 40 100

Purchase Clients 16 26

Manage Clients 16 26

Planned Lines 50 100

Dealer Think Time 5 sec 5 sec

Mfg Think Time 10 sec 10 sec

156 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

6.3.4 Develop a performance model.

It is now shown how to build a QPN model of the system under study and then
the model is customized to the concrete configurations of interest. We start by
discussing the way basic components of the workload are modeled. During work-
load characterization, the following five workload classes were identified: Browse,
Purchase, Manage, WorkOrder and LargeOrder. All of them represent composite
transactions and are modeled using the following token types (colors):

Token ’B’ represents a Browse transaction.

Token ’P’ represents a Purchase transaction.

Token ’M’ represents a Manage transaction.

Token ’W’ represents a WorkOrder transaction.

Token ’L’ represents a LargeOrder transaction.

The subtransactions of transactions from the different workload classes were
shown in Figures 6.7 and 6.8. The inter-component interactions and flow of con-
trol for each subtransaction were illustrated in Figure 6.9. In order to make the
performance model more compact, the following simplifications are made:

� It is assumed that each server used during processing of a subtransaction is
visited only once and that the subtransaction receives all of its service demands
at the server’s resources during that single visit, i.e. the second visit to the
application server (AS) after visiting the database (see Figure 6.9) is dropped,
assuming that the subtransaction receives all of its service during the first
visit. This simplification is typical for queueing models and has been widely
employed.

� Similarly, during the service of a subtransaction at a server, for each server
resource used (e.g. CPUs, disk drives), it is assumed that the latter is visited
only one time, receiving the whole service demand of the subtransaction at
once.

These simplifications make it easier to model the flow of control during pro-
cessing of subtransactions. While characterizing the workload service demands in
Section 6.3.3, we additionally assumed that the total service demand of a transac-
tion at a given system resource is spread evenly over its subtransactions. Together
with the above two assumptions, this assumption allows us to consider the subtrans-
actions of a given workload class as equivalent in terms of processing behavior and
resource consumption. Thus, we can model subtransactions using a single token
type (color) per workload class as follows:

6.3. CASE STUDY: MODELING SPECJAPPSERVER2004 157

Token ’b’ represents a Browse subtransaction.

Token ’p’ represents a Purchase subtransaction.

Token ’m’ represents a Manage subtransaction.

Token ’w’ represents a WorkOrder subtransaction.

Token ’l’ represents a LargeOrder subtransaction.

For the sake of compactness, the following additional notation will be used:

Symbol ’D’ will be used to denote a ’B’, ’P’ or ’M’ token, i.e. token representing
a dealer transaction.

Symbol ’d’ will be used to denote a ’b’, ’p’ or ’m’ token, i.e. token representing a
dealer subtransaction.

Symbol ’o’ will be used to denote a ’b’, ’p’, ’m’, ’w’ or ’l’ token, i.e. token rep-
resenting a subtransaction of arbitrary type, hereafter called subtransaction
token.

To further simplify the model, we assume that LargeOrder transactions are exe-
cuted with a single subtransaction, i.e. their four subtransactions are bundled into
a single subtransaction. Thus, the total service demand of a LargeOrder transaction
at a given system resource is assumed to be received at once, during a single visit
to the resource. The effect of this simplification on the overall system behavior is
negligible, because large orders constitute only 10 percent of all orders placed, i.e.
relatively small portion of the system workload. Following these lines of thought,
one could consider LargeOrder transactions as non-composite and drop the small
’l’ tokens. However, in order to keep token definitions uniform across transaction
classes, we will keep the small ’l’ tokens and look at LargeOrder transactions as
being composed of a single subtransaction represented by an ’l’ token.

Following the guidelines for modeling the system components, resources and
inter-component interactions presented in Section 6.2.4, we arrive at the model
depicted in Figure 6.11.

Following is a brief description of the places used:

C1 : Queueing place with IS queue used to model the concurrent dealer clients
(Browse, Purchase and Manage) conducting dealer transactions in the system.
Only ’D’ tokens (’B’, ’P’ or ’M’) are allowed in this place and they represent
dealer transactions of the respective types. The time tokens spend in this
place corresponds to the time a dealer client waits after he has completed a
transaction before he starts a new one, i.e. the dealer think time. Therefore,
the service time of tokens at the queue of the place is equal to the average
dealer think time.

158 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

$�

$�

$1� �

$1

%�

%�
3

+

(

)

Z

R

R

R

R

R

R

R

R R

RR

RR

R R

R
R R

R R

R

RR

G� O

O

Z

:

G

/ RD G� % D OD Q F H U
'D WD E D V H � 6 H U Y H U

$ S S 6 H U Y H U � & OX V WH U

Z ZR

'

' G

: ZZ

:

O G '

&�

&�

W�

W�

W�

W�

W�

W�

W� W��

W�

W�� W��

W�� W��

W��� 1 W��� 1

W�� 1 W�� 1

*

3�S � � 3 X U F K D V H � � � � � � 0 �P � � 0 D Q D J H � � � � � % �E � � % U RZV H
: �Z � � :RU N 2 U GH U � � � � O� � / D U J H 2 U GH U
' � � 3 � � 0 � RU � %
G � � S � P � RU � E
R � � G� O� RU � Z

W�
G

/

GGG
W�

Figure 6.11: QPN model of the system.

C2 : Queueing place with IS queue used to model the planned production lines in
the manufacturing domain driving work order processing. Only ’W’ tokens
representing WorkOrder transactions are allowed in this place and the time
they spend here corresponds to the manufacturing think time. Therefore,
the service time of tokens at the queue of the place is equal to the average
manufacturing think time.

G : Ordinary place where dealer subtransaction tokens are created when new sub-
transactions are started.

L : Queueing place with PS queue used to model the CPU of the load balancer
machine.

E : Ordinary place where subtransaction tokens arrive before they are distributed
over the application server nodes.

A1..AN : Queueing places with PS queues used to model the CPUs of the N appli-
cation server nodes.

6.3. CASE STUDY: MODELING SPECJAPPSERVER2004 159

F : Ordinary place where subtransaction tokens arrive when visiting the database
server. From here tokens are evenly distributed over the two database server
CPUs.

B1, B2 : Queueing places with PS queues used to model the two CPUs of the
database server.

H : Queueing place with FCFS queue used to model the disk subsystem (made up
of a single 100 GB disk drive) of the database server.

P : Queueing place with IS queue used to model the virtual production line stations
that work orders move along during their processing. Only ’w’ tokens repre-
senting WorkOrder subtransactions are allowed in this place and the time they
spend here (i.e. their service time at the IS queue) corresponds to the average
delay at a production line station (i.e. 333 ms) emulated by the manufacturing
application during work order processing.

We now examine in detail the life-cycle of tokens in the QPN model. As already
discussed, upper-case tokens represent transactions, whereas lower-case tokens rep-
resent subtransactions. In the initial marking, tokens exist only in the depositories
of places C1 and C2. The initial number of ’D’ tokens (’B’, ’P’ or ’M’) in the depos-
itory of the former determines the number of concurrent dealer clients conducting
dealer transactions in the system, whereas the initial number of ’W’ tokens in the
depository of the latter determines the number of planned production lines running
in the manufacturing domain. When a dealer client starts a dealer transaction, tran-
sition t1 is fired destroying a ’D’ token from the depository of place C1 and creating
a ’d’ token in place G, which corresponds to starting the first subtransaction of the
dealer transaction. The flow of control during processing of subtransactions in the
system is modeled by moving their respective subtransaction tokens across the dif-
ferent places of the QPN. Starting at place G, a dealer subtransaction token (’d’) is
first sent to place L where it receives service at the CPU of the load balancer. After
that it is moved to place E and from there it is routed to one of the N application
server CPUs represented by places A1 to AN . Transitions t11, t13, . . . , t10+N have
equal firing probabilities (weights), so that subtransactions are evenly load-balanced
across the N application servers. Having completed its service at the application
server CPU, the dealer subtransaction token is moved to place F from where it is
sent to one of the two database server CPUs with equal probability (transitions t4
and t5 have equal firing weights). After completing its service at the CPU, the
dealer subtransaction token is moved to place H where it receives service from the
database disk subsystem. Once this is completed, the dealer subtransaction token
is destroyed by transition t8 and there are two possible scenarios:

160 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

1. A new ’d’ token is created in place G corresponding to starting the next dealer
subtransaction.

2. If there are no further subtransactions to be executed, the ’D’ token removed
from place C1 in the beginning of the transaction is now returned back to
place C1. In case the completed dealer transaction is of type Purchase (’P’)
and it has generated a large order, additionally a token ’l’ is created in place E.
Note that, since LargeOrder transactions are assumed to be executed with a
single subtransaction, to simplify the model, we create the subtransaction
token (’l’) directly, instead of first creating a transaction token (’L’). So, in
practice, ’L’ tokens are not used explicitly in the model.

After a ’D’ token of a completed transaction returns back to place C1, it spends
some time at the IS queue of the latter. This corresponds to the time the dealer
client ”thinks”before starting the next transaction. Once the dealer think time has
elapsed, the ’D’ token is moved to the depository and the next transaction is started.

When a WorkOrder transaction is started on a planned line in the manufac-
turing domain, transition t0 is fired destroying a ’W’ token from the depository of
place C2 and creating a ’w’ token in place E, which corresponds to starting the
first subtransaction of the work order. Since WorkOrder subtransaction requests
are load-balanced transparently (by the EJB client stubs) without using a load bal-
ancer, they are routed directly to the application server CPUs - places A1 to AN .
WorkOrder subtransaction tokens (’w’) move along the places representing the app-
lication server and database server resources exactly in the same way as dealer
subtransaction tokens (’d’). After completing their service at place H the following
two scenarios are possible:

1. The WorkOrder subtransaction token (’w’) is sent to place P whose IS queue
delays it for 333 ms, corresponding to the delay at a virtual production line
station. Following this the ’w’ token is destroyed by transition t10 and a new
’w’ token is created in place E, representing the next WorkOrder subtransac-
tion.

2. If there are no further subtransactions to be executed, the ’w’ token is de-
stroyed by transition t9 and the ’W’ token removed from place C2 in the
beginning of the WorkOrder transaction is now returned back to place C2.

After a ’W’ token of a completed transaction returns back to place C2, it spends
some time at the IS queue of the latter. This corresponds to the time waited after
completing a work order at a production line before starting the next one, i.e. the
manufacturing think time. Once this time has elapsed, the ’W’ token is moved to
the depository and the next WorkOrder transaction is started.

6.3. CASE STUDY: MODELING SPECJAPPSERVER2004 161

All transitions of the model are immediate and with exception of t8 and t9 they
all have equal weights for all of their firing modes. The assignment of firing weights
to transitions t8 and t9 is critical to achieving the desired behavior of transactions in
the model. Weights must be assigned in such a way that transactions are terminated
only after all of their subtransactions have been completed. We will now explain how
this is done, starting with transition t9 since this is the simpler case. Transition t9
has two firing modes as follows:

A) Mode ”w → w”: A ’w’ token is moved from place H to place P . This mode
corresponds to the case where a WorkOrder subtransaction has been com-
pleted, but its parent transaction is not finished yet, i.e. there are further
subtransactions to be executed. The parent transaction is delayed for 333 ms
at the production line station (place P) and then its next subtransaction is
started by depositing a new ’w’ token in place E.

B) Mode ”w →W”: A ’w’ token is destroyed from place H and a ’W’ token is
deposited in place C2. This mode corresponds to the case where a WorkOrder
subtransaction has been completed, leading to completion of its parent trans-
action, i.e. there are no further subtransactions to be executed. The ’W’ token
removed from place C2 in the beginning of the parent WorkOrder transaction
is now returned back.

According to Section 6.3.3 (Figure 6.8), WorkOrder transactions are comprised
of four subtransactions. This means that, for every WorkOrder transaction, four
subtransactions have to be executed before the transaction is completed, i.e. tran-
sition t9 has to be fired three consecutive times in mode ”w → w” and the fourth
time in mode ”w →W”. To enforce this behavior, the firing weights (probabilities)
of modes ”w → w” and ”w →W” are set to 3/4 and 1/4, respectively. Thus, out
of every four times a ’w’ token arrives in place H and enables transition t9, the
latter will be fired three times in mode ”w → w” and one time in mode ”w →W”
completing a WorkOrder transaction.

Transition t8, on the other hand, has the following eight firing modes we need
to assign weights to:

A) Mode ”b→ b”: A ’b’ token is removed from place H and a new ’b’ token
is created in place G. This mode corresponds to the case where a Browse
subtransaction has been completed, but its parent transaction is not finished
yet, i.e. there are further subtransactions to be executed. By creating a new
’b’ token in place G, the next subtransaction is started.

B) Mode ”b→ B”: A ’b’ token is removed from place H and a ’B’ token is de-
posited in place C1. This mode corresponds to the case where a Browse

162 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

subtransaction has been completed, leading to completion of its parent trans-
action, i.e. there are no further subtransactions to be executed. The ’B’ token
removed from place C1 in the beginning of the parent Browse transaction is
now returned back.

C) Mode ”p→ p”: A ’p’ token is removed from place H and a new ’p’ token
is created in place G. This mode corresponds to the case where a Purchase
subtransaction has been completed, but its parent transaction is not finished
yet, i.e. there are further subtransactions to be executed. By creating a new
’p’ token in place G, the next subtransaction is started.

D) Mode ”p→ P”: A ’p’ token is removed from place H and a ’P’ token is de-
posited in place C1. This mode corresponds to the case where a Purchase
subtransaction has been completed, leading to completion of its parent trans-
action, i.e. there are no further subtransactions to be executed. The ’P’ token
removed from place C1 in the beginning of the parent Purchase transaction is
now returned back.

E) Mode ”p→ P + l”: A ’p’ token is removed from place H and a ’P’ token
is deposited in place C1. In addition, an ’l’ token is deposited in place E.
This mode is equivalent to mode ”p→ P” above, with the exception that it
additionally assumes that the completed Purchase transaction has generated
a large order in the manufacturing domain. The LargeOrder transaction is
started by depositing an ’l’ token in place E.

F) Mode ”m→ m”: An ’m’ token is removed from place H and a new ’m’ token
is created in place G. This mode corresponds to the case where a Manage
subtransaction has been completed, but its parent transaction is not finished
yet, i.e. there are further subtransactions to be executed. By creating a new
’m’ token in place G, the next subtransaction is started.

G) Mode ”m→M”: An ’m’ token is removed from place H and an ’M’ token is
deposited in place C1. This mode corresponds to the case where a Manage
subtransaction has been completed, leading to completion of its parent trans-
action, i.e. there are no further subtransactions to be executed. The ’M’ token
removed from place C1 in the beginning of the parent Manage transaction is
now returned back.

H) Mode ”l→ ∅”: An ’l’ token is removed from place H. This mode corresponds
to the case where a LargeOrder transaction has been completed. Its token is
simply destroyed.

According to Section 6.3.3 (Figure 6.7), Browse transactions have 17 subtrans-
actions, whereas Purchase and Manage have only 5. This means that, for every

6.3. CASE STUDY: MODELING SPECJAPPSERVER2004 163

Browse transaction, 17 subtransactions have to be executed before the transaction
is completed, i.e. out of every 17 times a ’b’ token arrives in place H and enables
transition t8, the latter has to be fired 16 times in mode ”b→ b” and one time
in mode ”b→ B” completing a Browse transaction. To explain how firing weights
are assigned to enforce this behavior, let us look at transition t8’ firing modes as
8 possible events (A,B,C,...,H) in terms of probability theory. Each time the tran-
sition is enabled, one of the 8 events occurs. The firing weight of a mode is the
relative probability that its respective event occurs. Under these assumptions, the
above condition for the behavior of the Browse transaction can be expressed in the
following way:

P (A | A ∪B) =
16

17
(6.2)

or alternatively as

P (B | A ∪B) =
1

17
(6.3)

Applying some basic probability theory leads to

P (B | A ∪B) =
P (B ∩ (A ∪B))

P (A ∪B)
=

=
P (B)

P (A) + P (B)
=

1

17
(6.4)

which is equivalent to

P (B) =
1

16
P (A) (6.5)

Therefore, to enforce the desired behavior of Browse transactions, one needs to
simply make sure that the firing weights of modes A and B fulfill condition (6.5).
Applying the same reasoning to Manage transactions, we obtain the following con-
dition that the firing weights of modes F and G must fulfill:

P (G) =
1

4
P (F) (6.6)

Deriving the condition for achieving the right behavior of Purchase transactions
is a little more complicated. The following must be fulfilled:

P (D ∪ E | C ∪D ∪ E) =
1

5
(6.7)

Again, applying some basic probability theory leads to

P (D ∪ E | C ∪D ∪ E) =
P ((D ∪ E) ∩ (C ∪D ∪ E))

P (C ∪D ∪ E)
=

=
P (D ∪ E)

P (C ∪D ∪ E)
=

P (D) + P (E)

P (C) + P (D) + P (E)
=

1

5
(6.8)

164 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

which is equivalent to

P (D) + P (E) =
1

4
P (C) (6.9)

Since, on average 10 percent of all completed Purchase transactions generate
large orders, we have the following additional condition:

P (E | D ∪ E) =
1

10
(6.10)

P (E | D ∪ E) =
P (E ∩ (D ∪ E))

P (D ∪ E)
=

=
P (E)

P (D ∪ E)
=

P (E)

P (D) + P (E)
=

1

10
(6.11)

which is equivalent to

P (E) =
1

9
P (D) (6.12)

Finally, the following condition ensures that arriving tokens in place H are ”pro-
cessed”by transition t8 in an order independent of the token color:

P (A ∪B) = P (C ∪D ∪ E) = P (F ∪G) = P (H) (6.13)

This is equivalent to

P (A) + P (B) = P (C) + P (D) + P (E) =

= P (F) + P (G) = P (H) (6.14)

Therefore, in order to enforce the desired behavior of dealer transactions, the
weights of transition t8’ firing modes must be chosen in such a way that condi-
tions (6.5), (6.6), (6.9), (6.12) and (6.14) are fulfilled. Note that being relative
probabilities, the firing weights do not necessarily need to add up to 1. This leads
to a system of seven simultaneous equations (see (6.15)) with eight variables. One
possible solution is the following P (A) = 16, P (B) = 1, P (C) = 13.6, P (D) = 3.06,
P (E) = 0.34, P (F) = 13.6, P (G) = 3.4, P (H) = 17.

6.3. CASE STUDY: MODELING SPECJAPPSERVER2004 165

P (B) =
1

16
P (A)

P (G) =
1

4
P (F)

P (D) + P (E) =
1

4
P (C)

P (E) =
1

9
P (D)

P (A) + P (B) = P (C) + P (D) + P (E)

P (A) + P (B) = P (F) + P (G)

P (A) + P (B) = P (H)

(6.15)

The proposed performance model has the following input parameters:

1. Initial population of place C1, i.e. number of ’B’, ’P’ and ’M’ tokens, corre-
sponding to the number of concurrent dealer clients (Browse, Purchase and
Manage) conducting dealer transactions.

2. Initial population of place C2, i.e. number of ’W’ tokens, corresponding to the
number of planned production lines running in the manufacturing domain.

3. Service time of dealer transaction tokens (’B’, ’P’ and ’M’) at the IS queue of
place C1, corresponding to the average dealer think time.

4. Service time of work order transaction tokens (’W’) at the IS queue of place C2,
corresponding to the average manufacturing think time.

5. Service times of subtransaction tokens (’b’, ’p’, ’m’, ’w’ and ’l’) at the queues
of places Ai, Bj and H.

6. Service times of dealer subtransaction tokens (’b’, ’p’ and ’m’) at the queue of
place L.

166 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

7. Number of application server nodes N .

The workload intensity and service demand parameters from Section 6.3.3 (Ta-
bles 6.2 and 6.3) are used here to provide values for the above parameters. A
separate set of parameter values is specified for each workload scenario considered.
The service times of subtransactions at the queues of the model (items 5 and 6 in
the list above) are estimated by dividing the total service demands of the respective
transactions by the number of subtransactions they have.

6.3.5 Validate, refine and/or calibrate the model.

The model developed in the previous sections is now validated by comparing its
predictions against measurements on the real system. Measurements are collected
in the testing environment depicted in Figure 6.12. For details on the hardware
and software used refer to Table 6.1. Two application server nodes are available
for the validation experiments. The driver machine runs a modified version of the
SPECjAppServer2004 driver that allows the user to configure precisely the trans-
action mix and intensity of the workload injected into the system. Specifically, the
modified driver allows the user to set the number of concurrent dealer clients of each
class emulated, as well as their average think time. Moreover, the user can specify
the number of planned production lines run in the manufacturing domain and the
time they wait after processing a work order before starting a new one, i.e. the
manufacturing think time.

'DWDEDVH�6HUYHU

� �* % L W
/ $ 1

'UL YHU �

�

�

/ R DG �% DO DQ F HU

6X S S O L HU�(P X O DWR U

$ S S O L F DWL R Q �6HUYHU�& O X VWHU

+773

- '% &

5 0 ,

+773

+773

Figure 6.12: System testing environment.

The model predictions are verified for a number of different scenarios under

6.3. CASE STUDY: MODELING SPECJAPPSERVER2004 167

different transaction mixes and workload intensities. The model input parameters
for two specific scenarios considered here are shown in Table 6.4.

Table 6.4: Input parameters for validation scenarios.

Parameter Scenario 1 Scenario 2

Browse Clients 20 40

Purchase Clients 10 20

Manage Clients 10 30

Planned Lines 30 50

Dealer Think Time 5 sec 5 sec

Mfg Think Time 10 sec 10 sec

Table 6.5 compares the model predictions against measurements on the real sys-
tem. The metrics considered are transaction throughput (Xi), transaction response
time (Ri) and server utilization (ULB for the load balancer, UAS for the applica-
tion server and UDB for the database server). Since LargeOrder transactions are
processed asynchronously, they do not have a response time metric. The maximum
modeling error for throughput is 8.1%, for utilization 10.2% and for response time
12.9%. Varying the transaction mix and workload intensity led to predictions of
similar accuracy. Since these results are reasonable, the model is considered valid.
Note that the model validation process is iterative in nature and is usually repeated
multiple times as the model evolves. Even though the model is deemed valid at this
point of the study, as we will see later, the model might lose its validity when it is
modified in order to reflect changes in the system. Generally, it is required that the
validation process is repeated after every modification of the model. However, even
if the model has not been modified, it is recommended that validation is performed
on a regular basis as the system and workload evolve.

6.3.6 Use model to predict system performance.

In Section 6.3.1 the following concrete goals were set for the performance study:

1. Predict the performance of the system under normal operating conditions with
4 and 6 WebLogic servers, respectively.

2. Determine if 6 WebLogic servers would be enough to ensure that the average
response times of business transactions do not exceed half a second during
peak conditions.

168 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

Table 6.5: Validation results.

Validation Scenario 1 Validation Scenario 2

METRIC Model Measured Error Model Measured Error

XB 3.784 3.718 +1.8% 6.988 6.913 +1.1%

XP 1.948 1.963 -0.7% 3.781 3.808 -0.7%

XM 1.940 1.988 -2.4% 5.634 5.530 +1.9%

XW 2.713 2.680 +1.2% 4.469 4.510 -0.9%

XL 0.197 0.214 -8.1% 0.377 0.383 -1.56%

RB 289ms 256ms +12.9% 704ms 660ms +6.7%

RP 131ms 120ms +9.2% 309ms 305ms +1.3%

RM 139ms 130ms +6.9% 329ms 312ms +5.4%

RW 1087ms 1108ms -1.9% 1199ms 1209ms -0.8%

ULB 20.1% 19.5% +3.1% 39.2% 40.3% -2.7%

UAS 41.3% 38.5% +7.3% 81.8% 83.0% -1.4%

UDB 9.7% 8.8% +10.2% 19.3% 19.3% 0.0%

3. Predict how much system performance would improve if the load balancer is
upgraded with a faster CPU.

4. Study the scalability of the system as the workload intensity increases and
additional WebLogic servers are added.

5. Determine which servers would be most utilized under heavy load and inves-
tigate if they are potential bottlenecks.

The system model is now used to predict the performance of the system for the
scenarios mentioned above. In order to validate our approach, for each scenario
considered we will compare the model predictions against measurements on the real
system. Note that this validation is not part of the methodology itself and normally
it does not have to be done. Indeed, if we would have to validate the model results
for every scenario considered, there would be no point in using the model in the
first place. The reason we validate the model results here is to demonstrate the
effectiveness of our methodology and showcase the predictive power of the QPN
models it is based on.

Table 6.6 reports the analysis results for the scenarios under normal operating
conditions with 4 and 6 application server nodes. In both cases, the model pre-
dictions are very close to the measurements on the real system. Even for response
times, the modeling error does not exceed 10.1 percent.

6.3. CASE STUDY: MODELING SPECJAPPSERVER2004 169

Table 6.6: Analysis results for scenarios under normal conditions with 4 and 6 app.
server nodes.

4 App. Server Nodes 6 App. Server Nodes

METRIC Model Measured Error Model Measured Error

XB 7.549 7.438 +1.5% 7.589 7.415 +2.3%

XP 3.119 3.105 +0.5% 3.141 3.038 +3.4%

XM 3.111 3.068 +1.4% 3.117 2.993 +4.1%

XW 4.517 4.550 -0.7% 4.517 4.320 +4.6%

XL 0.313 0.318 -1.6% 0.311 0.307 +1.3%

RB 299ms 282ms +6.0% 266ms 267ms -0.4%

RP 131ms 119ms +10.1% 116ms 110ms +5.5%

RM 140ms 131ms +6.9% 125ms 127ms -1.6%

RW 1086ms 1109ms -2.1% 1077ms 1100ms -2.1%

ULB 38.5% 38.0% +1.3% 38.7% 38.5% +0.1%

UAS 38.0% 35.8% +6.1% 25.4% 23.7% +0.7%

UDB 16.7% 18.5% -9.7% 16.7% 15.5% +0.8%

Table 6.7: Analysis results for scenarios under peak conditions with 6 app. server
nodes.

Original Load Balancer Upgraded Load Balancer

METRIC Model Measured Error Model Measured Error

XB 17.960 17.742 +1.2% 18.471 18.347 +0.7%

XP 4.981 4.913 +1.4% 5.027 5.072 -0.8%

XM 4.981 4.995 -0.3% 5.013 5.032 -0.4%

XW 8.984 8.880 +1.2% 9.014 8.850 +1.8%

XL 0.497 0.490 +1.4% 0.501 0.515 -2.7%

RB 567ms 534ms +6.2% 413ms 440ms -6.5%

RP 214ms 198ms +8.1% 182ms 165ms +10.3%

RM 224ms 214ms +4.7% 193ms 187ms +3.2%

RW 1113ms 1135ms -1.9% 1115ms 1123ms -0.7%

ULB 86.6% 88.0% -1.6% 68.2% 70.0% -2.6%

UAS 54.3% 53.8% +0.9% 55.4% 55.3% +0.2%

UDB 32.9% 34.5% -4.6% 33.3% 35.0% -4.9%

170 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

Table 6.7 shows the model predictions for two scenarios under peak conditions
with 6 application server nodes. The first one uses the original load balancer, while
the second one uses an upgraded load balancer with a faster CPU. The faster CPU
results in lower service demands as shown in Table 6.8. With the original load
balancer, six application server nodes turned out to be insufficient to guarantee
average response times of business transactions below half a second. However, with
the upgraded load balancer this was achieved. In the rest of the scenarios considered,
the upgraded load balancer will be used.

Table 6.8: Load balancer service demands.

Load Balancer Browse Purchase Manage

Original 42.72ms 9.98ms 9.93ms

Upgraded 32.25ms 8.87ms 8.56ms

Table 6.9: Analysis results for scenarios under heavy load with 8 app. server nodes.

Heavy Load Scenario 1 Heavy Load Scenario 2

METRIC Model Measured Error Model Measured Error

XB 26.505 25.905 +2.3% 28.537 26.987 +5.7%

XP 4.948 4.817 +2.7% 4.619 4.333 +6.6%

XM 4.944 4.825 +2.5% 4.604 4.528 +1.6%

XW 8.984 8.820 +1.8% 9.003 8.970 +0.4%

XL 0.497 0.488 +1.8% 0.460 0.417 +10.4%

RB 664ms 714ms -7.0% 2012ms 2288ms -12.1%

RP 253ms 257ms -1.6% 632ms 802ms -21.2%

RM 263ms 276ms -4.7% 630ms 745ms -15.4%

RW 1116ms 1128ms -1.1% 1123ms 1132ms -0.8%

ULB 94.1% 95.0% -0.9% 99.9% 100.0% -0.1%

UAS 54.5% 54.1% +0.7% 57.3% 55.7% +2.9%

UDB 38.8% 42.0% -7.6% 39.6% 42.0% -5.7%

We now investigate the behavior of the system as the workload intensity increases
beyond peak conditions and further application server nodes are added. Table 6.9
shows the model predictions for two scenarios with an increased number of concur-
rent Browse clients, i.e. 150 in the first one and 200 in the second one. In both

6.3. CASE STUDY: MODELING SPECJAPPSERVER2004 171

scenarios the number of application server nodes is 8. As evident from the results,
the load balancer is completely saturated when increasing the workload intensity
and it becomes a bottleneck limiting the overall system performance. Therefore,
adding further application server nodes would not bring any benefit, unless the load
balancer is replaced with a faster one.

Since the load balancer is the bottleneck resource, it is interesting to investigate
its behavior a little further. Until now it was assumed that when a request arrives
at the load balancer, there is always a free thread which can start processing it
immediately, i.e. there is no thread contention. However, if one keeps increasing
the workload intensity, the number of concurrent requests at the load balancer will
eventually exceed the number of available threads. The latter would lead to thread
contention, resulting in additional delays at the load balancer, not captured by our
system model. This is a typical example how a valid model may lose its validity as
the workload evolves. We will now show how the model can be refined to capture
the thread contention at the load balancer. As discussed in Section 6.2.4, passive
system resources such as threads can be modeled as tokens inside ordinary places.
In Figure 6.13, an extended version of our system model is shown, which includes
an ordinary place T representing the load balancer thread pool. Before a dealer
request (i.e. dealer subtransaction token ’d’) is scheduled for processing at the load
balancer CPU (place L), a token ’t’ representing a load balancer thread is allocated
from the thread pool (place T). After the dealer request has been served at the load
balancer CPU, the thread token is returned back to the thread pool. Thus, if an
arriving dealer request finds no available thread tokens in the thread pool, it will
have to wait in place G until a thread is released. The initial population of place T
determines the number of threads in the load balancer thread pool.

At first sight, this appears to be the right approach to model the thread con-
tention at the load balancer. However, an attempt to validate the extended model
reveals a significant discrepancy between the model predictions and measurements
on the real system. In particular, it stands out that predicted response times are
much lower than measured response times for dealer transactions with low work-
load intensities. A closer investigation shows that the problem is in the way dealer
subtransaction tokens arriving in place G are scheduled for processing at the load
balancer CPU (place L). Dealer subtransaction tokens become available for firing of
the output transition t2 immediately upon their arrival at place G. Thus, whenever
arriving tokens are blocked in place G (because of lack of threads) their order of
arrival is lost. After a thread is released, transition t2 fires in one of its enabled
modes (’b’,’p’ or ’m’) with equal probability. Therefore, the order in which waiting
subtransaction tokens are scheduled for processing at the load balancer CPU does
not match the order of their arrival at place G. This obviously does not reflect the
way the real system works and renders the model unrepresentative.

172 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

$�

$�

$1� �

$1

%�

%�
3

+

(

)

Z

R

R

R

R

R

R

R

R R

RR

RR

R R

R
R R

R R

R

RR

G� O

O

Z

:

G

/ RD G� % D OD Q F H U

'D WD E D V H � 6 H U Y H U

$ S S 6 H U Y H U � & OX V WH U

Z ZR

'

' G

: ZZ

:

O G '

&�

&�

W�

W�

W�

W�

W�

W�

W� W��

W�

W�� W��

W�� W��

W��� 1 W��� 1

W�� 1 W�� 1

*

3�S � � 3 X U F K D V H � � � � � � 0 �P � � 0 D Q D J H � � � � � % �E � � % U RZV H
: �Z � � :RU N 2 U GH U � � � � O � � / D U J H 2 U GH U
' � � 3 � � 0 � RU � %
G � � S � P � RU � E
R � � G� O� RU � Z

W�
G

/

GGG
W�

7
W W

Figure 6.13: Extended QPN model of the system (capturing thread contention at
the load balancer).

On average, dealer transactions with high workload intensity would be expected
to have more subtransaction tokens blocked in place G (waiting for threads) than
dealer transactions with low workload intensities. However, when choosing the next
subtransaction token to schedule for processing, all subtransaction types are treated
equally irrespective of the arrival order of their tokens. Thus, if one hundred ’b’ to-
kens followed by a single ’p’ token arrive at place G and are blocked because of
no available threads, the ’p’ token would have 50% chance of being scheduled next
when a thread becomes available, overtaking the one hundred ’b’ tokens. This ex-
plains why predicted response times were shorter than measured response times for
transactions with low workload intensities.

The above situation describes a common drawback of QPN models, i.e. tokens
inside ordinary places and depositories are not distinguished in terms of their or-
der of arrival. In order to address this problem, SimQPN introduces the notion of
departure disciplines for ordinary places and depositories. The departure discipline
determines the order in which arriving tokens become available for output transi-
tions of the place or depository. Currently, two departure disciplines are supported,
Normal (used by default) and First-In-First-Out (FIFO). The former implies that

6.3. CASE STUDY: MODELING SPECJAPPSERVER2004 173

tokens become available for output transitions immediately upon arrival just like
in conventional QPN models. The latter implies that tokens become available for
output transitions in the order of their arrival, i.e. a token can leave the place/de-
pository only after all tokens that have arrived before it have left, hence the term
FIFO.

Coming back to the problem above with the way thread contention is modeled,
we now change the departure discipline of place G from Normal to FIFO. This
ensures that subtransaction tokens waiting at place G are scheduled for processing
in the order in which they arrive. After this change, the model passes the validation
tests and can be used for performance prediction.

We now consider two additional heavy load scenarios with an increased num-
ber of concurrent dealer clients leading to thread contention in the load balancer.
The workload intensity parameters for the two scenarios are shown in Table 6.10.
The first scenario has a total of 360 concurrent dealer clients, the second 420.
Table 6.11 compares the model predictions for the first scenario in two configurations
with 8 application server nodes and 15 and 30 load balancer threads, respectively.
Table 6.12 presents the same results for the second scenario in a configuration with
8 application server nodes and 20 load balancer threads. In addition to response
times, throughput and utilization, the average length of the load balancer thread
queue (NLBTQ) is considered. The latter corresponds to the average token popula-
tion of place G. As evident from the results, the model predictions are very close
to the measurements and even for response times the modeling error does not ex-
ceed 16.8%. Repeating the analysis for a number of variations of the model input
parameters led to results of similar accuracy.

Table 6.10: Workload intensity parameters for heavy load scenarios with thread
contention.

Parameter Heavy Load Sc. 3 Heavy Load Sc. 4

Browse Clients 300 270

Purchase Clients 30 90

Manage Clients 30 60

Planned Lines 120 120

Dealer Think Time 5 sec 5 sec

Mfg Think Time 10 sec 10 sec

174 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

Table 6.11: Analysis results for heavy load scenario 3 with 15 and 30 load balancer
threads and 8 app. server nodes.

Heavy Load Sc. 3 with 15 Thr. Heavy Load Sc. 3 with 30 Thr.
METRIC Model Measured Error Model Measured Error
XB 28.607 27.323 +4.7% 28.590 27.205 +5.1%
XP 4.501 4.220 +6.7% 4.499 4.213 +6.8%
XM 4.489 4.387 +2.3% 4.494 4.485 +0.2%
XW 10.784 10.660 +1.2% 10.793 10.800 -0.1%
XL 0.447 0.410 +9.0% 0.450 0.446 +0.1%

RB 5495ms 5740ms -4.2% 5495ms 5805ms -5.3%
RP 1674ms 1977ms -15.3% 1665ms 2001ms -16.8%
RM 1685ms 1779ms -5.3% 1670ms 1801ms -7.3%
RW 1125ms 1158ms -2.8% 1125ms 1143ms -1.6%

ULB 100.0% 93.0% +7.5% 99.9% 100.0% -0.1%
UAS 57.9% 57.8% +0.2% 57.9% 58.0% -0.2%
UDB 41.6% 44.0% -5.5% 41.6% 44.0% -5.5%

NLBTQ 146 161 -9.3% 131 146 -10.3%

Table 6.12: Analysis results for heavy load scenario 4 with 20 load balancer threads
and 8 app. server nodes.

Heavy Load Sc. 4 with 20 Threads

METRIC Model Measured Error

XB 24.978 24.655 +1.3%

XP 13.305 12.795 +4.0%

XM 8.867 8.580 +3.3%

XW 10.766 10.290 +4.6%

XL 1.333 1.317 +1.2%

RB 5808ms 5784ms +0.4%

RP 1772ms 1996ms -11.2%

RM 1782ms 1810ms -1.5%

RW 1145ms 1179ms -2.8%

ULB 100.0% 95.0% +5.3%

UAS 62.4% 65.4% -4.6%

UDB 51.7% 61.0% -15.2%

NLBTQ 151 150 +0.7%

6.3. CASE STUDY: MODELING SPECJAPPSERVER2004 175

6.3.7 Analyze results and address modeling objectives.

We can now use the results from the performance analysis to address the goals es-
tablished in Section 6.3.1. By means of the developed QPN model, we were able to
predict the performance of the system under normal operating conditions with 4 and
6 WebLogic servers. It turned out that using the original load balancer, six applica-
tion server nodes were insufficient to guarantee average response times of business
transactions below half a second. Upgrading the load balancer with a slightly faster
CPU led to the CPU utilization of the load balancer dropping by a good 20 per-
cent. As a result, the response times of dealer transactions improved by 15 to 27
percent, meeting the ”half a second”requirement. However, increasing the workload
intensity beyond peak conditions revealed that the load balancer was a bottleneck
resource, preventing us to scale the system by adding additional WebLogic servers
(see Figure 6.14). Therefore, in light of the expected workload growth, the company
should either replace the load balancer machine with a faster one or consider using
a more efficient load balancing method. After this is done, the performance analysis
should be repeated with the new load balancer to make sure that there are no other
system bottlenecks. It should also be ensured that the load balancer is configured
with enough threads so that there is no thread contention.

0 20 40 60 80 100

4AS / NORMAL

6AS / NORMAL

6AS / PEAK / ORIG. LB

6AS / PEAK / UPG. LB

8AS / HEAVY 1

8AS / HEAVY 2

8AS / HEAVY 3

8AS / HEAVY 4

LB-C AS-C DB-C

Figure 6.14: Predicted server CPU utilization in considered scenarios.

176 CHAPTER 6. PERFORMANCE MODELING METHODOLOGY

6.4 Concluding Remarks

In this chapter, a practical performance modeling methodology for DCS was pre-
sented. The methodology takes advantage of the modeling power and expressiveness
of the QPN modeling formalism to improve model representativeness and enable ac-
curate performance prediction. We presented a detailed case study in which a model
of a realistic DCS was constructed and used to analyze its performance and scalabil-
ity. The model representativeness was validated by comparing its predictions against
measurements on the real system. A number of different deployment configurations
and workload scenarios were considered. In addition to CPU and I/O contention,
it was shown how some more complex aspects of system behavior, such as thread
contention and asynchronous processing, can be modeled. The model proved to
accurately reflect the performance and scalability characteristics of the system un-
der study. The modeling error for transaction response time did not exceed 21.2%
and was much lower for transaction throughput and resource utilization. The pro-
posed performance modeling methodology provides a powerful tool for performance
engineering of DCS.

Chapter 7

Related Work

I think there is a world market for maybe five

computers.

– Thomas J. Watson, Chairman of IBM, 1943

7.1 Benchmarking DCS

In this section, we review some related work in the area of benchmarking and per-
formance evaluation of DCS using artificial workloads.

Standard Benchmarks The Transaction Processing Performance Council (TPC)
has released two benchmarks that can be used for benchmarking DCS. The first one
is the TPC Benchmark� W (TPC-W) [165], which has been available since 2000.
The second one is the TPC Benchmark� App (TPC-App) [164], which was released
in December, 2004. It is important to note that, unlike SPEC, TPC does not provide
implementations of its benchmarks. A TPC benchmark is essentially a specification
that defines an application and a set of requirements on the workload that has to be
run. The user is expected to implement the benchmark application and workload
on the platform to be tested. Having said that, we now take a closer look at the
two benchmarks mentioned above.

TPC-W is a transactional Web benchmark. It comprises a set of basic opera-
tions designed to exercise business-oriented transactional Web servers. These basic
operations have been given a real-life context, portraying the activity of a retail
store Web site supporting user browsing, searching and online ordering functional-
ity. The majority of visitor activity is browsing. Some percentage of all visits result

177

178 CHAPTER 7. RELATED WORK

in submitting a new order. In addition to using the system as a store-front, it is
also used for administration of the Web site.

TPC-App, on the other hand, is an application server and Web Services bench-
mark. It comprises a set of basic operations designed to exercise transactional app-
lication server functionality in a manner representative of business-to-business Web
service environments. TPC-App showcases the performance capabilities of applica-
tion server systems. It does not benchmark the logic needed to process or display the
presentation layer (for example, HTML) to the clients. The application portrayed
by the TPC-App is a retail distributor on the Internet with ordering and product
browsing scenarios. The majority of requests generate order purchase activity with
a smaller portion requesting item catalog information.

While, TPC-W and TPC-App may look similar to SPECjAppServer2004, none
of them comes close to the scope and complexity of the workload modeled by SPEC-
jAppServer2004. In addition to online order processing, SPECjAppServer2004 mod-
els just-in-time manufacturing and supply chain management, which are not covered
by either TPC-W or TPC-App. Another difference is that SPECjAppServer2004
measures the performance of an end-to-end DCS, encompassing all platform services
used to implement the presentation, business and data logic, including dynamic Web
page generation, transaction processing, asynchronous messaging, database connec-
tivity, persistence, etc. Both TPC-W and TPC-App, on the other hand, are focused
on subsets of these services. For example, TPC-W does not cover asynchronous
messaging, whereas TPC-App does not cover dynamic Web page generation.

Proprietary Benchmarks Beside industry-standard benchmarks, a number of
proprietary benchmarks for DCS have been developed and used in the industry. For
example, IBM has been using Trade3 [67] - the third generation of the WebSphere
end-to-end benchmark and performance sample application. The Trade3 workload
models an online stock brokerage application and has been designed to showcase the
performance and scalability of the key components and features of the WebSphere
platform.

Another example is the Java�Pet Store Demo [156] - a J2EE sample application
developed under the J2EE Blueprints program at Sun Microsystems. The Java
Pet Store application demonstrates how to use the capabilities of the J2EE platform
to develop flexible, scalable and cross-platform enterprise applications. Although it
was never meant as a benchmark, several companies have used the Java Pet Store
to test and showcase the performance of their products. This has led to some
contradictive performance comparisons and marketing claims [3, 120, 122, 124, 163].

Two other proprietary benchmarks that have been used to compare middleware
platforms are Doculabs’ Nile @Bench benchmark [121] and Urbancode’s EJB Bench-
mark [168]. The .NET Framework Community (GotDotNet) hosts a Web site [123]
containing resources on evaluating Microsoft .NET vs. J2EE application server tech-

7.1. BENCHMARKING DCS 179

nologies. Some free benchmarking suites for CORBA-based systems are available
from Charles University Distributed System Group’s Web page [40].

Open-Source Benchmarks In the open-source arena, the ObjectWeb open-
source middleware consortium has initiated the JMOB (Java Middleware Open
Benchmarking) [128] project with the aim to support the development and dis-
tribution of open-source middleware benchmarks. Several benchmarks are currently
available including RUBiS (Rice University Bidding System) [129] - an auction site
prototype modeled after eBay.com, Stock-Online [130] - a simple online stockbroking
system, and RUBBoS [127] - bulletin board benchmark modeled after an online news
forum like Slashdot.org.

Applications of Benchmarks in Research Numerous research articles have
been published that exploit benchmarks for studying different aspects of the perfor-
mance and scalability of DCS.

In [70] we use the Java�Pet Store application to evaluate the impact on system
performance when introducing Web Service interfaces to an originally tightly cou-
pled application. Using two implementation variants of the application, one based
strictly on the J2EE 1.3 platform and the other implementing some interfaces as
Web Services, performance is compared in terms of the achieved overall throughput,
response time and latency.

In [37], Cecchet et al. use the RUBiS benchmark to investigate the combined
effect of the application implementation method, container design and efficiency
of communication layers on the performance and scalability of J2EE application
servers. Five different EJB implementations of the auction site are compared: state-
less session beans (SMP), entity beans with CMP, entity beans with BMP, entity
beans with session façade beans, and EJB 2.0 local interfaces (entity beans with
only local interfaces and session façade beans with remote interfaces). In addition,
a Java servlets-only version that does not use EJB is considered. The results of
the study are quite interesting, however, unfortunately only open-source applica-
tion servers have been considered and it is not clear to what extent the conclusions
can be generalized to commercial application servers.

Ran et al. [136] developed the Stock-Online [130] benchmark and used it to eval-
uate competing J2EE platforms and compare their performance and scalability [60].
The benchmark was developed as part of CSIRO’s Middleware Technology Evalua-
tion (MTE) project and was later made open-source [128]. It has also been applied
to test different J2EE programming idioms and design patterns [59]. Furthermore,
based on the benchmark, a J2EE performance tuning methodology was developed.

In [27, 28], Brebner and Gosper use the ECperf benchmark to evaluate the scal-
ability of the J2EE platform in general. They analyze the published ECperf results
and find some trends and correlations indicating that the J2EE technology is very

180 CHAPTER 7. RELATED WORK

scalable, both in a scale-up and scale-out manner. Other observed trends include,
a linear correlation between middle-tier total processing power and throughput, as
well as between J2EE application server license costs and throughput. However,
the results clearly indicate that there is an increasing cost per user with increasing
capacity systems, and scale-up is proportionately more expensive than scale-out.

Karlsson et al. [72] use the ECperf benchmark to study the memory system
behavior of commercial J2EE-based middleware. They present a detailed character-
ization of the memory system behavior of ECperf running on both commercial server
hardware and in a simulated environment. In [73] they extend their study by com-
paring ECperf against SPECjbb2000. In [176], Zhang et al. present a comparison
of ECperf against IBM’s Trade2 benchmark.

Basilio [9] uses the ECperf workload in order to evaluate the performance of the
BEA WebLogic JRockit JVM on the Itanium II platform. The internals of JVMs
in general and JRockit in particular are deeply studied, and issues like JRockits
performance, scalability, reliability and tuning options are tested, compared to other
JVMs and analyzed.

Cain et al. [34] characterize the memory system and branch predictor behavior
of a Java Servlet implementation of TPC-W. They evaluate the effectiveness of
a coarse-grained multi-threaded processor at increasing system throughput using
TPC-W and other commercial workloads. The results show a system throughput
improvement from 8% to 41% for a two context processor, and 12% to 60% for a four
context uniprocessor over a single-threaded uniprocessor, despite decreased branch
prediction accuracy and cache hit rates.

Chalainanont et al. [39] use the SPECjAppServer2002 benchmark as a repre-
sentative workload to investigate the performance of L3 cache of Java Application
servers. Shared L3 cache with sizes ranging from 4M to 1G are simulated utilizing
the Programmable Hardware-Assisted Cache Emulator (PHA$E). Additionally, the
impact of heap size and garbage collection method on the behavior of the L3s under
study is analyzed. Heap sizes of 0.75G to 1.5G are simulated. Parallel and genera-
tional concurrent garbage collection methods are compared. Finally, the push cache
technique that has the priority agent to place updated lines to the cache in place of
sending read invalidate requests is evaluated.

Lixin et al. [153] compare the SPECjAppServer2002 and SPECjAppServer2004
workloads in terms of system behavior, execution profile and microarchitecture per-
formance characteristics. Their results show that SPECjAppServer2004 demands
significantly more system resources. The after GC heap size increases by more than
2 times, the disk traffic rises by more than 10 times. The new workload also stresses
the JVM more than the Java code. The JVM’s execution time portion increases
by roughly 20% from 6.4% to 7.9%. At the microarchitectural level, the new work-
load results in about 13% more branches per instruction and a 19% higher branch
misprediction ratio.

7.2. TOOLS/TECHNIQUES FOR QPN ANALYSIS 181

7.2 Tools/Techniques for QPN Analysis

A large body of work exists on analysis techniques for QN and SPN models. There
have been numerous attempts to address the largeness problem, resulting in many
exact and approximate analysis techniques. A number of numerical analysis meth-
ods, most of them based on model decomposition, have been proposed [30, 32, 47,
49, 56, 76, 77, 96]. Furthermore, many efficient simulation techniques for SPNs
are available [57, 75, 79, 118]. Based on the above analysis techniques, numerous
analysis tools for QNs and/or SPNs have been developed. Some of the more pop-
ular ones are TimeNET [58, 177], Möbius [48, 50], SPNP [46, 64], SMART [45],
UltraSAN [142], GreatSPN [44], SHARPE [63], PEPSY-QNS [25], QNAT [74] and
RASQ [71].

However, none of the above mentioned tools support QPN models. To the best
of our knowledge [167], there is currently only one tool available for modeling and
analysis using QPNs. This is the HiQPN-Tool [14] that we used in Chapter 4. The
latter allows the hierarchical specification of QPN models and supports a number of
methods that exploit the hierarchical structure for efficient numerical analysis. The
main idea is to represent the huge generator matrix of the underlying Markov chain
by much smaller matrices, each describing a submodel, which are combined using
tensor operations [30, 31]. This technique, called structured analysis, allows models
to be solved that are about an order of magnitude larger than those analyzable with
conventional techniques [13]. A salient property of the hierarchical approach is that
it does not depend on model symmetries and leads to exact results. The HiQPN-
Tool supports a number of structured analysis methods, including Structured Power,
Structured SOR and Structured JOR. In addition, some approximation analysis
methods are supported. While the structured analysis approach does alleviate the
largeness problem, as shown in Chapter 4, it does not eliminate it since models of
realistic systems are still too large to be numerically tractable.

7.3 Performance Engineering of DCS

In this section, we review some related work on methodologies for performance
engineering of DCS exploiting model-based performance prediction techniques.

Mania and Murphy [100] have been working on a technique that automatically
builds performance models from trace files generated by non-intrusive monitoring of
a J2EE-based server. The model helps developers to understand the behavior of the
system and improve its performance. However, no implementation of the framework
is available yet.

Larsson et al. [90] describe a methodology for predicting the behavior of a prod-
uct software system before it is built. They have proposed the use of a prediction
enabled component technology for developing and maintaining a component-based

182 CHAPTER 7. RELATED WORK

product line architecture in the real-time system’s domain. They illustrate pre-
dictability of assemblies for the specified component model considering two concrete
assembly’s properties from a real-time product line’s point of view: version consis-
tency and end-to-end deadline.

Dumitrascu et al. [53] have proposed a high-level methodology for predicting the
performance of component-based applications. Their methodology is focused on Mi-
crosoft .NET-based systems and is based on creating performance profiles for .NET
components, assemblies and connection types. A ”divide-and-conquer”strategy is
used to estimate the performance attributes of an assembly on the basis of the perfor-
mance attributes of the single components. No implementation of the methodology
is available yet.

Chen et al. [41, 42] propose an empirical approach to determine the performance
characteristics of component-based applications by benchmarking and profiling. A
set of test cases are run to exercise components and measure their behavior. Em-
pirical measures are then used to construct a performance model that describes
the generic performance behavior of the respective class of component-based appli-
cations (for e.g. J2EE, .NET or CORBA). Applications are viewed as black-boxes
and the models used are very simplistic because they do not capture any application-
specific behavior. As a result, the information that can be obtained by analyzing
the models is very limited.

Balsamo and Marzolla [7, 103] propose an algorithm for deriving simulation
models from software architecture specifications. The proposed algorithm generates
a process-oriented simulation model from annotated UML use case, activity and
deployment diagrams. Simulation provides performance results that are inserted
into the UML diagrams as tagged values. The methodology has been implemented
into a prototype tool called UML-ψ (UML Performance SImulator). Currently only
active resources are supported.

In [105] Mc Guinness et al. use the open-source modeling tool Ptolemy II [17]
to build a simulation model of an EJB system. The effect of several model input
parameters (e.g. number of CPUs, CPU speeds, number of threads, etc.) on the
system performance is analyzed. However, the system modeled is too simple to be
representative of real-world systems. Moreover, the model is not validated against
the real system to verify if assumptions made when constructing it are valid. There-
fore, it is not clear if the results presented can be trusted.

Bertolino and Mirandola [19] propose an original approach, called the CB-SPE,
for component-based software performance engineering. CB-SPE builds on, and
adapts to a CB framework, the concepts and steps of the SPE technology and
uses for modeling the standard RT-UML profile, reshaped according to the CB
principles. The approach is compositional in that it is applied first at the component
layer for achieving parametric performance evaluation of the component in isolation,
and then at the application layer for predicting the performance of the assembled

7.3. PERFORMANCE ENGINEERING OF DCS 183

components on the actual platform. In [20, 21] the approach is extended and a
concrete implementation is presented.

Wu et al. [175] describe an approach for component-based performance prediction
based on performance submodels for each system component, and a system assembly
model to describe the binding together of library components and new components
into a product. A component can be arbitrarily complex, including a subsystem of
concurrent processes. The description pays particular attention to identifying the
information that must be provided with the components, and with the bindings, and
to providing for parameterization to describe different configurations and workloads.
LQNs are exploited as underlying modeling formalism.

A large body of work exists on more general approaches for software performance
engineering. In [6] Balsamo at al. present a comprehensive review of recent research
in the field of model-based performance prediction at software development time.

While a lot of work has been done to support the performance engineering of
DCS, this work is limited in the following ways:

� Most of the approaches proposed have never been implemented.

� To the best of our knowledge, none of the approaches have been validated on
real-world DCS of the size and complexity of the ones considered in this thesis.

� None of the approaches have been shown to provide the modeling accuracy
and predictive power of the approach proposed in this thesis.

184 CHAPTER 7. RELATED WORK

Chapter 8

Summary and Outlook

For which one of you, when he wants to build a

tower, does not first sit down and estimate the cost

to see if he has enough to complete it?

– The Bible, Luke 14:28

Do not plan a bridge capacity by counting the

number of people who swim across the river today.

– Heard at a Presentation

In this thesis, we have proposed a systematic approach for performance engi-
neering of DCS that helps to identify performance and scalability (P&S) problems
early in the development cycle and ensure that systems are designed and sized to
meet their QoS requirements. The proposed approach builds on the fact that the
P&S of a DCS is a function of the P&S of the hardware and software platforms it is
built on, and the P&S of the system design. Therefore, if a DCS is to provide good
P&S, both the platforms used and the system design must be efficient and scalable.
To this end, we suggest that in the beginning of the system life cycle, the P&S of
the platforms chosen are validated using standard benchmarks and that performance
models are then exploited to evaluate the system P&S throughout the development
cycle. In contrast to the ”fix-it-later”approach, this approach helps to identify P&S
problems early in the system life cycle and eliminate them with minimal overhead.
The specifics of the proposed approach and the contributions of the thesis are now
summarized.

In the first part of the thesis, we advocated the use of industry-standard bench-
marks to evaluate the P&S of the hardware and software platforms used to build
DCS. We focused on J2EE-based platforms since they are currently the technol-

185

186 CHAPTER 8. SUMMARY AND OUTLOOK

ogy of choice for DCS. We discussed the five most important requirements that
benchmarks must fulfill in order for them to provide reliable results: they must be
representative of real-world systems, must exercise and measure all critical services
provided by platforms, must not be tuned/optimized for specific products, must
generate reproducible results and must not have any inherent scalability limitations.
Unfortunately, until recently, benchmarks used in the J2EE industry were mostly
proprietary and they failed to meet these requirements. There was a need for an
industry-standard benchmark that would provide a reliable method to evaluate the
P&S of J2EE platforms. In Chapter 2, we presented the ECperf benchmark and its
successor benchmarks SPECjAppServer2001 and SPECjAppServer2002 which were
developed with the goal to address this need. We discussed some scalability issues
that we discovered in the design of these benchmarks and proposed solutions to ad-
dress them. The proposed solutions were published in [84] and [83]. Furthermore,
they were submitted both to the ECperf expert group at Sun Microsystems and to
SPEC’s OSG-Java subcommittee where they were discussed and approved.

The SPECjAppServer2001 and SPECjAppServer2002 benchmarks evolved into
a new industry-standard benchmark for J2EE platforms in whose specification and
development the author was involved as release manager and lead developer. The
benchmark was called SPECjAppServer2004 and it was released in April 2004. This
benchmark provided a new enhanced workload exercising all major services of J2EE
platforms in a complete end-to-end application scenario. SPECjAppServer2004
quickly established itself as the state-of-the-art industry-standard benchmark for
J2EE-based platforms and it enjoys extreme popularity and market adoption for a
benchmark of this size and complexity. The latter is due to the following advantages
that SPECjAppServer2004 provides [82]:

1. It models a realistic application and workload.

2. It exercises all major services of J2EE platforms and measures the end-to-end
platform P&S.

3. It has been tested on multiple hardware and software platforms and has proven
to scale well from low-end desktop PCs to high-end servers and large clusters.

4. It has not been optimized for any specific platform and provides a level playing
field for performance comparisons.

5. It can be used for stress/regression testing and bottleneck analysis.

6. Official benchmark results are made publicly available and can be used free of
charge. Prior to publication, results are reviewed by subject experts making
sure that the benchmark was run correctly and results are valid.

187

7. Last but not least, the benchmark can be used as a sample (blueprint) app-
lication, demonstrating J2EE best practices and design patterns for building
scalable applications.

Doing benchmarking prior to starting system development ensures that P&S
problems in the platforms used are discovered and addressed in time. Applications
can then be developed with confidence that there are no bottlenecks or inefficien-
cies in the platforms employed. However, while the main purpose of benchmarks
like SPECjAppServer2004 and its predecessors is to measure the P&S of platforms,
they could equally well be exploited to study the effect of different platform config-
uration settings and tuning parameters on the overall system performance. Thus,
benchmarking not only helps to choose the best platform and validate its P&S,
but also helps to identify the configuration parameters most critical for P&S. In
Chapter 2, we presented some case studies with ECperf and SPECjAppServer2004
that demonstrated this. The case studies were published in [83] and [88].

While building on a scalable and optimized platform is a necessary condition
for achieving good P&S, unfortunately it is not sufficient. The application, i.e. the
DCS, built on the selected platform must also be designed to be fast and scalable.
The second major contribution of this thesis was the development of a performance
engineering framework for DCS that provides a method to evaluate the P&S of
the latter during the different phases of their life cycle. This helps to identify
design problems early in the development cycle and have them resolved in time.
The framework is made up of two parts. The first part, presented in Chapter 5,
provides a tool and methodology (called SimQPN) for analyzing QPN models by
means of simulation, circumventing the state-space explosion problem. This allows
QPN models of realistic DCS to be analyzed. The contributions in this area were
accepted for publication at [87]. The second part of the framework, presented in
Chapter 6, provides a practical performance modeling methodology that shows
how to model DCS using QPNs and use the models for performance evaluation.
The methodology has been submitted for publication at [81] and is currently under
review. Being based on QPN models, our approach has the following benefits:

1. QPN models allow the integration of hardware and software aspects of system
behavior and lend themselves very well to modeling DCS.

2. QPN models combine the modeling power and expressiveness of the conven-
tional queueing network and stochastic Petri net models and allow complex
aspects of system behavior to be accurately modeled.

3. By restricting ourselves to QPN models, we can exploit the knowledge of their
structure and behavior for fast and efficient analysis using simulation. This
enables us to analyze models of large and complex DCS and ensures that our
approach scales to realistic systems.

188 CHAPTER 8. SUMMARY AND OUTLOOK

4. QPNs can be used to combine qualitative and quantitative system analysis.
A number of efficient qualitative analysis techniques from Petri net theory are
readily available and can be exploited.

5. Last but not least, QPN models have an intuitive graphical representation
that facilitates model development.

In Chapter 4, we presented two practical performance modeling case studies
in which we studied realistic DCS using conventional modeling and analysis tech-
niques. The studies illustrated the difficulties stemming from the limited model
expressiveness, on the one hand, and from the limitations in the available analysis
methods, on the other hand. The need for more robust and scalable model analy-
sis techniques was discussed and motivated. The two case studies were published
in [85] and [86], respectively. In Chapter 6, another modeling case study was pre-
sented which showed how the problems mentioned above can be addressed using the
proposed performance engineering framework. The case study, which was included
in [81], can be seen as a validation of our approach.

8.1 Ongoing and Future Work

The SPECjAppServer benchmark suite will continue to be extended and enhanced
as the J2EE platform evolves. An important extension will be the inclusion of
functionality to exercise Web services which were introduced in J2EE 1.4. Another
important change will be the migration of the benchmark to the J2EE 1.5 pro-
gramming model which would make deployment of the benchmark much easier and
reduce the learning curve faced when setting up the benchmark for the first time.

The work on SimQPN will also be continued. A graphical frontend (GUI) to
the tool is planned which will make the tool easier to use and more user-friendly.
Furthermore, the following enhancements will be made in future versions of the tool:

� Support for timed transitions and immediate queueing places.

� Support for load-dependent service demands.

� Support for deterministic distributions.

� Support for more scheduling strategies.

� Support for hierarchical queueing Petri nets (HQPNs).

� Support for parallel simulation.

� Support for additional methods for determining the length of the initial tran-
sient and for output data analysis.

8.1. ONGOING AND FUTURE WORK 189

Another area of future work is the extension of the proposed performance engi-
neering framework with modeling templates (patterns) for DCS. Templates would
speed up model development by making it possible to reuse models for multiple
systems. It would also be interesting to explore the possibilities to automatically
generate performance models or parts thereof from higher-level system models de-
fined using UML diagrams. The estimation of service demands at the early stages
of system development is another problem that needs further research.

Finally, the proposed performance modeling methodology can be exploited as a
basis to build a framework for developing autonomic self-managing systems.

190 CHAPTER 8. SUMMARY AND OUTLOOK

Bibliography

[1] C. Alexopoulos and D. Goldsman. To Batch Or Not To Batch. ACM
Transactions on Modeling and Computer Simulation, 14(1):76–114, Jan.
2004. 108, 109, 111

[2] C. Alexopoulos and A. Seila. Output Data Analysis for Simulations. In
Proceedings of the 2001 Winter Simulation Conference, Arlington, VA, USA,
December 9-12, 2001. 108, 109

[3] D. Almaer. Making a Real World PetStore. TheServerSide.com J2EE
Community, Apr. 2002.
http://www.theserverside.com/articles/article.tss?l=PetStore. 17, 178

[4] Apache Software Foundation. Jakarta Tomcat, 2004.
http://jakarta.apache.org/tomcat/. 44

[5] O. Balci. Validation, Verification and Testing Techniques throughout the
Life Cycle of a Simulation Study. Annals of Operations Research, 53:
121–174, 1994. 113

[6] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-Based
Performance Prediction in Software Development: A Survey. IEEE
Transactions on Software Engineering, 30(5), May 2004. 183

[7] S. Balsamo and M. Marzolla. A Simulation-Based Approach to Software
Performance Modeling. In Proceedings of the 9th European Software
Engineering Conference held jointly with the 10th ACM SIGSOFT
International Symposium on Software Engineering, 2003. 182

[8] J. Banks, J. S. Carson II, B. L. Nelson, and D. M. Nicol. Discrete-Event
System Simulation. Prentice Hall, Upper Saddle River, NJ 07458, third
edition, 2001. 108, 110, 113

191

192 BIBLIOGRAPHY

[9] G. Basilio. Characterization and Evaluation of the BEA WebLogic JRockit
JVM on the Itanium II platform. Master’s thesis, Royal Institute of
Technology, Department of Microelectronics and Information Technology,
SE-100 44 Stockholm, SWEDEN, 2003. 180

[10] F. Bause. ”QN + PN = QPN” - Combining Queueing Networks and Petri
Nets. Technical report no.461, Department of CS, University of Dortmund,
Germany, 1993. 63, 66

[11] F. Bause. Queueing Petri Nets - A formalism for the combined qualitative
and quantitative analysis of systems. In Proceedings of the 5th International
Workshop on Petri Nets and Performance Models, Toulouse, France,
October 19-22, 1993. 7, 57, 63, 64, 66, 130

[12] F. Bause and P. Buchholz. Queueing Petri Nets with Product Form
Solution. Performance Evaluation, 32(4):265–299, 1998. 63

[13] F. Bause, P. Buchholz, and P. Kemper. Hierarchically Combined Queueing
Petri Nets. In Proceedings of the 11th International Conference on Analysis
and Optimization of Systems, Discrete Event Systems,
Sophie-Antipolis (France), 1994. 7, 63, 67, 181

[14] F. Bause, P. Buchholz, and P. Kemper. QPN-Tool for the Specification and
Analysis of Hierarchically Combined Queueing Petri Nets. In H. Beilner and
F. Bause, editors, Quantitative Evaluation of Computing and
Communication Systems, volume 977 of Lecture Notes in Computer Science.
Springer-Verlag, 1995. 90, 181

[15] F. Bause, P. Buchholz, and P. Kemper. Integrating Software and Hardware
Performance Models Using Hierarchical Queueing Petri Nets. In Proceedings
of the 9. ITG / GI - Fachtagung Messung, Modellierung und Bewertung von
Rechen- und Kommunikationssystemen, (MMB’97), Freiberg (Germany),
1997. 66, 97

[16] F. Bause and F. Kritzinger. Stochastic Petri Nets - An Introduction to the
Theory. Vieweg Verlag, second edition, 2002. xvi, 61, 62, 63, 65, 66

[17] Berkley University. Ptolemy II - an open-source software for modeling,
simulation and design of concurrent, real-time systems, 2004.
http://ptolemy.eecs.berkeley.edu/ptolemyII/. 182

[18] P. Bernstein and E. Newcomer. Principles of Transaction Processing.
Morgan Kaufmann Publishers, Inc., 1997. 30

BIBLIOGRAPHY 193

[19] A. Bertolino and R. Mirandola. Towards Component-Based Software
Performance Engineering. In I. Crnkovic, H. Schmidt, J. Stafford, and
K. Wallnau, editors, Proceedings of the 6th ICSE Workshop on
Component-Based Software Engineering: Automated Reasoning and
Prediction, Portland, Oregon, USA, May 2003. 182

[20] A. Bertolino and R. Mirandola. CB-SPE Tool: Putting Component-Based
Performance Engineering into Practice. In Proceedings of the 7th
International Symposium on Component-Based Software Engineering
(CBSE 2004), Edinburgh, UK, volume 3054 of LNCS, pages 233–248, May
2004. 183

[21] A. Bertolino and R. Mirandola. Software Performance Engineering of
Component-based systems. In Proceedings of the 4th International Workshop
on Software and Performance (WOSP 2004), California, USA, pages
238–242, Jan. 2004. 183

[22] P. Billingsley. Probability and Measure. John Wiley & Sons, 3nd edition,
1995. 110

[23] G. Bolch. Performance Evaluation of Computer Systems with the help of
Analytical Queueing Network Models. Teubner Verlag, Stuttgart, 1989. 79,
123

[24] G. Bolch, S. Greiner, H. De Meer, and K. Trivedi. Queuing Networks and
Markov Chains - Modelling and Performance Evaluation with Computer
Science Applications. John Wiley & Sons, Inc., 1998. 59, 60

[25] G. Bolch and M. Kirschnick. The Performance Evaluation and Prediction
SYstem for Queueing NetworkS - PEPSY-QNS. Technical Report
TR-I4-94-18, University of Erlangen-Nuremberg, Germany, June 1994.
http://www4.informatik.uni-erlangen.de/Projects/PEPSY/en/pepsy.html.
78, 79, 118, 123, 181

[26] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, 1999. 135

[27] P. Brebner and J. Gosper. How scalable is J2EE technology? ACM
SIGSOFT Software Engineering Notes, 28(3), May 2003. 179

[28] P. Brebner and J. Gosper. J2EE infrastructure scalability and throughput
estimation. ACM SIGMETRICS Performance Evaluation Review, 31(3):
30–36, Dec. 2003. 179

194 BIBLIOGRAPHY

[29] P. Brebner and S. Ran. Entity Bean A, B, C’s: Enterprise Java Beans
Commit Options and Caching. In Proceedings of IFIP/ACM International
Conference on Distributed Systems Platforms - Middleware, Heidelberg,
Germany, November, 2001. 47

[30] P. Buchholz. A hierarchical view of GCSPNs and its impact on qualitative
and quantitative analysis. Journal of Parallel and Distributed Computing,
1992. 181

[31] P. Buchholz. A class of hierarchical queueing networks and their analysis.
Queueing Systems, 1994. 181

[32] P. Buchholz. Adaptive decomposition and approximation for the analysis of
stochastic petri nets. Performance Evaluation, 2004. 181

[33] P. Buzen and A. Shum. Model Calibration. In Proceedings of the 1989
International CMG Conference, Reno, Nevada, USA, December 11-15, pages
808–811, 1989. 146

[34] H. Cain, R. Rajwar, M. Marden, and M. Lipasti. An Architectural
Evaluation of Java TPC-W. In Proceedings of the Seventh IEEE Symposium
on High-Performance Computer Architecture, pages 229–240, Jan. 2001. 180

[35] M. Calzarossa and G. Serazzi. Workload Characterization: a Survey.
Proceedings of the IEEE, 8(81):1136–1150, 1993. 132

[36] J. Carson and A. Law. Conservation Equations and Variance Reduction in
Queueing Simulations. Operations Research, 28, 1980. 113

[37] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance and scalability
of EJB applications. In Proceedings of the 17th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications,
Seattle, Washington, USA, pages 246–261, 2002. 179

[38] CERN - European Organisation for Nuclear Research. The Colt
Distribution - Open Source Libraries for High Performance Scientific and
Technical Computing in Java, 2002.
http://hoschek.home.cern.ch/hoschek/colt/. 107

[39] N. Chalainanont, E. Nurvitadhi, K. Chow, and S. L. Lu. Characterization of
L3 Cache Bahavior of Java Application Server. In Proceedings of the 7th
Workshop on Computer Architecture Evaluation using Commercial
Workloads, Feb. 2004. 180

BIBLIOGRAPHY 195

[40] Charles University, Prague. Middleware Benchmarking. Distributed System
Group’s Web page, 2002.
http://nenya.ms.mff.cuni.cz/projects.phtml?p=mbench&q=3. 179

[41] S. Chen, I. Gorton, A. Liu, and Y. Liu. Performance Prediction of COTS
Component-based Enterprise Applications. In Proceedings of the 5th ICSE
Workshop on Component-Based Software Engineering: Benchmarks for
Predictable Assembly, 2002. 182

[42] S. Chen, Y. Liu, I. Gorton, and A. Liu. Performance Prediction of
Component-based Applications. Journal of Systems and Software, Dec. 2003.
182

[43] C. Chien. Batch Size Selection for the Batch Means Method. In Proceedings
of the 1994 Winter Simulation Conference, Lake Buena Vista, FL, USA,
December 11-14, 1994. 111

[44] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN 1.7:
Graphical Editor and Analyzer for Timed and Stochastic Petri Nets.
Performance Evaluation, 24(1-2):47–68, Nov. 1995. Tool Homepage:
http://www.di.unito.it/ greatspn/index.html. 181

[45] G. Ciardo, R. Jones, A. Miner, and R. Siminiceanu. SMART: Stochastic
Model Analyzer for Reliability and Timing. In Tools of Aachen 2001
International Multiconference on Measurement, Modelling and Evaluation of
Computer-Communication Systems, Aachen, Germany, pages 29–34, Sept.
2001. Tool Homepage: http://www.cs.ucr.edu/ ciardo/SMART/. 181

[46] G. Ciardo, J. Muppala, and K. Trivedi. SPNP: Stochastic Petri Net Package.
In Proceedings of the Third International Workshop on Petri Nets and
Performance Models (PNPM89), Kyoto, Japan, pages 142–151, 1989. 181

[47] G. Ciardo and K. S. Trivedi. A Decomposition Approach for Stochastic Petri
Net Models. Performance Evaluation, 18(1):37–59, 1993. 181

[48] T. Courtney, D. Daly, S. Derisavi, S. Gaonkar, M. Griffith, V. Lam, and
W. Sanders. The Möbius Modeling Environment: Recent Developments. In
Proceedings of the 1st International Conference on Quantitative Evaluation
of Systems (QEST 2004), Enschede, The Netherlands, pages 328–329, Sept.
2004. Möbius Homepage: http://www.mobius.uiuc.edu/. 181

[49] D. Deavours and W. H. Sanders. ”On-the-fly”Solution Techniques for
Stochastic Petri Nets and Extensions. IEEE Transactions on Software
Engineering, 1998. 181

196 BIBLIOGRAPHY

[50] D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. Doyle,
W. Sanders, and P. Webster. The Möbius Framework and Its
Implementation. IEEE Transactions on Software Engineering, 28(10):
956–969, Oct. 2002. Möbius Homepage: http://www.mobius.uiuc.edu/. 181

[51] P. Denning and J. Buzen. The Operational Analysis of Queueing Network
Models. ACM Computing Surveys, 10(3):225–261, Sept. 1978. 60, 73, 138

[52] Department of Industrial Engineering, North Carolina State University.
ASAP3 Software For Steady-State Simulation Output Analysis, 2003.
ftp://ftp.ncsu.edu/pub/eos/pub/jwilson/installasap3.exe. 108

[53] N. Dumitrascu, S. Murphy, and L. Murphy. A Methodology for Predicting
the Performance of Component-Based Applications. In Proceedings of the
8th International Workshop on Component-Oriented Programming
(WCOP 2003), Darmstadt, Germany, July 21-25, 2003. 182

[54] B. Everitt. Cluster Analysis. Halsted Press, New York, 2nd edition, 1980.
138

[55] J. Flowers and D. L.W. A comparison of calibration techniques for queuing
network models. In Proceedings of the 1989 International CMG Conference,
Reno, Nevada, USA, December 11-15, pages 644–655, 1989. 146

[56] J. Freiheit and A. Zimmermann. A Divide and Conquer Approach for the
Performance Evaluation of Large Stochastic Petri Nets. In R. German and
B. Haverkort, editors, Proceedings of 9th International Workshop on Petri
Nets and Performance Models (PNPM’01), Aachen, Germany, pages 91–100,
Sept. 2001. 181

[57] R. Gaeta. Efficient Discrete-Event Simulation of Colored Petri Nets. IEEE
Transactions on Software Engineering, 22(9), Sept. 1996. 106, 181

[58] R. German, C. Kelling, A. Zimmermann, and G. Hommel. TimeNET - A
Toolkit for Evaluating Non-Markovian Stochastic Petri Nets. Performance
Evaluation, 24(1-2):69–87, Nov. 1995. 181

[59] I. Gorton and A. Liu. Performance Evaluation of EJB-Based Component
Architectures. IEEE Internet Computing, 7(3):18–23, May 2003. 179

[60] I. Gorton, A. Liu, and P. Brebner. Rigorous Evaluation of COTS
Middleware Technology. IEEE Computer, 36(3):50–55, Mar. 2003. 179

BIBLIOGRAPHY 197

[61] P. Heidelberger and P. Welch. Simulation Run Length Control in the
Presence of an Initial Transient. Operations Research, 31:1109–1145, 1983.
109, 111

[62] P. Hellekalek. On the assessment of random and quasi-random point sets. In
P. Hellekalek and G. Larcher, editors, Pseudo and Quasi-Random Point Sets,
Lecture Notes in Statistics. Springer-Verlag, New York, 1998. 107

[63] C. Hirel, R. A. Sahner, X. Zang, and K. S. Trivedi. Reliability and
Performability Modeling Using SHARPE 2000. In Computer Performance
Evaluation / TOOLS 2000, Schaumburg, IL, USA, pages 345–349, 2000. 78,
181

[64] C. Hirel, B. Tuffin, and K. Trivedi. SPNP: Stochastic Petri Nets. Version
6.0. In B. Haverkort, H. Bohnenkamp, and C. Smith, editors, Computer
performance evaluation: Modelling tools and techniques; 11th International
Conference; TOOLS 2000, Schaumburg, Illinois, USA, LNCS 1786. Springer
Verlag, 2000. 181

[65] R. Hogg and A. Craig. Introduction to Mathematical Statistics.
Prentice-Hall, Upper Saddle River, New Jersey, 5th edition, 1995. 110, 114

[66] G. Iazeolla, A. Lehmann, and H. Van Den Herik (Eds.). Simulation
Methodologies, Languages, Architectures, AI and Graphics for Simulation.
The Society for Computer Simulation International, La Jolla/USA,
Rome/Italy June 7-9, 1989. 104

[67] IBM Software. Trade3 Web Application Server Benchmark, 2003.
http://www-306.ibm.com/software/webservers/appserv/benchmark3.html.
5, 178

[68] R. Jain. The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling.
Wiley-Interscience, New York, 1991. 138

[69] K. Jensen. Coloured Petri Nets and the Invariant Method. Mathematical
Foundations on Computer Science, Lecture Notes in Computer Science
118:327-338, 1981. 61

[70] K. S. Juse, S. Kounev, and A. Buchmann. PetStore-WS: Measuring the
Performance Implications of Web Services. In Proceedings of the 29th
International Conference of the Computer Measurement Group (CMG) on
Resource Management and Performance Evaluation of Enterprise Computing
Systems - CMG2003, Dallas, TX, USA, December 7-12, 2003. 179

198 BIBLIOGRAPHY

[71] M. Kamath, S. Sivaramakrishnan, and G. Shirhatti. RAQS: A software
package to support instruction and research in queueing systems. In
Proceedings of the 4th Industrial Engineering Research Conference, IIE,
Norcross, GA., pages 944–953, 1995. 78, 181

[72] M. Karlsson, K. Moore, E. Hagersten, and D. Wood. Memory
Characterization of the ECperf Benchmark. In Proceedings of the 2nd
Annual Workshop on Memory Performance Issues (WMPI 2002), held in
conjunction with the 29th International Symposium on Computer
Architecture (ISCA-29), Anchorage, Alaska, USA, May 2002. 180

[73] M. Karlsson, K. Moore, E. Hagersten, and D. Wood. Memory System
Behavior of Java-Based Middleware. In Proceedings of the Ninth
International Symposium on High Performance Computer
Architecture (HPCA-9), Anaheim, California, USA, Feb. 2003. 180

[74] H. T. Kaur, D. Manjunath, and S. K. Bose. The Queuing Network Analysis
Tool (QNAT). In Proceedings of the 8th International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication
Systems, San Francisco, California, volume 8, pages 341–347, 2000. 78, 181

[75] C. Kelling. Simulationsverfahren für zeiterweiterte Petri-Netze. Advances in
simulation, scs international, Technische Universität Berlin, 1995. In
German. 181

[76] P. Kemper. Numerical analysis of superposed GSPNs. IEEE Transactions
on Software Engineering, 22(9):615–628, Sept. 1996. 181

[77] P. Kemper. Superposition of generalized stochastic Petri nets and its impact
on performance analysis. PhD thesis, Universität Dortmund, 1996. 181

[78] J. Kleijnen. Theory and Methodology: Verification and Validation of
Simulation Models. European Journal of Operational Research, 82(1):
145–162, 1995. 113

[79] M. Knoke, F. Kühling, A. Zimmermann, and G. Hommel. Performance of a
Distributed Simulation of Timed Colored Petri Nets with Fine-Grained
Partitioning. In Proceedings of the 2005 Design, Analysis, and Simulation of
Distributed Systems Symposium (DASD 2005), San Diego, USA, pages
63–71, Apr. 2005. 181

[80] S. Kounev. Eliminating ECperf Persistence Bottlenecks when using RDBMS
with Pessimistic Concurrency Control. Technical report, Darmstadt
University of Technology, Germany, Sept. 2001.
http://www.dvs1.informatik.tu-darmstadt.de/vskounev. 9, 30, 36, 38

BIBLIOGRAPHY 199

[81] S. Kounev. A Methodology for Performance Modeling of Distributed
Component-Based Systems using Queueing Petri Nets. IEEE Transactions
on Software Engineering, 2005. In review. 13, 187, 188

[82] S. Kounev. SPECjAppServer2004 - The New Way to Evaluate J2EE
Performance. DEV2DEV Article, O’Reilly Publishing Group, 2005.
http://www.dev2dev.com. 10, 186

[83] S. Kounev and A. Buchmann. Improving Data Access of J2EE Applications
by Exploiting Asynchronous Processing and Caching Services. In Proceedings
of the 28th International Conference on Very Large Data Bases -
VLDB2002, Hong Kong, China, August 20-23, 2002. 10, 36, 38, 186, 187

[84] S. Kounev and A. Buchmann. Performance Issues in E-Business Systems. In
Proceedings of the International Conference on Advances in Infrastructure
for e-Business, e-Education, e-Science, and e-Medicine on the Internet -
SSGRR-2002w, L’Aquila, Italy, January 21-27, 2002. 10, 26, 186

[85] S. Kounev and A. Buchmann. Performance Modeling and Evaluation of
Large-Scale J2EE Applications. In Proceedings of the 29th International
Conference of the Computer Measurement Group (CMG) on Resource
Management and Performance Evaluation of Enterprise Computing
Systems - CMG2003, Dallas, TX, USA, December 7-12, 2003. This paper
received Best-Paper-Award. 12, 188

[86] S. Kounev and A. Buchmann. Performance Modelling of Distributed
E-Business Applications using Queuing Petri Nets. In Proceedings of the
2003 IEEE International Symposium on Performance Analysis of Systems
and Software - ISPASS2003, Austin, Texas, USA, March 20-22, 2003. This
paper received the Best-Paper-Award at ISPASS-2003. 7, 12, 188

[87] S. Kounev and A. Buchmann. SimQPN - a tool and methodology for
analyzing queueing Petri net models by means of simulation. Performance
Evaluation, 2005. To appear. 12, 187

[88] S. Kounev, B. Weis, and A. Buchmann. Performance Tuning and
Optimization of J2EE Applications on the JBoss Platform. Journal of
Computer Resource Management, 113, 2004. 10, 41, 187

[89] S. Labourey and B. Burke. JBoss Clustering. The JBoss Group, 2520
Sharondale Dr., Atlanta, GA 30305 USA, 6th edition, 2003. 48

[90] M. Larsson, A. Wall, C. Norström, and I. Crnkovic. Using
Prediction-Enabled Technologies for Embedded Product Line Architectures.

200 BIBLIOGRAPHY

In Proceedings of the 5th ICSE Workshop on Component-Based Software
Engineering, Orlando, USA, 2002. 181

[91] A. Law and W. Kelton. Confidence Intervals for Steady-State
Simulations, II: A Survey of Sequential Procedures. Management Science, 28
(5):550–562, 1982. 111, 113

[92] A. Law and W. D. Kelton. Simulation Modeling and Analysis. Mc Graw Hill
Companies, Inc., third edition, 2000. 104, 108, 109, 110, 113

[93] J.-S. Lee, D. McNickle, and K. Pawlikowski. Confidence Interval Estimators
for Coverage Analysis in Sequential Steady-State Simulation. In Proceedings
22nd Australian Computer Science Conference, Auckland, New Zealand,
1999. 114, 115

[94] J.-S. Lee, K. Pawlikowski, and D. McNickle. Experimental Coverage
Analysis of Interval Estimators for Sequential Stochastic Simulation. In
Proceedings 1st Western Pacific/3rd Australia-Japan Workshop on Stochastic
Models, Christchurch, New Zealand, 1999. 114

[95] H. Leeb and S. Wegenkittl. Inversive and linear congruential pseudorandom
number generators in empirical tests. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 7(2):272–286, Apr. 1997. 107

[96] Y. Li and C. M. Woodside. Iterative Decomposition and Aggregation of
Stochastic Marked Graph Petri Nets. In Proceedings of the 12th
International Conference on Application and Theory of Petri Nets, Gjern,
Denmark, pages 257–275, 1991. 181

[97] J. Linton and C. Harmonosky. A Comparison of Selective Initialization Bias
Elimination Methods. In Proceedings of the 2002 Winter Simulation
Conference, San Diego, California, USA, December 8-11, 2002. 109

[98] J. D. C. Little. A proof of the queueing formula L = λW . Operations
Research, 9:383–387, 1961. 60

[99] P. Maly and C. Woodside. Layered Modeling of Hardware and Software,
with Application to a LAN Extension Router. In Proceedings of the 11th
International Conference on Computer Performance Evaluation Techniques
and Tools - TOOLS 2000, Motorola University, Schaumburg, Illinois, USA,
March 27-31, 2000. 66

[100] D. Mania and J. Murphy. Framework for Predicting the Performance of
Component-Based Systems. In Proceedings of the 10th IEEE International

BIBLIOGRAPHY 201

Conference on Software, Telecommunications and Computer Networks,
Croatia-Italy, Oct. 2002. 181

[101] F. Marinescu. Enterprise Java Beans Design Patterns.
John-Wiley & Sons, Inc., 2002. 23, 26

[102] G. Marsaglia. Diehard Battery of Tests of Randomness. Florida State
University, 1995. http://stat.fsu.edu/pub/diehard. 107

[103] M. Marzolla. Simulation-Based Performance Modeling of UML Software
Architectures. PhD thesis, Dottorato di Ricerca in Informatica, II Ciclo
Nuova Serie, Dipartimento di Informatica, Università Ca’ Foscari di Venezia,
Jan. 2004. 182

[104] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator. ACM
Transactions on Modeling and Computer Simulation, 1998. 107

[105] D. McGuinness, L. Murphy, and A. Lee. Issues in Developing a Simulation
Model of an EJB System. In Proceedings of the 30th International
Conference of the Computer Measurement Group (CMG) on Resource
Management and Performance Evaluation of Enterprise Computing
Systems - CMG2004, Las Vegas, Nevada, December 5-10, 2004. 182

[106] D. McNickle, K. Pawlikowski, and G. Ewing. Experimental Evaluation of
Confidence Interval Procedures in Sequential Steady-State Simulation. In
Proceedings of the 1996 Winter Simulation Conference, Coronado, CA, USA,
December 8-11, 1996. 114

[107] D. Menascé. Two-Level Iterative Queuing Modeling of Software Contention.
In Proceedings of the 10th IEEE International Symposium on Modeling,
Analysis & Simulation of Computer & Telecommunications
Systems (MASCOTS’02), Denton, TX, USA, October 11-16, 2002. 66, 80

[108] D. Menascé and V. Almeida. Capacity Planning for Web Performance:
Metrics, Models and Methods. Prentice Hall, Upper Saddle River, NJ, 1998.
4, 71, 73, 129, 133, 135, 137, 138

[109] D. Menascé and V. Almeida. Scaling for E-Business - Technologies, Models,
Performance and Capacity Planning. Prentice Hall, Upper Saddle River, NJ,
2000. 60, 80, 91, 129

[110] D. Menascé, V. Almeida, R. Fonseca, and M. Mendes. A Methodology for
Workload Characterization of E-commerce Sites. In Proceedings of the 1st

202 BIBLIOGRAPHY

ACM conference on Electronic commerce, Denver, Colorado, United States,
pages 119–128, Nov. 1999. 129, 135

[111] D. A. Menascé, V. A. Almeida, and L. W. Dowdy. Capacity Planning and
Performance Modeling - From Mainframes to Client-Server Systems.
Prentice Hall, Englewood Cliffs, NG, 1994. 6, 129, 134, 138, 144, 146

[112] D. A. Menascé, V. A. Almeida, and L. W. Dowdy. Performance by Design.
Prentice Hall, 2004. 1, 129, 137, 138, 144

[113] D. A. Menascé and H. Gomaa. A Method for Desigh and Performance
Modeling of Client/Server Systems. IEEE Transactions on Software
Engineering, 26(11), Nov. 2000. 137

[114] Microsoft Corp. Microsoft .NET Platform. Specification, 2004.
http://www.microsoft.com/net/. 2

[115] R. Miller. The Jackknife: A Review. Biometrika, 61:1–15, 1974. 111

[116] J. Mohr and S. Penansky. A forecasting oriented workload characterization
methodology. CMG Transactions, 36, June 1982. 133

[117] Mort Bay Consulting. Jetty Java HTTP Servlet Server, 2004.
http://jetty.mortbay.org. 44

[118] K. H. Mortensen. Efficient Data-Structures and Algorithms for a Coloured
Petri Nets Simulator. In Proceedings of the 3rd Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark,
August 29-31, 2001. 106, 181

[119] E. d. S. Mota. Performance of Sequential Batching-based Methods of Output
Data Analysis in Distributed Steady-state Stochastic Simulation. PhD thesis,
Technical University of Berlin, School of Electrical Engineering and
Computer Sciences, May 2002. 108

[120] MSDN Library. Using .NET to Implement Sun Microsystems’ Java Pet
Store J2EE BluePrint Application, Oct. 2002.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnbda/html/psimp.asp. 17,
178

[121] .NET Framework Community (GotDotNet). Microsoft .NET vs. Sun
Microsystem’s J2EE: The Nile E-Commerce Application Server Benchmark,
Oct. 2001. http://www.gotdotnet.com/team/compare/nileperf.aspx,
http://www.gotdotnet.com/team/compare/Nile 5, 178

BIBLIOGRAPHY 203

[122] .NET Framework Community (GotDotNet). Microsoft .NET Pet Shop,
2002. http://www.gotdotnet.com/team/compare/petshop.aspx. 5, 17, 178

[123] .NET Framework Community (GotDotNet). Compare Microsoft .NET to
J2EE Technology, 2003. http://www.gotdotnet.com/team/compare/. 5, 178

[124] T. Neward. The Pet Store.... Again. O’Reilly Developer Weblogs, Nov. 2002.
http://www.oreillynet.com/pub/wlg/2253. 5, 17, 178

[125] B. Newport. Why prepared statements are important and how to use them
properly. TheServerSide.com J2EE Community, 2001.
http://www.theserverside.com/. 26

[126] Object Management Group, Inc. Common Object Request Broker
Architecture (CORBA). Specification, 2004. http://www.corba.org/. 2

[127] ObjectWeb Consortium. RUBBoS: Bulletin Board Benchmark, 2002.
http://jmob.objectweb.org/rubbos.html. 179

[128] ObjectWeb Consortium. JMOB: Java Middleware Open Benchmarking,
2003. http://jmob.objectweb.org/. 179

[129] ObjectWeb Consortium. RUBiS: Rice University Bidding System, 2003.
http://rubis.objectweb.org/. 5, 179

[130] ObjectWeb Consortium. Stock-Online Project, 2003.
http://forge.objectweb.org/projects/stock-online/. 5, 179

[131] D. Ockerman and D. Goldsman. The Impact of Transients on Simulation
Variance Estimators. In Proceedings of the 1997 Winter Simulation
Conference, Atlanta, GA, USA, December 7-10, 1997. 109

[132] K. Pawlikowski. Steady-State Simulation of Queueing Processes: A Survey
of Problems and Solutions. ACM Computing Surveys, 22(2):123–170, 1990.
108, 109, 110, 111, 112, 113

[133] K. Pawlikowski, D. McNickle, and G. Ewing. Coverage of Confidence
Intervals in Sequential Steady-State Simulation. Journal of Simulation
Practice and Theory, 6(3):255–267, 1998. Plus: ”Erratum”7(1):1, 1999. 111,
114

[134] H. Perros. Computer Simulation Techniques - The Definitive Introduction.
E-Book, NC State University, 2003.
http://www.csc.ncsu.edu/faculty/perros/simulation.pdf. 108

204 BIBLIOGRAPHY

[135] R. Ramakrishnan and J. Gehrke. Database Management Systems.
McGraw-Hill, 2nd edition, 2000. 28

[136] S. Ran, D. Palmer, P. Brebner, S. Chen, I. Gorton, J. Gosper, L. Hu, A. Liu,
and P. Tran. J2EE Technology Performance Evaluation Methodology. In
Distributed Objects and Applications 2002 (DAO’02), Proceedings
(addendum) of ”On the Move to Meaningful Internet Systems and Ubiquitous
Computing”, University of California, Irvine, Oct. 2002. 179

[137] Real-Time and Distributed Systems Group, Carleton University, Ottawa,
Canada. Layered Queueing Homepage. http://www.layeredqueues.org/,
2004. 66

[138] S. Robinson. A Statistical Process Control Approach For Estimating the
Warm-Up Period. In Proceedings of the 2002 Winter Simulation Conference,
San Diego, California, USA, December 8-11, 2002. 109

[139] J. Rolia and K. Sevcik. The Method of Layers. IEEE Transactions on
Software Engineering, 21(8):689–700, 1995. 66, 80

[140] E. Roman, S. Ambler, and T. Jewell. Mastering Enterprise Java Beans II
and the Java 2 Platform, Enterprise Edition. John Wiley & Sons, Inc., 2002.
23, 30

[141] C. Rose. A measurement procedure for queuing network models of computer
systems. ACM Computing Surveys, 10(3), 1978. 137

[142] W. Sanders, W. Obal, M. Qureshi, and F. Widjanarko. The UltraSAN
modeling environment. Performance Evaluation, 1995. 181

[143] R. Sargent. Verification and Validation of Simulation Models. In A. Seila,
S. Manivannan, J. Tew, and D. Sadowski, editors, Proceedings of the Winter
Simulation Conference, Lake Buena Vista, FL, USA, December 11-14, 1994.
113

[144] T. Schriber and R. Andrews. A Conceptual Framework for Research in the
Analysis of Simulation Output. Communications of the ACM, 24(4):218–232,
1981. 113

[145] C. Smith. Performance Engineering. In Encyclopedia of Software
Engineering, J.J. Maciniak (ed.), John Wiley & Sons, 1994. pp. 794-810. 1

[146] C. U. Smith and L. G. Williams. Performance Solutions - A Practical Guide
to Creating Responsive, Scalable Software. Addison-Wesley, 2002. 2, 135

BIBLIOGRAPHY 205

[147] Standard Performance Evaluation Corporation (SPEC).
SPECjAppServer2004 Documentation. Specifications, Apr. 2004.
http://www.spec.org/jAppServer2004/. 36, 39, 40

[148] S. Stark. JBoss Administration and Development. The JBoss Group, 2520
Sharondale Dr., Atlanta, GA 30305 USA, 3th edition, 2003. 47, 49

[149] N. Steiger, E. Lada, J. Wilson, C. Alexopoulos, D. Goldsman, and
F. Zouaoui. ASAP2: An Improved Batch Means Procedure For Simulation
Output Analysis. In Proceedings of the 2002 Winter Simulation Conference,
San Diego, California, USA, December 8-11, 2002. 108

[150] N. Steiger, E. Lada, J. Wilson, J. Joines, C. Alexopoulos, and D. Goldsman.
ASAP3: A Batch Means Procedure for Steady-State Simulation Output
Analysis. ACM Transactions on Modeling and Computer Simulation, 82,
2003. ftp://ftp.ncsu.edu/pub/eos/pub/jwilson/tomacsv37.pdf. 108

[151] N. Steiger and J. Wilson. Improved Batching For Confidence Interval
Construction in Steady-State Simulation. In Proceedings of the 1999 Winter
Simulation Conference, Phoenix, Arizona, USA, 1999. 108

[152] N. Steiger and J. Wilson. Experimental Performance Evaluation of Batch
Means Procedures for Simulation Output Analysis. In Proceedings of the
2000 Winter Simulation Conference, Orlando, FL, USA, December 10-13,
2000. 108

[153] L. Su, K. Chow, K. Shiv, and A. Jha. A Comparison of
SPECjAppServer2002 and SPECjAppServer2004. In Proceedings of the 8th
Workshop on Computer Architecture Evaluation using Commercial
Workloads - CAECW-8, San Francisco, February 12, 2005. 36, 180

[154] A. Sucharitakul. Seven Rules for Optimizing Entity Beans. Java Developer
Connection, 2001. 24, 25

[155] Sun Microsystems, Inc. The ECperf Benchmark. Specification, Apr. 2002.
http://java.sun.com/j2ee/ecperf/. 18, 28

[156] Sun Microsystems, Inc. Java�Pet Store Demo, 2003.
http://java.sun.com/developer/releases/petstore/. 5, 178

[157] Sun Microsystems, Inc. Enterprise JavaBeans. Specification, 2004.
http://java.sun.com/products/ejb/. 20, 23, 31, 47

[158] Sun Microsystems, Inc. Java 2 Platform, Enterprise Edition (J2EE).
Specification, 2004. http://java.sun.com/j2ee/. 2

206 BIBLIOGRAPHY

[159] Sun Microsystems, Inc. Java Message Service. Specification, 2004.
http://java.sun.com/products/jms/. 31

[160] Y. Tay, N. Goodman, and R. Suri. Locking Performance in Centralized
Databases. ACM Transactions on Database Systems, 10/4, 1985. 27

[161] The Middleware Company. The ECperf Web Site at TheServerSide.com,
2002. http://ecperf.theserverside.com/ecperf. 18

[162] The Open Group. Distributed TP: The XA Specification. Specification,
1992. http://www.opengroup.org/public/pubs/catalog/c193.htm. 40

[163] TheServerSide.com J2EE Community. Oracle claims PetStore runs twice as
fast on Oracle vs. IBM, BEA, Nov. 2001.
http://www.theserverside.com/news/thread.tss?thread id=10446. 17, 178

[164] Transaction Processing Performance Council.
TPC Benchmark� App (TPC-App). Specification, Dec. 2004.
http://www.tpc.org/tpc app/. 177

[165] Transaction Processing Performance Council.
TPC Benchmark� W (TPC-W). Specification, 2004.
http://www.tpc.org/tpcw/. 177

[166] K. Trivedi. Probability and Statistics with Reliability, Queuing and Computer
Science Applications. John Wiley & Sons, Inc., second edition, 2002. 60, 91,
110

[167] University of Aarhus. Petri Net Tool Database. Department of Computer
Science - DIAMI, 2004. http://www.daimi.au.dk/PetriNets/tools/. 181

[168] Urbancode, Inc. Urbancode EJB Benchmark, 2002.
http://www.urbancode.com/projects/ejbbenchmark/default.jsp. 5, 178

[169] S. Wegenkittl. The pLab Picturebook: Load Tests and Ultimate Load Tests,
Part I. Technical report, University of Salzburg, 1997.
ftp://random.mat.sbg.ac.at/pub/data/pLabReport1.ps. 107

[170] G. Weikum and G. Vossen. Transactional Information Systems - Theory,
Algorithms, and the Practice of Concurrency Control and Recovery. Morgan
Kaufmann Publishers, 2002. 27, 29

[171] B. Weis. Performance Optimierung von J2EE Anwendungen auf der JBoss
Plattform. Master thesis, Darmstadt University of Technology, Mar. 2004. In
German. 41, 43

BIBLIOGRAPHY 207

[172] P. Welch. On the Problem of the Initial Transiant in Steady-State
Simulation. Technical report, IBM Watson Research Center, Yorktown
Heights, New York, 1981. 109

[173] P. Welch. The Statistical Analysis of Simulation Results. The Computer
Performance Modeling Handbook, ed. S. Lavenberg, Academic Press, NJ,
268-328, 1983. 109

[174] M. Woodside, J. Neilson, D. Petriu, and S. Majumdar. The Stochastic
Rendezvous Network Model for Performance of Synchronous
Client-Server-Like Distributed Software. IEEE Transactions on Computers,
44(1):20–34, Jan. 1995. 66

[175] X. Wu, D. McMullan, and M. Woodside. Component Based Performance
Prediction. In I. Crnkovic, H. Schmidt, J. Stafford, and K. Wallnau, editors,
Proceedings of the 6th ICSE Workshop on Component-Based Software
Engineering: Automated Reasoning and Prediction, Portland, Oregon, USA,
May 2003. 183

[176] Y. Zhang, A. Liu, and W. Qu. Comparing Industry Benchmarks for J2EE
Application Server: IBM’s Trade2 vs Sun’s ECperf. In M. J. Oudshoorn,
editor, Proceedings of the Twenty-Sixth Australasian Computer Science
Conference (ACSC 2003), Adelaide, Australia., pages 199–206. ACS
Conferences in Research and Practice in Information Technology (CRPIT),
Jan. 2003. 180

[177] A. Zimmermann, J. Freiheit, R. German, and G. Hommel. Petri Net
Modelling and Performability Evaluation with TimeNET 3.0. In Proceedings
of the 11th International Conference on Modelling Techniques and Tools for
Computer Performance Evaluation (TOOLS’2000), Schaumburg, Illinois,
USA, LNCS 1786, pages 188–202, Mar. 2000. 181

208 BIBLIOGRAPHY

Erklärung

Hiermit erkläre ich, die vorgelegte Arbeit zur Erlangung des akademischen Grades

”
Dr.-Ing.“ mit dem Titel

”
Performance Engineering of Distributed

Component-Based Systems - Benchmarking, Modeling and Performance
Prediction“ selbstständig und ausschließlich unter Verwendung der angegebenen
Hilfsmittel erstellt zu haben. Ich habe bisher noch keinen Promotionsversuch
unternommen.

Darmstadt, den 03.05.2005 Samuel Kounev

	Title Page
	Contents
	List of Figures
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Shortcomings of Current Approaches
	1.3.1 Load Testing
	1.3.2 Performance Modeling

	1.4 Approach and Contributions of this Thesis
	1.4.1 Contributions in the Area of Benchmarking
	1.4.2 Contributions in Performance Engineering

	1.5 Thesis Organization

	2 Benchmarking Distributed Component Platforms
	2.1 Introduction
	2.2 The J2EE Platform
	2.3 The ECperf Benchmark
	2.3.1 ECperf Business Model
	2.3.2 ECperf Application Design
	2.3.3 From ECperf to SPECjAppServer2001/2002

	2.4 Evaluating J2EE Persistence Methods
	2.4.1 Persistence Methods in J2EE
	2.4.2 Performance Comparison of BMP and CMP
	2.4.3 The ECperf Persistence Bottleneck

	2.5 The SPECjAppServer2004 Benchmark
	2.5.1 SPECjAppServer2004 Business Model
	2.5.2 Benchmark Design and Workload
	2.5.3 Standard vs. Distributed Workload

	2.6 Case Study with SPECjAppServer2004 on JBoss
	2.6.1 Experimental Setting
	2.6.2 Performance Analysis
	2.6.3 Conclusions from the Analysis

	2.7 Concluding Remarks

	3 Performance Models
	3.1 Introduction
	3.2 Queueing Networks
	3.3 Petri Nets
	3.4 Queueing Petri Nets
	3.4.1 Basic Queueing Petri Nets
	3.4.2 Hierarchical Queueing Petri Nets

	3.5 Concluding Remarks

	4 Performance Modeling Case Studies
	4.1 Introduction
	4.2 Case Study 1: Modeling using Queueing Networks
	4.2.1 Motivation
	4.2.2 Workload Characterization
	4.2.3 Building a Performance Model
	4.2.4 Model Analysis and Validation
	4.2.5 Conclusions from the Analysis

	4.3 Case Study 2: Modeling using Queueing Petri Nets
	4.3.1 Motivation
	4.3.2 Workload Characterization
	4.3.3 First Cut System Model
	4.3.4 Hierarchical System Model
	4.3.5 Model Analysis and Validation
	4.3.6 Conclusions from the Analysis

	4.4 Concluding Remarks

	5 Analysis of QPN Models by Simulation
	5.1 Introduction
	5.2 SimQPN - Simulator for Queueing Petri Nets
	5.2.1 SimQPN Features
	5.2.2 Design and Architecture
	5.2.3 Random Number Generation
	5.2.4 Output Data Analysis

	5.3 SimQPN Validation and Performance Analysis
	5.3.1 Method of Coverage Analysis Used
	5.3.2 Model of SPECjAppServer2001's Order Entry Application
	5.3.3 Product-form Queueing Network
	5.3.4 Model of SPECjAppServer2002

	5.4 Concluding Remarks

	6 Performance Modeling Methodology
	6.1 Introduction
	6.2 Methodology Overview
	6.2.1 Step 1: Establish performance modeling objectives.
	6.2.2 Step 2: Characterize the system in its current state.
	6.2.3 Step 3: Characterize the workload.
	6.2.4 Step 4: Develop a performance model.
	6.2.5 Step 5: Validate, refine and/or calibrate the model.
	6.2.6 Step 6: Use model to predict system performance.
	6.2.7 Step 7: Analyze results and address modeling objectives.

	6.3 Case Study: Modeling SPECjAppServer2004
	6.3.1 Establish performance modeling objectives.
	6.3.2 Characterize the system in its current state.
	6.3.3 Characterize the workload.
	6.3.4 Develop a performance model.
	6.3.5 Validate, refine and/or calibrate the model.
	6.3.6 Use model to predict system performance.
	6.3.7 Analyze results and address modeling objectives.

	6.4 Concluding Remarks

	7 Related Work
	7.1 Benchmarking DCS
	7.2 Tools/Techniques for QPN Analysis
	7.3 Performance Engineering of DCS

	8 Summary and Outlook
	8.1 Ongoing and Future Work

	Bibliography

